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INTRODUCTION

The goal of this First Joint Cardiopulmonary Workshop for Ames Research Center, Johnson
Space Center, and Kennedy Space Center was to allow principal investigators to inform each other of
their previous progress and future plans for their National Aeronautics and Space Administration
(NASA)-funded projects. Through this meeting it was hoped that more contact, interaction, and
collaboration would be fostered among investigators within the Research and Technology Objectives
and Plan (RTOP). Also, it was hoped that this knowledge base could be transferred to space flight
experiments and that i nformation from actual microgravity could be used to improve ground-based
human and animal models of simulated microgravity. Presently, NASA-Headquarters has
recommended that RTOP tasks shift from acute to long-term studies, including more emphasis on
countermeasure development. [n the present environment of decreasing research support in the
NASA RTOP Program, it is our goal to maximize basic understanding of mechanisms of
cardiopulmonary adaptation to microgravity so that health and performance of crewmembers is
optimized in space and upon return to Earth.

These proceedings include copies of papers presented at the workshop. For those papers

previously published, we have included a reference and a brief description of the research performed.
In some instances, additional reference material is also provided.

Alan R. Hargens
Suzanne M. Fortney

6 December 1990
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‘DISCUSSION

After presentations by each principal investigator and discussion of their progress,
Dr. Charles Tipton led additional discussion of: 1) animal and human models of microgravity
simulation and 2) possible cardiopulmonary countermeasures to maintain human health in space
and during return to Earth. The following discussion does not always represent all of the points or
the total consensus of all Workshop participants. “ -

Animal and Humz;n Models

It was agreed that the optimal model for microgravity usually depends upon the question asked.
However, ground-based models such as head-down tilt (HDT), horizontal posture and immersion are
all valid models. Also, spinal cord lesion patients show promise as subjects for orthostatic intoler-
ance countermeasure development. Because 5° to 6° HDT is considered the best ground-based, -
human model for the cardiovascular system today, investigators who use a different model should
specify their reasons for using their particular model. The need to reduce psychological stress and to
standardize protocols for HDT was discussed. For example, more emphasis should be placed on the

In terms of animals, the model should be selected that best addresses the mechanism under
investigation. Whenever possible, however, the animal should be a species designated for future
flight experimentation. Evidence was presented at this Workshop that the rat is 3 very good overall

research. Large sample sizes, an extensive data base, and low costs are key advantages for use of
rodent models. However, the nonhuman primate, particularly the rhesus monkey, may be a better
model for cardiac research and for certain cardiovascular parameters.

Countermeasures

Practicality and efficiency should be key factors in developing countermeasures. In this regard
a minimum effective countermeasure such as high intensity, high-resistance exercise may be
preferred over aerobic exercise Specificity should also be considered, and a variety of exercises,

xii
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must be developed scientifically and that investigators within the Cardiopulmonary RTOP are

excellent resources for such development.

Suzanne M. Fortney
Alan R. Hargens

12 December 1990
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CAROTID-CARDIAC BAROREFLEX: RELATION WITH ORTHOSTATIC  / 3 ", 7;2 y
HYPOTENSION FOLLOWING SIMULATED MICROGRAVITY AND ‘
[IMPLICATIONS FOR DEVELOPMENT OF COUNTERMEASURES ?
Q,

Victor A. Convertino
Abstract

In a series of studies, we have examined the effects of exposure to simulated microgravity,
varying states of vascular volume, and acute exercise on the function of the carotid-cardiac
baroreflex in man. In the first study, exposure to simulated microgravity (6° headdown bedrest)
reduced the sensitivity and buffer capacity of the vagal baroreceptor-cardiac reflex mechanisms and
this impaired baroreflex function was associated with orthostatic hypotension. Since the reduction
in plasma volume during BR was not correlated with impaired baroreflex function, a second study
was conducted which demonstrated that the carotid-cardiac baroreflex response was not affected by
either acute hypovolemia or hypervolemia. These results suggest that acute fluid replacement prior
to reentry may not reverse impaired baroreflex function associated with postflight hypotension. Ina
third study, we demonstrated that one bout of maximal exercise increased baroreflex sensitivity and
buffer capacity through 24 h post-exercise. These baroreflex changes were opposite to those observed
following BR. Taken together, these data suggest that the contributions of reduced blood volume and
impaired carotid-cardiac baroreflex function to orthostatic hypotension following exposure to
microgravity are probably separate and additive; maximal exercise in addition to fluid replacement
may provide an acute effective countermeasure against postflight hypotension.

The complete text of this manuscript is printed in Acta Astronautica, Vol. 23, pp. 9-17, 1990.
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ECHOCARDIOGRAPHY IN THE FLIGHT PROGRAM //X¢Q§Zvﬂ5
A Report of Ultrasound Cardiography Results ‘47
from Space Shuttle Missions

John B. Charles, Ph.D.
Michael W. Bungo, M.D.
Sharon L. Mulvagh, M.D.

Introduction.

Observations on American and Soviet astronauts have documented
the association of changes in cardiovascular function during
orthostasis with space flight. A basic understanding of the
cardiovascular changes occurring in astronauts requires the
determination of cardiac output and total peripheral vascular
resistance as a minimum. In 1982, we selected ultrasound
echocardiography as our means of acquiring this information.
Ultrasound offers a quick, non-invasive and accurate means of
determining stroke volume which, when combined with the blood
pressure and heart rate measurements of the stand test, allows
calculation of changes in peripheral vascular resistance, the
body’s major response to orthostatic stress. '

Methods.

Pre- and post flight echocardiography during the Shuttle program
pegan with STS-5 in 1982 (Nov., 1982) as part of DSO 402 (Fluid
Loading Countermeasure) . ("DSO"™ stands for "Detailed
Supplementary Objective," an avenue for collecting operationally-
important medical data on Space Shuttle crewmembers.) It was
performed on a sporadic basis on volunteer crewmembers through
1986. Data from the first several flights was determined from
two-dimensional (2D) echocardiographic images acquired with an
instrument originally designed for obstetric use. In 1983, we
upgraded to the ATL 4000 S/LC, which permitted 2D-guided M-mode
imaging. Two of these units were acquired specifically for
conversion into "flight units" (one primary unit and one backup
unit) allowing data collection by trained crewmembers during
Shuttle flights. The prime flight unit has flown on two Shuttle
missions to date: STS 51-D (Apr., 1985) and STS-32 (Jan., 1990) .
Up to three more flights may be accomplished by this unit before
it is retired.

Starting with STS-26 (Sept., 1988), several DSOs using
echocardiography have allowed us to collect information on
changes in cardiovascular function associated with flight
duration (DSO 466), in-flight aerobic exercise (DSO”476), new
fluid loading prescriptions (DSO 479), the use of LBNP as a
countermeasure (DSO 478), and for correlation with heart rate and
blood pressure immediately after landing (DSO 603). Beginning
with STS-28 (Aug., 1989), we have been using a Biosound Genesis
1T echocardiograph with Doppler capability. This allows us to
determine cardiac dimensions in conformance with our pre-existing
data base and also to determine aortic flow by Doppler techniques

pael_ (0 INENTIONALLY SEAME



without the geometrical assumptions required by calculations
based on M-mode measurements,

Results. : ) G

From 1982 through 1989, 54 crewmembers on 16 Shuttle missions
volunteered to be subjects for pre- and post flight
echocardiography. Typically, the ultrasound examination is
performed during the operational Stand Test, a routine assessment
of orthostatic function performed on all Shuttle Crewmembers
before launch (about ten days before flight), shortly after
landing, and several days later. Continuous echocardiographic
measurements were made while the crewmember was supine for five
minutes, and then when the crewmember was standing upright for
five minutes. The electrocardiogram was recorded continuously,
and blood pressure was determined once per minute. The variables
analyzed were: heart rate (HR), systolic and diastolic pressures
(SBP and DBP), left ventricular end-diastolic and end-systolic
dimensions, left ventricular wall thicknesses, right ventricular
end-diastolic dimensions, left atrial and aortic dimensions,
velocity of circumferential fiber shortening (VCF, and index of
contractility), and (using Doppler) left ventricular inflow and
outflow velocities. Hemodynamic parameters derived from these
measurements included: mean and pulse arterial blood pressures
(MAP and PP), left ventricular end-diastolic, end-systolic and
Stroke volume indexes (LVEDVI, LVESVI and LVSI), ejection
fraction (EF), cardiac index (CI) and total peripheral resistance
index (TPRI). The use of hemodynamic indexes normalizes for
differences in body surface area between crewmembers. al1l _
crewmembers used the operational fluid loading protocol shortly A 4
before landing.

Briefly, the pre-Challenger data (collected only during the
supine portion of the stand test) showed that left ventricular
dimensions were reduced by an average of 25% after flights of 5-8
days duration; as a result, the stroke volume is similarly
reduced.

Subsequently, DSO 466 allowed measurements to be made with the
crewmember resting supine (actually left-lateral decubitus) and
then while standing upright, during the operational stand test.
Supine and standing HR were increased by 23% and 35% (p<0.0001)
on landing day compared to preflight. The HR response to
orthostasis was also increased (p<0.0001) on landing day. Supine
DBP increased slightly, and supine and standing PP decreased
slightly on landing day. There were no significant differences
in supine or standing SBP or MAP on landing day compared to
preflight. LVEDVI and LVSI were significantly decreased by 11.4%
and 16.6% on landing day compared to preflight. TPRI was
significantly greater in the standing position than in the supine
position on all days except landing day.

In-flight measurements made on STS 51-D and STS-32 documented the
decrease in left ventricular dimensions and increase in arterial
pressure over the first 4-5 days in flight. Typically, late in- ~~



flight measurements reproduced landing day measurements.
Discussion.

Cardiovascular physiological changes associated with short Space
Shuttle flights include decreases in left ventricular end-
diastolic volume and stroke volume indexes compensated for by
increased heart rate to maintain cardiac output. Decreased
LVEDVI follows the reduction in plasma volume known to occur in
weightlessness.

Comparisons with echocardiographic data from the last Skylab crew
and from Soviet Salyut crewmembers showed that the decrease in
cardiac dimensions (and presumably function) occurs rapidly in-
flight and changes only minimally after the first week in
weightlessness.

These results revealed the nearly complete absence of a
peripheral vascular resistance response to orthostasis on landing
day after as little as 4-5 days in weightlessness. This suggests
strongly that even crewmembers who are not syncopal are relying
largely on their physiological reserve mechanisms (such as
increased heart rate) to remain standing. If they were
confronted with an emergency requiring increase performance, a
successful outcome would be in doubt.
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Pulmonary Function in Microgravity: KC-135 Experience \
Harold J. Guy and G. K. Prisk, University of California, San Diego ' Gp
Presented to Joint ARC/JSC Cardiopulimonary Workshop December 5-7, 1990.

We have commenced a KC-135 program that parallals and preceeds our
Spacelab (SLS-1) pulmonary function experiment. Our first task was to
elucidate the affect of normal gravitation on the shape of the maximum
expiratory flow volume (MEFV) curve. Nine normal subjects performed multiple
MEFV maneuvers at 0-G, 1-G and approximately 1.7-G. The MEFV curves for each
subject were filtered, aligned at RV, and ensemble-averaged to produce an
average MEFV curve for each state, allowing differences to be studied.

Most subjects showed a decrease in the FVC at 0-G, which we attribute to
an increased intrathoracic blood.volume. In most of these subjects, the mean
lung volume associated with a given flow was lower at 0-G, over about the
upper half of the vital capacity. This is similar to the change previously
reported during head out immersion and is consistent with the known affect of
engorgement of the lung with blood, on elastic recoil. There were also
consistent but highly individual changes in the position and magnitude of
detailed features of the curve, the individual patterns being similar to those
previously reported on transition from the erect to the supine position. This
supports the idea that the Jocation and motion of choke points which determine
the detailed individual configuration of MEFV curves, can be significantly
influenced by gravitational forces, presumably via the effects of change in
Jongitudinal tension on local airway pressure-diameter behavior and thus wave
speed. (1)

We have developed a flight mass spectrometer and have commenced a study of
single breath gradients in gas exchange, inert gas washouts, and rebreathing
cardiac outputs and lung volumes at 0-G, 1-G, and 1.7-G. Comparison of our
results with those from SLS-1 should identify the opportunities and
Timitations of the KC-135 as an accessible microgravity resource.

ref:

1) Guy, H.J.B., G.K. Prisk, A.R. Elliott, and J.B. West. Maximum expiratory
flow-volume curves during short periods of microgravity. J. Appl.
Physiol., (In Press).
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CENTRAL CIRCULATORY HEMODYNAMICS AS A
FUNCTION OF GRAVITATIONAL STRESS

Latham RD, white CD, Fanton JW, Owens RW, Barber JF,
Lewkowski BE, Goff OT
from

Laboratory for Aerospace ésrdiovascular Research (LACR),

USAFSAM/USAARL Brooks AFB, TX and Ft Rucker, AL

Most current knowledge regarding the central hemodynamic
functions in man are known for the supine posture, data having
been obtained during acute cardiac catheterization procedures.
very detailed descriptions of ventricular and vascular function
and their coupling have been published for this posture.
Unfortunately, similar sophisticated analyses from invasive data
for the upright posture in man are lacking due to the unusual
conditions required for study. Tilt studies in the clinical
cardiac catheterization laboratory are generally reserved for
electrophysiologic studies as opposed to hi-fidelity hemodynamic
recordings. Limited animal studies are available which have
evaluated some aspect of ventricular/vascular function for the
upright posture:

The effects of gravity upon cardiovascular peiformance still
remains to be more precisely elucidaﬁed. Certainly,
gravitatiqnal stresses at extremes of human tolefancs are even
less well described. Man has ventured into such hostile
environments as those imposing as much as 9-10 times the force of
gravity on his system toO other environments in which he

experiences the virtual absence of gravity. To make

13
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recommendations regarding the health and safety operatlonal
envelopes for these env1ronments, an. understandlng of how these
alterations in grav1tatlonal Stress effect cardiovascular
function and its integration with other systems becomes more
Ccritical. Investigations must, of necessity, begin with gaining
insight into the "normal"™ physiologic response, then advance to
understanding responses to mild degrees of pathophysiology.

Thls study focuses On an evaluation of the central
hemodynamlcs in a nonhuman primate model to variations in
gravitational states. The baboon, phylogenectlcally close to man
was chosen a8s the human surrogate. The study environments
selected are head-down and head- -up tilt in the physiology
laboratory, centrifugation to test hypergravic Stress, and
parabolic flights to test transient acute responses to
microgravity.

Therefore, the objectives of the present study are:

1) Develop the chronically instrumented conscious baboon

model for hemodynamic Studies,

2) Evaluate baroreflex function, contractility, pulsatile
and steady ventricular loading characteristics, and the
ventricular/vascular coupling phenomenon during
postutal tilt changes,

3) Evaluate ventricular/vascﬁlar function dcring

| centrifugation (acceleration stress),

4) Evaluate ventricular/vascular performance during
transient ﬁicrogravity induced by parabolic flight,

5) Compare acceleration responses pre¥‘and post- 48 hour

14
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head-down tilt with and without fluid loading anq anti-
G ﬁrousers. |
This project is still in its early phasés. To date, we have

developed the chronically instrumented baboon model. We have
also begun collecting data and performing the required analyses
into ventricular/vascular function. This report will summarize
the surgical technique and the hardware R&D required.
Additionally, some examples of déta analysis will be presented.
Finally, some comments on future plans and directions will be

presented.

MODEL DEVELOPMENT

The previous year has been utilized to develop the implanted
animal model. Prior to surgical transducer implantation ﬁhe
selected baboons are acclimatized to a vest or jacket and a
confinement chair used for the studies. Acceptance of these
devices is prerequisite for surgical implantation.
Echocardiography and radionuclide angiography noninvasive studies
are also performed. Finally, a pre-surgery complete right and
left heart catheterization supine and 70° head-up filt, each with
aortography is performed.

All surgical subjects undergo food and water
restriction for 14 hours preoperatively. Preoperative
medications include ketamine HCL (10 mg/kg im) and atropine
sulfate (0.04 mg/kg iv). Maintenance anesthesia is provided by

fentanyl citrate (50 mcg/kg iv) and supplemented by isoflurane
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administered via a cuffed endotracheal tube connected to a volume =
controlled ventilator.

The surgical approach is via a left intercostal
thoracotomy at the 4th intercdstél space. A linear incision
along the ldng axié of the periéardium is made, followed by
placement of sutures to cradle the heart away from the
mediastinum. Aortic instrumentation consists of an
electromagnetic flow probe placed at the root of the ascending
aorta, and a Konigsberg pressure transducer placed immediately
distal to the margin of the flow probe. Another flow probe is
placed around the descending aorta distal to the divergence of
the brachiocephalic and subclavian arteries. Atrial
instrumentation consists of a kinkless catheter tubing placed in
the right atrial appendage and the body of the left atrium. Left L= J
ventricular instrumentation is comprised of a Konigsberg pressure
transdubér placed in the apex of the left ventricle, endocardial
ultrasound crystal pairs positioned in 3 axes: anterior to
posterior, free wali to septum, and base to apex. Epicardial
crystals have been used for several baboons, and an additional
crystal pair is pbsitioned to measure LV free wall thickness in
this situation. Additional instrumentation is limited to |
placement of a heavy-duty silastic occluder cuff encircling the
inferior vena cava immediately posterior to the right atrium.

Intraopefative medications consist of bretylium tosylate
(2-5 mg/kg/min iv) diluted to 2 mg/ml with 5% Dextrose in sterile
water, lidocaine HCL, and procainamide HCL. After placement of o

all instrumentation, the wire leads and fluid catheters are
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tunneled subcutaneously to exit the skin in the interscapular
region of the back, where they are secured with-mattress sutures
of monofilament nylon. The percutaneous wire and catheter
implants are positioned soO their velour wrapping is at the level
of the skin, to provide'a scaffold for fibroblastic ingrowth. A
thoracostomy tube is positioned at the 8th intercostal space for
drainage, and serial aspirations are made for 24 hours.

Postoperative care consists of intensive care monitoring
until the baboons can sit up without assistance. Analgesia is
provided by oxymorphone HCL (0.1 mg/kg im) or buprenorphine HCL
(0.02 mg/kg im) for a period of at least 72 hours. Baboons are
closely monitored for caloric intake, and are liberally
supplemented with fresh fruit on a daily basis. Antibiotic
therapy with cephapirin sodium (10 mg/kg im) or gentamycin (4
mg/kg im) is usually implemented due to the 3-4 hour length of
the surgical procedure. The baboons are fitted with a hylon vest
which contains a pocket at the interscapular lead exit site for
protecting the transducer wires.

