
NASA Contractor Report 191164

//

Blading Models for TURBAN and CSPAN
Turbomachine Design Codes

Arthur J. Glassman

University of Toledo

Toledo, Ohio

July 1993

Prepared for
Lewis Research Center

Under Grant NAG3-1165

National Aeronautics and
Space Administration

(_AS_-C_-191164) bLAOING MODELS

fC;_ TUwkr_A_i A_.P' C3PAN TURBOMACHINE

L_E;31G,_Q CCDES Fin,_l Report (Toledo

Univ.) 9 _i

_3/o2

N94-I1203

Unclas

0180074





Blading Models for TURBAN and CSPAN Turbomachine Design Codes

Arthur J. Glassman

University of Toledo

Toledo, Ohio 43606

SUMMARY

This report presents blading models that were added to the turbine design code TURBAN and the

compressor design code CSPAN. TURBAN is a meanline code based on a stage-average velocity diagram;
CSPAN is a spanline code based on isentropic simple radial equilibrium. These blading models were all based

on previously published correlations and analyses. Estimates of blade chord length, axial length, and number of
blades for each blade row are now provided by each code.

Added to TURBAN were (1) calculation of axial solidity based on a cascade loading model and

(2) calculation of blade stagger angle (i.e., blade chord angle) based on a blade geometry having a suction sur-
face with circular-arc turning and straight transition sections at inlet and exit. A blade geometry model using a
circular-arc camber line was added to CSPAN for calculating compressor blade stagger angle. Also added to

CSPAN, because of their greater significance for compressors than for turbines, were calculations of incidence

angle and deviation angle based on cascade correlations.

INTRODUCTION

Computer codes TURBAN (ref. 1) and CSPAN (ref. 2) were developed to perform preliminary sizing

analyses for turbines and compressors, respectively. TURBAN is a meanline code based on a stage-average

velocity diagram; CSPAN is a spanline (i.e., constant span-fraction sectors) code based on isentropic simple

radial equilibrium. These codes provide the means for obtaining number of stages, flowpath inner and outer
radii, flow velocities and angles, and efficiencies for these turbomachines. They utilize rapid approximate

methodologies as is desired for conceptual design studies.

In order to be used for engine studies, component design programs must provide the information needed

for computing engine dimensions and weight. Both TURBAN and CSPAN provided radial dimensions, but
each had some shortcomings. Although TURBAN did include an axial length calculation, it did not provide
blade number or blade chord. On the other hand, CSPAN had the capability to provide blade number and blade

chord from the aspect ratio and solidity inputs, but it estimated the axial length by using the chord dimension.

These shortcomings were remedied by adding a solidity computation to TURBAN and a blade geometry model

to both codes. In addition, incidence and deviation were incorporated into the blade angle computation in

CSPAN because of their significance in compressors.

This report presents the analytical methods used for the solidity model in TURBAN and for the

geometry models in TURBAN and CSPAN. Typical modeling results are illustrated. These methods were not

developed by the author but were already available in the literature.

SYMBOLS

a suction-surface, circular-arc radius in turbine blade model

b solidity exponent in deviation angle relation
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c blade chord length

i incidence angle

K5 maximum thickness correction factor in deviation angle correlation

K i maximum thickness correction factor in incidence angle correlation

m solidity coefficient in deviation angle correlation

n solidity coefficient in incidence angle correlation

s blade spacing

[_ flow angle or blade angle

y blade chord angle

_5 deviation angle

(r solidity

blade camber angle

lpz Zweifel loading coefficient

Subscripts:

ac annular cascade

opt optimum

x axial component

0 tangential component

0 zero camber

1 blade inlet

2 blade exit

2D two-dimensional cascade

10 blade maximum thickness-to-chord ratio of 10 percent

TURBAN MODELING

The computation of engine dimensions and weight requires knowledge of flowpath radii, axial length,

blade chord length, and number of blades for each turbine and compressor blade row. The flowpath radii and



axial length for turbines were already provided by TURBAN. In order to determine number of blades and blade

chord length, a cascade loading model to compute axial solidity (ratio of blade chord axial projection to blade

spacing) and a blade geometry model to compute stagger angle were added to the code. The derivations of the

models will be referenced, and only the f'mal expressions as used in the computer codes will be presented

herein.

Axial Solidity

Zweifel (ref. 3) derived the following expression by equating the tangential force exerted by a fluid

flowing through a two-dimensional cascade of blades to the tangential force due to the blade pressure loading:

2 cos _2
Ox - sin (t51 132)

Yz cos 131

The derivation of this equation is also presented in reference 4. Equation (1) shows that axial solidity a x

depends only on the blade inlet and exit flow angles and on the tangential loading coefficient Xpz,which is the

ratio of actual blade loading to Zweifel's ideal loading.

