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ABSTRACT

The general problem studied is that of segmenting or partitioning programs for distribution across

a multiprocessor system. Efficient partitioning and the assignment of program elements are of

great importance since the time consumed in this overhead activity may easily dominate the com-

putation, effectively eliminating any gains made by the use of the parallelism. In this study, the

partitioning of sequentially structured programs (written in FORTRAN) is evaluated. Heuristics,

developed for similar applications are examined. Finally, a model for queueing networks with

finite queues is developed which may be used to analyze multiprocessor system architectures with

a shared memory approach to the problem of partitioning.

The properties of sequentially written programs form obstacles to large scale (at the procedure or

subroutine level) parallelization. Data dependencies of even the minutest nature, reflecting the

sequential development of the program, severely limit parallelism. The design of heuristic algo-

rithms is tied to the experience gained in the parallel splitting.

Parallelism obtained through the physical separation of data has seen some success, especially at

the data element level. Data parallelism on a grander scale requires models that accurately reflect

the effects of blocking caused by finite queues. A model for the approximation of the performance

of finite queueing networks is developed. This model makes use of the decomposition approach

combined with the efficiency of product form solutions.

INTRODUCTION

Developments in hardware technology for parallel computers have far out-paced corresponding

developments in software for these machines. Although parallel architectures have proliferated,

the high-level language software developed for them has been for the most part architecture spe-

cific. Architectures vary in 1) the degree of the physical separation of non-similar program mod-

ules, 2) the amount of data parallelism, and 3) the topology of the network that links the pieces

(program module and data). When a new architecture is developed, it usually dictates a new soft-

ware paradigm which in turn calls for new high-level languages and, consequently, necessitates

the rewriting of existing software solutions.

Of major concern is the massive amounts of existing software, written in traditional, sequential

languages. The rewriting of this software represents an undertaking of monumental proportions.

Being able to automatically convert this software to parallel forms to suit the new architectures

would represent a major contribution to the effort to utilize parallel computers.

The "parallelizing" of existing sequential programs is not a novel idea. Much work has been done

in intra-procedural analysis, typically examining array operations, affording a degree of fine-

grained parallelism. Less understood is the potential for parallelism between procedures or sub-

routines. This work examines the latter, large-grained form of parallelism.

Partitioning a sequential program into parts, some of which may execute in parallel, does not lend



itself to analyticapproaches that would produce an optimum result. Instead, heuristics (i.e. "rules

of thumb") are employed with the aim of producing "good" results, although perhaps not opti-

mum and not in all cases, using efficient decision algorithms. The heuristics may be products of

applied "common sense" or the result of experience gained from observing the outcomes in differ-
ent situations.

PARTITIONING SEQUENTIAL PROGRAMS FOR PARALLEL COMPUTATION

The utility of the data flow model of computation is studied in light of a general purpose model of

parallel computation at the procedure level. Under data flow, all elements of a computation may

execute in parallel with the exceptions indicated by data dependencies between procedures. The

data dependencies may be denoted as edges on a data flow graph in which the nodes represent the

procedures resulting from the partitioning of the program. Two types of parallelism are repre-

sented. The "spatial" parallelism, indicated by nodes that are not connected by data dependencies

(or dependencies indicated by the transitive closure relationship of the data dependencies), and

"temporal" parallelism, that exhibited by parallel computations of nodes that may be related by

data dependencies but are permitted to be executing "at the same time" because they are operating

on data at different stages in the data flow graph.

A major difficulty with converting an existing sequential program to the data flow format is deter-

mining which dependencies are valid and which may be ignored. Data that are used within a pro-

cedure represent valid dependencies. Data that are made available to a procedure (such as via

subroutine parameters or common blocks), but not used, represent invalid (or nonexistent) depen-

dencies. Data that is not needed may appear in parameter lists and in common blocks only for the

programmer's convenience--it may have been easier to use a "copy" feature in an editor to reuse a

line that held all of the necessary data--and more. Sorting out the valid dependencies from the
invalid is a nontrivial problem.

The MLTCS3 - Supersonic Engine Fan Flutter Analysis FORTRAN code from NASA Lewis was

analyzed for data dependencies existing between subroutines. The resulting data flow diagram is

given in Figure 1. Spatial parallelism is not immediately evident, except between the routines,

"mltz2" and "mlteta." The execution of these two routines does not significantly impact the entire

program execution. Temporal parallelism is not apparent due to the iterative (looping) structure of

the program. The potential contribution of some parallelism is determined to be completely out-

weighed by the overhead introduced by having to hierarchically structure the computation sur-

rounding these two subroutines in order to expose the parallelism in the data flow model. While

the data flow model may prove useful at the procedural level in computations offering specific

structures, the problems encountered with MLTCS3 are not at all unique. This places the entire

data flow approach in question when viewed as a model for inter-procedural computation in the

general case. A model that requires much less smacturing, such as an object-oriented model, may

prove to provide a more natural transition from the sequential to the parallel.

HEURISTICS FOR PARTITIONING AND ASSIGNMENT



A studyof thecurrentliteraturefoundanumberof heuristicsusedfor differentsolutionstrategies.
Heuristicsincludedavariationon "branchandbound,"apredictedminimum,andselectingthe
local minimum[ 4 ]. A "First Fit Decreasing"heuristic[ 3 ] andheuristicsinvolving "bottom-up
clusteringmethods"and"top-downpartitioningmethods"[ 5 ], basedupongraphdecomposition
techniques,arealsoused.Techniquesthatselectlocaloptima,alsocalled Greedy Algorithms [ 7 ],

are prevalent.

The development of heuristic-based algorithms must assume a model for partitioning and assign-

ment. Until a suitable model is determined, the examination of heuristics will only produce a clas-

sification of heuristics. After a model is chosen, heuristics may then be developed.

AN EFFICIENT MODEL FOR CLOSED QUEUEING NETWORKS WITH FINITE QUEUES

Finite queueing techniques are an active and important area of research. Much of the interest in

this area is generated by the need to model computer networks on all levels. Classical analysis

methods assume the queue sizes to be infinite. Although an approximation, models built upon this

assumption have performed well over a large class of systems. In many other situations, however,

the effects of limited size (e.g. finite) queues strongly impact the performance of the system and

modeling with only infinite queues is not sufficient.

