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The objective of this paper is to discuss the in-space opera-
tions required to process the lunar and Mars mission vehicles
envisioned in early studies for the Space Exploration Initia-
tive (SEI). Recent studies, which have examined the degree
to which m-orbit operations change as a function of the
Earth-to-orbit (ETO) launch vehicle size, identified a com-
mon set of m-orbit vehicle processing tasks, and generated
functional requirements for in-space processing nodes, are

summadzed in this paper.

Timelines for m-orbit processing of two different lunm"
transfer vehicles (LTVs) wine developed to compare a "cur-

rent practice", labor-intensive EVA approach to ones utiliz-
ing telerobotics and advanced automation. LTV aerobrake
concepts ranging from simple deployment to considerable
assembly me compared. Similar timelines for the on-orbit

processing of a nuclear Mars transfervehicle (MTV) are also
presented. Aerobrakes can be processed in a timely manner,
and should not be ruled out for SEI misssions. The "tall

pole" time inlravalfor on-orbit vehicle initial processing is
the delivery of elements to orbit, not the processing tasks.

A discussion of the low-Earth-orbit (LEO) infrastructure re-

quired to suPlX_ on-orbit vehicle processing is presented.
The LEO infrastructure required to support on-orbit space

wansfer vehicle processing operations is determined by the
complexity and amount of on-orbit processing operations,
which is dictated by the design of the flight vehicle. Proces-
sing supix_ can be an integral pan of each vehicle to be as-
sembled, or it can be permanent infrastructure remaining in

LEO. Use of deployed rather than assembled aerobrakes
minimizes m-orbit operations. Early lunar missions with

expendable vehicles will not require on-orbit processing if
the ETO launcher is large enough, but laterspace-based reus-
able LTVs will. All MTVs proposed for the SEI are inherent-

ly large and will require significant on-orbit l_OCeSsingop-
erations.

The paper concludes with a discussion of hardware design
recommendations and specific technology needs that will

minimize the required on-orbit operations. On-orbit proces-
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sing time savings of up to 66% could be realized if the rec-
ommendations and technologies are _ted into the

space transfer vehicles.

This paperdiscusses those m-orbit processing operations
that will probably be required for some of the Space Explora-
tion Initiative space transfer vehicle elements. Also in-
cluded is discussion of some aspects of the on-orbit infra-

struclme that may be required to support such operations.
The emphasis of this paper is the amount of time these pro-
cessing operations might require and how this time duration
changes as a function of how the operation is executed and
how the hardware is designed. On-orbit processing opera-
tions include the assembly activity as well as operations re-

lated to inspection,protectionfzom orbital debris, storage,
checkout,fueling, crew transfer,etc.

On July 20, 1989, President Bush described the Spa_ Explo-
ration Initiative as consisting essentially of".., back to the

Moon to stay.., and on to Mars." In the intervening years,
he has endorsed the SEI objectives on many occasions by

further defining the goal, providing policy guidance on ar-
chitectures, identifying a possible role for international par-

ticipation, establishing a timetable, and requesting budget-
ary support. The most recent evidence of continuing strong
adminislration commiunent is his issuance of Space Policy
Directive No. 6 outlining participation of the DoD, DoE and
DoC and establishing a National Program Office to be led by
the NASA Associate Administrator for Exploration. I

In addition to the ongoing NASA studies of how such an ini-

tiative might be implemented, Gen. Thomas Stafford was
designated to lead a National Synthesis Group beginning in
late 1990 to further define several possible approaches for

mission implementation. The group's report outlined four
mission architectures that define mission scope and possible

implementation approaches. 2 Each of the_ mission archi-
tectures has been examined in detail (reference 3 documents

the NASA analysis of one of the architectures) to further
define implementationrequirementsand hardwaresystem
details.
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Emphasis is currently being directed at defining the details
of the initial unmanned precursor lunar missions. A first
manned landing could occur as early as 1999. The First Lu-
narOutpost (FLO) Study is a currentNASA in-house, inter-

center multi-team effort designed to identify approach, de-
tails, schedule, cost, technology requirements, and required
new system developments. An early conclusion of the stud-
ies has been that a single large heavy'lift launch vehicle
(HLLV), larger than Saturn V, would be required for each

cargo and manned launch. Each mission consists of a cargo
and a piloted launch that proceed independently to the
Moon. Many of the study results obtained over the last few

years, under the MSFC contracts cited in references 4
through 7, have provided the basis for the approaches being
refined in the current FLO studies.

The use of a single launch vehicle (if available) for each ele-

ment of the manned lunar mission eliminates on-orbit pro-
cessing operations. This approach would seem to be ap-
propriate in the current national economic environment and
as a simplifying approach for a f'u'stmanned mission, if a
large HLLV is developed. Reliance on a plan to develop such
a large HLLV, shown in Figure 1, for early and later lunar
missions has the added value of defining the launch vehicle
required for the Mars missions. Such requirements must be

defined now if the NLS program is to provide such a vehicle
rather than require that two new launch vehicles be devel-

oped in parallel. If, however, the required capability (mass
and volume) HLLV is not available for the FLO, a smaller

launch vehicle could be utilized with the result that some deo

gree of on-orbit processing operations will be required.

The least amount of on-orbit operations occurs with a dual-
launch for each mission element and an on-orbit rendezvous/

capture scenario (capture being a refinement to the Apollo-
style collision docking). Figure 2 shows such a mission
profile from a recent MSFC study.4 Figure 3 shows the
launch vehicle manifesting for this type mission. 6 Note that

the second piloted launch requires an undock-and-recapture
maneuver between the return capsule and lunar lander (simi-
lar to that of Apollo) prior to rendezvous/capture with the
first launch payload. A significant aspect of the fast launch
is to minimize propellant boil-off while waiting for about a
month until the second launch arrives in LEO. The rendez-

vous/capture scenario has been adequately demonstrated in
the past, but could be automated with advanced technologies
for additional development cost.

