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ABSTRACT

Primary objective of this study is to develop a method for prediction of failure of
thin beryllium sheets that undergo complex states of stress. Major components of the
research include experimental evaluation of strength parameters for cross-rolled beryllium
sheet, application of the Tsai-Wu failure criterion to plate bending problems, development
of a high order failure criterion, application of the new criterion to a variety of structures,
and incorporation of both failure criteria into a finite element code.

A Tsai-Wu failure model for SR-200 sheet material is developed from available
tensile data, experiments carried out by NASA on two circular plates, and compression
and off-axis experiments performed in this study. The failure surface obtained from the
resulting criterion forms an ellipsoid.

By supplementing experimental data used in the the two-dimensional criterion and
modifying previously suggested failure criteria, a multi-dimensional failure surface is
proposed for thin beryllium structures. The new criterion for orthotropic material is
represented by a failure surface in six-dimensional stress space. In order to determine
coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial
experiments are required. Details of these experiments and a complementary ultrasonic
investigation are described in detail. Finally, validity of the criterion and newly determined
mechanical properties is established through experiments on structures composed of SR-
200 sheet material. These experiments include a plate-plug arrangement under a complex
state of stress and a series of plates with an out-of-plane central point load.

Both criteria have been incorporated into a general purpose finite element analysis
code. Numerical simulation incrementally applied loads to a structural component that is
being designed and checks each nodal point in the model for exceedance of a failure
criterion. If stresses at all locations do not exceed the failure criterion, the load is
increased and the process is repeated. Failure results for the plate-plug and clamped plate
tests are accurate to within 2%.

i



TABLE OF CONTENTS

Page
ABSTRACT ....ccciiiienicnsinsamsstssssossossssssssssssssessstsssassssssssessasssassssssassassosasssssssassssassssasss ii
LIST OF FIGURES .....cccotirrericnscsreosassssssssecsessansssessasssssossassassssassassasessasssssssassssasosse vii
LIST OF TABLES .....ccoinniinneneicnscssiosassssmossessassssessassasssssessassnsossasssssnssssassssassansarasesss xii
1. INTRODUCTION ...ciiviinrcnrenssmssresssssssssassassanessassassonsessassasssssssassnsssssssssssanssssassas 1
1.1 Background and Motivation...................ccoooiiiiiii 1
1.2 Physical Properties.............cccoooiiiiiiiiiiie 4
1.2.1 Cross-Rolled Sheet Preparation...................ccoocoiiiiiiiiin 4
1.2.2 AtOMIC StIUCLUIE ...ttt 4
1.2.3 DIBNSILY .....vioeeieiieiiee et 4
1.2.4 Elastic Moduli.............oooiiiiiii e 5
1.3 Thermal Properties ..........c.ccooiiiiiiiiiiiii e 6
1.3.1 Specific Heat ............coooiiiiiiiiiii i 6
1.3.2 Coefficient of Thermal EXpansion ............c.c.cccociiiiiiiiis 6
1.3.3 Thermal Conductivity ...........cccooiiiiiiiiiiii e 7
1.4 Transparency to Electromagnetic Radiation ... 7
1.5 Mechanical Properties..............ooouviiiiiiiiiiiiiicee e 8
1.6 Disadvantages in Using Beryllium .................... 9
2. HISTORICAL BACKGROUND.......ccciietreiieiressssssnsncnneenienessssssssssstssssensssessesesses 11
2.1 ODJECHIVES. ...ttt et 11
2.2 Attributes of a Failure Criterion ... 11
2.3 Isotropic Yielding ..........oooooiiiiiiiii i 12
2.4 Tresca's CrtEIION. .. .....oooiiiiiiii oottt 13
2.5 vON MISES CHItEMON........ooiiiiiiiiii ettt 13
2.6 Hill's Criterion ... ........coooiiiiiiiii et 14
2.7 Gol'denblat and Kopnov's Criterion.............c.ocoveiiiiiiiiiioiiniiieie e 17
2.8 Hoffman's CrteriON ..........ocvviiiiiii e 17
2.9 TSai=Wu CrIterION. .......ooiiiiiiiieie et 19
2.10 Priddy's CrteriON.........ccooiiiiiiiiiiii e 21
2.11 Jiang and Tennyson's Criterion............ccocoooiiiiiiiiiiiiiie e 23
3. FAILURE PREDICTION WITH CLOSURE OF CUBIC TENSOR................ 24
3.1 Failure Prediction with Hydrostatic Dependence ... 24
3.1.1 General State of Stress..........coocoiviiiieiiiiic e 24
3.1.2 Investigation of Necessary Conditions.................c.cocoeviiiiniiiii, 29
3.1.3 Evaluation of Fjjand Fyjj fori j........ooooooo 33
3.1.4 Evaluation ofFijj fori=1,2,3,andj=4o0orS5or6........cccccceiinnn 37
3.2 Failure Prediction without Hydrostatic Dependence............................. 39
3.2.1 General State of Stress..........oooooiiiiiiiiii 39
3.2.2 Investigation of Necessary Conditions......................cccoiiiin 40
3.2.3 Evaluation of Fjjand Fyj; fori jo..oooooo 41
3.2.4 Evaluation ofFil-]- fori=1,2,3,andj=4orSor6 ... 43
4. EXPERIMENTAL INVESTIGATIONS. .....cccciiniernninrecssennessisncsssnaneessrnssssssascssese 46

iii



4.1 Introduction................................
4.2 Tensile State of Stress............................___ "
4.2.1 Specimens Aligned with Material Axes.............._.._

44.1 254-mmRing Load.............
4.4.2 50.4-mmRing Load...........oco
5. EXPERIMENTAL DETERMINATION OF PRINCIPAL FAILURE
COEFFICIENTS accuanerrrssssssesssssssssssmmssnnassesseesessmsssssssssssssmsesssssesesnnes
3.1 Introduction.................

5.2.1 Laboratory Experiments........................_.__
5.22 Numerical Simulation..............................

3-3 In-Plane Shearing Stress ...~

5.3.2 Beryllium Experiment ...
5.3.3 Numerical Simulation of Beryllium Experiment......................
5.3.4 Determination of Principal Coefficients Feand Feg..........................
5.4 Through-Thickness Shear........................._
3.4.1 EXperiments.... ..o
5.4.3 Determination of Failure Coefficients Fagand Fss..ooooooo
3.5 Through-Thickness Compression State of Stress.......... ...
3.5.1 Experiments...............ooie

5.5.3 Determination of Failure Coefficients FyandF33.....
6. EXPERIMENTAL DETERMINATION OF INTERACTION FAILURE

COEFFICIENTS .c.ccrrtrunnnnscsssesmssssssrsssmssnsssssssnssssssssssssessesssssmsessssesssss e sens

6.1 Introduction................oooooooiiiicee

6.2 Multiaxial State of Stress: o, 03, and G5
6.2.1 Laboratory Experiments..............................__

6.3 Multiaxial State of Stress: o, 03, aNd O oo
6.3.1 Laboratory Experiments...........................__

6.3.2 Numerical Simulation. ...

6.4 Evaluation of Interaction Coefficients ...

6.4.4 Determination of FIZ’ FllZ’ F122, F166’ and F266’ and F144, F255,
and F366 ........................................................................................................

v

52



6.5.1 Experimental Investigation................cccccoiiiiiiiii 151

6.5.2 Theoretical ConsSiderations..............coccoeoiiiiiiiiiiiiim s 152
6.5.3 Interaction Coefficients Fygsand Fogq...cocooooi 158
7. NON-DESTRUCTIVE EVALUATION TESTS .ccceiiirinniiccnicssississssnsssscssnne 159
7.1 INErOAUCHION. .. ..o 159
7.2 Hardness TeSt........oooiiiiiiieiiie et 159
7.3 URTASONIC TSt .. .ooieiiiiiiie ittt 163
7.3.1 Background ...........cooooiiiiiiii i 163
7.3.2 Determination of Elastic Constants for Each Layer............................. 165
7.3.3 Numerical SImulation................oociiiiiii 167
8. FAILURE SURFACES FOR SR-200 BERYLLIUM SHEET
STRUCTURES .....cocctinverniesenssssssssssssssssasesssossossassssasanssassssossssssssssassssessssessase 172
8.1 Closure and Convexity of Failure Surfaces....................... 172
8.1.1 Closure of a Failure Surface...............c.ccoooci 172
8.1.2 Convexity of a Failure Surface ... 173
8.2 Failure SUMTACES ..ot 177
8.2.1 In-Plane State of Stress (G}, O, and Og) ... 181
8.2.2 Combinations of In-Plane Normal Stresses (5, ;) and Out-of-
Plane Shearing Stress (G4 OF G§) ....ccooiiiiiiiiiiiiiii 182
8.23 Combination of Normal Stresses o}, o3 and Planar Shearing
YT o 7 SRR PO T OO SEUUSRUOPTSUIPTOPTORPPRTPSPOR PRSPPSO NS 182
8.2.4 Combination of Normal Stresses 65, o3 and Planar Shearing
SEIEES §§. ettt 183
8.2.5 Combination of Shearing Stresses G4, G5, and Gg ... 183
9. NUMERICAL MODELING AND FAILURE PREDICTION FOR SR-200
BERYLLIUM STRUCTURES .....cccocsitesunesunssasssrsssncssnsansasssssasessessssssssssssases 184
0.1 INETOAUCHION. ...ttt 184
9.2 Numerical Model Specification ...............ccccoiiiiiii 184
9.3 Automation of Numerical Simulation ... 186
9.4 Verification of Failure Prediction ...........c.occccoociiiiii 189
9.4.1 Plate-Plug EXPeriment ............ccocoiiiiiiininiiie it 189
9.4.1.1 Description of Laboratory Experiment ... 189
9.4.1.2 Numerical Simulation............cc.c.ooooiiiiiiii 192
9.4.1.3 ODbSEIVAIONS .......c.oiiiiieiiiiiieeie e 196
9.4.2 Clamped Plates under Influence of Concentrated Load........................ 197
9.4.2.1 101.6-mm x 50.8-mm (4.0-in. x 2.0-in.) Plate ..............ccc..cooo..... 199
9422 50.8-mm x 25.4-mm (2.0-in. x 1.0-in.) Plate............................. 201
10. CONCLUSION....cccrecssirereseissassscsssssasssssssaessassassassasasssnsassassassssessssssssssasessassssases 202
REFERENCES .......ccoreneencissisonssssosssssasssassasessessasssasessessansassssssssasssssssssasasssasassssssassas 206



APPENDIX L Failure Coefficients for Tsai and wu's Criterion.........cueeeeeecvvennnnn.
APPENDIX II. Overview of Jiang and Tennyson's Criterion .............ou.omoovnoonon.,
APPENDIX III. Derivation of Equations 74, 75, ANd 76 e...eeereeeereerreeeereeeeeessnns
APPENDIX IV. Derivation of Equations 115 Through 118........ccceceerrernreevennee
APPENDIX V. Theoretical Determination of Normal-Shear Interaction
CORMTICIENLS....ccvcrrrrrnctnireciscessrnsssess s sesaesssssssasssssassssssssssssssssessen s

AXES crrtieriisinserscnnniescsisitsnsnssssesssssessssesassessesnssestssesassse s emenn e

vi



LIST OF FIGURES

Figure Page
1 Structural Application of Beryllium.................. 1
2 Optical/Reflective Application of Beryllium ... 2
3 Density Histogram for Selected Metals ... 5
4 Histogram of Young's Modulus for Various Metals ... 6
5 Rotation of Material Axes with Respect to Center-Line of the Specimen................ 16
6 General Body with Surface Forces...............coo 25
7 Stress Components Acting at a Point ... 25
8 Constraint and Asymptotic Equations Bounding Open and Closed Two-

Dimensional SUMTACES ...........ooiiiiieiie i 29
9 Open, Non-Convex Failure Surface ... 35
10 Closed Failure SUMTACE ...........c.ooiiiiii e 36
11 Experimental Determination of Failure Coefficients - A.................. 47
12 Experimental Determination of Failure Coefficients - B.................... 48
13 Experimental Determination of Failure Coefficients - C.............cco 49
14 Experimental Determination of Failure Coefficients - D................ 50
15 In-Plane Tensile SPECIMEN ..........oooiiiiiiiiiii i 52
16 Off-Axis In-Plane Tensile SPECIMEN.............ccoociiiiiiiiiiiii 54
17 In-Plane Shear SPeCimen ............cccooiiiiiiiiiii 57
18 Loading Arrangement for In-Plane Shear Test ... 58
19 Fracture Pattern for Unsanded Shear Specimens ................cocoiiiininnn, 59
20 Shear Specimen Fringe Plot of Axial Displacement ... 59
21 Shear Specimen Fringe Plot of Transverse Displacement......................o 60
22 Shear Specimen Fringe Plot of Axial Strain, €1...........ccocoiini 60
23 Shear Specimen Fringe Plot of Transverse Strain, £.........c.ccooooiiiiiniiinns 61
24 Shear Specimen Fringe Plot of Shearing Strain, €g ... 61
25 Shear Specimen Fringe Plot of Axial Stress, Gp........c.oooiinini 62
26 Shear Specimen Fringe Plot of Transverse Stress, Gg ... 62
27 Shear Specimen Fringe Plot of Shearing Stress, Gg.........c.coooviiiiiiii 63
28 25.4-mm (1.0-in.) and 50.8-mm (2.0-in.) Ring Loadings ... 65
29 Gage and LVDT Locations for Circular Plate Specimens ... 65
30 Vertical Displacement along a Radial Line at Yield and Ultimate Stress for
25.4-mm (1.0-in) Load...........cooiiiiiiiii 67
31 Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of Vertical
DISPIACEMENL ...ttt 67
32 Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of In-Plane
Displacement in the X-Direction ... 68
33  Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of In-Plane
Displacement in the Y-Direction ...t 68
34 Radial Strains at Yield and Ultimate Stress for 25.4-mm (1.0-in) Load.................. 69
35 Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of €; Strain................... 69

vii



36
37
38
39
40
41
42
43
44
45
46
47

48

49

50

51
52
53
54
55
56
57
58

59
60
61

62
63
64

65

66
67
68
69

Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of €5 Strain..................... 70
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of gg Strain...................... 71
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 3 Strain..................... 71
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of g4 Strain.................... 72
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of €5 Strain.................... 72
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 6y Stress ..................... 73
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 65 Stress.................... 74
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 63 Stress..................... 74
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of o4 Stress.................... 75
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of o5 Stress ...................... 75
Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of o Stress.................... 76
Vertical Displacement along a Radial Line at Yield and Ultimate Stress for
50.8-mm (2.0-in) Load ... 77
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of Vertical
DISPIACEIMENT ...ttt 77
Plate with 50.8-mm at Ultimate Load Fringe Plot of Displacement in the X-
DHEECHION. ...t e 78
Plate with 50.8-mm at Ultimate Load Fringe Plot of Displacement in the Y-
DHLECHION. ..ottt 78
Radial Strain at Yield and Ultimate Stress for 50.8-mm (2.0-in) Ring Load ........... 80
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of €) Strain................. 80
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of €5 Strain................... 81
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of g5 Strain...................... 81
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of ) Stress...................... 82
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of 5 Stress..................... 82
Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of o Stress..................... 83
Compression Specimen Longitudinal Axis Aligned with Principal Material
AXIS oo 88
Compression Specimen Transverse Axis Aligned with Principal Material Axis....... 88
Fixtures for Compression Testing ... 89
Normal Stress-Strain Curve for Specimen Loaded Along the Principal
Direction of Cross Rolling.............cooooiiiiiiii 89
Normal Stress-Strain Curve for Specimen Loaded Perpendicular to the
Principal Direction of Cross Rolling ... 90
Stress-Strain Curve for Specimen Loaded Parallel to Principal Direction of
Cross ROIING ..........cooiiiiiiiiii e 90
Failed Compression SPeCimen...............ocooiiiiiiiiiiiiie 91
Finite Element Discretization for Compression Specimens (a) Two-
Dimensional Plane Stress Elements; (b) Three-Dimensional Hexahedral
EIBMENLS ..ottt e 93
Distribution of Axial Displacement for 2-D Compression Model ........................... 94
Distribution of Transverse Displacement for 2-D Compression Model................... 94
Distribution of Transverse Stress, 65, for 2-D Compression Model ...................... 95
Distribution of In-Plane Shearing Stress, o, for 2-D Compression Model............. 95

viii



70 Distribution of Axial Displacement for 3-D Compression Model ..........................
71 Distribution of Transverse Displacement for 3-D Compression Model..................
72 Distribution of Through-Thickness Displacement for 3-D Compression Model .....
73 Distribution of Normal Strain, €}, for 3-D Compression Model...........................
74 Distribution of Normal Stress, o}, for 3-D Compression Model ...........................
75 Distribution of Transverse Stress, 65, for 3-D Compression Model .......................
76 Distribution of Through-Thickness Stress, o3, for 3-D Compression Model...........
77 Distribution of Out-of-Plane Shearing Stress, o4, for 3-D Compression Model .....
78 Distribution of Out-of-Plane Shearing Stress, 65, for 3-D Compression Model ...
79 Distribution of In-Plane Shearing Stress, o, for 3-D Compression Model.............
80 Geometry of Beryllium Shear Specimen ...
81 Experimental and Numerical Results for (a) Titanium and (b) Beryllium Shear
SPECIMENS ...ttt ettt
82 Titanium and (b) Beryllium Shear Specimens after Failure..............................
83 Location Differential Element for Transformation to a State of Stress of Pure
QAT ..o
84 Finite Element Mesh for Critical Region of Two-Dimensional Shear Specimen......
85 Distribution of Longitudinal Displacement for 2-D Beryllium Shear Specimen ......
86 Distribution of Transverse Displacement for 2-D Beryllium Shear Specimen.........
87 Distribution of Longitudinal Strain for 2-D Beryllium Shear Specimen..................
88 Distribution of Transverse Strain for 2-D Beryllium Shear Specimen...................
89 Distribution of In-Plane Shearing Strain for 2-D Beryllium Shear Specimen ..........
90 Distribution of Longitudinal Normal Stress for 2-D Beryllium Shear Specimen .....
91 Distribution of In-Plane Shearing Stress for 2-D Beryllium Shear Specimen..........
92 Distribution of Transverse Normal Stress for 2-D Beryllium Shear Specimen........
93 Finite Element Model of Three-Dimensional Shear Specimen..............................
94 Distribution of Longitudinal Displacement for 3-D Beryllium Shear Specimen ......
95 Distribution of Axial Strain for 3-D Beryllium Shear Specimen .............................
96 Distribution of In-Plane Shearing Strain for 3-D Beryllium Shear Specimen..........
97 Distribution of Axial Stress for 3-D Beryllium Shear Specimen............................
98 Distribution of In-Plane Shearing Stress for 3-D Beryllium Shear Specimen..........
99 Dimensions of Specimens for Double Shear Test ...
100 Setup for Through-Thickness Shearing Stress Test ...
101 Shearing Stress (c4) versus Strain (g7 and €;) for Through-Thickness
ShEArNG TESE.........cvovieiiiiieite ettt
102 Shearing Stress (o5) versus Strain (] and €;) for Through-Thickness
ShEAriNg TESt........cooviiiriieiieit ettt
103 Top View of Through-Thickness Shear Specimen 1 after Failure .....................
104 Top View of Through-Thickness Shear Specimen 2 after Failure .......................
105 Side view of Through-Thickness Shear Specimen 1 after Failure.......................
106 Side view of Through-Thickness Shear Specimen 2 after Failure........................
107 Distribution of Short Transverse Displacement for Through-Thickness
ShEArINZ TSt ........oviiiiiiiieiitit ettt
108 Distribution of Shearing Strain, €4, for Through-Thickness Shearing Test ............
109 Distribution of Longitudinal Stress for Through-Thickness Shearing Test ............

X



110
111

112
113
114
115
116
117
118
119

120
121
122
123
124
125
126

127
128

129

130

131

132

133

134
135

136
137
138

Distribution of Shearing Stress, o, for Through-Thickness ShearingTest.............
Distribution of Short Transverse Normal Stress for Through-Thickness
Shearing Test............c..ccoooooiiiiiiiiie e
Experimental Setup for Through-Thickness Compression Test.....................
Stress versus Deformation for Through-Thickness Compression..........................
Magnified Photograph of Failed Through-Thickness Compression Specimen .......
Distribution of Through-Thickness Compressive Stress from 2-D Simulation. ...
Distribution of Through-Thickness Compressive Stress from 3-D Simulation. .
Distribution of Axisymmetric Through-Thickness Compressive Stress .................
Experimental Fixtures for Combined Normal and Shearing Stress Tests ...............
Load versus Displacement for 30°, 35°, 37°, 40°, and 45° Planes of
Inclination (1, 63, and 65) .......ooooioioooooeeeee
Histogram of Maximum Compressive Load and Maximum Vertical
Deflection for 30° 35° 37° 40° and 45° Planes of Inclination
(01,03, 8N §5) ...
Magnified Photograph of Failed Specimen that is Inclined 37° ...
Magnified Photograph of Failed Specimen that is Inclined 40° ...
Magnified Photograph of Failed Specimen that is Inclined 45° ... .
Distribution of Through-Thickness Normal Stress from 2-D Simulation for
30% SPeCIMEN...........oiiiiiiiiee e
Distribution of Through-Thickness Normal Stress from 3-D Simulation for
30° SPeCIMEN..........ooooiiiiiiioe et
Distribution of In-Plane Normal Stress from 2-D Simulation for
30° SPeCIMEN. .............oooiiiiiii e
Distribution of Shearing Stress from 2-D Simulation for 30° Specimen ................
Distribution of Through-Thickness Normal Stress from 2-D Simulation for
35° SPecimen...........coooiiiiii e
Distribution of Through-Thickness Normal Stress from 2-D Simulation for
37° SPECIMEN. .........ooiiiiieiie oo
Distribution of Through-Thickness Normal Stress from 2-D Simulation for
40° SPECIMEN............oiiiiiiiiiiie e
Distribution of Through-Thickness Normal Stress from 2-D Simulation for
45°% SPECIMEN. ..ottt
Histogram of Maximum Compressive Load and Maximum Vertical
Deflection for 30°, 35° 37° 40°, and 45° Planes of Inclination

Torsional Moment versus Normal and Transverse Strain for Specimen with
(a) Principal and (b) Secondary Material Axes Aligned with Loading
OMENtAtION. ..ot

Free Body Diagram of Compression-Torsion Specimen ...............................__

Hardness Testing Machine........................cococoooio



139
140
141
142

143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170

17
172

Hardness Test Indentations in SR-200 Beryllium Used to Determine Gy.............. 162

Experimental Setup for Ultrasonic TeSting ... 165
Location and Dimension of Through-Thickness Layers.................oonnn 166
Two Independent Layers with Different Elastic Properties E3, vy3, and v3 in
Undeformed and Deformed Configurations ...............occoooviiins 168
Undeformed Medium of Two Connected Layers with Different Ej, vy3, and
100 5 T TR LR AR 168
Deformed Medium of Two Connected Layers with Different E3, v;3, and v,3..... 169
Variation of Through-Thickness Modulus with Distance from Middle Plane......... 171
Failure SUrface fOr 0], 09, O ...ovovmririieritireiaiicri s 178
Contours of Failure Surface for G, 07, G4 ..o 179
Contours of Failure Surface for 07, 07, G5 ..o 179
Failure SUrface fOr G, 03, Og..oovovivimrmrinieiiieiiicc s 180
Failure SUrface fOr 0], 63, §§...ccoooovimiriiiiiiiiii s 180
Failure SUrface for G4, G5, Og.....ccvovovimoriimiiiiiiiie i 181
Finite Elements Used for Numerical Simulation...............ccooen 185
Flow Chart for Batch SUBMESSION. ..........coooiveiiiioiiiii i 187
Flow Chart for FORTRAN Program ..........ccccocooiiiiiiiimicii e 188
Hierarchical File Sequence of Failure Prediction Scheme................con 189
Plug-Plate AITANGEMENt...........oooiiiiiiiirt i 190
Pressure Calibration of Hydraulic ACtuator ... 191
Location of Strain Gages on Plate-Plug Specimen...........n 191
Hydraulic Pressure versus Normal Strain for Gage 2. 193
Hydraulic Pressure versus Normal Strain for Gages 3 and 4. 193
Hydraulic Pressure versus Normal Strain for Gages 5, 6,and 7 ..o 194
Finite Element Mesh for Plate-Plug Structure...............c.cooi 194
Distribution of Through-Thickness Displacement, uz.............cocooiiinn 195
Distribution of Normal Stress in Global X-Direction ... 195
Scanning Electron Microscope Photograph ... 196
Scanning Electron Microscope Photograph 2. 197
Clamped Plate with Load Applicator. ... 198
Load Distribution for 101.6-mm x 50.8-mm (4.0-in. x 2.0-in.) Plate ................... 199
Distribution of Normal Stress along Principal Material Axis for 101.6-mm x
50.8-mm (4.0-in. x 2.0-in.) Plate ... 200
Distribution of Normal Stress along Principal Material Axis for 50.8-mm x
25.4-mm (2.0-in. x 1.0-in) Plate ... 201
Rotation Of IN-Plane AXES..........c.ooivrieiiiirieiiiinieae st 225
Rotation of an In-Plane AXIS .............cccooiieiiiiiiiiiiiiie i 228

xi



LIST OF TABLES

Table Page
1 Physical Properties of Beryllium ... 8
2 Elastic Properties of 1.96-mm (0.08-in.) SR-200 Sheet (Fenn et al. 1967)............... 9
3 Uniaxial Strength Properties of 1.96-mm (0.08-in.) SR-200 Sheet (Fenn et al.

L967). oo 9
4 Elastic Properties of 25.4-mm (0.10-in.) Thick SR-200 Sheetl ... 51
5 Uniaxial Tensile Strength of 25.4-mm (0.10-in.) Thick SR-200 Sheetl............ 51
6 Normal In-Plane Tensile Strengths for Cross-Rolled Beryllium..................... 53
7 Comparison of Transformed Engineering Constants with Computed Stiffness ......... 55
8 45° Off-Axis Tensile Strengths under In-Plane Load ... S5
9 In-Plane Shearing Strengths (Henkener et al. 1991) o 58
10 Experimental In-Plane Biaxial Stress Output - NASA ... 66
11 Chemical Composition of Beryllium Specimens........................ 85
12 Experiments Required for Evaluation of Failure Coefficients........................... 85
13 Experiments Used for Evaluation of Failure Coefficients.........................._ 86
14 Failure Strength for Compression Specimens ... 91
15 Numerical and Theoretical Comparison of Failure Strain Components ................... 102
16 Failure Strength for In-Plane Shear Specimens............................. 107
17 Failure Strength for Out-of-Plane Shear................_____ """ 122
18 Failure Strength for Through-Thickness Compression Specimens................. 130
19 Failure Strengths for Disk Specimens with O}, 03, and o5 State of Stress............... 137
20 Failure Strengths of Disk Specimens with Gy, 03, and oy State of Stress............... 147
21 Failure Strength for Compression-Torsion Specimens................. . 153
22 Tensile Strengths from Hardness Testing for Principal Material Axes.... ... 164
23 Elastic Constants for Specimens from NDE Measurements................_ 166
24 Elastic Constants for Layers from NDE Measurements................... . 170

xii



1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In the design of complex structures, material selection is usually based upon a
variety of physical characteristics, such as strength, and the interaction between materials
within the system. Beryllium possesses a unique combination of properties that makes it
desirable for a number of applications, especially in the aerospace industry. For example,
no other material matches beryllium's advantageous combination of high modulus and low
density. Due to this characteristic, beryllium is manufactured in a sheet form that is used
extensively to encase spacebound payloads and for structural purposes in the space shuttle
itself (see Fig. 1). Integral components of satellite structures that are manufactured from

beryllium sheets serve structural, reflective, and thermal functions (see Fig. 2).

s

FIG. 1. Structural Application of Beryllium

Substantial research efforts toward property identification and material
characterization of beryllium sheets were made in the late 1960s and early 1970s by
commercial firms and governmental agencies. Subsequently, beryllium components made
from beryllium sheet were successfully applied in a number of aerospace structural
applications. At the end of this period, the number of technical publications related to



research on use of beryllium as a structural element diminished considerably. In 1981, a
conical beryllium section of the Insat C spacecraft failed catastrophically during certification
procedures for flight as a Space Transportation System payload. Failure was attributed to
excessive out-of-plane stresses. This unexpected failure rekindled research interest and
concern for use of beryllium as a structural element (Henkener et al. 1991). If a beryllium
sheet component fails in a spacecraft structure, especially by out-of-plane loadings, the
results could be catastrophic since the brittle nature of the material usually causes the
formation of fragments that, subsequently, may invoke human injury and jeopardize the
structural integrity of the spacecraft. NASA, whose primary motivation is the safety of the
crew, is concerned about the behavior of the material under a variety of loadings and

especially under complex states of stress.