Finite queue systems were first modeled by Markov chains. Using Markov chains, a state space is

defined with each state describing the location of each customer in the network. The network is

solved by solving the corresponding system of linear equations. Solutions involving such detailed

techniques are impractical for large networks due to the large number of states and, consequently,
the large number of computations.

Jackson [ 6 ] proved that for a special class of queueing networks with infinite queues, a network

may be modelled analytically by use of a "product form" formula. This important result indicates

that networks can be "solved" by simply multiplying together the steady-state probability density

functions for the individual queues. Very efficient algorithms exist for networks that are product

form. It is noted that networks with finite queues are not product form.

The method of network "decomposition," described by the Decomposition Theorem [ 1 ], is an

approach used to simplify the analysis of large networks. A network is decomposed into subnet-

works and the subnetworks are analyzed individually. This is done by replacing a subnetwork by

an equivalent server whose characteristics are such that the performance of the resulting network

is the same as the original network. The method of decomposition was shown to produce exact

results for product form networks [ 1, 2 ].

An approximation to a finite queueing network problem is presented as a dissertation, entitled "A

Decomposition Approach to Finite Queueing Networks," authored by Badie A. Taha and given as

Appendix B. The approach presented decomposes a non-product form network into product form

subnetworks. The specific network studied is a two-level finite queueing network, with a single
server at the first level and m servers at the second level. The model for this network assumes that



theserverat thefirst levelviewsall serversatthesecondlevelasasingleequivalentserverwith a
variableservicerate(theservicerate isdependentuponthecompositequeuelength),havinga
variablequeuecapacity.Thenotionof replacingasubnetworkby asingle"flow-equivalent"
serveris justified by theDecompositionTheorem.Severalfinite, fixedqueuesmaybereplacedby
oneserverwith variablequeuesizebasedon theblockingandnonblockingpossibilitiesof the
serverat level one.

Thestatespaceis grouped into subsets of states by coUecting those states with the total number of

customers, located at servers in the second level, less than or equal to some value, n. The proba-

bility of being in each subset of states is estimated and the performance measure (throughput) cal-
culated for each subset using the product form solution.

The decomposition model is tested for a system consisting of four servers and three finite queues.
Combinations of service times, finite queue sizes, routing probabilities, and the number of cus-

tomers in the network form the bases for over 700 runs. The results give a relative error, when

compared to an exact solution, of less than 1%. It is concluded that the decomposition approach

and the use of the product form solution of infinite queue networks are feasible to apply to the
analysis of finite queueing networks.

FUTURE RESEARCH DIRECTIONS

Other models are needed to provide an appropriate fit with the parallel execution of sequentially

designed programs. The subroutine- and data-level partitioning will be evaluated with existing
architectural designs for parallel computation. The finite queueing network model will be evalu-

ated using more complex network interconnection structures. The outcome from such a model

may determine near-optimal partitionings for sequential programs by suggesting heuristics tai-
lored to the problem.
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Figure 1: MLTCS3 - Supersonic Engine Fan Flutter Analysis (Data Flow Diagram)
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QUEUEING NETWORK MODELS FOR HIERARCHICAL
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ABSTRACT

A multiprocessor shared memory organization, offering a recursively defined hierarchical structure, is
modeled using a closed queuing network with finite queues. Memory modules of differing service

characteristics are located at various levels in the hierarchy. One approximate solution of closed queuing
networks with blocking can be obtained by forming an equivalent product form network with multiple
chains of customers. Approximate solutions by decomposition to a flow equivalent service model that
udlizes the recursive structure of the network is outlined.

Key words: Queuing networks, performance evaluation, memory interference, blocking, finite buffers.

INTRODUCTION

Shared memory multiprocessor computing systems have come to play a major role in both application
and research areas of computer science. The parallelism offered by multiprocessor systems appears to
represent the most promising way of obtaining the high-performance computing needed in many appli-
cation fields. Characteristics such as fault tolerance, flexibility, functional upgrading, and cost
effectiveness have spurred development of multiprocessor systems and a variety of multiprocessor archi-

tectures with different design alternatives have been proposed and implemented. The development of
methodologies and tools for the prediction of the performance of multiprocessor architectures is grow-
ing in importance as architectural designs proliferate.

A multiprocessor system consists of a set of master modules (processors) and a set of slave units

(memories and UO modules) linked together by an interconnection structure. Master units are the sys-
tem elements allowed to issue access requests to the intercormection structure for the transfer of data.

Slave units receive access requests from master units and can accept and honor them according to a
_ven service discipline such as first come first served (FCFS). Slaves units may have limited size
buffers for waiting requests. The actual nature of the information transfer can be either a write request
(write operation) or a read request (read operation). Performance may be degraded due to conflicts

(interference) which occur whenever two or more processors attempt to access the same memory
module simultaneously. Researchers involved with the design of large-scale shared memory multipro-
cessors [8, 10, 19] have found that although the performance of such systems is influenced in complex
ways by many parameters, memory access time (including time spent waiting for access due to
conflicts) is the major design factor influencing performance in such systems.

* Supported £n part: by NASA Lew±s Research Center - Grant: Number: NAG 3-975
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Thesharedmemoryorganizationin multiprocessorarchitecturesis evolvingtowarda complexhierarchy
of storagemediaconsistingof a smallamountof fastmemory(registers)followedby increasingly
largeramountsof slowermemorywhichmayincludeone or morelevelsof cache,mainmemory,
extendedstore,disks,andmassstore.Thefocusof thispaperis theproblemof memoryinterferencein
sharedmemorymultiprocessorsystemsin whichthememorymodulesareorganizedin ahierarchyasin
Figure1.Theobjectiveis to developanalyticmodelsof theeffectof interferencein a sharedhierarchi-
calmemorymultiprocessorsystemwithblocking.Theblockingmechanism,dueto limitedsizewaiting
buffers(queues)at eachof thememorymodulesin thenetwork,providesstrongmotivationfor the
developmentof a solutionto closedqueuingnetworkswith finitecapacitybuffers(closedqueuingnet-
worksincorporateaconstantnumberof circulatingcustomers).

