N94-11433

A RECENT CLEANROOM SUCCESS STORY:
THE REDWING PROJECT

Philip A. Hausler

IBM Corporation
100 Lake Forest Blvd.
Gaithersburg, MD 20877
email: hausler@betasvm2.vnet.ibm.com
and
University of Maryland, Baltimore County

Department of Computer Science
Baltimore, MD 21228

email: hausler@umbcl.umbc.edu

ABSTRACT

Redwing is the largest completed Cleanroom software engineering project
in IBM, both in terms of lines of code and project staffing. The product
provides a decision-support facility that utilizes artificial intelligence (AI)
technology for predicting and preventing complex operating problems in an
MVS environment.

The project used the Cleanroom process for development, and realized a
defect rate of 2.6 errors’KLOC, measured from first execution. This
represents all errors ever found in all testing and installation at three field
test sites. Development productivity was 486 LOC/PM, which included all
development labor expended in design specification through completion of
incremental testing. In short, the Redwing team produced a complex systems
software product with an extraordinarily low error rate, while maintaining
high productivity. All of this was accomplished by a project team using
Cleanroom for the first time.

An "introductory implementation” of Cleanroom was defined and used on
Redwing. This paper describes the quality and productivity results, the
Redwing project, and how Cleanroom was implemented.

From Proceedings of Seventcenth Annual Softwarc Engineering Workshop, Dec., 1992

SEL-92-004 page 256

CLEANROOM AND THE REDWING PROJECT

In the past few years, with the thrust in IBM on Market-Driven Quality and process
improvement, the Cleanroom software engineering process has been broadly embraced.
Cleanroom teams in IBM laboratories are developing software that exhibits dramatic quality
results; consequently, they are meeting and often exceeding IBM’s Market-Driven Quality
objectives and are setting new standards and expectations of performance [Linger 1992].

Cleanroom software engineering is a methodology for developing ultra-high quality software.
It defines a set of technical and management practices to be followed during software
development. In the Cleanroom process, correctmess is built in by the development team through
formal specification, design and verification. Team correctness verification takes the place of
unit testing and debugging, and software enters system testing directly, with no prior execution
by the development team. All errors are tracked from first execution on, with no private unit
testing permitted. The certification (test) team is responsible for certifying the quality of software
through statistical usage testing that produces scientific estimates of product quality. Errors, if
any, found in testing are returned to the development team for correction. If quality is not
acceptable, the software is removed from testing and returned to the development team for
rework and reverification.

The process of Cleanroom development and certification is carried out incrementally. Integration
is top-down and continuous, with system functionality growing through addition of successive
increments. When the final increment is complete, the system is complete.

The Redwing product is the largest completed Cleanroom project in IBM, both in terms of lines
of code and project staffing. (Because the product has not yet reached the market, the internal
name "Redwing" will be used in this paper.) The Redwing team was able to produce a complex
systems software product with very high quality, while maintaining high productivity. Most
impressively, this was the first development effort by this project team, and more notably, the
first time the developers had used Cleanroom [Deck 1992]. How was this accomplished?

When the decision was first made to use Cleanroom, there were still many unanswered questions
and concemns regarding its use on Redwing. Questions about the ability to train the personnel,
apply it to the product domain, etc., were common. The concemns really fell into three primary
areas: business, management and technical. The primary questions that needed to be addressed
were:

- Business:

Could we introduce a new process and still maintain planned commitments for
schedule and budget?

SEL-92-004 page 257

How would we use Cleanroom with a previously-defined checkpoint process,
based on a sequential (waterfall) model?

Management:

How do we introduce a new methodology? Do performance and quality
expectations differ in a Cleanroom development environment? Will functional
management work?

Technical:
How do we train a new team? What consultation support will be required?
How do we define the incremental development plan?
Do we specify the system up-fronf or incrementally?

Can Cleanroom be extended to handle a rule-based system (Al expert system
shell) and real-time tasking software in MVS?

This paper presents the Cleanroom quality and product resuits, describes the Redwing product
and environment, explains how Cleanroom technology transfer and buy-in were accomplished,
and defines Redwing’s introductory implementation of Cleanroom. Finally, this paper
summarizes the Redwing project with respect to the questions posed above.

CLEANROOM QUALITY RESULTS

After studying the Cleanroom methodology and examining available data from prior Cleanroom
projects, the testing department projected defect rates for both the pre-ship and post-ship
software. The projected defect rate for each incremental delivery was 4 defects/KLOC, plus 1
defect/KLOC for system testing, and 0.5 defects/KLOC after the product was shipped. Note that
these numbers were significantly lower than those customarily used for comparable products, but
it was felt that such aggressive goals should be set, even for a first-time Cleanroom team. Table
1 summarizes the development history of the product, with defect rates shown as measured from
first execution. As a comparison, a projected defect number is shown using an average industrial
defect rate of 30 defects/KLOC. The team produced the complex systems software with a defect
rate an order of magnitude better than industry average, and a rate that even exceeded the
projected rates of 4 and 1 defects/KLOC for incremental and system testing, respectively! At
the time of this writing no post-ship customer data was available, however, three beta test
installations at customer sites have reported no operational errors whatsoever.