Utilizing an even smaller ETO vehicle (Shuttle, Titan IV,

small NLS, etc.) would stretch the delivery/assembly period
over a longer time span and result in more hardware pieces
to receive, inspect, assemble, and checkout. 8,9 It is for this

scenario that on-orbit processing operations and the support-
ing infrastructure become significant mission elements and
require an unrealistic number of ETO launches.

In later years when there are several missions to the Moon

each year, and hardware recovery, refurbishment, and reuse
are demonstrated to be economical, such LEO operations
and infrastructure will be required. The lunar transfer re-
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hicle would be based and fueled at a LEO node, and a shuttle

or its SSTO successor vehicle would be used to ferry fresh

crews and cargo between Earth and the LEO node. The need

for very large lunar HLLV is then eliminated.

However, the very large HLLV (150 to 250mr) will be re-

quired for all Mars missions in order to minimize the number

of launches and delivery time for the Mars transfer vehicle

elements. Figure 4 indicates that 7 launches to LEO, with a

150rot launch vehicle, is required. 5,1° The reference 11

study indicates a similar number of launches and examines

several approaches for implementing on-orbit operations.

One approach involves a self-contained robotic assembly,

capability in the payload to capture and assemble the hard-

ware pieces into a space transfer vehicle. A second approach

involves the same self-contained robotic assembly, but adds

a depot node for storing hardware awaiting assembly, and for

storing special assembly hardware and elements, such as a

orbital debris shields until required for the next mission. Of

these two assembly scenarios, the later approach minimizes

the mass penaltyon the departing Mars vehicle.

A third approach is the Space Station, or other free-flying

LEO node, to support the on-orbit processing operations. Of

the three approaches, this scenario imposes least mass penal-

ty associated with on-orbit processing on the departing Mars

vehicle. However, this scenario requires the most effort to

establish the LEO supporting infrastructure.

Reference 12 has examined those tasks that must be per-

formed in orbit to inspect, assemble, store and test a Mars (or

lunar) transfer vehicle. Table 1 presents these functions for

scenarios where more than two launches per piloted or cargo

mission are required. Table 2 presents those on-orbit sup-

porting systems required to enable these functions. A signif-
icant finding of this study was that the same in-space opera-

tions are required for each expendable space transfer vehicle

regardless of launch vehicle size, and are repeated for each
ETO launch. A recent MSFC trade study on ETO launch ve-

hicle size, summarized in Figure 5, utilized these findings. 13

Consequently, the capabilities and systems required in a sup-

porting role in or_t do not vary depending upon the size of

Table I Functions Involved In On-Orblt

Operatlons

• Deploy and erect structures
• Attach and assemble/dlsassemble components

• Inspect structures and components

• Callbrate systems and components
• Rendezvous and clock hardware

• Receive, berth and store components

• Maneuver components into poaltlon

• Manipulate structures and components
• Test end verify assemblies, systems,

and components

• Make utlllty connections

• Provlde effective llghtlng
• Communlcste

• Generate and store power

• Control large space structures

• Provlde thermal, radlstlon and debrla protection

• Manage cyro fuel transfer and storage

• Manage mlsslon data

• Provlde support for contlngency operations

Nuclear Thermal Rocket

Cargo

Piloted
5.7t Cargo

®
Aeroshell,
truss peck

Flight 1 Aeroshell
AftTank petal

NTP engines, foldout
Shield & Aft

RCS

i  O000
Deployable N"rP engines,
Truss, MTV Aeroshell Shield and Tank I Tank 2 Tank 3 Tank I

Mod sys, CRV, MOC Aft RCS
elriock, MOC Tank

tank #3

Figure 4 Launch Manifest for Mars Mlsslon wlth 150mt Vehicle
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Table2 SupportlngSystemsRequlredfor
On-OrbltOperatlons

• Structural
• Robotlc manipulators

• Data management computers and software

• Power generatlon and storage
• Communlcatlons hardware and software

• Remote sensors

• Vlsual Inspectlon hardware and software

• Cryogenlc fuel control

• Docklng and berthlng mechanisms

• Llghtlng unlts (fixed and moveable)

• Guldance, navlgatlon and control

• Storage

• Shleldlng

the ETO launch vehicle. The design of the system, and the

degree of astronaut involvement, is a function of which on-
orbit infrastructure scenario is selected. This selection is

strongly influenced by the technologies employed, which

are discussed in the later section on Design Recommenda-

tions and Technologies.

Lunar Mission Hardware Assembly Operations

The on-orbit assembly and refurbishment of two different lu-

nar transfer vehicles (LTVs) has been examined using ap-

proaches with varying degrees of automation in order to

bracket the best and worst case scenarios. Additionally, two

aerobrake concepts were studied, which vary from a self-de-

ploying design to one that requires the assembly of 19 large

panels. Previously developed methodologies and databases

were used for these analyses. 14 Timelines refer to work shifts

that are 8 hours in duration, and are for a dedicated on-orbit

vehicle processing crew of four.

Lunar Transfer Vehicle Assembly and Turnaround

Quantifiable Space Shuttle ground processing tasks at Ken-

nedy Space Center (KSC), as well as actual Shuttle EVA and

remote manipulator experience in space, were used as analo-

gies for LTV on-orbit assembly, refurbishment, and check-

out tasks. TM An Assembly/Servicing Facility located at

Space Station Freedom (SSF) was used for LTV processing,

and is further described in a following section on LEO As-

sembly Node Infrastructure.