PREVIOUS WORK

In this section, the most general queuing networks used in modeling computer systems are reviewed.
Several queuing networks characterized by the structure of the queue interconnection and by distribution

of the arrival and service processes have been analyzed in the literature. Product form queuing net-
works are the most interesting networks due the fact that they are found to be solvable with relatively
simple mathematical tools. This is because the solution of the network (probability distribution of custo-
mers over the network) is easily obtained by analyzing each station in the network in isolation and then

combined them in a product form expression. This solution is then used to calculate all performance
measurements. Product form queuing networks and solution of blocking networks are discussed in the
this sections.

Jackson [12] showed that the product from solution [28] holds for networks in which customers are
allowed to visit any station and cycles between stations are allowed, i.e., in which a customer is
allowed to visit several times the same station before leaving the network. These networks are known as
Jackson networks. They are analyzed by recognizing that the time behavior of the state of the network

(distribution of customers over stations) is a Markov chain and that the global balance equations can be
written directly to balance the flow in and out of any network state. A particular case of Jackson net-

works is represented by networks in which no arrivals from the outside world are allowed (closed net-
works), so that the number of customers in the network, N, is kept constant. Gordon and Newell [9]
analyze this class of networks, showing that the solution for the steady state distribution of customers in

the network is also of product form type. The balance equations in this case are simpler than the equa-
tions of Jackson's, since the arrivals from the outside world and departures toward the outside world are
not allowed. The development and analysis of one of the most general queuing networks was due to
the combined efforts of Basket't, Chandy, Muntz, and Palacios [2]. The result is known as the BCMP
theorem, bearing their initials. This class of networks contains an arbitrarily but finite number M of
service stations. There is an arbiwarily but finite number R of different classes of customers. Customers
may travel through the network and change class according to transition probabilities. Thus a customer

of class r who completes service at station i may next require service at station j in class s with pro-
bability Pi,,js. Service stations may have different service time distributions and may depend on the
number of customers at the station. Multiple servers at each station and different service disciplines for
managing the queues are allowed.

All solution described above assume infinite queues [6,13,20]. In real life systems, the storage space is
always finite. Hence a more realistic model of such systems requires modeling queues with finite capa-
city. An important feature of queuing networks with finite queues is that the flow of customers through
a server may be momentarily stopped when another node in the network reaches its capacity. That is a
called blocking. This type of network is difficult to analyze since the steady state queue length distri-
bution has not been shown to have a product form solution as in networks without blocking. A
comprehensive survey on queuing networks with blocking can be found in [1,15,17,18,26].
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THE MODEL

Consider a multiprocessor system in which processors generate memory access requests to memory
modules that are organized in a hierarchy. A processor generates requests to a memory module at the

first level through the crossbar intercormection structure that gives to any processor the capability of
accessing any memory module at any time without interfering with other processors, provided that the
memory module is free. No contention for the use of the crossbar switch exists in this case. A proces-

sor attempting to access a memory module can be either served immediately or delayed in a waiting
buffer due to another processor accessing the same memory module. Requests that are satisfied are ter-
minated and the requesting processor resumes its internal processing. Requests that are not satisfied
proceed to the next higher level in the hierarchy of memory modules unless blocking occurs due to the
size of buffers at that level. It is assumed that the higher the level, the greater its access time and the

veater its storage capacity. Despite the fact that the motivation for this research is the multiprocessor
network with shared memory hierarchy connected as a tree, the models considered in this research
assume an arbitrarily connected, finite buffer, closed queuing network.

A request to a memory module is processed in two steps: (1) checking the availability of the requested
data and (2) servicing the memory access if the data are available, leading to the model of the two sin-

gle server service stations, m a and mb, as in Figure 2. A controller server, ma, has a single queue with
limited capacity, and tests the availability of the requested data. Requests that require service from the

same memory module (if the data are available) are directed to a second server with probability ct. With
probability 1 - ct the request is directed to a memory module at the next higher level in the hierarchy.
The second server, mr, , also has a finite queue of waiting requests. Server m a continues to serve other

requests as long as the queue of the second server, rob, is not full, or if the request needs to be routed
to the next higher level in the hierarchy and the queue of the server at that level is not full. Otherwise,

if server rnb is requested and its queue is full, or if the request needs to be routed to the next higher
level in the hierarchy and the queue of the server at that level is full, server m a provides no service (i.e.

is blocked) to new requests until the server mb or a server at the next higher level has completed its
servicing and a place in the corresponding queue becomes available. This type of blocking is referred to
as transfer blocking (TB) [1] or blocking before service (BBS) [15].

The multiprocessor system with N processors and M memory modules (Figure 1) is then modeled as a

closed queuing network consisting of 2xM single server finite capacity service stations that represent
memories, and one service station having N servers (processors). No queuing is allowed (or required) at
the processors' station. Memory requests generated by the processors' station represent customers circu-

lating in the the network. A closed queuing network with limited size queues for the case of N proces-
sors and seven memory modules in three levels (N,7,3) is provided in Figure 3.

ANALYSIS OF BLOCKING NETWORKS BY CYCLES

The network K is defined in terms of the following parameters: There are M + I service centers, R

classes of customers, N r customers of class r and T routing cycles. We assume that R = T. Memory
requests (customers) proceed through the network K according to a transition matrix with elements

P_,_'r', the probability that a request of class r completing service at server m will next go to server
m' and change its class membership to r'. All cycles are closed, the number of requests is held con-
stant at N,. All servers have FCFS service discipline and queue-dependent service rate. Each request
has an associated work demand which is assumed to be drawn from an exponential distribution. All
classes have the same distribution. Each server has a limited capacity for waiting requests, Ci (i.e.
finite queues).

Consider a special case of the closed queuing network with the parameters R = 1 and T = 1 under TB

blocking. For 1 < N < min Ci, i = O, 1.... , M, there is no blocking and the network has a product
form queue length distribution (Gordon and Newell [9]0. Onvural and Perros [16] showed that when
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N = rnin (Ci, i = 1, 2 ..... M) + 1, the network has product form queue length distribution.