SEL-92-004 page 258

Defects Projected Actual soft- Defects/

Increment . KLOC @ 30/KLOC defects’ ware defects® KLOC

1 16 480 64 a3 27

2 50 1500 200 ' 41 0.8

3 41 1230 164 97 24
Subtotal 107 3210 428 181 : 1.7
System testing’ 107 93 0.9
Total 107 3210 535 274 2.6

1 Increment testing defects projected @ 4/KLOC and system testing @ 1/KLOC.
2 Measured from first-ever execution.
3 Includes system, performance and field testing.

Table 1. Defect rates measured from first execution for Redwing.

The projected productivity was based on an assumption that it would improve with each
increment. The productivity rates were projected as 300 LOC/person month for increment 1, 350
for increment 2, and 400 for the final increment. Table 2 shows the actual productivity rates for
the three increments. The productivity rates are based on the total LOC developed, divided by
the person months accumulated for design specification through testing of the final increment.
The person months only include development resource, not testing; thus, they do not include the
labor months incurred by the testers. Redwing development achieved very competitive
productivity rates, exceeding the projected rates by 36% overall.

This dramatic increase in productivity was a significant factor in enabling Redwing to meet its
schedule. The original code size estimate was 72 KLOC, but actual code size was significantly

larger (107 KLOC), primarily due to unexpected growth in the workstation software (from 10 to
42 KLOC). The growth resuited from an unfamiliarity with Presentation Manager development

4

SEL-92-004 page 259

and unanticipated requirements. Thus, while actual productivity was a 36% improvement over
the projected rate, actual code size was 49% larger than planned. The improved productvity
enabled the development team to stay on course during development.

Projected Actual' Delta
Increment KLOC Productivity Productivity %
LOC/PM LOC/PM
1 16 300 400 +33
2 50 350 500 +43
3 41 400 513 +28
Average 358 486 +36

1 Productivity = LOC/development person months from design specification through
incremental testing.

Table 2. Productivity rates for three increments.

AN OVERVIEW OF THE REDWING PRODUCT

Redwing provides a decision-support facility that utilizes Artificial Intelligence (AI) technology
for predicting and preventing complex operating problems in an MVS environment. Redwing
is primarily a host-based product that runs in a NetView environment on MVS with interfaces
to several other IBM program products. A workstation component runs on a PS/2 in the OS2
environment, providing the user interface needed for the management of business policy.

The architecture is designed to detect and handie problems through a series of independently
running tasks that

1. monitor the operating environment for potential problems,

2. determine the nature and severity of potential problems,
3. recommend the best course of action based on the original problem and customer

SEL-92-004 page 260

policy, and
4. take action based on the best recommendation to resolve the problem.

The development environment was very complex as it required expertise in MVS and its
subsystems, expert systems technology, real-time tasking, message passing, and windows-based
programming for the workstation. Redwing was implemented using PL/I, TIRS, PL/X (an
internal IBM system language), assembler, JCL and REXX for the host software, and C and
Presentation Manager for the workstation code. To further complicate the environment, two
major dependencies existed on IBM system management products that were developed by other
labs.

Table 3 contains a breakdown of the various languages for implementation and the relative size
of each.

- Development % of Language
Language Total Type
Assembler & 2 Low-level
PL/X
C & Presentation 40 High-level
Manager
JCL & REXX 3 Control code
PL/ 50 High-level
TIRS 5 Al rule-based

Table 3. Implementation languages for Redwing.

Project Organization and Skills

The project commenced in July, 1989, with the first year and a half spent gathering, validating
and documenting requirements for the product. A half-dozen customers participated in this
activity. During the initial stages of the project, staffing for the development teams took place.

6

SEL-92-004 page 261

Redwing was a second-line organization with four first-line departments. The four departments
were defined as follows:

1. Architecture: responsible for defining and documenting requirements;

2. Structure software development: responsible for all platform and workstation software;

3. Application software development: responsible for two applications running on
platform; and

4. Testing: responsible for product testing.

In addition to this organization, .there were several support organizations enlisted throughout
product development that provided market development, quality assurance, information
development, usability, business and legal services.

As this was a new project, the Redwing team had never developed software together. Experience
of team members spanned the full gamut, from programmer retrainees to senior level
programmers with twenty-five years of development experience. With respect to the product
domain, there was considerable experience in application development and in Al, but very little
with MVS and system programming. As it turned out, Al skills were utilized about 10% of the
time during development, while MVS and system programming skills were needed 90% of the
time.

As mentioned earlier, this was the first use of Cleanroom for all participants, with the exception
of one development manager and two developers. The project had an average staff of fifty
people throughout development. Consequently, extensive education and training were required
to utilize the methodology. The overall project schedule, including an end-date, had been
established in late 1989, prior to the decision to use Cleanroom. Given the schedule and
amalgam of skills and experience levels, Cleanroom was first met with a fair share of raised
eyebrows and healthy skepticism. This team had to simultaneously grapple with three important
problems: unfamiliarity with team members since this was the first time they worked together,
lack of experience in the subject domain and the introduction of a new (Cleanroom)
methodology.