Wound healing is monitored closely at 48 hour intervals.
Initial care immediately after surgery consists of using hydrogen
peroxide on the exteriorized velour to remove fibrin and cellular
material. Peroxide is never used for direct wound treatment.
After this initial cleansing, the velour is dried with gauze and
povidone iodine solution (0.1%) is placed on the velour at the
percutaneous exi; site. Wound care thereafter is minimal,
consisting of cleaning the velour when sebaceous secretions

adherent. If lead sites become erythematous or an exudate is
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apparent around the velour, the exit sites are gently cleansed
with normal saline and a Q-tip swab, followed by lavage with 0.1%
povidone iodine or 0.1% chlorhexidene solutions, and topical
placement of povidone iodine ointment for residual antimicrobial
activity.

Fluid lines are flushed at 48-72 hour intervals with
heparinized saline, and serial blood cell counts are performed as
a monitor of clinical status. Fluid lines are then filled with
heparin after the flushing procedure. When recovery is complete,
chair training resumes. A repeat right and left heart
Catheterization is performed to calibrate transducer elements.

The hemodynamic information desired is essential to the
questions being addressed and requires rather sophisticated and
extensive invasive physiologic data acquisition. The
methodologies necessary to obtain certain data requires surgical
implantation of transducers in the heart as well as greét
vessels. It is obvious that ethical and moral constraints
prohibit the use of human volunteers. It is also necessary to
obtain data and derive parameters of cardiovascular function that
may be easily extrapolated to human physiology for these
operational environments. Additionally these invasive data are
necessary to provide the basis for and validation of computer
model constructs for ventricular/vascular function in the
microgravity environment. The evaluation baroreflex responses
and describing physiologic changes with intact bardreflexes is
similarly important. It is well known that quadrupeds have

different cardiopulmonary and arterial baroreflex responses
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compared to humans or nonhuman primates phylogenetically close to

man.

INSTRUMENTATION R&D

A number of R & D efforts have been required. Several blood
flow transducers were evaluated, including transit-time doppler,
permanent magnet EMF and standard EMF flow probes. We determined
that for the time being, standard EMF was the best probe for our
studies until a custom-designed pulsed doppler flow system is
constructed and tested. Additionally, we have had several custom
modifications made to the Konigsberg transducers. Using totally
silastic transducers we have had manufactured monofilament molded
special angles to the distal portions of both the aortic and LV
transducer elements. The aortic cell has a 90° bend and the LV
pressure cell has a 135° angle over a 1 cm distance. The distal
shank of the LV transducer was reinforced. Furthermore, silastic
rings are applied to the distal portions to aid with surgical
implantation stabilization. A custom-designed "kinkless"
silastic tubing is used for the atrial lines. This allows
placement of a small 2FR Millar catheter into the LA and LV. The
leads are encased with fine velour fixed with a silastic glue.
This innovation has prevented the infectious complications post-
op. Specialized jackets have been designed to keep the
transducer leads secure and take the pressure off exit sites.

Two other R&D products relate to centrifugation. A special
designed "G" chair for the animal arm of the centrifuge has been

manufactured and tested. We are also having a computer
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controlled signal conditioner/biotelemetry system unit designed

and assembled by NASA ARC. This unit will interface with our A
transducer elements and allow us to collect data remotely from

the centrifuge arm. The unit may be used for study of éther'

environments with difficult accessibility.

DATA ANALYSIS:

Data are passed through antialiasing filters (corner
frequency of 100 Hz, 30 Db/octave roll-off) and digitized offline
at a sample rate of 500 Hz using a Concurrent Computer (Model
SL5-6300, real-time Unix 5.0) and LabWorkbench commercial
software. Signals are then post-processed using both custom-
designed and commercial (DaDisp, DSP Corporation) software.

Five consecutive beats are averaged for LV and Ao pressures
and ascending aortic flow (ASC FLOW). Averaged beats are used to
measure basic pressure and flow parameters. The first derivative
of LV pressure are taken and the peak positive & peak negative
values averaged for 10 beats are then determined. Average
pressure and flow for simultaneous beats are submitted to Fourier
analysis. Harmonics of pressure are divided by corresponding
harmonics for flow to derive the aortic input impedance, and the
phase angles of flow are subtracted from corresponding phase
angles of pressure. The fifth to the fifteenth harmonic values
are averaged to determine the characteristic impedance, Zc (See
Figs 1,2).

These same averaged beats of pressure and flow are also

r
i

¢

submitted to a 3-element Windkessel analog model of the ~
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circulation. This model uses a Marquardt fitting algorithm to
fit a calculated flow from input-bréssﬁfé to a measured flow.
With an optimal fit, the model returns estimates fdfizc,
peripheral resistance (Rp), and systemic arterial compliance (C),
sée Figs 3,4. These values are then compared tb conventionalr
calculations of these variables using a linear regression
analysis, Figs 5-8. 7 | H

A hydraulic occluder cuff is used to decrease pressures
transiently. Simultaneous LV pressure and volume are submitted
to a time-varying elastance model to determine the end—éystolic
pressure volume relationship (ESPVR). At least 7 beats and a
minimum fall in systolic pressure of 10% of baseline ére required
for analysis. Any runs with ectopic beats are discarded. The
ESPVR is fitted with a linear regression and the slope taken as
the estihate of ventriéular elastance, an index of contractile

function, Figs 9,10. The volume intercept, Vo, is determined as

well.

RESULTS

Fourteen baboons have been enrolled in some phase of model
development. There has been 1 surgical death in the eldest cull
animal and thererhaverbééﬁﬂé‘éoséloéjhémorthagéé; The
hemorrhages were due to a transit-time doppler probe in one éase
and the aortic transducer (pressure cell) in another. Since
incorporating silastic rings on the implanted transducers and

using silastic electromagnetic flow probes these problems have

not been seen. One animal suffered sudden death, presumed
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arrhythmic. One fluid line became nonfunctiooe{h?rdotrto use of
silastic rings. | o |

The head-down tllt studies w1ll be conducted w1th the
primates under sedatlon to allev1ate anx1ety Inltlal trials
with low dose midazolam (Versed) infusion have been performed.
Unlike humans, the baboon is more resistant to the sedative
pharmacological effects of this new agent such that 1nterm1ttent
Ketamlne injections are required. Future studies will
incorporate Ketamlne infusion at a lower dose level.

Inltlal supine and tilt data are under analysis. A
combination of commercially available signal analysis software
i(DaDisp, DSP Corporation) and custom programmed software are used
to analyze data.

Some very preliminary results suggest that the pulsatile
load of the baboon is not significant changed as a function of
posture changes, in contrast to peripheral resistance which
increases. We previously found compliance decreased with the
upright tilt under sedation. In six of the baboons’ data thus
analyzed the compliance values tended to be unchanged but were
quite variable.

In a comparison of model vs. conventional calculations of
parameters ofﬁtv loading we found that these were well correlated
for both supine and head-up tilt conditions. The Z2c, however,
was less well correlated with the upright posture than Rp.
Compliance values tend to be overestimated by the 3-element
Windkessel when compared to C determined from the RC time (tau)

of aortic diastolic pressure decay.
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Pre and post-ketamine studies are also under analysis. Finally,
we have found in preliminary analyses that contractility by the
ESPVR appears to be unchanged with 70° head-up tilt. Analyses
are still in progress and in tqqrpremature status to apply
statistical tools. Some examples of the types of analysis being

performed are included.

CONCLUSION

We have demonstrated that we can instrument a nonhuman
primate, the baboon, for sophisticated invasive hemodynamic
evaluation of the cardiovascular system. We are establishing a
noninvasive studies protocol such that these data may be compared
with invasive findings. This year the tilt studies will be
completed, as well as the centrifugation and parabolic flight
tests. Data analysis is ongoing in parallel fashion. We further
hope to extend development of some vascular access technology.

We also expect delivery of a new cardiovascular signal
conditioner/biotelemetry system for testing and evaluation. This
system is scheduled to include a new custom-designed doppler
probe which will provide flow velocity as well as vessel

dimension.
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University of New Mexico

Albuquerque, New Mexico
87109

Maintenance of euhydration is essential for maximum work performance. Environments
which induce hypohydration reduce pléémé volume and cardiovascular performance progressively
declines as does work capacity (Fortney et al., 1981). Hyperhydration prior to exposure to
dehydrating environments appears to be a potential countermeasure to the debilitating effects of
hypohydration. The extravascular fluid space, being the largest fluid compartment in the body, is
the most logical space by which significant hyperhydration can be accomplished. Volume and
osmotic receptors in the vascular space result in physiological responses which counteract
hyperhydration.

Our hypothesis is that glycerol-induced hyperhydration (GIH) can accomplish
extravascular fluid expansion because of the high solubility of glycerol in lipid and aqueous media.
A hypertonic solution of glycerol is rapidly absorbed from the gastrointestinal tract, results in mild
increases in plasma osmolality and is distributed to 65% of the body mass (Lin, 1977). A large
volume of water ingested within minutes after glycerol intake results in increased total body water
because of the osmotic action and distribution of the glycerol (Riedesel et al. 1987). The
resulting expanded extravascular fluid space can act as a rcser_voir to maintain plasma volume
during exposure to dehydrating environments. We have conducted experiments to be presented
- later which demonstrate advantages of GIH for subjects exercising in a hot environment (Lyons ct
al. 1990). The fluid shifts associated with exposure to microgravity result in increased urine

production and is another example of an environment which induces hypohydration. Our goal is
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to demonstrate that GIH will facilitate maintenance of euhydration and cardiovascular

~ performance dpring space flight and upon return to a 1 g environment.

The experimental protocol for the GIH experiments involved the subjects checking into
the hospital at 1900 h and drinking one liter of water at 2000 h to ensure euhydration. No food
or water after midnight and at 0715 h a catheter was placed in a cubital vein. At 0730 subjects
drank glycerol, 1 g/kg, in orange juice, 3.4 ml/kg. In the first study subjects drank 1.5 liter of 0.1%
NaCl during the next two hours and 300 ml of 0.1% NaCl during the third hour. The control run
involved the same protocol including the same volume of fluid intake except without glycerol
either 48 h prior to or after the experimental run.

The glycerol intake markedly decreased the urine volumes (Figure 1). Another
expenment with the same protocol involved 1.5, 1.0 and 0.5 g/kg glycerol intake. The serum
glycerol values varied wnh the glycerol dosages (f‘léu;e 2). The 0.5 g/kg dosage dld not result in
significant changes in water retention. The amount of water retained after 4 h was similar for the
1.0 and 1.5 g/kg glycerol dosages. Therefore subsequent studies have involved the 1.0 g/kg
dosage. Apparently the rates of glycerol catabollsm and excretion are dose dependent such that
the 1.5 g/kg doesn’t result in a greater water retention than the 1.0 g/kg. The mean volume of
water retained after 4 h has been 10.2 ml/kg (S.E. = 0.5) when subjects ingested 1 g/kg glycerol
and drank 1.5 to 1.8 liter of water within 1 to 3 h of time zero. It is also of interest to pote that

whereas the retention of water was for 4 h the increased plasma osmolality following the glycerol

intake had returned to control values within 2h (Fxgure 3). Thns indicates that glycerol and water

have moved from the plasma to the mtracellular space and the water retamed is mtracellular
The next study asked the question, does the GIH provide an advantage for subjects
exercising in the heat? The subjects were heat acclimated prior to participation. At 48-h or

longer intervals the 6 men and 2 women participated in random order in three separate 4.5-h
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experiments. Each experiment included 5 1.5-h bout of exercise at 60% of maximum oxygen
consumption in a moderate dry heat (42° C). One experiment involved limited fluid intake (5.4
ml/kg) which was similar to ad libitum fluid intake in pilot studies under similar conditions. The
other two experiments involved ingesting a large volume of fluid in an attempt to hyperhydrate
the subjects prior to the exercise. One attempt at hyperhydration involved ingestion of glycerol (1
g/kg) in orange juice plus a large volume of water (21.4 mlkg) at time zero plus additional
glycerol (0.1g/kg) in orange juice at hourly intervals after the first two hours. The subjects drank
50 ml of water at hourly intervals after the second hour (Table 1). The second involved drinking

the same volume of water and orange juice (Table 1).

Table 1. Fluid Ingestion Regimens

Large Fluid Intake Limited Fluid
Glycerol No Glycerol Intake
Time Zero 1 g GLY/kg 3.3 mikg OJ 3.3 mlkg OJ
in
3.3 mlkg OJ
Within 1 h 21.4 ml/kg 21.4 mikg
of water of water
Each hour after 2h 0.1 g GLY/kg 0.1 mlkg OJ 50 ml water
in plus
0.1 mlkg OJ 50 ml water
plus
50 ml water
Total Fluid intake in 4 h 28.4 mlkg 28.4 ml/kg 5.4 mlkg

GLY = glycerol, OJ = orange juice.
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The mean accumulated Sweat output for the 90 min of exercise was 1450 + 160 ml with the
glycerol ingestion compared to 1130 m! + 100 m] following just the largé volﬁmé of water (P <

0.05) (Figure 4). During the 60- to 90-min interval of exercise in the héat, the glycerol ingestion

After 30 min of exercise, the mean rectal temperature was lower (P < 0.05) following
glycerol ingestion when compared to the other two fluid regimens. The limited fluid intake and large
volume of water at time zero resulted in similar mean rectal temperatures during the 90 min of

exercise (Figure 5).

h. This experiment involved 7 male subjects and once again at time zero they ingested a large
volume of fluid (21.4 ml/kg) either with or without glycerol, 1 g’kg. On both the control and
glycerol intake days, the total water plus orange juice intake over the 48-h period was 50.8 ml/kg.
On days they ingested glycerol, the glycerol intake was 1 g/kg at 0700 h, 0.10 g/kg at 0800 h, 0.303
g/kg at 1000 h and 1100 h, and 0.379 g/kg at 1400 h and 1600 h. Previous studies and pilot
experiments had indicated that these rates of water and glycerol intake would provide GIH for 48 .
The fluid intake and urine volumes are presented in figure 6,

Our current studies involve cardiovascular Tesponses to lower body negative pressure
(LBNP) prior to and after bedrest with and without GIH. Prior to bedrest subjects undergo a
maximum 0Xxygen consumption test (VO,max), underwater weighing to determine percent body fat
and three pre-syncope LBNP tests. The 4 male subjects had VO,max values greater than 40 m]

O,/kg/min and less than 20% body fat. The LBNP box involved a seal with a kayak skirt at the
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waist and a foot rest rather than a bicycle \saddle for support of the subject. During the LBNP
tests the electrocardiogram was recorded continuously and the arterial blood pressures were
recorded manually at 1-min intervals. The reproducibility of the LBNP responses is illustrated in
figure 7.

The standard LBNP, test conducted on days -1, 4, 5, 6, & 7 of the bedrest involved 5 min
at each level of negative pressure, -10, -20, -30, -40, -50, and -60 mm Hg. Glycerol and fluid
intake was administered on days 5 and 6 of the bedrest as described above for the 48-h GIH.

The heart rate, systolic and diastolic blood pressure were analyzed by analysis of multiple variance
and the Dunnett’s test for mulitiple comparison of treatments.

Subjects had less tolerance for LBNP on bedrest day 4 when compared to pre-bedrest
(day -1), (p < 0.05). The heart rate and blood pressure responses on bedrest days 4, 5, 6, and 7
were similar (p > 0.05). The GIH on days 5 and 6 did not improve cardiovascular responses to
the standard LBNP test. This may have been expected because the standard LBNP test is only of
30 min duration. In the heat stress experiment described in the previous paragraphs, the
increased sweating after GIH was greater during the 30 to §O-min and 60 to 90-min intervals than
during the 0 to 30-min interval of heat stress. |

Experiments for the immediate future will involve bedrest, a "soak” procedure (2-h
exposure to cycling LBNP, 1 min to -60 and 1 min to zero LBNP). The "soak" procedure will be
conducted 1.5 h after the GIH on day 5 of the bedrest. Pre-syncope LBNP will be conducted on
days -1, 4, 5, and 6 of the bedrest. These experiments will also include monitoring of cranial
blood flow by the transcranial doppler technique during all LBNP tests.

Additional future studies will include measurements of 14-C tagged glycerol and tritiated
water in the laboratory rat after GIH to determine the distribution of glycerol and water among

various body fluid compartments. We are also interested in testing the extent to which we can

4]



increase the amount of hyperhydration by changing the timing and dosages of glycerol and water

intake. : _ . : L=
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Figure 1. Mean volume of urine voided at each hour (ingestion of 0.1% NaCl, 21.4 ml/kg, during
first two hours and 300 ml during third hour).
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Figure 4. Mean sweat output for six subjects at 30-min. intervals during moderate exercise (60%
VO,max) in the heat (42°C, 100 m/min. air velocity, 25% relative humidity).
Significance between glycerol and other two fluid regimens at 30-60 min. (p < 0.05)
and 60-90 min. (p < 0.01). Fluid regimen same as Table 1.
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Figure 5. Mean rectal temperaiure at 15-min. intervals during moderate exercise (60% VO,max)

in the heat (42'C, 100 m/min. air velocity, 25% relative humidity). Significance
between glycerol and other two fluid regimens after 15-min. interval (p < 0.01). Fluid
regimen same as Table 1.
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Figure 6. Accumulated flujd intake and urine output with and without glycerol. Significance in
urine output between glycerol and no glycerol was p < 0.05 at each hour.
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TO OSCILLATORY LBNP BEFORE AND AFTER 6° HEAD DOWN BEDREST

SPECTRAL ANALYSIS OF RESTING CARDIOVASCULAR VARIABLES AND RESPONSES Q(\

CF Knapp, Ph.D., JM Evans, M.S., A Patwardhan, M.S., D Levenhagen, M.S.,

M Wang, M.S. and JB Charles, Ph.D., Center for Biomedical Engineering,
University of Kentucky, Lexington, KY and NASA JSC, Houston, TX

SUMMARY

A major focus of our research program is to develop noninvasive
procedures for determining changes in cardiovascular function
associated with the null gravity environment. We define "changes 1in
cardiovascular function" to be 1) the result of the regulatory system
operating at values different from ‘normal' but with an overall
control system basically unchanged by the null gravity exposure or 2)
the result of operating with a control system that has significantly
different regulatory characteristics after an exposure.

To this end, we have used a model of weightlessness that

‘consisted of exposing humans to 2 hrs. in the launch position,

followed by 20 hrs. of 6° head down bedrest. Our principal objective
was to use this model to measure cardiovascular responses to the 6°
head down bedrest protocol and to develop the most sensitive I"systems
identification" procedure for indicating change. A second objective,
related to future experiments, is to use the procedure in combination
with experiments designed to determine the degree to which a
regulatory pathway has been altered and to determine the mechanisms
responsible for the changes.

From the viewpoint of systems identification, we recently have
focused on the use of oscillatory lower body negative pressure (LBNP)
and spectral analysis of the resulting cardiovascular responses before
and after the bedrest protocol mentioned above. The application of
this approach to the bedrest study was prompted by a systematically
designed series of experiments that have previously demonstrated its
effectiveness in several areas. In the past, we have used oscillatory
(sinusoidal) acceleration or LBNP as provocative tests to determine:

1. The overall frequency response characteristics of integrated
cardiovascular regulation in response to blood volume shifts
induced by sinusoidal whole-body acceleration in dogs (Knapp, et
al. 1978, 1982).