The same result can be applied in the case of closed cycles in the same network with multiple classes
of requests. A closed cycle in the network is defined as a directed path that starts and ends at the same

node. Since all processors are identical it is possible to divide the network into cycles each cycle
represents a set of servers visited by a class of requests. Requests are allowed to change class type to
facilitate the fact that a processor could generate requests to any memory module. By limiting the
number of requests in each class N, to the minimum station capacity in the corresponding cycle, the
resulting network will still have a product form solution. In a tree structured network a cycle can be
identified starting with a service node at level one and ending with the service node at the last level.

The number of stations in each cycle will be the same as the number of levels in the network. Two
cycles can share the same station. All approximation methods that can be used in multiple closed
chains for networks with infinite buffers can be used to approximate the solution of the closed network
defined in this paper.

ANALYSIS USI2NG DECOMPOSITION

Consider the network defined above without considering multiple routing cycles or different classes of
customers, R = T = 1. One approach toward the development of approximation algorithms is decom-
posing the network into individual queues or subnetworks and analyzing them in isolation. Exact
decomposition of queuing networks requires state dependent arrival and service rates [15]. For closed

queuing networks, the dependencies of the parameters of a queue in isolation is very strong due to the
fixed population of customers. This section outlines two approximation procedures based on a recursive
approach of decomposing the network into subnetworks that can be analyzed in isolation.

The main objective of the analysis is to reduce entire network into an equivalent network of two sta-
tions -each having a single load dependent server- by calculating the flow equivalent service model of

servers 1, 2 .... , 2M. The basic approach is to replace a subnetwork of queues by a single ("composite")
queue which is flow-equivalent to the subnetwork, i.e., the customer flow through the composite
queue is equal to the customer flow through the subnetwork. This can be done repeatedly, replacing
subnetworks (including those with composite queues) by flow-equivalents until the solution to the

resulting network is attainable. Next, we outline two approximate analysis procedure for closed queu-
ing networks with blocking. The flow equivalent service rate model will be used at different levels in
the network.

Procedure DECOMP 1

The analysis by decomposition is developed according to the following principles.

1) Find an equivalent network with infinite queue capacities. This can be done by finding another net-
work, K', with the same structure but different number of customers such that the throughput of K"
approximates that of K [1].

2) Decompose the queuing network from step 1 into subsystems of infinite queue capacities. The tree
structured queuing network is simply decomposed into subnetworks of three nodes starting at the lower
level (level 1).

3) Analyze of the subsystems in isolation. Calculate the flow equivalent service model for each subnet-
work of three nodes.

4) Replace each subsystem by its composite load-dependent (flow equivalent service ) server.

5) Repeat until all servers in the hierarchy are replaced by one composite server.
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Procedure DECOMP 2

A variation of step 1 above is to recortfigure the network by adjusting the transition probabilities in the
network based on approximating the probability of a server at level l being blocked by a server at level

l+l. The blocking probability can be viewed as the probability of a customer staying in the same place
(blocked server) and the service time for the blocked server will be changed to the service time of the
blocking server at level 1+1 as long as it is blocked [26]. The result will be another network, K ° , with
the same structures but different transition probabilities.

The blocking probabilities are obtained as follows: Let n = (no, nt, ..., riM) be a state vector represent-
ing the number of customers at each station, and p (n) be the probability that the network is in state n.

Calculate p (n) using a product form solution algorithm [9] for queuing networks without capacity lim-

its. Now, if there is a transition from server i at level l to server j at level/+1, Pii _: O, then the pro-
bability that server i is blocked is equal to the probability that server j is full. This is equal to the sum
of the probabilities that the number of customers at server j is greater than or equal to its capacity or
that it too is blocked.

Adjusting the transition probabilities and calculating the blocking probabilities are performed for all lev-
els as follows:

1) Calculate p (n) for the whole network disregarding the queue capacities.

2) Calculate the probability that the server at level L is full.

3) Adjust the transition probabilities for the servers at level L-I based on the blocking probabilities as
a result of the server at level L is full.

4) Repeat steps 1, step 2 for level L-l, and step 3 for level L-2

This is to be performed iteratively until the transition probabilities at level 1 are adjusted. Once the tran-
sition probabilities are adjusted the resulting network is non blocking and the queue capacities are con-
sidered infinite. Steps 2 through 5 from procedure DECONE are then carried out.

CONCLUSION

Models of a shared memory multiprocessor system are outlined in which multiple processors compete
for access to a shared memory organized as a hierarchical network. Memory modules at different levels
in the hierarchy possess different operating characteristics such as the amount of storage and access

time. Requests for memory access are specified by variable distribution and queued in finite queues at
each memory module.

The classical queuing network model (Jackson 1963, Gordon and Newell 1967) is adapted to accom-
modate the hierarchical network with finite queues. Analysis procedures based on reconfiguring the
blocking network are outlined. A mean value analysis by cycles is being tested and compared to simula-
tion runs and to the results of Suri and Diehl [26] and Akyildiz [1] on dosed queuing networks with
blocking.
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This research proposes to combine the standard decomposition-aggregation
approach and product form solution methods to solve queueing networks with blocking
due to finite queues. This involves developing a method called the flow-equivalent,

queue-ec]uivalent server. This server is both the service rate equivalent as well as the
queue size equivalent for a subnetwork. It is shown how this server forms the
equivalent for a subnetwork, how to solve a network that contains a variable queue
size and how to generate the parameters for the server. This approach differs from
others in that it uses the aggregation product form solution methods.

The equivalent server is used to analyze networks of two levels where level one
consists of one server and level two consists of more than one server. The server at

level one can be blocked by any server at level two due to queue capacities.
Comprehensive test results are included.



CHAPTER 1

INTRODUCTION

Queueing models are useful tools for analyzing systems in which conflicts

develop when several entities try simultaneously to access the same resource. The

behavior of many physical systems is characterized by the presence of several conges-

tion points, corresponding to the sharing of different types of resources. In these cases

it is difficult to represent the complex behavior of the system with a single queue

model. A more appropriate model is the queueing network, i.e., a network of intercon-

nected queues that, in general, behave in an interdependent manner [20, 26, 30, 40].

