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Abstract

Many CFD (computational fluid dynamics) and other scientific applications can be

partitioned into subproblems. However, in general the partitioned subproblems are

very large. They demand high performance computing power themselves, and the so-

lutions of the subproblems have to be combined at each time step. In this paper, the

cube-connect cube (CCCube) architecture is studied. The CCCube architecture is an

extended hypercube structure with each node represented as a cube. It requires fewer

physical links between nodes than the hypercube, and provides the same communica-

tion support as the hypercube does on many applications. The reduced physical links

can be used to enhance the bandwidth of the remanding links and, therefore, enhance

the overall performance. The concept and the method to obtain optimal CCCubes,

which are the CCCubes with a minimum number of links under a given total number

of nodes, are proposed. The superiority of optimal CCCubes over standard hypercubes

has also been shown in terms of the link usage in the embedding of a binonlial tree.

A useful computation structure based on a semi-binomial tree for divide-and-conquer

type of parallel algorithms has been identified. We have shown that this structure can

be implemented in optimal CCCubes without performance degradation compared with

regular hypercubes. The result presented in this paper should provide a useful approach

to design of scientific parallel computers.

*This research was supported in part by the National Aeronautics and Space Administration under NASA con-

tract NAS1-19480 while the first author was in residence at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

Rapidly advancing technology has made it possible for a large number of processors to be intercon-

nected to form a single multiprocessor system. In recent years, the multiprocessor approach has

been shown to be the most straightforward and cost-effective way for achieving high performance.

However, the way in which processors, memory modules, and switches should be interconnected

to form an efficient architecture remains a research issue. Parallel computers have been built with

a variety of architectures. One of the popular parallel architectures is the hypercube architecture

[16], also known as the binary n-cube, which contains 2'_ processors, each of which is connected

by fixed communication links to n other nodes. The value n is known as the dimension of the

hypercube. In a hypercube structure two nodes are connected if and only if their addresses differ

in one and only one bit.

The hypercube structure has many desirable properties. It is symmetric. Any n dimensional

cube can be divided into two n - 1 dimensional cubes. Many other topologies, such as ring, mesh,

and tree, can be mapped into the hypercube topology. It is rich in connection, a message can be

transferred from one node to all the other nodes in a total of n steps in an n-cube. Extensive

research efforts have been focused on hypercube design aspects and hypercube applications. Most

of the first generation and second generation distributed-memory multiprocessors are based on

hypercube architecture. Examples of these commercial products include FPS's T series, Ncube's

nCUBE, Ametek's S/14, Intel's iPSC, and Thinking Machine's Connection Machine, which is a

hypercube interconnected bit-serial SIMD machine.

Efforts have also been made to vary the hypercube topology to obtain better interconnection

networks. Many variations of the hypercube topology, such as twisted hypercubes [5], enhanced

hypercubes [21], extended hypercubes [11], bridged hypercubes [3], incomplete hypercubes [10] and

Fibonacci cubes [7], balanced hypercubes [8] and folded hypercubes [4], etc., have been proposed.

These new architectures keep the desirable properties of hypercubes, and incorporate new features

that are more suitable for some specific applications and objectives. The Cube-Connected Cube

(CCCube) structure [23] is one of the variations of hypercube topology. A CCCube is an extended

hypercube structure with each node represented as a cube. With the same number of processors, A

CCCube requires few physical links than a comparable hypercube and provides the same support

as the hypercube does in many ways. The routing and broadcasting algorithms in the CCCube

have been discussed in several previous studies [6], [23].

The parallel divide-and-conquer paradigm is a computation paradigm which partitions a single

complex problem into a set of subproblems, which are further divided until every independent

subproblem has been broken up sufficiently. After all the subproblems have been solved, data (or

results) are collected. The above process can be represented by a binomial tree structure. Lo et al.

[12] have shown that the binomial tree is an ideal computation structure for parallel divide-and-



conqueralgorithms,andis superiorto the classicfull binary treestructurewith respectto speedup

and efficiency.Sincea largenumberof parallelalgorithmsaredivided-and-conquerin nature,the

ability to embed(or map)a binomialtree into a networkcanbeconsideredan important measure
of the network.