5. The relative contributions (amplitude and time of response) of
both cardiac and peripheral vascular mechanisms in the
regulation of pressure and flow during oscillatory blood volume
shifts in dogs (Marquis, et al 1978).

3. The differences in the cardiovascular control mechanisms of

endurance trained (treadmill) and untrained dogs in response to
oscillatory blood volume shifts (Charles, et al 1983).
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The chronotropic frequency response characteristics of humans
during sinusoidal + lg, acceleration (Knapp, et al 1983).

The relative contributions of cardiac and peripheral mechanisms
to blood pressure requlation in dogs during sinusoidal LBNP
(Aral, et al 198s6).

The chronotropic frequency response characteristics of humans
during sinusoidal LBNP (Knapp, et al 1987).

The differences in stroke volume and heart rate in response to
sinusoidal LBNP in the same human subject in salt replete and
depleted states (Knapp, et al 1990).

We now seek to evaluate the effectiveness of the oscillatory LBNP

(and spectral analysis) protocol to evaluate cardiovascular regulation

in
the

humans before and after head down bedrest. We also seek to place
sensitivity of the technique in perspective with other protocols

that do not use provocative tests. Our current studies are designed
to answer the following specific questionss - . o e

1.

Can the frequency response characteristics of cardiovascular
regulation in normal supine humans be identified by spectral
analysis of responses to oscillatory LBNP? How do the results
compare to those from the spectral analysis of resting
variables?

Can Dbedrest-induced changes in cardiovascular function be
identified by spectral analysis of responses to oscillatory

LBNP? How do the results compare to those from the spectral

analysis of resting variables? TIf they are more sensitive, does
the enhancement justify the extra effort involved with the
provocative test?

Which spectral analysis technique is the most sensitive to track
subtle changes in cardiovascular function during bedrest? Can
the details of the spectra provide information about the mechan-
isms of cardiovascular control and do changes in the spectra
associated with bedrest reflect changes in control mechanisms?

In an effort to answer these questions, we have been

investigating several approaches to determine the spectral content of
resting variables alone and in response to sinusoidal LBNP. At
Present, we are:

1.

measuring the spectral content of resting variables using
autoregression and chirp 2 transform analysis.

measuring the excursions (peak-to-peak differences) in
cardiovascular responses as a function of LBNP frequencies.

measuring the spectral content of each response to each LBNP
input frequency using discrete Fourier transforms, chirp 2
transforms (for increased spectral resolution) and
autoregression analysis.
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4. measuring the spectral content of cardiovascular responses to
step changes in LBNP by autoregression.

Preliminary results from some of the above listed approaches are
presented below. -

SINUSOIDAL LBNP RESPONSES

We are completing a study designed to determine the overall
frequency response characteristics of integrated cardiovascular
regulation in ten normal supine humans in response to oscillatory
LBNP. Another goal of this study was to examine the effects of short
term (22 hrs.) head down bedrest (plus Lasix, 40 mg P.O.) on the
frequency response characteristics in the same subjects. The response
of a typical subject pefore bedrest to sinusoidal LBNP (0 to "-60 mm
Hg) at .01 Hz (period = 100 sec) is shown in Figure 1. The variables
from top to bottom are: 1LBNP, arterial pressure (AP, Finapres),
ascending aortic flow (AF, Exerdop), central venous pressure (CVP,
Cobe), stroke volume (sV, beat-by-beat calculation from the AF), heart
rate (HR) and total peripheral vascular resistance (TPR, beat-by-beat
calculation from (AP - CVP)/(SV X HR)). From this figure several
observations can be made: AP was well regulated during the test (the
three places without data are a servo control of the system). There
were oscillations of AF, SV and CVP that were both large and minimally
regulated, 1i.e. their magnitudes decreased as the level of LBNP
increased and vice versa. The oscillations in HR and TPR were also
large and were reactive in nature, that is, their magnitudes increased
as LBNP level increased and vice versa. Oscillations in cardiac
output (not shown) were more similar to those of SV than HR, varying
from 5.1 L/min at atmospheric pressure to 3.2 L/min at peak LBNP. In
all subjects at the low frequencies (.004 to 0.01 Hz), LBNP induced
decreases in SV of "50% which were associated with large oscillations
in HR and TPR, resulting in very small (72 mm Hg) oscillations of AP.

The Fourier transform results (first harmonic and phase angle

with respect to LBNP) for this group of subjects are shown in Figures
2 -.7 for both pre- and post-bedrest states.

PRE-BEDREST: The SV oscillations (Figure 2) lagged the LBNP input bg
-20° at the lowest frequency, i.e. minimum values of SV occurred 20
after the -60 mm Hg LBNP dips. Oscillations were + 17 ml at .004 Hz
and dropped to + 4 ml at .1 Hz at which time the phase lag had
increased by an additional 100°. The CVP oscillations (Figure 3)
which lagged the LBNP input by -10° at the lowest frequency, had
associated half amplitude oscillations of “2.5 mm Hg, dropping to 1 mm
Hg at the highest frequency while the phase lag only increased an
additional 20~. Peak values of calf circumference (CC, Figure 4)
lagged the -60 mm Hg LBNP dip by -30° (+150°, Figure 4) at the lowest
frequency (this peak in CC occurred -50° after the minimum in CVP) .
The lag in CC with respect to LBNP increased by an additional 20° at
the highest frequency while the half amplitude dropped from 1.1% to
0.3%. Peak values of TPR occurred -10° after the -60 mm Hg LBNP dip
(+170°, Figure 5) at the lowest frequency and increasingly lagged up to
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an additional 140° at the highest frequency. The half amplitude of TPR
decreased from 8 mnm Hg/(L/min) to 2 mm Hg /(L/min) across the range,
Peak values of HR (Figure 6) lagged the -60 mm Hg LBNP dip by ~30°

(+150°, Figure 6) at the lowest frequency and increasingly lagged up to ——

an additional 180° at the highest frequency while the half amplitude of
HR oscillations decreased from 8 b/min to 3 b/min. The AP half
amplitudes (Figure 7) increased with increasing frequency up to 0.04 Hz
and_ then decreased slightly. Peak AP led the -60 mm Hg LBNP dip by
"30° at the lowest frequency, switching to a phase lag after 0.04 Hz.

POST-BEDREST: The post-bedrest results from this group of subjects
indicated several interesting responses: The AP, HR, SV and TPR half
amplitudes were larger than those in the pre-bedrest state and the
half amplitudes of CVP and CC were smaller. The phase relationships
of these variables with respect to the LBNP input were not
significantly affected by the short term bedrest.

The principal conclusions from this study were that in normal
male subjects: 1) AP was well regulated at LBNP input frequencies
below .01 Hz due to the appropriate timing of 1large amplitudes of
oscillations of both HR and TPR which counteracted the large
relatively passive oscillations of SV. 2) AP oscillations were largest
between .01 and 0.08 Hz due to the inappropriate phasing of relatively
small amplitudes of oscillations in SV, HR and TPR. 3) The half
amplitudes of oscillations of AP were increased by bedrest even though
the amplitude of the vascular volume being shifted was reduced as
indicated by the decreased half amplitudes of CVP and CC. 4) The in-
creased half amplitude of AP oscillations in post- vs pre-bedrest were
therefore due to the inappropriate timing of larger oscillations of
HR, SV and TPR in response to smaller oscillations of vascular volume.

CARDIOVASCULAR SPECTRA FROM RESTING SUBJECTS

Based on the fact that an increase in heart rate and peripheral
resistance has been a consistent finding in bedrest and spaceflight
studies, we hypothesized that these deconditioning procedures produce
a net increase in peripheral neural sympathetic activity. Previous
studies (Akselrod, Rimoldi) by other investigators have demonstrated
that changes in neural activity are manifest in changes 1in arterial
pressure (Rimoldi) and heart rate (Akselrod, Rimoldi) spectra. We are
currently using autoregressive techniques to calculate the spectral
content in data records of resting arterial pressure, heart rate,
respiration rate, stroke volume, peripheral resistance, central venous
pressure and cardiac output in the same subject before and after our
22 hrs. of 6° head down bedrest. Arterial pressure and heart rate from
a supine, freely breathing subject, are shown in Figure 8. The top
row shows 6 spectra obtained from consecutive, individually detrended,
2.5 min segments of arterial pressure (left) and heart rate (right).
Each data point in the AP time record was obtained by integrating
arterial pressure over a beat (one R-R interval). Each data point for
HR was obtained by taking the reciprocal of the R-R interval. 1In the
pre-bedrest data (top row), power in AP was localized in two ranges
(<.06 Hz and between .06 - .14 Hz) while power in HR spectra was
localized 1in the region <.04 Hz and between .06 - .18 Hz. The
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respiratory power (data not shown) for this subject was distributed
between 0.08 and 0.4 Hz. The post-bedrest spectra are shown in the
second row where 1increases in AP power are seen at the lowest
frequencies. The six spectra for each state were then averaged (to
enhance statistical stability) and are shown in the last row for both
pre- and post-bedrest. The AP spectral power (area under the curve)
was found to increase after bedrest for frequencies below .06 Hz. In
this subject, power in the HR spectrum was decreased by bedrest.

Data for the group of subjects are shown in Figure 9. In the top
two rows, spectra (one for each subject) are overlaid in plots of AP
(left) and HR (right), pre- (first row) and post- (second row) bedrest.
Each subjects' spectrum is the average of the 6, 2.5 min segments (in
Figure 8). These plots reflect power in the same frequency ranges as
those shown for the individual subjects in Figure 8. The pre- and
post-bedrest averaged spectra for the group are shown in the bottom row
where again, as in the single subject, AP power was increased in both
low frequency ranges by bedrest. There did not appear to be a
significant effect of bedrest in the HR spectra. Analysis of the
remaining subjects and variables and comparison of results with those
from the LBNP provocative tests are continuing.
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ABSTRACT

Orthostatic intolerance remains a significant problem following
space flight despite frequent use of the saline fluid-loading
countermeasure and volitional use of an anti-gravity suit during re-
entry and landing. The purpose of this project is to examine the
plasma volume (PV), endocrine, and orthostatic responses of bed-
rested subjects following 2-hr and 4-hr treatments of lower body
negative pressure (LBNP) and saline ingestion. Ten healthy men (25
to 41 yrs) underwent 13 days of 6°© head-down bed rest.  The men
were randomly assigned into 2 groups. Group A underwent a 4-hr
LBNP/saline treatment on bed rest day 5 and the 2-hr treatment on
day 11. Group B underwent the 2-hr treatment on day 6 and the 4-
hr treatment on day 10. Blood volume was determined before and

after bed rest using radiolabelling. Changes in PV between
measurements were calculated from changes in hematocrit and
estimated red cell volume. Urinary excretion of anti-diuretic

hormone (ADH) and aldosterone (ALD) were measured each day
during the study. Orthostatic responses were measured using a ramp
LBNP protocol before bed rest, before each treatment, and 24 hours
after each treatment. Both 2-hr and 4-hr treatments resulted in a
restoration of PV to pre-bed rest levels which persisted at least 24
hours. This increase in PV was associated with significant increases
in urinary excretion of ADH and ALD. Twenty-four hours after the
4-hr treatment, the heart rate and pulse pressure response to LBNP
were significantly lower and stroke volumes during LBNP were
increased. Twenty-four hours after the 2-hr treatment, there was no
evidence of improvement in orthostatic responses.  These results
suggest that a countermeasure which simply restores PV during
space flight may not be sufficient for restoring orthostatic responses.

INTRODUCTION AND BACKGROUND:

LBNP has been used as a procedure to assess orthostatic
responses postflight in the Apollo program (1), and in flight during
the Skylab program (2). In the Soviet space program LBNP is
routinely used inflight both as an assessment procedure and as a
countermeasure for postflight orthostatic intolerance (3,4).
Cosmonauts perform the LBNP countermeasure while wearing a
flexible LBNP suit (the Chibis suit). The LBNP exposures are begun 5
to 21 days before landing, depending on the mission duration, and
are combined with fluid and salt ingestion.  There is no data
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available from the Soviet flight experience which would reveal the
precise mechanism by which their LBNP countermeasure acts to
improve orthostatic responses.

American research into the possible use of LBNP as a
countermeasure began in the 1960s. Lamb and Stevens (5), Stevens
et. al (6), and McCally et. al (7) performed studies indicating that
prolonged exposures (8-12 hrs daily) to LBNP during bed rest could
maintain body fluid balance (5), plasma volume (6), and orthostatic
responses (6,7). Hyatt and West (8) were the first to combine the
LBNP exposure with fluid ingestion. They reported a restoration of
plasma volume and significantly reduced heart rate and blood
pressure changes during LBNP, in men after 7 days of bed rest. They
concluded that the improvement in orthostatic responses was most
likely the result of the increased plasma volume and that further
work was required to determine the minimum exposure duration
required to provide such improvements.

PURPOSE AND HYPOTHESES:

The operational purpose of this project is to determine whether
the LBNP/saline countermeasure proposed by Hyatt and West (8)
may be reduced to 2 hours and still maintain the beneficial effects on
plasma volume and orthostatic responses. In answering this
question, we hope to gain a better understanding  of potential
mechanisms for the loss of orthostatic function during a simulated
space flight-- 13 day bed rest--and a greater understanding of the
specific mechanisms by which prolonged LBNP during bed rest may
reverse some of these changes.

We hypothesize that during prolonged LBNP exposures, fluid is
redistributed from the thoracic region of the body to the lower body,
thus stimulating cardiopulmonary mechanoreceptors. The unloading
of these receptors due to the decrease in central blood volume
results in an increased secretion of ADH and ALD. Increased levels of
ADH and ALD result in fluid and electrolyte retention during the 24
hour period after the LBNP/saline countermeasure. In addition, the
accumulation of fluid in the lower body during LBNP may result in
the filtration and sequestration of fluid in the lower body tissues.
This fluid is later reabsorbed, and in the presence of elevated ADH
and ALD may contribute to the plasma volume expansion.  The
restoration of plasma volume will result in a larger stroke volume,
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lower heart rates, higher blood pressures, and a larger cardiac output
during a graded orthostatic stress such as LBNP.

METHODS AND PROCEDURES:

Ten men (25 to 40 yrs; 169 to 182 cm. height; 66 to 90 kg
weight; and 45 to 59 ml/min/kg maximum oxygen consumptlon)
participated in this study.

The study protocol involved a crossover design with the
subjects randomly assigned to two groups, group A and group B. The
experimental protocol is shown in Figure 1. Each subject was
exposed to one 4-hr and one 2-hr LBNP/saline treatment, with half
the subjects exposed to the 4-hr ‘treatment first and the 2-hr
treatment second (group A), and the other half exposed to the 2-hr
treatment first and the 4-hr treatment second (group B). During
each treatment, the subject was exposed to a continuous negative
pressure exposure of -30 mm Hg and ingested one 11ter of isotonic
saline between exposure minutes 30 and 90. )

Blood volume was calculated as the sum of red cell volume
(RCV) and PV measurements obtained before and on the last day of
bed rest. RCV was determined with 31chromium sulfate and PV was
determined with 125jodinated human serum albumin. PV was
calculated for each bed rest day from the daily RCVd (RCVd = pre
bed rest RCV minus the accumulative loss of red cells due to daily
blood draws) and the daily hematocrit value; where PV =
(RCVd/(hct/100)) - RCVd.

Pre-syncopal LBNP tests (graded LBNP exposures in 3 min.
stages which continued until pre-syncopal symptoms were observed)
were done before and after bed rest. LBNP response tests (graded
LBNP exposures in 5 min. stages from 0 to -60 mm Hg in 10 mm Hg
steps) were performed pre bed rest, before each treatment and 24
hours after each treatment.
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FIGURE 1 : BEDREST PROTOCOL
LBNP PROCEDURE
BEDREST | BLOOD [HORMONES |BLOOD GROUP GROUP
DAY DRAWN | DETERMINE | VOLUME A B
D
2 YES YES PSL-LBNP | PSL-LBNP
- 1 YES YES LBNP LBNP
1 YES
2 YES YES
3 YES YES
4 YES YES LBNP LBNP
5 YES YES 4HR LBNP
6 YES LBNP 2HR LBNP
7 YES LBNP
8 YES YES
9 YES LBNP LBNP
10 YES 4HR LBNP
11 YES YES 2HR LBNP |[LBNP
12 YES LBNP
13 YES YES PSL-LBNP PSL-LBNP
R1 YES YES LBNP LBNP
R2 YES YES LBNP LBNP

Each subject underwent a 13-day, 6© head-down bed rest, two
days of ambulatory control before bed rest, and two days of
ambulatory recovery after bed rest. Throughout bed rest fluid, salt,
and food intake were maintained at 2500 ml of rehydration
fluid/day, 4 grams of salt/day, and 2500 Kcal/day. Twenty-four
hour urine collections were obtained each day of the study from
which volume, electrolytes, ADH, and ALD concentration were
measured. Venous blood samples were obtained without stasis each
morning and before each LBNP test. Hematocrit and hemoglobin
concentration were determined from each sample.

RESULTS AND DISCUSSION:
A. Pre-syncopal LBNP Results--Pre vs. Post Bed Rest

The effect of 13 days of bed rest on LBNP tolerance is shown in
Figure 2; where "LBNP tolerance” is defined as the LBNP pressure

tolerated for at least one minute without pre-syncopal symptoms.
Not all subjects had a decrease in LBNP tolerance during bed rest and

65



there was no significant correlation between changes in LBNP
tolerance and changes in blood volume (measured via radiolabelling
on the morning of PSL-LBNP testing). However, there was a
significant correlation between the the change in LBNP tolerance
during bed rest and the pre-bed rest LBNP tolerance (Figure 3).
Subjects with high LBNP tolerance had a greater decrease in LBNP
tolerance during bed rest than subjects with low LBNP tolerance.

FIGURE 2 " FIGURE 3
Lowest Pressure Attained, Pre vs. Post Bed Rest
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B. Changes in Plasma Volume During Bed Rest--Effect of the 2-hr
and 4-hr LBNP and saline ingestion treatments.

The changes in PV determined from each morning blood
sample are shown in Figure 4 for Group A and in Figure 5 for Group
B. In both groups, PV decreased initially during bed rest and
returned towards the pre-bed rest level for one to two days
following each LBNP treatment.
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FIGURE 4

o, Change in Plasma Volume, group a
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C. ADH, ALD, and PV during Bed Rest: effect of LBNP and saline

ingestion:

There were no significant differences between the two groups

in any of the treatement of bed rest responses

(analysis of variance).