FIG. 2. Optical/Reflective Application of Beryllium

It became apparent that the theoretical and experimental work accomplished in the
1960s and 1970s provides inadequate information for establishing design guidelines. This is
due to two factors: the material properties of beryllium are not constant in the through-
thickness direction and the criteria that are most commonly used for predicting failure
consider only two-dimensional analyses. Moreover, these criteria neglect normal and shear
stress interactions.



NASA, the aerospace industry, and the beryllium manufacturing companies are
showing a renewed interest for development of a failure prediction method that can be used
in design of safe beryllium sheet structures. Most of the published research dedicated to
beryllium as a structural material approaches the subject from a microscopic point of view.
By contrast, the current effort considers the macroscopic nature of the material. Results
obtained are compared, whenever possible, with those obtained by other investigators who
use either a microscopic or a macroscopic approach.

The goal in what follows is to describe two numerical techniques for failure
prediction of beryllium sheets that have been verified by laboratory experiments. The first
technique uses laboratory tests to establish coefficients of the well-known Tsai-Wu failure
criterion. Applicability of this theory is measured through a series of tests on beryllium
plates deformed by a central point load. Second, a new failure prediction criterion is
presented that takes into account multi-dimensional states of stress. These stresses include
normal and shearing stress at failure. Various combinations of these stresses are used to
calculate the necessary interaction coefficients that define an equation of failure for cross-
rolled beryllium. After determining these coefficients, the new criteria is applied for
prediction of failure of several other experimental tests.

The remainder of this chapter outlines the physical, thermal, electromagnetic, and
mechanical properties of beryllium. Chapter 2 reviews existing criteria that are used to
predict failure. Chapter 3 presents a new, multi-dimensional failure criterion that
incorporates closure of the cubic polynomial strength tensor. The criterion calls for a
number of principal and interaction strength coefficients. Chapters 4 through 7 give an
account of the experimental investigations conducted for cross-rolled beryllium sheets.
More specifically, chapter 4 reviews experimental accomplishments of other investigators.
Some of the failure coefficients for the proposed criterion are based on results of these tests.
Chapter 5 describes uniaxial and shear tests used to compute the principal strength
coefficients, while chapter 6 includes experiments for determining the interaction
coefficients. The next chapter deals with non-destructive evaluations: hardness and
ultrasonic tests. The former provides a verification of the uniaxial tensile testing while the
latter provides an estimation of the variation of the elastic modulus in the through-thickness
direction. The coefficients obtained from experiments described in chapters 5 and 6 are
refined via constrained and asymptotic conditions derived from the criterion. The result is a
failure surface in six-dimensional stress space. Certain combinations of stresses and the
resulting failure surfaces are presented. Application of the failure criterion is provided in
chapter 8 for two distinct cases: a plate-plug arrangement subjected to a complex state of
stress and a clamped plate subjected to a point load.



1.2 PHYSICAL PROPERTIES

Since material properties affect the behavior of beryllium sheets under load, a brief
survey of some of the natural and physical properties are presented and compared with
those of other structural metals. Properties discussed in what follows include: material
preparation, density, elastic moduli, thermal properties (such as specific heat, coefficient of
thermal expansion, and thermal conductivity), and X-ray transparency. The discussion is
restricted to cross-rolled beryllium sheet although some of the properties presented may be
applicable to other forms of beryllium.

1.2.1 Cross-Rolled Sheet Preparation

SR-200 cross-rolled sheet is manufactured from high purity SR grade powder.
Initially, the fabrication consists of hot pressing (simultaneous application of heat and
pressure) high purity beryllium powder contained in a suitable die into vacuum hot-pressed
block. Subsequently, the block is hot worked at temperatures ranging from 200 to 590° C
(400 to 1,100° F) by rolling at reductions of 3:1 to 13:1. The SR-200 sheet is formed by
rolling at 90° angles (Brush Wellman 1986; Cooke et al. 1971).

In what follows, references to beryllium are equivalent to references of cross-rolled
beryllium sheet unless otherwise stated.

1.2.2 Atomic Structure

The microstructure of beryllium is hexagonal close-packed (HCP) (Asceland 1989).
Mechanical properties, as with most such lattice metals, are anisotropic. Two independent
bonding systems predominate in beryllium structures: a metallic bond that connects atoms
within a basal plane and a metallic-covalent bonding system that acts normal to the basal
plane. The two bonding mechanisms act independently from each other. An indication of
this is the fact that Poisson's ratios are close to zero for certain directions. The former of
the two bonding systems accounts for ductile behavior of the material when stress is applied
parallel to the basal plane while the latter system accounts for the brittle nature of beryllium
when stress is applied normal to the basal plane (Pollock 1977).

1.2.3 Density

The density of beryllium is 1.85 g/cm3 (0.067 Ib/in.3) (Asceland 1989), which makes
it the least dense structural metal. An exception is magnesium that has a density of 1.76
g/cm3 (0.064 Ib/in.3). A comparison of densities for a number of structural metals is
provided in the histogram of Fig. 3.
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FIG. 3. Density Histogram for Selected Metals

1.2.4 Elastic Moduli

A measure of stiffness is given by Young's modulus and elastic moduli for isotropic
and anisotropic material, respectively. Cross-rolled beryllium sheets possess orthotropic
material properties. The in-plane moduli of elasticity, £, and Ey, for SR-200 cross-rolled
beryllium sheets have magnitudes of approximately 297 GPa (43 x 103 ksi) and 303 GPa
(44 x 103 ksi), respectively. The out-of-plane elastic modulus E, and, thus, the out-of-
plane stiffness, is even higher at 345 GPa (50 x 103 ksi), which makes the material desirable
for applications where out-of-plane deformations need to be minimized (Marder 1986).
This is important since a high stiffness in the direction normal to the plane of the sheet
coupled with low Poisson's ratios implies relatively small out-of-plane deformation and,
thus, high dimensional stability. Specific stiffness or the modulus-to-density ratio provides
another measure of the commendable properties of beryllium (Fenn et al. 1967). For simple
geometric configurations, the deflection of a structure is inversely proportional to the
specific modulus of a load free structure deflecting under its own weight. For specialized
engineering applications, such as optical supports, it is necessary to minimize distortions.
This is obtained by using a high specific modulus material, such as beryllium, in order to
increase dimensional stability of the overall structure.



Fig. 4 compares in-plane Young's moduli for selected structural materials.
Beryllium's in-plane stiffness is one and one-half times greater than that of steel and several
times higher than that of other, so-called, lightweight materials, such as aluminum, titanium,
and graphite/epoxy composites.
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FIG. 4. Histogram of Young's Modulus for Various Metals

1.3 THERMAL PROPERTIES

1.3.1 Specific Heat

Beryllium has an average specific heat of 18.3 kJ/(kg K) (0.46 BTU/Ib-°F), the
highest among common structural materials (Brush Wellman 1986). The highest specific
heat value occurs at its melting point of 1,285°C (2,345°F) (Marder 1986). This is very
important due to the fact that the low density and high heat capacity combine to make
beryllium a lightweight, high efficiency, heat pool. At the same time, the high melting point
of beryllium allows the structure to withstand melting. Striking applications of these
characteristics of beryllium are found in high performance aircraft and the space shuttle
brake system.

1.3.2 Coefficient of Thermal Expansion

A wider view of the thermal properties of beryllium may be obtained by examining
the coefficient of thermal expansion. The value at room temperature is 11.5 x 10-6/°C (6.4
x 106/°F), the lowest for any structural metal (Marder 1986). Thus, beryllium has a



combination of high specific heat, which makes it difficult to raise the temperature, and a
low coefficient of expansion, so that even when the temperature is elevated, less elongation
takes place than for other metals.  This combination gives dimensional stability to
structures, especially in applications where energy may be absorbed or radiated, as in
satellite structural members that go in and out of solar shadows during orbit. As an
example, the stiffeners of the solar array on RCA Spacenet satellites were constructed of
brazed beryllium. Primary considerations in the design were light weight, accuracy of
pointing, and dimensional stability during changes in solar shadowing (Marder 1986).

It should be mentioned that the coefficient of thermal expansion varies with
beryllium oxide (BeO) content and, consequently, from grade-to-grade of beryllium.
However, increasing BeO content reduces the coefficient of thermal expansion and,
therefore, increases stability.

1.3.3 Thermal Conductivity

The thermal conductivity of beryllium, 165 W/(m K) (104 BTU/Ib-ft2-°F), is
relatively high compared to that of steel, 43 W/(m K) (27 BTU/Ib-ft2-°F), and is somewhat
less than that of aluminum, 203 W/(m K) (128 BTU/Ib-f2-°F) (Marder 1986). This
property allows heat to be conducted readily and, thus, temperature differences between
various locations in a structure are ameliorated. Again, as heat is conducted away from
higher temperature regions, thermal gradients are reduced, and dimensional stability of the
structure is improved.

1.4 TRANSPARENCY TO ELECTROMAGNETIC RADIATION

Not only does beryllium conduct heat well, but it also does not hinder passage of
electromagnetic radiation. For example, beryllium is used in X-ray tubes as a window
through which x-rays readily pass. A mechanical vacuum seal is maintained between the x-
ray tube and the environment. In general, beryllium absorbs very little x-ray, gamma,
electron, or other electromagnetic radiation. The transmitted x-ray intensity, 7, is described
by the equation

$72
T 1)

where, I, is the intensity of the incoming beam in percent, -m/p is the mass absorption
coefficient (cm2/g), 5 is the density (g/cm3), 4 is the thickness of the material (cm).

The quantity m/p is known as the mass absorption coefficient that not only depends
on the absorbing material, but also upon the x-ray wavelength. The advantage of using



beryllium is that 95% of the original intensity is transmitted, as compared to 3.3 x 10-8%
and 4.4 x 10-8% for aluminum and titanium, respectively.

Beryllium is also an excellent reflector of infra-red (LR.) radiation. It is 96%
reflective at 10.6 m, and can be an effective optical component in IR. systems (Grant
1983). Often, advantageous physical properties are useful only when accompanied by
sufficient mechanical strength; i.e., beryllium would not be used as an x-ray window if it
were not strong enough to withstand the stress imposed by having a vacuum on one side
and air pressure on the other.

To summarize, Table 1 lists some of the important physical properties of beryllium.

TABLE 1. Physical Properties of Beryllium

Property Value
) (2)
Atomic number 4
Atomic weight 9.02
Specific gravity 1.85 g/cm3
Melting point 1,285°C
Specific heat 1.83 J/°K
Thermal conductivity 165 W/(m K)
Coefficient of thermal expansion 11.5 x 10°6/ °C
Reflectivity
Optical 50%
Ultraviolet 55%
Infrared 98%
Sonic velocity 12.6 x 103 m/s

1.5 MECHANICAL PROPERTIES

Mechanical properties of beryllium vary considerably from grade-to-grade (Grant
1983). References to beryllium in the following chapters only consider properties of SR-
200 cross-rolled beryllium sheet due to its widespread use in space applications. Table 2
summarizes elastic properties for SR-200 sheet that has a thickness of 1.96-mm (0.077-in.).
Testing used to obtain most of these parameters was conducted by Lockheed Missiles and
Space Company (Fenn et al. 1967). A number of these values have been recently verified
for 2.54-mm (0.10-in.) thick cross-rolled beryllium sheet as reported in later chapters of this
report and elsewhere (Roschke and Papados 1989; Henkener et al. 1991). Identical in-
plane uniaxial mechanical properties for the 1.96-mm (0.077-in.) and the 2.54-mm (0.10-in.)



thick SR-200 sheet are observed. Table 3 lists yield and ultimate failure strengths (Fenn et
al. 1967).

TABLE 2. Elastic Properties of 1.96-mm (0.08-in.) SR-200 Sheet (Fenn et al.
1967)

Direction of Loading Elastic Modulus Poisson's Ratio
(GPa)
9] (2) (3)

Longitudinal 298.7 vy, = 0.0768
vi3 = 0.0137
Long transverse 293.6 vy = 0.0752
vyy = 0.0190
Short transverse 3475 v3; = 0.0162
(Through-thickness) vy, = 0.0230

TABLE 3. Uniaxial Strength Properties of 1.96-mm (0.08-in.) SR-200 Sheet
(Fenn et al. 1967)

Direction of Loading Yield Stress Ultimate Stress
(MPa) (MPa)
@3] (2) 3)
Longitudinal

Tension 3834 537.6

Compression 379.2 659.1
Long transverse

Tension 386.1 564.0

Compression 382.7 591.5
Short transverse

Tension 200.0

1.6 DISADVANTAGES IN USING BERYLLIUM

Despite numerous advantages that beryllium provides as a structural material, a
number of disadvantages need to be kept in mind. One of the primary drawbacks of
beryllium sheet material is that it exhibits brittle behavior when loaded to failure under
complex states of stress. For example, in regions of stress concentration beryllium fractures
with little or no evidence of plastic deformation, i.e., the material is not capable of
redistributing localized stresses by gross deformation before cracking occurs. In addition,
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beryllium lacks toughness when exposed to high strain rates due to its inability to absorb
energy by plastic deformation prior to fracture (Kojola 1967).

Another disadvantage in using beryllium is the fact that it can not be mechanically
machined without special precautions. This is due to toxicity of the metal; i.e, it has been
shown by experiments on laboratory animals that inhaling beryllium dust can cause chronic
diseases. In addition, machining can cause microscopic surface flaws that radically affect
the strength of the material (Henkener et al. 1991). Depending on the stress state, the
reduction in strength can be dramatic in the sense that the ultimate strength becomes equal
to the yield strength.

Finally, the cost of beryllium cross-rolled sheets is considerably higher than that of
other structural metals. Important economic factors in the manufacturing process include
mining, purification of beryllium powder, forming hot press blocks, cross-rolling into
beryllium sheets, and costly chemical etching and cutting into desired geometrical shapes.
Nevertheless, use of beryllium sheet material is often competitive in space applications when
all economic factors are taken into account.



2. HISTORICAL BACKGROUND

2.1 OBJECTIVES

Contemporary applications of failure criteria frequently incorporate two-dimensional
or simplified three-dimensional methodology for prediction of failure stresses and/or strains.
Motivation behind the development of a new multi-dimensional failure criterion is due
mainly to the lack of a sufficiently accurate mathematical tool that accounts for the behavior
of brittle material with anisotropic properties. Such a criterion should be able to provide a
reliable maximum load estimate so that design of the structure is not penalized in terms of
excessive weight requirements. The failure criterion developed in the following chapters is
represented by a fracture surface in a six-dimensional stress space.

The term "brittleness" is taken here to refer to material failure which is preceded
with either negligible or, preferably, no inelastic deformation. Moreover, development of at
least one separation surface within the body is required. By definition, first-order criteria
involve only first-order terms, quadratic criteria consider combinations of first and second-
order terms, and higher-order criteria include cubic-order terms. Incorporation of cubic
terms usually yields a non-convex, non-closed, mathematically complex surface.

2.2 ATTRIBUTES OF A FAILURE CRITERION

In general, criteria for failure prediction of a brittle anisotropic material are required
to satisfy the following (Roschke and Papados 1989; Gol'denblat and Kopnov 1965; Hill
1950):

(a) Stability conditions and a smooth, continuous, convex, non-singular surface are
required to satisfy uniqueness.

(b) The criterion should be invariant with respect to coordinate axis transformations.
(c) The failure surface resulting from the criterion should be a potential function, a
function that is independent of the loading path.

(d) Strength interaction coefficients should be used that depend on mechanical
properties of the material at different ultimate strengths.

(e) Applicability of the criterion for multiaxial and complex states of stress is
necessary.

(f) Only a finite number of tests can be required to evaluate strength coefficients.
(g) Each complex state of stress should be described by a combination of strength

parameters, not only by one component of the strength tensor.
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A large number of theories have been proposed that deal with failure prediction.
None fully satisfies these conditions. Several of the most important and influential failure
theories are presented in the following sections.

It is considered expedient, at this point, to differentiate between failure and yield.
Early criteria, such as that of Rankine and Coulomb (Karr and Das 1983) predicted the
stress levels at which yielding begins. At that time most structures were designed to
perform up to the onset of yield. In this case, any stress outside the loci of points defining
the yield surface was considered failure. More recent investigators define a two-
dimensional isotropic yield surface and via a flow rule, subsequently, attempt to reach the
ultimate strength limit surface (von Mises 1913) which they define as the failure surface.
Due to the confusion introduced by conflicting use of the terms yield and failure, failure is
defined here as the inability of a structure to perform at its intended design whether that is
its yield or ultimate failure limit state. Hill (1951) proposed an orthotropic yield criterion in
conjunction with a set of flow rules to define the in-plane ultimate failure surface. This was
an effort to predict ultimate failure of ductile material. These approaches, although
adequate for ductile material, fail to describe failure surfaces for non-isotropic brittle
material since no flow rule can be associated with a material that does not exhibit inelastic
or plastic deformation. Gol'denblat and Kopnov (1965) first introduced the idea of a
strength failure criterion based directly on ultimate stress. Their work forms the basis of
most modern failure criteria for brittle material.

A brief account of the major yield and ultimate failure criteria is provided in
chronological order in the following sections.

2.3 ISOTROPIC YIELDING

For isotropic material the phenomenon of yielding is independent of the orientation
of the material with respect to the applied stresses. In this case any criterion may be
expressed in the form,

Tl I3 3) 20ttt (2)

where J}, J,, and J; are the invariants of the stress tensor ojj (Karr and Das 1983). The
invariants are defined in terms of principal components of stress o,, 5,, and o, as follows:
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2.4 TRESCA'S CRITERION

Tresca proposed the first yield criterion in 1864 (Hill 1948). Influenced by the
general failure theory proposed for soils by Coulomb, Tresca suggested that yielding occurs
when the maximum shear stress reaches a certain threshold. This criterion can be expressed

in the form;
O =03 T C ettt e (6)

where g; > 0, 2 o3 are principal components of stress and C is a constant. This
corresponds to a hexagonal yield locus on the octahedral plane. Tresca's attempts to
analyze the distribution of stress in the plastic region are far from accurate and often crude
(Karr and Das 1983).

2.5 VON MISES' CRITERION

It is commonly accepted that the yield strength of metals is unaffected by application
of hydrostatic pressure that is applied either alone or in combination with the stress
situations. von Mises (1913) used this concept to simplify the yield function. Using the
deviatoric stress tensor, o,j', instead of 9%, the yield surface function, fy, becomes:

F AT 50T75) S0 e M
where,
, 1
J,=d, o, +0, &, +0, oJ,):E(o/,., 7 RO ®)
, 1
J,=d, o, d,:s(ol,j 0 4 0] ervrereeeeeeeeeee e ©®)
The deviatoric components are given by:
O S0, T O G, ettt e (10)
where
O =0,/ 320,/ 3 ettt ettt (1)

for i, j, k =1, 2, 3 and customary indicial notation (Sokolnikoff 1964). Moreover,
exploiting the assumption that ideal isotropic/plastic bodies do not exhibit the Bauschinger
phenomenon, i.e., the magnitude of yield stress is the same in tension and compression, and
since J 3 changes sign with stress reversals, it follows that Jy must be an even function of
this invariant.

In 1913 von Mises also presented a criterion, known as the J,-theory, that suggests
that yielding occurs when J 2 reaches a critical value (Karr and Das 1983). This approach
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completely neglects the influence of the ./ 3 invariant. The criterion produces a circular yield
locus on the octahedral plane. Its governing equations are:

20220,0, =040 407 =20 e (12)
or
(00, 40, -0, 4, =0V =68 oo (13)
or
(0, -0,) +(¢, ~0.,) +(<, R A (14)

where x is a constant parameter that depends on the pre-strain state of the material. The
octahedral shear stress at yield is assumed to have a value of

V2 ’

K

=5
By letting 0;° = -0, and 03° = 0, x can be correlated to the maximum shear at yield. The
uniaxial tensile yield stress, ¥, is obtained by substitution of ¢;° = ¥ and 0,° = 0 into Eq.
14. This yields:

Hencky provides a physical interpretation of this criterion (Hill 1950). Eqgs. 12-14
imply that yielding is initiated only when the elastic distortional energy acquires a critical
value. On the other hand, Huber suggests that there are two distinct cases depending upon
whether hydrostatic pressure is in tension or compression (Hill 1950). In the former case,
yielding is a function of the total distortional energy while in the latter case yielding
becomes a function of the elastic distortional energy. Nevertheless, von Mises' criterion
provides a reasonably good correlation between experimental and theoretical results for a
number of ductile metals such as copper, aluminum, iron, and mild to medium carbon steels
(Hill 1950).

2.6 HiLL'S CRITERION

von Mises' criterion is generalized by Hill in one of the first attempts to account for
tensile and compressive strength variations (Hill 1950). For orthotropic polycrystalline
metals Hill proposes the following quadratic equation for yield prediction:

F(ax —ay)z +Glo, -0,)’ +H(0'y —0',)2 +2Lo}, +2Mo?, +2Nol, =1 oo 17

where F, G, H, L, M, and N are material constants. The criterion reduces to von Mises'
theory provided that any anisotropy is insignificant, Coefficients F, G, H, L, M, and N are
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parameters that are characteristic of the material anisotropy. In view of assumed symmetry
conditions, only quadratic shear terms are included. In addition, the Bauschinger effect is
not taken into account since linear terms are excluded from the criterion. Assuming that
hydrostatic pressure, or its superposition, does not influence failure, Hill only uses the
difference of the normal components of stress.

Letting X, ¥, and Z be the principal tensile yield stresses that correspond to the three
mutually perpendicular principal axes of anisotropy, and R, S, and T be the yield shearing
stresses with respect to the same three axes, it can be shown that the coefficients F, G H,
L, M, and N should satisfy the following set of equations (Hill 1950):

%=G+H, 2F=},—1‘,+Z—I2—%
A I ]
YJ ZJ X] ”1 ......................................................... (18)
?=F+G, ZH:F+F 3
2L=—, 2M==, 2N=%

In the event that rotational symmetry is observed about the z-axis, viz. the material is in-
plane isotropic and generally quasi-orthotropic, then Eq.18 becomes:

[(G +H)o? ~2Ho, o, +(F +H)of, +2Nrfy] —Z(Gax +F0’y)o;
L2+ M 2 )+ 2F +G)o? =1

............................

The necessary and sufficient conditions for the material to be rotationally symmetric with
respect to the out-of-plane axis of rotation are:

NZGHIH=FAIH oo (20)
L=M

In the case of global symmetry and complete isotropy, the coefficients are related as
follows:
LEM=N=3F =3G =3H cccooooooonnoveeeiieiooooeooo @1

and Eq. 19 is equivalent to the von Mises’ criterion when F is equal to 7 / ¥2.

It is apparent that for the implementation of Hill's criterion the values of the yield
stresses X, ¥, Z R S and T are required. In other words, six independent experiments are
necessary for determining the constant coefficients.

For orthotropic material, such as cross-rolled beryllium sheets, Hill's criterion can be
further specialized. Considering only in-plane stresses Eq. 19 becomes:



(G +H)o? ~2Ho, 0, +(F FH)O #IN 2 = e (22)
In the event that the material is cut at an angle a, with respect to the principal rolling
direction (Fig. 5), the transformed stress components for a tensile specimen are

o, =ocos*(a)

o, = asinz(a) ................................................................................ (23)

Ty=0 sin(a) cos( a)

where g is the tensile yield stress. In this case Eq. 19 becomes:

o= ! 24)
\/[Fsinz(a) +Gceos’(a)+H +(2N -F -G —4H)sin2(a)cosz(a)]

From Eq. 24 it can be shown that maxima and minima of ¢ can occur along the orthotropic
axes as well as in directions @4 that are given by

N-G-2
tanz(aw):N_g_zg ........................................................................ (25)
Y—-Axis Secondary Rolling
Direction
X—Axis
¢
x

N

Principal Rolling
Direction

FIG. 5. Rotation of Material Axes with Respect to Center-Line of the
Specimen

The yield stress, o, acquires maximum values in the x and y directions if N > F + 2
Hand N> F + 2H and minima in the Apgqx directions. If N<F+ 2Hand N< F + 2H
then o attains maxima in the @4y directions and minima along the x and y axes.

Hill's criterion is the first serious attempt to predict yield surfaces for non-isotropic
materials. It is very effective in predicting the behavior of ductile material, both isotropic
and orthotropic, although the original intention was to describe yielding of anisotropic
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material.  Because of the oversimplified assumptions and the omission of certain
phenomena, such as the Bauschinger effect, the criterion becomes unreliable for prediction
of yielding and, subsequently, failure of brittle material.

2.7 GOL'DENBLAT AND KoPNOV's CRITERION

A generalized tensorial form of available failure criteria is given by Eq. 26
(Gol'denblat and Kopnov 1965);

f(o;)=(Eo;)a +(F;a,0'j)ﬂ +(F,,o;ajo,‘)’ Foemd (26)

U

where, o) = 0}, oy = 022, 03 = 033, 04 =013, 05 = 0y3, Og = oy and i, j k=1 .. 6
Fj, Fyj, and Fijk are contracted equivalents of the second-, fourth-, and sixth-order strength
tensors, respectively; and o, B, and Y represent real numbers.

This is the first failure criterion proposed as opposed to yield criteria presented in
the earlier sections. It forms the basis for criteria that are subsequently developed.

Gol'denblat and Kopnov's failure criterion was applied to prediction of failure for
glass-reinforced plastics. The original generalized criterion of Eq. 26 is simplified for
application to these plastics to include only linear and quadratic terms of the stress tensor

components, and is applied to in-plane stress situations. For @ =1 and £ =0.5 it becomes
flo,) =Fg, +(E].a,,0'j)0'5 T (27)

The power term of Eq. 27 leads to complicated mathematics that do not contribute
to the generality of the criterion (Tsai and Wu 1971),

2.8 HOFFMAN'S CRITERION

An orthotropic fracture criterion that uses six stress components, and follows the
pattern of yield conditions proposed by von Mises and Hill is proposed by Hoffman ( 1967).
The criterion, which includes terms that are odd functions of the material strengths, is
described by the following equation:

Clo, -0,) +Cy(o, -0.)’ +C,(0', —ay)z +C,0, +Cs0, +C,0, +C, 7,
+Co 1, +Co1l, =1

where C; through Cy are independent coefficients that are determined from nine

e (28)

independent, uniaxial and pure shear experiments.
Letting Fy, Fy, and F,, Fey, F,, be the three orthonormal, uniaxial, tensile

and compressive strengths, respectively, and F, Fo, F, sxy the pure shear strengths, then

vz
the coefficients of Eq. 28 are given by
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C, =(F)" -(F,

(Fq)_l ) (F@)_' (e (29)
C =(F)" -(F,)"

¢ =(F,)”

G =(F.)~

¢, =(F,)”

If it is assumed that ultimate strength and fracture are one and the same for brittle
material, i.e., the terms "fracture” and "failure" are equivalent, for the case of plane stress,
ie o, = 5z = %z = 0 and Eq. 28 becomes
O'i—O'xO'y Oi ch -Fu F, _ny zfy

+ o, +—2 Ot = i (30)
FF, "EF,EE )

In three-dimensional stress space (o,, ), and 7y) Eq. 30 is represented by an ellipsoidal
surface that is symmetric about the x-y plane and has its center at

X (Fu‘Fq)+(Fw—Fcy)

¢ 2 4
Y, =(F~;F==) B —4%&&) ................................................................ 31)
Z =0

Incorporation of linear terms in Hoffman's criterion provides a first formulation for
failure prediction of brittle anisotropic material that takes into account differing tensile and
compressive strengths. Moreover, first-order tension and compression terms partly account
for the Bauschinger phenomenon. Hoffman's criterion contains symmetry and is consistent
with other well-established isotropic and anisotropic failure conditions. It provides a
smooth and adoptable formula for interpolating between basic strength data. However,
only normal interaction coefficients, such as 2C; which relates oy and o), are used.
Interaction coefficients relating normal and shear strength are omitted. Thus, the limited
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interaction terms included in this criterion do not provide the generality required for reliable
failure prediction of brittle material.

