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ABSTRACT

The goal of the research described in this paper is to develop flexible language

constructs for writing large data parallel numerical programs for distributed memory

(MIMD) multiprocessors. Previously, several models have been developed to support

synchronization and comnmnication. Models for global synchronization include SIMD

(Single Instruction Multiple Data), SPMD (Single Program Multiple Data), and sequen-

tim programs annotated with data distribution statements. The two primary models

for communication include implicit communication based on shared memory and explicit

communication based on messages. None of these models by themselves seem sufficient

to permit the natural and efficient expression of the variety of algorithms that occur

in large scientific computations. In this paper, we give an overview of a new language

that combines many of these programming models in a clean manner. This is done in a

modular fashion such that different models can be combined to support large programs.

Within a module, the selection of a model depends on the algorithm and its efficiency

requirements. In this paper, we give an overview of the language and discuss some of the

critical implementation details.
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1 Introduction. The goal of the research described in this paper is to develop easy-

to-use, efficiently implementable language constructs for writing large data parallel nu-

merical programs for distributed memory (MIMD) multiprocessors. By data parallel

algorithms we mean those where identical or similar operations are performed concur-

rently on different sections of a typically large data structure. Such computations are

typical in many scientific computations, such as computational fluid dynamics algorithms,

although their data parallel structure does not necessarily imply that the algorithms are

SIMD, or that it is easy to parallelize them efficiently (see e.g. [OS92]). Distributed

memory multiprocessors appear to be the main candidates for scalable, high performance

parallel computers. Current examples of distributed memory machines include the Intel

iPSC series of hypercubes and mesh-connected machines, Thinking Machine's CMS, and

networks of workstations used as multiprocessors.

Although distributed memory machines show great promise for high performance

computation, they are currently difficult to program. The difficulty arises from the low

level details the programmer must handle regarding communications, synchronization,

and process control. Raising the level of these operations from the message level sends

and receives found in many current systems to the point where most of these details are

handled implicitly will make programming distributed memory machines much easier.

However, the efficiency of the resulting code generated from the model must not be

adversely affected or else few programmers will be interested in using the model. For

example, simulating a uniform shared memory will likely be too inefficient.

The research described here attempts to reduce this nfismatch between the target

machine, the languages used, and the underlying model of typical data parallel algo-

rithms. A key issue addressed in this research is the development of a language model

that supports the expression of large, modular parallel programs. Such programs may

consist of multiple levels and/or multiple phases of parallelism, and may use different

models of parallelism in different portions of the program. Furthermore, as is typical in

numerical programs, the overall efficiency of the program may depend on the efficiency

of a small portion of the code. Thus, it is important that the user can easily switch

between high level abstract models that are easy to program but may not compile as

efficiently as desired, and low level models that give the user a lot of control over the

hardware. As an example, many programs are fine tuned to make better use of message

passing facilities. Such improvements can easily cut the execution time in half yet such

improvements are only required on a small portion of the code. Thus, it is important

for a language to support multiple models in a clean manner. The expression of such

complex, parallel algorithms has received little consideration so far, with the exception

of Oracle [GHDN90].

The language described here is based in part on many recently developed languages,

including our DINO language [RSW91b], that have been proposed for writing numerical

programs on distributed memory machines. A few of the more relevant include [KMR90],

[FHK+90I, [Jor87], [RJ87], [Lit90], [HJW87], [Tse89], [GHDN90], [CMZ92], [Koe93],

[LG91]. These languages appear to be converging in terms of the underlying parallel

programming model used [RSW91a]. This model is primarily a data parallel one with

a little support for functional parallelism in some cases. It has four main parts. First,

single or nmltiple dimensional arrays of virtual processors may be declared in a shape



that best fits the algorithm [RSW91b], [KMR90], [APT90]. Second,singleor multiple
dimensiol]al arraysof data may be distributed (mapped)acrossthesevirtual processors
[RSW91b], [KMR90], [Koe93], [FHK+90]. This distributed data is usually treated
as a single global object and all accessesare made with respect to the global name
space. Third, communicationsaregeneratedby accessingthe distributed objects. The
communicationscanbe implicit, similar to sharedmemory,or explicit basedoll sendsand
receives.Finally, somemodel is usedfor specifyingthe computation. Herethere appear
to be two classesof approaches,either an annotatedsequentialprogram approachor all
explicitly parallel approach. In this language,weusethe explicitly parallel approach,as
it appearsto havegreater flexibility in the modelsit cansupport on MIMD machines.

Within the explicitly parallel approach,oneoption is to usea generalSPMD (Single
Program Multiple Data) synchronizationmodel. In this method, parallelism is usually
specifiedat a per-task level, and communicationis generallyspecifiedwith explicit sends
and receivesbut with the low level details of messagetyping, buffering, channelsand
other aspectshandled by the compiler [RSW91b]. A secondoption is to usean SIMD
(Single Instruction Multiple Data) synchronizationmodel in which virtual processors
effectively synchronize at all communications [QH90]. In this model, parallelism is
generally specified at a fully data parallel level, and all communication is implicitly
generatedby the compiler.

Some languages,such as ELP [NSD90] and Modula2* [PTH91], combine some
aspectsof both the SIMD and SPMD models. ELP is a languagedesignedspecificly to
programthe PASM parallel computer [SSK+S1],an experimentalmachinethat supports
both SIMD and MIMD computational modes.ELP supportsthe ability to declareblocks
of code to run in either a SPMD or SIMD mode and can change between the two in a single

instruction, as this is supported in the hardware. Parallelism in Modula2* is specified

using either SIMD or SPMD parallel loops. Modula2* supports virtual processors and

the ability to nest parallel constructs to any depth. ELP does not support this because

the hardware does not. Modula2* does not support any form of synchronization in the

SPMD mode so communications must be done with libraries in this case. ELP supports

a barrier synchronization when all processors write to a mono variable, but, based on the

literature, there is no other form of synchronization in the SPMD mode.

One issue that the languages developed so far do not address is writing very large

programs. This is the main issue addressed in this research. Although most of the

above mentioned languages are suitable for expressing simple algorithms (up to a few

hundred lines), they are less suitable for writing large, modular, nmltiple-phase parallel

programs. This is partly due to their inability to define and tie together modules that

are independent of the rest of the program.