This paperstudiesthe capabilityof embeddinga binomialtree in a CCCube.Wefirst prove
that an /-level binomial tree can be embedded in any (m, n)-CCCube, where m is the dimension

of the outer cube and n is the dimension of the inner cube, provided that m + n _> i. With the

objective of embedding a binomial tree in a CCCube using as few links as possible, we define an

optimal CCCube as being one with the minimum number of links for a given number of processors.

Reducing the number of links will lead to a higher bandwidth of the remanding links, lower network

contention, and thus better overall performance. The selection of an optimal CCCube for a given

binomial tree is also provided in this paper. Comparison is made between CCCubes and standard

hypercubes in terms of the link usage in the embedding of binomial trees. We also identify a class

of parallel algorithms that is best suited for optimal CCCube structures. This class of parallel

algorithms is based on the semi-binomial tree proposed in this paper.

This paper is organized as follows: Section 2 discusses embedding binomial trees in CCCubes.

The determination of optimal cube-connected cubes is discussed in Section 3. Section 4 identifies

a class of parallel algorithms based on the semi-binomial tree structure. A parallel merge sorting

example is used to illustrate how to run the proposed algorithm on optimal CCCubes. Section 5

presents conclusions. A comprehensive comparison of CCCubes with other cube-based systems has

been done in [22], and a comparison of CCCubes with Cube-Connected Cycles (CCC) [15] can be

found in [13]. The use of CCCubes in other applications can be found in [23] and [24].

2 Embedding of Binomial Trees in CCCubes

An (m, n) cube-connected cube [23], or (m, n)-CCCube, is defined as an m-dimensional hypercube

(outer-cube) with each node in the hypercube being an n-dimensional hypercube (inner-cube).

Assume that gmgm-1...gllnln-1...ll is the binary address associated with each of the 2 m+n nodes

in an (m, n)-CCCube, where gmgm-1...gl is the global address and Inln-1...ll is the local address.

The least significant bit, gl, of the global address will be referred as global dimension 1, and so

on. Similarly, the least significant bit of the local address designates local dimension 1, and so on.

There are m global dimensions and n local dimensions in an (m, n)-CCCube. More formally, we

have the following recursive definition of an (m, n)-CCCube:

Definition 1 • A (0, n)-CCCube is an n-dimensional hypercube Qn, with one node in (0, n)-

CCCube a designated port node.
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Figure I. Constructions of (3, 2) CCCube

• Suppose G and G _ are disjoint (m - 1,n)-CCCubes for m >_ 1. Then the graph obtained by

adding edges between all the port nodes in G and the corresponding port nodes in G _ is an

(m, n)-CCCube. All the port nodes in G and G' are the port nodes in this (rn, n)-CCCube.

Figure i illustrates the rule for building a (3, 2)-CCCube. Basic properties of a CCCube have

been studied in [23], as well as routing and broadcasting algorithms.

The cube-connected cube architecture has many desirable properties. If we view the inner-

cubes as nodes, then the outer-cube forms the hypercube architecture. Therefore, the architecture

is symmetric, rich in connection, and can be partitioned into subcubes. The nodes in each inner-

cube provide much higher computation power than a single processor. This two-level hypercube

architecture fits many scientific applications well. For instance, the 3-D turbulence simulation

code CDNS (Compressible Direct Simulation of Navier-Stokes) [17], which is used in and out of

the NASA Langley Research Center for basic research in the physics of compressible homogeneous

turbulence, calculates spatial derivatives with a sixth-order compact scheme. The compact scheme

requires solutions of a large sparse system with multiple right sides, where each right side can be

solved on an inner-cube concurrently, and then the solutions of each inner-cube can be combined

through the outer-cubes in the next time step. In general, the two-level computation, or partition

computational paradigm, is applicable to any simulation based on the compact scheme. It is also

applicable to any simulation code based on the alternating direction implicit (ADI) method and

the fast Poisson's solvers [17].



CCCubesalsosupportany program paradigm supported by hypercubes. For example, the to-

tal data-exchange communication [19], the data-gathering communication, and the data-scattering

communication [18] all requires log(n) communication steps on an n-dimension hypercube, there-

fore, they require no more than log(m)+ log(n) communication steps on a (m,n)-CCCube. In

many cases, the CCCube architecture provides better support than a two-level hypercube. As we

mentioned in Section 1, the divide-and-conquer paradigm is one of the dominating computation

paradigms in parallel processing. The partition paradigm given above can be seen as a special case

of the divide-and-conquer paradigm. In this section, we prove that CCCube provides hypercube-like

support for the divide-and-conquer paradigm.

