NEW TECHNOLOGY APPLIED TO TELLEMEDICINE

BY
EDWARD F. MILLER, Ph.D.
N A S A, L E W I S R E S E A R C H C E N T E R

PRESENTED AT:
INTERNATIONAL TELLEMEDICINE/DISASTER MEDICINE CONFERENCE
UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES
BETHESDA, MARYLAND
DECEMBER 9-11, 1991
1.0 INTRODUCTION

Telemedicine Space Bridge
(Two-Way Video)
<table>
<thead>
<tr>
<th>System</th>
<th>Antenna Diameter</th>
<th>Transmitter Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSDRN Satellite</td>
<td>1.6 m OR 3.0 m</td>
<td>13 W</td>
</tr>
<tr>
<td>WSDRN Earth Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US DOMSAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOMSAT Earth Station</td>
<td>1.6 m</td>
<td>20 W</td>
</tr>
<tr>
<td></td>
<td>3.7 m, TYPICAL</td>
<td>300 W OR 600 W</td>
</tr>
</tbody>
</table>
Technical Characteristics of Current Telemedicine Links by Satellite

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite Antennas</td>
<td>1.6 TO 3.0 m</td>
</tr>
<tr>
<td>Satellite Transmitter Power</td>
<td>10 TO 20 W</td>
</tr>
<tr>
<td>Earth Station Antennas</td>
<td>2 TO 5 m</td>
</tr>
<tr>
<td>Earth Station Transmitter Power</td>
<td>100 TO 600 W</td>
</tr>
<tr>
<td>Channel Bandwidth for Analog Video</td>
<td>34 TO 54 MHz</td>
</tr>
<tr>
<td>Frequencies</td>
<td>Ku-BAND 11-15 GHz</td>
</tr>
</tbody>
</table>
APPLICATIONS OF NEW TECHNOLOGY

VIDEO CODING

- REDUCES BANDWIDTH & POWER REQUIRED
- PRESERVES FULL MOTION AND FULL RESOLUTION

APPROACH

- DEVELOPMENT OF VIDEO CODING ALGORITHMS
 2:1, 5:1, 10:1 COMPRESSION
- PROTOTYPE EQUIPMENT
- DEMONSTRATIONS WITH SATELLITES

BENEFITS

- LOWER COST OF TELEMEDICINE TRANSMISSIONS
- MULTIPLE TELEMEDICINE CHANNELS IN A SINGLE SPACECRAFT TRANSPONDER
- REDUCED POWER, SMALLER ANTENNA SIZES
SPACE ELECTRONICS DIVISION

VIDEO COMMUNICATIONS BANDWIDTH COMPRESSION

SCOPE/OBJECTIVES:
- DEVELOP VIDEO DATA COMPRESSION TECHNOLOGY FOR TRANSMISSION OF IMAGE DATA OVER SPACE COMMUNICATIONS LINKS
 - EFFICIENT BANDWIDTH UTILIZATION
 - INCREASED PROCESSING SPEED THROUGH EFFICIENT CODING TECHNIQUES
 - COST EFFECTIVE HARDWARE IMPLEMENTATION

BENEFITS:
- INCREASE ORBIT/SPECTRUM CAPACITY
- ENABLE COST EFFECTIVE COMMERCIAL DIGITAL VIDEO TRANSMISSION
- ENHANCE NASA SCIENCE MISSION VIDEO CAPABILITIES
- REDUCE SPACE SEGMENT COSTS BY REDUCING BANDWIDTH REQUIREMENTS

ACCOMPLISHMENTS:
- PATENT PENDING ON IN-HOUSE DEVELOPED ENHANCED DPCM CODEC PROVIDING BROADCAST QUALITY ENCODING IN REAL TIME
- UNIVERSITY GRANTS IN PLACE FOR INVESTIGATION AND DEVELOPMENT OF NEW ENCODING TECHNIQUES
- RECENT SCAR AWARD TO COMSAT FOR DEVELOPMENT OF FLEXIBLE-RATE HDTV CODEC
SPOT BEAM & MULTIPLE BEAM ANTENNAS

- FOCUS SPACECRAFT POWER ON INTENDED REGIONS
- HIGH GAIN SPACECRAFT RECEIVE ANTENNA

APPROACH

- MULTIPLE FEED ANTENNAS FOR MULTIPLE SPOT BEAMS
- ARRAY ANTENNAS FOR SCANNING BEAMS
- PROTOTYPE HARDWARE
- SPACE EXPERIMENTS/Demonstrations

BENEFITS

- REDUCED POWER & COST PER TELEMEDICINE CHANNEL
- AREA ADDRESSABLE COMMUNICATIONS
- PORTABLE OR MOBILE EARTH STATIONS BECOME POSSIBLE
APPLICATIONS OF NEW TECHNOLOGY (CONT.)