A large factor that contributes to the inability of expressing large parallel programs

is the restrictiveness of the programming model supported in each of these languages.

Ahnost every language follows just one of the models described above. Each of these

models has trade offs between ease of use, expressiveness, and efficiency.

For example, if the language follows the explicitly parallel SPMD model, with paral-

lelism specified at a per-task level, then there are two tradeoffs the user must face when

writing large programs. First the user usually must explicitly put in synchronization and

communications. Secondly, the explicitly parallel nature of the SPMD model may cause
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difficulties in efficient compilation if there are many more tasks than physical processors.

When there are more tasks than processors, the compiler and run time system must

emulate a large virtual machine. The overhead in doing this may become prohibitive as

the number of tasks increases. To handle this, the programmer may have to write one

task per physical processor. Although this gives the programmer more control of the

machine, it tends to be more difficult to do.

Oil the other hand, if the language follows the explicitly parallel SIMD model, with

parallelism specified at a fully data parallel level, then the user has the advantages of

simple synchronization and of being able to efficiently specify large numbers of processes

that match the data parallelism and are independent of the target machine. The SIMD

model provides the compiler with more information than the SPMD model to efficiently

contract many virtual processes into fewer real processes, thus overcoming the constraint

of knowing the number of available processors. But this model is significantly limited in

its expressiveness, due to the lock step execution enforced by the SIMD model, and is

therefore insufficient for expressing many parallel algorithms.

Finally, the sequential model using only distributed data annotations has the advan-

tage that the programmer does not specify any communications or synchronization, and

the disadvantage that it sometimes may be hard to obtain an efficient parallel program

from the sequential specification. First, it is still an open research question to determine

how effectively and broadly one can derive efficient parallel programs from sequential

specifications, using dependency analysis and data distribution annotations. Second,

there are some efficient parallel algorithms, such as pipelined algorithms with non-unit

block sizes, that appear to be especially difficult to express in or derive from a sequential

program.

The tradeoffs between efficiency and ease of use described above are typical decisions

that must be made in developing computationally intensive numerical programs. These

tradeoffs are caused, in part, by the inability of optimizing compilers to generate code

that is as efficient as that of the user. The typical solution to this type of problem is

to use the high level model for the bulk of the computation, where the efficiency is not

that critical and the quality of the optimized code is acceptable, and use a lower level

model for the portion of code where the resulting efficiency is very important. Examples

of this two-model technique include using assembly code in Fortran, using Fortran within

HPF, and using vector statements within Fortran vectorizing compilers. One of the goals

of this research is to support multiple models having various ease of use and efficiency

tradeoffs, and also support an easy transition between the various models.

Another reason for supporting multiple models in a single language is that many

large numerical programs have modules that fit different models. For example, many

kernels of numerical programs are highly structured, fine grained computations that fit

the explicitly parallel SIMD model, while the overall computation structure as well as

selected kernels may be less structured and fit the coarse grained, explicitly parallel

SPMD model.

For these reasons, it appears to us that a language for specifying large, modular par-

allel numerical programs needs to support at least two types of models, an SPMD model

for coarse grained parallel computations, and some model that efficiently expresses fine

grained data parallel computations. Such a language should also support both implicit



and explicit modelsof communication. Most importantly, though, it nmst also provide
an easymethod of switching between thesemodels. This is a critical factor in making
the languageflexible enoughto handlea wide rangeof programmingmodelsand to give
the user control over the machinewhere a high degreeof efficiency is required. These
needsform the main motivation for this research.

The conflict, regardingwhat type of model of computation to useand the ability to
easilyswitch betweenmodelsis resolvedin the newlanguageby usingamodular approach
to designingparallel programs. Each module in this language consists of a virtual parallel

machine. Each virtual machine, representing a kernel or part of an algorithm, may be

written independently based on an ideal virtual parallel machine for that module. This

virtual parallel machine usually is dependent on the size of the data structures being

operated on, and may vary between phases of the program. These modules can then

be combined in a struct.ured framework to support a more complex virtual machine

that may include nesting of parallel modules, combining different modules to execute

concurrently, and changing between parallel modules for different phases of a program.

The task of managing such "a complex virtual machine is performed by the compiler but

can be overwridden by the programmer where necessary.

This paper gives an overview of a new language, called Dino2, that addresses these

issues. Dino2 is a successor to the DINO language [RSW91b], and shares with it the fact

that it is a superset of the C language. The two languages also have similar capabilities

for expressing distributed data and arrays of virtual processors, but their methods for

expressing parallel computations, communications, and synchronization are very differ-
ent.

The remainder of the paper is organized as follows. Section 2 describes the basic con-

cepts of a Dino2 module, and Section 3 describes how modules can be combined to form

large complex programs. Section 4 describes the different synchronization models that

are supported for the modules, while Section 5 describes the language support for these

constructs. Section 6 describes some implementation details for these synchronization

models and for communication. Section 7 offers some brief conclusions. More details of

the language and potential implementation issues are provided in [Ros91].

2 Virtual Parallel Machines. A Dino2 module is built around a virtual parallel

machine defined by the user. A virtual machine consists of a single virtual processor or

a single or multiple dimensional array of virtual processors, and defines the parallelism

of the module. It is encapsulated in a construct called a composite procedure. The

virtual machine is used as a framework onto which data, communications, and code are

placed. All virtual processors within a composite procedure contain the same code, but

generally, different portions of the distributed data structures. Conceptually, each virtual

processor in a composite procedure executes in parallel when the composite procedure is

invoked. Composite procedures are similar to parallel loops found in other languages but

have important differences that will be described below. However, there is no inherent

reason why parallel loops could not be adapted to have the same semantics as composite

procedures.

Figure 1 is an example program that contains a composite procedure which increments

every element in a matrix by a parameterized amount. Execution starts in procedure
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#define N 1024

map element () = [block] [block] ;

synch composite brighten (image, intensity, n) [n:idx][n:idy]

float remote image[n][n] map element(); /*distributed array*/

int remote intensity; /*mapped to all virtual processors*/

int n; /*size of virtual machine and array*/

{

image[idx] [idy] += intensity;

}

main(){

float A[N] [N];

read(A); /*stub procedure*/

brighten (A, I, N);

display(A); /*stub procedure*/

}

Figure 1. A simple composite procedure



main which contains one virtual processor. The call to brighten creates N2 virtual

processors _,each of which executes the body of the procedure. The value of N is passed

into the module as a parameter. The actual parameter k, is distributed across the new

virtual machine using the mapping function element; this results in each virtual processor

containing one element of the matrix. (Mapping functions in Dino2 are similar to those

originally defined ill DINO [RS87], and other languages, such as FortranD, and are not

described in detail in this paper. The basic capability is the mapping of any axis of a

distributed data structure to any axis of a virtual parallel machine, using block, cyclic,

or overlapped mappings.) Within each virtual processor of brighten, the constants idx

and idy denote the indices of that virtual processor in the structure of processors. These

indices are used in the expression image [idx] [idy] to specify the local element of image.