2.9 TsAI-WuU CRITERION

A more general approach is presented by Tsai and Wu (1971, 1974), who propose
the following tensor formulation for the failure surface:

f(ak)=F,.q FELO0, =4 e (32)

The difference between positive and negative stress-induced failures is described by the
linear terms. Quadratic terms of the criterion describe an ellipsoid in the stress space. The
investigators claim that if higher-order terms, such as sixth-order strength tensors, were to
be included not only does the mathematics become complicated but also the resultant failure
surface can be open ended and thereby predict infinite strengths. Therefore, cubic terms are
omitted from this criterion. The main assumptions incorporated in the Tsai-Wu criterion
are as follows:

(a) The criterion is itself a scalar equation and, thus, automatically invariant. Contrary
to Tresca's, von Mises', and Hill's criteria that require interactions among stress components
to be fixed and dependent on material properties, the Tsai-Wu criterion considers these
interactions to be independent of material properties.

(b) All stress components are expressed in tensorial notation and, therefore, their
transformations and associated invariants are well established. The criterion is invariant for
all coordinate systems (i.e. Cartesian, spherical, and cylindrical).

(c) The criterion exploits symmetry properties of the strength tensor. General
anisotropy and three dimensional Space present no mathematical difficulty.

(d) Off-axes transformation properties are well established. Therefore, behavior of
material under application of off-axes stresses can be obtained with relative ease.

(e) Stability conditions are incorporated in such a way as to ensure that the shape of the
failure surface is ellipsoidal and, at the same time, the surface is precluded from being open-
ended under conditions of hydrostatic pressure. Thus, a positive definite requirement is
imposed on both the contracted second- and fourth-order strength tensors, F; and Fj;

lj!
respectively. Conditions of constraint are as follows:

FyFy =F] 20 oo (33)

For a truly anisotropic material, the Tsai-Wu criterion requires determination of
twenty-seven independent coefficients: six for the F; tensor and twenty-one for the F,-j
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tensor. For orthotropic material, symmetry reduces the number of coefficients to twelve:
three for F; and nine for F;. These coefficients are shown in matrix form in Appendix I.

The principal strength tensor coefficients (F; and F};) can be readily calculated from
experimentally determined values of the uniaxial tensile and compressive failure strengths
(X, Y, Z X', Y’ and Z") in the three orthonormal coordinate axes. These axes are chosen to
coincide with the axes of orthotropy. Also, results of tests for the three (positive or
negative) shear failure stresses (S, R, 7), provided that the absolute value of shear strengths
is identical, are necessary. If the latter assumption is not valid then six shear strength values
are required (S, R, 7, S, R, and 7"). Eq. 35 shows the relations among strength and
tensorial coefficients.

1 1 1 1 1 1
F=~-+ Ff=y-3 b=5-7
X X Y Y Z Z
F, =0, F, =0, F, =0
/ ] ] ettt e raens (35)
b e ety et
1 1 1
£ =§S—,» Fy, =RR" Fy =F'

The interaction strength coefficients, F;5, F;3, and F,3, can be derived from a
variety of biaxial, or combined biaxial and shear experiments. For example, the following
stress combinations can be used to estimate interaction coefficient F;, (Tsai and Wu 1971,
Wu and Scheublein 1974):

—[I—P(F; +F2) _Pz(Fu +F22)]

Foro,=0,=P = -
For o, =-0,=0Q E, =_[1—Q(F, ‘EZ)Q‘2Q2(EI +Fzz)]

For o, =g, =—Q’ F,z.-..-—[]+Q(F' _EZ)Q_‘ZQ,:(F”_,_FH)] .................. (36)
For 0, =0, =0, =0.5U F, =[4_2U(F/ +F;);((//:(F,, +F, +1766)]
Foro,=c,=0,=-0.5U" F, =[4+2U(F1 +F2)2_(§]:(F” +F, +Fu)]

where P, O, and -Q’ are normal biaxial strengths, and U, and -U’ are normal-shear biaxial
strengths. Similar equations can be obtained for normal interaction coefficients related to
the (1-3) and (2-3) planes.
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Special care must be taken when determining interaction coefficients. It has been
shown that sensitivity of principal coefficients is not affected by experimental scatter, i.e.,
the magnitude of the ratio of positive to negative strength measurements does not affect the
magnitude of the tensor coefficient (Wu and Scheublein 1974). However, this is not valid
for the case of scatter in the experimental results for estimating interaction coefficients Fyj
for i #j. An optimal ratio of 0)/0; is required for this estimation. This ratio depends
primarily on the sign of the interaction coefficient, the magnitude of the biaxial strength, and
the magnitude of the interaction coefficient itself (Wu and Scheublein 1974, Wu 1974).

The main advantage of the Tsai-Wu criterion compared to earlier failure theories is
that it accounts for multi-dimensional stress space as well as different material symmetries.
Only first and second-order contracted strength tensors are incorporated in order to achieve
mathematical simplicity and to maintain a determinate number of linear equations that
provide strength coefficients. After taking symmetry conditions of the strength tensors into
consideration, twenty-seven coefficients describe the behavior of anisotropic materials.
This approach avoids incorporation of higher-order tensors that lead to mathematical
complexity in evaluating strength interaction coefficients, and indeterminacy of the linear
system of equations that arises from such an inclusion.

Although widely used, the Tsai-Wu envelope, which yields an ellipsoid, does not
give accurate correlations with experimental data for tension-tension and compression-
compression quadrants of the failure surface (Priddy 1974, Jiang and Tennyson 1989).
Furthermore, a shortcoming of this criterion is the fact that tension-tension and
compression-compression interactions may not be treated independently (Jiang and
Tennyson 1989). Application of this criterion to cross-rolled beryllium sheet has been
established for failure prediction of in-plane stresses (Mascorro et al. 1991).

2.10 PRIDDY's CRITERION

In an attempt to obtain more generality, Priddy (1974) includes products of stress
components of order greater than two in a failure criterion. For a generalized, accurate, and
complete criterion, products of stresses of order greater than two are considered in a failure
prediction equation for brittle, orthotropic material. These terms induce noncircular
octahedral shear envelopes that tend to agree with experimental findings. The general
expression describing the criterion is given by the equation:

f(o,) =Fo, +F0,0, FER 00,0, =1 oo (37
Due to complexity of the contracted sixth-order tensor only a limited number of

mathematically independent cubic terms are used. An allotropic representation of Eq. 38
leads to the following special form:

W I T 1XH +f I oo (38)
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where,
w ={c}" [4){o} =ZZ(0',10',01) Jor i, j=12,and3
1={d}{a}=3do, for i,j=12,and3 e, (39)

I={e}r{0'}=2e,cr, for i,j=12and3

II = second stress invariant; /I/ = third stress invariant; {o} = vector form of stress tensor;
W has the form of strain energy density; /4] is a matrix similar to the elastic compliance of
the material; and d|, e;, and f are undetermined scalar coefficients.

For the special case of orthotropic material that has the principal coordinate axes of
the material coinciding with the orthotropic axes, Eq. 38 becomes:
a,7), +a,15, +a,7], +b,0] +b,05 +b,0} +¢€,0,0, +C,0,0; +€;0,0;

=1+d,0, +d,0, +d,o, +(e,0, +e,0, +e,c,)(a,oz 0,0, 40,0, =Ty — Thy —ﬁ,) ... (40)

2
+f(°'10'2°'3 +27),TyT;; — O Tés —0,7; "0'317’2)

in which
a = 1
(A 2
()
b, =(F1F) ............................................................................................. (41)
F._—-F
d_ —-_c 4]
" (RF,)

are strength coefficients obtained from uniaxial strength tests, and F, and F, are the tensile
and compressive strengths, respectively, of the material. Fy(i #j) are shear strength
parameters.

In order to reduce the number of coefficients required to describe the failure surface,
approximations for both biaxial compression and tension as well as traiaxial strengths are
used. For example, the triaxial tensile strength is considered to be linearly related to the
biaxial strength. These coefficients are represented in Eq. 40 by ¢, e,, and /. Furthermore,
the following stability condition is introduced such that the failure surface is forced to be
open for the case of hydrostatic pressure:

L o3 (0] oo e (42)

It should be noted that Eq. 40 leads to a system of inconsistent equations when
shear stresses are considered. Correctly, the criterion considers positive and negative shear
strengths acting on any given plane to be identical; this yields expressions for the o
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coefficients. However, in the event that the following states of stress are imposed on a
structure Eq. 40 becomes:

State of stress: T12s To3, Ty

a7, +a,7, +a, 0, =1+2fr,, T23 T3 et (43)
State of stress: -t,,,1,,, T,

a7, +a,7, +a,7, = T T (44)
State of stress: -, ~Ty3, T)y

a7, +a,7, +a,7, T Ty Ty Ty (45)
State of stress: -t,,,~1,,, -7,

a7, +a,7, +a,, =1 T T T Ty e (46)

Sets of Eqs. 44 to 46 are inconsistent unless the value of the coefficient £ is set to zero.
Moreover, if f is set to zero then the stability condition introduced by Eq. 42 must always
be equal to zero. This yields a secondary condition that states:

() 0 e @7)

2.11 JIANG AND TENNYSON'S CRITERION

Other higher-order criteria include those of Tennyson and Elliott (1983), and Jiang
and Tennyson (1989). The former contribution is similar to that of Priddy in the sense that
independent biaxial tests are required for calculation of interaction coeffcients. Although
the latter model only considers specially orthotropic material, such as composites under in-
plane loading, it serves as a fundamental referénce for the new, proposed criterion. A
general overview of this criterion is found in Appendix II.

Jiang and Tennyson formulate a criterion for failure prediction of orthotropic
material, such as composites. They successfully employ closure of the sixth-order strength
tensor. This criterion, however, is limited to in-plane stress failure situations. Through-
thickness effects are completely neglected. Although it is effective in predicting failure for
material that exhibits extensive in-plane ductile behavior, it fails to accurately predict failure
of brittle material, such as cross-rolled beryllium sheets, under complex states of stress.



3. FAILURE PREDICTION WITH CLOSURE OF CUBIC
TENSOR

3.1 FAILURE PREDICTION WITH HYDROSTATIC DEPENDENCE

The criteria reviewed in chapter 2 are, to varying degrees, approximations of criteria
involving higher-order tensors and, consequently, overall failure predictions are not
expected to be accurate for all possible states of stress. Moreover, previously proposed
cubic polynomial formulations do not guarantee closure of the failure surface in multi-
dimensional space. Thus, situations where infinite strengths are predicted can occur that
lead to unconservative estimates of material strength.

In what follows, a new criterion is proposed to overcome these limitations. A cubic
form of the tensor polynomial surface is forced to satisfy a number of constraints that are
associated with the image of this failure surface. The function is projected onto the three
orthogonal, mutually perpendicular Cartesian planes (o}, 03), (03, 03), and (o;, 03) to
ensure satisfaction of the constraints. Coefficients of the high-order function for beryllium
sheet material are determined by a combination of laboratory experiments and numerical
simulation (see chapters 4, 5, and 6). For simplicity, only orthotropic materials are
considered. It is shown in chapter 8 that the cubic polynomial adequately describes the
failure surface for cross-rolled beryllium sheets.

3.1.1 GENERAL STATE OF STRESS

Consider a general three-dimensional solid body that is loaded by external body and
surface forces and embedded in a fixed Cartesian coordinate system (Fig. 6). Application of
these forces causes the body to deform from the unstrained state; also, a system of internal
stresses is set up at each point in the body that oppose deformation. Fig. 7 shows the nine
independent components of stress acting on a differential element located at a general point
in the solid. These components are listed in matrix form in Eq. 48.

(o} ag o}

xx xy xz
[O] =] 0 01 O e (48)
o, O, O,

Application of equations of equilibrium to the differential element reduces the number of
unique stress terms from nine to six (Sokolnikoff 1964).This reduces Eq. 48 to the
diagonally symmetric form:
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o, o, o,
[o] = To Ty Ty [ (49)
o. o, o,

Differential
Element

FIG. 6. General Body with Surface Forces
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FIG. 7. Stress Components Acting at a Point
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Also shown in Fig. 7 are the contracted notational equivalents of the second-order stress
tensor. Contracted terms are used for convenience and compact representation. That is, an
alternative, single subscript form of Eq. 49 is
o, 0Os O,
(0= 05 0 O [ (50)
o, o, o,

Often the contracted stress entries are arranged in a vector format as follows

T
{a,}z{o;,az,aj,ad,aj,a‘} .................................................................... (51)

The oj components represent a second-order tensor. However, g itself is not a first-order
tensor.

The loads on the body increase in magnitude until failure occurs. Failure is taken
here to be the ultimate stress capacity of the structure. At the time of failure the stress at a
point in the body reaches a threshold level that is taken to be the failure stress. In the
general case, from one to all six components of stress may be nonzero when the body
reaches the failure stress.

Furthermore, a fundamental assumption is made that failure can be predicted to
occur when the following equation is satisfied at any point in the loaded body

F,0, +F,0,0, +Fimn 004Gy 21 (i, j k,Lm,n =12,3) e, (52)

where o;; are second-order components of the stress tensor at the point, and Fi, Fij, and
Fijkimn are second, fourth, and sixth-order tensors, respectively. The tensor character of
these coefficients follows from the quotient rule (Sokolnikoff 1964). When the left hand
side of Eq. 52 is less than 1.0 the stresses are not high enough to cause failure. When a
single stress or combination of stresses cause the left hand side to equal or exceed unity,
failure occurs.

Loading of the body may be monotonic or non-monotonic. In other words,
satisfaction of Eq. 52 is independent of the path of loading. Yielding of the material is also
not explicitly considered, although Eq. 52 implicitly accounts for material flow by means of
the Fy;, F ijki> and Fipp,, terms. As an example, a long sample of the material may yield
considerably when loaded along one of its principal material axes, but behave in a brittle
manner when loaded in pure shear. Both cases can be successfully predicted with Eq. 52,
although the yield stress has been greatly exceeded in one case and not at all in a brittle
failure.
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Eq. 52 is a scalar equation and homogeneity of a tensor equation requires that each
term on the left-hand side is also a scalar. Since o;; are symmetric (Sokolnikoff 1964) it can
be shown that there are, in reality, six independent Fi; terms, namely F;;, Faj, F33, Fy),
F;3,and Fy;. In the same manner, symmetry of oj; leads to 21 independent F, ijki constants,
rather than 34 = 81 that are required when there is no symmetry. Finally, the Fj;;,, term
has a total of 56 independent terms as a result of symmetry. Altogether there are 83
independent failure coefficients in Eq. 52.

Furthermore, many of the coefficients can be combined and eliminated. For
example, if all components of stress at a point in a stressed body are zero except that the
normal stress in a principal material direction, oy, is at its strength level, X, Eq. 52 reduces

to:

Fy X +F X7+ F0 X7 20 e (53)
Similarly, for the case of uniaxial compression strength ;; = -X' along the same axis, Eq.
52 becomes

SITP. GET DN Gy I G BRSSO (54)

The three material constants F,;;, F;;;;, and F;;;;;; are computed from two distinct
uniaxial experiments: tension and compression. Thus, one of the material coefficients must
be redundant. It has been shown by Wu and Scheublein (1974) that F 11111 18 the
redundant term. A similar consideration applies for 335223, F333333 F121212, Fi31313
and F535353. In summary,

ssisss =0 weererereneetereree et (55)

The number of independent coefficients, consequently, reduces from 83 to 77.

Fin =Fypm = Fiiss = Frisses = Figssss

A significant reduction of the number of coefficients in the tensor polynomial is due
to the assumption that a change in sign of the shearing stress does not affect failure strength
of a general orthotropic material (Leknintskii 1981; Wu and Scheublein 1974). Thus, for
the case of all components of stress being zero except for the shearing stress o7, Eq. 52
reduces to:

F120), #F 3130057 21 e e (56)
Similarly, reversing the sign of the shearing stress gives

2
F(=00,) #F (=010 21 oo e (57)

It follows from Eqgs. 56 and 57 and analogous equations for the other shearing stress
components, that

Fiy =F S F, 20 i) (58)
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Using the same assumption of invariance of failure due to a change in the sign of the
shearing stress leads to:

Fiiiz =F5=F,,; =Fu; =Fos = Fops =Fyn =
Fis =Fi =F; =Fs =F35 =0

and,

F;uuz =E12212 =F;13312 111213 =F;11223 =F222212 =F;23312 =F221213 =F;21223 =

F.;SJJIZ =F;31213 =F33:223 =F121213 =F;21223 =F122323 =E21323 =F;22323 =F;11113 =
El2213 =E13313 =E11323 =F;22213 =F}23313 :1321323 =F333313 =F333123 :Fmszs =

1;;32323 = Eum = F;12223 =Fnsszs = F222223 = 523323 = F:m:z: =0

Application of Eqs. 55, 58, 59, and 60 reduces Eq. 52 to 28 independent coefficients.

Using the contracted stresses of Eq. 50 and an analogous contraction of

U’ F; ikl

ij
and Fijpy,,, terms, allows Eq. 52 to be expressed in compact form as follows:

f,0, +F0, +F,o, +F,0, +F,0,° +F,0,° +F,0. +F0,° +Fy0,’

+2F,0,0, +2F,,00, +2F,0,0, +3F, 00, +3FHJUIZO'J +3F, 0,0,

+3F,,0,°0, +3F,,,0,0, +3F,,0,0,” +3F,, 0,0 +3F,0,07 (61)
#3F,,0.0, +3F, 50,0, *3F,;0,0,° +3F0,0,° +3F 0,0,

2 2
+3F 40,0, +3F,, 0,0, +6F1230'10'2°'3 21

The constant coefficients, F; and Fj;j (no summation on i), are identical to those
derived by Tsai and Wu (1971) (for i = 1, 2, 3). Therefore, the same laboratory
experiments and mathematical manipulations are used to determine the values of these
constants.

Closure is ensured if the following two conditions are met by the failure surface
(Jiang and Tennyson 1989):

(a) Images of the cubic curve projected onto the (o, 03), (03, 03), and (o3, ;) planes are
closed.

(b) Real values of oy, o, and g5 exist for given values of o, o5 and o3 For this
condition to be met the following asymptotic equations must exist:

3F,.0, +3F,,0, +3F, 0o, FEL =0 e (62)
3F1550, # 3F5550, #3F35505 #Fyy =0 oo (63)
3F 450, +3F0, +3F,,,0, F o =0 i (64)

In addition, they must not intersect the curves of condition (a).
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The analysis that follows takes into consideration the fact that the material fails
under a hydrostatic state of stress. Derivation of a modified criterion that excludes the case
of failure under hydrostatic stress is presented in section 3.2. The latter approach is
incorporated in the equations for predicting failure of cross-rolled beryllium sheets.

3.1.2 INVESTIGATION OF NECESSARY CONDITIONS

To examine failure surface images on the three orthogonal Cartesian axes and to
satisfy the set of requirements for condition (a), crossing of the failure surface on the three
projection planes must be examined when

Te G5 Z05 T0 oo e (65)

As an example, Fig. 8, shows projections of bounded and unbounded regions of a
failure surface onto the (0-05) plane. Rearrangement of Eq. 61 to isolate oy, oy, and Og
terms leads to the following form:

(3Fu0, +3F,,0, +3F,,0, +Fu)o. +(3F0, +3F0, +3F,0, +Fy)o,
+(3F;6601 +3F0, +3F, 0, +1'766)0'62 =—(F]Gl +F,0, +F,o, +F,0°
+F,0,’ +F,0, +2F,0,0, +2F,0,0, +2F,; 0,0, +3E,20',202 +3F,,0,0,

2 2 2 2
+3F;220'1°'z +3F,,0, o, +3F; 0,0, +3F,;0,0, +6E:3010'20'3 -1)

ay Closed Surface Q\

Original Surface

FIG. 8. Constraint and Asymptotic Equations Bounding Open and Closed
Two-Dimensional Surfaces
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Application of the conditions from Eq. 65 to Eq. 66 gives
Fo, +Fo, +Fo, +F;10'|2 +F220'22 +F33asz +F,0,0, +2F, 0,0,
+2F,;0,0, +3F, 0,0, +3F,,0, 0, +3F,,0,0, #3F030,°0, e (67)

2
#3F;,0,0, +3F;33O'203 +6E23°'1020'3 ~-1=0

In addition to Eq. 67, criteria need to be specified that are satisfied by interaction
terms Fy5, Fy3, Fo3, Frya, Fup3, Foo, F333, Fy33, and F53;. This can be accomplished by
investigating the constraining planes that apply to Eq. 67. Asymptotes are obtained by
collecting quadratic terms of 01, 03, and o3, and setting the coefficients of each term to
zero (Jiang and Tennyson 1989). The asymptotic equations that result are given by

Fyy #3F,1305 #3F,30, =0 oo (68)
Fo2 #3F1520, #3F;0,0, =0 oo (69)
Fys #3F1530) #3F3530, =0 o (70)
2F), +3F,,0, +3F,,0, FIF 2503 =0 i (71)
2F,, +3F,,;0, +3F,,,0, F3E1500, =0 e (72)
2Fy; +3F,,,0, +3F,,0, F3F050) Z0 i (73)

As shown in Appendix III, Eqgs. 71-73 can be rewritten as:
(3171121:;13 +3F;12F223 _6F;22E23)0-1 +(3F;22F113 +3F;22F223 "6};;121:123)0'2

................ (74)
=2F;1F123 +2F;2F;23 —21:}2];;13 —21‘—;21:223
(3F;13F}12 +3F}13F;33 _6}:133]:;23)0'/ +(3F133F;12 +3F133F;33 _6F113F;23)0'3 (75)
=2F;1F;23 +2F;3F;23 _ZF;JEIZ _ZF;JFHJ
(3F223F}22 +3F,,,F 5 _6]:2331:123)0'2 +(3F;33Fzzz #3555 F s _61:2231;;23)0'3 (76)

:ZF;;F;B +2F;3F;23 —2F23F;22 —21:;31:133

Thus, the number of independent variables of each equation reduces from three to two;
namely, for Eq. 71 the o; dependence is eliminated. For notational simplification the
following constants are defined:

3E0u2Fis #3F 5 sy =6 FFry =K1 oo (17)
3B 022F 115 # 3F 33 gy =6 F, 3 Fypy =Ll (78)

2Ey Figg #2F 35 =2F 3 Fpy = MU oo (79)



3F11sF s # 35 3Py =6 F 3oy = K2 oo (80)
31552 #3F 33 sy =6F, 3 Foy = L2 oo (81)
2EFipy # 2B Py = 2F By =2 Fyyy M2 o (82)
3P # 35 Fr gy =6 F,0F oy =K 3 oo (83)
3F2s5F 120 #3F503Fpyy =6 FuFpy =L3 oo (84)
2FoFys #2F,F g =2F F oy =2FFyy = M3 e (85)

To ensure closure of Eq. 67 none of the asymptotes given by Egs. 68 through 73
should intersect the prescribed surface. Considering Eq. 68, for example, it can be seen that
the limit values of the coefficients F;12and F;;; depend on the ultimate tensile (Y and Z) or
compressive strengths (Y’ and Z') of the second and third principal directions, respectively,
as well on the magnitude of the coefficient 7 11- A first estimate of these coefficients, which
is obtained via a least-square fit (see section 3.1.3), is necessary. Since the strength values
are established from independent uniaxial experiments, the following relations that confine
the magnitude of ;5 and F;;3 are derived.

_Ez
3F,,

<-r’ Jfor Fig 20 oo (86)

_F}I
2Y or Flig SO e 87
3}:;]2 f 112 ( )

-F,
— <7 or Fpps 20 o 88
3F,,, S 113 (88)

2z for Fiig €O e (89)

Similarly, from Eqs. 69-73, the following constraint conditions are also necessary to
obtain closure:
_Fzz
3F,,

<-X' for Fisg 20 oo (90)

3F—”2X Sor Flog SO o (91)

122

;—F& <-X'  for Flas 20 oo (92)

133



Jor

Jfor

Jor

Jor

Jor

Jor

Jor

Fiss SO o (93)
Fras 20 o (94)
Fass SO o (95)
Fits 20 (96)
Fits SO e (97)
% PO (98)
A}?—zz>0 .................................................................. (99)
M—l D0 e (100)
L1
24—; D0 e (101)
M2 PO e (102)
L2
% PO o (103)
1;{_11 SO e (104)
1}{/{—22 SO e (105)
% SO e (106)
A}?—; SO e (107)
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M2 M2
—_—2Z or e 0 e 108
L2 J L2 (108)
M o dor M (109)
L3 L3

3.1.3 EVALUATION OF F; AND F; FOR{ #j

In the event that there are experimental data from nl, n2, and n3 sets of biaxial load
tests that correspond to states of stress lying in the planes (oy;, 03) (i = 1, 2, ..., nl), (o},
o3) (i =1,2,..,n2), and (o3, 03;) (i =1, 2, ..., n3), respectively, it is possible to evaluate
the interaction coefficients F, i and Fj; fori =/ by aleast-square fit of the cubic Eq. 67.
However, this approach may not be sufficient to produce closed curves in the projected (o,
o3, (o5, 03), and (o, o3) subspaces (Fig. 9). In the event that closure is not
accomplished, one or more of the constraints that intersect the failure surface are shifted in
space (i.e., their coefficients are modified) in such a manner that all constraints are satisfied
and the surface is closed.

As an illustration, suppose that the asymptotic plane,

oy #3F 0, #3F,,50, =0 oo (110)

which is obtained by rewriting Eq. 67 as a quadratic of o>, is parallel with the o axis and
intersects the open-ended failure surface as shown in Fig. 9. Adjustment in the F;,, and
F33 terms orients this plane with respect to the o, axis. Closure is accomplished by
requiring that the plane given by Eq. 110 pass through the line (-X', o, -Z'), where -X' and
-Z' are uniaxial compressive strengths along the o; and o; axes, respectively. Thus, by
judicious selection of the constants F;5, and F,,3, Eq. 110 becomes an asymptotic plane
for the failure surface (see Fig. 10). o; = -X"and o3 = -Z’ can be substituted into Eq. 67 to
obtain the following relation:

(—31:122X’—3F;232’+F22)022

+(6F,2,XZ’+3F,,,X" +3F,,,Z2* —ZF,,X’——21”2,Z’+F2)0'2 ...... (111
H-3F,,,X2? -3F, ,X*Z'+2F,XZ'+F,X? +F,,2% -F,X'~F,Z'-1) =0
Subsequently, for an infinity of o, roots to exist it follows from Eq. 111 that:

3E X = 3F 2 £ Fyy =0 e (112)

6F X Z'+3F,, X7 +3F, 27 =2Z,,X "= 2F,Z"+F) =0 wevvcvoeeeeerereerereeerenn, (113)

“3F,,XZ? -3F,,X?Z'+2F,, X Z'+F,X? +F,2? ~-FX'~F,Z'~1=0........... (114)
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Eq. 114 has the same form that would result if o, =-X'and o3 = -Z' were substituted into
the cubic criterion of Eq. 66. Thus, it can not be considered to be an asymptote.

Similarly, isolation of quadratic terms o; and o3 in Eq. 67 leads to constraint planes
that are similar in form to Eq. 110 and parallel to the oy and o3 axes, respectively. This
procedure leads to four additional equations (for details see Appendix 1V):

T3 =3F 2 Fy =0 e (115)
6F,,YZ ' +3F,,Y* +3F, 77 —2F Y =2F 2 4 F =0 e (116)
3 Eyg X =3E Y Fy =0 e (117)
6F s XY +3F, ,X? +3F, ¥* 2P X = 2F Yt F =0 (118)

Using Lagrange multipliers to incorporate Eqs. 112, 113, and 115-118 as constraint
conditions, the following functional is obtained for calculation of the interaction parameters:

nl
2 2 2
dj:z:(};;o-li +Fo, +F,0, +F,0, +2F,0,0, +3F,,,0, O,

i=]

n2
2 2 2 2 2
+3E2201i02i -1) +2(F}0'1i +Fo, +F,0, +F,0, +2F,0,0, +3F,;0, O
-

n3
2 2 2 2
+3F;;0,0,° -1) +2(F:70'2; +F0, +F,0, +F;0, +2F,0,0, +
=

+3F,,0,70, +3F,,0,0,% - 1) A 3F X 3F,, 7' +F,, )+ A,(6F,,, X' Z' ... (119)
+3F, X" #3F,, 2" 2F, X' -2F, 7" +5,) +2,(=3F,,Y' -3F,,Z' +F, )

*AM6F Y 2 43F,, Y7 +3F, .7 22F v -2F,,Z' +F,)

#A,(=3F,, X '~3F, Y '+ F,) +A(6F,, XY +3F, x +3FY ¥ =2F, X/ ~2F,Y'+F,)

where 4;fori=172 .. 6 represent Lagrange multipliers, and summation indices ni, n2,
and n3 range over the number of experimental tests carried out.

