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1. INTRODUCTION

1.1 WHENCE SWIRL

Swirling of a liquid in a container may, in some applications,

prove to be a better way of managing liquids in space than

rotating the entire container. A transient study by the National

Bureau of Standards in Gaithersburg Md. [ I] showed that swirl

could be started quickly by the injection of a relatively high

velocity jet of liquid tangentially into the body of liquid. One

unknown still remained: the quantity and velocity of jet flow, or

mechanical power of a solid impeller required to maintain a given

radial acceleration ("G" force).

The crux of this problem is to determine the rate of rotational

energy dissipation by wall friction.

1.2 RECAP

The part of this study which ended in December ' 86 gave a first

approximation of the jet requirements to maintain a given "G"

force in a tank. A sample calculation was made for a hypothetical

5,000 liter liquid helium tank with a radial acceleration of

O. 01g. The resulting estimation of jet flow was 3(I0) -_ m3/ s. If

the NBS (Boulder) centrifugal pump were used for transferring

liquid helium from this tank, the jet flow just stated would

amount to about 22_ of the pump output. Since the required jet

flow is a significant portion of the total pump output, the

accuracy of calculation could affect a decision as to the

feasibility of the jet method, or the suitability of a particular

pump.

The present study investigates the possible additional effects of

axial variation of tangential velocity and secondary (radial and

axial) flow components.

1.3 SUMMARY OF THE PRESENT STUDY

1.3.1 Part I (under the assumption of negligible secondary flow)

Since the rotational energy dissipates along the cylinder walls

and end closures, it seemed likely that the tangential velocity

and angular momentum would diminish appreciably with axial

distance from the input. Therefore, the first investigation

concerned the effect of axial variation of angular momentum
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assuming negligible radial and axial velocity components. This

assumption together with a simplified turbulent viscosity reduces

the tangential equation of motion to a two dimensional (radial

and axial) linear equation solvable in closed form. The solution

produces both the tangential velocity radial profile and an axial

decay factor.

The linear theory predicted that the velocity would decay to 1/10

of its input plane velocity in an axial distance of one radius.

Simple visual experiments with a spinning horizontal disk in a

vertical cylinder revealed a much different behavior

characterized by:

I. A thin boundary layer on the spinning disk, cylinder walls,

and bottom plate.

2. Very little axial decay of tangential velocity in the body

of liquid.

3. The fluid body spinning at I/2 to I/6 the rotational

speed of the disk (depending on the disk-bottom spacing).

4. Noticeable outward radial flow near the spinning disk,

downward flow along the cylinder wall, inward flow at

the bottom, and upward flow at the center.

To test the possibility that the linearization was at fault, the

last attempt at "pure rotational flow" employed Prandtl' s mixing

length hypothesis for turbulent shear and required a numerical

solution of the equation of motion. The resulting axial decay

was only slightly less severe.

1.3.2 Integral momentum approach

Even though the radial and axial velocity appear insignificant,

these secondary flows have a large effect as evidenced by the

failure of the "pure rotation" theory to describe the actual

flow. Therefore, the second approach applies a published method

developed to predict the frictional torque due to the housings of

rotating turbine or pump impellers (a three dimensional flow

problem). For the swirl problem it was necessary to extend the

theory to account for the cylinder walls and the existence of a

free interior surface in the absence of gravity. The

relationship between the cylinder length, drag coefficient, and

the difference in speed between a spinning disk and the liquid

was demonstrated in a general way by visual experiments.

The sample calculation for the 5,000 liter liquid helium dewar,

repeated using the new drag coefficients, resulted in a much

larger jet flow requirement. In terms of the NBS centrifugal

pump, about 55_ of its flow would be required to maintain 0. 01g

radial acceleration instead of the 22_ calculated earlier.



2.1

2. 0 ANALYSIS OF SWIRLING FLOW

AXIAL VARIATION OF TANGENTIAL VELOCITY ASSUMING NEGLIGIBLE

SECONDARY FLOW

In the first part of this study it is assumed that radial and

axial velocity components are negligible, ie. the flow is

assumed to be purely rotational, but with tangential velocity

varying in both radial and axial directions.