The Option 5 LTV shown in Figure 6 was defined by the

90-Day Study on the Human Exploration of the Moon and

Mars. 15 It has a core stage consisting of a crew module, core

propellant tanks, and four RL-10 main engines. Liquid hy-

drogen and oxygen propellants are carried in four drop-tanks

which are mated on orbit. An aerobrake requiring assembly

70t Lunar

70 mt

I

Piloted

150t Lunar

149 mt 166 mt 173 mt

I
|

REPRESENTATIVE [
LUNAR TRANSFER SYSTEM

!
Cargo I

IF

34mt

250t Mars

257,

!1111

I

35mt

I
I

REPRESENTATIVE I

MARS TRANSFER SYSTEM "

Cargo

Figure 5 Summary of Trade Study to Assess Impact of Launch Vehicle Size on Complexity of

On-Orbit Operations
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Figure 6

LEV
• Mass 5.8t

• Propellent 22.4t
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!

LTV
• Mass 13.9t

• Propellent 136.8t
• Crew Module 7.6t

Optlon 5 Lunar Transfer Vahlcla
Configuration

of eight petals attached to a circular core is used for Earth-or-

bit capture at the end of the mission. Two cargo pods are car-

ded by the LTV for transfer to a separate lunar excursion ve-

hicle (LEV), which is based in lunar orbit. Three 71-ton

Shutfle-C HLLVs and one Shuttle flight are required to de-

liver the LTV components to LEO. The processing scenario

used for this Option 5 LTV is heavily dependent on use of

EVA astronauts to accomplish manual tasks. Initial assem-

bly of this LTV was estimated to take 69.5 work shifts (in-

cluding 27 shifts of EVA), and is shown in Figure 7. Refur-

bishment and turnaround between missions will take 182.5

work shifts (including 53 EVA shifts), and is shown in Figure

8. Use of advanced telerobotics reduced the required EVA

hours by 79%. If operation of the telerobots is performed

from the ground, a 49% savings of IVA astronaut time can

also be achieved. However, in order to achieve these savings

in EVA and IVA astronaut hours, the total elapsed processing

time may increase by 50% for initial assembly and 62% for

turnaround.14

The second LTV selected for analysis, shown in Figure 9,

was the Lunar 1-B Piloted Case LTV defined for the Mar-

shall Space Flight Center's (MSFC) ETO Size Trade

Study. 13 This LTV is based on Martin Marietta Corpora-

tion's (MMC) 4E-SB configuration 6, modified by substitut-

ing a Boeing crew module 7, and consists of a single propul-

siordavionics/crew module core vehicle with five RL-10

main engines and six propellant drop-tanks. An improved

deployable aerobrake (discussed further in the next section

on Aerobrakes for Earth Return) is left in lunar orbit while

the rest of the vehicle descends to the lunar surface. Follow-

ing launch of the LTV from the lunar surface, the LTV ren-

dezvous with and captures the aerobrake, and returns to SSF

in Earth orbit via an aerocapture maneuver. Five 70-ton

HLLVs are required to loft these LTV components to LEO,

TaSK

Lunar Vehicle Core Ops
Aerobmke Assembly
Integrated Testing
Drop Tank !natallstlon
Cargo A&B Inetalletlon
VehlcleClossout
Transfer to Launch Posltlon
Countdown end Launch

Figure 7 Assembly Timellne for 0

I I I

15

I'I' I

WORK SHIFTS

30 45 60 75 90

I I I I I I I I I I I I I I I I I

10 S_;f'm
10 S;_;;'._

19.5 Shift0
10 S lifts

11.5 Shifts

• 1.5 Shlfts
• 2 Shifts

Note: Parallel Operatlona
Note: JSC EVAEnhancements Incorporated

TotalAssembly/Processing Time : 69.5 Shifts

)tlon 5 Lunar Transfer Vehicle

662



TASK

LTV Proximity ape

ASF Operations
Crew Module Removal

Post Flight Inspections

Crew Module Deatowing

ORU Replacement
Refurbishment and Test

Crew Module Stowing
Crew Module Installation

Flight Readiness Verlficetlon

Drop Tank Installetion
Cargo A&B Installation
Closeout
Transfer to Launch Position

Countdown and Launch

Note: Parallel Operations

0
I

IIIlillll III I I II I III I IIII II I I I II I III I i II I

I 2 Shlfta

mm 8 Shifts
• 3 Shlftl

2l Sh;f_
5 Shlfta
CONTINGENCY

71 Sh;_,,
,,m 7 _;hlfts

• 4 Shifts

m 7 _;hl_

I 19.! Shifts10 Sh;;;i

m
......

I 1.S,Shl_l
TOTAL PROCESSING TIME = 152.5 SHIFTS

WORK SHIFTS

15 30 45 60 75 90 105 120 135 150 165 180 195

iiililll I IIII

Figure 8 Refurbishment Timellne for Option 5 Lunar Transfer Vehicle

Drop Tank Arrangements
(2 Places)

\ Aerobrake

Cargo
Pellet

Core Module

Crew Module

Figure 9 MMC Lunar Transfer Vehicle Configuration

as shown in Figure 10. A processing philosophy that mini-

mizes on-orbit operations by forcing the LTV to be as robust

and autonomous as possible was implemented at the direc-

tion of NASA Headquarters' Office of Exploration. Using

this philosophy, initial assembly of the modified MMC LTV

was estimated to take only 33 shifts (Figure 11), while turn-

around between missions would take only 61.5 shifts (Figure

12). This represents a savings of 52% for assembly and 66%

for turnaround as compared to the Option 5 LTV, while com-

pletely eliminating required EVA. These savings are made
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5 Separate 70-t Launches - Initial

t !IF 

Flight 1

FIgura 10 Launch Vehicle (70 mt) Manifest for MMC Lunar Transfer Vehicle

possible by incorporating the design recommendations and

advanced technologies which were identified to reduce the

labor intensive tasks based on vehicle processing analogies

at KSC. These are discussed in detail in a following section

on Design Recommendatons and Technologies.