Interaction coefficients F,-j and Fiij for i # j are determined by minimizing the
functional @. A total of sixteen equations are obtained with an identical number of
unknowns. Coefficients £ iand Fy; (i = 1, 2, 3) need not be obtained from this expression
since they are identical to the Tsai-Wu  coefficients stated earlier. The first ten

minimizations are as follows:

oD
F,,

2 2
+F,0,0, +3F,,,0, oy +3F,,0, Oy _1) =0

nl
:_222X,—2'14Y’+40'n°'2rZ(F;Uli +F,0, +1:110112 +F2202:2
il



oD
13

2 2
+2F,;0,0; +3F,,,0,°0, +3F,;;0,7 0, —1) =0

n2
=-2A,2"-2A,X"+40,0, 2;(}7/0—/, +Fo, +Fuo-112 +F330—3i2
i=]

oD , , X 2 2
==2A,2"-2AY +4O’210.312(P3021 +F0, +F,,0," +F,o,
23 1=l

.....

2 2
+2F,;0,0, +3F,,,0, 0, +3F,;0,7 0, "1) =0

oD

112

2 2
+2F),0,0, +3F,,0, 0, +3F,,,0, 0, _1) =0

nl
_ 2 2 2 2
==34,Y'+31,X* +60, UziZ(EGI: +F,0, +F,,0," +F,0,
i=]

oD
13

2 2
+2F;0,0, +3F,,;0, 0, +3F,;;0,70, _1) =0

n2
=_3FA'JZ’+316X,2 +601i203i2(F}011 +F0o, +1://Gl,2 +F330'3,2
1=/
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FIG. 9. Open, Non-Convex Failure Surface



FIG. 10. Closed Failure Surface

oD 2 PR 2 5
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122 =

2 2
+2F,0,0, +3F,,0, 0, +3F,,,0, 0, _1) =0

oD
Ko

2 2
25,050, +3F,,0,° 0, +3F,;,0, 0y, ‘1) =0

n3
‘_"'3'112""3/14}“2 +602i203i2(F202i +F;0o, +F220'2:2 +F;30'312
i=l

oD

133

2 2
+2F 0,0, +3F,,0, 0, +3F,;;0,°0, _1) =0

n2
_ 2 2 2 2
=-3A,X'+3A,2" +60, aIiZ(F;GIi +F0, +F,0," +F,;0,
i=t

oD

233

2 2
+2F,,0,0; +3F,,,0, 05 +3F,;,0,° 0y, —1 ) =0
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=—3'16XI+3A'ZZI2 +6o—3.20'2i2-(FJO'2. +F;o, +F2202i2 +F3303:‘2

...........
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oD

123

SO, XZ +6AY Z 62K Y =0 oo, (129)

The remaining six equations are obtained by taking derivatives of the functional, @, with
respect to Ay, Ay, A3, Ay, As, and A4 The resulting equations are identical to those of Egs.
112, 113, and 115 through 118.

The system of Eqs. 112-113, 115-118, and 120-129 is determinate and calculation
of the F; and Fj;; coefficients is feasible. Thus, it is possible to construct a closed cubic
surface for the particular quadrant (compression-compression) under consideration. The
same approach can be applied for each of the other seven quadrants of the failure surface.

3.1.4 EVALUATIONOF F,,,FOR/=1,2,3,ANDJ=4 ORS OR 6

For the condition (b) to be met the following asymptotic equations must exist:

3F 0, #3F,,0, +3F,, +F,, =0 oo (130)
3F 550, +3F,550, #3F 555 #F55 =0 oviiiiiiiiiiie e (131)
3F 0, #3F 050, #3F g #Fy =0 oo (132)

Also these planes must not intersect the projected images of the failure surface on the three
planes (o, 03), (5;, 03), and (05, o3). For this condition to be satisfied Eqs. 130-132
should not intersect the failure surface defined by Eq. 67. This condition occurs only if the
planes described by these three equations are, at most, tangent to the cubic surface. For
simplicity, only one of these conditions is explicitly considered in the present discussion.
Later, the concept is generalized to incorporate equations for the other two planes.

As an example Eq. 132 is written as follows:

o =_(3F166°'1 #3F;5,0, +Fy) (133)
3 31:}66 ..................................................................

The following form of Eq. 67 is obtained by substitution of o3 from Eq. 133 into Eq. 67
and rearrangement of the result:

3 2 3 2
(Al6al + A0, +A3601+A46)+(Blaaz + B0, +B.360-2+BJ6)
2
+(C1601202 +C,0,0, +C360102) =0

where, 46, A2s, A36, A6, Bis, Bas, Big, Bys Cis Cas and Csg are constants that are

functions of F;, F;, and Fgs for i = I, 2, 3. Explicitly, these constants are given by the

following expressions (Roschke et al. 1990).



Ay = 27(F Py = Fy g Fr s ) oo (135)
Ars = Frgs Fry #2F g FogFyyy = FrggFoFoy = 2FogsFrggFry # Frgg Fon) oo, (136)
Ay = Foi"Fpyy #2F, o FyFyy = 3F y FopyFy = 2Fy g FogFoy #3F 55 F) oo, (137)
Ay =0.5(FFyy = 3F 0 FFy =9 F;07) oo (138)
Bry = 27(Frgs? Frys = FrggFogsFazs) weveereseeseemeesseeseeoeeeoeeeeseoeeeeee, (139)
Boy = oo’ Fyy +2F 0 FoyFyy = FrygFogFogs = 2F 5 FogsFoy 4 Figg Fyy) oveoeeenreeresenn. (140)
By =3(FyiFyyy +2F,55F,y ~3F, 0y FyusFy ~2F gy Foy #3F 135 Fy) v, (141)
Bus =0.5( 7 Fy =3 FgFy =9F ;057 ) woveeereeeeeeee oo, (142)
Cio =27(Fy0 7 Fyyy +2F, iy FyusFrys = FruaFogFors + Foag Fruy =2FssgFrggFrya) ovveveneon. (143)
Crs =27(Fos’ Fyy +2F o FoisFss — FiusFssFys + Fug Frap = 2F 35 FagFry) vereeveenenen. (144)

C36 =18(1:166F;’66F‘33 +E66F;6F;33 +F;66F;6F;33 _F‘l66p‘3661:23 _EG6F:?66F}3
+F3662F12 = FigskesF23)
The closed-form solution of the bicubic Eq. 134 yields repeating, real o; and o,

roots at the points of tangency with some side conditions. The repeating roots and side
conditions are given by the relations (Jiang and Tennyson 1989; MIT Publications 1988):

274,57 A 184, A A Ay #4414, —Arl Ayt + A, Ay =0 (146)
27B,B,’ —18B,,B,,B,,B,; +4B,,B,;’ ~B,;’B, +B,;’B,y =0 ....coercercrrreernn. (147)
Cls =0 oottt et (148)
Cag T0 oottt e (149)
Cig Z0 oot (150)

A functional, ‘¥, is defined from the closed-form solution of the bicubic Eq. 134,
that yields repeating 6, and o roots at points of tangency, and side conditions Cj4 = C,5 =
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C35 = 0. Assuming that there are nl sets of failure data, (045, 09, gy fori = 1,2, .. ni,
¥ takes the following form:

nl
2 2 2 2 2
W=2(E°3i +Fo, +F 0, +Fh0, +Fg o, +2F,0,0,, +3F,0, oy, +F 0,0y

1=l

$F0,05 #3Fags0,05" +3F550,0, ~1)} +11(2743 4,2 184, 4, A, A, (151)
HAAS - A8 A} A A) +1(27B,2B, ~18B,B,B, B, +4B, B,

~B,' By’ +By’ Bg) ~Bis' B’ + By’ Byg) #11,C, +41,Cog + 1Ce

where y; through us are Lagrange multipliers.

The functional, ¥, reaches an extreme value (maximum or minimum) when:
¥ ¥ ¥ o¥

0, 0, 0, 0,
g6 Fs 2 0% au,
......................................... (152)
6'1’=0, é"I’zol 55”:0, 0”‘11:0
77 Ol ou, Optg

A set of eight nonlinear simultaneous equations is obtained that yields coefficients F,g4,
F66, and F 3445 and numerical values for the five Lagrange multipliers.
Similarly, Eqs. 130 and 131 may be rearranged as follows:

(3F;4Jo-l +3F;440-3 +F;4)

O T T T T T 153
2 3E,, (153)
o, = Uy #3F0 #Fy) (154)

3F)ss

Relationships similar to Eq. 134 can be derived by incorporating Eqs. 153 and 154
in the event that biaxial test data, (5};, 63, 6,) fori = 1, 2, ..., n2 and O, O3, Os; fori =
1, 2, ..., n3, respectively, exist. By an analogous analysis the interaction coefficients F
Fa44 F344 Fiss, Fyss, and F355 may be obtained, thus, yielding all interaction coefficients
necessary for determining the failure surface. Details of these derivations are in Appendix
V.
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3.2 FAILURE PREDICTION WITHOUT HYDROSTATIC DEPENDENCE

3.2.1 GENERAL STATE OF STRESS

Expansion of terms in Eq. 52 and application of the assumption that excludes failure
under a hydrostatic state of stress, leads to the following equation in terms of the contracted
notational form:

Fo,+F,0,+F,0,+F, 0] +F,0, +F,0,' +F,0/ +Fy05 +Fe08

+2F,0,0, +2F,;0/0, +2F,;0,0, +3E1201202 +31:11301203

+3F,,0,0,” +3F,,,0,°0, +3F,,,0,0," +3F,,,0,0, +3F,,,0,6,7  tveererirnnn. (155)
+3F,,,0,0, +3F,, 0,0, +3F, 0,0, +3F, 0,0, +3F,,,0,0,

+3F1660'1°'62 +3F2660'20'62 +3F36603062 =1

Eq. 155 can be rearranged as follows:

(31:1440'1 +3F,,0,+3F,,0, +F44)0'42

"'(3}71550'1 +3Fy0, +3F 0, +F55)0'52

+(3F1660'1 +3Fy450, +3F450;, +F;6)o-62

=‘(FIU: FF,G, +F,0, #F,y a7 #F,y g, T
+F33°'32 +2F,0,0, +2F;0,0, +2F,0,0,

+3F1120'1202 +3F113°'120'3 +3F1220'1022

+3Fzzso'220'3 +3F}330'1032 +3F23302°'32 -1)

Again, closure of this failure surface is accomplished by imposing conditions (a) and
(b) of section 3.1.1.

3.2.2 INVESTIGATION OF NECESSARY CONDITIONS

The images of the failure surface on the three planes must be examined when
64=05=04=0. Thus, Eq. 156 becomes
Fio, +F,0, +Fo, +Fu°'12 +F22°'22 +F33032 +2F,0,0,+2F;0,0,
+2F,0,0, +3F,,0,°0, +3F,,,0.0, +3F,,,0,0, +3F,,;0,°0,  evceeeeeeeeann, (157)
+3F,,,0,0,° +3F,,,0,0,° ~1=0
The asymptotes correlating the interaction coefficients are obtained by rewriting this

equation as a quadratic in terms of either 6, o5, or 6; and setting the result equal to zero.
The resulting equations are given by

Fo #3F,,0, #3F, 505 0 i (158)



Fyy #3F, 1,0, #3F 5,0, =0 eeeiuiiieieieee e (159)
Fy #3F, 50, #3F,5,0, =0 oo, (160)
2F, +3F,,0, #+3F,,0, =0 oo, (161)
2F,, +3F,,,0, +3F,;;0;, =0 v (162)
2F, +3F,,;0, +3F,5;;0; =0 coiiiiiiiiiii e (163)

The last three equations can be rewritten as (see Appendix III for F),3 = 0):
(3E12E13 +3F112F223)01 +(3F/22F113 +3F122F223)O'2

........................................... (164)
= _ZF}zFHJ _2F/2F223
(3F113F;12 +3F113F.733)‘71 +(3F133Fuz +3F/33F233)03 ==2FF = 2F F e (165)
(3F223F122 +3FzzJFlJJ)az +(3FzJJF;22 +3F233F133)O'3 = _2F23F122 —2F23F133 -------------- (166)

This is done to facilitate comparison with section 3.2.1. However, it is not a simplification
since the number of independent variables remains the same for each equation. For
notational compactness the following constants are defined:

3F 1 F 1y #3F 1,F s =K1 oot (167)
3F ,F, #3F ) F, S L1 oot (168)
C2F F, = 2F Fyy S M1 oot (169)
3F,  F 1 #3F,,F,; K27 et (170)
BE  F #3F,,F s S L27 oot a71)
S2F F, 1 = 2F Fy)y S M2 oot (172)
3, F, 4 3F5yF, sy SK 37 coiiiiiieeeeeeeeeeeeeee et (173)
3F, F s #3F,0,F sy =6 F 0 F 5 =137 oot (174)
2F,F,yy #2F, F s =2F ), F = 2F, F, =M 37 it (175)

To ensure closure of Eq. 157 the same asymptotes given by Egs. 68 through 73 in
section 3.1.2 should not intersect the prescribed surface.
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3.2.3 EVALUATION OF F; AND F;FOR i #j

Assuming that there are experimental data from nl, n2, and n3 sets of biaxial load
tests that correspond to (o}, o) (i = 1, 2, ..., nl), (o}, 63;) (i = 1, 2, ..., n2), and (09, O
3) (i =1, 2, ..., n3), respectively, it is possible to evaluate the interaction coefficients by a
least-square fit of the cubic Eq. 157. Assuming that closure is not accomplished, one or
more of the constraints that intersect the failure surface are shifted in space (i.e., their
coefficients are modified) in such a manner that all constraints are satisfied and the surface
is closed.

To use the same illustration as in section 3.1.3, suppose that the asymptotic plane is
given by:
Foy #3F 0, #3F,,,0, =0 .o (176)

that is parallel with the o axis and intersects the open-ended failure surface shown in Fig.
9. Closure is accomplished by requiring that the plane given by Eq. 176 pass through the
line (-X', 03, -Z'). Eq. 176 becomes an asymptotic plane for the failure surface (see Fig.
10). o; = -X"and o3 = -Z’ can be substituted into Eq. 157 to obtain the following relation:

(_3522X’—3F;232,+F;2)O—22 +(3F112X/2 +3F,,Z" _ZF;zX’_ZFHZ”LFz)O—z

H-3F,,XZ? -3F,,X"Z'+2F,,XZ'+F,X? +F,Z? -FX'~-F,Z'-1)=0 (177)
For an infinity of o, roots to exist it follows from Eq. 177 that:

3, X "= 3F,Z 4+ F T 0 oot (178)
3F,, X2 43F 27 —2F, X "= 2F,Z +F,) =0 oo, (179)
—3F,,,XZ7% -3F,,X®Z'+2F,XZ'+F,X? +F,,Z? -FX'-F,Z'-1=0........... (180)

Eq. 180 has the same form that would result if 5; = -X' and 63 = -Z' were substituted into
the cubic criterion of Eq. 155.

Isolation of o; and o3 quadratic terms in Eq. 157 leads to equations of constraint
planes that are similar in form to Eq. 176 and are parallel to the o; and o; axes,
respectively. These equations are:

BE Y =3F 3274 S0 e (181)
3F Y2 4+3F,,Z7 =2F, Y =2F,,Z"+F, =0 ..ccccooooooioiiiiiieeeeee e (182)
BEF 3 X =3F, 5  FF S0 e a e (183)

3F,, X2 +3F, Y 2 —2F, X =2F, Y 4 F, =0 .ocoooovooeeeeeeeeeeeeeee e, (184)



43

Using Lagrange multipliers to incorporate Eqs. 178, 179, and 181-184 as constraint
conditions, the following functional is obtained for calculation of the interaction parameters:

nl
2 2 2 2
¢=Z(F;Uli +F0, +F 0, +2F,0,0, +3F,,0, 0, +3F,,0,0, _1)

i=l
n2 5 5 5 5 2
+2(Eali +Foy + R0, +Fy0, +2F;0,0, +3F 0, 0y +3F;,0,0,° _1)
i=1

n3 5 2
+2‘(F20'21 +Fo; +Fzzaziz +FssO'3i2 +2F,04,0;, +3F,;0, 70y, +3F;330'210312 _1) ....(185)
i=1

A 3F X' 3F,p, 7 +F,,) 4 2, (3F,, X7 #3F,,, 77 2F, X' -2F,, 7' +F, )
+/13(—3F112Y’ _31:;132' +Fu) +’14(3Ff22Y,2 +3F13JZ’2 _ZF;ZY' _ZFlsz' +F/)
+’15(—3133 X' _3F233Y’ +FJJ) +)‘6(3F;IJX'2 +3F223Y’2 —2F, X' —2FyY" +Fs)

where A; fori = 1, 2, ..., 6 represent Lagrange multipliers, and summation indices n/, n2,
and n3 range over the number of experimental tests carried out.

Minimizing the functional @ yields the interaction coefficients F i and F; for i .
Fifteen equations are obtained with an identical number of unknowns. Coefficients F; and
Fi; (i = 1, 2, 3) need not be obtained from this expression since they are identical to the
Tsai-Wu coefficients stated earlier.

The fifteen equations are the same as those indicated in Eqs. 112, 113, 115 through
118, and 120 through 128 of section 3.1. The sixteenth equation, which would correspond
to Eq. 129, does not exist since the modified criterion is independent of hydrostatic failure
stress and, thus, the interaction coefficient F;,; is not part of the contracted tensorial
polynomial.

3.2.4 EVALUATION OF F;;FORi=1,2,3, ANDj=4 OR5OR 6

For condition (b) in section 3.1.1 to be met the following asymptotic equations must

exist:

3F 0,0, #3F,,,0, +3F,,0, +F,, =0 .ccccoooiiiiiiiiiiiiiiiie e (186)
3F 550, #3F,0, #3F 50, #F5 0 iviiiiiiiiiiii e (187)
3F 1460, +3F,4,0, +3F 0, +F =0 oo (188)

The resulting asymptotes must not intersect projected images of the failure surface on the
three planes (6;, 03), (5, 03), and (05, 03). For this condition to be satisfied Eqs. 186-188
should not intersect the failure surface defined by Eq. 157. This condition occurs only if
the planes described by these three equations are, at most, tangent to the cubic surface. For
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simplicity, only one of these conditions is explicitly considered in the present discussion.
Later, the concept is generalized to incorporate equations for the other two planes.
As an example, Eq. 188 is written as follows:

3F, o, +3F, o, +F
ajz—( fee i 3F”“ ) (189)

366

The following form of Eq. 157 is obtained by substitution of o3 from Eq. 189 and
rearrangement of the result:
(A160'13 +A26012 + 4550, +A46) +(B16623 +Bzaazz +B;s0, +B46)

2 2
+(C1601 o, +C,0,0, +C360102) =0

where, 4,5, A26, A36, Ays, B1s, Bas, Bss, Bys Crs, Cag, and Cyg are constants that are
functions of F, Fiy, and Figg fori = 1, 2, 3. Only the Cj4, Cs6, and Cj4 constants depend
on the coefficient F;,3; all others are the same as those described by Eqs. 135-142. The
relations for the three constants are given by the following expressions (Roschke et al.

1990):
Cro =27\ Fppy #2F g FossFrss = FrasFossFots + Fags Fora) vevevvenrevessersneresenesnens (191)

Cos =27(Fop oy #2F 0y FossFoss = FissFrssFons # Fags Frza) eveervemrevemsvesreseseesneens (192)

C36 218(1:}661:2661:33 +F}66F66F233 +F266F66F133 —FusaFJaans _ananaesEJ +F;662F;2) . (193)

The closed-form solution of the cubic Eq. 190 yields repeating, real 5; and o, roots
at the points of tangency with some side conditions. The repeating roots and the side
conditions are given by the relations:

274, A, —18 A, Ay Ay A +4A A A, A + A Ay =0 (194)
27B,’B,,’ —18B,,B, B, B, +4B, B, =B, B, +B,;’' B, =0 ...cccvvveeeeeeirrrenan (195)
Crs =0 weeeeteeeeieeeiiee st e st e ettt e st e et e e et e e e bt e bt e et a e et e e etbaeenbaaeennaeas (196)
Cg =0 weeieteeeeee e ettt e ettt et e et e e et e ettt e e et e e etb e e e tbeeeetraeearanes (197)
Cisg =0 ettt et ettt ettt et e e tb e e ba e e treeetbeeenreean (198)

A functional, ¥, is defined from the closed-form solution of the bicubic Eq. 190,
that yields repeating 6; and o roots at points of tangency, and side conditions C;4 = Cy4 =



C36= 0. Assuming that there are n/ sets of failure data, (5;;, o9;, o) fori = 1, 2, ..., nl,
¥ takes the following form:
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where u; through w5 are Lagrange multipliers.
The functional, ‘¥, reaches an extreme value (maximum or minimum) when:

N _, N, ¥,
i’;’ ;:2“ af’“ e (200)
97y, -0, -0
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A set of eight nonlinear simultaneous equations is obtained that yields coefficients Fgg,
F66, and F346 and numerical values for the five Lagrange multipliers.
Similarly, Eqs. 186 and 187 may be rearranged as follows:

(3Fm°'1 +3F,,,05 + Fa)

O T T T T e 201
; 3., o
i L (202)
3}:‘155

Relationships similar to Eq. 190 can be derived from Eqs. 201, 202, and Eq. 156 in
the event that biaxial test data, (5;;, 03, 6) fori =/, 2, ..., n2 and G, G3;, G5; fori = 1,
2, ..., n3, respectively, exist. By an analogous analysis the interaction coefficients Fy,
Fr44 F344, Fi55, Fass, and F355 may be obtained, thus, yielding all interaction coefficients
necessary for determining the failure surface.



4. EXPERIMENTAL INVESTIGATIONS

4.1 INTRODUCTION

In order to use the proposed criterion that is derived in sections 3.1 and 3.2 for
failure prediction, the failure strength coefficients need to be experimentally determined.
After these coefficients are known, Eq. 61 can be used to predict failure of a structure using
components of the second-order stress tensor at each point in the body and assuming that
hydrostatic failure can not be induced. The primary focus of the next three chapters is a
description of a number of destructive laboratory experiments that have been conducted on
cross-rolled beryllium sheet. Results and combinations of the results of these tests provide
the failure coefficients for this material.

Figs. 11 through 14 give a complete list of the failure coefficients that are to be
determined and a graphical listing of the required stress combinations. Axis labels 1, 2, and
3 correspond to the principal rolling, secondary rolling, and through-thickness directions,
respectively. In addition, directions 4, 5, and 6 are associated with stresses acting on the
(1-3), (2-3), and (1-2) planes, respectively. Tests in Fig. 11 are designed to place the
specimen in a state of stress that causes failure due to normal stresses acting on each of the
principal directions of the material. The last experiment shown in Fig. 11 is designed to
yield the normal interaction coefficients for an in-plane biaxial state of stress. Each test
shown in Fig. 12 induces a state of pure shear in a prescribed orthonormal direction. Figs.
13 and 14 show the experiments necessary for obtaining the normal-shear interaction
coefficients.

A seminal reference for the experimental program is a report by Fenn et al. (1967).
The report outlines extensive experimental work carried out on cross-rolled beryllium.
Results of these tests are used in the current study for both initial constitutive model
specifications and for estimation of the strength parameters for beryllium sheet. A summary
of primary strength properties from the report by Fenn et al. is listed in Tables 4 and 5. It
should be noted, however, that results in these tables were obtained from experimental
work for 1.96-mm (0.077-in.) thick cross-rolled beryllium sheets. The current work
involves 2.54-mm (0.10-in.) thick plates.

Not only does the report by Fenn et al. list test results for SR-200 material that is
thinner than the current investigation, but the technique used for determining the through-
thickness tensile strength is questionable. Specimens for this test were made from wafers of
beryllium sheet that were diffusion-bonded between two pull rods of beryllium block. The
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bonding process was carried out for 10 minutes at 649°C (1,200°F). Interlayers of 0.508-
mm (2.0 x 10-3-in.) copper foil were also used. Although this temperature is well below the
recrystalization temperature for beryllium, reheating the material to 649°C causes the
residual stresses that are present from the manufacturing process of cold rolling to be
relieved. Alterations in the stress state can affect subsequent behavior of the material
(Kojola 1961). Although there is no evidence that the moduli are affected by the bonding
process, reduction of the ultimate tensile properties have been reported (Asceland 1989).

Failure Material Axes and Experiment(s)
Coefficients State of Stress
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Fii g
-
|

Fi2
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1, 2, and 3 indicate primary rolling, secondary rolling,
and through-thickness directions, respectively.

FIG. 11. Experimental Determination of Failure Coefficients - A
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TABLE 4. Elastic Properties of 25.4-mm (0.10-in.) Thick SR-200 Sheet!

Direction of Loading Elastic Modulus Poisson's Ratios
(GPa)
1) (2) (3)

Longitudinal 298.7 vy = 0.0768
vy3 =0.0137
Long transverse 293.6 vy = 0.0752
U3 = 0.0190
Short transverse 347.5 vy =0.0162
(Through-thickness) vy, = 0.0230

Subscripts 1, 2, and 3 indicate the primary rolling, secondary rolling, and through-thickness directions, respectively.
1.0 ksi = 6.9 MPa
IFenn et al. 1967

TABLE 5. Uniaxial Tensile Strength of 25.4-mm (0.10-in.) Thick SR-200
Sheet!

Direction Yield Stress Ultimate Stress
(MPa) (MPa)
(1 (2) 3)
Longitudinal 383.4 537.6
Long transverse 386.1 564.0
Short transverse — 200.0
1.0 ksi = 6.9 MPa

IFenn et al. 1967

The remainder of this chapter deals with in-plane shear and biaxial experiments
carried out at NASA Johnson Space Center (Henkener et al. 1991) and in-plane tensile tests
carried out at Texas A&M University (Mascorro 1991; Mascorro et al. 1991) on 2.54-mm
(0.10-in.) thick SR-200 sheet material. All experiments were performed in a controlled
laboratory environment with constant room temperature and pressure. Experimental
strength parameters deduced from these tests are used in conjunction with the results from
tests reported in chapters 5 and 6 for estimation of principal and interaction coefficients.
Tests in this chapter are presented in a synoptic way for the sake of completeness with
respect to using results of known experimental work. Many of the laboratory experiments
have also been simulated numerically in order to check or complement information obtained
from transducers. Details of the simulation results are presented with each experiment. In
many cases the predicted displacements, strains, and stresses for the beryllium specimens
are reported by means of gray-scale fringe plots. More information concerning the
numerical simulation is available in chapter 8.
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4.2 TENSILE STATE OF STRESS

4.2.1 Specimens Aligned with Material Axes

Six plate specimens similar to those shown in Fig. 15 were obtained by NASA
(Henkener et al. 1991) from Electrofusion Co. Three specimens have the principal rolling
direction aligned with the loading axis and three have the secondary rolling direction aligned
with the line of loading. Unfortunately, three of the specimens were sanded either on one or
both sides. This is believed to have caused the beryllium to fail prematurely at a load near
its yield strength. Results from the other three successful test specimens are listed in Table
6. A comparison of the results obtained by NASA with the ones tested by Fenn et al.
(1967) shows that the tensile strengths for the 1.96-mm (0.077-in.) and 2.54-mm (0.10-in.)
plate thicknesses are in agreement. However, in the secondary rolling direction the
observed tensile strength of 497.1 MPa (72.1 ksi) for the 2.54-mm (0.10-in.) thick plate
material is considerably lower than the 564.0 MPa (81.8 ksi) reported by Fenn et al. (1967).

f~1.00+ ~ }-0.2
%%
%7
r 1.50 ;g
1.25 4%
| 1\
025 ¢< Z Aluminum
T R0.025
MATERIAL AXES TYP. Ep
o . oxy
principal 5.00 2.00 Bond

olling
Direction — -——0.50
Secondary
Rolling
Direction 0.25 .