Each element of image is augmented by the value of the variable intensity. At the end

of the call to brighten the N2 virtual processors are terminated and execution continues

on the virtual processor running main.

hnplementing data parallelism using composite procedures has similarities and differ-

ences compared with using do loops. It is similar in that both describe the full parallelism

of the algorithm and are independent of the machine. This naturally allows the user to

define one task per data element instead of one per processor and is an important ab-

straction for developing modular, machine independent code.

The differences are equally important in developing numerical programs. The first of

these, locality, is an extremely important issue in developing computationally expensive

programs. This language supports locality by allowing the user to specify how each

composite procedure is mapped to the target machine. This is done using a mechanism

similar to how data is mapped to a virtual machine. The mapping functions supported

include all of those used to map data to virtual machines (block, cyclic, etc) and also

one that dynamically allocates virtual processors to real processors for imbalanced tasks.

This ability to specify where tasks are executed is important for the user to control load

balancing and minimize communication. The location of task execution in many other

languages follows the "owner computes" rule [Koe93] [FHK+90] and is less flexible than

explicitly controlling the placement. Another option used is the on clau._e, as used in

[KMR90].

Another reason for using composite procedures instead of do loops is that we find

that the composite procedure better encompasses all of the parts related to parallel

computation that must be specified. This includes a set of tasks to be executed and how

these are mapped to the target machine, the synchronization model the tasks will follow,

the data to be operated on and how it is mapped to the tasks, and how the tasks can

communicate with each other. Although this could easily be done using do loops with

the appropriate syntactical changes, we find it easier to place this in a construct like a

procedure where it is possible to use the scoping and parameter mechanisms to change
from one model to another.

The independence between modules supported by composite procedures is important

for isolating synchronization models. Each module executes within either a SIMD or

SPMD synchronization model and the semantics of the synchronization model are inde-

pendent of the procedure that called the module. The module will also not affect the

synchronization model of any modules that it might invoke. This independence supports
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flexibility and structure whencombiningmoduleshaving widely varying typesof commu-
nication and synchronizationtechniques.An examplewherethis is usedis in a nonlinear
optimization algorithm wherethe outer algorithm is SIMD but includesafinite difference
gradient evaluation whereeachvirtual processorperforms a nonlinear function evalua-
tion independently and asynchronously.Synchronizationmodelsare describedfully in
Section4, while methods to combinemodulesaredescribedin the next section.

Modular independencealsosupportswriting moremachinedependentalgorithms that
must be efficient. For example, the programmercan chooseto specify that there is one
virtual processorper physical processorif this makesit easier to describe the parallel
algorithm. This might be desirable in casessuchas someblock parallel computations,
whereto specifythe parallel algorithm correctlyonemayneedto expressit in terms of the
actual parallelism of the machine.Specifyingonetask per physicalprocessorwill alsobe
important whereextremeefficiency requirementsprohibit the overheadassociatedwith
contracting many virtual processorsonto a singleprocessor. Although the contraction
canbe donequite well, the compilerwill neverbeableto do it aswell asthe programmer.
This is discussedmore fully in section6.

3 Combining Modules To Form Complex Parallel Programs. As mentioned

above, there are several types of modules in Dino2. These include SIMD composite pro-

cedures, SPMD composite procedures, and normal procedures. From these basic modules,

a more complex parallel program can be created through various combinations of calls

to composite procedures and/or normal procedures. Conceptually, this creates a more

complex parallel virtual machine whose size, shape, and synchronization characteristics

describe the parallel nature of the program. The methods for combining modules are

described in this section.

In the simplest case, a normal procedure can call a SIMD or SPMD composite pro-

cedure. This is the basic mechanism for generating parallelism, and results in changing

the virtual machine from a single procedure into a set of virtual processors, one for

each element of the composite procedure. An example of this was previously shown in

Figure 1.
A similar transformation occurs when one composite procedure calls another. That

is, suppose each element of a composite procedure with n virtual processors calls another

composite procedure with m virtual processors. This is called nested parallelism, and

results in a parallel virtual machine with nm virtual processors. Nested parallelism may

be used to refine parallel operations on complex data structures. A simple example of

this is solving a block diagonal system of equations. At the highest level there is a virtual

machine consisting of a virtual processor for each block. At a finer level there may be a

virtual processor for each row of each block. As in all the combinations, it is permissible

for the two composite procedures to have the same or different synchronization models.

Another combination is called phased parallelism. This occurs when an entire virtual

machine of n elements is replaced by a virtual machine with either a different number of

elements, or a different synchronization model, or both (and then back again). This is

analogous, in a sequential language, to having one procedure call another. In a sequentiM

language, when one procedure calls another, the calling procedure is temporarily halted

and saved on a stack while the new procedure is executed. In phased parallelism, the



entire compositeprocedureis temporarily halted while the newprocedureis called. This
supports structuredprogrammingtechniquesfor parallelconstructs,much like procedures
support structure in sequentialprograms.

An exampleof phasedparallelism occurs in solving block bordered systemsof equa-
tions, wherethe natural degreeof parallelismchangesbetweenthe phaseof the algorithm
that operateson the diagonalblocks and the phasethat operatesoil the bottom block.
Another example is in solving a system of linear equations by using a parallel LU de-
composition followedby a pipelined backsolve;here the virtual machinechangesfrom a
SIMD model for the LU phaseto a SPMD model for the pipelined backsolve,and the
number of virtual processorsmay changefrom the numberof equations to the number
of actual processors.Finally, a temporary changein modulesmay be required to replace
an abstract model with a highly efficient, machinedependentmodel.