For either the EVA-intensive Option 5 LTV assembly or the

modified MMC LTV telerobotic assembly, the time interval

between the HLLV ETO launches is longer than the time re-

quired to assemble and test the components. Therefore, ETO

launch frequency is the limiting factor that determines the

on-orbit processing time for initial LTV assembly.

TASK

LTVCore Ops
Aerobrake Assembly
Cargo Module Ops
Integrated Testing
Drop Tank Installatlon
(6 tanks on three leunche,s)
Vehlcle Closout
Countdown

o 15

I I I I I

4 Shlfto
am 3 Shlfta

__ Ha a__ifts
i _.5Shifts

WORK SHIFTS

30 45 60 75 90

I I I I I I I I I I I I I I I I I I I

12 Shifts

6.5 Shifts

in 1 Shift

TOTAL ASSEMBLY/PROCESSING TIME = 33.0 SHIFTS

Figure 11 Assembly T!mellne for MMC Lunar Transfer Vehicle
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TASK

LTV Proxlmlty Ops & Berthlng
ASF Ops
Crew Module Deatowlng
Post-fllght Inapectlons
ORU Replacement
RefurblsWSorvlceLTVSystems
LTV Retest

Cargo Module Ops
Drop Tank Inatallatlon
Vshlcle Cloaeout
Countdown

0 15
I I I I

• 1,5 Shifts
!• 1.S Shifts

4 Shlf!e

3O

I I I I

lO.Sshun,,

I I

WORK SHIFTS

48 6O

I I I I I I I I I

75

I I I I

9O

I

CONTINGE_
• 2 Shifts

CY

19.5 ;hilts

• 3 Shifts
12 hlftl

6.5 Shifts

I 1 Shift

TOTAL TURNAROUND/PROCESSING TIME -- 61.S Shifts

Flgure 12 Refurblshment Tlmellne for MMC Lunar Transfer Vehlcle

Aerobrakes for Earth Return

The aerobrake concept generated by Langley Research Cen-

ter's Space Exploration Initiative Office is shown in Figure

13. It is 50 feet in diameter, has a lift-to-drag (L/D) ratio of

0.15, and consists of 19 hexagonal panels with pre-atttached

thermal protection tiles. 16 This concept purposely included

assembly and was selcted to evaluate packaging a large aero-

brake in a small volume. Such a concept could also be valu-

able where a higher packaging density is required in a large

volume HLLV to minimize the number of ETO launches.

Joint design is such that a total of 305 captive bolts (spaced at

one foot intervals along the joints) require torquing. Howev-

er, no thermal protection closeout is required along the panel

joints. Upon completion of aerobrake structural assembly,

the docking ring, attitude control thruster assemblies, hydro-

gen boil-off storage tank, and avionics package must be
installed and verified. In accordance with the NASA Head-

quarters' Office of Exploration philosophy to make on-orbit

operations as autonomous as possible, a scenario using tale-

robotic assembly was developed. Assumptions included the

addition of a turntable to Space Station Freedom, and use of

the station's telerobots for this assembly scenario. The re-

suiting 80.7 hour (10 shift) processing flow is shown in Fig-

ure 14.

Figure 13 Robotic Assembly of Hex-Panel

Aerobrake Configuration

To bracket the opposite end of the on-orbit operations spec-

trum (i.e., no assembly and no supporting infrastructure re-

quired), the Martin Marietta rigid deployable aerobrake

shown in Figure 15 was analyzed. It is 45 feet in diameter,
and has an L/D of 0.14. This aerobrake is the one used for the

assembly analysis of the previously described modified

MMC LTV. 17 All docking mechanisms, attitude control

thrusters, propellant tanks, and avionics are pre-integrated

into the aerobrake prior to launch. Following electro-me-

chanical self-deployment of its side wings, a pressure decay

leak check between joint seals is performed to verify joint in-

tegrity. The deployment and checkout flow of 23 hours (3

shifts) for this aerobrake is shown in Figure 16.
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TASK

Mobile Trsniporter/SPDM Preparations

Offload, Inspect, Dock Center Panel to Rotary Fixture

Ofload, Inspect, Soft Dock Remalnlng

Panels (18 panels x I hrJpenel)

Bolt Panels (3 mlnJbolt x 7 bolts/seam x 42 seams)

Assemble Docklng Ring (6 segments x I hrJaegment)

Secure Docklng Rlng to Aerobrsks (12 bolts x 3 mln./bolt

Inspect TPS/Jolnta (both aides)

Install Thruster Assemblles (4) and Boll-off TanldlMU

Package (1 hr. each to offload, Inspect, soft dock)

Secure Thruster Assemblies and TanldlMU (3 bolts x

5 Items x 3 mlnJbolt plus trsnslatlon tlme)

Unstow Cables, Mate Connectors, Tie-down
Cables (5 fluld and 5 electrlcel x 1hr. each)

Berth Aerobrsks to LTV

Test Aarobrsks Control System

Secure MT/SPDM

0 15

, I l ! I

,,m 4.4 Hot ira

I 1 Hou

3O

I !