One of the most conventional graph representations of divide-and-conquer algorithms is the

binomial tree [1]. More specifically, an i-level binomial tree, B_, can be recursively defined as

follows:

Definition 2

• Any tree consisting of a single node is a Bo tree.

• Suppose that T and T I are disjoint Bi-i trees, for i >_ 1. Then the tree obtained by adding an

edge to make the root of T become the leftmost offspring of the root T _ is a Bi tree.

Figure 2 shows the construction of high level binomial trees from low level binomial trees. Lo et

al [12] show the binomial tree structure as an ideal computation structure for parallel divide-and-

conquer algorithms, and show its superiority to the classic full binary tree structure, with respect to

speedup and efficiency. Therefore it is important to study the embedding of a binomial tree into a

CCCube. In general, the embedding problem on cube-based systems [2], a restricted version of the

mapping problem [14], is the problem of mapping a particular graph structure G to a cube-based

system G _. The goal of the mapping problem is to find a mapping that minimizes the length of

the path between communication processes in this graph structure G. Reducing the length of the

communication path is important. Even with the new routing schemes, such as wormhole routing

or circuit switching, shortening the path length will reduce the network contention and achieve

better performance [20]. Dilation and congestion are two measures used to measure the quality

of an embedding, where dilation is the maximum length in G' of the image of an edge of G and

congestion of an edge of G' is the number of images of edges of G that pass through it.

Theorem 1 An i-level binomial tree can be embedded with unit dilation in any (m, n) CCCube,

provided that m + n >_ i. In addition, the root node of this i-level binomial tree can be mapped to

any port node in the (m, n)-CCCube.

Proof: We only need to show that an/-level binomial tree can be embedded in any (m, n)

CCCube, where m + n = i. We prove it by using induction on m. When m = 0, any (0, i)-CCCube
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Figure 2. Binomial trees

is an /-dimensional hypercube Qi. Therefore, an /-levelbinomial tree can be embedded in this

(0,n)-CCCube [16] and the root node willbe mapped to the only port node in the (0,i)-CCCube.

Suppose when m _ i - I, a/-level binomial tree B,',with i > m can be embedded in any (m, n)-

CCCube, such that m + n - i,and itsroot node to one of the port nodes. When m = i,a/-level

binomial tree, Bi, with i > m, I can be decomposed into two disjoint (i- 1)-levelbinomial trees:
I

B_-I and Bi_ I with an edge connecting two root nodes of these two trees.Also, any (m, n)-CCCube

can be decomposed into two (m- I,n)-CCCubes, G and G _,with edges connecting the port nodes

of G and G t. Based on the assumption, B_-I can be embedded in G with the root node assigned

to any one of the port nodes, say a, in G. SimJ.larly,B_-I can be embedded in G' with the root

node assigned to the port node a_,the matching node of a in G. Since a and aI are connected in

the (m, n)-CCCube, the edge that connects the root node of B_-I and B'i-_ can be mapped to the

edge that connects a and £. c]

3 Finding the Optimal Cube-Connected Cube

Let m, n be the dimension of the outer-cube and the inner-cube, respectively.The following theorem

determines how to choose m (or n) based on a constant c -- m + n, i.e.,a fixed number of nodes,

tWe don't need to consider the case where i -- m, since the corresponding (i,0)-CCCube is _n i-dimensionai

hypercube.



such that the (m, n)-CCCube has a minimum number oflinks.

Note that in an (m,n)-CCCube, the totalnumber of nodes IVI = 2m+'_ = 2c and the total

number of linksIEI = c •2c-I - m(2"-2"_)We representc = 2k + l,where 0 < l < 2k-l,that is,2

k = [logcJand l= c- 2Ll°gcj.

Theorem 2 To obtain an (m, n)-CCCube with a minimum number of links, the selection of m,

under a given constant c = m + n, where e = 2 k + l,O < l < 2k - 1, is as follows:

1. If l > k - 2 then m = 2 k + l- k- 1, namely m = c- [logcJ - 1, and the minimum number

of links is IEI = 2c-tl°gcJ-l( c + ([log eJ + 1)2tlogcJ+l _ [logcJ).