Phasedparallelism, li.kenestedparallelism, is implementedin Dino2 by having one
compositeprocedurecall.another, but with the secondcompositeprocedurecall placed
within a "barrier statement". A barrier statementconsistsof the keywordbarrier and a

C compound statement. When executed within the context of a composite procedure, a

barrier synchronizes all the virtual processors associated with the composite procedure

and temporarily replaces them by a single virtual processor that executes the compound

statement. An example of a parallel language that uses a barrier statement in this manner

is the Force [Jor87]. If the statement within the barrier is a call to a composite procedure,

then the net effect is a change in parallelism from that of the original composite procedure

to that of the called composite procedure, and then back again after the barrier is exited.

A final combination for generating complex virtual machines consists of taking two

virtual machines and combining them into a single virtual machine. This is implemented

with the '::' statement and is similar to a "cobegin". This construct allows for a functional

type of parallelism, as opposed to data parallelism. Generally, when this is used in

numerical computation it is at a high level within a program. For example, functional

parallelism allows a program to operate concurrently on two different data structures.

This construct also can be used to create more irregular parallel programs, such as

programs that use a master/slave model to service a set of independent tasks.

An important aspect in developing efficient programs using these constructs is to

minimize communication when changing the parallelism of the virtual machine. The

virtual machine constructs imply that data will be remapped from one virtual machine

to another when a program moves between modules. However, when implementing the

different forms of parallelism, the compiler will only move data if the mapping to the

physical processors changes. That is, although the data will be moved based on a change

in the virtual machine, due to the mapping of the virtual machine to the physical ma-

chine, there often will be no change in the mapping to the physical machine. Detecting

that the physical mapping does not change is fairly straight forward at composite pro-

cedure boundaries but may be more difficult for statements within a barrier statement,

depending on the mapping of the data used. In the following example, although there

are a number of changes in the virtual machine, the data never needs to be physically
nloved.

An example of a numerical algorithm that involves both nested and phased parallelism

is shown in Figure 2. This is a procedure used to solve a block bordered system of linear



equations. Such systems, which are common in numerical computation, involve a block

diagonal matrix augmented by a relatively small, possibly dense final set of rows and

colunnls. In our example, we assume there are Q diagonal blocks, each NxN, followed by

bottom and right borders of M possibly dense rows and columns. Thus, the main data

structures consist of the Q Nxlq diagonal blocks, contained in A, the lower right diagonal

block, which is of size MxM and is represented by P, and the remainders of the row and

cohmm borders, which are of size QN×M and are represented by B and C. The diagonal
blocks in A are distributed so that one block is on each of the Q virtual processors, and

the borders B and C are distributed correspondingly. (This is done using the user-defined

"Slice" mapping, which partitions along the first index.) The final diagonal block P is

distributed by columns using a cyclic mapping.

The first part of the computation consists of factoring each of the Q diagonal blocks,

contained in A, and making some corresponding calculations involving the border B and

the right hand side f. This implies parallelism of degree Q, the number of diagonal blocks

and of virtual processors in block_solve. Within this procedure, however, two of the

main steps involve each of the q virtual processors themselves calling composite proce-

dures lu and solve, that have parallelism N, to perform computations on the individual

NxN matrices. This is an example of nested parallelism, and increases the parallelism to

ON during these parts of the computation. After the completion of this portion of the

algorithm, the results are used to modify P (using the border blocks), P is factored, and

the final Iq components of the solution, xqp, are computed. These steps all have paral-

lelism I,I, and therefore the Q virtual processors used in the remainder of the computation

are temporarily transformed into M virtual processors. This is done using the barrier

statement, and is an example of phased parallelism. (Note that lu and solve are called

with a different number of virtual processors, I,I, in the second call than in the first.)

After the barrier statement, the algorithm returns to a third phase that calculates the

remainder of the solution, x, and reverts to parallelism of degree Q. It again involves calls

that use nested parallelism to expand the parallelism to degree QN. While this example

may seem complex, it is not artificial; see e.g. [ZBS].

4 Synchronization Models. The other important high-level aspect of describing a

Dino2 module, after specifying the virtual machine that it is based upon, is to describe

how the virtual processors synchronize and communicate with each other. There are four

synchronization models that are supported in the language. These include the SIMD and

SPMI-) models that were mentioned briefly earlier, a chaotic version of the SPMD model

in which there is communication between virtual processors but no synchronization, and

an independent model in which there is no communication or synchronization between

virtual processors. In this section we describe these four synchronization models. The

syntax of how to build these synchronization models is described in the next section.

In a purely SIMD model virtual processors would synchronize at every operation.

Two major advantages of this model are that the user does not need to explicitly specify

synchronization, and that colnmunication can easily be made implicit. Therefore, it is

probably the easiest method of programming multiprocessor computers. It is not nec-

essary to use send or receive primitives to transmit data because global synchronization

is specified at every operator, and therefore the distributed data structures, which are

used for communication, can be viewed as shared inemory, and the communication can



composite block_solve

(in A, in B, in C, in P, in f, in fqp, out x, out xqp) [Q:id]

double private A[Q] [N] [N] map Slice(); /,

double private B[Q] IN] [M] map Slice();

double private C[Q] [M] [N] map Slice() ;

double prlvate P[M] [M] map WrapCol() ;

double prlvate f[Q*N] map Block();

double private fqp[M] map Block();

double private x[Q*N] map Block();

double private xqp[M] ;
{

double private p[M] map Wrap()

double prlvate b[M] map Block()

double private sumCW[M] [M] map WrapCol()

double private sumCZ[M] map Block();

double prlvate W[Q] [N] [M] map Slice(); /* = AA-I B*/

double prlvate z[Q*N] map Block();

int private i;

double private tempB[N] ;

map Block()

Slice distributes data structures

/* along their first index */

lu(A[id], p,N); /* nested parallelism QN, Q from block_solve, N from lu */

solve(A[id], &z[id*N], _f[id*N], p,N); /* z = A'-I f */

/* nested parallelism QN */

for (i=0; i<M; i++) { /*parallelism is Q*/ /* W = A^-I B */

tempB[] = B[id][][i];

solve(A[id], tempW, tempB, p, N);