(1)

According to reference 3, minimum loss occurs when the Zweifel loading coefficient lpz is equal to 0.8. By

using this value in equation (1), optimum axial solidity can be determined as a function of the blade inlet and
exit flow angles, and this is plotted in figure 1, which is reproduced from reference 4. Turbines, especially at

the mean section, will generally operate in the region below the curve for the impulse blade row.

Stagger Angle

In order to determine the blade chord len_h, as well as the optimum value of actual solidity (ratio of

blade chord to blade spacing), it is necessary to calculate the stagger angle y because

°x cx (2)
cos y - -

c

An analytical blade model was used in reference 5 to relate stagger angle to the flow angles and the axial

solidity. This model, which is shown in figure 2, is based on the assumptions (1) that the leading and trailing

edges have zero thickness, (2) that the suction-surface lengths from J tO K and from L to M are straight and set
at the inlet and exit flow angles, and (3) that the suction surface from K to L is a circular arc of radius a.

The equations used to compute stagger angle are

c o
tany =

(_x

(3)

CO = sin2151 - a(cos 151 - cos _2) - sin2132
(4)



a x - sin 151cos 151 + sin 152cos 152 (5)
a _

sin 151 - sin 132

where the axial solidity o x is obtained from equation (1).

For optimum loading (_Pz= 0.8) the stagger angle as a function of blade inlet and exit flow angles is
presented in figure 3. The values computed by this model are generally within 5 ° to 15° of the stagger angles

of real turbine blades having blunt leading edges and uncovered turning (i.e., suction surface curvature beyond

the throat). The optimum actual solidity as a function of blade inlet and exit flow angles is presented in fig-

ure 4, which is reproduced from reference 4.

CSPAN MODELING

The CSPAN code already provides for calculating blade chord length and number of blades through the

aspect ratio and solidity inputs for each blade row. However, the chord length determined from the aspect ratio

is also used as the axial length of the blade. In order to provide realistic values for both chord length and axial

length, a blade geometry model to compute stagger ar_gle was added to CSPAN. Because incidence and devia-

tion are more significant for compressors than for turbines, incidence angle and deviation angle correlations
were also added to CSPAN.

Stagger Angle

The camber angle for compressors is much smaller than that for turbines, and for preliminary studies a
circular arc is commonly used to model blade shape. For a circular-arc blade, equations (3) to (5) reduce

simply to

y __

151 + 152 (6)
2

Incidence and Deviation Angles

The incidence and deviation angles are defined as the flow angle minus the blade angle at the blade inlet

and exit, respectively. The annular cascade correlations described in reference 6 were initially selected for

incidence and deviation modeling. While testing these models against incidence and deviation angles published

by engine manufacturers for NASA-program compressors, it was noted that the three-dimensional correction for

incidence appeared to be excessive. A better match with published values of incidence angle was obtained by

using the two-dimensional cascade correlation. Therefore, the incidence and deviation angle correlations used
were

- • (7)

+ m + (_)ac__)2D)= 7 * (8)



The parameters for equations (7) and (8) (i.e.,/_-, (i0)10, n, Ks, (_0)10, m, b, and 8ae - _i2D) are plotted in
reference 6 as functions of blade thickness, solidity, inlet angle, and inlet Math number. These parameters are

evaluated in CSPAN by using analytical functions from the code of reference 7. Incidence angles and deviation

angles computed by CSPAN for the mean section of a 10-stage compressor are shown in figure 5 as an example
of the levels encountered. Values for other compressors would vary somewhat depending on the velocity

diagram and the blading geometry.

SUMMARY OF RESULTS

Computer codes TURBAN and CSPAN were developed to perform preliminary sizing analyses for
turbines and compressors, respectively. These codes provide the means for obtaining number of stages,

flowpath inner and outer radii, flow velocities and angles, and efficiencies for these turbomachines. To be used

for engine studies, these programs must provide the information needed for computing engine dimensions and

weight, including such additional information as blade axial length, blade chord length, and number of blades.

In order to provide both codes with the capabilities to compute all necessary information, additional

modeling was required. Added to TURBAN were (1) calculation of axial solidity based on a cascade loading
model and (2) calculation of blade stagger angle based on a blade geometry having a suction surface with

circular-arc turning and straight transition sections at inlet and exit. A blade geometry model using a circular-
arc camber line was added to CSPAN for the calculation of compressor blade stagger angle. Also added to

CSPAN, because of their greater significance for compressors, were calculations of incidence angle and

deviation angle based on cascade correlations. The models used for these computations are documented in this

report. These models were not developed by the author but were all available in the literature.
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