It should be noted that the final results cast doubt on the "pure

rotation" hypothesis, and the work done under that hypothesis is

only briefly outlined. Details are given in Appendix A.

2. I. I A Linear Solution

The assumptions are:

I. Steady state ......................... a/at=o

2. Pure rotation .................... v,=o, v,=o

3. Axial symmetry ....................... a/a8 =0

4. No external forces ..................... g.=O

By the simplification of using an average value of the turbulence

factor, {am/azl/{am/ar{ = _2, rather than considering it a

variable, the 8 equation of motion reduces to a linear equation

in r and 2, solvable in closed form. The z equation is

exponential:

m( r, s) = re(r, O) exp(zlzd), where (1)

zd is the z decay constant whose numerical value comes

from the solution of the equation in r.

The equation in r is a Bessel equation with the following general

solution:

al is the Bessel function of the first kind, first order.

Yi is the Bessel function of the second kind, first order.

The values of the constants Ci, C2, and zd are dependent on the

fullness of the cylinder (rl/ro=O being full and rl/r,=1 being

empty), and the Reynolds number. These constants are evaluated

in tables AI and A2. The resulting values of zd/r, being near

0.4 means that, in an axial distance of one radius, the

tangential velocity would decay to less than 1/10 its value at

z=O. A very simple visual experiment shows clearly that this is

not true; in fact, it appears that z_/r. should be at least 2.



The calculated variation of E from equation (2) reveals a spike

near m,, even though a constant value was used in the derivation.

To test the possibility that the linearization ( _=const. ) causes

the unrealistically small zd/r,, the non-linear turbulent equation

was solved numerically. The resulting zd/r= of 0. 46 is hardly

an improvement, and so it appears that the linearization was not

the problem.

2.2 ADAPTATION OF A MOMENTUM INTEGRAL METHOD FOR TURBULENT DRAG

DUE TO SWIRLING FLOW IN A HOUSING

The unrealistic decay is apparently caused by neglecting the

secondary circulation which transfers momentum by large scale

movement of fluid containing the momentum. This circulation,

which takes place mostly within the boundary layers (or Ekman

layers [ 4]), can be very powerful compared to (small scale)

turbulent momentum transfer. Greenspan [4] states:

...... secondary flow can significantly alter the primary motion

through a slight redistribution of angular momentum and

vorticity".

The drag on a pump impeller or turbine wheel in a housing is a

problem similar to the present one in which secondary flows play

an important role. Schultz-Grunow employed the momentum integral

method as described in Greenspan [4] and Schlichting [3] and

arrived at an expression for drag coefficient on a spinning

disk in a housing. The connection with the present problem is

that the drag on the rotating liquid, which we require, is the

exact balance of the drag on the spinning disk. The spinning

disk may either be a real or an imaginary device.

The adaptation of the Schultz-Grunow theory to account for an

elongated cylinder and the possibility of free surfaces is

detailed in Appendix B. The result is the following expression

for frictional torque on a spinning disk (or torque of the liquid

on the housing). Equations (B5) with (B9):

To = 0.041(2/f) t'_ Pwo2r=S(1-_+/uo)_ls <l-(ri/c=)=3'5_Reo -tls

(3)

Reo =(_)o ro 2 / V

The remainder of the problem consists of determining the ratio

_f/w0, and the factor f, both of which are functions of the

geometry .

Appendix B contains the details of the modifications of the

Schultz-Grunow equation to include:

I. An elongated cylindrical section

2. A possible free interior surface

3. A possible solid interior concentric cylinder wall
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(as in proposed ground experiments)

A possible free top surface as in normal gravity

swirl in a partially filled vertical cylinder.

The rotational frequency ratio _,/_0 is worked out for two cases

which cover the four possibilities listed above:

Case I. For a partially or completely filled cylinder in zero

gravity having a free surface (ie. no torque) at rl, from (B15)

and ( BI 6) :

(_o/_, = (F(L)+I) 4/_ + 1 (4)

where,

23 L [ £.L_,-'l'''' I (5)F( L)
- 5 ro --Jro 1-(rl/ro) 23/s

Case 2. Swirl in an open top vessel in a normal gravity

environment. There will be no torque on the top end (TE=0).