1Rk

HOURS
45

I I I I I I

_LIrll

14L7 Hn.rI

_ Houri

I o.AHnur
10,;

I

60 75

! I ! J

Hours

5.0 Hours

1 Hour

_OUrs

I
TOTAL ASSEMBLY TIME = 80.7 HOURS

• 1.5 Hours

8 Hou_

I 1.5 Hours

9O

Flgure 14 Assembly Tlmeline for Hex-Panel Aerobrake

Tank Palls

Radiators i

Enclosure Boxes
(2 Places

Longitudinal Bulkhead
(3 Placei)

Electrlcel Cable, Hinge
Transition (2 Places)

Stow Lock

Docking
Meohsnlam
end Hinges
(4 Places)

RCS Thrusters (4 Places)

Center Docking Fixture

Stow Lock (4 Places)

Center Section

Stlfening Ribs
(5 Places)

Solar Array
(Itowed)

Tank Pallet (2 Places)
3 LH2, 2 LO2 Tankll,
GH2 & GO2 Tanks (1 as.)
(Debris Shield not shown)

Fluid & Electrical
Interface to Core

Vehlcle (2 Places)

TransverseBulkhaad
(3 Places)

Flgure 15 MMC 3-pelce Aerobrake Configuration
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TASK

Mobile Trsnsporter/SPDM Preparations

Deploy/Latch Side Wlngs

Orspple/Offload Aerobrske

Inspect Aerobrske

Leak Check Seals (pressure decay)

Berth Aerobrske to LTV

Test Aerobrske Control System

Secure MT/SPDM

o 15

I I I i I I I I

II 4.4 Houri

10.5 Hour

I 1.0 Hour
I

5.(_Hours

|.0 Hours

I 1.5 Hours

8.o H

_11.5 Hours

3O

I I I

_urs

HOURS

I II

6O 9O

I I I I I I I I

75

I I

TOTAL PROCESSING TIME : 22.9 HOURS

Flgure 16 Processing Tlmellne for 3-plece Aerobrake

These two examples of aerobrake LEO processing, along

with the EVA/telerobotic co-operative assembly of the Op-

tion 5 LTV eight petal aerobrake demonstrated with a neutral

bouyancy simulation, 18 indicate that on-orbit assembly of

aerobrakes can be accomplished in a timely manner, and

should be considered as an option for the Space Exploration

Initiative. Large diameter ETO launch vehicle shrouds cur-

rently being considered for SEI will permit lunar aerobrakes

in the 50 foot diameter class to be launched fully ready for

flight.

Mars Mission Hardware Assembly Operations

On-orbit assembly analyses were performed for nuclear

thermal propulsion (NTP) Mars transfer vehicles (MTVs)

manifested on both 200-ton and 150-ton HLLVs. The ap-

plication of aerobraking at Mars orbit aerocapture, Mars

entry, and Earth return are also addressed.

Mars Transfer Vehicle Assembly

The MSFC/Boeing NTP Mars transfer vehicle, shown in
Figure 17, was analyzed for on-orbit assembly. 19 The for-

ward core vehicle consists of the crew habitat module, along

Figure 17 Boeing Mars Transfer Vehicle
Configuration

with attitude control, power (solar arrays), thermal control,

communications, and avionics systems. Attached to the hab-

itat module is the crew return vehicle (CRV) used for direct

entry upon Earth return. Connecting the forward core ve-

hicle to the aft core propellant tank and twin nuclear engines

is a strongback structure consisting of three conical trusses,

which are nested together for ETO launch, and then sepa-

rated, flipped, and mated together on orbit. Three additional

drop-tanks filled with liquid hydrogen are mated to the truss

structure and twin 12-inch propellant feedlines are con-

nected between the drop tank manifold and the aft nuclear

propulsion system. Remotely mated urnbilicals on carrier

plates were substituted for the Boeing baselined Marmon

clamps (which would be difficult for a robot to install). A

high I_JD Mars excursion vehicle (HMEV) is docked directly

to the crew habitat module, and contains the pre-integrated

Mars surface habitat and science payloads. These MTV

components are manifested on five 200-ton HLLVs. The
HMEV is manifested to be launched on the side of an HLLV

as shown in Figure 18. The MTV is 101 meters in length and

total mass prior to Earth departure is 817 tons.

Figure 18 Boeing Concept for Launching Assembled
Mars Entry Vehlcle
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The telerobotic on-orbit processing flow of 43 shifts for as-

sembly of this MTV is shown in Figure 19. As with the LTV

assembly flows previously discussed, the interval between

ETO launches is longer than the time required to assemble

the MTV components being brought up by each HLLV. A

minimum assembly node, which can provide attitude control

and electrical power, and serve as a platform for a manipula-

tor arm (with a dextrous end effector) and debris shield stor-

age, is baselined for this analysis. Possible node concepts

that could accommodate MTV assembly are discussed in a

following section on LEO Node Infrastructure. If the "self-

build" or "free-flyer" concept is selected, additional tasks

and time must be added to the processing flow for top-off of

expended MTV consumables. Mandating that the propul-

sion system nuclear reactors be launched cold (no prior run

Task Event

HLLV Launch #1

Berth MTV Core/Rcv Inspection

Assemble Dixie Cup Truss
Dock HMEV to MTV Core
Mate Umblllcals

MTV Core Test

HLLV Launch #2

Berth Arrlvlng Cargo/Rcv Inspection
Berth CRV to MTV Core

Assemble Dixie Cup Truss
Mate Aft Core to MTV

Install H2 Feedllnes
Mate Umblllcala

Perform Leak Checks
Aft Core Test

HLLV Launch #3

Offload/inspect/Mate Drop Tank
Mate Umblllcals
Perform Leak Checks

Test Tank

HLLV Launch #4

Of/load/inspect/Mate Drop Tank
Mate Umblllcals

Perform Leak Checks

Test Tank
HLLV Launch #S

Of/Ioad/inspect4_/late Drop Tank
Mate Umbillcals

Perform Leak check

Test Tank
Vehicle Closoout/Countdown

Remove/Store Debris Shields (eat. qty. 40)

Deploy/inspect Radiation Shields,

RCS Booms end Solar Arrays

Flight Crew and Supplies Transfer to MTV
Load/Verify Flight Software
Countdown Damn and Mission
Sequence Testa

Tanker BertiVl'l 2 Top-off
Demate Node Connection_Closeout
Unberth MTV

Countdown (chllldown, final checks,

coast to TMI)
Secure Node

WORK SHIFTS

0 15 3O
I !