SELLING CLEANROOM TO THE REDWING PROJECT

In early 1990, a Quality Improvement Team (QIT) was formed on the project with the objective
to make a recommendation on a development process to Redwing management. The QIT was
comprised of members from all four first-line departments. It met weekly for about two months

and reviewed several different models, such as waterfall, spiral, checkpoint, and Cleanroom.

A final position paper was written and presented to management with the recommendation to use
Cleanroom. The reasons given for this choice were:

« The emphasis on spending more time up front in specification and design seemed

SEL-92-004 page 262

critical in the new domain of the Redwing product.

Since one of the objectives of Redwing was to maintain high availability of an MVS
system, high reliability of Redwing was mandatory. Correctness verification was
needed to produce ultra-high quality software.

The Cleanroom approach would foster strong teamwork and enable others to become
experts with each team member’s code.

Redwing personnel with prior Cleanroom experience could serve as project consultants.
The incremental approach would allow for early testing, refinement of requirements, and
provide definitive management checkpoints for progress.

o There was a general belief that Cleanroom would be successful.

At the same time the QIT was formulating its proposal, I made two briefings to the Redwing
management team. The first was a general overview of Cleanroom, including the key -
technologies, past results and related management practices. Redwing management seemed
generally interested and enthusiastic. Soon after, I gave a second presentation that outlined more
concretely how Cleanroom should be applied to Redwing and what changes and differences
management could expect over traditional development. In many ways, gaining management
support was the most important activity that got Cleanroom accepted. By the time the QIT
recommendation was made, both the management team and the technical team (as represented
by the QIT) were in step.

The next step was to roll out Cleanroom to the remaining project members. A series of half-day
Overview classes was scheduled, with attendance at one of the sessions mandatory. Following
the Overview, a three-day Design and Verification class was given, with mandatory attendance
for all project members, including management. Select technical personnel also participated in
three-day classes for Specification and Certification (testing).

The Process Working Group

To further define and document the use of Cleanroom in the development process, a Process
Working Group (PWG) was formed with the objective to define and document the Redwing
development process using Cleanroom, establish and maintain project procedures, standards and
conventions, establish and maintain a measurement and improvement subprocess, and provide a
formal mechanism to resolve process issues and make improvements. Each major project
functional area, such as architecture, host development, workstation development, test,
configuration management and quality assurance, had representation on the PWG. This
composition ensured each department had at least two members on the team.

The major achievement of the PWG was documenting the development process and standards,
in the Redwing Project Development Procedures book [Redwing 1990]. The PWG documented
a comprehensive set of procedures and standards for an integrated, Cleanroom-based software
development process. More specifically, the Project Development Procedures book defined how
Cleanroom would be used, software engineering standards and conventions, how to conduct
reviews and design verifications, and the formal change process. This document and its

SEL-92-004 page 263

subsequent use by the team was critical for employee ownership of the process and buy-in.
Changes to the process had to be approved by the PWG and management. During the
development of Redwing, several revisions to the process were the result of suggestions by
project members during meetings held to improve the development process.

The Redwing managers required that all developers certify. that they had read and would adhere
to the Project Development Procedures. Not only did the document define a baseline of the
process for team members, but it served as an effective guide for new employees as they were
added to the project and to outside support personnel, such as vendors and quality assurance.
Adherence to the process also was integrated into performance plans for everyone.

INTEGRATING THE CLEANROOM PROCESS ON REDWING

The PWG, primarily through the Project Development Procedures document, served a key role
in integrating Cleanroom into the technical development process; however, using Cleanroom also
required integration with an established set of business and planning checkpoints. The
Cleanroom lifecycle, as depicted in figure 1, consists of a pipeline of accumulating functional
increments, where each increment consists of design, verification, implementation and testing for
a specific set of functions. Asa result, in Cleanroom there are unique planning parameters and
technical and business checkpoints required for project management. Pre-established project
management guidelines existed in IBM based on the wraditional waterfall model, where the
activities of specification, design, coding and testing occur sequentially.

A phased checkpoint process based on the waterfall approach was expected to be used for project
planning and accounting. Since Cleanroom development does not adhere to the traditional model,
changes to the checkpoint model were required. This was primarily accomplished by working
with the various groups responsible for the business planning and financial support teams. They
attended Overview classes first, followed by meetings with Redwing management that served to
explain what Cleanroom was and how it differed from the traditional model. The support groups,
such as financial planning, quality assurance and legal, were very impressed with this
methodology, and easily integrated the necessary changes into their pre-established processes.
Most commented favorably that Cleanroom, due to the incremental approach, would provide early
insight into project status. And, since this occurred early and frequently, would allow for
appropriate contingency planning to maintain schedules and budgets.