Queueing network analysis techniques have been applied to telephone networks,

manufacturing systems, computer systems, and communication networks [3, 5, 11, 14,

23, 31, 38]. Early analytical results were obtained for restricted systems. The restric-

tions have been relaxed to include general service times, closed and mixed systems,

scheduling disciplines other than first-in first-out (such as last-come first-served or ser-

vice based on priority), variable rate servers, and multiple classes. Some solutions are

exact [10, 13, 24]; others provide approximate answers [6, 39]. The classical analysis

of queueing networks assumes the queue sizes to be infinite and the resulting models

have worked well for a large class of systems. For certain systems, however, the effect

of a finite queue size can be considerable [32]. In queueing networks with finite

queues, ff the queue to which a customer attempts to go is full, the customer is forced

to remain at the current server and the server is not allowed to begin service for
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another customer (it is blocked) until a space is available at the destination server's

queue.

The amount of research effort directed toward analyzing the effects of finite

queues in queueing networks reflects the importance of this topic [1, 2, 7, 28, 33-37,

43-46]. A number of different network models, modeling different real systems, have

been studied. The quality of the analysis is judged by a number of factors: the

behavior of the model compared to the real network, the extent to which results may

be generalized, and the complexity of the computation. The researcher modeling a real

system must consider all factors to find a suitable model, in terms of size, accuracy,

and efficiency.

This research attempts to develop an approximation that combines two of the

more powerful techniques of queueing network theory, namely the product form solu-

tion and decomposition methods, extending the result to a class of finite queueing net-

works. Decomposition is a technique in which a network is broken into a number of

smaller and simpler networks. The smaller networks are then solved separately and

efficiently using a product form solution. Each subnetwork is replaced by a flow-

equivalent server whose characteristics are such that the performance of the resulting

network is the same as the original network. The results of the analysis by decomposi-

tion and flow-equivalence have been shown to be exact for product form networks [9,

10, 12, 13]. The class of product form networks, however, does not include networks

with finite queues [15].

A method for the analysis of finite queueing networks is proposed based upon

decomposition and a queueing structure in which the queue size varies over time. This

structure is derived from one server's view of the rest of the network. The method

developed in this research combines the efficiency of the product form solutions with
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the generality of decomposition to attack different types of finite queueing networks.

The main idea in the development is the formation of one server's view of the rest of

the network and the development of the tools needed to model this view.

Discussion of finite queueing networks with blocking is presented in Chapter 2.

The discussion covers the reasons for the complexity involved in analyzing queueing

networks with finite queues. Previous approaches to modeling finite queueing systems

are reviewed. Chapter 3 presents the major contribution of this work an approximation

method for the analysis of finite queueing networks based upon decomposition. This

method allows us to combine the approaches of product form networks and decompo-

sition. "ProductForm" [11] queueing networks are associated with many developments

in general networks due to the fact that they are solvable with relatively simple

mathematical tools. This is because the solution of the network is obtained by analyz-

ing each service station in the network in isolation and then combining the results in a

product form expression. The resulting method that is developed combines the speed

of the product form solution with the generality of decomposition to solve finite queue-

ing network problems. Comprehensive examples are included and the analytical results

are compared with exact solution.

Model evaluation and some of the implementation issues are discussed in chapter

4. Chapter 5 includes a summary of the work done and an outline of areas where the

analysis may be extended.

The main objective of this research is stated next followed by an overview of

product form networks and decomposition. Some modeling concepts in queueing sys-

tems are reviewed in APPENDIX A.
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1.1 Main Objective

Consider a closed queucing network in which a fixed number of customers are

circulatingbetween multiple limited-queue-sizeservers,i.e.the number of customers

allowed at any servicestationislimited(Figure I.1).This number includes the queue

sizeand the customer in service.This research assumes thatwhen the queue at server

j is fulland a customer finishesserviceat server i and needs to be routed next to

server j, the customer at server i cannot leave that server. Server i is said to be

block, ed. The problem here is that a condition at server j (queue is full) has shut down

service at server i, so that the requirements (i.e., independence) of the simple analysis

no longer hold. It is this nonclassical feature that complicates the analysis of limited

queue networks. This researchpresentsan approximate solutionto finitequeueing net-.

works which allows utilizationof existingsimple solutionsfor infinitequeueing net-

works.

Le_/ell: Server I

N Customers

Level 2: Servers 2 to M

Figure 1.1 : Two Level Finite Queueing Network
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1.2 Review of Product Form Queueing Networks

A queueing network is formed by connecting a set of queues and servers and

allowing customers to depart from one server to mother server. The network parame-

ters include:

N the number of customers in the network.

M the number of service stations.

P.i the mean service rate at service station i in terms of completions per unit time,

1
s i = -- is the mean service time.

n ( n t, n 2, ..., n M ) the state of the network ( n i customers at service station i).

P (n) equilibrium state probability distribution (probability that the network is in state

n).

P routing matrix; Pij is the probability that a customer visits server j after service

at the i th server (fraction of customers leaving service station i and going to ser-

vice station j ).

r i the mean number of visits made by a customer to service station i and computed

by

Pi

M

r i = _ rjpji for.i = 1,2,...,M (1.1)
i=1

the utilization of station i. The utilization of a service station is defined as the

proportion of time the server is busy, or, equivalently, as the average number of

customers in service there. The utilization is obtained by solving the balance

equations:
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M

I.ti Pi = _., l.tj pj Pji, for i = 1, 2, ..., M (1.2)
j=l

Figures 1.2a and 1.2b show a relativelysmall closed network and the correspond-

ing state space, respectively. The state of the system is represented by a vector

(nl,n2, .n3)where ni is the number of customers at server i. With a set of vectors

representingthe statesof the system, the statetransitiondiagram isformed by adding

arcs between the stateswhich representthe feasiblechanges in the stateof the system

due to an arrivalof a customer to a queue or completion of service for a customer.