Wild] [] [i] = tempW[] ;
}

barrier { /* phased parallelism, each call results in parallelism M */

form_sums( C, sumCW, sumCz); /*parallelism is Q*/

sub_vec(P[id], P[id], sumCW[id], M); /* P = P - sum CW*/

sub_vec(b, fqp, sumCz,M); /, b = fqp - sum Cz*/

lu( P, p, M); /*factor P*/

solve( P, xqp, b, p, M); /* xqp = PA-I b*/ /*M*/
}

/* x = z - w*xqp */ /*parallelism is Q, parallelism of block_solve*/
for( r=0; r<=N-1; r++ ){

x[id*N+r] - 0;

for( c=0; c<=M-1; c++ )

x [id*N+r] += W lid] [r] [c] *xqp [c] ;
}

neg_vec( &x[id*N], N ) ; /*nested parallelism QN*/

add_vec( &x[id*N] , &z[id*N] , N ) ; /*nested parallelism QN*/
}

Figure 2. Block bordered linear equations - nested and phased parallelism
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be deduced by the compiler and run-thne system.
The SIMD model that is used in Dino2 differs from this pure SIMD model in two

important ways and is similar to how other languages implement SIMD on a MIMD

machine [quJsrl [PTHgl]. Both are the result of the fact that the language is designed

for, and executed on, an MIMD machine. First, we do not require that the processors

actually synchronize after each operation or even after each communication point, only
that coInmunications are inserted that cause the execution of the module to be consistent

with what it would be using a pure SIMD model. Second, as was mentioned in Section 3,

a call to a standard C function or another module within a SIMD module does not force

the SIMD semantics onto the execution of the called function or module. Instead, the

called function or module operates under its own synchronization model which can be

either SIMD, SPMD, or totally independent. This flexibility applies to all calls of Dino2

modules, and is a critical aspect of the language.

The second, more loosely synchronous model that Dino2 supports is the SPMD model.

In this model, the only specified global synchronization is at the start and end of the

module. It is possible to synchronize at points in between, but in these cases the syn-

chronization is produce-consume synchronization that is added by using communication

constructs based upon distributed data structures, as described in the next section. (As

with all composite procedures, communications also occurs at the start and end of the

module by distributing or collecting the distributed data structures that are used as in-

put or output parameters to the module, respectively.) The SPMD model is particularly

useful for expressing irregular or coarse grained parallel algorithms. In practice it is of-

ten most naturally used with a virtual machine whose degree of parallelism corresponds

to the actual machine, but sometimes with a virtual parallel machine whose degree of

parallelism corresponds to a mMn data structure, as in Figure 4.

The third model supported is a SPMD model where there is no synchronization

associated with communication within the body of a module. We call this model "chaotic

SPMD". It differs from the normal SPMD model in what synchronization is implied when

two virtual processors communicate data between them. In the normal SPMD model, a

produce-consume synchronization is implied: the receiving process blocks until a value

arrives. In this manner, messages are consumed in a deterministic order. In the chaotic

SPMD model, the receiving process uses the most recently received value if there is a new

one, and the current value otherwise, and does not block. This model is similar to shared

memory without any synchronization mechanisms, and allows for non-determinism. It

has been used in a variety of chaotic iterative numerical algorithms, and can also be useful

in non-numerical simulation. The SPMD model in Modula2* is a chaotic model [PTH91].

The final model is an independent model where there is no communication or synchro-

nization between processors during their parallel execution. Often this form of execution

is appropriate at low levels of parallel algorithms, as illustrated in Figure 3.
To illustrate how some of these models are used in Dino2, Figure 3 shows a SIMD

procedure calling a normal procedure. This is a shell of a program that computes the

eigenvalues of a matrix A. Much of this algorithm consists of algebra to find the intervals

containing each eigenvalue. Thisis best modeled with the SIMD model. From this point,

an independent computation is used to find each eigenvalue. These computations proceed

independently. This is accomplished using the independent model by calling a normal C

function from each process in the SIMD procedure.
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double eigenvalue(left, right, A)

double left, right, A[N] [N] ;

{

. . o

}

/* normal C function called by SIMD procedure */

/* results in independent parallel model */

synch composite solve_nlinear(A, values)[N:id]

double remote A IN] IN] ;

double remote value[N] map Block();

{

double remote left IN] , right IN] ;

/*compute interval*/

/*compute eigenvalues,/

value[id] = eigenvalue(left[id], right[id], A);
}

/* SIMD Procedure */

Figure 3. A SIMD program calling a normal C procedure

5 Language Support for Synchronization and Communication. The synchro-

nization models described above are composed by using one of two different types of

composite procedures (SIMD or SPMD), and constructs for generating connnunication

between virtual processors. The composite procedure types define the global synchro-

nization characteristics of a module. A SPMD procedure is declared with the keyword

composite and a SIMD procedure is declared with the keywords synch composite.

Communication between virtual processors is implemented by reading and writing

variables in distributed data structures that have been mapped to the virtual parallel
machine. An important feature of Dino2 is that the semantics of communication is

entirely embedded in the data type of the distributed data structures being read from or

written to. This means that each access to a given distributed data structure has the same

communication semantics. One alternative is to apply special functions or operators to

data structures to generate communications (such as the DINO # operator). This means

that an access to a given element may or may not specify communication, depending

on whether the operator is used. Our experience has been this is confusing and error

prone. A second alternative is to use libraries containing send and receive functions to

specify communications. These also tend to be difficult to use but more importantly,

by making communication part of the language, it is possible for the compiler to take

advantage of certain hardware characteristics while implementing the remote reads and

writes. Potentially, as will be described in section 6, this could lead to code that would

run faster than if the programmer used libraries of standard send and receive procedures.

The requirement for flexibility and the requirement that there not be any special
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Comm type Composite.Proc type

SIMD SPMD

Private only

Remote + Private

Buffered + Private

Independent

SIMD

(illegal)

Independent

Chaotic SPMD

SPMD

Table 1. Synchronization Models in Dino2

operators or functions associated with communications suggest that there be different

types of distributed data that have different semantics with respect to communication. In

response to this we have developed what we call a communication type that is associated

with each data structure. A communication type describes the communication semantics

of a variable. This is similar to data types that are found in all languages and are

associated with every variable. The usual data type describes the semantics of operations

on a variable. For example, the divide operator has different semantics depending on

whether the operands are integers or floats. Similarly, the conmmnication type describes
the semantics of the communications associated with reads and writes of a variable.