2. Ill < k - 2 then m = 2 k + 1 - k and the minimum number of links is IEI = 2c-[l°gCJ(c +

LlogcJ2Llog*J- [logcJ+ 1).

Proof: When c = m + n isfixed,to obtain the minimum value c •2c-_ - m(2"-2"_)2of the

number oflinksin an (m, n)-CCCube, with a given constantc = m + n, isequivalentto obtaining

the maximum valueoff(m) = m(2C-2'_). Note thatf(m+l)-f(m) = (re+l)(2c-2 '_+I)-m(2 c-

2'n)= 2c- 2rn(m + 2) ismonotone decreasing.Therefore,at p = max{m + llf(m + I)- f(m) Z

0}, f(m) reaches its maximum value, f(p). Also, if f(p)- f(p- 1) = 0, both f(p) and f(p- 1)

have the maximum value.

To find p we first determine its range by considering the following two cases:

1. If m = 2k + l - k + l, then

f(m + I)- f(m)

therefore, p _<2 k + l - k + 1.

2. If m=2 k+l-k-l,then

= 2 c - 22_+1-k+1(2 k + I -- k + 1 + 2)

= 2c-k+1(2 k-1 - 2 k - l + k- 3)

= --2_-k+1(2 k-1 + l + 3 -- k) < 0;

f(m + 1)- f(m)

therefore, p > 2 t¢+ l - k.

= 2c-22k+/-k-l(2 k+l-k-l+2)

= 2c-k-a(2 k+l -- 2 k -- l + k- 1)

= 2c-k-1(2 k-l-l+k)>0;



Table 1. Optimal selection of m's under given c's, 1 < c < 32

C,

1

2

3

4

5

6

7

8

p c_ p

0 9 6,7
1 I0 7

2 11 8

2,3 12 9
3 13 10

4 14 11

5 15 12

6 16 13

c, p c, p
17 14 25 21

18 14,15 26 22
19 15 27 23

20 16 28 24

21 17 29 25

22 18 30 26

23 19 31 27

24 20 32 28

Table 2. The number of finks in optimal CCCubes and in compatible hypercubes

c, lcub,, locccube
1 1 1 9

2 3 4 10

3 8 12 11

4 20 32 12

5 44 80 13

6 96 192 14

7 208 448 15

8 448 1024 16

C, lcube_ locc_be

960 2304

1984 5120

4096 11264

8448 24576

17408 53248

35840 114688

73728 245760

151552 524288

With the above determined range of p, let us examine the case where m = 2k + l - k,

f(m+l)-f(m) -" 2*--22k+"-k(2 k+l-k+2)

= -2*-k(I- k + 2).

Therefore, when 1 - k + 2 _< 0, p = 2 k + l - k + 1; and when 1 - k + 2 >_ 0, p = 2 k + l - k. rt

Table 1 shows those p's under given c's, with c ranging from 1 to 32. Table 2 compares optimal

CCCubes with compatible hypercubes in terms of number of links used, where c stands for the

dimension of hypercubes, loccc,,b, for the number of finks in optimal CCCubes, and Ice,b, for the

number of finks in hypercubes. Figure 3 shows the optimal CCCube structure with c ranging from

1 to5.

Figure 4 shows the comparison between the standard hypercube and the optimal CCCube in

terms of link usage in the embedding of binomial trees, which is measured by the number of edges

in a binomial tree divided by the total number of edges in hypercubes or optimal CCCubes.
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Figure 3. Optimal CCCubes
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4 Execution of Parallel Algorithms on Optimal CCCubes

The most conventional graph representations of parallel-and-conquer algorithms are trees, such as

binary trees and binomial trees. Divided-and-conquer algorithms normally involve three steps[9]:

broadcasting, computation, and aggregation. The broadcasting phase distributes load to different

nodes from one or more I/O nodes which has I/O function. The load should be evenly allocated to

all nodes to reduce total execution time. The computation phase performs the computation required

by each subproblem. The aggregation phase is normally a reverse procedure of broadcasting, and

represents a collection process of results.