Therefore, the data from both groups was combined to compare the
effect of the LBNP and saline ingestion treatments on PV, endocrine,

and orthostatic responses.
drawn immediately before each LBNP response test

PV was calculated from blood samples
and ADH and

ALD secretion were determined from 24-hr urine samples (Table 1).
PV was significantly reduced from pre-bed rest levels before each

LBNP treatment, but, 24 hours after each treatment PV was no
longer significantly different from pre bed rest. On the day of each
LBNP treatment, there was a significant increase in the secretion of
both ADH and ALD (compared to pre-treatment) which may have
contributed to the plasma volume expansion.

TABLE 1
Variable PreBR Pre 4hr Post 4hr Pre 2hr Post 2hr
PV (ml) 3157(161) *2918(132) 3144(173) *2987(131) 3109(146)
uv (ml) 2506(250)  2538(155) +2923(111) 2258(162) +2788(191)
ADH (ng) 136(33) 114 (15)  +177 (26) 93 (18) +155 (42)
ALD (ng) 16(4) *35(4) +*54(5) *37(7) +*46(7)
* = Different from pre bed rest, P <0.05.
+ = Different from pre treatment (pre 4hr or pre 2hr), P < 0.05.
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D.  Orthostatic Responses during Bed Rest--effect of LBNP and saline
treatments: ) N

The results in Table 2 illustrate the orthostatic responses
(mean + S.E.) for al 10 subjects by presenting specific cardiovascular

post LBNP treatment tests, although Post treatment, the heart rates
were lower than pré treatment. Pylse pressure was significantly
reduced during bed rest without LBNP treatment but not after
treatment.  Stroke volume was reduced significantly during bed rest
without treatment, byt not following treatment. Cardiac output

TABLE 2

Variable Pre-BR Pre-4hr Post-4hr  Pre-2hr Post-2hr
Heart rate (bpm) 111(5) *134 (4) *128 (5) “144 (5) “134 (5)
Pulse Pressure (mm Hg) 25 (3) *16(2) 19 (2) *18 (3) 19 (3)
Cardiac Output (I/min) 4.2 (0.4) 3.7 (0.2) 3.8 (0.4) 3.6 (0.3) 4.0 (0.3)
Stroke Volume (ml/beat) 39 (5) 27 (2) 29 (3) *27 (3) 29 (3) i
* = Different from pre bed rest value, P < 0.05.

Figures 6 and 7 illustrate the mean + S.E. heart rate response to
the entire LBNP ramp test (0 to -60 mm Hg) and they compare this
Tésponse pre bed rest, during bed rest before treatment (pre 2-hr
and pre 4-hr) and 24 hours after the 4-hr and 2-hr treatments.

After the 4-hr treatment, the heart rate response was
significantly elevated from pre-bed rest, but significantly improved
from pre treatment (pre 4-hr). The effectiveness of the treatment to
lower heart rate diminished with increasing LBNP exposure,

After the 2-pr treatment, the heart rate response wasg
significantly elevated from pre bed rest and there was no significant
improvement after the treatment.

-
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FIGURE 6 FIGURE 7
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1) The loss of tolerance to LBNP after 13 days of bed rest is most
marked in individuals with high LBNP tolerance pre bed rest.

2) Prolonged LBNP exposures during bed rest effectively increase PV
for at least 24 hours and this expansion may be related to an
increased secretion of ADH and ALD.

3) 4-hr LBNP exposures combined with salt water ingestion may
provide some improvement of orthostatic responses for
approximately 24 hours. 2-hr exposures are less effective.

SIGNIFICANCE:
Prolonged LBNP and saline ingestion may provide an effective
means to restore PV during space flight. However, with this

particular protocol (LBNP pressure and fluid ingestion) a 2 hour LBNP
exposure is not sufficient to restore orthostatic responses.
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Research Summary for: CE
NASA Grant NAG9-297 _ z({/
"Fitness, Autonomic Regulation and Orthostatic Tolerance"

Principal Investigator: Jay C. Buckey, M.D.

Work on this grant has consisted of two major studies of
cardiovascular regulation in athletes along with several smaller
supporting studies. This summary will give a brief overview of two
major studies, and then conclude with an analysis of what the
findings from these studies mean practically, and how they can be
applied to current problems with post-flight orthostatic
intolerance. =

BACKGROUND

Orthostatic intolerance has been a consistent finding after
spaceflight. The factors modulating the severity of this
intolerance, however, have not been clear. Also, the adaptation
leading to postflight orthostatic intolerance has been called
"cardiovascular deconditioning", implying that exercise might help
to prevent orthostasis. But the relationship between aerobic
fitness and orthostatic intolerance is controversial. For example,
the U.S. Air Force encourages its fighter pilots to avoid excessive
aerobic training, out of a concern that it might reduce G
tolerance. On the other hand, aerobic exercise is being studied as
a possible countermeasure for the orthostatic intolerance seen
after spaceflight.

To deal with this controversy, this project had two main

goals. One was to determine whether aerobically trained individuals.
do indeed have greater orthostatic intolerance, and if so, what are
the mechanisms. The second was to determine the differences between
those individuals with orthostatic intolerance and those without,

to see if any mechanisms for the intolerance could be elucidated.
Dr. Benjamin Levine at UT-Southwestern was the leader of the team
performing the studies done for this project.

STUDY 1: CROSS-SECTIONAL STUDY OF ORTHOSTATIC INTOLERANCE IN HIGHLY
' AEROBICALLY TRAINED INDIVIDUALS_ .

(see enclosed paper Levine et al. "Physical Fitness and

Cardiovascular Regulatlon Mechanisms of Orthostatic Intolerance"

for complete data.)

The first study was a cross-sectional study of individuals
with varying degrees of fitness. Three groups were identified, a
high fit group (Max. V02=60 ml/nin/kg), a mid-fit group (Max.
V02=48.9 ml/min/kg) and a low-fit group (iMax. V02=35.7). The large
range of fitness levels allowed for correlations to be drawn
between fitness and various cardiovascular variables--including
orthostatic intolerance. Graded lower body negative pressure (LBNP)
was used to measure orthostatic tolerance, and as a test of
cardiovascular regulation. Cardiac output, stroke volume, heart
rate, blood pressure, arm flow, plasma volume and maximal leg

71



conductance were measured during supine rest. The changes in
cardiac output, stroke volume, heart rate, blood pressure, and arnm
flow were measured during LBNP.

Baroreceptor function was measured two ways. A neck collar
made of silastic was placed around the neck to stimulate the
carotid baroreceptors. A short R-wave triggered protocol during
held expiration was used to measure "open-loop" baroreceptor
function, and a prolonged (2 minute) protocol using random sequence
of negatlve and positive pressures was used to measure "closed-
loop" gain. The "open-loop" procedure and equipment used for the
baroreflex testing was the same as the one used after Shuttle
flights as part of DSO #467.

The study produced several interesting results. The highly fit
individuals did have lower orthostatic tolerance, when compared to
the mid and low fit subjects together (LBNPxtime=1175 mmHg-min
high-fit, 2003 mid-fit, 1883 low-fit). But, orthostatic tolerance
(as measured by LBNP) did not correlate with VO2. A multivariate
function predicting tolerance was developed, and it included terms
both related and unrelated to physical fitness. This indicates that
orthostatic tolerance is a complex function of many different
variables, and that no linear relationship between fitness and
orthostatic tolerance exists. It is also clear, however, that
orthostatic tolerance is not better in the fit individuals, which
calls into question using regular aerobic training to counter
orthostatic intolerance.

The baroreceptor data was also intriguing. Typically, the
baroreceptor curves use R-R interval as the dependent variable.
Differences in R-R interval can be expected since the fit
individuals will have lower heart rates. This change in baseline
heart rate does not necessarily reflect a change in baroreflex
responsiveness. The important consideration, when 1nvest1gat1ng
orthostatic intolerance, is what would the change in blood pressure
be for a given change in heart rate. Since a fit individual also
has a greater stroke volume than an unfit one, the same heart rate
change will lead to a much greater change in cardlac output in the
fit person. To compensate for this, the baroreceptor curves were
plotted in a novel way, using the effective change in blood
pressure (the triple product of heart rate, stroke volume and total
peripheral resistance) as the dependent variable. No differences in
baroreceptor function between groups were seen, but "closed-loop"
gain of the carotid baroreceptor did correlate with orthostatic
intolerance.

Although fitness was not a strong predictor of orthostatic
tolerance, the data could be anilyzed in a different way. How did
the subjects who did experience pre-syncope differ from those who
did not? When this analysis was done, one striking finding emerged
(Figure 1). The people who did have pre-syncope not only had a
greater stroke volume, but had a greater decrease in stroke volume
during LBNP. This suggested that the fainters were having a greater
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decrease in filling pressure than the non-fainters. Ccould this be

due to a difference 1n ventricular compliance between the groups?

STUDY #2: VENTRICULAR PRESSURE/VOLUME RELATIONSHIPS IN ATHLETES
(see enclosed paper Levine et al. "Left Ventricular Pressure/Volume
and Frank/Starling Relations in Endurance Athletes: Implications
for Orthostatic Tolerance and Exercise Performance" for complete
data.)

The question about compliance led to the second major study on
this grant. Perhaps there is another, less studied, mechanism
behind the orthostatic intolerance seen in very highly aerobically
trained individuals. Differences in myocardial compliance between
highly fit and unfit individuals would led to strikingly different
Frank-Starling relationships. The highly fit athlete not only has a
larger resting stroke volume than the non-athlete, but is also able
to increase stroke volume during exercise to a greater extent than
the non-athlete. This suggests that the athlete’s heart operates on
the steep portion of the starling curve. While this may be an
advantage during exercise, allowing for greater increases in stroke
volume for a given change in filling pressure, this could also be a
major disadvantage during orthostatic stress. Stroke volume would
drop to a greater degree with a fall in filling pressure.

To test this hypothesis, two groups of subjects were studied.
One consisted of highly trained endurance athletes (Max. vV02=68
ml/min/kg), and the other sedentary subjects (Max. v02=41
ml/min/kg). Left ventricular end-diastolic pressure was measured
_with a swan-Ganz catheter. This pressure Wwas varied using two
interventions, lower body negative pressure to -15 and -30 mmHg,
and saline infusion at 15ml/kg and 30ml/Kg. cardiac volume was
measured with two techniques. Stroke volume was calculated from
acetylene rebreathing cardiac outputs and end-diastolic volume was
calculated from echocardiography.

The results from this study are shown in Fig. 2. The fit
subjects have a nuch greater change in stroke volume for a given
change in pulmonary capillary wedge pressure. The echocardiographic
data produced the sanme result; the athletes had greater decreases
in end-diastolic volume with LBNP. The athletes also had
significantly less orthostatic tolerance as measured by LBNP. This
suggests that pasic cardiac structural differences (i.e. a change
in myocardial compliance) may be significant contributors to
orthostatic tolerance. - - -
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CONCLUSIONS AND RELEVANCE
Orthostatic intolerance and aerobic fitness

In both these studies, the fit individuals had diminished
orthostatic tolerance compared to unfit controls. This supports the
data from many other studies showing a decrease in orthostatic
intolerance with aerobic fitness. It is significant, however, that
this is not a simple, linear relationship. The interactions between
orthostatic tolerance and fitness are complex, many highly fit
individuals have excellent tolerance, while many unfit subjects
pass out easily.

may be U shaped. Very highly fit subjects are on the steep portion
of the Frank-Starling relationship, moderately fit subjects have
the best tolerance, and very unfit subjects (such as would occur
after bedrest or spaceflight), like the highly fit subjects, also
have hearts on the steep portion of the Starling curve. In the very
unfit subject, plasma volume ang stroke volume are SO0 low that very
small changes in filling pressure would lead to orthostatic

Post-bedrest orthostatic intolerance. The bed-rested subjects may
experience a transient increase in plasma volume and stroke volume
after the exercise thereby moving "up" the Frank-Starling curve.

Extensive, regular aerobic conditioning in Space may be useful
for bone or muscle atrophy, and for maintaining endurance, but not
for combatting orthostatic intolerance, This does not mean that
exercise itself has no role, since static exercise and bouts of
maximal aerobic exercise (as mentioned above) have been shown to
improve orthostatic tolerance.

Mechanisms of orthostatic intolerance
Often, studies on orthostatic intolerance focus on differences

in cardiovascular regulation. Various tests have been used to study
the heart rate, cardiac output and peripheral responses to
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Another possibility to explain differences in orthostatic
responses, could be a greater decreases in filling pressures with
orthostatic stress. This can be ascribed to basic structural
changes in the cardiovascular system (i.e. compliance of the
myocardium), rather than a change in neurohumoral regulation. In
athletes, this reasoning provides a very useful way of thinking
about orthostatic intolerance. The Frank-Starling relationship
shows that high stroke volumes during exercise and the large drop
in stroke volume with standing are really two sides of the same
coin. The shift in the athletes to the steep portion of the
Starling curve provides an advantage during exercise and a
disadvantage with orthostatic stress.

The athletes produced several structural changes in their
cardiovascular systems. They have a greater blood volume at the
same central venous pressure as unfit subjects, indicating a much
greater venous capacity. Also, their maximal vascular conductance
is greater, indicating a greater ability for vasodilation.

Analysis of baroreceptor function

One other result from the set of studies performed on this
grant has been a new way to analyze baroreceptor function curves.
Typically, R-R interval is plotted as a function of carotid
distending pressure to produce a curve describing carotid
baroreceptor function. R-R interval is used since it reflects the
change in vagal outflow.

This approach has a problem when studying orthostatic
intolerance in individuals with different resting values of heart
rate, stroke volume and total peripheral resistance. Similar
changes in R-R interval in two subjects with greatly differing
levels of TPR, for example, would result in widely different
changes in blood pressure. This means that to interpret the
baroreflex curves, the effective change in blood pressure that
would result from a change in R-R interval is important.

One limitation to this approach is the assumption that stroke
volume and total peripheral resistance stay relatively constant
during a baroreflex testing session. This was checked during a
supporting study done as part of this grant. Stroke volume was
measured using Doppler echocardiography during the sequence of R
wave triggered changes in carotid distending pressure used in the
studies. Stroke volume changed less than 5% during the baroreflex
test (see enclosed abstract "The Effect of Carotid Baroreceptor
Stimulation on Stroke Volume").

Overall, the approach of using the effective change in blood
pressure proved useful in normalizing baroreflex curves for greatly
different basal values of stroke volume and total peripheral
resistance. Obviously, this is a simplified approach that applies
an analysis more appropriate for steady flow to a system with
pulsatile flow. Nevertheless, it does allow for more meaningful
comparisons between groups, and has been used during a study of
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changes in baroreceptor function with posture (see enclosed
abstract "Effect of posture on the carotid baroreflex").

SUMMARY

The studies performed on this grant have provided new
information about fitness and orthostatic intolerance. Orthostatic
intolerance is more prevalent in highly trained athletes, but it is
not a simple, linear function of VO2 max. The mechanism may have
more to do with myocardial compliance, as reflected in the
different Frank-Starling relationships (LV end-diastolic pressure
vs. LV diastolic volume) between elite athletes and sedentary
controls. These points are described in detail in the enclosed
paper by Levine, "Regulation of central blood volume and cardiac
filling in endurance athletes-utilization of the Frank-Starling
mechanism as a determinant of orthostatic tolerance.”

(
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cardiovascular regulation: mechanisms of orthostatic intolerance.
J. appl. Physiol. (in press) .

Levine BD: Regulation of central blood volume and cardiac filling
in endurance athletes—utilizationrof the Frank-Starling mechanism
as a determinant of orthostatic tolerance. Med. Sci. Sports Exer.,
23, (in press) . : :

Levine BD, Lane LD, Buckey JC, Friedman DB, Blomgvist CG: Left
ventricular pressure/volume and Frank-Starling relations in
endurance athletes: implications for orthostatic tolerance and
exercise performance. Ccirculation (submitted).

Abstracts:

Levine BD, Buckey Jc, Fritsch JM, vYancy CW, watenpaugh DE, Eckberg
DL, Blomgvist CG: Physical fitness and orthostatic tolerance: The
role of the carotid baroreflex. clin. Res. 36(3):295A, 1988.

Levine BD, Buckey Jc, Fritsch JM, Yancy CW, watenpaugh DE, Eckberg
DL, Blomgvist CG: physical fitness and cardiovascular regulation:
orthostatic intolerance. circulation, 80(4):I1I1-291, 1989.

Levine BD, Buckey JC, Friedman DB, Lane LD, watenpaugh DE,
Blomgvist CG: Right atrial pressure (RA) vs. pulmonary capillary
wedge pressure (PCW) in normal man. Circulation, 80(4):11-250,
1989.

Wright SJ, Levine BD, Blomgvist CG: Effect of posture on the
carotid barorefleX. Circulation, 82(4):III-515, 1990.

Levine BD, Lane LD, Buckey JC, Friedman DB, Blomgvist CG:
Ventricular pressure/volume relations in endurance athletes: non-
autonomic determinants of orthostatic tolerance. Circulation,
82(4):1II-694, 1990. —

Levine BD, pawelczyk JA, Buckey JC, Parra BA, Raven PB, Blomgvist
cG: The effect of carotid baroreceptor stimulation on stroke

volume. Clin. Res., 38(2):333a, 1990.
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METHODS

We recorded R-R intervals, tidal volumes, arterial pressures,
expiratory pressures, and musclersympathetic herve activity on
electrostatic and FM recorders. Twé 'protocols were followed.
Protocol #1: Nine subjects performed five Valsalva maneuvers at
each of three expiratory pressures (10, 20, and 30 mmHg) during
which muscle sympathetic activity was recorded. The order of
pressure levels was fandomized. Protocol #2: Six subjects
performed five Vaisalva triéls at 30 mmHg duringrwhich right atrial
pressure was recorded from a saline-filled catheter connected to a
pressure transducer. The same parameters listed above were measured
except muscle sympathetic nerve activity. This protocol was used to
determine the time course of return of right atrial pressure to
baseline levels after a strain, and the relation of this time

course to the return of arterial pressure.

RESULTS

A sample tracing of oneVValsalva trial from one subject is
depicted in Fig. 1. The typical phases of the Valsalva maneuver and
their sympathetic responses are shown clearly. These include phase
1 elevation of arteriail pressure and inhibition of sympathetic
activity at the onset of straining; phase 2 reduction of pressure
and increase of sympathetic activity as straining continues; phase
3 abrupt decrease of pressure and increase of sympathetic activity
after release of straining; and phase 4 elevation of pressure and
inhibition of sympathetic activity during resumption of controlled-

rate breathing.
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Relation between sympathetic nerve activity and arterial

pressure. Average changes of peak muscle sympathetic nerve
activity during straining and arterial pressure during phase 4 are
listed in Table 1. Absolute sympathetic nerve activity correlated
only modestly with absolute diastolic pressure during straining (r
= 0.55, p < 0.05); whereas, beat-to-beat change of sympathetic
nerve activity correlated well with beat-to-beat change of
diastolic pressure (r = 0.79, p < 0.01). Peak sympathetic activity
during straining correlated significantly with phase 4 increases of
systolic and diastolic pressures (r > 0.80; p < 0.0001).