SEL-92-004 page 264

Customer Requirements

'

Specification

Function Usage

'

Incremental
Development Planning

Cumulative Incremants

Design Random Test
Verification case Generation
Coding
statistical
| Testing . J
and
Certification
Increment 1
Increment 2 J
Increment n J
Y

zZaero-Defect Software
with MTTF Estimate

Figure 1. The standard Cleanroom development process.

Defining An Introductory Implementation Of Cleanroom

Product requirements were developed and documented over a period of 15 months, from July,
1989 through October, 1990. The decision to use Cleanroom was made in the second quarter
of 1990, and the Process Working Group was launched in June, 1990, with the first version of
the Project Development Procedures Document completed in October, 1990. The Design and

Verification class was held in October, 1990, and development commenced in late November,
- 1990. '

10

SEL-92-004 page 265

Due to the project schedules, size of the organization, prior Cleanroom experience, and the
amount of training time allotted, it was decided by the management and technical team to pursue
a phased implementation of Cleanroom Software Engineering. In a phased implementation,
increasing control over the software process can be achieved through stepwise introduction of
Cleanroom practices [Trammell 1992].

Cleanroom development traditionally starts with a rigorous (formal) specification of the intended
system behavior in all circumstances of use. It is recommended that the box structure
specification technology be used for this. The decision to use Cleanroom was made fairly late
in the cycle, after requirements analysis and system specification had occurred. By the
third-quarter of 1990, the Product Functional Specification (PFS) document was almost -
completed. This document is required in IBM for program products, but is not an adequate
replacement for a Cleanroom specification. Typically, it contains only a subset of the
information required in a Cleanroom specification. The Redwing team decided to complete the
PES document, and modify the standard Cleanroom model in order to produce a more formal
specification, following the less formal PFS. Consequently, as part of the introductory
implementation, it was decided that Redwing would use the PFS document as the initial
specification, and would add a formal specification phase in each increment. Figure 1 showed
the recommended Cleanroom approach, where system specification occurs first, followed by the
incremental design, verification, coding and testing. Redwing defined a model, as seen in figure
2, that used informal specification first, followed by incremental (formal) design specification,
design, verification, coding and testing. The formal specification used crisp English descriptions
in conjunction with intended functions to specify the external behavior of the increments.

The Redwing testing manager and testing team leaders attended a three-day class on Cleanroom
Certification in October, 1990. While it was agreed that statistical testing would be a very
effective way to test Redwing, it was not felt the test team could learn and apply the
methodology in time for the first increment. Of greatest concern was the test team’s ability to
define the usage specification, normally done early in development at functional specification
time. As it turned out, though statistical testing was not employed for the entire product, it was
conducted for a significant subset of the product, namely, the workstation component that
accounted for approximately 40% of the total product code.

In summary, the Redwing project team decided on an "introductory implementation" that included
incremental development based on function requirements, incremental specification, design with
intended functions, team verification of correctness, delivery of each increment to independent
testers for first execution, and a measurement of process control against pre-established standards.
The key elements of Redwing’s introductory implementation are listed in Table 4.

11

SEL-92-004 page 266

(9T 98ed $00-76-14S

(4!

- yoes sypuow Jfey € pue 2anp A[srewrxordde a1om pry
pUE pUOJ3S Y} PUE ‘SYIUOU J[BY B PUB OM] P3)ISe] JUWAIOUL 15113 Y], ‘SUIMPpIY J0J PaUIJIp AIIM
SIUSWAIOUT 3213 ‘Apuanbasuo) WSWUONAUS Juswdo[aA3p pue $s3501d M3U AP YIM parewfooe
3u0AI9A 193 01 I9PIO UT UOTIOUNJ ISE3] Y} UTEIUOD P[NOM JUSWISIOUT ISITY SY], "UoHeInp ul SyIuow
SOI} O} OM] INOQE SEA JUSWAIOUT Yoes 31y uefd e p[ing pjnom Surmpay] 1By papIoap sem 1
‘sypuow aAjom} Ajarewrxoidde sem ‘3unsa) Surpnpout ‘pourad JustidO[aAIP [[BISA0 Y], IUSWAIOUL
yoes I0j uomouny pue ‘uonisodwiod wesl ‘SJUSWAIUL I Suruyop ur Apqrxopy [enueisqns
[mS Sem SI0Y) ‘ISIIES PIYSIqeIsd udaq A[enussss pey 19ofoid oy 103 9rep-pus 3y ysnoyp,
-$30IN0S3I PUB J[NP3Y0s 1uswdO[aAIp IeMIJOS ‘SIUSUIIOUT JO JqUINU PUE JUIIUOJ [BUOROUNY 31
paunyap 181 padofaasp sem ued JuowdojaAap [EIUSWAIOUT UL ‘aseyd uonesyoads oy Suimol[og

NV1d INFNJOTIAHEA TVINSWINONI FHL ONINIFAQ

-ss3001d wooIURS[) pauIpow s, Smmpay -7 dandiyg

B8IBALJOS IDeJeq-01eZ

ﬂn

T JUeWS IDUT

Z VWS IDUT

T auewsIduUr

- Suyasel
r o Te3uBWeISTL |
Buypod
TOTIVIGUSD UOTIWOTIFIOA
osw) 3Isel : usyseq
TOFIVOTITOBds
A)