We study a computation structure based on a semi-binomial tree to implement parallel divide-

and-conquer algorithms. In a semi-binomial tree, every node in the second level of the tree is the

root node of a binomial tree. Figure 5 shows a semi-binomial tree with two second level nodes each

of which is the root node of a B3. In a CCCube structure, if we use the host as the root node of a

semi-binomial tree and each I/O node (normally a port node) as the node at the second level of the

tree, we can easily construct a spanning semi-binomial tree. For example, when both port nodes in

the optimal (1,3)-CCCube are I/O nodes, the semi-binomial tree in Figure 5 is the corresponding

spanning tree.

The outline of a parallel divide-and-conquer algorithms based on the semi-binomial tree struc-

ture is a_ follows:

1. Give the host the problem to be solved.
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Figure 5. A semi-binomlal tree

2. The host divides the problem into m subproblems and assigns each to a distinct I/O node in

a CCCube. Normally m is the number of I/O nodes.

3. Each I/O node (theroot node of a binomial tree)dividesthe subproblem inhalfand passes

the firsthalfto the childwhich has the most descendantsand has not yet receivedwork. The

same processisappliedto the second half,untilallchildrenreceivework.

4. Every node performs the requiredwork associatedwith each subproblem.

5. The resultsare passed back to each I/O node, and are merged in the reverseorder when

subproblems are passed down the tree.

6. The host collectsresultsfrom each I/O node.

Note that in the above scheme, step I to step 3 correspondsto the broadcastingphase. Step

4 isthe computation phase where every node computes at the same step. Steps 5 and 6 are the

aggregationphase. To prevent potentialbottleneckat the host,computations atstep I and step6

should be relativelylight.

We use the merge sortingalgorithm to illustratethe proposed approach. Suppose a listof 32

elements (3, 2, 12, 7, 5, 1, 13, 45, 23, 43, 8, O, 11,34, 15, 16, 4, 9, 25, 30, 21, 31,54, 78, 89, 93, 63, 64,

29,20,10,41) is to be sorted in the optimal (1,3)-CCCube with two I/O nodes: I/O (1) and

lO



(3,2, 12, 7, 5. 1, 13, 45, 23, 43, 8. O, 11,34, 15, 16)

(12,

(5,1)

(3,2)

( 15. 16 )

(11,34)

23, 43)

(23, 43, 8, O, 11,34, 15, 16)

(3.2, 1

(11.34,15,16)

Figure 6. Broadcasting phase of merge sorting

I/O(2)(see Figure 3). First, the host divides the list into two sublists of length 16. Suppose I/0 (1)

receives sublist (3, 2, 12, 7, 5, 1, 13, 45, 23, 43, 8, 0, 11, 34, 15, 16). The sorting process of a sublist as-

signed to I/O (1) is demonstrated in Figures 6 and 7. Figure 6 shows the broadcasting process.

At the computation step every node, including I/O (1), performs a swap operation of two elements

if necessary. The aggregation phase (Figure 7) resembles the broadcasting phase, but the mes-

sage is distributed in the reverse order. At the end of the aggregation phase, the I/O (1} has the

sorted sublist (0, 1,2,3,5,7,8, 11, 12, 13, 15, 16,23,34,43,45). Similarly, I/O (2) has the sorted sub-

list (4, 9, 10, 20, 21, 25, 29, 30, 31,41,54, 63, 64, 78, 89, 93). Finally, the host collects and merges these

two sorted sublists.

The proposed parallel divide-and-conquer algorithms can be implemented in regular CCCubes

and hypercubes. Since there is no performance degradation when they are implemented in the

CCCubes which use the fewest number of links, the optimal CCCube is a cost-effective structure

for implementing this class of algorithms.

11
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(11,34)

23, 43 )
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o I
(11.15. 16.3,*)

Figure 7. Aggregation phase of merge sorting

5 Conclusions

This paper explored in detailsome propertiesof the Cube-Connected Cube (CCCube) structure,

a variantof the hypercube structure,with each node replacedby a cube. We consideredfirstthe

embedding of binomial tree,a usefulstructurefordivide-and-conquertypes ofparallelalgorithms,

into a CCCube. It was proved that an /-levelbinomial treecan be embedded intoany (m,n)-

CCCube, where m is the dimension of outer cube and n is the dimension of the inner cube,

provided that m + z_>_ i. With the objectiveof embedding a binomial treeintoa CCCube with

a minimum number of links,the selectionof an optimal (m, 7_)-CCCube under a given constant

c = m ÷ n was provided in thispaper. Comparison was alsomade between an (Trt,n)-CCCube

with a c-dimensionalhypercube in terms of the linkusage in the embedding of a c-levelbinomial

tree.A classofparalleldivide-and-conqueralgorithmwas proposed based on a semi-binomialtree

structure.Itwas shown thatoptimal CCCube isa cost-effectivestructureto implement such class

ofalgorithms.