Post-strain sympathetic inhibition. Several measurements were

made to determine what physiologic adjustments account for post-
strain sympathetic inhibition. The time to return of baseline
systolic pressure, sympathetic activity, and the occurrence of the
first post-straining sympathetic burst correlated significantly
with the intensity of straining. The time of return to baseline
sympathetic nerve activity was consistently greater than the return
to baseline arterial pressure (Fig 3).

Six subjects were studied to determine the time of return to
baseline right atrial pressure after Valsalva straining. The time
of return to baseline right atrial pressure (27.3 + 3.0 s) was not
different (p = 0.40) from time of refurn to baseline systolic
arterial pressure (24.5 + 2.2 s), and therefore was not predictive

of the return to baseline sympathetic nerve activity.
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S8UMMARY

Valsalva's maneuver, voluntary forced expiration against a
closed glottis, is a well-characterized research tool, used to
assess the integrity of human autonomic cardiovascular control.
Valsalva straining provokes a stereotyped succession of alternating
positive and negative arterial pressure and heart rate changes
mediated in part by arterial baroreceptors. Arterial pressure
changes result primarily from fluctuating levels of venous return
to the heart and changes of sympathetic nerve activity.

We measured muscle sympathetic activity directly in nine
volunteers to explore quantitatively the relation between arterial
pressure and human sympathetic outflow during pressure transients
provoked by controlled graded Valsalva maneuvers. Our results
underscore several properties of sympathetic regulation during
Valsalva straining. First, muscle sympathetic nerve activity
changes as a mirror image of changes in arterial pressure. Second,
the magnitude of sympathetic augmentation during Valsalva straining
predicts phase 4 arterial pressure elevations. Third, post-Valsalva
sympathetic inhibition persists beyond the return of arterial and
right atrial pressures to baseline 1levels which reflects an
alteration of the normal relation between arterial pressure and
muscle sympathetic activity. Therefore, Valsalva straining may
have some utility for investigating changes of reflex control of
sympathetic activity after spaceflight; however, measurement of
beat-to-beat arterial pressure is essential for this use. The
utility of this technique in microgravity can not be determined

from these data. Further investigations are necessary to determine
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whether these relations are affected by the expansion of

" ! intrathoracic blood volume associated with microgravity.
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TABLE 1. Peak sympathetic nerve activity durin
arterial pressure elevations after Valsalva straining o

g straining

and

Valsalva pressure, mmHg

10 20 30
Sympathetic activity, 1905+203 3086+374 4801+505
arbitrary units/10 s
Change of systolic 10.441.2  17.9+41.4 25.5+1.8
pressure, mmHg
Change of diastolic 3.640.7 7.84+1.0 13.1+41.1

Pressure, mmng

All values are mean 1+ SEM. All changes were significantly different
from zero (P < 0.001; n = 7). Pressure changes reflect the Phase 3

to 4 change; sympathetic increases reflect peak increase during

Phase 2.
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Part I: Current Activities
A. ntr i

As indicated by the title, the primary purpose of this sponsored research is to study the
physiological mechanisms associated with the exercise performance of rats subjected to
conditions of simulated weightlessness. A secondary purpose is to study related
physxologxcal changes associated with other systems. To facilitate these goals, a rodent
suspension model was developed (Overton-Tipton) and a VO max testing procedure was
perfected.

Three methodological developments have occurred during this past year deserving of
mention. The first was the refinement of the tail suspension model so that (a) the heat
dissipation functions of the caudal artery can be better utilized and (b) the blood flow
distribution to the tail would have less external constriction (Figure 1). The second was the
development on a one-leg weight bearing model for use in simulated welght]essness studies
(Figure 2) concerned with change in muscle mass, muscle enzyme activity and hindlimb
blood flow.

o g

1 ‘_
L

Figure 1 Figure 2

With the assistance of a visiting Professor, Dr. Roger Coomes and Mr. Craig Stump, a
NASA Pre-Doctoral Fellow, the chemical body composition of 30 rats was determined and
used to develop a prediction equation for percent fat using underwater weighing procedures
to measure carcass specific gravity and to calculate body density, body fat and fat free mass.
The mathematical least square equation that had the best fit was Z= a/x + bY + c where:
a = -2136.4, x = specific gravity -1.00000 (105), b = 0.05555, y = body mass in grams and
¢ = -10.09180. The correlation coefficient between the measured fat percentage and the
predicted fat percentage was 0.834.
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1. A comparative study on the effects of two suspension methods on select
anatomical, biochemical and physiological variables.

a. We wanted to determine if exercise performance results were different
depending upon the method selected.

b. Select results ()—(,' intergroup statistical significance) from controls
between the Morey-Holton and the Overton-Tipton models were as
follows: :

% Change 9% Change % Change
in Plasma in Plasma in Body % Change % Change
NE NE Mass in VO7 max in Run Time
Group N (2 Days) (9 Days) (14 Days) (14 Days) (14 Days)
Cage
Control 3-10 11 5 3 5 16
Morey-
Holton 6-10 53* 47 -5 -7 ' -26*
Qverton-
Tipton 79 71* 212* -14* 0 -19*
2. Relevant findings from the one-leg weight (4) bearing model were:

a. The decrease in soleus muscle mass with suspension can be minimized
or prevented by having one hindlimb support the mass of the animal.

b. The decrease in the activity of acrobic enzymes of the soleus muscle with
suspension can not be prevented by having one hindlimb support the
body mass of the animal.

C. The increase in resting blood pressure observed with a one-leg hindlimb
suspension model may be associated with the integration of the afferent
inputs by the medulla.

3. Conclusions:

a. We now have suspension techniques suitable to measure the effects of
posture and weight bearing on a variety of physiological, biochemical,
and anatomical parameters.

b. We can now better estimate the body compositional changes with

simulated weightlessness.
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B. The Influence of Sympathetic Nervous System

1. Time course of changes in catecholamines,

a. To determine the changes in the Overton-Tipton model before initiating
Sympathectomy studies, a study with 10 control and 11 suspended rats
was conducted. The results are listed in Figure 3 (X SE,* intergroup and
intragroup difference that was statistically significant).

A Epinephrine 0. Norepinephrine - cc
- HDS
10 - 1.0 1
= g
£ g : .
! A
! . % /}\{
0.3 4 £ 0541
& B 3
L x i Tt
T ——
03 7v ﬁ" ° [} 7 T‘
Day ) Doy

2. The effects of chemical sympathectomy and simulated weightlessness on
exercise performance. ‘ :

a. To determine whether exercise performance would be altered after the

'removal” of the sympathetic nervous system,

b. Select VO2 max results with saline or quanethidine sulfate injections in
male or female rats (XSE,* intragroup, @ intergroup statistical
significance, ml-mm-1.kg-1 or ml-min-1.kg FFM-1),

Group N Pre-Suspension  Afier 7 Days After 14 Days After 13 Days (FFM)
SHAM (males) »

Cage Control 6 8443 863 852 10216
Suspended 6 8412 87+1 8012+ 9416
SYMX (males) )

Cage Control 6 81+1 82+2 77%2 88+4
Suspended 8 8612 98+2+*@ 94+1*@ 108%6*
SHAM (females)

Cage Control 8 83+2 85%2 782 9242
Suspended 7 89+1 84+2 88+2Q@ 94+3
SYMX (females)

Cage Control 6 88+4 8943 8813 10413
Suspended 7 85+2 95+4+ 94+4Q 10914

92

(



4. The combined influences of sympathectomy, adrenal demedullation and simulated
weightlessness on exercise performance.

a. Although the results are in the analysis stage, the data (presented) are in form
for publication.

b. Trends suggest that absolute VO max is significantly decreased when
demedullation is coupled with sympathectomy. Changes in relative VO2 max
are not as apparent.

s, Conclusions: The presence of circulating epinephrine (and its receptors) appears to

be essential to avoid the marked decrease in VO2 max that occurs with
weightlessness.

C. Effects of Simulated Weightlessness for 28 Days on Performance and Fat-free Mass

1. To determine whether longer durations would affect both exercise performance and
fat-free mass.

a. Select results (5_( ,SE,* intragroup, @ intergroup statistical significance)
pertaining to % fat, VO2 max (ml-min-1-kg-1 or FFM-1) or run time (min)
of female rats.

VO3 max Run Time
Group N % Fat Start End End (FFM) Start End
Cage Control 9 121 993 9212* 10918 15%.6 137
Suspended 8 T2* %6+3* 904 1028 158 10.5*@

2. Conclusions: Simulated weightlessness causes more of a change in fat mass than in fat-frec mass.
Consequently, the decline in VO2 max is due to other mechanisms than a decrease in the active muscle
mass.

D.  The Effect of Prior Endurance Training on Exercise Performance of Rats Exposed to andi;igns of Simulated

Weightlessness for 28 Days

1.  To determine whether trained rats would exhibit greater decreases in exercise performance than

nontrained rats with suspension.

2. Results are after 6 weeks of training (iSE,Q intergroup statistical significance).

Body Mass VO3; max Run Time
N ® (ml*min-1-kg1) (Minutes)
Nontrained 12 344116 7 8212 124
Trained 10 330%10 98+1® 16 4*
3. The influence of simulated weightlessness for 28 days on the exercise performance of nontrained and
trained animals.
a.  Rational was the same as listed in above.
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b.  Results are ()—(SE," intragroup, @ intergroup statistical significance) for body mass (gram), \"Oz
max (ml* min-1kg-1) and run time (min),

Body Mass VO3 max ~ RunTime
Group N  Start End Start End Start End
NT-Cage '
Control 12 344%16 431+11* 8242 7514 12+ 4 11t 4
NT-Suspended 9 34116 309t16* 81t4 7713 12+5 8+.2'@
T-Cage Control
& Detraining 10 330%10 419+11* 911 8413 16+ .4 155
T-Suspended 10 34417 285315*@ 9542 81#3* 16343  10t1.1+@

4.  Conclusions: Prior exercise training is associated with a faster decline in
performance measures than nontrained rats during this time period. Tt is unknown
whether the same trends would continue longer durations,

E.  Published Results on the Effects of Simulated Weightlessness on Select Physiological
rameters.

1. Baroreflex control of heart rate. (LBNP; sympathominetric agents) was not
significantly altered by 9 days of simulated weightlessness (3).

2. Suspended rats exhibited a reduced pressor response to phenylephrine injections
than cage control rats. Also with this finding was a significant elevation in
mesenteric vascular resistance 3).

3. Suspended rats had greater decreases, but not statistically, in plasma volume than
nonsuspended rats (3),

4. Blood flow results obtained from Doppler probes indicated that;

a.  Suspension was associated with an increase in iliac and mesenteric vascular
resistance during exercise 3).

b.  Iliac blood flow was significantly decreased after 48 hours suspension 4).

¢.  The decrease in iliac blood flow with suspension was prevented by having one
hindlimb support the weight of the animal 4).

5. The effects of simulated weightlessness on the rise in core temperature with g
gradual heat challenge indicated that the suspended rats reached 40.5 ° Csooner than
their nonsuspended controls, We speculate that these results occur because of a
reduction in hindlimb blood flow and a decline in plasma volume, :

Part II: Future Projects and Their Relevance to Current or Future NASA Projects

A. The influence 0f 42-56 days of simulated weightlessness on exercise performance as
evaluated by VO2 max, run time and mechanical efficiency.

B.  The influence of 42-56 days of simulated weightlessness on resting and exercise
cardiac hemodynamics, plasma volume, blood gas changes, and baroreflexes.
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The influence of an elevated plasma volume on the prevention of VO2 max changes
with short (14 day) and long (42-56) durations of simulated weightlessness.

The influence of short (14 days) and long (42-56) durations of simulated
weightlessness on tissue norepinephrine turnover rates.

The influence of front leg exercise training by suspended rats on their whole body
VO2 max values.

The influence of short (14 days) and long durations (42-56 days) of simulated
weightlessness on the exercise performance of hypophysectomized rats.

Part III. Publications Associated Directly or Indirectly with NASA-NAG 2-392

A. Mgnusgrims Published in 1990

1

2)

3)

4)

B. A
5)

6)

7)

8)

9)

Kregel, K.C., D.G. Johnson, C.M. Tipton, and D.R. Seals. Arterial baroreceptor
reflex modulatlon of sympathetic cardiovascular adjustments to heat stress.

Hypertension 13:497-504, 1990.

Kregel, K.C., CM. Tipton, D.R. Seals. Thermal adjustments to nonexertional heat
stress in mature and senescent Fisher 344 rats. J, Appl, Phys. 68:1337-1342, 1990.

Overton, J.M. and C.M. Tipton. Effect of hindlimb suspension on cardiovascular
responses to sympathectomized and lower body negative pressure. J. Appl, Physiol.
68:355-362, 1990.

Stump, C.S., JM. Overton, and C.M. Tipton. Influence of a single hindlimb support
during simulated weightlessness in the rat. J, Appl, Physiol. 68:627-634, 1990.
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Coomes, R.K, L.A. Sebastian, C.S. Stump, P.K. Edwards, and C.M. Tipton.
Influence of two methods of head-down suspension (HDS) on the stress response of
rats: Preliminary Results. ASGSB Bulletin. 4(1) 73, 1990.

Kregel, K.C, J.M. Overton, D.G. Johnson, CM. Tipton, and D.R. Seals.
Cardiovascular sympathoadrenal and thermal adjustments to nonexertional heat stress
in the conscious rat. FASEB J. 4(3):A889, 1990.

Stump, C.S., C.R. Woodman, and C. M. Tipton. Exercise induced glycogen depletion
in select rat hindlimb muscles after two weeks of hindlimb suspension. Med, Sci,

Sports Exerc. 22(2):552, 1990.

Woodman, C.R,, K.C. Kregel, and C.M. Tipton. Thermal responses to non-
exertional heat stress following simulated weightlessness in the conscious rat.

FASEB J. 4(3):A569, 1990.

Woodman, C.R,, C.S. Stump, L.A. Sebastian, and C.M. Tipton. Influences of 28 days
of hindlimb suspension on the VO2 max of trained and nontrained rats. ASGSB
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Exposure to conditions of microgravity for any extended duration can modify the
distribution of fluid within the vascular and interstitial spaces, and eventually intracellular
volume. Whether the redistribution of fluid and resetting of volume homeostasis
mechanisms is appropriate for the long term environmental requirements of the body in
microgravity remains to be fully defined. The event that initiates the change in fluid
volume homeostasis is the cephalad movement of fluid which potentially triggers volume
sensors and stretch receptors (atrial stretch with the resulting release of atrial natriuretic
peptide) and suppresses adrenergic activity via the carotid and aortic arch baroreceptors.
All these events act in concert to reset blood and interstitial volume to new levels, which
in turn modify the renin-angiotensin system. All these factors have an influence on the
kidney, the end organ for fluid volume control. How the fluid compartment volume
changes interrelate with alterations in renal functions under ‘conditions of simulated
microgravity is the focus of the present investigation which utilizes 25-30° head-down tilt
in the rat.

A previous investigation by our laborat'o'ry studied the effects of head-dqwn tilt
(HDT) during the first seven days of suspension utilizing both chronic cannulation, thereby
allowing repeated measures in the same rat, and renal micropuncture methods (1). In
this study we examined the changes in extracellular fluid volume and renal function during
the time course of HDT in the rats. The measurements of extracellular fluid volume and
whole kidnéy function were performed in awake rats, thus permitting evaluation of the
time course alterations in renal function in conscious non-surgically stressed rats. The

HDT group was compared to suspended but non-tilted controls. In addition to the awake
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studies, renal micropuncture techniques were utilized to ascertain the changes in the
determinants of glomerular ultrafiltration at the single nephron level in rats exposed to
seven days of HDT (1). Plasma renin activity, plasma catecholamine concentrations, and
urinary catecholamine excretion were also measured to ascertain whether any of the
changes in glomerular dynamics observed could be correlated with these factors which
regulate systemic and renal vascular resistance (1).

In this first study, extracellular fluid space (ECF) significantly increased within 24
hr after the onset of HDT and then returned gradually to pre-tilt values by the end of the
7 day HDT (figure 1). Glomerular filtration rate (GFR) also increased significantly (19+8%)
within 24 hours with a gradual decline and finally a significant reduction (-7 + 1%) by day
7 of head-down tilt (figure 1). The changes in GFR were most likely renal plasma flow
dependent since the GFR changes paralleled the alteration in renal plasma flow except
after seven days HDT where GFR was reduced and renal plasma flow was not different
from control values (figure 1). In general, urine flow increased by 24 hours of HDT and
remained elevated throughout the 7 days of simulated microgravity (figure 2). Both
urinary sodium and potassium excretion changes were less consistent during the seven
day HDT (figure 2).

At the end of seven day HDT another group of rats were submitted to renal
mibropuncture studies to ascertain which of the determinants of glomerular filtration
contributed to the reduction in filtration rate. In superficial nephrons, single nephron
glomerular filtration rate (SNGFR) decreased from 43+ 2 to 31+3 nl/min which was due

solely to reductions in the glomerular ultrafiltration coefficient (1). These data are
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consistent with the awake rat renal function measurements in which parameters other
than renal plasma flow were responsible for the reduction in glomerular filtration rate. This
first study was successful in delineating some of the specific alterations in renal function
that occur in this model of cephalad fluid shift and relative hypokinesia, findings which are
similar to human studies in situations of simulated microgravity (2).

In more recent studies, initiated this year with the start of NAG 2-659, two separate
groups of rats were utilized to examine blood volume changes, extracellular fluid volume,
and renal function alterations during 14 day HDT and 7 days post-tilt recovery. The major
focus of this study was to further define the applicability of this model for longer term
studies simulating the changes that occur in humans under conditions of microgravity and
recovery and to correlate the changes in fluid compartment volumes to alterations in renal
function to ascertain if the kidneys were responding to maintain volume homeostasis.

In the first group of rats, chronic cannulation of the femoral artery and vein was
performed and the animals were allowed one week to recover. The rats were separated
into four subgroups (n=6in each group) and either tail suspended for 1, 7, or 14 days
or left in the normal orthostatic position. Blood volume was measured in each of the four
subgroups of awake rats utilizing *'Cr labeled endogenous erythrocytes and the changes
in volume with duration of HDT was compared to non-tiltedgcontrols. Although not
significant, blood volume tended to increase from 5.4+0.1 to 5.6+0.1% of body weight
after 24 hrs HDT (figure 3). By day 7, blood volume Signiﬁcantly decreased to 5.0+ 1%
of body weight and decreased further to 4.8+0.1% by day 14 of HDT similar to

observations made in humans (figure 3). There were no differences in body weight,
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systemic hematocrit, or plasma protein concentrations among the four subgroups
indicating that the observed blood volume changes were indepéndent of these factors.