The following also allows for a possible inner fixed cylinder as

in a proposed swirl test apparatus:

4/7

: + I (6)

The factor f arises from the increase in the boundary layer

thickness due to the added frictional surfaces. The quantity

(21f) t/5 can be considered unity except for very long cylinders.

f = 2 + fc, (7)

where fc is the cylinder contribution. Equation (B19):

fc ,8[°,,],,,: _ L[ 5_,_,]
5 1 -(_¢ /(_o r° ro

$8/_

1-( rt /ro) {s/s

Appendix B also presents experimental data which gives some

credence to the modification.

Comparison With Previous Draq Calculations

Returning to the example of final report 12/86:

5,000 R cylindrical tank

Arbitrarily specified radial acceleration 0. 01g

Total length = 2L ................. 2.94 m

rl ................. 0. 635 m

r° ................................ O. 735 m
- I

w¢=v, lr ........ 0.393 s

_o c : ro



rl/r,=O. 864

L/r,=2

Fluid: normal liquid helium

v=_/p=8. 28(I0) -8 m2/s

p=1 45 kg/m 3

Re0=1. 66(I0) a

F(L) =I 8. 8 ( equation (5) )

_fl_0=O. 154 (equation (4))

f=2. 79 ( equation (7))

T=2TD=O. 128 kg m2/s 2

If an actual spinning disk were used to generate the swirl:

Power to the spinning disk = T_D=O. 332 w.

The frictional torque calculated in the 12/86 report was O. 0488;

the new value is 2. 7 times the old for the same conditions. The

jet flow requirement, being approximately proportional to the

frcitional torque will also be 2. 7 times the previous value, or

57% of the NBS pump output to maintain O. 01g radial acceleration.

The torque also varies with the degree of fulness of the vessel

as follows:

r_/r_

Full 0

0.2

0.4

0.6

Example 0.864

Empty 1.0

Up / Wf

4.77

4.77

4.80

4.97

6.51

O0

0.139

0.139

0.139

0.137

0.130

0

3.0 CONCLUSIONS

The pure rotation assumption leads to a predicted sharp decrease

in tangential velocity with axial distance from the input plane.

A simple experiment with swirling flow in a cylinder demonstrates

that axial decay of velocity is actually very much smaller.

The unrealistic decay produced by the pure rotation assumption

indicates that radial and axial circulation within the boundary

layers have a strong effect on the momentum distribution and on

the frictional drag. The published theory of Shultz-Grunow

treats a similar subject of turbulent rotating flow with radial

and axial circulation in a housing. This theory, modified to

match the present application, predicts nearly three times the

drag calculated previously for a sample case. A far thinner

boundary layer is the reason for the increased drag. Simple
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visual experiments lend credence to the modified theory.

A swirl inducing jet flow was also three times as large as

originally thought (57_ the NBS pump's output for the example

5,000 R tank) and this would mean:

I. A larger pump than the NBS pump would be required fop

tanks the size of the example, or

2. A smaller radial acceleration than O. 01g would be

achieved.

Since frictional torque is proportional to the vessel surface

area, the NBS pump suffices for a smaller tank.

Other means of producing swirl should be considered. The sample

calculation shows that the mechanical power to achieve 0. 01g in a

5,000 9 tank is only 0. 34 watts.

4. 0 WHITHER SWIRL

The Schultz-Grunow theory underpredicts his own experimental data

by 17_, and the crude experimental observations reported here

indicate that the modification for long cylinders may not be

exactly correct. Therefore, it seems that theorizing has gone

about as far as it should go whithout accurate experimental

measurements of rotation rates and drag due to turbulent swirl

in a scaled configuration similar to the application. Normal

gravity experiments with a spinning disk, both at room

temperature and with liquid helium, would be beneficial.

A good check of jet flow rate to produce a given swirl velocity

could be performed at room temperature with an apparatus only

slightly more sophisticated than the one used to visualize the

rotational velocity. Experiments of this type would be a useful

supplement to the planned helium swirl tests.

The findings of this swirl study regarding secondary flow, as

well as the extensive studies of Greenspan, have a bearing on the

spin-up of liquid in an impulsively started cylinder. It seems

that spin-up time could be greatly reduced by intentionally

stimulating radial and axial flow during spin-up. Design and

testing of suitable vanes to accomplish this would seem

desirable.