12



References

[1] BROWN, M. R. hnplementation and analysis of binomial queue algorithms. SIAM Journal of

Computing. Aug. 1978, 161-164.

[2] CHEN, W. K., STALLMANN, M., AND GEHRINGER, E. Hypercube embedding heuristics: An

ecaluation. International Journal of Parallel Programming. 18, (6), 1989, 505-549.

[3] EL-AMAWY, A., AND LATIFI, S. Bridged hypercube networks. Journal of Parallel and

Distributed Computing. 1990, 90-96.

[4] EL-AMAWY, A., AND LATIH, S. Properties and performance of folded hypercubes. IEEE

Tran. on parallel and distributed systems. 2, (1), Jan. 1991, 31-42.

[5] ESFAHANIAN, A., Nl, L. M., AND SAGAN, B. E. The twisted n-cube with application to

multiprocessing. IEEE Transaction on Computers. 40, (1), Jan. 1991, 88-93.

[6] GOYAL, P., AND FERNANDEZ, E. Cube-connected cubes- a recursively defined network

architecture for parallel computation. Proc. 4th Conf. on Hypercubes. March 1989.

[7] Hsu, W. J., PAGE, C. V., AND LIU, J. S. Computing prefixes on a large family ofintercon-
nection topologies. Proceedings of the 1992 International Conference on Parallel Processing.

Vol 3, Aug. 1992, 153-159.

[8] HUANG, K., AND WU, J. Balanced hypercubes. Proc. of the 1992 International Conference

on Parallel Processing. Vol 3, Aug. 1992, 80-84.

[9] JAMIESON, L. n., GANNON, D., AND DOUGLASS, R. J. The Characteristics of Parallel

Algorithms. The MIT Press, 1987.

[10] KATSEFF, H. Incomplete hypercubes. Hypercube Multiprocessors. M. T. Heath, Ed., 1982,
258-264.

[11] KUMAR, J. M., AND PATNA|K, L. M. Extended hypercube: A hierarchical interconnection
network of hypercubes. IEEE Trans. on Parallel and Distributed Systems. 3, (1), Jan. 1992,

45-57.

[12] Lo, V. M., RAJOPADllYE, S., GUPTA, S., KELDSEN, D., MOHAMED, M. A., AND TELLE,

J. Mapping divide-and-conquer algorithms to parallel architectures. Proc. 1990 International

Conference on Parallel Processing. 1990, III, 128-135.

[13] Luo, Y., AND Wu, J. Gray-code-based cube-connected cubes, to appear in Congressus

Numerantium, 1993.

[14] NI, L., AND KING, C. T. On partition and mapping for hypercube computing. International

Journal of Parallel Programming. 17, (6), 1988, 475-495.

[15] PREPARATA, F., AND VUILLEMIN, J. The cube-connected cycles, a versatile network for

parallel computation. Comm. of ACM. May 1981, 30-39.

[16] SAAD, Y., AND SCHULTZ, M. H. Topological properties of hypercubes. IEEE Transactions

on Computers. 37, (7), July 1988, 867-872.

13



[17] SUN,X.-H., AND JOSLIN, R. A simple parallel prefix algorithm for compact finite-difference

scheme. ICASE Technical Report, 93-16, ICASE, NASA Langley Research Center, 1993.

[18] SUN, X.-H., AND Nl, L. A structured representation for parallel algorithm design on multi-

computers. In Proc. of the Sixth Conf. on Distributed Memory Computing (April 1991).

[19]

[20]

[21]

[22]

[23]

[24]

SUN, X.-H., Ni, L., SALAM, F., AND Guo, S. Compute-exchange computation for solving

power flow problems: The model and application. In Proc. of the Fourth SIAM Conf. on

Parallel Processing for Scientific Computing (Dec. 1989).