In the second group of rats cannulation of the femoral artery and vein and bladder
was performed as in prior studies for chronic monitoring of extracellular volume, systemic
electrolytes and plasma protein concentration as well as renal function (GFR, renal plasma
flow, urine flow rate, urinary sodium and potassium excretion). Serial measurements of
these parameters were performed twice prior to HDT and then at 24 hrs, 3, 7, 10, and 14
days during HDT. After the 14 day HDT period was completed, all rats were returned to
normal orthostatic position and, after a 45 min waiting period, the measurements were
repeated. Measurements were also performed at 24 hrs, 3, and 7 days post-HDT. Ali
values were compared to pre-tilt control measurements in the same rat on a paired basis.
Similar to our previous findings, extracellular fluid volume increased from 28.2+3.1 to
31.4+3.5 % of body weight after 24 hrs of HDT and thenvsteadily decreased to 24+ 2.1
% of body weight by day 7 (figure 4). By day 14, ECF returned to values not different
from control (27.3+1.2 % of body weight). During post-tilt recovery, ECF did not differ
from pre-tilt control values (figure 4). GFR incréased during HDT from 2.1+0.1 in control
to 2.3+0.2 after 24 hrs HDT and to 2.8+0.2 mi/min after 3 days HDT (figure 5). By day
7, GFR was not different from control (2.2+0.1 mi/min) and GFR at day 14 HDT was
2.3x0.2 mi/min, also not different from pre-tilt values (figure 5). It was surprising that
GFR remained at values not different from control despite the decrease in blood volume
and 7 and 14 days HDT. Post-tit GFR values were not different from pre-tilt values

measured in this group of rats (figure 5). Renal plasma flow increased by day 3 of HDT
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but did not significantly deviate from control values at the other measurement time points
(figure 6). In early HDT, there seems to be a mild volume expansion with concomitant
increase in GFR and renal plasma flow, but after the initial expansion phase, ECF and
renal function return to values not different from pre-tiit measurements with a decrease
in blood volume.

These definition phase studies provide a low cost, ground based alternative for
investigation of fluid compartment volume alterations and renal function in microgravity
conditions. The results are quite similar to the studies in humans where some of the
same parameters were measured in HDT. However, the rat also provides a model for
more invasive studies, such as renal micropuncture, as well as a vehicle for therapeutic
trials to modify cardiovascular and renal response due to long term exposure to
microgravity. Also, this model can easily be extended to examine volume homeostasis

and renal function under conditions of 30-90 days of simulated microgravity.
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A Mechanisms of Headward Edema Formation during
Head-Down Tilt

Co-Investigators: S.E. Parazynski, M. Aratow, B. Tucker, J. Styf,
and A. Crenshaw

Recent Results:

To understand the mechanism, magnitude and time course of
facial puffiness that occurs in microgravity, seven male subjects were
tilted 6° head-down for 8 hours, and all four Starling transcapillary
pressures were directly measured before, during, and after tilt (1-4).
Head-down tilt (HDT) caused facial edema and a significant elevation
of microvascular pressures measured in the lower lip: capillary
pressure increased from 27.7 + 1.5 mm Hg pre-HDT to
33.9 + 1.7 mm Hg by the end of tilt (Fig. 1). Subcutaneous and
intramuscular interstitial fluid pressures in the neck also increased
as a result of HDT, while interstitial fluid colloid osmotic pressures in
these tissues remained unchanged. Plasma colloid osmotic pressure
dropped significantly by 4 hours of HDT (21.5 + 1.5 mm Hg pre-HDT
to 18.2 + 1.9 mm Hg at 4 hours HDT), suggesting a transition from
fluid filtration to absorption in capillary beds between the heart and
feet during HDT (Fig. 2). After 4 hours of seated recovery from HDT,
microvascular pressures (capillary and venule pressures) remained
significantly elevated from baseline values, despite a significant HDT
diuresis and the orthostatic challenge of an upright, seated posture.
These results suggest that facial edema resulting from HDT is
primarily caused by elevated capillary pressure in the head and
decreased plasma colloid osmotic pressure. Post-tilt maintenance of
elevated cephalic capillary pressure may suggest a compensatory
vasodilation to maintain microvascular perfusion.

Significance and Future Plans:

This study represents the first direct measurement of all four
Starling pressures in humans and the first time that micropuncture
was applied to the human microcirculation above heart level (5).

These results have elucidated the mechanism of facial puffiness during
microgravity. Our results also indicate the need for measurement of
intracranial pressure (ICP) during head-down tilt and actual
microgravity. These results have important implications to long-
duration missions because some cosmonauts had facial edema for up to
one year and intracranial edema may limit performance. Future plans
will:” 1) investigate the post-tilt recovery period for longer times, 2)
hopefully investigate ICP in rhesus monkeys during a future Cosmos
mission, and 3) develop a noninvasive ICP technique for application to
studies of crew during actual microgravity.
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B. Postural Responses of Head and Foot Microcirculations
and their Sensitivity to Bed Rest

Co-Investigators: M. Aratow, J.-U, Meyer, and S.B. Amaud

Recent Results:

To explore further the mechanism of facial puffiness, headache,
and nasal congestion associated with microgravity, the postural
responses of the cutaneous microcirculation in the forehead and
dorsum of the foot of 8 healthy men were studied by changing body
position on a tilt table and measuring blood flows with a laser-Doppler
flowmeter (6-8). Increasing arterial pressure in the feet by moving
from a 6° head-down tilt to a 60° head-up posture significantly
decreased foot cutaneous flow by 46.5 + 12.0% (Fig. 3). Raising
arterial pressure in the head by tilting from the 60° head-up to 6°
head-down posture significantly increased forehead cutaneous flow by
25.5 + 7.2%. To investigate the possibility that these opposite
responses could be modified by simulated microgravity, tilt tests were
repeated after 7 days of 6° head-down tilt bed-rest. On the 1st and
2nd days after bed-rest, flows in the foot were decreased by
69.4 + 8.8% and 45.8 + 18.7%, respectively, and increased in the
head by 39.3 + 8.6% and 15.5 + 5.9%, respectively. These responses
were not significantly different from those recorded before bed-rest.

Significance and Future Plans:

Cutaneous microcirculatory flow in the feet is well regulated to
prevent edema when shifting to an upright position, whereas there is
little regulation in the head microcirculation with head-down tilt. The
lack of regulation in the forehead cutaneous microcirculation increases
capillary flow, and consequently increases fluid filtration. This
phenomenon helps explain the facial edema associated with the
simulated or actual microgravity environment. Future plans include
longer-term bed-rest experiments and studies of intracranial blood
flow by transcranial Doppler and correlation of blood flow alterations
with performance indices in human subjects. The development of
arterial and microvascular adaptations to gravitational blood pressure
gradients is well documented in tall species such as humans and
giraffes. It is expected that some or all of this vascular adaptation will
be lost during long-duration flight.
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C. Transcapillary Fluid Transport Associated with LBNP
with and without Saline Ingestion

Co-Investigators: S. Fortney, M. Aratow, D.E. Watenpaugh,
and A. Crenshaw

Recent Results:

Lower body negative pressure (LBNP) may enhance fluid
replacement during spaceflight by sequestering fluids in the lower body
to help maintain plasma volume and post-flight orthostasis. We
hypothesized that saline ingestion during LBNP would further increase
transcapillary fluid filtration into leg interstitium and further improve
postflight orthostatic tolerance. Six subjects underwent 4 h of
30 mm Hg LBNP and 50 min of recovery on two separate days with and
without drinking one liter of isotonic saline during LBNP (9-11).
Interstitial fluid pressures (IFP), venous pressure (VP), and change in
circumference (LC) were continuously measured in the leg. Whole-body
transcapillary fluid transport rate (TFT, net filtration if TFT < O) was
determined by subtracting urine production and insensible fluid loss
from changes in plasma volume. Leg IFPs decreased in parallel with
LBNP (3.0 + 2.6 mm Hg to -26.5 + 2.9 mm Hg, p < 0.05), yet VP
remained constant (Fig. 4). Although IFPs returned to baseline after
LBNP alone, LC remained 4.1 + 1.3% above baseline at 50 min of
recovery (p < 0.05) (Fig. 5). Saline ingestion increased post-LBNP IFP
and LC relative to LBNP alone. TFT was 145 + 10 mi/h (723 + 43 ml)
during LBNP with saline ingestion, compared to -7 £ 12 ml/h
(-40 + 64 ml) during LBNP alone.

Significance and Future Plans:

Increased vascular transmural pressure during LBNP led to venous
pooling and filtration into lower body interstitium, yet reabsorption from
upper-body interstitium compensated for this filtration during LBNP
alone. Saline ingestion with LBNP supplemented lower-body interstitial
volume. Post-LBNP reabsorption of fluid from lower-body interstitium
was similar with and without saline ingestion, which indicates about half
of the fluid load remained in the interstitial space at 50 min of recovery.
Future plans may include studies of other types of fluid ingestion and
LBNP as well as evaluation of the effect on post bed-rest orthostatic
intolerance. These results provide objective data on possible use of
LBNP and saline ingestion to improve orthostatic tolerance following
short-duration as well as long-duration flight.
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Figure Legends:

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Capillary blood pressure increased significantly in the lip
within the first half hour of HDT and remained elevated
throughout HDT and in the recovery period. Lower bar
indicates period of HDT.

Plasma colloid osmotic pressure decreased significantly
after 4 hours HDT. Lower bar indicates period of HDT.

Responses of the forehead and dorsal foot cutaneous
microcirculations to an arterial pressure increase before
and after a one week period of bedrest. Forehead
microcirculatory flow increases significantly whereas that
in the foot decreases significantly with increased local
blood pressure. The clear bars represent the percentage
change in forehead cutaneous flow caused by a tilt to the
head-down position, and the response of the foot
cutaneous flow caused by a tilt to the head-up position is
represented by the shaded bars. The magnitudes of these
changes due to 7 days of bed rest were not significantly
different from each other.

Tissue fluid and foot venous pressures during LBNP with
and without saline ingestion. The lower rectangle labelled
“LBNP” in each graph represents the time period during
which LBNP was applied to each subject. The subdivisions
at the beginning and end of the rectangle represent the
ramp up and ramp down of the chamber pressure. The
rectangle in each graph labelled “saline” represents the
time period over which the subject was required to drink
1 liter of isotonic saline.

Calf circumference change, calculated plasma volume, and
serum colloid oncotic pressure during LBNP with and
without saline ingestion. The lower rectangle labelled
“LBNP” in each graph represents the time period during
which LBNP was applied to each subject. The subdivisions
at the beginning and end of the rectangle represent the
ramp up and ramp down of the chamber pressure. The
rectangle in each graph labelled “saline” represents the
time period over which the subject was required to drink
1 liter of isotonic saline.
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INTRODUCTION:

~ The study of man in spaceflight has consistently indicated changes in fluid and
electrolyte balance. Sodium (Na), Potassium (K) and Calcium (Ca) excretion are
. increased, accompanied by changes in the levels and responsiveness of adrenal
hormones and the sympathetic nervous system (SNS). These hormones and
neurohumors are critical to the regulation of blood pressure, blood flow and blood
. volume. The primary objectives of the research conducted under this task have been
to use -60 head down bedrest (BR) as the analog to spaceflight, to determine the long
term changes in these systems, their relationship to orthostatic tolerance and to
. develop and test suitable countermeasures.
Over the course of this work we conducted a series of BR studies designed to:
(1) Determine the physiological response to postural change and to 7 days BR in
males;

(2) Compare the effects of 7 days BR in male and female subjects;

(3) Determine the mechanisms underlying these responses during (a) short
duration BR (7 days), (b) more prolonged BR (30 days);

(4) Investigate the relationship between the mechanisms regulating fluids and
electrolytes during BR and the development of orthostatic intolerance post BR;

(5) Use the information derived to develop and test pharmacological, dietary and
other counteractive options.

SIGNIFICANCE:

The importance of the proposed work lies in its ability to provide practical, effective
solutions to the problems of post-flight orthostatic tolerance and readaptation to 1G
after missions of short or prolonged duration, based on knowledge of the mechanisms
underlying the problem. It is obvious that post-flight orthostatic hypotension involves
multiple systems which seem to be affected to varying degrees in different individuals.
Furthermore, the vasomotor regulatory deficits after relatively short exposures may be
more readily compensated for by techniques (such as volume expansion) than those
occurring after prolonged missions, when a new state of physiological adaptation to
weightlessness has been achieved; nor might a single countermeasure be effective in
all individuals.

The importance of postural cues to the regulation of aldosterone secretion and the
importance of the secretions of the adrenal gland as a whole and the autonomic
nervous system in the homeostatic maintenance of fluid and electrolyte balance have
long been recognized. The experiments in this task should contribute to better
understanding of the mechanisms that regulate the effective levels of circulating
aldosterone, and, in particular, the ways in which other metabolic and neuroendocrine
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changes occurring in weightlessness affect the responsiveness of the adrenal to its
regulatory influences.

There are few data on these regulatory systems beyond seven days of -69 BR and on
fluid volume regulation in general beyond 14 days of horizontal BR (Greenleaf and
Kozlowski, 1982; Greenleaf, 1984). Two 56 day horizontal BR studies suggesting
reduced sensitivity of endocrine and metabolic target organ responsiveness were
conducted almost 20 years ago (Vernikos-Danellis et al., 1974). Indirect evidence
from animals and man have also indicated this is probably the case with more
prolonged exposures. Antiorthostatic BR (-69) has proven its usefulness as a
simulation for the initial response to weightlessness and physiological changes occur
earlier and are more pronounced than they are with horizontal BR. With the advent of
the space station era, the understanding of physiological changes occurring in both
male and female subjects in weightlessness should form the rational basis for the
development of procedures to prevent or control these changes on extended space
missions.

PROGRE

We use a subject population of healthy volunteers, 30-50 years of age, to best
approximate the astronaut corps. Diet is strictly regulated and contains 120 mEg/day
Na and 70-80 mEq/day K; three days are allowed at the beginning of each study for
equilibration. - '

The first two studies in the series were identical in design and their primary purpose
was to determine the immediate effects of assuming the -6° head down posture and to
compare these responses in male and female subjects. Such early responses have
not been measured either in flight or in ground studies. In flight, understandably, it has
been impossible to do so without interfering with the heavy schedule of the first day.
Nor is it likely that such measurements will be possible within the foreseeable future.
Furthermore, data on fluid and electrolytes would be inevitably affected by the malaise
and/or vomiting of the early phases of the space adaptation syndrome or by
medications taken for this. In contrast to investigations using immersion for simulation
of space flight, BR studies had not used sufficiently frequent sampling to document the
early changes. Yet, the immediate and dramatic responses to simply assuming
upright posture, in those systems that regulate blood volume and blood flow, are well
known and it could well have been expected that assuming the head down posture
would produce equally immediate and marked effects in those systems.

Eight males and eight females were selected from groups of 14-16 after preliminary
screening tests which included a PV determination, cardiovascular and endocrine
responses to a Standard Posture Test (SPT, one hour supine, one hour standing) and
taking into consideration the phase of the menstrual cycles of the females. No
significant correlation between menstrual phase and response was evident. Subjects
of both sexes were selected to cover the widest possible range of "normal" blood
pressures and plasma volumes, so that a fair assessment of the contribution of the
initial physiological status to the responses to BR and post BR orthostatic intolerance
could be made.
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In the SPT, blood samples were drawn before and at 2.5, 5, 15, 30 and 60 minutes N~
after standing for the determination of PRA, A-ll, ACTH, AVP, cortisol, aldosterone, Na,

K, hematocrit and hemoglobin. The last two parameters were used to obtain a rough

index of posture-associated changes in PV using the method of Greenleaf gt al.,

(1977). The data from this test were compared with that of Day 1 of BR and of the first

day of recovery (R+1) when upright posture was assumed again.

RESPONSES TO 6° HEAD DOWN BEDREST:

Figures 1 and 2 show the immediate responses to the posture test and to the

assumption of the -6° head down position in one group of males. It is quite apparent
that the responses to these two postures are mirror images of each other, both
qualitatively and temporally.

Similarly, Figure 3 shows that within five minutes of assuming the -6° head down

position, there was a significant decline in heart rate (p<0.05) that was sustained for

the next two hours before gradually increasing toward normal during the next six

hours. There were no changes in indirect systolic or diastolic anterial blood pressure

or plasma ACTH during the first 24 hours after assuming the head down position.

However, there were prompt and sustained decreases in plasma vasopressin (AVP),

plasma renin activity (PRA) and plasma aldosterone concentration (PAC) over the first

eight hours (all p<0.01 by ANOVA). Of note is the finding that PRA reaches a nadir by

two hours that is sustained at four and eight hours, but that it increases by 24 hours to w 3
values similar to those at 0 time By contrast, the nadir in plasma aldosterone A4
concentration is achieved at four hours and, although the values increase gradually

during the next 20 hours, aldosterone levels are still depressed at 24 hours compared

to the 0 time value.

The rapid inhibition in levels of hormones that regulate salt and water metabolism after
assumption of the head down position is reflected by the changes in renal fluid and Na
excretion during the first days of head down BR in both sexes (Fig. 4 and 5) and an
increase in K excretion by the end of the seven day BR period. Fluid and especially

Na retention was apparent on becoming ambulatory again. There were no significant
sex differences in the parameters measured over a 7 day BR period. With continued
bedrest an uncoupling between PRA and aldosterone has been consistently
observed. PRA increased and PAC decreased or remained unchanged (see Figure

6).

Measurements of plasma A-ll changes did not justify the explanation that the apparent
dissociation between PRA and aldosterone could have involved inhibition of lung
converting enzyme due to the hemodynamic changes associated with this position,
during 7 days of BR. On the other hand in a subsequent 30 day BR study, the data
suggested that under resting conditions, both the conversion of angiotensin-1 to A-ll
and the stimulation of aldosterone by endogenous A-ll are progressively diminished
after 15 days of head down bedrest, (DeCherney et al, 1989). ,
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In addition, BR exceeding 7 days showed the following results. Plasma volume
measured using Evans Blue, continued to decline slowly until on d25 it had decreased
by 12%. The volume responsive hormones, plasma AVP and PRA remained elevated,
but PAC remained at control values throughout the 30d BR period. The response of
adrenal aldosterone to graded doses of ACTH or A-Il were significantly greater as BR
progressed whereas the cortisol response was unaltered by 30d BR. In contrast both
the systolic and diastolic blood pressure (BP) responses 10 A-ll (Figure 7 and 8) were
greatly reduced by the 16th day of BR. We believe these changes are related to the
overall Na deficiency induced by BR. Such enhanced adrenal sensitivity to infused A-
Il and reduced vascular smooth muscle responses to this peptide have been reported
in experimental animals and humans after drastic dietary manipulation of Na.
Similarly, the BP response to NE has been reported to be reduced by Na deficiency.
In our study the rise in diastolic BP to graded doses of infused NE appeared reduced
but the dose of NE was too small to induce significant increases under control
conditions. To our knowledge, such observations have only been reported in
response to dietary Na manipulations or pathological conditions but not to
physiological environmental change (i.e. BR) and are worthy of further pursuit.
Accompanying the changes in the vasomotor hormones involved in fluid and
electrolyte changes was a significant reduction in the responsiveness of the carotid
sinus cardiac baroreflex response measured using an Eckberg cuff (Figure 9). This
effect was evident at d12 of BR and persisted through at least 5 days of ambulatory
recovery (Convertino et al, 1990). Furthermore, the buffer capacity of the reflex was
reduced as indicated by the decrease in the R-R range. Consequently, not only was
the BP response to A-il reduced but the capacity to respond and compensate for
moment to moment changes in blood pressure was also reduced by prolonged BR.