A variable in Dino2 may have one of three communication types: private, remote,

or buffered remote (specified by the keywords private, remote, and buffered). Table

1 summarizes how these combine with the two types of composite procedures to form

the synchronization models discussed in Section 4. This is explained in the next three
paragraphs.

Private variables call be used in any procedure (SIMD, SPMD, or normal), and can

only be read or written by the virtual process that contains the variable. That is, no

communication is associated with these variables. When only private variables are used

in a composite procedure, or in a C function called from a composite procedure, the
independent model results.

TILe role of remote and buffered remote variables varies with the type of procedure

in which the variable is used, although their communication semantics are unchanged.

Within a SIMD composite procedure, only remote (i.e. not buffered remote) variables

can be used. Remote variables Call be accessed by any virtual process in tile composite

procedure where they are declared and the accesses are non-buffered, meaning that the

value most recently assigned to a variable by any virtual process is used when the variable

is read. In conjunction with tile implicit global synchronization semantics specified by the

SIMD COLnposite procedure type, this defines tile SIMD synchronization model described
in the previous section.

Within SPMD composite procedures, either remote or buffered remote variables can

be used. Remote variables have the same semantics in SPMD as in SIMD composite

procedures. When used in the context of a SPMD composite procedure, however, these
variables lead to the chaotic SPMD synchronization model discussed in Section 4 be-

cause, in contrast to the SIMD model, there is no global synchrouization between virtual

processors. Buffered remote variables are similar to remote variables except that they

have a buffered implementation. That is, all writes to the variable are buffered by each

virtual process that may require them in the order in which they arrive, and reads to tile
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compos ite pipe_ solve (y,rhs, al, an) [N:id]

private float y[N*N] map wrap();

private float rhs[N*N] map wrap();

private float aI[N*N] map wrap(); /*the off diagonal*/

private float an[N,N] map wrap(); /*the far off, by N, diagonal*/

{

int i;

buffered float pipe[N] map block(); /*used to implement pipe*/

for(i=id; i<id+N*(N-l); i+=N)

y[i] = rhs[i];

for(i=id; i<id+N*(N-l);

if(id>l)

y [i] --- pipe[id] ;

/*y[i] is now evaluated*/

if(id<N-l)

pipe[id+l] = y[i]*al[i];

if (i<N*(N-I))

y[i+N] -= y[i]*an[i];

}

i+=N){

/*if not the first stage in pipe*/

/*wait for y[i-l]*al[i-l]*/

/*if not the last stage in pipe*/

/*compute value and send to next stage*/

/*if not in last wave*/

/*compute last term for y[i+N]*/

Figure 4. A Pipelined Solve - An Example of a SPMD Procedure

variable block until a value is present in the buffer, at which point that value is used and

removed from the buffer. Using buffered remote variables in conjunction with SPMD

composite procedures leads to the SPMD synchronization model described in Section 4.

Figure 4 is an example of an SPMD procedure. This procedure does a pipelined

solve of a linear system of equations involving a banded, lower triangular matrix of the

type that arises in some differential equations algorithms on two dimensional, N×N grids.
The matrix consists of the main diagonal of N2 ones (which are not stored); a diagonal

immediately below the main diagonal of N2-1 elements, stored in ai, of which each Nth

element is zero due to the border affects of the grid; and a diagonal N rows below the

main diagonal, with N2 -N elements, stored in an. (The vectors al and an are padded

with 1 and N leading zeroes, respectively, so that their element with index i corresponds

to row i of the matrix.) Due to the zeroes in al, a pipelined type of parallelism can

be used to perform the solve. At step 1, y0 is computed. At step 2, Yl and yN are

computed. At step 3, y2, yn+x, and yzn are computed, at step 4, yz, yN+2, y_N+1, and

Y3N are computed, and so on. These dependencies suggest that N virtual processors

should be used, and the two vectors al and an should be mapped cyclically onto the

virtual machine. Each yi is computed by rhsi - yi-I * all-1 - Y_-N * an__N. The first and

third terms are computed locally since the processor that contains yi also contains rhsi,

Yi-N, and ani-N. The product Yi-I * ali-1 is received from the neighboring processor by
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reading pipe[id]. This read will block until the value hasarrived becausepipe has a
bufferedcommunication type. This product is sent to the neighboringprocessorin the
write to pipe lid+l]. Eachvariable pipe[i] is usedrepeatedly to send messagesfrom
processori-1 to processori, but the semanticsof bufferedremotevariablesassuresthat
the correct algorithm semanticsareenforced.This algorithm is subtle to understandand
perhapsto program, but parallel algorithms like this are important for efficient parallel
numerical computation, and appear to require an SPMD model to expressaccurately
and efficiently.

In keeping with the goal of supporting modularity for large parallel programs, the
communication type of a variable in Dino2 may be changedin a structured fashion
betweenmodules. A data structure having one communication type may be passedas
a parameter to a procedurewhere the correspondingformal parameter has a different
communicationtype. As an example,assumethat there is a distributed array of remote
floats declared within the body of a compositeprocedure, and that it is desirable to
temporarily turn off any colnlnunicationsassociatedwith the data structure. This can
be doneby passingthe array to a procedurewherethe formal parameter is a distributed
array of private floats. Note that, as arrays are passedby referencein C, there is no
communicationgeneratedfrom this. Within the body of the new procedure there will
be no communicationsgeneratedfrom readsor writes of the data structure. This ability
providesthe userwith the flexibility to control the communicationsemanticsof avariable,
but in a manner that is structured through the useof scopingand proceduresemantics.

The concept of communicationtypes for variables in parallel languagesappears to
be a new contribution of this work. Communication types give the user a great deal
of flexibility in selecting the type of communication semanticsto use, and also adds
structure to the communicationsin a program.

6 Implementation. In this sectionwediscusssomeof the more interesting implemen-
tation details of compiling Dino2 programs. Although a Dino2 compiler has not been

built, the more critical components have been built in compilers for other languages.