The arcs are labeled with the rate at which the transitionsoccur (i.ethe service rate

multipliedby the routing probability).As an example, in Figure 1.2b,with the com-

pletion of service for a customer at server I and the customer joining the queue at

server2, the system experiences a transitionrepresentedby the arc from state(4,0,0)

to the state(3,1,0)with rate_I P12. Service times are assumed to be exponentially

distributedrandom variables.
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4 Customers

Figure 1.2a: Closed Product Form Queueing Network

Figure 1.2b: State Transition Diagram
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When a network is in equilibrium, the steady-state solution must satisfy the

global balance property which states that the total flow out of a state equals the total

flow into the state. The global balance equations for closed networks [31] are given

by

M M M

_.i (1 - Pii) P(n) = _, _, P.i Pij P(n)iv-,
i=l j=l i=1

for all n. (1.3)

where (n)i. i- = (n 1, n2, ..., n i + 1, nj - 1, ..., riM) (the number of customers at station

i is increased by 1 and the number of customers at station j is decreased by 1, due to

a customer finishing service atstation j and moving to station i).

These global balance equations hold for all Markov chains in equilibrium. One

way to generate these equations isto form the transitivematrix x (or the infinitesimal

generator) [20]. Each element in 1¢, 7Cij , is equal to the transition rate from state i to

state j. This is equal to the service rate of the source server multiplied by the probabil-

ity of the transition to the destination server. As an example, the infinitisimal genera-

tor for the network in Figure 1.3a, with 2 customers, is given in Figure 1.3b.

2 Customers

Figure 1.3a: Queueing Network Model



-9-

n

(2,0,0)

(1,1,0)

(0,2,0)

(1,0,1)

(0,1,1)

(0,0,2)

(2,0,O) (1,1,0) (0,2,0) (1,0,1) (0,1,1)

_tP _2 }.tip 13

-(_t2+
gtP12+
gtP 13)

_2 -_t2

123

_'3

(0,0,2)

BIP 13

-_3

Figure 1.3b: InfinitesimalGenerator
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Now the global balance equations are simply 11:: P = 0, with P the vector of state

probabilities. The system is solved for P with the boundary condition that the sum of

the state probabilities is equal to 1, _ P (n) = 1. For the network in Figure 1.2a
a/l slates

(state space Figure 1.2b), if P(n) is the probability the state of the network is

(n 1, n2, n3), then the global balance equations are

( I,_1 (1-p11) + gt2 (1-P22) + I.I.3 (1-P33)) * P(n) = I.t1 Pll

gt2 P21

[t3 P31

gtl P 12

gt2 P_.

_3 P32

gtl P 13

1£2P23

_1.3P 33

P(nl, n2, n3)+

P(n 1- 1, n2+ 1, n 3)+

P(n 1- 1, n2, n3+ 1)

P(nl+ 1, n 2- 1, n3)+

P( n 1, n2, n3 ) +

P( nl, n 2 - 1, n3+ 1 )+

P(nl+ 1, n2, n 3- 1)+

P(nl, n2+ 1, n 3- 1)+

P( hi, n2, n3 )

For State (2,1,1), Pij = 0 (including i = j) except P12, P23, and P31, and the global

balance equation

(gl + 1_2+ gt3) P(2,1,1) = _t1 P12 P (3,0,1) +

_.2 P 23 P (2,2,0) +

_t3 P3t P(1,1,2) +

The network leaves the state (2,1,1) at the rate (It 1 + I_2 + _t3) P (2,1,1). The net-

work arrives at the state (2,1,1) from the state (3,0,1) at the rate I.t1 P12 P(3,0,1), from

state (2,2,0) at the rate I.t2P23 P(2,2,0), and from state (1,1,2) at the rate

gt3 P31 P(1,1,2). The total rate of arrivals equals the total rate of departttre, s when the

network is at equilibrium. The network is defined to be at equilibrium when the
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equality in Equation 1.3 occurs [31].

Jackson [24] proved that, for a special class of queueing networks, the steady-

state probability density function for the Markov system corresponding to the network

is the product of the steady-state probability density functions for the individual

queues. This important result indicates that networks can be solved by simply multi-

plying together the results for each queue. Systems in this class satisfy the

local balance property which states that: the rate at which the network arrives at a

given state n due to an arrival at a certain server's queue equals the rate at which the

network leaves the state due to a departure from that server queue. In other words,

local balance is satisfied when the number of transitions into any state is equal to the

number of transition out of that state [31]. The local balance property and product

form networks arc equivalent in the sense that the product form applies to any network

exhibiting the local balance property and vice versa [31].

As an example of the local balance property, the rate at which the network arrives

at state (2,1,1) (Figure 1.2b) due to an arrival at server 1, P.3 P31 P(1,1,2), must be

balanced by the rate at which the network leaves the state (2,1,1) due to a departure

from server 1, P.I P12 P(2,1,1). In this case the balance equation is

P-3 7r31 P(1,1,2) = I.t1 _13 P(2,1,1).

The other localbalance equations associatedwith state(2,1,I) arc

l-tl P 12 P (3,0,1) = I.t2 P23 P (2,1,1)

gt2 pea P (2,2,0) = I.t3 P31 P (2,1,1)

Closed networks with a total of N customers and M servers, which satisfy local

balance equationshave the property thatthe probabilitiesof the states(stateprobability

distributions)can be easily calculated [32]. The following equation giving the
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probability, P (n), that the network is in some state, n, is called the "product form"

[12, 13, 19].

where

P(nl, n 2,...,nM) =
1 M

I'I (Pi)'_ (1.4)
G(N J_4) i=I

M

G(N,M) = _II ( pi )'_ (1.5)
n i=1

G (N,M) is a normalization constant required to make P a discrete probability distri-

bution function and Pi is the utilization of the i th queue in the network. A variety of

closed,open, and mixed networks are shown to be of the product form [3].

Product form solutions are easily used to find the probabilities of the states. The

problem is that the number of states grows exponentially with the size of the network.

In general, the number of states in a closed queueing network with N customers and

(M+N-I)!

M service stations is equal to (N-l)! M! [31], this is the same as counting the

number of ways of putting N identical objects into M different bins. This makes the

calculationof G (N,M) and the stateprobabilitiesof a network of any sizecomputa-

tionallyprohibitive.This is because the calculationof the normalization constant runs

through allpossiblecombinations of stateswith N Customers in the network (scc algo-

rithm I in APPENDIX B). Buzen [9] derived an iterativealgorithm to calculatethe

normalizationconstant without running through the possiblestatesfor a closed network

with N customers and M service stations(scc algorithm II in APPENDIX C). Other

performance measures such as throughput and utilization,could also be calculatedvery

efficientlyusing thisresult.Buzcn's discovery and the discovery that many multiple

class,load dependent networks am also product form led to the extensive use and

study of product form networks. These networks have the property thatthey model a
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great number of real systems and can be efficiently solved. They form the vast major-

ity of exactly solvable queueing networks.