POST BEDREST ORTHOSTATIC INTOLERANCE:

During the course of these studies a physiological pattern emerged characteristic of
individuals in their normal ambulatory state who are most likely to become syncopal

after a period of BR (F). These were subjects showing the lowest resting initial BP's,
the highest resting plasma volume (PV); the lowest resting PRA and the smallest
decrease in plasma volume on standing. This preservation of an expanded PV
becomes a very critical mechanism for the maintenance of BP in these individuals
under normal ambulatory conditions (Bannister, 1979) and would therefore be
expected to gain importance during any perturbation. There was no correlation
between the decrease in PV during BR and post BR orthostatic intolerance but there
was a good correlation between the reduced sensitivity of the high pressure baroreflex

during BR and post BR orthostatic syinééb'e'(Convenino et al, 1990), (Figure 10).

The most significant endocrine differences between these individuals (F) and those
who did not become syncopal (NF) became apparent during the effort of individuals to
maintain orthostatic control on standing after 7d BR. In NF's there was potentiation of
NE, Dopamine and Epinephrine responses to standing after 7d BR as compared to
ambulatory controls, suggesting that NF's probably maintain their BP, supported by a
large and sustained increase in sympathetic activity. On the other hand F's were
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unable either to increase or sustain increased circulating NE and PRA levels (Figures
11 and 12) on standing. ,

COUNTERMEASURES:
Based on the data from these studies a variety of approaches designed to expand PV

and restore baroreflex sensitivity have been and continue to be tested. The results to
date from our studies may be summarized as follows:

PV expansion ( 16%) may be achieved with acute (2 day) administration of
fludrocortisone after 7d BR, (Vernikos et al. In Press). It may also be
prevented by daily bouts of 30 minutes isotonic exercise (at 50% max VO2)
twice a day during 30d of BR, (Greenleaf et al. In Press).

Increased dietary carbohydrate throughout bedrest was ineffective in
increasing the NE response to standing. On the other hand, a combination
of dextro amphetamine and atropine together with expanded PV after
fludrocrotisone resulted in greatly enhanced and sustained HR, NE and
PRA responses. Four of 7 previously documented F's were protected by
this treatment.

PLANS:

As a result of these and other findings, we decided to spiit the work in this task into 2
tasks this year. Qne task will focus on the PV and progressive baroreflex sensitivity
changes during BR periqu longer than 30d. The contribution of the low pressure

investigated. Although it is possible that all of its BP regulating properties may be
mediated by its Na retaining activity, it is also likely that it may possess other
independent actions on the autonomic or central control of BP, and provides an
interesting investigative tool.

The other task, will focus on the endocrine and neurohumoral regulation of fluids and
electrolytes, the uncoupling of endocrine regulating mechanisms, sympathetic nervous
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FIGURE 3
EARLY RESPONSES TO 6° HEADDOWN TILT
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Subject descriptions and cha
head down bedrest (Males).

Subjece Age
(Yrs)

72 49
160 45
161 38
162 38
163 50
164 42
165 38
166 38
42

FIGURE 7

-
nges in plasma and blood volumes during
Height Weight Decrease in Decrease in
(Cm) (Kg) Plagma Volume Blood Volume
(ml) % (m1) 7
165 68.2 66 2.9 195 5.0
188 94,0 177 5.5 342 6.3
178 75.5 143 5.6 360 8.3
188 83.2 146 3.8 168 2.7
180 56.4 423 15,2 440 9.8
185 84,0 460 13.0 539 9.5
188 85.0 719 18,2 1138 17.5
170 68.2 190 6.8 381 3.2 ﬁ%%?
180 76.7 290.5 3.9 445 8.4
3 4,2 73.6 ~.0 108 1.6
; %'Tj’.
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FIGURE 8

Subject descriptions and changes in plasma and blood volumes during
head down bedrest (Females).

Subject # Age Heighc' Weight Decrease In Decrease In
(Yrs) (Cm) (Kg) Plasma Volume Blood Volume
S © (ml) A (ml) %
e
( 198 } 41 157 49.6 270 10.5 476 12.0
200 36 173 76.6 170 7.3 280 6.5
201 30 138 58.9 163 5.7 306 6.9
202 35 173 . 84.8 259 8.7 402 8.8
7204 ¢ 37 158 63.9 553 18.6 693 15.3
205 44 161 63.9 255 10.4 515 13.5
———
12073 34 166 50.5 119 4.7 81 2.1
209 40 157 63.6 304 12.0 290 7.7
M 37 160 64.0 262 7779.7 375 9.2
- -

- 54 1.6 4.0 3.2 7.3 1.55 66.6 t.
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FIGURE 9
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Carotid baroreceptor-cardiac reflex response relationships. Panel A
depicts relations generated on days 1, 3, 12, and 25 of bedrest (BR)

and the pre-bedrest control day (C4). Panel B depicts relations 4
generated on days 2, 5 and 30 of post-bedrest ambulatory recovery (R) and C4.
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Hormonal Regulation of Fluid and Electrolyte Metabolism q/
during Periods of Headward Fluid Shifts

N94-12005

Principal Investigator:
Dr. L. C. Keil, Nasa Ames Research Center

Co-Principal Investigatators:
W.B. Severs, Pennsylvania State University
T. Thrasher, University of California at San Francisco
D.J. Ramsay, University of California at San Francisco

~ INTRODUCTION:

In the broadest sense, this project evaluates how spaceflight induced shifts of blood and

interstitial fluids into the thorax affect regulation by the central nervous system (CNS) of

fluid-electrolyte hormone secretion. Specifically, it focuses on the role of hormones related
~ to salt/water balance, and their potential function in the control of intracranial pressure and

cerebrospinal fluid (CSF) composition. Fluid-electrolyte status during spacefl':ight

gradually equilibrates, with a reduction in all body fluid compartments. Related to this is

the cardiovascular deconditioning of spaceflight which is manifested upon return to earth as
- orthostatic intolerance.

PROJECTS WITHIN THIS WORK UNIT

GROUND-BASED STUDIES

Small Animal Studies

The objective of this task was to determine the role of intracranial pressure (ICP) on the
CNS regulation of fluids and electrolytes. To do this it was necessary to measure ICP in
conscious unrestrained rats. With some difficulty this was accomplished. Our initial
studies showed that an intraventicular (IVT) infusion of angiotensin II increased ICP, and
this increase could be blocked with prior IVT administration of vésopressin. Since both of
these hormones are endogenous to CSF it is possible that they are involved in ICP
regulation either by affecting CSF formation and/or drainage. Recent results indicate that
the ICP increase following angiotensin II adminsistration is due to a stimulation of CSF
secretion.
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As these ICP studies continued we found that prolonged, low volume infusions (0.5
pl/min) of artificial CSF into a lateral cerebroventricle more than doubled ICP. If this same
volume was infused bilaterally into each lateral cerebroventricle, the rise in pressure was
even more pronounced. One explanation for the rise in ICP may be a dilution of the
neurochemical control system(s) with artificial CSF that disrupts the pressure
autoregulation since artificial CSF does not contain any hormonal or neurochemical factors.

Primate Studies

When nonhuman primates are water immersed to the neck they show patterns of diuresis
and natriuresis similar to humans. Anesthetised animals showed an increase in 1) left
ventricular end-diastolic pressure urine flow, sodium/potassium clearance and atrial
natriuretic peptide. Experiments by Gilmore, et al. showed that water immersion diuresis
in monkeys could not be abolished by removal of neural afferent input to the CNS or with
administration of large doses of vasopressin. Perhaps changes in ICP provide an important
redundant signal that can trigger renal and hormonal responses to the "hypervolemia”
associated with headward fluid shifts in the absence of peripheral pressure/volume sensors.
Intracranial pressure measurements have not been made in animals or humans exposed to

water immersion or head-down tilt.

To determine the ICP effects of headward fluid displacement we exposed anesthetised
rhesus to a short period of -6° head-down tilt followed by a 30 min period of water
immersion. The increase in ICP was greater with water immersion. ICP remained elevated
throughout the 30 minutes of immersion. A sustained increase in ICP has been observed

for immersion periods up to 60 minutes.

Headward fluid shifts and increased atrial pressure are known to stimulate release of ANP
and a fall in plasma vasopressin (see above). The role of afferent neural input from the
heart has been determined by use of the surgical denervation. Another procedure for acute
and reversible cardiac "denervation" is being used to determine the relationship between
cardiac afferent input and plasma fluid/electrolyte hormone levels in response to changes in
left and right atrial pressure in conscious animals. These studies are in progress.

FLIGHT STUDIES

Objectiv

Although fluid-electrolyte balance in rats has not been determined during flight, post-flight
hormone measurements and salt-water loading experiments indicate that rats respond to
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microgravity by readjustment of their fluid-electrolyte metabolism. The purpose of this
investigation was to make post-flight determinations of pituitary oxytocin (OT) and

vasopressin (VP) content as possible indicators of changes in hormonal regulation of fluid-
electrolyte balance during flight. ' '

Two Cosmos experiments (U.S./U 'S.S.R.) have been completed over the past three years.
Cosmos 1887 which flew in the Fall of 1987 for 12.5 days and Cosmos 2044 which was a
14 day flight in 1989. In Cosmos 1887, pituitary levels of oxytocin (OT) and vasopressin
(VP) were measured in the flight rats and their ground based controls. A significant
reduction in both posterior lobe hormones were found in the flight animals when compared
to either set of ground-based controls. Difficulties were encountered in landing which cast
some doubt on whether the results reflected the effects of spaceflight or simply the
conditions associated with the delayed recovery. We had another opportunity to repeat the
pituitary measurements as well as determine natriuretic peptide content of atria in Cosmos
2044. The results of this 14 day flight were similar to those from Cosmos 1887. Pituitary
OT and VP levels in the flight animals were lower than all the controls including a third
control group of tail suspended animals for a direct comparison of results from this model
with those from flight. Atrial natriuretic peptide (ANP) content was also reduced in the
atria of flight rats.

The reason(s) for the reductions in the tissue contents of these fluid-electrolyte hormones of
flight animals are unclear. A simultaneous reduction in pituitary OT and VP occurs with
water depravation that is also accompanied by a loss of body weight. Body weight was not
significantly decreased in the flight rats, and postflight measurements of water and food
consumption indicated that an appropriate amounts had been consumed. It has yet to be
determined if this reduction reflects increased secretion or decreased hormone synthesis and
storage. The lack of significant changes in the tail suspended group make this model
questionable for use in at least some aspects fluid-electrolyte hormone studies.

FUTURE PLANS:

Determine if head-down rats exhibit changes in pituitary and cardiac hormones similar to
those observed in animals exposed to 14 days of spaceflight. Study the effects of
continuous intraventricular infusions of neuropeptides (8 to 24 hr) on CSF pressure and
possible changes in CSF outflow from ependymal and arachnoid surfaces.
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, NASA has identified cardiovascular deconditioning as a serious
biomedical problem associated with long-duration exposure to microgravity in
space. High priority has been given to the development of countermeasures
for this disorder  and the resulting orthostatic intolerance experienced by
crewmembers upon their return to the 1-g norm of Earth. The present study
was designed 1o examine the feasibility of training human subjects to control
_their own cardiovascular responses to gravitational stimulation (i.e., a tilt

. table).  Using an operant conditioning procedure, Autogenic-Feedback

~ Training (AFT), we would determine if subjects could leam to increase their
~own blood pressure voluntarily.

When operant conditioning ‘is used to train voluntary control of an
autonomic response, the process is called "biofeedback”. The question that -
dominated biofeedback research in its earliest years and excited the interest of
the scientific community concerned the rules of plasticity for visceral and
central nervous system (CNS) function. It was Miller's contention (1969) that
visceral and CNS events may be modified by contingent reinforcement (i.e.,
operant conditioning) in the same way overt behaviors or skeletal responses
may be conditioned. Hence, the “"same rules” apply for describing the process
by which a pilot learns to control eye-hand coordination when leaming to fly
an aircraft as in the situation where an individual learns voluntary control of
his own heart rate or the vasomotor activity of his hands.

The question as to the specific mechanism by which control of an
autonomic response may be learned has spawned considerable basic research.
When either classical or operant conditioning is used to modify a visceral
response, there are a number of different ways that the effect can be produced
(Miller & Brucker, 1979). Skeletal responses may produce mechanical artifact
in the measurement of the visceral response.  For instance, contractions of the
abdominal muscle may produce pressure changes in the intestine that can be
mistaken for intestinal contractions, (Miller, 1977).  Skeletal muscles may
produce purely mechanical effects  on visceral processes. Yogis who claim the
ability to stop their hearts actually perform valsalva maneuvers, building
sufficient thoracic pressure to collapse the veins returning blood to the heart.
Although hcart sounds and pulse cannot be detected, the electrocardiogram
shows that the heart still beats (Anand & Chhina, 1961). Skeletal responses
may stimulate a visceral reflex such as heart rate and blood pressure
increased by isometric contractions (Lynch, Schuri & D'Anna, 1976). Any of
these skeletally influenced responses may be learned but they do not indicate
learning by the autonomic nervous System,

A series of clinical investigations was initiated on patients with
generalized bodily paralysis who suffered from episodic orthostatic
intolerance, (Brucker & Ince, 1977; Pickering, et al, 1977). It was
hypothesized that if learned control of blood pressure could be demonstrated
in these individuals where skeletal influence was not a factor, then the basic
research question of visceral plasticity could be examined and the therapeutic
benefits of such training could be explored. The results of these studies
showed that patients could leamn to produce increases in blood pressure
ranging from 20 to 70 mm Hg, with the consequence of chiminating their
orthostatic intolerance. These studies succeeded in establivhing that control of
blood pressure can be lecamned independent of skeletal musculature or changes

146



in respiration.  They demonstrated also that training incrcases specificity of
control, eventually eliminating accompanying pulse rate increases. And
performance of these patients conformed to the cardinal "rule” of opecrant
conditioning:  skill increases with practice. '

The implications of these results for developing a potential
countermeasure for orthostatic intolerance in cardiovascularly deconditioned
crewmembers, are apparent, Paralyzed patients show much greater
spontancous variability in blood pressure than do normotensives, but bedrest
studies indicated that normal subjects also tend to exhibit weaker homeostatic
control over cardiovascular responses after prolonged inactivity (Sandler &
Vernikos, 1986). Rather than attempting to remove the influence of skeletal
musculature (as was the goal of the above authors), contraction of muscles by
non-paralyzed subjects would be expected to enhance the desired effect of
increasing blood pressurc. The presence of sympathetic vasomotor
innervation in normals should further facilitate peripheral vasoconstriction.

The hypotheses of this study were:

1. Normotensive individuals could leam 10 increase blood pressure under
supine conditions.

2. Control of blood pressure could be produced under conditions of
gravitational stimulation. ST '

METHODS

Subjects. Six men and women between the ages of 32 and 42 participated in this
study. Subjects were physically fit as determined by medical examination and
their participation was voluntary.

Apparatus. A primary criterion for this type of training, is that the individual
must be presented with on-going information about his own physiological
responses in real-time (e.g., displaying heart rate on a digital panel meter).
For the present study, a computer-controlled blood pressure monitoring
system was developed, which provided continuous "feedback" of both systolic
and diastolic blood pressure on every beat of the heart (Tursky, Shapiro &
Schwartz, 1972). This non-invasive system used two blood pressure cuffs,
mounted over the brachial arteries of the left and right arms.

The cuff measuring systolic blood pressure was initially inflated to just
above systoli. Using the R wave of an electrocardiogram to initiate a timing
window, cuff pressure automatically deflated or inflated, in 3 mm Hg
increments, as the system "searched” for the presence of Karotkoff sounds
detected by a crystal microphone beneath the cuff. If the K-sound was
present, cuff pressure was increased on the subsequent heart beat; if absent,
cuff pressure was decreased. In this manner, it was possible to track blood
pressure on each heart beat. The tracking cuff was inflated for a period of
one-minute at a time, alternating with deflation during  30-second “rest
periods" to allow normal circulation to resume. The measurement of diastolic
blood pressure (on the other arm) reversed this process.
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Procedure, Each subject was given 4 10 9 training sessions (15-30 minutes in
duration).  Baseline recordings were taken of resting supine hcart rate and
blood pressure and changes in these variables resulting from passive head-up
tilt of 45 degrees. Subjects were then provided with information on their own
blood pressure in the form of a computer screen numerical display which
updated on each heart beat and/or two mercury columns showing systolic and
diastolic pressure, respectively.  Under supine conditions, subjects were
instructed to increase their own blood pressure, and given an opportunity to
practice control.  When blood pressure increases were demonstrated under
supine conditions, subjects were again tilted to 45 degrees (head up) and asked
to increase their blood pressure. , :

RESULTS

Under baseline supine and passive tilt conditions, the blood pressure tracking
System was able to reliably measure blood pressure and heart rate on a beat-to
beat basis. All subjects showed, in response to passive tilt, an initial drop in
systolic pressure, increase in diastolic pressure and a corresponding rise in
pulse rate (Figure 1).

During supine training sessions, all subjects demonstrated learned increases
in blood pressure ranging from 20 to 50 mm Hg (Figures 2-3). In all of these
subjects, this same degree of blood pressure control was also possible under
subsequent head-up tilt conditions, Figure 4 shows the data of one of these
subjects. The left side of this graph shows one minute of resting blood
pressure and heart rate, followed by a voluntary increase of blood pressure
during tilt of maximally 50 mm Hg. Heart rate showed an initial increase from
64 to 96 beats per minute, with a ‘subsequent fall in pulse rate without
changing blood pressure levels.

CONCLUSIONS

This study demonstrates that learned control of blood pressure by
normotensive individuals is possible. This skill could be a valuable adjunct to
other counter-measures (e.g., inflight fluid loading and exposure to Lower
Body Negative Pressure, LBNP). A bed-rest study could be conducted which
would best evaluate the effectiveness of this procedure, alone and in
combination with other tréatments, as a countermeasure for orthostatic
intolerance in cardiovascularly deconditioned people.  The results of that study
would determine the value of developing AFT for preflight and in-flight
procedures for treatment of orthostatic intolerance in aerospace crews. For
example, blood pressure conditioning sessions could be incorporated into the
spacelab exercise facility.
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FIGURE CAPTIONS:

Figure 1:The data of a representative subject during supine baseline and
passive tilt conditions. The upper dark line represents systolic blood pressure,
the lower dark line is diastolic blood pressure (read axis on left, mm Hg). The
thin line is heart rate (read axis on right, BPM). Note: all subsequent graphs
are read similarly.