Sur_, X.-H., ZttANG, H., AND NI, L. Efficient tridiagonal solvers on multicomputers. IEEE

Transactions on Computers 4I, 3 (1992), 286-296.

TZENG, N. F., AND WEI, S. Enhanced hypercubes. IEEE Trans. on Computers. 40, (3),

March 1991, 284-294.

Wu, J. Broadcasting in injured hypercubes using limited global information. TR-CSE-92-39,

Dept. of Computer Science and Engineering, Florida Atlantic University, Nov. 1992.

WU_ J., AND LARRENDO-PETRIE, M. Cube-connected-cube network. Microprocessing and

Microprogramming. 33, (5), 1992, 299-310.

Wu, J._ AND WU, T. An efficient vector-matrix-vector multiplication on cube-connected-

cubes multicomputers, to appear in International Journal of Mini and Microcomputers, 1993.

14







REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

atheflncJ and ma0ntalnmg the data needed, and compCetlng 8na reviewing the Co,lec_on oT m_urmal,v. _¢.u _.,.,©.L= ._'_=. _ • .
cgoalle_lorl of informatton, inclc_ling Suggestions for reducing lh_s burclen. ,o Wa$hli_CJlOn HeadQua_ers Services, Oire_orate for Irl_ormatlort OoeratlOi_$ and RepOrts. 1215 Jefferson

Davis Hgghway. Suite 1204. Arlington. VA 22202-4302. _nd to the Office of Management and 8u_iget, Paperwork ReduCtion Pro ec_ (0704-01R8}, Vl_ington, OC 2050]

t. AGENCY USE ONLY _eave b_n_ 2. REPORTDATE

May 1993

4. TITLE AND SUBTITLE

OPTIMAL CUBE-CONNECTED CUBE MULTIPROCESSORS

6. AUTHOR(S)

Xian-He Sun

Jie Wu

7. PE_ORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

Michael F. Card

3. REPORTTYPE AND DATES COVERED

Contraeto_ Report
5. FUNDING NUMBERS

C NASI-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORTNUMBER

ICASE Report No. 93-23

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA CR-191463

ICASE Report No. 93-23

Subm. to Int'l J. on Micro-

computer Applications on Parallel

& Multiprocessor Architectures

1Za. DISTRIBUTION/ AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum 200 words)

Many CFD (computational fluiddynamics) and other scientificapplicationscan be partitionedintosubproblems.

However, in general the partitionedsubproblems are very large.They demand high performance computing power

themselves, and the solutionsof the subproblems have to be combined at each time step. In thispaper, the cube-

connect cube (CCCube) architectureisstudied. The CCCube architectureisan extended hypercube structure with

each node represented as a cube. It requires fewer physical linksbetween nodes than the hypercuhe, and provides

the same communication support as the hypercube does on many applications.The reduced physical linkscan be

used to enhance the bandwidth of the remanding linksand, therefore,enhance the overallperformance. The concept

and the method to obtain optimal CCCubes, which are the CCCubes with a minimum number of linksunder a

given totalnumber of nodes, are proposed. The superiorityof optimal CCCubes over standard hypercubes has also

been shown in terms of the linkusage in the embedding of a binomial tree.A usefulcomputation structurebased

on a semi-binomial treefor divide-and-conquer type of parallelalgorithms has been identified.We have shown that

this structure can be implemented in optimal CCCubes without performance degradation compared with regular

hypercubes. The resultpresented in thispaper should provide a useful approach to design of scientificparallel

computers.

_. SUBJECT TERMS

parallel processing, parallel architectures, hypercube, cube-

connected cube, optimal cube-connected cube, divide-and-conquer

paradi_m_ CFD applications
17. SECURITYCLASSIFICATION 18. SECURITYCLASSIFICATION 19. SECURITYCLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

NSN 7540-0%280-5500

1S. NUMBER OF PAGES

16
16. PRICE CODE

A03
20. LIMITATION OF ABSTRAC1

Standard Form 298 (Rev 2-89)
Prelcr:bed by ANSI Std Z39-18
_J_- 102

_U.S. GOVERNMENT PRINTING OFFICE: 1993 - 728-064/S60_