To summarize, any Markovian network can be solved, at least in principle, by

solving the global balance equations. This involves solving a linear system of T equa-

tions, where T is the number of states, which grows exponentially with the size of the

network. On the other hand, the local balance property specifies a class of product

form networks that can be solved very efficiently. This precipitates interest in approxi-

mating nonproduct form queueing networks using product form models. One method

for doing this is described next.

1.3 Exact and Approximate Solution by Decomposition

In order to analyze large networks, we can decompose the network into subnet-

works and analyze them individually [11, 15, 17]. Each subnetwork is then replaced by

an equivalent server whose characteristics are such that the performance of the result-

ing network is the same as the original network. An important feature of decomposi-

tion is that the parameters of the aggregated server (equivalent server) depend only on

the parameters of the servers being aggregated (servers in the corresponding subnet-

work) and are independent of other servers in the network [20, 31]. Through an anal-

ogy to Norton's Theo_m as applied to electrical networks [10], the parameters for the

aggregated server are determined by ignoring (shorting out) the rest of the network and

calculating the throughput of the subnetwork for different populations. The calculated

throughput when there are n customers in the subnetwork (shorted network) is used as

the variable rate server when n customers are queued at the aggregated server. This

variable rate server is represented in a queueing network (Figure 1.4(:) by adding an

arrow through the server.
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The results of the analysis by decomposition and aggregation were shown to be

exact for product form networks [10, 11]. Decomposition is extended to multiple

classes of product form networks in [29]. The conditions and errors involved in the

decomposition of general queueing networks are discussed in [15]. In the case of gen-

eral networks, the condition for replacing a subnetwork with an equivalent server is

that the departure rate from the subnetwork depends only upon the number of custo-

mers queued there. If the subnetwork comes to a probabilistic equilibrium quickly with

respect to arrivals to and departures from the subnetwork, then approximate decompo-

sition tends to work well [15]. This occurs ff customers leaving servers in the subnet-

work are very likely routed back to other servers in the subnetwork and less likely

routed to servers outside the subnetwork. In decomposing nonproduct form networks,

some error will be generated because the flow equivalent servers will not model

exactly the interaction between the individual portions of the network, thus the analysis

will be approximate.

Decomposition of queueing networks allows us to model parts of a network

without considering the entirenetwork by replacingthe part modeled by a singleload

dependent server.An example of thisis the computer system modeled in Figure 1.4a.

The model consistsof users and the computer system which involves terminals,the

CPU and the disks. Users pause while thinking at the terminals,and then enter

requests to the system. The requestsrequireuse of the CPU and disks. The speed at

which the request is completed is dependent upon the speed of the CPU, the access

speed of the disks,the number of progrm'ns in process and the amounts of memory in

the system. After the request is satisfied, the user thinks again before entering the next

request. Each of the phases in the real system is modeled by a corresponding event in

the queueing model. As a queueing system, this process can be seen as customers

moving from the delay server 1 (terminal stage) to server 2 (CPU) and then to the
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disks (servers 3 and 4). The request is satisfied by the customer moving between and

getting service at the CPU and the disks. When the request is completed, i.e. has left

a disk server, the customer returns to the delay server.

The overall system in Figure 1.4a can be analyzed by decomposing it into two

subnetworks, the terminals as one subnetwork, and the rest of the system as the second

subnetwork. The subnetwork Figure 1.4b is solved for the different population levels,

n, either analytically or by simulation, to determine the corresponding throughput,

_.(n ). We can now replace the servers representing the computer system (CPU and

disks) with a single composite server. The rate at which requests are completed at the

single composite server is dependent on the number of requests queued for it. Since

we have the rate at which requests are completed in the computer system (the

throughput _,(n) for Figure 1.4b), as a function of the number of requests queued, we

have the parameters for the load dependent server:, g(n ) = _,(n ), n = 1, 2, ..., N. The

flow equivalent server of the CPU and disks allows us to find the overall performance

measures by solving the much simpler product form network in Figure 1.4<:.

The power of the decomposition method allows us to find approximate solutions

of nonproduct form networks [1]. Figure 1.4a is a product form network and we need

not use decomposition to solve it, due to the fact that it satisfies the local balance pro-

perty which was outlined in the previous section. Suppose we now impose a multipro-

gramming limit L on the number of processes allowed to be executing in the system.

This means that if L customers are in the box labeled system, another user request

would be denied entry into the box until one of the others completed. This is a form of

blocking and destroys the local balance property rendering the product form solution

invalid. This multiprogramming limit L can be approximated by the Figure 1.4c

model if we set _t(n ) = X(n ), n = 1, 2, ..., L, and I.t(n) = X(L), n = L +1, ..., N. This
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represents the fact that the throughput of the computer system cannot cxcccd _.(L). So

by solving the two product form networks, Figure 1.4b and Figur_ 1.4c, wc obtain an

approximate solution to a nonproduct form systcm, Figure 1.4a, with multiprogram-

ruing limit L. Thus the power and importance of the dex:omposition approach is illus-

trated: the solution of computational nonproduct form networks is done by product

form subnctworks.
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CHAPTER 2

BACKGROUND ON FINITE QUEUEING NETWORKS

Within the broad description of finite queueing networks there are a number of

ways that blocking occurs. In this chapter finite queueing networks with blocking are

discussed including a review of the usual mechanisms in which blocking in finite

queueing networks occurs. The difficulties in the analysis of such networks are out-

lined and previous work on modeling finite queue networks and other related

approaches are discussed.