Based on our previous experience with writing the DINO compiler, the areas of compila-

tion that will effect the efficiency of the resulting programs the most include contracting

virtual processors into processes, communication, and the mapping of virtual processors

to the target machine.
The contraction of virtual processors to one process per physical processor is probably

the most crucial aspect of the compilation of Dino2, and must be done for each composite

procedure. The reason that this step is crucial is that the contraction of composite

procedures neads to nearly minimize communications and the overhead of simulating

parallel tasks. On current parallel machines, accomplishing this is a very important

aspect of developing efficient code.
In general, it is expected that there will be more virtual processors than actual pro-

cessors. Furthermore, the number of virtual processors and actual processors will not

be known until run-time. To accomodate these variations, each composite procedure,

on entry, will have to compute a set of integer offsets that are used to describe the vir-

tual processors and data located on each physical processor. These values are then used

within the body of the procedure.
The bulk of the compilation strategy used to compile composite procedures depends
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on tile synchronization model and the type of communicationsused within the proce-
dure. The compilation of SIMD compositeprocedureswould probably be the hardest
case because of the need to remove unnecessary synchronization points and to vectorize

communication and computation where possible. This work has previously been done,

however, in the C* compiler on the nCUBE [QHJ87] [HQL+91]. The C* compiler first

identifies points of communication and then, based upon this information, transforms the

control constructs of the program so the code executes on a MIMD machine using sends

and receives. From this transformation, several optimizations are performed to improve

the efficiency of the communications. These include moving sends as far forward as pos-

sible in the program and moving receives as far back as possible. Preliminary results

of the C* compiler for the nCUBE are fairly good. For example, in a parallel Gaussian

elimination program, the translated code ran 30% slower than the hand coded version.

Further results of this compilation have been discussed in [HQL+91]. This paper

describes measured speedups versus the number of processors on, among other machines,

an Intel IPSC/2. All times are compared to the best sequential time on a single node

of the processor. Although this doesn't compare the speed of hand coded programs to

that of what the C* compiler can do, it does illustrate how well SIMD programs can

be executed, excluding communication. Tile results range from a low of roughly 50%

efficiency for numerical integration, 80% for the Gauss-Jordan algorithm, and a high of

98% for computing primes. Typical results were in the 70-80% range. These results

are good and indicate that the SIMD model is viable for most programs. Where the

user needs better efficiency, a more explicit model giving the user more control over the
machine, such as SPMD, can be used.

The contraction of an SPMD composite procedure is dependent on whether it contains

communications or not. If there is no communication then the contraction is simply a

matter of adding a for loop around the body of the procedure. Detecting communication

is simply a matter of looking for what type of variables are read or written. If the variables

are all of type private then there will be Ilo communication. Alternatively, if remote or

buffered remote variables are declared and used to generate remote communications then

the compiler must generate code that preserves the order implied by the communication.

SPMD procedures that use buffered remote variables could be implemented using

light-weight processes, or threads (see e.g. [EZ91]). However, it should be possible for

the compiler to generate code that simulates threads. Such code would not be interrupt

driven and would probably be more efficient than a general purpose threads package.

This is possible because the compiler can generate code specifically for a given composite
procedure while a run time system must handle the most general case.

The general methodology used in the translation of an SPMD procedure with commu-

nications as follows. Tile translated program is broken into a sequence of statements of

reentrant blocks of code. The blocks are delimited by reads to buffered variables as these

are the only times that a process can block. Variables that are declared to be buffered

remote ill the Dino program will consist of a list of values that have been buffered but

have not been read. In the case where virtual processes have blocked waiting for a value,

this type of variable will point to a list of virtual processors that have blocked reading
the variable. A C switch statement is used to simulate each block of code. Each case

statement represents one block of code. At tlle end of each block, a virtual process will
either block on a remote read and stop executing, or it will continue to the next block. A
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composite proc() [N: id]

{
float buff x[N] map Element();

float q;

$1;

x[_()] = ia;

$2;

q = x[g()] ;

S3;

}

Figure 5. A SPMD composite procedure with buffered communications

while loop around the switch statement cycles until all of the blocks for all of the virtual

processors have completed executing. In order to generate blocks that are reentrant the

compiler must generate variables for ally values that will be used in more than one block

and would normally be stored on the processor stack. Thus, a context switch is little

more than changing an index that describes which virtual processor is being executed.

The simulation of SPMD virtual processors in this manner should be more efficient than

using a general purpose threads package.
To illustrate this approach, Figure 5 is a SPMD composite procedure that contains

three statements separated by a remote write and a remote read. A possible trans-

lation of this example that could be performed by a compiler is given in Figure 6. In

the translated program some of the declarations and expressions have been replaced by

comments for clarity. In this example, the N virtual processors are contracted onto a

single physical processor. The more general situation, where the virtual machine is con-
tracted onto two or more real processors, is not shown because the example would be

more complicated without adding much to the basic ideas. The main difference would

be that communications between virtual processors is slightly different.

In the translated program the buffered remote variable x is translated into a struct of

type x_buff that is a list of values or blocked virtual processes. The state of each virtual

processor is contained in the array proc_vp. This includes the block of code that is to be

executed next, state, and the value of the remote read. One additional data structure,

ready_que, that is required is the queue of ready virtual processes. This is similar to the

blocked queue associated with each buffered variable.
The code in Figure 5 is broken into two blocks when translated. These include

everything up to and including the read to x[g()], and everything after that. In this

case the value of the remote read is the only value that needs to be explicitly stored.

This value is stored in x_tval. In this example, each virtual process starts off executing

the first block. In the first block, a remote write buffers the value in the buffer associated

with x[f()]. This is done in write_x and is not shown here. After the write, a virtual

processor executes S2 and then attempts to read x[g()]. If no value exists then the
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struct x buff{

/*contains list of buffered values*/

/*or a list of blocked vps*/

};

struct proc_state{

int state;

struct proc_next *next; /*used to keep vps in ques*/

float x_tval[id]; /*values associated with remote read for each vp*/

proc(){

struct x_buff x IN];

float q[N] ;

struct proc_state proc_vp [N] ;

struct proc_state *ready_que;

initialize_proc_state();

/*initialize the status of each virtual process

and place in the ready queue*/

while ( /*ready queue not empty*/){

id = /*id of first element in ready queue*/

switch(proc_vp[id].state){

case I:

$1;

write_x(f(),id);

/*put id into the buffer for x[f()] or

put a blocked vp in ready queue*/

$2;

proc_vp[id].x_tval = read_x(g(), id);

/*if a value is buffered for x[g()] take it and continue

else block this vp on x[g()],/
case 2:

q[id] = proc_vp[id].x_tval;

$3;

remove_vp(id); /*remove this vp from the ready queue*/
}

Figure 6. Translation of a SPMD procedure with buffered communications
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virtual processor is blocked on that value. This is done in read_.x. As soon as a write

is made to the variable that this process is blocking on, that value is assigned to the

temporary variable x_tval associated with the blocked process and the process is placed

back in the ready queue. After successfully reading the value, it is assigned to the local

value of q and $3 is then executed before the virtual processor is removed from the ready

queue. Execution ends when the ready queue is empty.
Another case in which SPMD procedures are contracted is the chaotic SPMD model,

or where SPMD procedures use remote variables as opposed to buffered emote variables.