SITMLHDIOUT SATIWTIUMND

BatuaeTd IUenioTeAsq
T93IUBWeIDUT

I

TOTAWDTIFOoeds
euoTaISUNG 3ONPOIE

}

#3TOWLITNDOY ISWOIBTO

Cleanroom Used (Yes/

Technique No/Partial) ~ Comment

Incremental planning Yes 3 increments

Formal specification Yes PES + formal incremental
specification

Formal design Yes Used translatable PDL w/
intended functions

Verification Yes Strict adherence to rules

Statistical Testing Partial Incremental testing w/

 statistical testing for
workstation only

Table 4. An introductory implementation of Cleanroom for Redwing.

The project team reviewed historical productivity and defect rates for comparable commercial
applications, and adjusted them for Cleanroom based on prior Cleanroom data, personal
experience and confidence. The incremental development plan was primarily developed by the
project ‘technical leaders with review and approval by the technical team. When it was
completed, it was presented to management and approved with only minor modifications.

Eight principal functional components were defined for Redwing, with each component assigned
to a team of one to five developers. In addition, each team also had an architect and tester
assigned to it. Team membership remained stable throughout development of all three
increments. This ensured continuity and grew the expertise and capability of each team. A
functional management approach was used for the teams because each team consisted of people
from different departments. Since each team had a designated team leader, management
ownership was assigned based on the team leader. Thus, a manager was responsible for all teams
led by one of his department members. This scheme worked nicely but required daily
communication between managers, usually in the form of morning status meetings in which
schedules, plans, resources and performance were addressed.

13

SEL-92-004 page 268

USING CLEANROOM ON REDWING

Following the incremental planning phase, development commenced for increment 1. It became
immediately obvious that the developers did not have a keen understanding of what the entry
criteria were for design verification. Most understood how to perform verification, but
underestimated the level of rigor and precision needed. Typical of most designs in increment 1
was that intended behavior was specified precisely for "normal" or "steady-state” processing, but
failed to capture the intended function for error conditions, exception processing, and less likely
scenarios.

To ameliorate this problem, it was decided that a demonstration review of an actual increment
one design should be held as early as possible. A senior level programmer was asked to be the
"guinea pig." When his design was "ready," his review team conducted a formal verification
review with the rest of the Redwing organization in attendance as observers. Everyone in
attendance had a copy of the material and followed along with the review team. The first review
lasted about three hours, with the outcome that the design did not pass the verification review.
This proved to be an invaluable teaching tool for the project team. Most were surprised that the
design did not pass, and even more surprised at the changes required in order to make it
verifiable. This turned out to be the most effective means to teach the team what was actually
expected in a Cleanroom review, and certainly saved an immeasurable amount of time and
frustration for the others. Since increment 1 was relatively small and straightforward, the team
was able to learn how to correctly apply Cleanroom and still make the first delivery date.

Cleanroom Facilitators

The Redwing project did benefit from the project members with prior Cleanroom experience.
They served dual roles as project team members and as Cleanroom methodology consultants.
They were teachers and trainers of the methodology, providing guidance on how to write
verifiable designs and conduct effective verification reviews. [Equally important was the
encouragement they gave and confidence they instilled in their peers through example and
coaching. During the increment 1 reviews, one of the experts was present at every single review
to ensure the methodology was being adhered to, especially with respect to the correctness
verification conditions. During increments 2 and 3, others stepped forward to be Cleanroom
experts as they leamned the methodology. This core group of five to six facilitator served a key
role for acceptance, application and improvement of Cleanroom.

Cleanroom Reviews
In order to ensure that reviews were effectuve, that is, that entry criteria for reviews were met,
advance preparation was conducted and the correctness conditions of each control structure were

examined. The Redwing Project Development Procedures document outlined formal roles for
review teamn members. A moderator was assigned who was usually one of .the Cleanroom

14

SEL-92-004 page 269

facilitator (experts) mentioned above. The moderator ensured that reviews were conducted
properly, all issues recorded and all changes reverified. The author (writer of the design being
verified) led the team through the review. Also present were 2 key reviewer, typically the
component team leader who had a broad understanding of the component function. and other
reviewers, typically other component team members or others whose code interfaced to that being
reviewed. It was required that review materials be distributed to all participants at least 48 hours
prior to the meeting; all reviewers were expected to have read the materials beforehand.

Early Results and Observations

Key to applying Cleanroom to an organization of this size was the small team approach used to
partition the workload. Also, with multiple departments and managers, reliance on formal means
of communication, especially for verification review results, status, schedules, etc., was essential.
Weekly project status meetings were held and attended by management and team leaders. In
addition, monthly project reviews were conducted with the project team, market development,
quality assurance and finance.

Redwing’s aggressive schedules did not allow for a pilot development effort in which the team
could practice and polish their Cleanroom skills. As a result, it required one full increment for
most developers to become proficient in Cleanroom.