1 in. = 254 mm
Dimensions in inches

CIPIPIIPIFIIIII IS

FIG. 15. In-Plane Tensile Specimen
Although two longitudinal and two transverse strain gages are used with three of the
tensile specimens (Henkener et al. 1991), inconclusive results are reported for the total
elongation. This is due to inconsistent specimen treatment (some specimens were sanded
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while others were not) and variations in the rate of loadings for each specimen. In addition,
the measured ultimate strengths exhibit significant variations, possibly for the same reasons.
Thus, for the estimation of the failure coefficients the tensile results reported by Fenn et al.
(1967) are used rather than the results reported by Henkener et al. (1991). Numerical
simulation was not carried out for this experiment.

TABLE 6. Normal In-Plane Tensile Strengths for Cross-Rolled Beryllium

Specimen Number Orientations Failure Stress
MPa (ksi)
(1) (2) (3) (4)
Longitudinal
1 528.8 (76.7)
2 533.0 (77.3)
3a 551.6 (80.0)
Average 537.8 (78.0)
Transverse
1 497.1 (72.1)
2b 551.6 (80.0)
32 579.2 (83.6)
AverageC 564.0 (81.8)

8Fectrofusion data; °Fenn et al. (1967); “Average of last two specimens.

4.2.2 Specimens with Material Axes Rotated 45°

Three beryllium sheet specimens were loaded in a uniaxial testing machine and
tested to failure. A biaxial state of stress in the orthotropic material was achieved by
orienting the material axes 45° from the direction of the load (Fig. 16). To minimize the
possibility of failure at the grips, the three specimens were designed with curved transitions.
Each specimen was loaded at a rate of 68.9 N/s (10 Ib/s) using an 89-kN (20-kip) capacity
MTS uniaxial testing machine. An MTS extensometer (Model 632.86B-03) was used to
record through-thickness strains. Details of these tests are reported by Mascorro (1991).

An average Young's modulus for the three specimens is measured to be 29.5 x 104
MPa (42.8 x 10% psi) (Mascorro 1991). The average Poisson's ratio reported for in-plane
and through-thickness deformations is 0.09 and 0.15, respectively. The latter number
appears to be an order of magnitude larger than the through-thickness Poisson's ratio
reported by Fenn et al. (1967) and an estimate from an ultrasonic technique (see section
7.2). It is believed that the inconsistency is due to a miscalibration of the MTS
extensometer (clip gage).
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FIG. 16. Off-Axis In-Plane Tensile Specimen

Specimen 1 failed at a very low load of 369.5 MPa (57.7 ksi), that occurred almost
immediately after yield. This may have been caused by the MTS clip gage scratching the
surface or from a surface flaw in the specimen. To avoid scratching the surface of the
second specimen 0.2032-mm (0.0080-in.) thick brass shims were placed between the
specimen and the contact points of the MTS clip gage. Brass shims were not placed on
specimen 3 because it was loaded to failure chronologically before the other two specimens.

In order to compare elastic properties obtained from an earlier test (Fenn et al.
1967) with data from this experiment, the stress tensor aligned with the loaded axis is
transformed to the material axis (Lekhnitskii 1981). Components of the transformed stress
tensor (see Appendix VI) are then substituted into the three-dimensional orthotropic
elasticity equations that relate stress and strain. This leads to the stiffness equations:

S =Te e 2 e (203)
g E,-v,E
S, =T o e, (204)

& E -v,kE,
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where £, and E, are moduli in the longitudinal and long-transverse directions, respectively;
S,. and S,, are the measured stiffnesses in the long (principal) rolled and transverse rolled
(secondary) directions due to stress in the loaded "x" direction, respectively; and v;j are
Poisson's ratios. Finally, engineering constants reported by Fenn et al. (1967) are
substituted into Eqs. 203-205 for comparison with the off-axis tests. Results shown in
Table 7 are in satisfactory agreement except for an order of magnitude difference in the
short-transverse stiffness as discussed earlier.

Failure stresses for each of the specimens aligned 45° off of the material axes are
listed in Table 8. Based on results from the second and third specimens (Mascorro 1991),
failure strength under biaxial stress is 533.1 MPa (77.3 ksi). This is 4.7 MPa (0.7 ksi) less
than the failure stress observed when the material is loaded only in the long (primary)
direction, and 30.9 MPa (4.5 ksi) lower than the failure stress predicted for a specimen
loaded only in the transverse (secondary) rolled direction.

TABLE 7. Comparison of Transformed Engineering Constants with
Computed Stiffness

Stiffness Off-Axis Experiment Fenn et al. (1967)
GPa (103 ksi) GPa (103 ksi)

@ €] 4 ()
Ey 295.0 (42.8) 295.2 (42.8)
Syx -3,062.0 (-444.1) -3,753.5 (-544.4)
S1x 644.0 (93.3) 646.7 (93.8)
Sox 638.0 (92.5) 635.0 (92.1)
S3x 1,990.0 (288.6) 18,084.0 (2,623.0)
Gy 137.1 (19.9) 136.9 (19.9)

TABLE 8. 45° Off-Axis Tensile Strengths under In-Plane Load

Specimen Number Orientations Failure Stress
MPa (ksi)
1) (2) 3) (4)
1 45° 397.8 (57.7)2
2 45° 529.2 (76.8)
3 45° 537.0 (77.9)
Average 533.1 (77.3)

8Not used to determine average.
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The off-axis test results are useful for computing the failure interaction coefficient
F,, (see Eqs. 119-120 and Fig. 11), since the stress transformation from the load to the
material axes yields stress components in the material directions as follows:

Appendix VI shows details of this transformation.
For this study, the in-plane tensile strengths in the principal and secondary material
axis orientations, are taken to be
X, =537.8 MPa (78.0ksi)
X, =564.0 MPa (81.8ksi)

Numerical simulation was not performed on these tests.

4.3 IN-PLANE SHEAR STATE OF STRESS

NASA conducted an experiment on five cross-rolled beryllium sheets having a
special geometry and a load that is designed to induce a shear failure (Henkener et al.
1991). Geometry and loading of the specimens are illustrated in Figs. 17 and 18,
respectively. Five nearly identical specimens are tested in order to obtain adequate data for
statistical sampling analysis. Three specimens (3, 4, and 5) are deliberately sanded in a
specified direction: two are paralle! and one is oriented 45° with respect to the loading
direction. All specimens are brought to failure via displacement-controlled loading at a rate
of 1.1 x 102 mm/s (2.0 x 10-2 in./min). The specimens are instrumented with rosette strain
gages for determination of yield and ultimate strain components (Henkener et al. 1991).
Specifically, strain gages were mounted in the longitudinal, long transverse, and short
transverse directions for three specimens. The other three specimens were instrumented
using a ladder gage, a line of ten closely-spaced gages, in the direction of the applied load
for possible observation of the Luder's band effect.

Table 9 summarizes the yield and ultimate in-plane shearing strengths obtained from
this experiment. The fixture-to-specimen bond of one of the unsanded specimens failed
during loading (specimen 1) and, thus, the ultimate shearing strength was not attained. The
two specimens that were sanded parallel to the loading direction (specimens 3 and 4) did
not appear to be affected by this action. However, specimen S was sanded 45° off axis and
failed prematurely at well below the ultimate shearing strength for an unsanded specimen.
Fig. 19 shows the failure pattern of cracks for specimen 3.

Numerical simulation of the loaded structure at failure is used for comparison with
experimental results. The simulation is accomplished using eight-noded, plane stress
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elements. Special care is taken in modeling the geometry of the region surrounding the
notches of the shear specimen. The numerical model considers linear, orthotropic material
behavior and effects of large displacement. An average ultimate load of 19.1 kN (4.3 kip) is
used for the numerical analysis. Fringe plots of displacements, strains, and stresses are
shown in Figs. 20-27 for the ultimate load. Figs. 20 and 21 show components of axial and
transverse displacement, respectively. The lefimost point of the structure is restrained from
displacement and load is applied parallel to the horizontal axis. Figs. 22-24 display axial (¢
1), transverse (€3), and shear (€5) components of strain, respectively. The region between
the notches has approximately -5.1 x 10-* m/m (-5.1 x 10 in/in.), -3.3 x 104 m/m (-3.3 x
104 in./in.), and 2.4 x 103 m/m (2.4 x 103 in/in.) of axial, transverse, and shearing strain,
respectively, at failure (Figs. 22-24).

Figs. 2527 show components of normal (g,), transverse (o,), and shearing stress (o
¢)» respectively. In-plane shearing stresses in the portion between the two notches of the
small plate are the prevailing stresses. Moreover, it is observed that the distribution of all
components of stress in this region is nearly constant from one notch to the other (see Figs.
2527 ). The average in-plane shearing stress in this region is approximately 313.0 MPa
(45.4 ksi). The magnitude of the normal and transverse stresses in the same region,
although considerably smaller than that of the shearing stress, are not small enough to be
neglected. The normal stress is approximately -68.0 MPa (-9.9 ksi) and the transverse
stress is approximately -149.6 MPa (-21.7 ksi).
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FIG. 17. In-Plane Shear Specimen
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FIG. 18. Loading Arrangement for In-Plane Shear Test

TABLE 9. In-Plane Shearing Strengths (Henkener et al. 1991)

Specimen Surface
Number Finish Yield Ultimate
MPa (ksi) MPa (ksi)
1) (2) 3) “4) 3) (6)

1 Unsanded 204.8 (29.7)
2 Unsanded 204.8 (29.7) 300.6 (43.6)
3 Sanded 206.8 (30.0) 311.0 (45.1)
4 Sanded 2034 (29.5) 3075 (44.6)
5 Sanded 203.4 (29.5) 265.5 (38.5)




FIG. 19. Fracture Pattern for Unsanded Shear Specimens

.

FIG. 20. Shear Specimen Fringe Plot of Axial Displacement
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FIG. 22. Shear Specimen Fringe Plot of Axial Strain, ¢,
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FIG. 23. Shear Specimen Fringe Plot of Transverse Strain, &;

FIG. 24. Shear Specimen Fringe Plot of Shearing Strain, &4
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1 ksi = 6.89 MPa

FIG. 25. Shear Specimen Fringe Plot of Axial Stress, o1
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FIG. 26. Shear Specimen Fringe Plot of Transverse Stress, o3
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Units in ksi
1ksi = 6.89 MPa

FIG. 27. Shear Specimen Fringe Plot of Shearing Stress, og

Although a state of pure shear is not obtained from this experiment, a value of pure
shearing stress can be computed on a differential element located equidistant between the
notches. Using an elementary stress transformation (Dally and Riley 1978) yields a pure
shearing stress of 296.5 MPa (43.0 ksi) on a plane that is 2.0° from the x-axis.

The numerical analysis discussed earlier agrees reasonably well with the results
obtained from the experiment. Taking an average of the shearing strength of specimens 2,
3, and 4 yields an ultimate in-plane shearing stress of 306.4 MPa (44.4 ksi). This value is
obtained by dividing the ultimate load by the area between the notches for each specimen
and averaging the results. It is noted that the experimentally determined ultimate shearing
stress is approximately 2% lower than the numerically predicted value. In order to be
conservative, the experimental value is chosen to represent the in-plane shearing strength of
cross-rolled beryllium. In chapter S this failure stress is compared with the average in-plane
shearing strength computed from another experiment. The smaller of these two values is
used as the final shearing strength to compute principal and interaction strength coefficients.
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4.4 IN-PLANE BIAXIAL STATE OF STRESS

Interaction coefficients F;5, F;;5 and F,j are established by experimental
determination of the in-plane biaxial strength of the material (Fig. 11). A number of
experimental arrangements have been proposed for obtaining the biaxial strength of a plate
structure. The most recent approach is discussed by Ferron and Makinde (1988). To date
all of these techniques require slot or hole drilling and/or a reduced middle section of the
structure to ensure that the material fails near the center of the plate. Beryllium cross-rolled
sheet can not be adapted to these geometrical requirements due to the sensitivity of its
strength to holes and surface flaws that are invariably developed during construction of such
specimens.

A different approach is used in the current study to obtain a biaxial state of stress
that causes failure in the material. A series of tests on circular plates made of cross-rolled
beryllium was conducted at Johnson Space Center (Henkener et al. 1991). Two 165.1-mm
(6.5-in.) diameter circular disks were tested to failure. A schematic of the loading
arrangement is shown in Fig. 28 for two loading situations. Fig. 29 shows linear-variable-
differential-transformers (LVDT) and strain gage locations. The first disk was loaded with
a concentric ring that is 25.4 mm (1.0 in.) in diameter. Experimental data were established
at 50, 75, and 100 percent of the material's yield stress, as well as at ultimate loading.
Transducer output includes readouts from strain gages and LVDTs. A similar procedure
was repeated for the second beryllium disk using a 50.8-mm (2.0-in.) concentric ring load.

The purpose of this experiment is to establish a state of stress that closely
approximates pure bending moment within the loading rings. Significant shearing stresses
and torsional moments are avoided by concentric application of the load ring about the
center of the plate. This can be regarded as the two-dimensional extension of the well-
known four-point bending test of a simply-supported beam.

Simulation of the 25.4-mm (1.0-in.) and 50.8-mm (2.0-in.) load experiments is
carried out using six-hundred twenty-noded isoparametric hexahedral elements with ten
elements through the thickness of the plate. Orthotropic material properties for cross-rolled
beryllium are used with through-thickness inhomogeneous distribution of material (see
chapter 8). In addition, large displacement theory is considered. The numerical model is
constrained from displacement in the out-of-plane direction along the cylindrical aluminum
support. A uniformly distributed line load is applied in a concentric manner to simulate the
ring loadings. Due to symmetry of loading and geometry, only one-quarter of the actual
plate structure is modeled with finite elements. A summary of the results of these
experiments is shown in Table 10. Each experiment is discussed in the following sections.
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TABLE 10. Experimental In-Plane Biaxial Stress Output - NASA

State of Stress 25.4-mm Ring Load 50.8-mm Ring Load

MPa (ksi) MPa (ksi)

Q) (2) 3) 4) 5)
50% of yield 191.7 (27.8) 188.2 (27.3)
75% of yield 289.6 (42.0) 283 4 (41.1)
100% of yield 379.9 (55.1) 370.9 (53.8)
Failure 8343 (121.0) 827.42 (120.0)

8 Maximum Failure Stress = 930.8 MPa (135.0 ksi)

4.4.1 25.4-mm Ring Load

In order to obtain the components of stress at the failure load, the numerically
predicted displacements and strains are compared with those measured by the transducers
during the experiment. Fig. 30 compares experimental and numerically predicted vertical
displacements along a radial line at the yield and ultimate stress levels. These two cases
correspond to loads of 1.9 kN (0.4 kip) and 6.0 kN (1.4 kip), respectively. Experimentally
measured displacements at the center and at one intermediate location between the
supported edge and the center of the plate are also plotted for comparison with the finite
element prediction. Agreement between measured and predicted values is excellent at the
load level that causes the yield stress and within 1% at the ultimate load. Fig. 31 shows a
fringe plot of vertical deflection that is obtained from the finite element analysis. Figs. 32
and 33 show numerically simulated in-plane displacement components in the two
orthogonal x and y directions, respectively. In the vicinity of the 25.4-mm (1.0-in.) ring
these in-plane components are several orders of magnitude less than their vertical
counterparts.

Fig. 34 shows a graph of strain versus distance from the center of the plate. This
figure provides a simple comparison of finite element and experimental results for normal
strain at the yield and ultimate stress levels of load. Experimentally determined normal
strains at gage locations on the bottom of the plate (Fig. 29) are in good agreement with the
finite element simulation.

Distribution of normal strain in the direction of the longitudinal (principal) axis of
rolling, €, at the ultimate load level is also shown by means of a fringe plot in Fig. 35 for
one quadrant of the plate. This figure shows strain on the bottom surface of the plate. A
nearly symmetric pattern is observed. The highest gradient of strain occurs well outside of
the line of the ring load.
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FIG. 35. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of £; Strain
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Distribution of normal strain, &>, in the transverse direction of cross-rolling at the
ultimate foad is shown in Fig. 36 for the same quadrant of the plate. The magnitude of this
bottom surface strain is approximately the same as the normal strain that occurs in the
longitudinal direction of cross-rolling (Fig. 35)  The distributions are nearly mirror images
of each other.

A gray scale fringe plot of in-plane shearing strain, €, 1s shown in Fig. 37 for the
bottom surface of the plate. This figure illustrates the fact that although this component of
strain is significantly large outside of and at the location of the loading ring (-6.3 x 10-4
mm/mm), inside the ring the magnitude of this strain is almost negligible (-3.0 x 103
mm/mm). Within the 25.4-mm ring, however, the out-of-plane strain, ¢;, in the through-
thickness direction is approximately 20% of €; and €~ as shown in Fig. 38. Although Fig.
38 illustrates this phenomenon only for the bottom surface of the structure, the statement is
valid for all the through-thickness, inhomogeneous layers that comprise the plate. Finally,
fringe plots in Figs. 39 and 40 show that out-of-plane shearing strains can be readily
neglected due to the fact that they are at least an order of magnitude smaller than the in-

plane components of strain.

FIG. 36. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of ¢, Strain
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FIG. 40. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of €5 Strain
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Distributions of stress, obtained numerically, show the same trends as the strain
plots discussed carlier.  Figs. 4146 illustrate the variation of each component of stress
throughout one-quarter of the plate. From these plots it can be deduced that at the center
of the plate there exists what is essentially a state of biaxial normal stress. The numerical
model yields biaxial normal stresses of 841 2 MPa (122 ksi) and 820 5 MPa (119 ksi) for o
and o, respectively, within a radial distance of 2.5 mm (0.1 in) from the center of the
plate. Although, the center zone is not absolutely free from all other components of stress,
this test provides a reasonably good means for determining the biaxial failure strength for

cross-rolled beryllium sheet.

4.4.2 50.4-mm Ring Load

A second circular plate is loaded to failure by means of a circular ring that is 508
mm (2.0 in.) in diameter (Fig. 28). As mentioned earlier, the only difference between the
two experimental plates is the diameter of the load ring. Locations of transducers are

shown in Fig. 29.

Units in psi
1psi = 6.89 kPa

FIG. 41. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of o4 Stress
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Units in psi
1psi = 6.89 kPa

Units in psi
1psi = 6.89 kPa

FIG. 45. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of o5 Stress



Units in psi
1 psi = 6.89 kPa

FIG. 46. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of o Stress

Results of numerical simulation are verified by comparison with actual
displacements and strains measured during the experiment. Fig 47 compares experimental
and numerically predicted vertical displacements along a radial line along the center of the
plate. The yield and ultimate load levels are 6.0 kN (1.4 kip) and 9.2 kN (2.1 kip),
respectively. Experimentally measured displacements from the center and one intermediate
location between the supported edge and the center of the plate are plotted for comparison
with the finite element prediction. Agreement between measured and predicted values is
excellent at load levels that cause the yield and ultimate stresses.

Fig. 48 shows the distribution of vertical deflection at ultimate load by means of a
fringe plot that is generated from finite element results. The vertical deflections are very
nearly symmetrical about the center of the plate. Maximum deflection at the center of the
plate is 3.5 mm (0.14 in.). Figs. 49 and 50 show distributions of numerically simulated in-
plane components of displacement. It is observed that in the central portion of the plate
[within the 50.8-mm (2.0-in.) ring] the latter displacements are orders of magnitude less

than the vertical component.
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Units in in.
1in. = 24.5 mm

.

FIG. 49. Plate with 50.8-mm at Ultimate Load Fringe Plot of Displacement in
the X-Direction

Units in in.
lin. = 24.5 mm

-

FIG. 50. Plate with 50.8-mm at Ultimate Load Fringe Plot of Displacement in
the Y-Direction
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A graph of normal strain versus distance from the center of the plate allows a
comparison of finite element and experimental results (see Fig. 51). Experimentally
determined axial strains at gage locations on the bottom surface shown in Fig. 29 are
plotted for comparison with finite element predictions (Fig. 52 illustrates FEA prediction at
the ultimate load level). The maximum normal strain does not occur at the center of the
plate. Instead, the maximum normal strain is predicted to appear on the bottom surface at a
radial distance of 11.5 mm (0.45 in.) from the center. Although this maximum strain was
located outside of the ring load when the 25.4-mm (1.0-in.) ring was used, here the
maximum occurs well inside the radius of the ring. Excellent agreement is evident at the
locations where strains are measured by transducers.

Distribution of normal strain €; and &, along the longitudinal (principal) axis and
transverse (secondary) direction of cross-rolling, respectively, are shown at the ultimate
load level for the same quadrant in Figs. 52 and 53. Both ¢; and €5 acquire an average
value of 2.2 x 10-3 mm/mm at the center of the plate. A nearly symmetric pattern about the
center of the plate is observed. Although the magnitude of these strains are of the same
order, their distributions are mirror images of each other.

In-plane shearing strain, €4 as shown in a gray scale fringe plot (Fig. 54)
demonstrates that although this component of stress is large enough to be significant
outside and at the bounds of the loading ring [7.5 x 10 mm/mm (7.5 x 10 in /in.)], inside
of the ring the magnitude of this strain is almost negligible. Out-of-plane shearing strains,
€4 and €, although not shown graphically, have substantially lower magnitudes than the in-
plane strains.

Distribution of stresses, obtained numerically, show similar trends as the strain
distributions discussed earlier for the plate loaded with the 25.4-mm (1.0-in.) ring. Fringe
plots (Figs. 55-57) illustrate the distribution of the in-plane normal and shearing stress
components o, 0,, and gz Out-of-plane shearing stresses are negligible, as is the case for
the 25.4-mm (1.0-in.) ring load. From these plots it can be deduced that near the center of
the plate there exists a state of biaxial normal stress. The numerical model shows a biaxial
state of stress of 786.0 MPa (114 ksi) and 772.2 MPa (112 ksi) for o; and o, respectively,
at a radial distance of 4.5 mm (0.18 in.) from the center of the plate. At this location the
magnitude of all other stress components approach zero.

The numerical simulations indicate that for both plates an average biaxial state of
stress of 830.8 MPa (120.5 ksi), obtained by averaging the in-plane normal failure stresses
for the 25.4-mm (1.0-in.) and 50.8-mm (2.0-in.) ring loadings, is reached prior to failure of
the structure. This value of the in-plane biaxial strength is used in chapter 6 to establish the
interaction coefficients.
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FIG. 57. Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of o4 Stress



5. EXPERIMENTAL DETERMINATION OF PRINCIPAL
FAILURE COEFFICIENTS

5.1 INTRODUCTION

Chapter 4 presents results of laboratory experiments and complementary numerical
simulations carried out on cross-rolled beryllium sheets. Specimen geometry and loading is
arranged so that in-plane stresses dominate. An off-axis biaxial specimen places a
differential element in a state of biaxial stress even though the loading apparatus applies a
uniaxial load. A notched shear plate leads to an in-plane shear failure mechanism. Two
circular beryllium plates loaded by a circular ring, placed at the center of each plate, provide
a two-dimensional analogue to a beam loaded in pure bending.

In this chapter another set of experiments and numerical simulations is described.
The purpose of these experiments is to supplement uniaxial, biaxial, and pure shearing stress
data available from the experiments described in chapter 4 in order to obtain the principal
failure strength coefficients. These coefficients are obtained from failure tests in which
either uniaxial or biaxial stress conditions that are free of shear are imposed, or from
conditions of pure shearing stress. After some introductory discussion a series of tests
involving simple uniaxial compression, in-plane shear, through-thickness shear, and
through-thickness compression is presented. The reader is referred to Fig. 11 to understand
how these tests contribute to determination of failure coefficients required by the higher-
order macroscopic failure criterion described in chapter 3. All beryllium specimens used in
tests described in this chapter have the same chemical composition (see Table 11). In
addition, all experimental work is carried out in a controlled laboratory environment.

Both the principal and the interaction coefficients that describe the criterion are
determined from a finite number of experiments that include uniaxial, biaxial, and shear
tests. For specially orthotropic material, such as cross-rolled beryllium sheet, the minimum
number of experiments required to determine all coefficients is fifteen. A summary of tests
for an ideal case is presented in Table 12. Limitations arise, however, due to the fact that
the SR-200 material is only available in plate form. Thus, modifications of the ideal set of
experiments are needed. The experiments used for evaluation of all coefficients for thin
plate structures are listed in Table 13 (see also Figs. 11-14). Principal modifications occur
for biaxial and multiaxial states of stress that include the through-thickness direction as one
of the stress axes. True biaxial failure parameters, such as (o}, o3) and (o3, 03), can not be
measured for thin plate structures due to geometrical limitations. A new set of experiments

c . ¢



TABLE 11. Chemical Composition of Beryllium Specimens

Element Chemical Composition (weight %)

(1) 2

Be 99.00

BeO 1.00
Fe (ppm) 600
C (ppm) 1,200
Al (ppm) 300
Mg (ppm) Less than 100
Si (ppm) 200
Other Elements (ppm) Less than 400

ppm = parts per million

TABLE 12. Experiments Required for Evaluation of Failure Coefficients

Experiment Axis Coefficients Number of
Tests
(D (2) 3) 4

Uniaxial:

Tension and Compression X Fi, Fi 2

Tension and Compression Y Fy, Fyy 2

Tension and Compression Z F3, F33 2
Pure Shear:

Positive or Negative X-Z | F4,Fyy 1

Positive or Negative Y-Z |Fs, Fss 1

Positive or Negative X-Y |[Fg, Fgg 1
Biaxial:

Tension-Tension, or X-Y | Fpy, Fi1p,F1p

Compression-Compression, or X-Z |Fy3,Fpy3, Fi33 1

Tension-Compression Y-Z | Fy3, Fyp3, Fy33 1
Multiaxial:

Tension or Compression X-Z | Fy44, Fpa4, F344 1

and Shear Y-Z F155, F255, F355 1

X-Y | Fio6 Foge, Fage ]
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TABLE 13. Experiments Used for Evaluation of Failure Coefficients

Experiment Axis Coefficients Number of
Tests
O] (2) ) (4)
Uniaxial:
Tension and Compression X Fi, Fy 2
Tension and Compression Y Fy, Fp,y 2
Tension and Compression Z F3, F33 2
Pure Shear:
Positive or Negative X-Z |F4 Fyy 1
Positive or Negative Y-Z | Fs, Fss
Positive or Negative X-Y | Fg, Fes 1
Biaxial:
Tension-Tension X-Y | Fpy, Fip, Fipp
Compression-Torsion X-Z | Fpy4 1
Compression-Torsion Y-Z |Fyss 1
Multiaxial:
Compression, Compression, X-Z | Fy3,F13, Fi33,
and Shear Fiss, F355 5
Y-Z | Fp3, Fpp3, Fy33,
F44, F344 5
Tension, Tension, and Shear X-Y | Fig6 Frss 1
All six components X-Y-Z | Fyy4, Fyss, Fape 1

is introduced that induces a triaxial state of stress, such as (61, 03, 05) and (o3, 03, o4).
From these experiments both the normal and normal-shearing interaction coefficients can be
established provided that the number of tests is increased from one to, at least, three. For
the current study five specimens are used for each state of stress.

5.2 IN-PLANE COMPRESSIVE STATE OF STRESS

3.2.1 Laboratory Experiments

Compression testing is carried out using two specimens. One coupon has the
longitudinal principal material axis oriented along the loading axis; the other has the long-
transverse principal material axis coinciding with the direction of the load (Figs. 58 and 59).
Special end fixtures are machined from A-2 tool steel, hardened to Rockwell C 50/55, and
oriented to ensure that the specimen does not slip during loading (Fig. 60). In the
assembled configuration the unsupported length of the beryllium sheet specimen is 12.7 mm
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(0.5 in)). The specimens were loaded using a biaxial Material Testing Machine (MTS)
machine that has a 44.5-kN (10.0-kip) tension/compression range and a +45° torsional
angle capacity. Only the tension/compression actuator of the MTS is used to achieve the
compressive state of stress. In-plane strain was measured using bonded Micro-
Measurement precision rosettes (CEA-06-062UR-350) in the middle of the unsupported
area of the plate. One rosette was placed on each side of the specimen directly opposite its
counterpart. This was done to ensure symmetric distribution of the load. Orientation of
these gages is shown in Figs. 58 and 59. As a check prior to actual testing, the specimens
were lightly loaded and the stress-strain curves of corresponding rosette strain gages were
compared. Both specimens were loaded at a rate of 445 N/s (100 Ib/sec).