Figure 2: A two minute sample of onme subject's data while practicing blood
pressure increases under supine conditions.

Figure 3: A two minute sample of one subject's data while practicing blood
pressure increases under supine conditions. ' '

Figure 4: A two minute sample of one subject’'s data while practicing blood
pressure increases under head-up tilt of 45 degrees.
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1. INTRODUCTION

AR

‘We are currently funded by NASA for the project, "Cardiovascular Dynamics
During Space Sickness and Deconditioning” (#NAG2-514). NASA has given
‘priority to the investigation of two problems encountered in the long-term

- space flights currently being planned: 1) space motion sickness and, 2)

" cardiovascular deconditioning. We have proposed to use spectral and nonlinear
_ dynamical analysis of heart rate data to quantify the presence of these

" problems and to evaluate countermeasures against them.

We recently reported the first evidence that space motion sickness may be
associated with very low frequency oscillations in heart rate which can be
easily detected using frequency analysis of Holter monitor data (Fig. 1).
These oscillations were not appreciated in earlier studies, which confined
their analysis to alterations of mean heart rate and not to dynamic beat-to-
beat fluctuations. These heart rate oscillations probably reflect altered
autonomic nervous function and are of potential practical importance because
they may 1) serve as the first objective non—invasive way of assessing
susceptibility to space motion sickness in flight, 2) help monitor the
efficacy of preventive and therapeutic measures and, 3) permit comparison with
the dynamics of conventional terrestrial motion sickness,

We also reported the use of spectral analysis in detecting a loss of normal
heart rate variability in healthy athletic men subjected to 7-10 days of head-
down bed rest, a model for cardiovascular deconditioning during space flight
(Goldberger AL, et al. Atropine unmasks bed rest deconditioning effect in
healthy men: a spectral analysis of cardiac interbeat intervals. J. Appl.
Physiol. 61:1843-1848, 1986). Similar analysis may be of practical use in
assessing the efficacy of countermeasures, such as intermittent centrifugal
acceleration or time-varying lower body negative pressure.

The goals of this project, in concert with colleagues at NASA-Ames and JSC
are:

1) To compile digitized databases of continuous ECG recordings a) from
crew members of previous and future flights and b) from previous studies
of induced motion sickness in ground-based simulations.

2) To correlate the low frequency (< .01 Hz) heart rate oscillations
observed during space flight with a) subjective motion sickness
symptoms, b) activity level, and c) a respiratory signal derived from
the Holter ECG.

3) To determine whether heart rate dynamics during terrestrial motion
sickness (rotating chair test) are equivalent to those observed in space
flight.

4) To develop a physiological model of heart rate variability that
explicitly includes gravitational forces and that can be used to
simulate the oscillations observed in space and to test the role of
autonomic perturbations in their pathogenesis.
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5) To quantitate the loss of heart rate variability associated with
bedrest deconditioning; to determine whether countermeasures (e.g.
intermittent acceleration) prevent this deconditioning effect; and to
determine whether bedrest deconditioning induces changes in heart rate
dynamics comparable to those actually observed during space flight.

II. RECENT ACCOMPLISHMENTS

A. Analysis of Ground-Based Motion Sickness Tests

In collaboration with Pat Cowings, Ph.D. and her associates at NASA—-Ames, we
have performed detailed spectral and time series analysis of data from 20
healthy volunteers studied during a rotating chair protocol designed to
simulate ground-based motion sickness. Analysis of the relatively short (<5
min) data segments obtained at successive stages of the protocol did not
reveal heart rate patterns or changes that were predictive of susceptibility
to terrestrial motion sickness. However, the short data segments available
from the study preclude any conclusions about lower frequency fluctuations
(eg., £ .05 Hz) that may be of importance. For example, in our preliminary
analyses of space flight data, the oscillations we detected were < .0l Hz.
Similarly, pathologic heart rate oscillations we have observed in other
settings (eg., heart failure) were also usually < .04 Hz.

B. Analysis of In-Flight Data

Apart from the Holter records that we have analyzed previously (Fig. 1 from:
Goldberger AL et al. Low frequency heart rate oscillations in space shuttle
astronauts: a potential new marker of susceptibility to space motion sickness.
Space Life Science Symposium. Three Decades of Life Science Research in
Space. Washington, D.C. 1987:78-80), the only existing records of in-flight
heart rate variability are found in the records acquired by Dr. Cowings and on
echocardiograms given to us by Dr. Charles of NASA Johnson. Release of in-
flight data from Dr. Cowing's laboratory is still pending administrative
clarification from NASA Headquarters and NASA-Ames. We have developed image
processing software to help extract the heart-rate data from Dr. Charles’
video tapes. However, preliminary analysis of these data show that they do
not provide a consistent recording of continuous heartbeat cycles since the
echocardiographic transducer is not in one locus for sustained periods. Also,
the recordings contain frequent interruptions due to change from M-mode to 2D
images. Therefore, analysis of continuous in-flight data remains of critical
importance.

C. Analysis of Other Heart Rate Data

In collaboration with Lewis Lipsitz, M.D. of the Gerontology Division at Beth
Israel Hospital and Harvard Medical School, we analyzed spectral
characteristics of heart rate variability before and during postural tilt in
young and old subjects. We found that young, healthy subjects with syncope
had a significant increase in low frequency heart rate variability during tilt
compared to those without vasovagal syncope. On the other hand, elderly
subjects did not develop symncope and showed reduced supine heart rate
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variability, as well as absent or attenuated low frequency activation during
tilt. Our findings may provide a marker for susceptibility to vasovagal
syncope and may provide a physiologic explanation for resistance to vasovagal
syncope in old age,

D. Mathematical Modeling and Nonlinear Analysis

Interpretation of the observed heart rate variability is being made with the
aid of mathematical models of the cardiovascular Ssystem. We have devised a
preliminary nonlinear model of heart rate control that under different
parameter values yields erratic fluctuations, sustained oscillations and
abrupt changes of the type we have observed under a variety of physiologic and
pathologic conditions (Fig. 2). '

We have also analyzed the nonlinear dynamics of normal heart rate variability
in healthy subjects. To test the hypothesis that physiologic beat—to-beat
variability in sinus rhythm represents nonlinear "chaos" —— a non-random type
of erratic behavior generated by deterministic processes — we computed
Lyapunov exponents for heart rate time series (10,240 consecutive data points
over 1 1/2 hours) of subjects under basal conditions, after filtering with
singular value decomposition. All data sets had a positive Lyapunov exponent
(.02-,04) consistent with an underlying nonlinear chaotic mechanism. This
novel finding will be presented at the 1990 National American Heart
Association Meeting.

A flow chart of our ECG data analysis protocol is given in Fig. 3.

III. TURE PLANS

A. In-Flight Data Analysis

Analysis of in-flight data (with suitable pPre- and post-flight controls)
remains a high priority. We have arranged with Dr. M. Bungo and Dr. J.
Charles of JSC to collaborate in the analysis of Holter monitor data to be
provided by the Soviets from ongoing and future flights. We have participated
extensively in discussion and briefings with Dr. Bungo and colleagues by
telephone and in person during a May 1990 invited visit to JSC, to review the
technical aspects of data collection and data analysis. During that visit Dr.
Goldberger and Dr, Rigney presented a seminar on Cardiac Dynamics and met with
members of the JSC cardiovascular research team,

Based on conversations with Dr. J. Stoklosa of NASA Headquarters, we
anticipate the imminent release of data from Dr. Cowings’ laboratory with
recordings of in-flight and post-flight data from several U.S. astronauts.

B; Bedrest Studies

During our May 1990 visit to JSC we met with Suzanne Fortney, Ph.D. and made
plans to collaborate in the analysis of heart rate data obtained from healthy
subjects during a bedrest protocol. We have begun to perform analysis on the
first subjects in this session to test the hypothesis that bedrest
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deconditioning alters heart rate variability, particularly with an attenuation
of higher frequency components due to vagal tone (Fig. 4).

C. Management Distribution and Archiving of Physiological Signals

We have been informed that essentially all the computer tapes with heart rate
data from earlier missions (Mercury, Gemini, Apollo and Skylab) have already
been discarded because of lack of storage space at NASA/Johnson and
incompatibility of the tapes with current equipment. ~Given the great expense
of these missions and the uniqueness of the data, a centralized, accessible
and comprehensive library of these kinds of records is of critical importance.
It should be emphasized that these heart rate data are not only of value to
groups such as ours interested specifically in space sickness and
cardiovascular deconditioning. They are also an invaluable resource for
investigators in other areas, such as studies of circadian rhythms.

Details related to archiving and distribution of the ECG data needs to be
decided in collaboration with NASA. 1In particular, the possibility of
distributing these data after de-identification in the form of compact discs
should be explored. We have practical experience with this novel form of
inexpensive ($3.00/disc) data archiving and distribution. Other important
issues relating to the contents of the database, authorization for its use,
and so forth, will also require collaboration with NASA during the definition
phase of the project. This new archiving and retrieval system using compact
discs would greatly simplify information and storage by Life Science
Investigators.

Discussion with NASA is also required concerning the protocol for recording
and archiving of heart rate data from future flights. Careful analysis of
exlsting data will help guide the formulation of protocols for data
acquisition on future missions. Should heart rate data be acquired throughout
the flights or just at selected times? What control data should be acquired
pre—flight and post—flight? What equipment should be used to record these
data?

IV. PUBLICATIONS AND PREPRINTS SUPPORTED BY PRESENT GRANT

1. Goldberger AL, Rigney DR. On the non-linear motions of the heart:
fractals, chaos and cardiac dynamics. In A Goldbeter, ed. Cell to cell
signalling: from experiments to theoretical models, Academic Press, San
Diego, 1989, pp 541-549,

2. Rigney DR, Goldberger AL. Nonlinear dynamics of the heart's swinging
during pericardial effusion. Am J Physiol. 257:(Heart Circ Physiol 26):
H1292-1305, 1989.

3. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human
physiology. Sci American. 262:42-49, 1990.

4, Goldberger AL. Nonlinear dynamics, fractals and chaos: Application to
cardiac electrophysiology. Ann Biomed Eng. 18:195-198, 1990.
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Goldberger AL. Fractal electrodynamics of the heartbeat, Ann NY Acad
Sci. 591:402-409, 1990.

Lipsitz LA, Mietus J, Moody GB, Goldberger AL. Spectral characteristics
of heart rate variability before and during postural tilt. Relations to
aging and risk of syncope. Circulation 81:1803-1810, 1990.

Goldberger AL. Fractal mechanisms in cardiac electrophysiology. In S.
Sideman, A Kleber, eds. Cardiac electrophysiology and transport, Kluwer
Academic Publishers, Norwell, MA, in press. -

Goldberger AL. Fractals and the heart. Proc Royal Dutch Acad Sci, in
Press.

Rigney DR, Mietus J, Goldberger AL. Is normal sinus rhythm "chaotic™?
Measurement of Lyapunov exponents. Circulation. 82(Suppl III): 236,
1990.
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Figure 1. Heart rate time series and corresponding frequency spectrum from an
astronaut with space motion sickness (SMS). Upper panel: Durirg SMS, the

.astronaut’s heart rate is seen to exhibit a series of large amplitude

oscillations, not seen under normal conditions, that might be used as a marker
of the syndrome’s presence. Lower panel: This is the Fourier spectrum of the
above heart rate time series, showing the range of frequencies over which the
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is indicated by the arrow.
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Figure 3.
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SUMMARY: Chrdiovascular Measurements
in Chronically Instrumented Conscious Monkeys

Flow Measurement Comparison Studies

These studies are being conducted to compare the ability to measure blood flow
in chronically instrumented animals using four different techniques, the electromagnetic,
ultrasonic transit-time, ultrasonic pulse-Doppler, and ultrasonic directional-Doppler. The
studies are conducted in phases, with phase 1, bench comparisons completed, and phase
2, animal studies in progress.

The bench studies demonstrate that all flowmeters possess good linearity of output
with volume flow calibrations, in excess of the maximum physiologic range of flow
velocities.

To date, 5 animals have been studied after chronic implantation of pairs of flow
probes on the left and right iliac arteries. The studies indicate that the EMFE and transit-
time probes both compare well as volume flow measuring devices, and linearity of
calibrations compare favorably in all three techniques. The EMF probes are less stable
relative to zero flow, and require an occlusive flow reference for meaningful
measurements. The transit-time device seems to be much more stable at zero, since
electrical contact with electrodes is not necessary, as with the EMF system. The transit-
time technique may well require an occlusive zero reference for best accuracy, since this
parameter depends partially upon the actual alignment of the vessel and probe after the
full development of connective tissue around the probe.

Long Term Implants in Small Monkey

This project examines the long-term viability for measurement of aortic pressure,
aortic blood flow, and left ventricular pressure in primates. Eight animals have been
studied after chronic implantation of left ventricular pressure gauges (Konigsberg),
indwelling catheters for calibration of the Konigsberg, and either EMF or Transonic
ultrasonic flow probes around the aorta. The Konigsberg transducers measured LV
pressure reliably for four to six months. The indwelling catheters remained patent for
various times, from three to seven months. All flow transducers worked well for the
duration of the implant.

Attached is a figure (Figure I) showing signals obtained from two animals. The
left hand panel shows the signals from the Konigsberg LV transducer, LV dP/dt, and the
Transonic flowprobe around the aorta, at four months post-implantation. The right panel
shows similar signals from the other animal at six months, with an electromagnetic flow
probe around the aorta.

We have also utilized the instrumentation for the two studies referenced at the
beginning of this Progress Report. Examples of the phasic data in chronically-instrumented
primates are shown in Figures 1 and 2.
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Future Plans and Rationale for Chronically Instrumented Monkeys for Understanding
Cardiovascular function in Long Duration Missions

The problems with cardiovascular deconditioning will become much more intense
with the projected long-duration missions planned by NASA. In order to study the
problems and hope to gain any insight into the mechanisms which may ameliorate the
deleterious effects of long-term space flight in microgravity, a non-human primate model
to assess chronic cardiovascular function in a conscious state will be required.

Prolonged spaceflight and microgravity induce body fluid shifts, which increase
cardiac dimensions and pressures, which in turn, alter cardiac output, the distribution of
blood flow to vital organs and adrenergic control and reflex control of the cardiovascular
system. It is important to determine the mechanisms for these cardiovascular alterations
during microgravity and spaceflight in order to design countermeasures for future
prolonged spaceflight.

To accomplish this, a Rhesus monkey model will be utilized to measure cardiac
output, cardiac function, and regional blood flows during prolonged spaceflight and
microgravity. A second major goal will be to determine whether prolonged spaceflight and
microgravity alter reflex and adrenergic control of cardiac function and regional blood flow
in the Rhesus monkey. This will be achieved by examining the effects of 1) baroreflex
perturbation with inferior vena caval occlusion (IVCO) and bilateral carotid occlusion
(BCO), 2) low pressure cardiac receptors perturbation with volume loading, lower body
negative pressure (LBNP) and lower body positive pressure (LBPP), 3) stimulation and
blockade of autonomic receptors with a, B, and cholinergic subtype selective agonists and
antagonists. However, before all of these goals can be accomplished, the appropriate
instrumentation must be calibrated and verified to be useful for cardiovascular
experimentation in spaceflight. A third major goal is to examine the above interventions
on coronary and cerebral blood flows in the Rhesus monkey. The fourth major goal is
to determine whether prolonged spaceflight and microgravity induce catecholamine
desensitization in the Rhesus monkey; which could be the underlying biochemical
mechanism responsible for alterations in adrenergic control.
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INSIGHTS INTO CONTROL OF HUMAN SYMPATHETIC NERVE ACTIVITY
DERIVED FROM THE VALSALVA MANEUVER

L
,-(y'\ t
Michacl L. Smith, Janice M. Fritsch, Larry A. Beightol, 0
Kenneth A. Ellenbogen, and Dwain L. Eckberg

Departments of Medicine and Physiology, Hunter Holmes McGuire Department of
Veterans Affairs Medical Center and Medical College of Virginia, Richmond,
Virginia.

The Valsalva mancuver, straining against a closed glottis, is a time-honored
method for perturbing human arterial pressure and autonomic cardiovascular neural
outflow. We studied ninc hcalthy young adults who were trained to perform graded,
carcfully controlled Valsalva maneuvers. These subjects strained at intensities of 10,
20, and 30 mmHg for 15 scconds, and controlled their breathing frequencies and tidal
volumes before and after straining. We recorded the electrocardiogram, non-invasive
blood pressure (Finapres), and peroncal muscle sympathetic nerve activity. An
additional six subjects performed Valsalva maneuvers during measurement of right
atrial and intraarterial pressurcs.

Valsalva straining provoked alternating, reciprocal changes of arterial pressure
and muscle sympathetic nerve activity. At the beginning of straining (phase 1), arterial
pressure rose and sympathetic activity disappcared. During the next several seconds of
straining (early phase 2), arterial pressure fell and sympathetic activity increased;
during the final scconds of straining (latc phase 22, arterial pressure rose and
sympathetic traffic declined. After release of straining (phase 4) arterial pressure rose,
and sympathctic neurons fell silent. Sympathetic silence substantially outlasted the
clevation of atrial and arterial pressure that occurred after release of straining.

As expected, the reduction of arterial pressure during straining was
proportional to the intensity of straining. Increases of muscle sympathetic ncrve
activity also were proportional to the intensity of straining and to the reduction of
arterial pressure. The elevation of pressure after straining was also directly
proportional to the intensity of straining. Morcover, there was a highly significant
relation between the increase of muscle sympathetic nerve activit during straining and
the subsequent clevation of pressure after straining. This refation provides some
justification for use of pressure elevation after Valsalva straining as a noninvasive
index of preceding sympathetic activity.

These results provide insi%hts into baroreflex modulation of human muscle
sympathetic nerve activity. Tt is likely that increased intrathoracic pressure during
Valsalva straining reduces aortic distending pressure and thereby, the cgree of stretch
placed upon aortic baroreceptors. Several conclusions issue from this assumption.
First, during the earliest seconds of straining, peripheral arterial distending pressure
increases at a time when absolute aortic distending pressure is reduced. Sympathetic
silence during this pecriod attests to the importance of carotid baroreceptors in
modulation of muscle sympathetic nerve activity. Second, the decline of sympathetic
activity as arterial pressure is rising during the late straining phase suggests that
sympathetic motoncurons arc morc influcnced by arterial pressure trends than
absolute levels; reductions of sympathetic traffic began at a time when absolute levels
of both periphcral arterial and aortic distending pressures were below bascline levels.
Third, sympathetic silence after release of straining and return of right atrial and
arterial pressures to normal indicates that the preceding pressure transicnts in some
way rest the usual relation that exists between arterial pressure and muscle sympathetic
nerve activity.
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