At the beginning of the project until delivery and testing of increment 1, many developers and
testers were somewhat skeptical about the effectiveness of Cleanroom. The real turnaround
occurred after increment 1 was delivered and testing found so few errors. In fact, during
increment 1 testing, several testers were upset and worried when they could not find any errors
after running their test cases; ironically, so were the developers. But this soon changed for
everyone -- defects quickly became the exception, not the rule.

Several important benefits, primarily derived from the team concept and correctness reviews,
were experienced by the Redwing development team [Drew 1992].

« The teamwork was very strong and, consequently, verification reviews were "extremely
positive experiences."

Cleanroom reviews reduced the "lone eagle syndrome," where a programmer is hesitant
to ask for help.

Cleanroom helped produce "egoless code.”

No one on the team was indispensable; the entire team was familiar and capable with
each other’s components.

Maintenance was less dependent upon code author.

Cleanroom reviews provided an excellent forum for learning.

[

15

SEL-92-004 page 270

LESSONS LEARNED

As stated earlier, the challenges of using a new team in an unfamiliar environment were great:
moreover, schedules and resources were extremely tight. Yet despite these odds, a new
methodology was introduced, taught and implemented with tremendous success.

The primary success factors in this implementation of Cleanroom were:

« strong management support throught test,

technical team participation in methodology selection (QIT) and implementation (PWG),
joint management and technical team development of incremental development plan,
adherence to correctness verification rules,

demonstration review during increment 1,

management attendance at training classes,

three "consuitants" on Redwing with prior Cleanroom experience,

functional management scheme for teams of teams, and

use of an introductory (phased) implementation of Cleanroom.

Recall, at the start of the Redwing project, several important questions needed to be answered.

Business

Q:

A:

Could we introduce a new process and still maintain planned commitments for schedule
and budget?

Yes, a new process was introduced early during Redwing, and the team was able

to accommodate the required start-up costs and still build the product successfully.

How would we use Cleanroom with a previously-defined checkpoint process, based on
a sequential (waterfall) model?

It was necessary to modify the checkpoint process to account for the incremental
Cleanroom lifecycle, and to train the necessary groups that would be affected by the
changes.

Management

Q:
A:

>R

How do we introduce a new methodology?

First, management understanding and support must be gained, followed by technical buy-in
and ownership. Also, the appropriate resources for education, training and consultation
must be provided.

Do performance and quality expectations differ in a Cleanroom development environment?
Yes, zero-defect software is the performance goal, not the hope. Developers are expected

to produce zero- or near zero-defect software prior to first execution under test. All major
milestones are based on the incremental approach. Completion of correctness verification

16

SEL-92-004 page 271

is a major milestone during an increment.

Q: Will functional management work? ,
A: Most definitely. The key is strong technical management of the team (or teams of teams
for larger projects).

Technical

Q: How do we train a new team? What consultation support will be required?

A: Formal training in Cleanroom is essential. The entire project team should be trained
together, including management. An experienced practitioner of Cleanroom (consultant)
to support the project is essential.

How do we define the incremental development plan?

The incremental plan should be built following software specification by the technical
leaders and management. Much care should be given in defining the number of
increments, the function and code of each increment, and the development teams.

>R

Do we specify the system up-front or incrementally? '
Ideally, the system behavior should be specified up-front, but this is not always practical
or feasible. An incremental specification can be used but needs to be developed carefully.

>R

Q: Can Cleanroom be extended to handle a rule-based system (Al expert system shell) and
real-time tasking software in MVS?
Extensions to Cleanroom were defined for both on Redwing. For the former, a rule-based
design language was defined with a modification for verification. In the latter, one tasking
design model was defined by the technical leaders and used by everyone on the project.
Certain simplifications and assumptions to the tasking model were made; this enabled
everyone to conduct design and verification with the same model.

REFERENCES

[Linger 1992] Linger, R.C. and Hausler, P.A., "The Journey to Zero Defects with Cleanroom
Software Engineering,” Creativity!, Vol. II, No. 3, September 1992.

[Deck 1992] Deck, M.D., Hausler, P. and Linger, R.C,, "Recent Experience with Cleanroom
Software Engineering,” 2nd International IBM Conference on Software Engineering, May 1992.

[Redwing 1990] "Redwing Release 1 Version 1 Project Development Procedures," Document No.
Redwing-0032, November, 1990. :

[Trammell 1992] Trammell, C.J., Hausler, P.A. and Galbraith, C.E., "Incremental Implementation
of Cleanroom Practices," Proceedings of the 25th Hawaii International Conference on System

17

SEL-92-004 page 272

Sciences, January 1992.

[Drew 1992] Drew, C.F. and Wade, G.P, "A Developer and Tester Report on Their Cleanroom
Experiences,” IBM Software Engineering ITL, March 1992.