Although the primary objective of this test is to obtain compressive strength
coefficients for the longitudinal and long-transverse directions, the experiments also verify
results obtained by other investigators, as well as serve to recalculate and compare the
elastic moduli with results acquired from uniaxial tests, Stress-strain curves for specimens
loaded with the principal axis of rolling parallel and perpendicular to the load are plotted in
Figs. 61 and 62, respectively. Strains plotted are for gages oriented in the direction of the
load. Fig. 63 is similar to Figs. 61 and 62 but uses data collected from the rosette gages to
compute in-plane normal strain in a direction that is 45° from the loading direction. The
primary objective for use of the 45° gages is to show that compressive loading of the
structure is symmetric.

Table 14 summarizes the moduli and failure strength determined for each specimen.
The modulus of elasticity for compression, as calculated from Figs. 61 and 62, for
specimens 1 and 2 is 3.00 x 105 MPa (43.5 x 106 psi) and 3.06 x 105 MPa (44.3 x106 psi),
respectively. These values compare favorably with 3.20 x 105 MPa (46.4 x 105 psi)
reported for the average in-plane compressive elastic modulus by Aldinger (Webster and
London 1979). Fig. 64 shows one of the specimens after failure. The FEA simulation is
described in section 5.2.2.

The longitudinal and long-transverse specimens fail catastrophically and exhibit
properties distinctive of brittle material (Fig. 64). For compression, elastic moduli obtained
from the stress-strain curves (Figs. 61 and 62) are slightly higher than moduli obtained from
uniaxial tensile tests. In each case, compressive strength is approximately 20% higher than
the tensile strength in the same direction, which is characteristic of brittle material.
Although beryllium is ductile when undergoing an in-plane tensile load, compressive
loadings manifest very different behavior. Results obtained suggest that the material
exhibits brittle properties for compressive in-plane loadings.
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FIG. 64. Failed Compression Specimen

TABLE 14. Failure Strength for Compression Specimens

Specimen Orientation of Elastic Modulus Failure Stress
Principal Rolling
GPa (ksi) MPa (kst)
() @ 3) “) ) ©)
1 Parallel 300.0 (43,500) 658.8 (95.6)
Perpendicular 306.0 (44,300) 691.8 (100.3)

5.2.2 Numerical Simulation

Knowledge of maximum in-plane compressive strengths, oy and o, is required for
estimation of the principal failure coefficients F; and F;;, as well as F; and F; (Tsai and
Wu 1971; Wu 1974; Priddy 1974; Tennyson and Elliot 1983; Jiang and Tennyson 1989).
Numerical models are used prior to laboratory testing to aid in geometrical optimization of
the experimental specimens. This preliminary modeling minimizes manufacturing costs of
the beryllium specimens and their fixtures and gives a reasonably accurate prediction of the
distribution of the stresses throughout the part. Both two- and three-dimensional models of
a simple compression specimen are generated (Fig. 65). The final design suggests a 38.1-
mm x 12.7-mm (1.5-in. x 0.5-in.) experimental plate specimen (see Figs. 58-59). The FEA
package ABAQUS (1991a) is used for the numerical simulations.
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5.2.2.1 Plane Stress Elements

Eight hundred, eight-noded plane stress elements with approximately 16,500
degrees-of-freedom are used in a two-dimensional model of the structure. In order to
capitalize on geometry and loading conditions of symmetry only one-fourth of the actual
structure is numerically modeled. Predictions of components of strain at five integration
points are requested in the through-thickness direction. Output at the top and bottom
surfaces of the plate shown in Fig. 58 are compared with data from strain gages (see Figs.
61, 62, and 63). Material is given linear orthotropic properties with average material
properties for the through-thickness modulus, while geometric deformation is taken to be
nonlinear. Agreement of the strain gage values with FEA is good up to a load level of
approximately 400 MPa (57 ksi).

Fringe plots of simulated displacements and stresses at ultimate load for the two-
dimensional FEA model having the loading axis parallel with respect to the principal
direction of rolling are shown in Figs. 66-69 for one-fourth of the plate. The top and right
edges are lines of symmetry for the loaded plate. Figs. 66 and 67 illustrate the distribution
of displacement in the principal rolling directions (x- and y- axes, respectively). From these
figures it can be seen that in-plane transverse displacements are approximately an order of
magnitude smaller than in-plane axial quantities. A combination of the fact that beryllium
has small Poisson's ratios and a uniaxial application of the load accounts for this type of
behavior.

Although not shown by means of fringe plots, in-plane normal strains, €; and ¢, for
the failure load are predicted to reach values of 2.03 x 10-3 and 1.7 x 104, respectively,
while maximum shearing strain, €&, is at least three orders of magnitude smaller than ¢;.
The numerical prediction and experimental tests for ¢; yield an ultimate compressive
strength of 657.8 MPa (95.4 ksi) and 658.8 MPa (95.6 ksi), respectively, a difference of
approximately 0.15%. Figs. 68 and 69 show distribution of the in-plane normal stress in the
transverse direction and the in-plane shearing stress, respectively, at the failure load. The
former stress component attains a maximum value of 0.6 MPa (0.1 ksi) which, as is to be
expected, is two orders of magnitude smaller than the compressive strength. A fringe plot
is not shown for the ultimate compressive stress acting in the direction of the load since its
value is constant at 657.8 MPa (95.4 ksi) throughout the specimen.

5.2.2.2 Three-Dimensional Elements
Symmetry conditions are partially exploited for three-dimensional analysis. In this
case, only one-eighth of the structure is modeled with three thousand, twenty-noded,
hexahedral elements (Fig. 65). Five elements are used in the through-thickness direction.
Nodes that are located inside of the steel grip are restrained from movement in the through-
thickness direction.
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(b)

FIG. 65. Finite Element Discretization for Compression Specimens (a) Two-
Dimensional Plane Stress Elements; (b) Three-Dimensional Hexahedral
Elements
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Results from the two- and three-dimensional analyses are in close agreement. Figs.
70-72 illustrate numerical predictions of #;, u5, and «; displacements, respectively, from the
three-dimensional simulation. Physically, #;, u5, and wu; correspond to components of
displacement in the directions aligned with the load, in the plane of and perpendicular to the
load, and in the through-thickness direction, respectively. The values obtained for u; are in
agreement with those obtained from the two-dimensional analysis. In addition, magnitudes
of u5 and u; are significantly smaller than u .

Fig. 73 illustrates distribution of the axial strain, €;, at ultimate load. Fringe
patterns in Figs. 74 through 79 illustrate distribution of each component of stress resulting
from three-dimensional simulation of the compression test. Although o, and o, are non-
zero they are at least two orders of magnitude smaller than o, in the region between the
steel grips. With the exception of o the other components of stress can be considered to
be negligibly small.

5.2.3 Comparison of Failure Strain with Elasticity Solution

Since beryllium is considered to be an orthotropic material, a closed-form elasticity
solution for the strain components €;, €5, and €; can be obtained, provided a non-complex
state of stress is applied to a geometrically simple structure. As an independent check on
the numerical simulation, components of strain at failure are predicted by an elasticity
approach assuming that the material behaves in a linearly elastic manner prior to failure.
Although beryllium exhibits non-homogeneous material properties in the through-thickness
direction, i.e., the though-thickness modulus £3 is a function of position, an average value
of E; can be employed to make the solution tractable. The average value of £ used for the
theoretical computation of the strain components €, €, and €3 at failure is 447.5 GPa
(50.5 x 103 ksi) (Fenn et al. 1967).

The following generalized expressions relate components of stress and strain for an
orthotropic material (Lekhnitski 1981):

_ Uy Uy,
g =—o0,——2o,--o;
E, E, E,
v, / v,
g, =——o, +—o0, -0,
E, £, E (208)
v v b
53 :"“—EIJ Gl — [:’j 0'2 4‘;0’j
I Y3 3
b b Ji
€3 =—"0,, &3 = ~0s, &, = Os
G, Gy G,
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FIG. 70. Distribution of Axial Displacement for 3-D Compression Model
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FIG. 71. Distribution of Transverse Displacement for 3-D Compression
Model
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FIG. 73. Distribution of Normal Strain, ¢4, for 3-D Compression Model
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Specialization of these equations for the case of a uniform compressive load, -0, in the
longitudinal direction yields the following relations:

£ = —% ............................................................................................. (209)
!
o
£, U”EL ........................................................................................... (210)
1
o
£ = U”EI ........................................................................................... (211)
!

Using the numerically simulated value of -o; at failure [658.8 MPa (95.6 ksi)] and
the material properties in Table 4, the components of strain can be determined from Eqgs.
209-211. These components are shown in Table 15.

Similarly, for the case of a uniform compressive load, -3, in the transverse direction

Eqgs. 208 become:

o
£ = UZ,E—Z ........................................................................................... (212)
2
g,
P P PP 213
1=, (213)
o
£ = U”E_z ........................................................................................... (214)
2

Again, using a value for -a; of 691.8 MPa (100.3 ksi) that is obtained from the
numerical analysis, evaluation of Eqs. 212-214 yields the results shown in Table 15.

TABLE 15. Numerical and Theoretical Comparison of Failure Strain
Components

Strain Orientation of Failure Strain
Component Principal Rolling
from Load
Numerical Elasticity
pmm/mm pgmm/mm
(1) (2) 3) 4)
€ Parallel 0.00227 0.00223
& Parallel 0.00018 0.00017
€3 Parallel 0.00005 0.00005
€, Perpendicular 0.00021 0.00019
€, Perpendicular 0.00238 0.00232

€3 Perpendicular 0.00004 0.00004
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5.2.4 DETERMINATION OF PRINCIPAL COEFFICIENTS F,, F,,, Fj, AND F,,

Experimental testing shows good correlation with numerical analysis and suggests
that the numerical model is adequate, at least for in-plane loading conditions. Principal
failure coefficients F;, F», F;;, and F», (see Table 13) can be calculated from the following
generalized equations provided by Tsai and Wu (1971):

_ L1

B . (TR UT T TTT TV RT TR T TR (215)
1

Fi} XX'

where X; and X; for i, j = 1, 2, and 3 are tensile and compressive strengths, respectively, in
the three principal directions of orthotropy. In-plane tensile strength data (Fenn et al. 1967)
and results of the compression experiment (Table 14) lead to the following coefficients:

F, =3.4153x10° MPa™  (2.3548 x107ksi™')
F, =3.2762x10" MPa™ (2.2588 x107ksi™")
F, =2.5629 x10° MPa™ (12184 x10"ksi”)
F,, =2.5629 x10° MPa™ (1.2184x10"ksi?)

5.3 IN-PLANE SHEARING STRESS

Determination of the principal coefficient Fgg (Tsai and Wu 1971; Priddy 1974),
as well as interaction coefficients F 55 and F,4s (Tennyson and Elliot 1983; Jiang and
Tennyson 1989), requires knowledge of the in-plane shearing strength, oz This section
describes a special experiment that is carried out on titanium and beryllium specimens
toward this end. Numerical simulation of each test that aids in design of the specimen and

determination of the failure stresses is also presented.

5.3.1 Titanium Experiment and Simulation

As a preliminary test, a shear specimen made from a sheet of 6Al-4V titanium alloy
is numerically modeled, and then fabricated and loaded to failure. This material is chosen
because of its availability and due to the fact that it has a hexahedral-close-packed lattice
microstructure that is the same as that of beryllium. Results of numerical modeling suggest
a 114.3-mm x 25.4-mm (4.5-in. x 1.0-in.) coupon with two 45° slits located similar to those
shown in Fig. 80 for a beryllium specimen. However, note that the center ends of the slits
of the titanium specimen are aligned with the centerline of the specimen while those of
beryllium specimen described in section 5.3.2 are slightly offset from the centerline. After
fabrication, the titanium specimen is tested using the 44.5-kN (10.0-kip) MTS testing
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machine. The ends of the coupon are subjected to tensile loadings that cause the center of
the specimen to predominantly undergo a shearing stress.

A strain gage aligned with the direction of loading is placed between the ends of the
two slits at the center of one side of the specimen (similar to Fig. 80). The specimen is
loaded in stroke control at a rate of 2.54 mm/s (0.1 in./sec). A comparison of experimental
strain gage readings and numerically simulated values are shown in Fig. 81(a). The strain
gage fails after the specimen is subjected to a shearing stress of approximately 600 MPa
(87 ksi). The failed titanium shear specimen is shown in Fig. 82(a). It should be noted that
the specimen fails after attaining considerable normal strain in the direction of the loading
and in a manner that suggests ductile behavior. In addition, failure takes place in such
manner that two almost identical pieces result with the separation crack linking the bulbs of
the slits.

A numerical FEA model that has isotropic material properties and includes effects of
non-linear geometry is constructed for the specimen. Material properties are provided by
the manufacturers of 6Al-4V alloy (RMI 1967). Satisfactory correlation between numerical
simulation and experimental data is determined for the shearing strength of titanium [see
Fig. 81(a)]. The shearing strength of this alloy is reported to be 759 MPa (110 ksi) (RMI
1967). Experimentally, the shearing strength of the coupon is determined to be 786 MPa
(114 ksi). This value is obtained by dividing the failure load by the cross-sectional area of
the region between the bulbs of the 45° slits. Output from numerical simulation suggests a
shearing strength of 764 MPa (111 ksi) which is in close agreement with both the
experimental results and the information provided by the manufacturer (RMI 1967). Both
experimental and numerical studies indicate a pure shear mode of failure for the titanium

specimen.
‘f

|

0.0625" Dia.
0.470
. 2125
2.9707 A
A s
i

. 0.250" 4.500 i

+—
i t' 2.125
. 0.470 |
1.530 '
—\/\§4
I
I 1.000"~

1 in. = 254 mm

FIG. 80. Geometry of Beryllium Shear Specimen
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(a)

(b)
FIG. 82. (a) Titanium and (b) Beryllium Shear Specimens after Failure
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5.3.2 Beryllium Experiment

Two experimental specimens, dimensionally identical to the one shown in Fig. 80,
are used to estimate the shearing strength of beryllium. Each specimen is loaded in the
same way and at the same rate as the titanium specimen. In addition, each specimen has the
principal rolling direction aligned with the load. A strain gage is mounted on each surface
of the plate and aligned with the loading direction. Fig. 81(b) shows shearing stress versus
the average normal strain at the location of the strain gage for each of the two specimens.
The shearing stress is determined by dividing the axial load by the cross-sectional area of
the region between the 45° slits. It should be noted that the strain gages mounted on
specimen 2 failed prematurely. Table 16 summarizes the failure strengths determined from
this experiment for titanium and beryllium. A failed beryllium specimen is shown in
Fig. 82(b).

Unlike titanium, a mixed mode of failure appears to dominate for beryllium. This is
partly attributed to the fact that the ends of the 45° slits of the titanium specimen are exactly
aligned with the centerline that is parallel to the direction of application of the load, while
the end slits of beryllium are slightly offset with respect to the centerline. The geometry of
the specimen and the direction of loading caused failure in a combined state of shear and
axial tension. Thus, the experiment can not be regarded as a totally successful means for
estimating shearing strength of beryllium. However, via transformation of the stress tensor
at failure, a state of pure shear can be calculated on a rotated differential element (Fig. 83).
For the two specimens this yields an average value of pure shearing stress of 322.7 MPa
(46.8 ksi). This strength is verified by another experiment recently conducted by NASA
(see section 4.3).

After careful examination of the failed specimen, the mixed mode of failure that
occurred, namely tension-shear, can be attributed partially to the fact that the through-
thickness surfaces of the slits, especially near the center of the specimen, were heavily
oxidized. Surface cracks may have formed prematurely at the sites of cavitation due to
corrosion and, thus, induced a mixed mode of failure due to pre-orientation. Moreover, the
slight offset of the ends of the slits may have contributed to this phenomenon.

TABLE 16. Failure Strength for In-Plane Shear Specimens

Specimen Number Material Failure Stress
MPa (ksi)
(1) @) 3) (4)
1 Titanium 786.3 (114.0)
2 Beryllium 3227 (46.8)
3 B Beryllium 345.9 (50.2)
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[[] DIFFERENTIAL ELEMENT

FIG. 83. Location Differential Element for Transformation to a State of
Stress of Pure Shear

5.3.3 Numerical Simulation of Beryllium Experiment

Prior to actual fabrication and physical testing an FEA model is used to simulate the
proposed in-plane shear test. The actual specimen is a 114.3-mm x 25.4-mm x 2.54-mm
(4.5-in. x 1.0-in. x 0.1-in.) coupon with two 45° slits located anti-symmetrically with
respect to the x-x and y-y planes of symmetry (Fig. 80). Two- and three-dimensional
models of this specimen are generated. Fig. 84 shows the mesh used for two-dimensional
analysis for the critical region at the center of the plate structure. The 2-D model includes
orthotropic material behavior as well as non-linear geometric considerations.
Inhomogeneous orthotropic material properties and geometrical nonlinearities are
incorporated in the 3-D models.

The two-dimensional numerical model simulates the entire specimen. It has two-
thousand, eight-noded plate elements, and approximately 40,000 degrees-of-freedom.
There are five through-thickness points of integration for each of the nine integration
locations per plate element. Numerical output is requested at each of the eight nodes of
each element for the top and bottom surface. Fringe plots showing distributions of selected
components of displacement, strain, and stress at the failure load of 3.9 kN (875.0 Ib) are
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presented in Figs. 85-92. Figs. 85 and 86 show distribution of axial and transverse
displacement, respectively. They indicate that in the critical region an anti-symmetric
pattern occurs about a line that passes through the center points of the rounded regions of
the 45° lateral cuts. The same condition of anti-symmetry is indicated for all other
components of strain and stress as well (Figs. 87 through 92). From these figures, all three
components of strain and stress are significant in the region between the ends of the slots.
Maximum values of 44.8 MPa (6.5 ksi), -29.0 MPa (-4.2 ksi), and 312.3 MPa (45.3 ksi) for
o}, 03, and oy, respectively, are induced in this region. A state of pure shearing stress at
the center of the plate is determined by using a simple stress transformation. This yields an
ultimate shearing strength of 314.4 MPa (45.6 ksi) that occurs on a material plane that

makes an angle of 1.1° with respect to the loading axis.

]

/

[ ]
]

HTHH L1

FIG. 84. Finite Element Mesh for Critical Region of Two-Dimensional Shear
Specimen

For the three-dimensional model, 5,400 twenty-noded hexahedral elements are used
(see Fig. 93). Due to symmetry of the load and anti-symmetry of the geometry of the
specimen, only one-fourth of the actual structure is simulated. A plane of anti-symmetry
passes through the centroid of the structure and parallel to the loaded end. In addition,
special equations are specified in the input to the FEA code so that displacement
magnitudes along this plane are antisymmetric.  For example, deformation in the
longitudinal direction at the top of Fig. 94 are to the right in the middle of the specimen,

while those at the bottom are to the left. The overall structure is symmetric about a plane



110

passing through the center of its thickness direction. Five elements are used to simulate
one-half of the thickness of the plate as a consequence of this symmetry. Figs 94-98 show
fringe plots of selected components of displacement, strain, and stress at the top surface at
failure load. Results obtained suggest a different stress distribution as compared to the two-
dimensional results (Figs. 84-92). This is mainly due to differences in geometry of the bulb
ends of the slits as well as the material variation in the through-thickness direction. Stresses
G}, Oy, and G4 acquire values of 313.7 MPa (45.5 ksi), -68.9 MPa (-10.0 ksi), and 255.1
MPa (37 0 ksi), respectively, in the critical region between the two ends of the slits. Out-
of-plane quantities are negligible by comparison. A condition of pure shearing stress can be
achieved by means of a stress transformation at the centroid of the specimen. The
magnitude of this stress is 296.5 MPa (43.0 ksi) which occurs at an angle of 11.3° with
respect to the direction of the load.

The shearing stress obtained experimentally at failure shows good correlation with
numerical analysis. This suggests that the model utilized for numerical simulation is

adequate for the type of analysis performed.

Units in in.
lin. = 24.5 mm

FIG. 85. Distribution of Longitudinal Displacement for 2-D Beryllium Shear
Specimen
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Units in in.
lin. = 245 mm

FIG. 86. Distribution of Transverse Displacement for 2-D Beryllium Shear
Specimen
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FIG. 87. Distribution of Longitudinal Strain for 2-D Beryllium Shear
Specimen



FIG. 88. Distribution of Transverse Strain for 2-D Beryllium Shear Specimen
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FIG. 89. Distribution of In-Plane Shearing Strain for 2-D Beryllium Shear
Specimen



Units in psi
1 psi = 6.89 kPa

FIG. 90. Distribution
Specimen

Units in psi
1 psi = 6.89 kPa

FIG. 91. Distribution of In-Plane Shearing Stress for 2-D Beryllium Shear
Specimen
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1 psi = 6.89 kPa

FIG. 92. Distribution of Transverse Normal Stress for 2-D

Specimen
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FIG. 93. Finite Element Model of Three-Dimensional Shear Specimen
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FIG. 98. Distribution of In-Plane Shearing Stress for 3-D Beryllium Shear
Specimen

5.3.4 Determination of Principal Coefficients F; and F,
The principal failure coefficient Fg4 for beryllium (see Table 3) can be calculated
from Eq. 35. The governing equations for determination of the failure strength coefficients

are as follows:

ol L
T T s (217)
!
F =—
“IT

where 7 and 7' are positive and negative in-plane shearing strengths. However, since the
material is treated as an orthotropic continuum and positive and negative shearing strengths

are assumed to be identical:

T=T

B 0 e (218)
I

F66 F

Substituting 7= 322.7 MPa (46.8 ksi) into Eq. 218 gives the following coeficient:



F,, =9.604x107° MPa? (4.566 x107KSi™) ..ocvevereieemieiinienenieienrennnnenens (219)

If the in-plane shearing strength of 303.4 MPa (44.0 ksi) reported by NASA is used instead
(see section 4.3), the F coefficient becomes:

F,, =1.0866 x107 MPa” (51653 x107ksi™ ). cccccovvniiiiiiiiiiiiniiiiieiniiies (220)

The difference in the two coefficients is approximately 21 percent. For development
of the proposed criterion the latter coefficient, NASA's, is used. This decision is based on
the fact that the coefficient that results from NASA's tests is more conservative, i.e., it
causes the failure surface of the proposed criterion for beryllium to occupy less volume. In
addition, results obtained from the experiment that produced the former coefficient
(Papados and Roschke 1991) are not as reliable due to surface flaws on the specimen.

5.4 THROUGH-THICKNESS SHEAR

5.4.1 Experiments _

Determination of the failure coefficients Fyy and Fss (see Eq. 35 and Table 13)
requires knowledge of the through-thickness shearing stresses oy and o5, respectively, at
failure. This section describes how these coefficients are obtained experimentally by means
of a double shear test.

A schematic of the beryllium plate and clamping steel fixtures used in ihe laboratory
are shown in Figs. 99 and 100. Geometrical dimensions of the beryllium coupons are
identical with those used for the compression test discussed in section 5.2 (cf. Figs. 58 and
59). The specimens are again specially oriented: one has the principal direction of cross
rolling parallel to the long dimension of the coupon, and the other has the secondary
direction of cross rolling parallel to the long direction of the coupon (see Fig. 99). A
special fixture that was designed for testing of beryllium plates (Mascorro et al. 1991) is
used to secure each specimen. An area that is 12.7 mm x 25.4 mm (0.5 in. x 1.0 in.) at
each end of the coupon is clamped. Load is applied in the through-thickness direction.
This is accomplished with a 25.4-mm x 12.7-mm x 50.8-mm (1.0-in. x 0.5-in. x 2.0-in.) A-
2 steel puncher that is hardened to the maximum practical permissible limit of 60/62 on the
Rockwell C scale. A schematic of the experimental arrangement appears in Fig. 100.

An 8.9-kN (20.0-kip) uniaxial MTS testing machine is used for testing each
through-thickness shear specimen. All specimens are loaded in displacement (stroke)
control at a rate of 4.2 x 10-2 mmv/s (0.1 in./min). The time required for each specimen to
fail is less than one minute. Data acquisition includes applied load, time, and strain gage

output.
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FIG. 99. Dimensions of Specimens for Double Shear Test
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Two specimens per orientation of the material are used for establishing the out-of-
plane shearing strengths of cross-rolled beryllium sheet. Due to satisfactory agreement in
the results additional specimens are not tested. A strain gage is mounted at the center of the
bottom surface in the longitudinal direction for each specimen. Gages in both test
configurations indicated little strain, which shows that no appreciable bending stresses are
developed during loading. Figs. 101 and 102 display through-thickness shearing stress
versus axial and transverse strain (aligned with and perpendicular to the principal rolling
directions), respectively, from transducers mounted on the bottom surface of one of the
specimens for each material orientation. The through-thickness shearing strength for each
specimen is obtained by dividing the failure load by twice the cross-sectional area of the
coupon (RMI 1967). It should be noted that this method is not considered to be accurate.
These strengths are in close agreement with the numerical output from Table 17.

Top and side views of the failed specimens for both configurations are shown in
Figs. 103 through 105. Figs. 103 and 105 show one of the specimens after failure that has
the primary rolling direction aligned with the supporting edge. An example of the opposite
orientation is shown in Figs. 104 and 106. For each case, a major crack develops near the
supporting edge and propagates through the thickness (Figs. 103 and 104). Secondary
cracks can be seen in close proximity as well. This is due to the fact that the edge of the
plate is not completely clamped. Therefore, numerical simulation predicts that a
combination of axial, shear, and normal through-thickness stresses (see Figs. 109-111), are
present in the vicinity of the supported edge. During the experiment it is noted that a single
crack initiates at the top one-fourth of the plate in the through-thickness direction at a
location approximately 12.7 mm (0.5 in.) from the long side edge of the plate. The crack
forms at an early stage of loading (linear elastic). Prior to failure similar cracks are
observed at the bottom one-fourth of the plate in the same direction. The "middle" portion
of the plate does not show any indication of damage. From Figs. 105 and 106 it can be
seen, especially when the principal axis of cross rolling is aligned with the long dimension of
the specimen, that although the material develops a central crack it also exhibits matenal
integrity through the middle one-third of the thickness dimension. This suggests a more
ductile or "soft" behavior of cross-rolled beryllium sheet within approximately its middle
one-third compared to the top and bottom thirds. Variation of material modulus in the
through-thickness direction is discussed in more detail and verified experimentally in

section 7.3.
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TABLE 17. Failure Strength for Out-of-Plane
Specimen Number Failure Stress from Experimental Data
T4 g
MPa (ksi) MPa (kst)
Q) 0] (€)) “) )
1 5523 (80.1) 589.5 (85.5)
2 565.7 (81.1) 595.7 (86.4)
Average 559.5 (80.6) 592.6 (86.1)
Specimen Number Failure Stress from Numerical Simulation
Oy Oy
MPa (ksi) MPa (kst)
) 0] 3 (4) (3
1 526.8 (76.4) 585.4 (84.9)
2 515.7 (74.8) 588.1 (85.3)
Average 5213 (75.6) 586.8 (85.1)

FIG. 103. Top View of Through-Thickness Shear Specimen 1 after Failure
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FIG. 104. Top View of Through-Thickness Shear Specimen 2 after Failure

FIG. 105. Side View of Through-Thickness Shear Specimen 1 after Failure
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FIG. 106. Side View of Through-Thickness Shear Specimen 2 after Failure
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FIG. 107. Distribution of Short Transverse Displacement for Through-
Thickness Shearing Test
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FIG. 108. Distribution of Shearing Strain, €, for Through-Thickness
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Units in ksi
1 ksi = 6.89 MPa

FIG. 109. Distribution of Longitudinal Stress for Through-Thickness
Shearing Test
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Units in ksi
1 ksi = 6.89 MPa

FIG. 110. Distribution of Shearing Stress, o, for Through-Thickness
Shearing Test

Units in ksi
1ksi = 689 MPa

FIG. 111. Distribution of Short Transverse Normal Stress for Through-
Thickness Shearing Test
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§.4.2 Numerical Simulation

Three-dimensional numerical models are constructed to aid in design of the
experimental specimen and to determine the distribution of stresses at the failure load.
During preliminary simulation, the major goal is to optimize the physical dimensions of the
coupon. After testing, simulation is intended to predict displacement, strain, and stress
distributions induced during the experiment. A model with three thousand twenty-noded
isoparametric hexahedral elements is used. Ten elements that simulate the through-
thickness dimension allow for a variation of the through-thickness modulus as described in
chapter 7. Originally, only one-fourth of the structure was modeled using a less refined
finite element model that did not take into consideration variations of the through-thickness
material properties. Although results obtained were satisfactory it was decided to modify
the model to incorporate material variations in the short transverse direction. This is also
consistent with all previous three-dimensional numerical models for beryllium.