I I I 'I I I I I I

• 2 Shlfte
• 1.5 ShlftI

• 1 Shift
I O.S Shifts

• 1 Shift

12 Shifts

,I o.sSh_,
I o.s Shll _1
• 1Shift

• 1 Shll t

I O.S _hlftl
I o.s Shifts

n__.q Rhlftl
I o.s Shifts
I 0.25 Shifts

II 2 Shifts

I n _< _hle.,
I 0._ Shifts

I 0.25 Shlfte

12 Shifts

I n__._RhlftJ
• I o.s Shifts
1 0.25 _;hlfts

I I

10 Shlftl.,
• 1 Shift

• 1.5 Shifts

• 1.5 Shifts

• 1.5 Shift

45 6O
| II I I I I ,

3.5 ;hilts

• 1 ;hilt
I (__ Shifts

TOTAL NTP/M'rV On-Orbit Assembly = 43 Shifts

Flgure 19 Assembly Tlmellne for Mars Transfer Vehicle
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time) eliminates build-up of fission products and associated
radiation hazards.

Manifesting a similar piloted MTV, shown earlier in Figure

4, on a smaller 150 ton HLLV would require seven ETO
launches. 13 Additional propellant tanks, debris shields, and

aerobrake deployment and checkout operations would add

18 shifts to the on-orbit processing flow for the 200-ton
HLLV-manifested MTV.

Mars Mission Aerobrake Applications

The utilization of aerobrakes (any vehicle element which

uses aerodynamic forces for velocity reduction) for several

phases of the Mars mission can result in significant vehicle

LEO mass reductions. These phases are capture into Mars

orbit after transit from Earth, entry to the Mars surface from

Mars orbit, and capture into Earth orbit or direct Earth entry

after transit from Mars. Preliminary studies indicate that

aerobrake diameters of about 100 feet will be required for

Mars orbit aerocapture and about 50 feet for Mars entry and

Earth aerocapture return. Delivery of such large, fully as-

sembled aerobrakes to Earth orbit could require an approach

such as that illustrated in Figure 18 or a very large HLLV

shroud. Alternatively, an assembly approach as illustrated

in Figure 13, or a deployable approach, as illustrated in Fig-

ures 15 and 20, would be required. Figure 21 is a recent

MSFC folding concept for the Mars entry aerobrake where

heating rates and loads are relatively lower than for Mars/

Earth aerocapture or Earth entry. The assembly approach of
Figure 13 would obviously require the most on-orbit sup-

porting infrastructure. The deployable approach for Figure

20 essentially eliminates assembly, but would require many

Tank Pallet,
One Side Deployed Debris

Shield

ot Point

Stow Lock

Fully Stowed Configuration

Figure 20 Three-plece Aerobrake Folding Geometry

Figure 21 Boeing Umbrella Aerobrake Configuration

of the typical on-orbit functions i.e., inspection etc. Like-

wise, the umbrella approach of Figure 21 also essentially

eliminates assembly but would require other on-orbit func-
tions.

No one aerobrake size or structural concept will suffice for

all potential lunar and Mars mission applications. Viable

aerobrake concepts have been developed for each potential

application. A significant consideration for each concept is

to optimize, within practical limits, the combination of aero-

brake packaging for delivery to Earth orbit and the required

on-orbit operations.

LEO Assembly Node Infrastructure

Recent studies have begun to indicate those mission scenar-

ios which will likely need an orbital supporting infrastruc-

ture. Whether any supporting infrastructure for any mission

is required depends heavily on the size and design of the

space transfer vehicle and the number of launches from the

Earth required to deliver the vehicle elements to low earth

orbit. Based on current SEI architecture concepts and

today's launch vehicles, either a lunar or a Mars transfer ve-

hicle would require multiple launches to LEO and would re-

quire some degree of on-orbit support to assemble and

checkout the vehicles. While HLLVs possessing the re-

quired lifting and volume capabilities may become available

to permit single launch lunar missions, HLLVs with similar

capabilities for a Mars mission are extremely unlikely. Thus,

it can be stated with assurance that Mars vehicle assembly

will require a degree of on-orbit support. This eventual need
for a Mars mission LEO infrastructure should be considered

when selecting lunar mission approaches.
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Studies such as this have been undertaken and require further

effort before an appropriate approach for a particular mis-

sion or a class of missions is identified. The high costs

associated with on-orbit supporting infrastructure will force

careful justification of such a mission element. The on-orbit

supporting elements will likely be selected only if they are

an enabling element that has no practical substitute in space

transfer vehicle design or launch vehicle capability.

References 12"and 20 are two of the recent studies about the

on-orbit support functions to be provided by the on-orbit in-
frastructure. Reference 21 is a preliminary look at the

technologies requiring advancement if these functions are to

be provided. Not all these functions or technologies would

be required in a first mission, but are thought to be needed

by the time repetitive Mars missions and a permanent lunar

base are being implemented. Early lunar missions may be

single-launch, or at least dual-launch rendezvous/capture
missions, and will probably each be self-sufficient and inde-

pendent of any on-orbit support.

The break point for requiring on-orbit support and infrastruc-

ture appears to occur when the space transfer vehicle re-

quires more than two launches, requires fueling operations,

requires robotic or EVA assembly, or involves refurbishment

operations prior to a next mission. Several on-orbit support-

ing infrastructure concepts have been studied, ranging from

an evolved Space Station Freedom to a smaller free-flying

assembly node to self-contained robotic arms on the vehicle

being assembled.