C

C1, C2, C3, C4

5 NOTATION

coefficient in Prandtl' s mixing length hypothesis

constants of integration
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Cf
| .................

f ..................

F(L) .......

F,

g ......

coefficient of the expression for drag coefficient

constant defined in equation (B5)

drag ratio defined in equation (B2)

function of geometry defined in equation (B16)

wall shear function defined following table AI

acceleration of gravity 9. 8 m/s 2

g. ..... external force per unit mass

Ji, J0, YI, Y0 - Bessel functions used in equations (A7) and (A13)

R Prandtl' s mixing length, m

L ......................... half length of a cylindrical vessel, m

m angular momentum per unit mass, kg m/s

m, .... maximum angular momentum per unit mass in momentum profile

p ........................................... pressure, Pa

r, rl, r,, r., r.c radius, internal, at maximum momentum,

outer, outer-cylinder, m

Re, Re_, ReD Reynolds number, based on fluid velocity,
based on disk velocity

t ..................... time, s

T, To,,, T0, T_, T, ................. torque, on cylinder, on disk,

on end disk, on internal cylinder, kg m2/s 2

v, vr, v,, v,, v,. velocity, radial, axial, tangential,

tangential at maximum momentum, m/s

2, z0 axial coordinate, axial decay length, m

U, WT

V

--- boundary layer thickness, m

tangential angular coordinate

viscosity, turbulent viscosity, kg/m.s

--- kinematic viscosity = W/P, m2/s

ratio of momentum gradients, equation (A5)

p ......................................... density, kg/m 3

_, _,,, _.z -- shear stress, r-8 component, 8-z component, kg/m's 2
- I

_, WD, _f rotational frequency, of disk, of fluid, s
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APPENDI X A

AXIAL VARIATION OF TANGENTIAL VELOCITY

ASSUMING NEGLIGIBLE SECONDARY FLOW

A.I A LINEAR SOLUTION FOR PURE ROTATION IN TWO DIMENSIONS

The 8 component equation of motion in cylindrical coordinates is,

in terms of shear stress [1]:

p[_V, +v_ + , _ +v, -- -
Eat ar r ae r az J ge

_3 + +- 2 ar r ge am J

The following assumptions will be made:

1. Steady state ......................... a/at=0

2. Pure rotation .................... vr=°' v,=0

3. Axial symmetry ....................... a/a8=0

4. No external forces ..................... g, =0

(A1)

Then (1) becomes:

L -_ (r'_,.] + _ : 0 (A2)
r 2 ar az

These equations apply to turbulent flow as well as laminar flow

when appropriate expressions are used for the shear stresses.

The expressions for turbulent shear stresses can become extremely

complex, even differential equations in themselves. Launder and

Spaulding [2] point out that Prandtl's mixing length hypothesis

(MLH) is still useful at least for approximations, and since it

is relatively simple it is used here. If, in Prandtl' s intuitive

development of MLH for flow over a flat plate, one substitutes

angular momentum transport for linear momentum transport and

substitutes torque for force, the following expressions for

rotating flow result: (same assumptions as above)

] 1 am• 0 , = L/ - I/T , r az '

_Tz = r

where

] 1 am + 2um/r 2 where• , i = W - L/T e r ar

(A3)

(A4)

In (A3) and (A4) £ is the mixing length, generally taken to be

the distance from the nearest surface, and c is an empirical

constant. In what follows £ and c are assumed to be the same in
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(A3) and (A4), and the eventual results are independent of their
numerical values. Except for an extremely thin laminar sub-layer,
Ll is negligible compared to U,. Then, in the turbulent region,

(A3) and (A4) substituted into (A2) gives:

82___ram_ I 3m + 2 32rn = 0 where (A5)
3r 2 r 3r 3z 2 '

p..2 = U'r,/LIT, = I 3m/321/ I 3m/38{

As a first approximation we can assign a constant value to 6.

With _ constant equation (5) is solvable by separation of

variables. The equation in z is an exponential:

m( r, z) = m( r, O) exp(zlz0) , where (A6)

z0 is the z decay constant whose numerical value comes

from the solution of the equation in r.