Through-thickness shearing strengths, o, and o, are in close agreement with the
experimental results (Table 17). The experimental (average) values of strength are
compared with the numerical values obtained at a distance of 1.27 mm (0.05 in.) from the
top (or bottom) surface of the plate and at a distance of 12.7 mm (0.50 in.) from the edge of
the specimen.

Another improvement over the original numerical model is also introduced for the
final simulation. Initially, the loading was imposed by means of a uniform out-of-plane
stress distribution on the top surface of the specimen, i.e., load was applied in the negative
z-direction. The results obtained were not within an acceptable level of agreement with the
experimental data. Differences between experimental and numerical values for strain and
through-thickness shearing stress were approximately 15%.

In the refined model a contact load is applied instead of a uniform load distribution.
In other words, the body that applies the load is considered to be a rigid body. The
deformable part of the assembly is restricted to the unconstrained portion of the beryllium
sheet. General interface elements are used between the rigid body and the top surface of
the beryllium plate that is in contact with it to ensure compatibility of displacements
(ABAQUS 1991b). Experimental and numerical results from this analysis are in good
agreement. Typical displacement, strain, and stress distributions from numerical simulation
of the oy experiment are shown in Figs. 107 through 111. Fig. 107 shows that most of the
unsupported beryllium structure experiences a uniform displacement of 6.9 x 10-3 mm 2.7
x 104 in.) in the direction of the load. Moreover, as shown by Figs. 108-111, insignificant
shearing strain and stresses are experienced by the center portion of the free part of the
beryllium plate. This is in agreement with the experimental results.
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$.4.3 Determination of Failure Coefficients F,, and Fy;

Experimentally determined values of the out-of-plane failure shearing stresses, oy
and oy, are presented in Table 17. The average of these values are used to compute the
principal failure strength coefficients, F 4 and Fss, by means of Eq. 35. This simple
calculation leads to the following coefficients:

F,, =3.5023x107° MPa> (16649 x107KSi™ ) ccocoveviirreenieneeieeeeieeiiireeeenn (221)

F,y =2.1950 x107° MPa™? (1.3857 x107KSi™ ) covieeueeiineeeeeeeeeeeeeeeeeeaaenn, (222)

Note that both F; and F; are equal to zero (see Eqs. 35 and 58) since beryllium is treated as
an orthotropic material.

5.5 THROUGH-THICKNESS COMPRESSION STATE OF STRESS

An important but difficult parameter to measure is the through-thickness
compression strength of beryllium. Like the in-plane compression strengths, the through-
thickness strength is needed to calculate both principal (F; and F;3) and interaction (F3,
Fy3, Fi33, Fi33, Fpp3, Fp23, F344, F3s5, and Fj3g4) failure coefficients. The physical
limitation of the material geometry, i.e., the fact that it is only available in thin plate form,
makes it difficult to test in the through-thickness direction, especially in tension. A tensile
test has been reported by Lockheed (Fenn et al. 1967). Results and accuracy of this test
have been discussed earlier (see section 5). A test to obtain the compressive strength for
cross-rolled beryllium in the through-thickness direction has not been reported in the
literature. This section describes a novel experiment devised to determine the failure
strength in compression.

5.5.1 Experiments

A special series of tests has been carried out to compute the through-thickness
compressive strength of cross-rolled beryllium. The experimental arrangement is shown in
Fig. 112. Two right circular steel cylinders that have a diameter of 50.8 mm (2.0 in.) are
used to load the specimen. Each is 76.3-mm (3.0-in.) long, made of A-2 tool steel and
hardened to 58-60 on the Rockwell "C" hardness scale. The beryllium specimens, a 12.7-
mm (0.5-in.) diameter disk and a 12.7-mm (0.5-in.) square plate are sandwiched between
the two cylinders. Dimensions of the plate specimens are based on the ultimate capacity of
the MTS machine. Top and bottom surfaces of the specimen are perpendicular to the line
of the applied load which is provided by a 2.2 x 106-N (5.0 x 103-1b) MTS machine.
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FIG. 112. Experimental Setup for Through-Thickness Compression Test

The experiment is carried out in displacement (stroke) control. The rate of motion
of the top cross-head of the MTS machine is maintained at 4.2 x 102 mm/s (0.1 in./min).
Prior to the actual experiment, compliance of the machine and the experimental assembly
(except for the beryllium structure) is measured. This is done in such a manner that the true
displacement of the beryllium specimen at failure can be obtained. Sensitivity of the MTS
machine allows for reading displacement to within 3.9 x 106 mm (1.0 x 104 in.).

Initially, 12.7-mm x 12.7-mm (0.5-in. x 0.5-in.) square cross-rolled beryllium
coupons were used for this experiment. It was observed, however, that due to stress
concentrations at the edges, failure initiated at one or more of the four corners of the plate.
To bypass this obstacle and to achieve a rather uniform stress distribution that is relatively
free of stress concentrations, it was decided to test circular disks instead of square coupons.
Results obtained from the square specimens were lower than the failure strength of the
material obtained using circular disk specimens.

Due to geometrical limitations of the specimens no strain gages are attached. Load
and deformation information is gathered for two specimens. Normal compressive stress in
through-through direction is obtained by dividing the force of the MTS with the original,
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undeformed surface area of the disk. Results of each compressive test and an average
failure stress are shown in Table 18. Fig. 113 relates normal stress to through-thickness
deformation for the entire range of loading. The through-thickness compressive strength is,
approximately, two and one-half times larger than the in-plane compressive strength and
three times larger than the in-plane tensile strength.

A magnified photograph one of the failed beryllium disks is shown in Fig. 114, Only
a single, through-thickness crack develops prior to failure. Although the specimen is loaded
in a smooth, continuous manner, it breaks suddenly and without warning. No strain
hardening is observed. This is in contrast to the behavior exhibited during the in-plane
compression tests (see section 5.2). During the compression tests non-linear behavior is

observed, although the material fails catastrophically.

TABLE 18. Failure Strength for Through-Thickness Compression
Specimens
Specimen Number Failure Stress
MPa (ksi)
) 2) 3)
1 1,718.2 (249.2)
2 1,729.9 (250.9)
Average 1,724.0 (250.0)
1750
o Circular Specimen 1 0 09 vv <
o e .
1500 1 —— Linear Regression for © g o
Specimen 1 © v ,;"
2 v I
v Circular Specimen 2 vv o
1250 + 0.7
s | Linear Regression for s
o Specimen 2 ,,V’vv
= Oy .- v e
~1000 + FEA (3-D) Y"’vv
bn O';V vv v
v 750 t
7]
a {
b
-
“ 500
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O v’ 1 1 1 i 1 L
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Deformation, u, (mm)

FIG. 113. Stress versus Deformation for Through-Thickness Compression
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FIG. 114. Magnified Photograph of Failed Through-Thickness Compression
Specimen

5.5.2 Numerical Simulation

Physical testing is numerically simulated using both two- and three-dimensional FEA
models. For the two-dimensional model, five-hundred eight-noded isoparametric plane
strain elements are used. Ten elements simulate behavior in the through-thickness direction.
Non-linear geometry and inhomogeneous properties of the material are incorporated into
the model. Figs. 115-117 show stress distributions for the through-thickness analysis. The
load used is a prorated portion of the average of the experimentally obtained failure loads.
As in the case of the through-thickness shear tests discussed earlier (section 5.4), this
experiment is simulated with contact loading at the interfaces between the beryllium disk
and the steel cylinders.

The three-dimensional model also considers inhomogeneous material properties and
geometric nonlinearities. It consists of eight-hundred twenty-node hexahedral elements.
Again, the plate is simulated using ten elements in the through-thickness direction.
Symmetry of the structure is taken into consideration and, thus, only one-eighth of the plate
is modeled. Results obtained are similar to those obtained from the two-dimensional model.
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Finally, this problem is also simulated using axisymmetric elements. The axis of
symmetry is the left vertical edge of Fig. 116. The beryllium plate consists of two-thousand
finite elements. Two-hundred elements are used to simulate the cylinders. The advantage
of using axisymmetric elements is that the amount of computational time is considerably
decreased.

All three numerical simulations yield comparable results as far as the distribution of
the normal through-thickness stress is concerned. An essentially uniform distribution of this
stress is obtained throughout the disk for all three numerical simulations. Numerical and
experimental results for stress at the center of the plate versus vertical stroke of the MTS
machine are compared in Fig. 113. Agreement between FEM and the experimental data is

within acceptable levels.

5.5.3 Determination of Failure CoefTicients F3 and F33
Failure coefficients F; and Fj; are determined using Eq. 35 and the average of the
strengths listed in Table 18. An elementary calculation gives the following numerical values

for the failure coefficients:
F,=871x10" MPa™ (6.01x107ksi™ ) .ccooeviiiiiiiaiiiiiiiieiiiiiiiieee e, (223)

F,; =8.41x107 MPa? (138 x107KSi™ ) .eeiiiiiiiiiiiiiiiiiieeeeieiiiereeeeeene e (224)

rar T ew 9N

A%
gt

Units in ksi
1 ksi = 6.89 MPa
FIG. 115. Distribution of Through-Thickness Compressive Stress from 2-D
Simulation
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-244,

Units in ksi
1 ksi = 6.89 MPa

FIG. 116. Distribution of Through-Thickness Compressive Stress from 3-D
Simulation

Units inksi
1 ksi = 6.89 MPa

FIG. 117. Distribution of Axisymmetric Through-Thickness Compressive
Stress



6. EXPERIMENTAL DETERMINATION OF INTERACTION
FAILURE COEFFICIENTS

6.1 INTRODUCTION

A distinct feature of the new proposed criterion is that the failure surface is
described by a relatively large number of interaction coefficients. As a consequence the
number of experiments required to evaluate the coefficients increases considerably. For the
case of cross-rolled beryllium sheet, which is treated as a specially orthotropic, three-
dimensional material in this study, the number of necessary interaction coefficients is
eighteen (Table 13). Of the eighteen coefficients, nine are due to interactions among
normal stresses aligned with the direction of the material axes while the other nine are from
interactions among shearing and normal stresses.

According to the new criterion, establishment of the interaction coefficients is
divided into two parts: (1) determine the normal interaction coefficients subject to all
constraints imposed by asymptotic equations from experiments involving only normal stress
distributions, such as Eqs. 68-73, and (2) determine the shear-normal interaction
coefficients from experiments that involve both shearing and normal stresses. A functional
is established for each case. Minimization of these functionals yields two independent sets
of simultaneous equations. The solution of each set of equations yields the interaction

coefficients.

6.2 MULTIAXIAL STATE OF STRESS: 0y, 03, AND O3

The fact that cross-rolled beryllium sheets are available only in thin plate form
complicates the task of setting up experiments for establishing the coefficients. For this
study, the procedure outlined in the previous paragraph is modified because it is virtually
impossible to design a biaxial test with one of the loading axes normal to the plane of the
material. As an alternative, a combined state of stress that includes both normal and
shearing stresses that act in the plane of the normal stresses is proposed. This stress state is
achieved by rotating one of the in-plane material axes with respect to the other two axes
from the test described in section 5.5 (see Appendix VII). Five of these tests are carried out
for each orientation of in-plane material axes. Results of the tests and complementary

numerical simulations are described in sections 6.2.1 and 6.2.2, respectively.
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6.2.1 Laboratory Experiments

Small, round beryllium disks that have a diameter of 12.7 mm (0.5 in.) are used for a
set of experiments that cause failure under a combined state of stress. These specimens are
identical with those used in the normal through-thickness compression test described in
section 5.5. Directions of principal and secondary rolling are marked on each specimen by
the manufacturer. To ensure correct orientation each specimen is examined through a low
power microscope.

The experimental set-up consists of a series of A-2 tool steel rods that are cut at
angles of 30° 35°, 37°, 40°, and 45° with respect to the horizontal axis (see Fig. 118). Each
rod is hardened to 60/62 on the Rockwell "C" scale. The original length the rod is 152.4
mm (6.0 in.). The beryllium specimen is centered with the load axis and placed parallel to
the cut surfaces of the steel holders. All three parts (two holders and the beryllium disk) are
enclosed in a 6.4-mm (0.25-in.) thick cylindrical steel collar. The collar itself is cut
lengthwise (parallel to the loading direction). Its main purpose is to provide containment of
the apparatus. Care is taken to avoid development of any reactional forces between the
collar and the cylinders. The collar is confined in place by a steel 254.0-mm x 254.0-mm
(10.0-in. x 10.0-in.) plate situated circumferentially at the center of the collar which, in turn,
is supported by two 254.0-mm x 254.0-mm x 127.0-mm (10.0-in. x 10.0-in. x 5.0-in) steel
blocks. The whole arrangement rests on a horizontal platform that is the lower crosshead
of a 22 x 106-N (5.0 x 105-1b) MTS compression testing machine. Each specimen is
loaded in stroke control at a rate of 0.09 mm/s (0.04 in./min). The direction of loading is
aligned with the z-direction of the Cartesian coordinate axes (see Fig. 118).

30 * Setup 35* Setup 37 Setup 40° Setup 45° Setup

re—— 508 —= e 50.8 —= re— 50.8 —= pe— 508 —= r— 508 —=

T

|

|
909 , _l
! s\\' )
gfsrgllium Xj: \ 30" —I

615

|
|
|

Note: All units are in mm

FIG. 118. Experimental Fixtures for Combined Normal and Shearing Stress
Tests



136

Initially, each specimen is positioned between the cylinders such that the material
axes are aligned with the three mutually perpendicular Cartesian coordinate axes (special
orthotropic orientation). For this set of experiments the secondary direction of cross-rolling
remains in alignment with the y-axis, while the principal rolling and the through-thickness
directions are rotated through an angle equal to the cut angle of the holders, i.e., 30°, 35°,
37°, 40°, and 45°, respectively. Two specimens are tested for each holder configuration, for
a total of ten specimens.

Collective results for failure stresses of all five experimental arrangements discussed
in this section are shown in Table 19. Failure stresses computed from a simplified stress
transformation are compared with those from FEA simulation. FEA stresses are taken from
a point at the center of the beryllium disk. Initially, the normal stress acting on the steel
loader in the direction of the Cartesian z-axis (Fig. 118) is computed by dividing the applied
force with the cross-sectional area of the cylinder normal to the same axis. A uniform stress
distribution is assumed to be acting on the projection of the beryllium disk in the direction
of the applied load and in the vicinity of the specimen. The magnitude of this stress is
calculated by dividing the load at failure by the projected area of the beryllium disk in the
direction of the z-axis. Magnitudes of the component of failure stress at the center of the
beryllium specimens are determined via a simple stress transformation with respect to the
material axes (see section 6.4.1 and Appendix VII). Agreement between the simplified
analysis and FEA is well within acceptable bounds. The maximum difference in predicted
stress is 1.0%. In addition, Fig. 119 provides a synoptic output of load versus vertical
displacement for the 30°, 35°, 37°, 40°, and 45° degree configurations. The 30° and 35°
specimens exhibit a linear behavior prior to failure while the 37°, 40°, and 45° specimens
show signs of non-linear behavior. This phenomenon is attributed to two possible causes:
(a) through-thickness interlayer planes slip with respect to each other due to an increase of
the shearing stress, and (b) non-uniform initial load application due to misalignment of the
components of the experimental setup. Fig. 120 shows a histogram of the maximum
compressive load corresponding to the total vertical deflection for each of the ten
specimens.

All disk specimens failed suddenly, which is characteristic of brittle behavior. In
addition, no definite yield point can be established for any of these test configurations. This
leads to the assumption that the material behaves in an almost linearly elastic manner prior
to failure. Careful examination of the failed specimens reveals that the 30° and 35°
specimens exhibit a failure behavior similar to that of the through-thickness compression
specimen, i.e., they form a single crack before failure. The 37° specimens show more than
one crack in the through-thickness direction (Fig. 121); each crack is similar to those of the
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30° specimens. Cracks observed in the 40° specimens are indicative of a mixed mode
failure: shear and compression. A major inclined crack at an angle of, approximately, 45°
occurs in the through-thickness direction. In addition, two perpendicular cracks, each
penetrating approximately one-third of the through-thickness dimension, extend from each
flat face of the specimen and intersect the major inclined crack (Fig. 122). For the 45°
specimens the cracks in the through-thickness direction exhibit similar behavior to that of
the 40° specimen. The number of cracks increases and new ones form at an angle of
approximately -45° with respect to the major inclined crack. The latter propagate through
the top and bottom one-third of the specimen in the through-thickness direction (Fig. 123).

TABLE 19. Failure Strengths for Disk Specimens with ¢4, 03, and o5 State
of Stress

Specimen Failure Stress from Simplified Analysis
Angle of Number o1 o3 o5
Inclination

MPa (ksi) MPa (ksi) MPa (ksi)

0] 2) 3 @ &) (6) ) ®
30° 1 -529.4 (-76.8) -1,588.1 (-230.3) 916.9 (133.0)
2 -531.1 (-77.0) -1,593.3 (-231.1) 919.9 (133.4)
35° 1 -711.6 (-103.2) -1,451.4 (-210.5) 1,016.3 (147.4)
2 -720.9 (-104.6) -1,470.3 (-213.2) 1,029.5 (149.3)
37° 1 -805.0 (-116.8) -1,417.7 (-205.6) 1,068.3 (155.0)
2 -815.2 (-118.2) -1,435.6 (-208.2) 1,081.8 (156.9)
40° 1 -934.4 (-135.5) -1,327.0 (-192.5) 1,113.5 (161.5)
2 -937.3 (-135.9) -1,331.2 (-193.1) 1,117.0 (162.0)
45° 1 -1,190.4 -172.7) -1,190.4 (-172.7) 1,190.4 (172.7)
2 -1,199.2 (-173.9) -1,199.2 (-173.9) 1,199.2 (173.9)

Specimen Failure Stress from FEA Simulation

30° 1 -528.8 (-76.7) -1,588.1 (-230.0) 920.5 (133.5)
2 -530.2 (-76.9) -1,5914 (-230.8) 923.2 (133.9)
35° 1 -710.9 (-103.1) -1,448.6 (-210.1) 1,015.6 (147.3)
2 -719.8 (-104.4) -1,467.3 (-212.8) 1,030.1 (149.4)
37° 1 -807.4 (-117.1) -1,419.7 (-205.9) 1,066.0 (154.6)
2 -817.8 (-118.6) -1,437.6 (-208.5) 1,079.1 (156.5)
40° 1 -937.7 (-136.0) -1,330.7 (-193.0) 1,1142 (161.6)
2 -940.5 (-136.4) |[.-1,3349 (-193.6) 1,117.7 (162.1)
45° 1 -1,174.2 (-170.1) -1,180.4 (-171.2) 1,192.8 (173.0)

2 -1,181.1 (-171.3) -1,188.0 (-172.3) 1,201.1 (174.2)
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FIG. 121. Magnified Photograph of Failed Specimen that is Inclined 37°

FIG. 122. Magnified Photograph of Failed Specimen that is Inclined 40°
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FIG. 123. Magnified Photograph of Failed Specimen that is Inclined 45°

6.2.2 Numerical Simulation

Several FEA models are used to simulate each test. Initially, two-dimensional
models are constructed that are comprised of eight-noded, plane-strain isoparametric
elements. Steel components are modeled as isotropic high-strength material that are
physically connected to the beryllium disk. The results from these simulations do not agree
well with the experimental output.

Subsequently, each experiment is simulated as a contact problem. Hertzian rigid
surfaces are used for the non-beryllium components. The beryllium disk is simulated using
either eight-noded, plane-strain elements for two-dimensional analysis or twenty-noded,
solid, isoparametric finite elements for three-dimensional analysis. Each beryllium disk has
two material axes that are rotated with respect to the third axis (see Fig. 118). Each three-
dimensional model takes advantage of symmetry of the overall arrangement with respect to
a plane passing through the x-z Cartesian axes. Thus, only one-half of the structure is
discretized. The through-thickness dimension of the beryllium disk is approximated using
ten elements for both the two- and three-dimensional simulations.

Selected output from two- and three-dimensional numerical simulation of various
stress components at failure are shown in Figs. 124-127 for a 30° specimen rotated about an
axis parallel with the secondary direction of rolling. Distribution of stress in the middle of
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the 30° specimen compares well with the transformed experimental values presented in
Table 19. It should be noted, however, that regions of stress concentration occur in the
vicinity of the intersection of the flat and cylindrical surfaces of the specimens. FEA results
are presented in Table 19 for comparison with results obtained from simple stress
transformation.

The two- and three-dimensional simulations yield almost identical results. Thus, for
simplicity, time, and computational savings all remaining beryllium disks are analyzed using
two-dimensional simulation. Distributions of selected stress components are shown in Figs.
128 through 131. Patterns of stress distribution similar to those found for the 30° specimen
appear in all inclined specimens. Moreover, the middle portion of each beryllium specimen
exhibits a state of stress similar to that shown in Table 19.

Unitsinksi  -226.
1ksi = 689 MPa _

FIG. 124. Distribution of Through-Thickness Normal Stress from 2-D
Simulation for 30° Specimen
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FIG. 125. Distribution of Through-Thickness Normal Stress from 3-D
Simulation for 30° Specimen

Units in ksi
1 ksi = 6.89 MPa

FIG. 126. Distribution of In-Plane Normal Stress from 2-D Simulation for 30°
Specimen
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FIG. 127. Distribution of Shearing Stress from 2-D Simulation for 30°
Specimen

~194.
-196.

FIG. 128. Distribution of Through-Thickness Normal Stress from 2-D
Simulation for 35° Specimen
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Units in ksi
1ksi = 689 MPa -205.

FIG. 129. Distribution of Through-Thickness Normal Stress from 2-D
Simulation for 37° Specimen

-179.

-181.

-183.

FIG. 130. Distribution of Through-Thickness Normal Stresé from 2-D
Simulation for 40° Specimen
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FIG. 131. Distribution of Through-Thickness Normal Stress from 2-D
Simulation for 45° Specimen

6.3 MULTIAXIAL STATE OF STRESS: 03, 03, AND oy

6.3.1 Laboratory Experiments

Beryllium specimens that are identical in size to those used for the experiments
described in the previous section and have a diameter of 12.7 mm (0.5 in.) are used for a
similar set of compression-shear experiments. The directions of principal and secondary
rolling are provided by the manufacturer. Once again, the rolling orientations of all
specimens are verified through a low power microscope.

The experimental set-up is exactly the same as before except that the principal
direction of cross-rolling is aligned with the y-axis (see Fig. 118). The secondary rolling
and through-thickness directions are rotated clockwise about the y-axis through an angle
equal to the cut angle of the holders, i.e., 30°, 35°, 37°, 40°, and 45°, respectively. The 2.2
x 106-N (5.0 x 10%-Ib) MTS compression testing machine is used to apply load. Two
specimens are tested for each holder configuration for a total of ten disks. Each specimen is
loaded in stroke control at a rate of 0.09 mm/s (0.04 in/min). The direction of loading
coincides with the z-direction of the Cartesian coordinate axes (Fig. 118). No strain gages
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or other transducers are attached to the specimens. Compliance of the test setup without a
beryllium disk was determined (see section 5.5) so that deformation of the disk itself can be
measured by subtracting the compliance from the stroke reading of the MTS machine.

Results for failure stress for all five experimental arrangements discussed in this
section are shown in Table 20. These are obtained via the same transformation of stress
from the loading to the material axes (Fig. 118) as described in section 6.2. A uniform
stress distribution is assumed to be acting on the projection of the beryllium disk in the
direction of the applied load and in the vicinity of the specimen. The magnitude of this
stress is given by dividing the load at failure by the projected area of the beryllium disk.
Magnitudes of the component of failure stress at the center of the beryllium specimens are
determined via a simple stress transformation with respect to the material axes (see section
6.4.1 and Appendix VII). Good agreement is observed between the simplified analysis and
FEA for the stress components at failure. The maximum difference in predicted stress
components is approximately 3.5%. The histogram shown in Fig. 132 provides a synoptic
output of the experimental results for the 30°, 35°, 37°, 40°, and 45° configurations. It
displays the maximum compressive load and maximum vertical deflection for each
specimen.

Each disk specimen fails suddenly which is characteristic of brittle behavior with no
definite yield point. No ductile behavior and strain hardening effects are observed.
Examination of the failed specimens reveals that the 30° and 35° orientations exhibit a
failure behavior similar to that of the through-thickness compression specimen (see section
6.2.1): they form a single crack before failure. The 37° specimens show formation of more
than one crack but each crack is similar to those of the 30° specimens. A mixed mode of
failure, shear and compression, is observed for the 40° specimens. Cracks in the through-
thickness direction for the 45° specimens exhibit similar behavior to that of the 40°
specimen. The failed specimens exhibit similar distribution of crack formation as those
shown in Figs. 121-123.

6.3.2 Numerical Simulation

Alignment of material properties for the two- and three-dimensional numerical
models discussed in the previous section are changed to account for the differences in the
material orientation of these specimens. Good agreement is observed between simplified
transformed and numerical stresses at failure. No fringe plots are shown for these
simulations. Omission of these figures is done to avoid repetitive presentation of results,
since the patterns observed from these simulations are similar to those presented for the o,

03, and oy simulations.
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pecimens with o), 03, and o4 State of

Stress
Specimen Failure Stress from Simplified Analysis
Angle of Number o} o3 o5
Inclination

MPa (ksi) MPa (ksi) MPa (ksi)

(1) @ 3) (4) ©) ©) ) @®
30° 1 -449.5 (-72.5) -1,498.5 (-217.3) 865.2 (125.5)
2 -500.4 (-72.6) -1,501.2 (-217.7) 866.7 (125.7)
35° 1 -659.6 (-95.7) -1,345.4 (-195.1) 942.1 (136.6)
2 £662.0 (-96.0) -1,350.1 (-195.8) 945.4 (137.1)
37° 1 -741.5 (-107.5) -1,305.7 (-189.4) 983.9 (142.7)
2 -746.5 (-108.3) -1,314.7 (-190.7) 990.7 (143.7)
40° 1 -8734 (-126.7) -1,240.5 (-179.9) 1,040.9 (151.0)
2 -874.9 (-126.9) -1,2426 (-180.2) 1,042.6 (151.2)
45° 1 -1,076.3 (-156.1) -1,076.3 (-156.1) 1,076.3 (156.1)
2 -1,076.6 (-156.2) -1,076.6 (-156.2) 1,076.6 (156.2)

Specimen Failure Stress from FEA Simulation

30° 1 -515.1 (-74.7) -1,550.0 (-224.8) 865.2 (130.1)
2 -516.4 (-74.9) -1,552.8 (-225.2) 866.7 (130.3)
35° 1 664.0 (-96.3) -1,354.2 (-196.4) 942.1 (137.3)
2 -666.1 (-96.6) -1,358.3 (-197.0) 945.4 (137.8)
37° | -745.4 (-108.1) -1,308.7 (-189.8) 983.9 (142.9)
2 -750.9 (-108.9) -1,324.5 (-192.1) 990.7 (144.0)
40° 1 -878.4 (-127.9) -1,246.6 (-180.8) 1,040.9 (151.8)
2 -879.8 (-127.6) -1,248.7 (-181.1) 1,042.6 (151.9)
45° 1 -1,078.4 (-156.4) -1,081.1 (-156.8) 1,081.8 (156.9)
2 -1,079.8 (-156.6) -1,081.8 (-156.9) 1,082.5 (157.0)

6.4 EVALUATION OF INTERACTION COEFFICIENTS

The two sets of experimental values of components of failure stress obtained from

the inclined beryllium disks are listed in Tables 19 and 20. The triaxial state of stress (two

normal and a shearing stress component) allows for the calculation of ten interaction

coefficients, namely, F;3, F;3, F33, F)ss, and F 355 from the first set (Table 19) and F,;,
F223, F233, F244, and F3,4 from the second set (Table 20). The stress transformation from

the loading to the material axes and the scheme used for establishing these coefficients are
found in sections 6.4.1-6.4.3 and Appendix VIII.
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6.4.1 Theoretical Considerations
The general transformation of stress with respect to any orthogonal coordinate axes
is given by the following tensorial relation (Sokolnikoff 1964):

where ay; and qy; are direction cosines for a second-order tensor transformation.
A matrix form that is equivalent to Eq. 225 is as follows:

[Ou] = TRIT [0,] TR oot (226)

where [R] is a matrix of direction cosines relating the coordinate and material axes, [o},] is
the transformed stress tensor, and [o7] is the original stress tensor. As an example,
consider the o}, 03, and oy test described in section 6.2.1 with a 30° angle of inclination. In
this case [o7] and [R] are as follows:

0 0 0 0.866 0 0.500
[0,] =0 0 0 |, [R] = | 0 0 0 | (227)
0 0 -0, -0.500 0 0.866

Substituting the [o;] and [R] matrices into Eq. 226 leads to the following stress
tensor:
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—0.250 0 0.433
[ov] = o, O 0 0 e (228)
0.433 0 0.750

It can be seen that this experimental arrangement provides the following combined
state of stress:

0, =-0.2500, o,=-0. 7500, 05 =0.4330, oo (229)

For this state of stress the generalized form of the failure surface given by Eq. 61 becomes:
Fio, +F,0, +E1°'12 +F330'32 +F}50'52 +2F;0,0, +3E1301203

2 2 2
+3F;,0,0; +3F0,0; +3F 0,0, =1

Coeflicients F), F3, Fy, F33, and F;; are known from chapter 5. Rearranging Eq. 230 so
that the unknown coefficients are gathered on the left hand side, leads to the following
equation:

2 2 2 2
2F,;0,0, +3F,,;0, o, +3F,,,0,0, +3E55GIGS +3F,;0,0;

2 2 2
=1_(F;0'1 +F0o, +F,0, +F,0, +Fs0; )

6.4.2 Determination of F;, Fy13, Fy33, Fys55, and Fis¢

Since five sets of experimental output (see Table 19) are available for each
orientation of the disk, least squares can be employed to evaluate the failure coeflicients
F3, Fip3, Fi33, Fss, and F 355 (see Appendix VII). These coefficients are required to
meet the two conditions discussed in section 3. Usually, all conditions are satisfied and
closure, convexity, and non-singularity are achieved. In some cases, however, these
conditions are not met and the same step-by-step procedures described in section 3. (or
section 3.2 if hydrostatic failure is considered) need to be employed.