2.1 Definition of Blocking

In a finite queue network, the number of customers allowed at any service station

is limited. This number includes the queue size and the customer in service. In this

research it is assumed that when the queue at server j is full, and a customer finishes

service at server i and needs to be muted next to server j, the customer at server i

cannot leave that server and server i said to be blocked. Also, the customer at server i

is said to be blocked, since it has to wait for a space at server j. The problem here is

that a condition at server j (queue is full) has shut down service at server i, so that

the requirements of classical queueing analysis (assumption of infinite queues which

simplify the analysis) no longer hold. It is this nonclassical feature that complicates the

analysis of finite queue networks.
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Two types of blocking arc discussed in the literature. These arc transfer and ser-

vice blocking.

2.1.1 Transfer Blocking

Transfer blocking [32] occurs when a customer finishes service at server i and is

denied transfer(prohibitedfrom being transferred)to another server,j, because the

destinationqueue is full.The customer is forced to remain at the blocked server,i,

untilitmay cnter the destinationqueue at serverj. Server i remains blocked for this

period of time and cannot serve any other customer waiting in the queue. The custo-

mer ismoved to the destinationqueue as soon as space becomes available.

An example of thistype of system is the two server tandem queueing network in

Figure 2.1a. Figure 2.1b shows the statespace of the network. The state with the

superscriptrefers to the server where service has completed but the customer is

blocked and cannot be transferredto the destinationserver. The value of the super-

scriptdenotes the destinationserver (to which server the blocked customer will go

next).The state(22,2)refersto the statewhere the queue at server2 isfulland a cus-

tomer has completed serviceat server I and is transferblocked. A large number of

realsystems with differentcharacteristicsarc modeled using thistype of network as in

the case of manufacturing systems [42].
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4 Customers

Figure 2.1 a: Two-Server Finite Queueing Network

Figure 2.1b: State Transition Diagram
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2.1.2 Service Blocking

Service prohibited blocking [32] occurs when a customer is denied service

because the queue to which it will be routed next is full. This means that blocking

prohibits serving the customer. In the transfer blocking case, blocking occurs after the

service is completed and before the transfer, but in service blocking case blocking

occurs before service starts. An example is the state space in Figure 2.2 for network

2.1a. In this case the state space is lacking the state with the superscripts which

corresponds to the point when the transfer of a customer is blocked.

Computer and communication networks are modeled largely using these two

types of blocking networks [1]. In transfer blocking, servers work on customers until

blocking occurs. In service blocking, the lack of space in the destination queue must

force the server to shut down before serving the next customer. When considering a

two server one-finite queueing network (Figures 2. la and 2.1b), the difference between

the transfer blocked and service blocked definitions appears to be artificial. The

throughput in a two server queueing network using the transfer blocking definition is

equal to the throughput of an equivalent queueing network (has the same number of

servers and same rate matrix) having a finite queue (queue 2) that is larger by one and

applying the service blocked definition (Figures 2.2). But the difference can be shown

to be real when larger networks with finite queues are considered [32].
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Figure 2.2: State Transition Diagram
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2.2 Complexity of Finite Queue Networks

Even with the existence of the product form solution and the decomposition

methods, the analysis of finite queue networks is still difficult because of the structural

problems in these networks that prevent these methods from accurately modeling them.

The basic problem in analyzing this type of network is two part: first the network is

not product form, and secondly the servers are coupled together in a very fundamental

way. These problems are discussed in detail in the following sections.

2.2.1 A Non-Product Forn_Network

Finite queue networks are not product form networks since in general they do not

satisfy the local balance property which states that the rate of flow into a state caused

by a customer arri.ving at a certain queue for service is equal to the rate of flow out of

this state caused by a customer leaving that queue [31,32]. As an example consider

the state space Figure 2.3a of the network in Figure 2.3b. A portion of the state tran-

sition diagram is given in Figure 2.3c. Since there are 2 transitions into (22,23,2), and

only one transition from it, the local balance properity does not hold [31].

(6,0,0) (5,1,0) (4,2,0) (42,2,0)

(5,0,1) (4,1,1) (3,2,1) (32,2,1)

(4,0,2) (3,1,2) (2,2,2)

(3,13,2) (2,23,2)

(22,2,2)

(22,23,2)

Figure 2.3a: State Space Diagram (Transfer Blocking Definition)

The transition to the state (22,23,2) from the state (22,2,2) (are labeled a) is balanced
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by the transition from (22,23,2) to (32,2,1) (arc labeled b) (i.e., the customer completing

at server 2 is balanced by a customer completing at server 3). However the transition

from (2,23,2) to (22,23'2) (arc labeled c) is not balanced by another transition (i.e., the

completion at server 1 cannot be balanced by a completion at server 2 since server 2 is

blocked). The network, Figure 2.3b, cannot have product form solution since it does

not satisfy the local balance properity [32].
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6 Customers

Figure2.3b:FiniteQueueing Network

Figure 2.3c: A Portion of the Transition Diagram
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2.2.2 Dependency Between Servers and Decomposition

The dependency between servers makes the job of finding a valid decomposition

very difficult. To see this let us try to apply the standard decomposition approach on a

three-server two-finite queue network in Figure 2.4a. The usual decomposition method

suggests that both servers 2 and 3 in Figure 2.4a be decomposed to form a single load

dependent server. The service rates of this load dependent server are calculated so as

to model the flow rate when different number of customers are waiting for servers 2

and 3. The model in Figure 2.4b is used to calculate the service rates for the composite

server in Figure 2.4c. The service rate of the composite server when there are n custo-

mers in network 2.4c, _(n), is set equal to the throughput of the network 2.4b when

there are n customers, X (n).

The problem with this decomposition process is that the infmite queue at the

composite server in 2.4c does not model the real system since it does not model the

blocking effect of servers 2 and 3 on server 1. Characteristics of the queueing net-

work, such as the number of servers, the size of the queues, the routing matrix, and

others, have an effect on the dependency between servers. When analyzing large sys-

tems, decomposition in some form must be used [2,8,18,43] and standard decomposi-

tion ([10,15]) will not work correctly. The problem is that the regular decomposition

method destroys the direct connection between servers and replaces it with a connec-

tion between subnetworks and aggregated servers.

In order to handle the complexity of finite queueing networks, this research

attempts to model them using decomposition to represent the effect finitequeues with

blocking has upon servers. Existing decomposition methods are not able to do this.

This research proposes a decomposition method in chapter 3 that produces parameters

that model the effect of finite queues. Existing methods are discussed in section 2.3.