18

SEL-92-004 page 273

1681 Gow oS! 2881 ‘T quuedeg

Asuwung ¢

ssaooud e Supuewejdw) o

sseooud o Bujiies @

S)nsas WoosURs) ¢

uoponponul ¢

epuaby

681 doymyop Bupesu|u3 eismyog
2661 ‘2 1equiadag

npe‘aquin‘jaquin@Jejsney :jjewe
82212 AN ‘esowpjed
funo) elowpjeg ‘puejlieiy jo Ajsiaaun
aduejog Jendwio) jo Juewpedeg
pue
wod wqjeuA‘ZwAseleq@aisney jlewe
aw ‘tunqsiayed
uopeiodio) Wal
Jojua) ABojouyda] eJemyjog woaIued)

Japsney v diud

joeload Bumpay ayy :Ai0)S
$5999Nng WOo0oJues|) Juadxdy v

SEL-92-004 page 274

617 98ed $00-26-14S

Introduction

11 Introduction to Redwing 1.2

¢ Product

Redwing provides a decislon-support facility that utilizes
artificial inteliigence technology for predicting and
preventing complox operating problems in an MVS
environment.

SECTION 1.
Introduction ¢ Project organization

o 2nd-ine organization with four 1st-line departments
1 Architecture
2 Development
1 Tost

¢ Approximately 50 people

December 2, 1992 cing Werkshop 1992

Decamber 2, 1892 Engineet! hop 1992

9.7 98ed $00-26- 1S

Developmeht Environment 13

¢ Workstation Policy component under 082

¢ Host Outage Avoldance under MVS

o Interfaces to two Systems Management products
developed by other labs

¢ Real-ime tasking

s Rule-based processing

Redwing Development Languages

14

December 2, 1952 ineerin 1992

DEVELOPMENT
LANGUAGE

Assembler &
PLIX

C & Presentation
Manager

JCL & REXX
PLN
TIRS

% OF LANGUAGE
TOTAL TYPE
2 Low-level
40 High-level
3 Control code
50 High-level
5 Al: rule-based

Decomber 2, 1992

192

64} doysy poouid 2088 2 J9quisdeq

slnsas Ajjenb opgeweig ¢

uopeoyMea Bupse) awg-jeey o

uopedyeA pus ubjsep gulL

S6LI0A0J8|P WIOOIURGD MEN ¢

poye juewdojeaep ejras-efiie] 0 ulCOIURALD JO uopedjddy ¢

gs020sd WOCIUNE|) pejuawndop-Aiind ¢

9l s)ublubiH Juawdojaraq

2881 u T683 ‘T 0quiedeq

(wiooiuve;d) ASojoporews MeN ‘€

‘sjipis Sujwweibosd
wejsAs puw AW oAjsuejxe Bupinbas onposd MeN 2

‘wee) jususdojorep meN ‘I

) sanss| Juswdojaraq

SEL-92-004 page 277

8.7 98ed $00-76-14S

Cleanroom -Results

24 Redwing Project Quality Results 2.2

SECTION 2,

Cleanroom Results

ACTUAL
DEFECTS PROJECTED ACTUAL DEFECTS/
INCR KLOC @ 30/KLOC DEFECTS(1) DEFECTS KLOC

1 16 480 64 a3 27

2 50 1500 200 41 08

3 4 1230 164 14 24
—— —— ———— D s —

Subtot 107 3210 428 181 . A7

Sys(2) 107 a3 0.8
Test — _— —_— —

TOTAL 107 3210 835 274 26

(1) Incr. testing defects projected @ 4a/KLoC
and system testing @ 1/KLOC.
(2) Includes system, performance and fleld testing.

Decomber 8, 1992 t Engineering Werkehep 1982

December 2, 1992 gineering Workshop 1992

617 98ed $00-26-1dS

Redwing Project Productivity Results 23 Selling Cleanroom

PROJECTED ACTUAL(1) DELTA
INCR KLOC PROD. LOC/PM PROD, LOC/IPM %

1 16 300 400 +33

2 50 350 500 +43 SECTION 3.

3 a 400 513 :ﬁ Selling Cleanroom
Avg. 358 488 +36

(1) Productivity = LOC / development labor from spec
through Incr testing.

December 2, 1992 it rh 192 Decomber 2, 1992 192

2681 deimy) Hesubuy 081 '3 Jequiedeq

*0Af28)0 8q PINOM WoAIURe]D JuLy jejjaq jRi0UeD 9

‘sjuewasnbes jo Jueweuyes Joj mojje pue sseuboid
1ejoid jo mela Apee epjaoid pinom yoeosdde [pLewasdd) °g

*SJUERNEUOD S8 OAIES
pINCD eauspadre wooiuws|) Jopd ynm jeuuosiad Joefaid Y

}omweo) Buons 16180} PINOM WIOAIUBSD) ‘€

*SAIN Jo 8auBploas 6BkiNo 10} pepueluj eem)jos
205 Kyjenb yBjy epiaosd pinom UORBIYUGA S88LUIIBLI0D T