The equation in r is a Bessel equation with the following general

solution:

[mcr,O, : r C3 , + C,Y,(.09 , or

CI = C_ v,,

C2 = C4 ve.

Jt is the Bessel function of the first kind, first order.

Yi is the Bessel function of the second kind, first order.

A. 2 BOUNDARY CONDITIONS

The three unknowns el, C2, and z0 require three boundary

conditions.

Boundary Condition I11. Since we have eliminated the laminar

sub-layer from the solution, we will make the condition at the

inside edge of that layer (r=r.) the first boundary condition.

The "universal velocity profile" [3] places the edge of the

laminar sub-layer at y+ = 5, where

" r"-r° "4_op : 5y :
U

Also in the laminar sub-layer, y+ : v+ where

(A8)
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V ÷ = Vo( to, z) _ = 5 (A9)

Equation (A9) introduces the wall shear, and the Blasius

expression for wall shear [3] makes the connection back to the

maximum angular momentum (which is the input quantity):

"_o = O. 0225 p v. 2 {'1---_."1 ) M( Re.) -14 (AIO)

ReM = PVM_o
IJ

v, is the velocity at maximum angular momentum,

r, is the radius at maximum angular momentum.

Substitution of (10) into (9) gives Boundary Condition _L__:

m(ro,O) = 0.75 r° v. <11_--_._ 1/8 (Re.) -1/8 (All)

It should be noted that a guess of r, must be used for the first

trial solution, then succeeding trial values are obtained by

setting the derivitive of the momentum equation (eq. (A13)) equal

to 0 and solving for r=r,.

Boundary Condition #2. Zero shear stress at the free surface.

At the free surface turbulent fluctuations disappear; therefore,

UT, = O. The condition, zr. = 0 at r, yields:

(am/ar) i = 2m( r i , O) / r i

Equation (A7) differentiated is:

Jo is the Bessel function of the first kind, 0 order,

Y0 is the Bessel function of the second kind, 0 order.

( A1 2)

( AI 3)

Equations (A12) and (A13) form the second boundary condition.

Boundary Condition I_3. Maximum angular momentum.

The maximum angular momentum, m,, is considered to be a given

quantity. The angular momentum profile is normalized by dividing

all m( r, z) by m..

Solution

The solution for CI, C2, and zd (program ZGROT) depends upon the
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fullness of the cylinder, r,lr0 (rilr0=O being full, and r,lr,=1

being empty), and the Reynolds Number range, as outlined in the

following table:

TABLE At,

r$/r9

0 01

0 2

0 4

0 6

0 8

I 0

For 10 6 < Re < 10 8

CI

1.926

1.935

1.958

0.9068

-0.8738

C2

3.317E-7

4.535E-2

0.5564

2.175

-3.1489

Rer,_ = 5"107

izl I( r9 _)

0.2748

0.2730

0.2584
0.2065

0.1229

0.0

rrl/r_

0.6609

0.6628

0.6823

O. 7363

O. 8374

1.0

F_

9.323E+8

9.336E+8

9.477E+8
9.930E+8

1.120E+9

* F, is a dimensionless quantity from which the wall shear can be

calculated:

F, = _oP(ro/IJ) 2(Rer, f /Re) 2

Figure A1 shows the computed angular momentum profiles.
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1.2

fNORMALIZEO ANGULAR MOMENTUM

FOR ROTATIONAL FLOW WITH A

CYLINDRICAL FREE SURFACE

RI/RO=8

0.0

RADIUS RATIO, IVRO

FIGURE At.

Program ZGROT also computes the Factor E, the ratio of axial to

radial angular momentum derivitives, and the average of E over r

once CI, C2, and zd/( r0 E) are computed.
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ri /r9

0.01

0.2

0.4

0.6

0.8

TABLE A2

$(avq)

1.42

1.49

1.53

1.65

1.70

z_/ro

O. 391

O. 407

O. 409

O. 341

O. 209

These values of zdlr0 indicate a large decay o£ angular momentum

in the z direction. For example, in an axial distance of one

radius the angular momentum or angular velocity would decay to

1/10 its value at z=O. A simple visual experiment shows this to

be incorrect.