Figure 22 is an early concept of how Space Station Freedom

might evolve to accommodate assembly, checkout, and re-
furbishment of lunar and Mars vehicles. Recent studies

seem to indicate that the large size of the current Mars ve-

hicle concepts are not compatible with the current Space Sta-
tion Freedom resources available. Figure 23 is a concept for

an assembly/servicing facility for processing lunar transfer

vehicles, and would be located on a lower keel truss of the
evolved station. 22 Reference 23 indicates that many Space

Station Freedom elements may be usable as SEI vehicle ele-

ments.

Figure 24 shows a man-tended orbital node for Mars vehicle

assembly. Depending upon launch vehicle size, as many as

five (250mt) to seven (150rot) HLLV launches could be re-

quired to deliver all vehicle elements to Earth orbit. Besides

assembling and checking out the vehicle, its elements must

be protected from Orbital debris for the assembly duration.

A minimum of 30 days between launches is expected. Man-

tended implies that the crew is sheltered elseWhere, perhaps

at Space Station Freedom, during the assembly and check-

Figure 22 Space Station Evolution Concept for Mars Mission Accommodation
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out period. While the man-tended approach may be intended

to reduce cost, it will require a crew transportation vehicle

to move between nodes. Such a man-tended node may or

may not contain fueling tanks, depending upon safety de-

mands. Figure 25 is an early concept for a fueling depot

node. Safety considerations and vehicle design will deter-

mine if such an independent node is appropriate. If so, crew

transport is again required. Figure 26 is a more recent Boe-

ing concept for Mars vehicle assembly. It would be man-ten-

ded and specific to the processing scenario for a Mars trans-
fer vehicle.

A final recent concept for supporting on-orbit operations has

been developed by Boeing and involves a robotic crawler

with arms able to effect self-assembly through berthing and

other robotic operations. While astronaut involvement on-
orbit is minimized, there would be mass inefficiencies in the

vehicle required to support the robotic hardware. Additional

time, logistics, and cost to replenish vehicle consumables

will be required if the vehicle must serve as its own assembly

node. Also, provision for orbital debris shielding offers

another complexity and inefficiency, unless the shields are
left in Earth orbit. If such hardware is left in LEO and not

used for subsequent missions, disposal in a safe manner is re-

quired.

Requirements for the LEO supporting infrastructure can

only be generalized at present, and is not required for some

mission concepts. More mature launch and space transfer

vehicle concepts will permit further definition of these re-

Figure 25 Concept of LEO Fuel Depot

quirements. Mars vehicle assembly and the reusable-hard-

ware mission scenarios will require a supporting on-orbit in-

frastructure.

Figure 26 Concept of Minimal LEO Node for Mars
Vehicle Assembly

Design Recommendations and Technologies

The design recommendations and technology needs listed in
Tables 3 and 4 are applicable to any manned or unmanned

space vehicle which utilizes on-orbit processing operations.

They have been selected for the high leverage they will pro-

vide in reducing the the most labor intensive tasks identified

from vehicle processing analogies at KSC.

A prime example of these savings is the elimination of 16

shifts of EVA required to intrusively inspect LTV main en-

gine turbopumps with borescopes, by incorporating built-in

engine plume analysis sensors for detection of turbopump

blade and bearing-wear long before failure. Other propul-

sion recommendations include using electromechanical ac-

tuators for engine gimbaling, thus eliminating the need for

complex, service-intensive hydraulic systems. To minimize
the risk of on-orbit propellant leaks, which may be difficult

to isolate and repair, propellant systems should be integrated

on the ground as complete stages whenever possible. Use of

expendable propellant drop tanks for reusable vehicles pres-

ents a significant risk to mission reliability due to the re-

peated disturbances of critical cryogenic connections. Pro-

pellant resupply using fluid transfer from tankers or a

propellant depot will reduce opportunities for leaks, thus in-

creasing mission reliability. 24 The need for redundant seals

on all fluid system components is evidenced by the hydrogen

leaks that grounded the Space Shuttle fleet in 1990 due to

single seals on valve shafts.

Attachment recommendations include autonomous electri-

cal and fluid umbilical connections (using a structually

mated carder plate), which would eliminate many EVA

hours for this recurring task. Orbital replacement units

(ORUs) need to be of a "snap-in" modular design with self-
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Table 3 Vehlcle Design Recommendatlons

GENERIC

• Design eervlceable hardware for ease of EVA/

talerobotlc access, Includlng aufflclent epaclng
between parts

• Deslgn for automatlon wlth aelf-allgnlng metlng
components, pertlal-turn connectors, and pre-deflned
vlsual cues

• Include Integrated grapple fixtures on all manlpulated
elements

• Design to allow on-orblt disassembly to facllltate

repair or recovery for assembly problems

• Provide EVA backup capablllty for all telerobotlc
tasks

• Mlnlmlzo number of parts to be handled/assembled

ATTACHMENT

• Provlde automated umblllcal mate/demate wlth

auto-verlflcatlon of Interface

• Provlde "snap-ln" mountlng of ORUs
• Avold threaded fasteners

PROPULSION

• Integrate propellant tanks, englnee, and manlfolde

on ground whenever possible

• Develop englnos not requlrlng Intrusive Inspectlon

and servlclng

• Utlllze electromechanlcal actuators for englne
glmbellng

• Utlllze propellant transfer from tanker/depot for
reusable vehlclee

• Utlllze redundant seals on all fluld Jolnts

CREW MODULE

• Skylab type waste management unlt

• Berth transfer vehicle dlrectly to presaurlzed node

for servlclng

mating connections. Threaded fasteners for on-orbit use

should be avoided since galled threads on fasteners have

been a very common problem on flight hardware at KSC.