The failure coefficients obtained in the case of cross-rolled beryllium sheet are as

follows:

F,, =4.48 x10™° MPq™ (2235107ksi) oo (232)
F,; =1.81x10”° MPa™ (5925007 ki) oo (233)
F,, =1.96 x10”° MPa™ (6415107 ksi™) oo (234)
Fiss =129 10" MPa”  (~4.20x10""ksi™) oocovvoo (235)

F55 =3.30 107 MPa (1.08 %107 ksi™) ovvovoooro (236)
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6.4.3 Interaction Coefficients F,,, F,,;, F,;;, F,,,, and F;,,

In a similar fashion, results from experimental strength tests with the secondary
rolling direction oriented in the direction of the inclined plane (Table 20) may be employed
to obtain the failure coefficients F3, Fay3, Fa33, Fay44 and F34,  Following the steps
described in section 6.4.1 leads to the following specialized form of the failure criterion:
F,o, +F,0, +F:?20'22 +F330'32 +F,0, +2F,0,0, +3F2230'220'3
+3F2330'20'32 +3F2440'20'42 +3F344°'30'42 =1
Subsequently, Eq. 237 is modified by collecting terms that include unknown coefficients.
The new equation is as follows:
2F,0,0, +3F,;,0, 0, +3F,,0,0," +3F,,0,0, +3F,,0,0,

2 2 2
=1_(F20'2 +F0, +F,0," +F0, +F 0, )

Application of a standard least squares technique (Devore 1987) to the five sets of
test data listed in Table 20 leads to the following coefficients:

F, =2.29x10°MPa” (109 x107KSi™) wveveererereeeeieeeeeneeieeeeeneee e, (239)
Fpy =1.55x10° MPa®  (5.08 x107Ksi™) wooueeireieereieeenieecteiee e, (240)
Fyyy =1.08 x10° MPa®  (3.53x107KSi™) woveeeeeeieeeeeneiecicceiee e, (241)
F, =-2.81x10""MPa® (=9.22x107°KSi™) oveeureeeeeimieecinrnireeieieeeeeean, (242)
F,, =2.04x107°MPa”  (6.70 X10PKSi™) cooveveeeeereieeeeniencreiseiseere e (243)

The ten interaction coefficients determined in sections 6.4.2 and 6.4.3 yield failure
surfaces that do not meet all necessary conditions outlined in section 3.1. Thus,
implementation of constraining equations is necessary. These calculations are described in

detail in chapter 8.

6.4.4 Determination of FIZ’ FIIZ’ F122, F166’ and F266’ and F144, F255, and

F366
Data from tests that apply in-plane tension, compression, and a combined state of

stress (provided by the 45° off-axis specimen described in section 4.2.2) contribute to
determination of the F;5 F; 5 Fj22 Fies and Fags failure coefficients. The format
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outlined in section 3 is followed. From the first condition, normal interaction coefficients
Fy5 Fjja and Fy; are computed from a standard least-squares scheme (Devore 1987).
The second condition defines a functional which, in turn, yields a system of nonlinear
equations. The solution of this system of equations determines the remaining two failure
coefficients: F;ss and F,s5.  This is accomplished via the mathematical package
MACSYMA (MIT Publications 1982). The normal interaction coefficients are:

Fiy ==129x10°MPa? (=610 X107°KSi™) c.oooeoveeeeeeoeoeeeooeoo (244)
Fiiz =~6.90 x107"° MPa™  (=2.26 x107kSi™) ..o (245)
Fipy ==218x107"°MPa (<704 X10°KSi™) oo (246)

The normal-shear interaction coefficients are:
Flos=—9.64x10"° MPa™  (-3.16 x107 ksi~?)
Frs =—9.64x10"° MPa™  (-3.16 x107 ksi~)

Data from tests on three different specimens that apply a combination of all six
components of stress (see Fig. 14) via double (in-plane and out-of-plane) rotations each at
45° are used to calculate the normal-shear interaction coefficients F 144 Fass, and Fe4. Tt
should be noted that these coefficients are the only unknown parameters at this point.
Thus, a least-squres scheme is used to provide the best fit values for F 144 F255, and F344.
These are as follows:

Flo=-8.91x10""MPa  (2.92x107 ksi™*)

Fis ==9.82x107""MPa (=322 x107°kSi™) svvvoooooeooeeeoeoeoooo (248)
Fiss =0

Details concerning the formulation and extraction of these coefficients are given in
Appendix VII.

6.5 STATE OF STRESS WITH IN-PLANE COMPRESSION AND OUT-0F-PLANE SHEAR

6.5.1 Experimental Investigation

Cross-rolled beryllium coupons that are rectangular in shape are used to induce a
combined state of in-plane compression and out-of-plane shearing stress. The geometry of
the specimens themselves is identical to those used for the compression test in section 5.2
(see Figs. 58 and 59). Loading is achieved with the aid of a 89.0-kN (20-kip) and 113.0-N-
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m (1000-(in.-Ib)) capacity biaxial machine (tension/compression-torsion) manufactured by
Matenal Testing System (MTS).

Two different specimen orientations are considered: one has the direction of
compressive loading parallel with the principal material axis (principal axis of rolling) and
the other has its direction of compressive loading perpendicular to the principal material
axis. Two specimens are tested for each orientation (a total of four plates). Each specimen
has two, type FCA, 1.0-mm (3.8 x 10-2 in.) rosette gages (0°-90° arrangement), one at the
center of each side. The specimens are loaded by the same fixtures used for the in-plane
compression test (Fig. 60). For each plate 9.53 mm (0.38 in.) of each end is secured into
the fixtures. This permits a clear span length of 19.05 mm (0.75 in.) that is subjected to the
combined compression and shearing loading. Each specimen is loaded in torsion at a twist
rate of 0.19°/s. In each case, the beryllium specimen is compressed in the axial direction to
275.8 MPa (40.0 ksi) which is well within the linear elastic range of the material. The
compressive stress is maintained throughout the experiment. Subsequently, the specimens
are loaded in torsion to failure. It is assumed that the middle portion of the plate between
the fixtures is acted upon by uniform compressive stress and torsional moment.

A summary of the test results is presented in Table 21. The compressive stress at
failure is computed by dividing the axial force by the cross-sectional area of each specimen.
Calculations for the torsional shearing stress at failure are described in section 6.5.2. Fig.
133 shows one of the specimens after failure. The specimens did not fail suddenly.
However, examination of the failed specimen indicates development of brittle surfaces. A
typical graph of torsional moment versus angle of twist is shown in Fig. 134. It can be seen
that the material's ultimate torsional capacity occurs at yield which can be recognized after
an angle of twist of approximately 3°. Beyond yield the specimens are still intact although
major cracks appear throughout the middle one-third of the plate. This is due to the
compressive stress that allows the material to achieve considerable torsional twist and
concomitantly to maintain the torsional moment capacity at yield as well. It should be
noted, however, that after yield the torsional moment is slightly reduced and then a modest
hardening effect is observed. The material slips continuously after it yields.

6.5.2 Theoretical Considerations

It is assumed that the compression-torsion specimen acquires its maximum strength
capacity while being loaded within the elastic range. In this case the state of stress imposed
on the specimen can be resolved into two components: in-plane compression and out-of-
plane shear. Moreover, the effect of each component is treated independently.
Superposition of results yields the overall effect of the combined stresses. Since section



153

5.2.3 discusses theoretical studies for compressive components of stress, the focus of this
section is limited to determination of the shearing stress.

TABLE 21. Failure Strength for Compression-Torsion Specimens

Specimen Compression Torsional Shear
Orientation o4 o
MPa (ksi) MPa (ksi) MPa (ksi)
Q) 2 3) “) ©) 6 U]

Parallel 2758 | (40.0) | 368.2 (53.4) 2792 (40.5)
Parallel 2758 | (40.0) | 3689 (53.5) 279.9 (40.6)
Perpendicular | 275.8 | (40.0) | 285.4 (41.4) 376.4 (54.6)
Perpendicular | 2758 | (40.0) | 286.8 (41.6) 377.8 (54.8)

FIG. 133. Failed Compression-Torsion Specimen

Fig. 135 shows graphs of torsional moment versus normal strain measured along the

principal and secondary directions of cross-rolling for the first specimen that is tested in
each orientation. Strain gages are referenced using a capital letter and a number: the letter
accounts for the alignment of the gage with respect to the material axis (A = parallel to
longitudinal axis; B = perpendicular to longitudinal axis); the number refers to the specimen

number (two specimens were tested per orientation).
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FIG. 134. Torsional Moment versus Angle of Twist
Consider a long homogeneous orthotropic bar of rectangular section with sides of
length a and b. The orthotropic directions are parallel to the coordinate axes as shown in
Fig. 136. The principal shear moduli associated with sides a and b are G, and G,,
respectively. A torsional moment, M,, is applied to the bar. Assuming small deformations
and rotations the differential equation governing this problem is as follows (Lekhnitskii
1981):

gj'f+a?'§’=—8h02 LT e (249)
& @ 7 m=/3.. m a

where  is a stress function that vanishes at all four sides of the cross-section (x=0, a and

Yy =0, £b/2), g is G,/G,, and 8 is the angle of twist. The general solution of Eq. 249 is

(Lekhnitskii 1981):

T oo (250)
a

v =7Y,(y)sin

mzrpy . 86G,a’
a m’ 7’

Y, =4 cosh P Y +B,_ sinh
a



155

10

3+ — Gage A-1
—— Gage B-1

Torsional Moment, M, (N-m)

4] 1 L 1 i
-0.004 -0.002 0.000 0.002 0.004

Strain, € (mm/mm)

(a)

10

8 %

3| ——— Gage B-1
—— Gage A-1

Torsional Moment, M, (N-m)

O L | 1 L
-0.004 -0.002 0.000 0.002 0.004

Strain, € (mm/mm)

(b)
FIG. 135. Torsional Moment versus Normal and Transverse Strain for
Specimen with (a) Principal and (b) Secondary Material Axes Aligned with
Loading Orientation



156

where u =‘/§ , and A4,, and B,, are constants determined from the boundary conditions at y

= +b/2. The solution assumes that the bar obeys Hooke's law. Thus, the stress function y
becomes:

mnuuy
h
86G COS
2 5 1 B in T e, (252)
m=13.. m coshw a
2c
where c is the ratio a/b.
b
Y — C i
1
{ M 9/
) SR My~ e _
= 3
//r’,’ X
=5
c—
a

M, Torsional Moment

C Compression

FIG. 136. Free Body Diagram of Compression-Torsion Specimen
The six stress components that are applied to the rectangular beryllium bar in section
6.5.1 are as follows (Lekhnitskii 1981);

X

0,=0,=0,=0,=0, 0,=——,and 0y =——— ....ccociiiiiiiiiiiiiiiiiia (253)

Therefore, with the aid of Eq. 252 stresses o and o can be rewritten as follows:

mruuy
© sinh
5, 380" > B LG T e (254)
”2 m=13..M cosh—— mzu a

2c
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cosh masy

86Ga> & 1 mmx
o, = L 2—3 1- X TP UT RSP P (255)
7ﬁ m=13.. m cosh M‘L_‘ a
2¢

To simplify these two equations, the following four additional parameters are
defined:

C
B = o et e e e e e e e e r—a e e e e e araraaraeeaans (256)
s g
32d° 1 2d mr
= I Iy Sl ]/ D PPN 257
p 7z’,,,=,3m’( o 2d) 257)
()5
8d ¢ —1) 2
_ FATI | eeriirs e teeesesaeseeesossssssnsessssessasnssnerssessasnennes 258
X, ﬂ,ﬁmﬁ‘; ——tan (258)
d 8d % 1
Ky = | e Y | e e e e e e eeae (259)
P n’,.:%:.mzcos,,m
2d

The torsional rigidity C, twist, and maximum shearing stresses are determined by the
formulae (Lekhnitskii 1981):

CmG@B Pttt (260)

d=%=6fl;,ﬂ .................................................................................... (261)

MAXo, = AZ;’," ..................................................................................... (262)

MAXG, =YL e (263)
ab’yu

For an orthotropic material the locations of maximum shearing stress correspond to the
middle of either the longer or of the shorter side, depending on d. Application of Egs. 260
through 263 to the beryllium specimens is carried out by means of a computer program
written in the C language that appears in Appendix IX. The results are shown in Table 21.

Equations 260-263 only take into consideration the torsional state of stress for the
experiment described in section 6.5.1. Assuming the specimen is within its elastic range the
compressive stress is added to the torsional shearing stresses by superposition.
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6.5.3 Interaction CoefTicients F;55 and F;y

Two interaction failure coefficients can be obtained from this experimental set-up.
Using Eq. 66 and the uniform compression, and also assuming that the only components of
stress at failure are obtained from an out-of-plane shearing force, the following specialized
equation is derived:

F10, +F,0, +F30,7 +3F,330,07 =1 oo (264)
This form assumes that the principal material axis is aligned with the direction of application
of the compressive stress. Solving for F 155> the only unknown in the above equation, gives
2 2
1-(Fo, +F,0/ +F,0,)

2
3o,0;

155 =

Similarly, for the case in which the direction of the principal material axis is
perpendicular to the application of compressive stress, the governing strength equation is:

Fy0, 4 Fp0, +F,0,.7 43F,0,0,0,7 =1 oo (266)

Solving for Fy

1 —(anz +F;20.22 +F“O'42)
Frou = TG L T, (267)
0,0,

Direct substitution of the experimental strengths reported in Table 21 into Eqgs. 265
and 267 yields the following coefficients:

Fiss ==9.40x10° MPa™  (=3.09 x107°ksi™)ocvoovmooooo (268)

Foue=-9.63x10° MPa™ (=306 X107°kSi™) c.oovooooooooooo (269)

It should be noted that the above values of F 155 and F 4, are dramatically different
from those obtained in sections 6.4.2 and 6.4.3.



7. NON-DESTRUCTIVE EVALUATION TESTS

7.1 INTRODUCTION

Two types of non-destructive evaluation tests are used to evaluate or verify strength
and other material parameters for cross-rolled beryllium sheet: (a) hardness, and (b)
ultrasonic techniques. The hardness test is used to determine tensile strength of beryllium in
the three orthogonal material directions and compare with results obtained from destructive
tests (see section 6). The ultrasonic test supplies an estimate of the modulus of elasticity in
the through-thickness direction. The main advantage of these techniques is that they are
easy to use and save time. However, they may not provide the accuracy needed to properly
evaluate material characteristics.

7.2 HARDNESS TEST

Hardness tests are used primarily as a basis for comparison of materials, especially
with regard to specifications for manufacturing and heat treatment, quality control, and
correlation with other properties and behavior (Davis et al. 1982). The physics of hardness
is not yet fully understood, although the general concept, which has to do with solidity and
firmness of matter, is easily comprehended. Hence, there is not a unique definition of
hardness. Some arbitrary definitions associated with hardness are based mainly on the
nature of the tests. For example, some tests measure resistance to permanent indentation
under static or dynamic loading, energy absorption under impact loads, resistance to
scraping, resistance to abrasion, resistance to cutting or drilling, etc. These definitions have
developed with the necessity for expressing quantitative performance requirements under
different conditions of service.

The concept that hardness is resistance to indentation or penetration of a surface
forms the basis for a number of commercially available instruments. A variety of hardness
tests has been devised. The most commonly used, however, are the Rockwell and Brinell
tests (Asceland 1989; Davis et al. 1982). The Rockwell test is used in this study. Its
principle of operation includes exerting a static load on an indenter which, in turn, deforms
the specimen. The hardness measured is parallel to the direction of movement of the
indenter. The measured hardness number is a function of the degree of indentation of the

test specimen.
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The operation and specific procedures for the Rockwell hardness tests have been
standardized by ASTM (ASTM E 18). Some essential provisions as outlined by the
standards include:

(1) The test surface should be flat and free from scale, oxide film, pits, and foreign
material that may affect the results. A pitted surface can yield erratic readings owing to
some indentation being near the edge of a depression which results in free flowing of metal
around the indenter and, consequently, a low reading. Avoiding oiled surfaces is
recommended since such a condition reduces friction under the indenter and results in a
lower hardness reading.

(2) The bottom surface should be free from scale, dirt, or other foreign material that
may crush or flow under the test pressure, thus, affecting the outcome.

(3) The thickness of the piece tested should be such that no bulge or other marking
appears on the surface opposite the indenter. For hard material, such as cross-rolled
beryllium sheet, the thickness may be as little as 0.25 mm (0.01 in.). Charts are available in
ASTM E 18 for selecting proper scales for use with thin sheets.

(4) All hardness tests should be performed on a single thickness of the material
under consideration. Stacking of two or more pieces of the same material to provide
adequate thickness does not yield the same result as for a solid piece of the composite
thickness due to relative movement between the various pieces.

(5) The hardness number of a curved surface determined using the Rockwell
hardness test is likely in error because of the shape of the surface. A small area should be
flattened prior to performing the test. For certain size specimens corrections can be made
for curvature (see ASTM E 18).

The Rockwell hardness tester applies load via weights and levers. The indenter is
either a steel ball or a braille (a diamond cone). The hardness number is read from a
graduated dial indicator and, subsequently, converted into tensile strength with the aid of
charts provided by the vendor. Fig. 137 shows such a device.

Initially, the Rockwell tester is calibrated with the use of special test blocks provided
by the manufacturer. Prior to use with beryllium, the tester is calibrated for both the
Rockwell "B" and "C" scales. The "B" scale uses a 1.5-mm (0.16-in.) diameter steel ball for
a penetrator. A minor load mass of 10 kg (22.1 Ib) and a major load mass of 100 kg
(221.0 Ib) is used for testing medium hard to very hard metals such as beryllium. The
calibration yields an error of 0.5 hardness numbers. This is well within the acceptable
limits set by the ASTM E 18 standard of #2.0. The Rockwell "C" scale, which uses the
diamond braille, a minor load mass of 10 kg (22.1 Ib), and a major load mass of 150 kg
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(331.0 Ib) is used to test very hard metals. Calibration for this scale is also acceptable since
an error of 0.8 hardness numbers is obtained.

Initially, 2 12.7-mm x 12.7-mm x 2.54-mm (0.5-in. x 0.5-in. x 0.1-in.) cross-rolled
beryllium specimen is used in conjunction with a Rockwell hardness machine to determine
tensile strength in the three orthogonal directions of the material. A second specimen, a
12.7-mm (0.5-in.) diameter disk that is 2.54-mm (0.1-in.) thick, is used only for through-
thickness hardness evaluation tests.

FIG. 137. Hardness Testing Machine

Figs. 138 and 139 show magnified pictures of indentations produced by the
penetrator for the through-thickness and longitudinal directions, respectively. Indentations
similar to those shown in the longitudinal direction are also observed in the transverse
direction, although they are not shown. For all three directions, the Rockwell "B" scale is
used. Testing of the square specimen in the longitudinal and transverse directions of
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principal rolling yields results very close to those obtained from uniaxial tensile testing in the
corresponding direction. Average tensile strengths of 518.2 MPa (75.2 ksi) and 547.4 MPa
(79.4 ksi) are computed for the principal and secondary in-plane material axes, respectively.
These values compare well with the experimentally determined strengths shown in Table 5.

*
.

FIG. 138. Indentations from Through-Thickness Hardness Test

FIG. 139. Hardness Test Indentations in SR-200 Beryllium Used to
Determine o,
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Potentially significant results are obtained when the square and disk specimens are
tested for hardness in the through-thickness direction. The Rockwell "B" scale is employed
for most tests, although the Rockwell "C" scale is also used. This is due to the fact that the
indications of the former scale fall in the upper part of the range of the scale and validation
of the results is achieved by employing the latter scale. Results from the Rockwell "C" test
fall in the lower end of the range and are consistent with the hardness outcomes reported by
the Rockwell "B" scale. Data obtained from both the square and disk specimens indicate an
average through-thickness tensile strength of 765.3 MPa (111.0 kst) in this direction which
is 3.8 times as large as the one reported by Lockheed (Fenn et al. 1967).

Based on lack of agreement of the hardness tests results with those reported by
Lockheed, a third specimen similar to the first one (square in plan view) is tested. The
results obtained are consistent with tests on the two previous specimens. Tensile strengths
obtained using the Rockwell "B" scale for the square and disk specimens are reported in
Table 22 for all three principal directions of orthotropy.

Although, hardness tests are not regarded as totally reliable, they do provide a good
indication of the material's tensile strength behavior in the direction under consideration. A
large discrepancy exists between the tensile strength of SR-200 beryllium sheet in the
through-thickness direction reported by Lockheed and results from the hardness test. The
more conservative of the two values, which is the tensile strength reported by Lockheed, is
used for determination of the principal coefficients F; and Fj; (see section 5.

7.3 ULTRASONIC TEST

7.3.1 Background
A relatively simple and rapid way to establish material modulus in the through-

thickness direction is to use an ultrasonic technique. Here, this method is applied to cross-
rolled beryllium sheets. In order to verify whether or not the material exhibits significant
variation of elastic properties in the through-thickness direction, five reduced-thickness
disks are tested ultrasonically. The thickness of the disks varies from 2.54 mm (0.1 in.) to
0.60 mm (0.02 in.) in increments of 0.60 mm (0.02 in.). The thinnest specimen is obtained
from the middle of a 2.54-mm (0.1-in.) disk by a chemical etching technique performed by
the material supplier (Electrofusion Corp.). Each successively thicker disk is obtained by
etching less material from a 2.54-mm (0.1-in.) disk. It is assumed that the chemical process

does not affect the material properties.
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TABLE 22. Tensile Strengths from Hardness Testing for Principal Material
Axes

Specimen Rockwell "B" Equivalent Tensile Strength
Shape Orientation Dial Reading MPa (ksi)
€)) (2) 3) @ &)
Square Longitudinal
1 80.8 508.8 (73.8)
2 81.0 510.2 (74.0)
3 81.0 510.2 (74.0)
4 82.0 530.9 (77.0)
5 82.0 530.9 (77.0)
Average 814 518.2 (75.2)
Transverse
1 82.0 530.9 (77.0)
2 825 544.7 (79.0)
3 82.5 5447 (79.0)
4 83.0 558.5 (81.0)
5 83.0 558.5 (81.0)
Average 82.6 5474 (79.4)
Short Transverse
1 99.0 772.2 (112.0)
2 99.0 772.2 (112.0)
3 99.0 7722 (112.0)
Average 99.0 772.2 (112.0)
Disk Short Transverse
1 98.0 758.4 (110.0)
2 98.0 758.4 (110.0)
3 99.5 686.0 (113.0)
Average 98.5 765.3 (111.0)

Normal incidence pulse-echo and through-transmission techniques are employed for
- each specimen (Bray and Stanley 1989). A schematic of the experimental setup is shown in
Fig. 140. Piezoelectric sources of variable frequencies of excitation are used. Two
conditions are necessary for the success of the test: knowledge of the distance of travel of
the pulse and absence of internal flaws. Time required for the excitation wave to either
travel through the material or be reflected is measured from the wave pattern that is shown
on an oscilloscope. Results obtained from the two methods are consistent with each other
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FIG. 140. Experimental Setup for Ultrasonic Testing

The average elastic modulus and Poisson's ratio for each specimen can be calculated
using the following equations:

where E, is the modulus in the through-thickness direction; M, is the average of the
Poisson's ratios; c; is the velocity of the longitudinal wave: C is the velocity of the shear
wave; and p is the density of the material (Bray and Stanley 1986). It should be emphasized
that these estimates are average quantities of the modulus and Poisson's ratios for the entire
specimen subjected to ultrasonic testing.

Overall goal of these tests is to obtain a distribution of these parameters from a
series of sections with variable thickness. As described earlier, these sections are centered
about the neutral plane of the plate.

7.3.2. Determination of Elastic Constants for Each Layer

For this study five sections of SR-200 beryllium are tested using an NDE technique.
Each section is symmetric about the middle plane as shown in Fig. 141. Section 1 has a
thickness of 0.51 mm (0.02 in.) while section S has a thickness of 2.54 mm (0.10 in.).
Intermediate sections, 2, 3, and 4 increase by 0.51 mm (0.02 in.) in thickness. Sections 2,3,
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4, and 5 are considered to be composed of 4, 6, 8, and 10 different layers, respectively, that
are 0.25 mm (0.01 in.) thick (see Fig. 141).

FIG. 141. Location and Dimension of Through-Thickness Layers
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The goal of this sequence of experiments is to obtain the through-thickness moduli,
E;, and Poisson's ratios, v;3 and 33, for each of the ten layers. It is assumed that all other
material properties are known. In addition, average Ej3, v,3, and v,3 values for each section
can be established indirectly from the average of three NDE tests per section by using Eqs.
270 and 271. Results of these calculations are shown in Table 23.

TABLE 23. Elastic Constants for Specimens from NDE Measurements

Specimen | Thickness | c¢,;2 c,d Layers Material Properties
(mm) (m/s) | (m/s)
Eq V13 V23
GPa (ksi)
4)) 2 3) Q) ) ©) M (3 (&)
0.508 12,774 | 8,574 1 296.5 | (43,000) | 0.089 | 0.091
1.016 12,774 | 8,574 1,2 296.5 | (43,000) | 0.089 | 0.091
1.524 12,947 | 8,731 1,2,3 305.5 | (44,300) | 0.085 | 0.086
2.032 13,3891 9,070 | 1,2,3,4 327.5 | (47,000) | 0.083 | 0.085
2.540 13,855 9429 [1,23,4,5]| 351.0 | (51,000) | 0.081 | 0.083

3 Average of three measurements

Different schemes, such as the average and equivalent through-thickness modulus
rule of mixtures, can be employed for calculating £3, v|3, and v, for each layer, depending

on the orientation of the layers of material (Asceland 1989).

These models suggest
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representation of the through-thickness and in-plane moduli in terms of equivalent spring
stiffnesses. Limitations arise, however, especially for the calculation of Poisson's ratios, if
coupling between the equivalent springs is employed. This gives rise to a system of
indeterminate equations. Thus, for a solution to be obtained additional assumptions are
imposed, such as requiring that the total in-plane strain of the material is equal to the mean

in-plane strain of all layers comprising the medium.

7.3.3. Numerical Simulation

In order to avoid these simplifying assumptions, evaluation of the through-thickness
modulus and Poisson's ratios for each layer are obtained using numerical simulation. The
method described in what follows is based on a recursive procedure that allows for the
determination of £3, v|3, and v,3, of each layer. That is, once the elastic properties of ith
layer are known, the properties of the i+1t% layer can be determined.

For section 1, which is comprised of two layers having the same elastic properties,
constants E3, v,3, and v,3 are