ON-BOARD DETECTION AND SWITCHING

- RECONSTITUTED SIGNAL IMPROVES IMMUNITY TO NOISE
- MESSAGE/DATA ROUTING PERFORMED ON SPACECRAFT

APPROACH

- DEVELOP IMPROVED MODULATION AND CODING
- DEVELOP BULK DEMODULATORS (MULTI-CHANNEL DEMODULATORS)
- DEVELOP BASEBAND SWITCHING FOR INDIVIDUAL MESSAGES
- PROTOTYPE HARDWARE
- SPACE EXPERIMENTS/DemonSTRATIONS

BENEFITS

- REDUCED POWER AND COST FOR TELEMEDICINE DATA AND VOICE MESSAGES
- MESSAGE ROUTING TO SUPPORT A LARGE NUMBER OF USERS
ACTS Switching and Processing Technology

Baseband Processor
- Demodulating/remodulating
- Decoding/encoding
- Routing
- Circuit switching
- Onboard memory

Microwave Switch Matrix
- Dynamic "Bent Pipe"
 beam-to-beam routing
- Uplink/downlink frequency
 translation
- No onboard memory
- Static-mode operation for
 continuous carriers
APPLICATIONS OF NEW TECHNOLOGY (CONT.)

MISCELLANEOUS TECHNOLOGY IMPROVEMENTS

- HIGH EFFICIENCY TRANSMITTERS
- AUTOMATIC TRACKING ANTENNAS FOR RECEIVING SYSTEMS
- IMPROVED PERFORMANCE SOLID STATE AMPLIFIERS

 •

 •
MOBILE SATELLITE COMMUNICATIONS SYSTEMS

- UBQUITOUS TERMINALS FOR POST-DISASTER TELEMEDICINE
- LOW EARTH ORBIT SATELLITES REQUIRE SMALLER TERMINALS

APPROACH

- COMMERCIAL SYSTEMS ALREADY PROPOSED
- DEVELOPING INFRASTRUCTURE CAN BE USED FOR TELEMEDICINE APPLICATIONS

BENEFITS

- LOW COST BY USING DEVELOPED SYSTEM
- WIDESPREAD ACCESS TO NETWORK FOR DATA, FACSIMILE, AND VOICE TRANSMISSIONS
USE OF HIGHER FREQUENCIES

- PRACTICABLE, HIGH GAIN, SPOT BEAM ANTENNAS
- ACCESS TO UNCROWDED PART OF FREQUENCY SPECTRUM
 (20 GHz AND 30 GHz, FOR EXAMPLE)

APPROACH

- DEVELOP TECHNOLOGIES OF ANTENNAS, ON-BOARD DETECTORS, SPACECRAFT SWITCHING, HIGH FREQUENCY COMPONENTS,
- DEVELOP AN EXPERIMENTAL SATELLITE (ACTS - 1993)
- PERFORM EXPERIMENTS TO DEMONSTRATE USE (1993-1995)

BENEFITS

- COMBINED ADVANTAGES OF TECHNOLOGIES USED
 LOWER POWER
 LOWER COST
 MESSAGE SWITCHING
ACTS Spacecraft Characteristics

Weight: 3250 lbs (on-orbit)

Power: 1770 W BOL
four panel solar array (134.5 ft²)

Frequency bands: Ka-band (30/20 GHz)

Payload: Multibeam antenna, on-board processing and routing

Spacecraft pointing accuracy: + 0.025°

Launch date: February 1993

Mission requirement: 2 yrs Experiment period
4+ yrs Station keeping fuel
“REMOTE” MEDICAL IMAGING

- CAT SCAN TO SUPERCOMPUTER
- SUPERCOMPUTER TO ANIMATION DEVICE
- ANIMATION DEVICE TO MEDICAL WORKSTATION

ACTS

NASA
SATELLITE ENHANCEMENT OF B-ISDN PUBLIC NETWORK

SCOPE/OBJECTIVES:

- Evaluate satellite architectures for providing complementary multicast/broadcast capability to a broad-band ISDN based terrestrial network
 - Compatible with planned ATM protocol
 - Provisions for circumventing satellite path delay

BENEFITS:

- Enhances market potential of satellite technology
- Takes advantage of B-ISDN features to enhance satellite hardware efficiency and utilization
- Straightforward implementation of multicast/broadcast enhancement of B-ISDN protocol

ACCOMPLISHMENTS:

- Study results support general concept
SUMMARY

NEW TECHNOLOGY DEVELOPMENTS APPLIED TO SATELLITE COMMUNICATIONS CAN FACILITATE TELEMEDICINE APPLICATIONS. BENEFITS FROM USING NEW TECHNOLOGY INCLUDE LOWER POWER, SMALLER SIZE, REDUCED COST, AND GREATER AVAILABILITY IN POST DISASTER SITUATIONS.