Captive, partial-turn fasteners will facilitate both EVA and
telerobotic connection tasks.

Crew module refurbishment recommendations begin with a

"Skylab" type of commode (utilizing fecal bags) to elimi-

nate the lengthy refurbishment required for a "Shuttle" type

waste management facility. The labor intensive refurbish-

Table 4 Needed Technologles for On-Orblt
Vehlcle Processlng

• Robotlce

[] Dexterous end effectors

[] Automated umblllcals

• Artlflcal Intelllgence/Expert Systems

[] Inspectlon

[] Dlagnostlc checkout

• Vehlcle Health Management
[] BIT capable of fault detectlonAsolatlon to ORU

level

• Zero-Gravlty Cryogenlc Fluld Management
[] Transfer

[] Long term storage
[] Leak detection/Isolation

• Advanced Power Components
[] Fuel cells

[] Batteries

ment of the crew module between missions requires IVA ac-

cess from pressurized modules in order to eliminate what

would otherwise be excessive EVA transfers. Coupled to
this is the desire to leave the crew module attached to the

LTV core vehicle to eliminate the reconnection and verifica-

tion tasks. It is therefore recommended that a returning

transfer vehicle be berthed directly to a pressurized node.

Use of a pressurized transfer tunnel (similar to an airport jet-

way) is an alternative if the vehicle must be berthed in a re-

mote facility (such as a hanger on the SSF lower keel).

Generic design guidelines will enable and enhance both

EVA and telerobotic accomplishment of tasks and ensure

that recovery from problems is possible. Access to hardware

requiring servicing or change-out, without having to first re-

move other hardware, has been a major design problem on

current flight vehicles. Whenever telerobotics and automa-

tion are used to replace EVA for accomplishment of manual

tasks, EVA back-up capability must be maintined for contin-

gencies.

The advanced technologies needed to implement these ve-

hicle design recommendations are listed in Table 4. Robotic

technologies, such as dexterous end effectors and automated

umbilicals, will eliminate much of the needed EVA. Expert

systems using artificial intelligence for inspection and diag-

nostic testing will permit significant reduction in astronaut

IVA hours for vehicle processing. Inspection is a repetitive

task which can be automated with "before and after" image
comparison techniques to detect anomalous conditions. Ve-

hicle health management (VHM) with "built-in test" (BIT)
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equipment (sensors and software) could provide fault isola-
tion capability to the ORU level and greatly reduce the
amount of orbital support equipment needed. VHM should
also provide automated verification of continuity across all

pins when umbilicals are mated. Finally, VHM could per-
form system and component trend analysis, thus eliminating
unnecessary retest of healthy components.

Zero-gravity transfer and long term storage of cryogenic
fluids is required, along with leak detection and isolation
techniques. Advanced fuel cells and batteries could greatly
reduce the extensive conditioning and monitoring that cur-

rent components require.

Current programs such as Space Shuttle and Space Station
Freedom started out down the path of reduced operations and
life cycle costs. As budget realities set in, development and

application of advanced technologies were cut, with the re-
suiting impact of increased operations and costs down-
stream. If advanced technologies are not mandated for SEI

flight vehicles, on-orbit processing can still be accomplished
using EVA and SSF-era telerobotics. However, the magni-
tude and complexity of labor-intensive tasks will greatly in-
crease, with resulting negative impacts to on-orbit infra-
structure requirements and costs. It should also be noted that
incorporation of these advanced technologies into vehicle
designs not only facilitates on-orbit processing operations,
but should also reduce the complexity and time required for

ground checkout at the launch site. Additional rationale,
along with readiness levels for these and other technologies
applicable to on-orbit vehicle processing operations, are dis-
cussed in Reference 21.

Concluding Remarks

All studies to date indicate that Mars transfer vehicle assem-

bly will require some degree of on-orbit support. On-orbit
support for lunar vehicles may be needed, depending on the
mission scenario and ETO launcher selected. Any scenario

involving more than two ETo launches per transfer vehicle,

fueling operations, robotic or EVA assembly, or refurbish-
ment operations prior to a next mission, will likely require
a LEO supporting infrastructure.

Any on-orbit supporting infrastructure required for LEO ve-
hicle processing operations is determined by the complexity
and amount of on-orbit assembly and servicing operations,
which in turn is dictated by the design of the flight vehicle
hardware elements.

On-orbit supporting infrastructure elements will be used

only if they are enabling elements that have no practical sub-
stitutes in space transfer vehicle design or launch vehicle ca-

pability.

The on-orbit processing operations required to prepare any

large space transfer vehicle for its initial mission are the

same regardless of ETO launcher size. However, the number

of repetitions of those tasks is a function of the ETO launch
vehicle size. Refurbishment of reusable manned vehicles in-

creases the quantity and complexity of tasks.

The time interval between HLLV ETO launches is longer

than the time required to initially process (either manually
or teleroboticaliy) the vehicle components being brought up

by each HLLV.

On-orbit assembly of aerobrakes can be accomplished in a
timely manner and should be considered as an option for the
Space Exploration Initiative. Deployable aerobrakes elimi-
nate assembly, therefore reducing on-orbit operations and

supporting LEO infrastructure requirements.

Space transfer vehicles must allow simple and adequate ac-
cess to all serviceable hardware without having to remove

and replace (and retest) other hardware in the way.

On-orbit vehicle processing can be accomplished with cur-
rent technologies and practices, but incorporation of ad-
vanced technologies into space transfer vehicle designs will

greatly reduce the complexity and magnitude of labor-inten-
sive tasks.
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