The compiler should make some attempt to keep this "fair" when executing the composite

procedure on a single real processor. The compiler could execute all of the code for each

virtual processor before executing the code of any other processor but this would probably

not have the intended effect. A better method would consist of breaking the code into

blocks, as if the remote variables were buffered remote, and always changing to another

virtual process at each remote read.

The implementation of constructs that generate communication is another critical

element in the compilation of Dino2 programs. The two types of constructs that create

communication are the remapping of data between modules, and implementing remote

reads and writes of distributed data. The remapping of data between modules is imple-

mented similarly to remote writes, and could be handled by the compiler in a similar

manner. Therefore we don't discuss it separately, since remote writes are discussed be-

low. It would probably be advantageous to also have special libraries to handle common

remappings very efficiently.
The two types of variables that can create communications are remote and buffered

remote variables. Since the communication semantics are an explicit part of the language,

it is fairly easy for the compiler to determine where in the program communication will

be generated. In the SPMD model, it is always assumed that reading or writing a remote
or buffered remote variable will always generate communication. In the SIMD model,

optimization are used to try to avoid putting in calls for communication where it is not

needed. These optimizations are well understood, see e.g. [HQL+91] or [HKT91].

The primary concern in implementing these variables is the minimization of message

startup times, or latency. Message latency has both a hardware and software compo-
nent. The hardware component is decreasing with newer machines. As an example, the

iPSC/860 has a hardware latency of roughly 25#s and the Intel Paragon will have a

roughly l#s hardware latency [RS92]. The software latency, when based on messages,

is roughly in the range of 30-100#s. This large time is dependent on the very general

nature of the library underlying the message interface. In the general case, these libraries

must handle messages of any length arriving at any time. There is a large opportunity to

greatly reduce the software latency by taking advantage of knowledge about how com-
munication is used in a program. For communication intensive programs, it is quite

reasonable for a compiler to be able to generate communication that runs faster than if

the code were hand coded using messages. Furthermore, as the latency is reduced, the

need to aggregate messages will become less important.
One technique for generating efficient communications would be to use a system sim-

ilar to Active Messages [vECGS92]. An active message is essentially an asynchronous

remote procedure call (RPC) and consists of a procedure id and parameters to the proce-
dure. The RPC mechanism is much more efficient than a message based system because
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the systemdoesnot handle any low level details of handling messages such as buffering

or type checking. Instead, all the system does is invoke the correct procedure and let

the procedure handle what needs to be done. In this manner, only the services that are

required are implemented and used. On tlle CMS, the use of active messages has reduced

the message latency from roughly 70#s to less than 5#s.

In this context, active messages can be used to generate remote reads and writes in a

fairly obvious manner. There are RPCs corresponding to both remote reads and writes.

Buffered variables can be implemented with a buffer associated with each variable. This

will provide faster access than having one large buffer consisting of tagged messages that
must be interpreted for each access.

The final aspect of compilation that is of interest is the placement of virtual processors

onto the target machine. This mapping is partially specified by the programmer and can

be either static or dynamic. In the static case it is assumed that each virtual processor in

a composite procedure takes the same amount of time to execute. If this is not an appro-

priate model than the programmer should use a dynamic mapping or must use an explicit

technique to do the mapping. The mapping of static composite procedures is based on a

simple set of rules and a static analysis of the program. Each composite procedure call

divides the number of virtual processors by the number of available processors and then

maps the composite procedure based on the mapping function specified. This is done so

that adjacent virtual processors in the virtual processor data structure are on the same

physical processor as often as possible, and generally are on adjacent physical processors
otherwise. Techniques for accomplishing this for conlmon structures are well-known and

are similar to blocking and distributing data arrays onto arrays of virtual processors. It

is important that the mapping does not change throughout the execution of the proce-
dure. By doing this, it is guaranteed that the distributed data will not be moved and

communication can always be sent directly to the correct processor. Furthermore, in the

cases where there does not need to be any comnmnication for remapping of parameters

(the actual and formal parameters have the same type of mapping) there does not need

to be any communication generated. In this case a composite procedure call can be
implemented with a simple procedure call.

The second type of mapping, a dynamic one, could be supported using either a

centralized or distributed task allocation scheme such as that found in [HL86] or [LK86].

This ability to dynamically schedule tasks is similar to self scheduled loops in [Jor87].

A difference is that communication between processors is only allowed, in the form of

parameters, at the start and end of the composite procedure call. This is done because of

the difficulties in implementing communications ill an environment where the placement
of virtual processors is not known until they are executed. It would be difficult to

implement communications because the location of a variable would be hard to find

without going back through the mechanism that distributed the tasks.

7 Conclusion. The Dino2 language provides several new features for writing large,

modular parallel programs. These include : l) the provision of two synchronization

models, SIMD and SPMD, that can be used in conjunction with parallel computation

modules; 2) the ability to combine SIMD modules, SPMD modules, and normal C pro-

cedures using nested and phased parallelism to obtain complex parallel programs; and 3)
the provision of communication types for distributed variables that define the commu-
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nication semantics associated with reads and writes to these variables. These features

provide the user with a flexible and expressive parallel programming language that still

should be easy to use and result ill efficient code. By modularizing tile degree of par-

allelism, tile synchronization model, and the communications, programs can be written

using a wide range of techniques that are not possible to combine in other languages
without introducing unmanageable complexity into some portion of the code. This flex-

ibility to combine different parallel algorithm paradigms will be needed to write parallel

programs for many large, complex scientific computations. Tile modularity should also

help in writing large programs because parallel ,nodules can be written independently.
Finally, the characteristics of the modules have been designed to permit efficient execu-

tion. Many implementation considerations associated with the language are discussed in

[Ros91], but a full implementation of the language has not yet been performed.
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