A. 2 NUMERICAL SOLUTION OF THE MOMENTUM EQUATION WITH VARIABLE

(Other boundary conditions and assumptions as in A. I)

In the linear solution of section A. I an average (constant) value

of _ was used. The radial variation of _ calculated from the

resulting equation shows a spike in the region of m,, so that the

assumption is inconsistent with the results. (This is

paradoxical because a solution which allows a variable _ results

in a more nearly constant _). To test the possibility that the

constant _ assumption resulted in erroneously small values of

2d/to, the following non-linear equation (which makes no

assumptions concerning the momentum derivitives) was solved

numerically. The equation contains the complete expressions for

%,, and %,,, equations (3A) and (4A) so that the computation

should be valid into the laminar regions. (To obtain the same z

variation as before it is only necessary to assume similar

profiles.)

z variation (equation A6).

r variation:

_r'82m r_Sm R2_3v _1 I8_m I8m_r rmz 2 9"21 m2_-- + c -r --- + + 2C , : 0 (A14)V Z_

C and _ are the "mixing length" parameters which were

discussed and evaluated in the midterm report.

A sample calculation for ri/r0=O. 2 resulted in zd/ro=O. 464 which

is still too small (observations would indicate zd/r0 > 2).
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APPENDIX B

ADAPTATION OF THE SCHULTZ-GRUNOWINTEGRAL MOMENTUMMETHOD

The Schultz-Grunow case of interest is one in which the axial
spacing between the disk and housing is considerably greater than

the combined boundary layers. Contrary to the present problem,

however, the length of cylinder between the rotor and housing is

not considered enough to contribute to the drag, so it is

necessary to extend the theory. It is also necessary to account

for partially filled cylinders (ri/ro>O) and for the existence of

a free surface as would occur in a low gravity environment. The

presence of an actual spinning disk is immaterial since the flow

in the liquid core does not depend on the means (such as a jet or

spinning disk) used to induce the rotation.

The approach taken is that the central core of liquid rotates as

a solid body and the viscous effects and secondary flows take

place in the thin boundary layers next to the solid and free

surfaces. This description agrees basically with the visual

perception.

B. I EXTENSION OF SCHULTZ-GRUNOW TO ACCOUNT FOR A LONG CYLINDRICAL

SECTION AND AN INTERIOR FREE SURFACE

The boundary layer thickness 8 is taken to be that thickness of

liquid which, being dragged along with the spinning disk, has

exactly the centrifugal force to balance the drag due to the

radial velocity component. The tangential drag in terms of 8 is

that due to Blasius [3] and the I/7 power volocity distribution:

• o cos(e)=C,P[ r(wo -_)]7_4(V/6) s/4 (B1)

8 is the angle of the shear stress with respect to the

tangential velocity.

The next task is to determine 8, and that is accomplished by

balancing the centrifugal force in the layer 8 against the drag

force from (B1):

f_,sin(e) 2_rdr = Pr_0282_rdr (B2)

f = (contribution to radial drag force due to all of the

surfaces) /(radial drag force on the spinning disk

alone)

From (BI) and (B2) the boundary layer thickness is:
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6 = (C,tan(8))4'Sr31_Cvtwo)t_sCl-w,/_o)v]s (B3)

The torque on one side of the disk is (in our case integrating

from rl instead of 0):

To = r(2_[r) _oCOS(8) dr

rl

Substitution from (B1) and (B3) gives:

To = C, PWoZro_C1-w,/wo)_/_ _1-( rl/r=)zm/_ ReD

(B4)

-t/s (B5)

Where C, = I 366 C++'s <f tan(e)_ -'is

Reo =(_o co 2 / v,

Equation (B5) as developed is a more general case of the following

Schultz-Grunow equation (for one side of the disk):

To = 0.0311(1/2 P_o=r°_)Re -t /s (B6)

C, can be evaluated from (B5) and (B6) by matching the conditions

in (B5) to those of (B6); namely, ri=O, and _,/w0=0. 5 (Schlichting

[ 3]), and f=2 (end disk drag = spinning disk drag). Then,

C,=O. 041(2/f) ' ts

Cylindrical Section

The tangential torque on one half of the cylinder is:

(B7)

T° v, = 21[ro= =L_ocos(8)

To cos(8) =C+ P[ r= ° _)+] _ ] 4(v/6) ' / 4

Assuming 6 the same as on the rotating disk we get:

(B8)

(B9)

'Pc,, 23 L [£jU_]tS/S _ W_IuQ I v'4 I (BIO)
To - 5 r, {_Jr_Jr, 1-+,/uo 1-(ri/ro) =3/+

Fixed End Closure

The torque due to one fixed end is:

TE = r(2_r) _o cos(0) dr ,

rl

and the shear stress is

To cos( e) =C+ P( r _¢) _/*(v/6) '/+

Again assuming the same 6 we get:

(Bll)

( B1 2)
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TE = [ _r/U)Q I_I4 (B13)To 1-U)_ /Ld0

Inner Fixed Cylinder (optional)

If an inner fixed cylinder exists, its torque contribution is the

same as (BIO) with r.¢ replaced by r,:

T_, 23 L [Li]la/s F _J_Ib)v ]_4 1 (B14)

To - 5 r0 [r ] L]0 A-u,/u0 1-(rtlr0) 2_/s

since the torque on the disk (whether the disk is actual or

imaginary) balances the fluid torque on all of the contacting

surfaces, equation (B5) gives the fluid torque. Changes in the

rotation ratio o,/w0 reflect the changes in geometry from that

assumed in the original derivation. The following cases are two

of the configurations of interest:

Case I. For a partially or completely filled cylinder in zero

gravity having a free surface (ie. no torque) at r,, the

following holds:

1 = T¢, 1 /To + TE/TD

This, combined with (BIO) and (B13) yields:

u0/u, = [F( L) +13 4 /.v + I
( BI 5)

where,

F( L)
- 5 r. --Jr. 1-(r_/r.) 23/_

Case 2. Swirl in an open top vessel in a normal gravity

environment: there will be no torque on the top end (TE=O).

The following also allows for a possible inner fixed cylinder as

in a proposed swirl test apparatus:

1 = Toy I /To + T, /TD

4/'7

= O+(r,/ro)'''')] ,- 1 (B17)

Now it is possible to calculate the factor f in equation (B7) ( it

should be pointed out that (2/f) I /._ can be considered unity

except for very long cylinders):

f = I + f_ + fE ( BI 8)

If the liquid contacts a fixed end closure fE=1; if not, as in

case 2, fE=O.
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18[ I "L[ Ifc = 5-- 1-_,/WoJ ro ro 1-(ri/ro) ,a/_
( BI 9)

B. 2 EXPERIMENTAL CONFIRMATION OF TIIE ROTATION RATIO

Since equations CB16) and CB17) involve observable rotation

ratios, a visual experiment is useful for at least a crude

check. For this purpose I constructed a plexiglass cylinder in

which swirl was induced by a vertical axis spinning disk.

Near-neutral-buoyancy particles made the liquid rotation

visible. Both the liquid and disk rotation rates were timed by

stopwatch. The specifics are:

Fluid

rl

rOC ......

L .......

water

0

2. 27 in. -- O. 0576 m

2. 13 in. -- O. 0544 m

varied from 0. 5 to 5. 625 in,

3. 5 rev/s ( approx, constant)

Figure BI shows the results of 30 measurements at 6 values of

Llro.

2,

] , I , I I

0 I 2 3
L fro

Figure BI. Disk/liquid rotation frequency ratio as a function

of cylinder length.

The vertical bars show the approximate spread of the data. The

-18-



main experimental difficulty was in following particles which
tended to drift in and out of the main rotating core. As a

result, the timing of rotation was imprecise.

The solid line represents the theory. From equation (B16)

F(L) = 5. 76(L/ra),

and the rotation ratio _0/_, was obtained from equation (B15).

These simple experiments cannot actually check the theory since

the frictional torque was not measured; however, the effect of

the added cylinder length can be checked since length is

reflected in the change in _,/wp from the Sehultz-Grunow case

where w¢/_0=O. 5. Even though the observed w0/h)f appear to be

about 9% higher than the predictions it seems reasonable to

conclude that the observations generally substantiate the

modifications. The frictional drag has already been compared

with experiments as documented in Schlichting [3], and the

Schultz-Grunow predictions were found to be 17% low over a

Reynolds Number range 2(I0) m to (I0) m
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