‘ubjsep puv uopuojoeds seziseydwe woosuws|) i

** ISNVOIE A90TOAOHLIIN WOOUNVITD SN

142 uojjepuaunuoddy LI

00} doyspom Bupseu) wos 3084 ‘2 oquessq

‘giaquiew joofod {|8 10} UORUOHIMEd 88820id 'S

uewoacidwy ss0204d SNONURUOY
UORERUBWINDOP PUR UORJUlEp $58001d o

10} (9Mmd) dnoud Buppiop, 8s830id ‘¥

‘gdnosf

poddns pue juewebeusw Bujpnjoul ‘uopeonpe weal 't

*(z) smejasoA0 Juswelousyy ‘2

Wodaa

"uopRpusw!
ssedo4d Juswidojonep 40j (LID) weal jusweaosdwi Ajend)

Al wooJueafd Buil|ss 10} saRIAROY Ae)

a-<f

SEL-92-004 page 280

-

U,

187 28ed $00-26-14S

Project Education 3.4

1. Cleanroom Overview* (1/2 day)

2, PDL and PDL Transiator Class (1/2 day)

3. Design and Verification Class* (3 days)

*Attended by all managers

December 2, 1992 ol kehop 1992

Implemenﬁng Cleanroom

4.1

SECTION 4.

implementing Cleanroom

December 2, 1982

1”2

7684 doyspiom Bup

Te8) ‘T Jequisdeg

uopuisioM
Jo) Bupsa) [eoRsRYS

/M Bupsa) {@uaWwAIY)
sejf 0} BOUBIOYPE JOINS

SUORIUN) POPUBI] /M

liMed Bugsey Jus

80A UORBIYHBA

10d eiquieisuvy posn seA ubjsep jeuuog
deds |auowedu}
jsuuo} 4 Sdd seA 9edg jouuiod
sjuewIessu)] ¢ sop Bujuueid sou}
ANTWWOD (lepied/oN INODINHOAL
/8eA) 43sN WOOUNVITD
[Bupmpay uo uopejuswajdwy} Alojonposu)

2684 doyeiop Bupeeuit 881 ‘3 0quisdeq

‘uopeoyHeA pue ubisep 10} jepow Bupise), uowWWOD pauyeq

Joefoad euuué 10} SMBjAGS UopRASuOweq, PloH
*MOJASN LORUIHIA A1BAD JB esaud pedxe euQ o
JSHSIA, pue sunoy 8310, ANeoMm PIOH ¢
"s104u1{O%) WOGIURSID Pejuoddy

~ueweBeurw [UORIUN UM Yorosdde SLIBE) jo WEE) (DS

‘uvjd juewdojereq
|Rjueiesu] jo JuewidojeAep (Yoo} pue yubw) jujop

‘wooJuRe|d
jo uogsjuewejduy (paseyd) Aojnposu) ue peuleq

r4 woosued)) Bupuawajduy| 1o} SaRIARIY Ko)|

SEL-92-004 page 282

T68) douspiop Supseuituy 081 ‘T J0quiereq

‘uopdeaxe
ey jou ‘uopuoedxe aip ewwdeq Apnb 81I9Jep-0162

‘sjueucdwiod
|R10A0S U} PUNO} 8I0A10 OU USYM posdins wee) Bugsol

‘Bujwiee]
40} WINIO} Juejjedxe pepiacid SMejAss puv eunjInas Weel

‘gsjedxe wee) o) enp papjiduis sem edusuejue
. @pod 869j0be, jo esues Buons padojersq
Jseuiospuds ojiuo ouoy, oY) PEINPAI GMOAY

Jseduapiedxe eapisod Alewesxe,
$2 SMOJABS UOJEOPHOA UM ‘Buoss A1oA HOMWBOL

s

Te6t

T441 ‘T J0quiecegq

Aewwnsg

‘S NOWD3S

sioquiajy 109fosd wouy suoperlasqQ

Vs

Aewwing

SEL-92-004 page 283

88 ad T684 ‘T 9quieaeq

“WooIuReld
jo uopuuewwejdwy (peseyd) Asopnpoguj ue jo 88N

-swRe) JO WRE) 40) BLL6YOS JusweBeusw |BuoRIUN

‘eduoiedxe Woauused .lopd Yim Bupmpey uo sjusnsuo),

“$0j14 UOPUOUHOA SSOUIIRLI0D O} GOUSIOUPR IS

'S - glojoed 883%ang Aewid

684

2681 '3 J0qec8q

*} JuUBWIOU) BupNp SMBjAG LORRASUOIIS]

‘ueld juewdojaraq jmuswaul
jo uswdojesep WEL) j@HUYDS} puv juswelivunus Jujop

(Omd) uopejuewejdw) pus
(11b) uopoejes ABooporpews uj uopedpped wee} BIJULYREL

‘1oddns juswebeusw buons

€S s10joe4 88930ng Atewlpid

SEL-92-004 page 284

687 28ed $00-76-14S

What | Would Do Differently? 55

1. Select development process eariler and begin training at
startup.

2. Allow time for a small demonstration project (1-2 months) for
team training and buy-in.

3. Have more, but smalier increments.

4. Use a full-time, dedicated Cleanroom consultant.

5. Conduct statistical testing.

December 2, 1992 0 12

