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Introduction

The following report is a summary of the results of a multi-year project which
studied the release of biogenic sulfur gases from wetland habitats. This project also
included an initial study of factors that control terminal decomposition in temperate salt
marsh sediments. This preliminary research was used as a biogeochemical foundation for
the interpretation of data collected during other aspects of this work. Although
autonomous, the project was coordinated, to some extent, with other projects as part of
the Wetlands Program of the Biospherics Research Program (formally the Global Biology
Program). This coordination included the participation in various group-oriented
endeavors, and in some instances these group efforts included personnel from other
NASA programs; most notably the Global Tropospheric Experiment (GTE) within the
Earth Sciences Division of NASA. Although the initial intent of the project was to
investigate sulfur (S) emissions from salt water wetlands, as time progressed the research
moved greatly into freshwaters since it became clear that these habitats had a greater
influence on regional and global processes and these habitats were grossly understudied
with respect to their role as producers and consumers of atmospheric S compounds. This
report is a succinct summary of the project since more detailed information is provided as
appendices here. These include reprints of most of the published work that arose from
the research, abstracts of papers presented at professional meetings, abstracts of theses,
and abstracts of manuscripts that are still in review. The reader is referred to this material

throughout the text.

Salt Marsh Biogeochemistry

A detailed study of decomposition in salt marsh sediments was conducted. This
included seasonal variations in pore water and solid phase chemistry, and measurements
of rates of sulfate reduction and methanogenesis in the sediments. The results are

summarized primarily in Hines et al. (1989) and Hines (1991a). However, several other
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reports are listed in the appendices. Data were collected from three types of areas within
the salt marsh which represented a gradient from the low to the high marsh, and included
two species of marsh grasses. Techniques were developed to collect pore water samples
without disturbing the sediment-plant system while maintaining sediment anoxia.

It was demonstrated that variations in plant activity and growth stage were the most
important factors in controlling the rate of organic matter decomposition in the system.
Plant activity also controlled the extent to which the sediments were oxidized and this
activity, in turn, controlled the mobility of redox-sensitive chemical species within the
sediments including hydrogen sulfide gas formation and mobility. There were dramatic
differences in the biogeochemical dynamics of areas inhabited by tall or short forms of
the cordgrass Spartina alterniflora, and in areas inhabited by Spartina patens. This
study was the first to collect samples often enough to delineate the close and dynamic
interaction between plant activity and sedimentary biogeochemistry. It also allowed us to

decipher the dynamics of hydrogen sulfide production in salt marshes.

Release of Biogenic S Gases from Salt Marshes

A seasonal study was conducted to measure the exchange of biogenic S gases in salt
marshes, and to investigate factors which control this exchange. The results are
summarized primarily in Morrison (1988) and Morrison and Hines (1990). However,
several other reports are listed in the appendices. Considerable effort was directed toward
the development of technology which was appropriate for these types of measurements.
It is difficult to accurately measure S gases, and this difficulty was compounded greatly
by the need to develop sample acquisition equipment. Although the analytical system
was continually modified throughout the duration of the project, it is the most sensitive
and precise system currently in use to measure the simultaneous exchange of several S

gases between natural habitats and the atmosphere.



The salt marsh emits extremely large quantities of S gases. This is dominated by
dimethyl sulfide (DMS) but other gases such as methane thiol (MeSH), hydrogen sulfide
(H2S), carbonyl sulfide (OCS) and carbon disulfide (CSy) are also present. The
domination by DMS is due to the production of the osmolyte and DMS precursor,
dimethylsulfoniopropionate (DMSP) by plants. DMSP is not produced by all salt marsh
grasses and our work demonstrated extreme differences in the rates of emissions of DMS
between areas dominated by different grasses. These results underscored the utility of
remote sensing as a tool to quantify DMS emissions from coastal wetlands since there are
such large differences in emission rates from different species of vegetation. The diel and
seasonal studies also revealed the strong effects of temperature and hydrology on S gas

exchange.

Release of Biogenic S Gases from Tundra

Sulfur gas exchange in tundra was measured during the joint expedition between the
Wetlands Program of the Biospherics Research Program and GTE in Alaska in 1988
(ABLE 3A). These data are the first of their kind for tundra habitats. The results can be
found in Hines and Morrison (1989, 1992). In brief, S gas fluxes from all of the |
freshwater sites were extremely slow. Wet sites emitted most while dry sites, inhabited
primarily by lichens and Sphagna, emitted very little gas. Emissions were dominated by
DMS, and tundra was a sink for OCS. Coastal habitats, which contained much more total
S due to their proximity to the sea, emitted more S gas than the freshwater sites.
However, the coastal fluxes were quite slow relative to temperate coastal wetlands.

These data were used to calculate global emissions rates of S gases from tundra.

Release of Biogenic S Gases from the Florida Everglades
A study of S gas exchange in wetlands of the Florida Everglades was conducted to

determine if fluxes could be extrapolated using vegetation information and remote



sensing. The results of this project appear in Hines et al. (1993). In brief, rates of S gas
exchange were determined in each of several major habitats in the Everglades, including
both freshwater and marine sites. Fluxes were highest in sites inhabited by red
mangroves, particularly sites in which crabs had cleared the area of leaves and high
fluxes of DMS were emanating from crab burrows as leaves decomposed therein.
However, except for these high fluxes, many of the marine sites yielded fluxes which
were similar in magnitude to some of the freshwater sites. The slowest fluxes occurred in
the wet saw grass meadows which make up the bulk of the Everglades. Sites that had
been bumed within the last year exhibited higher fluxes than adjacent sites which were
not burned.

The entire Everglades Park was divided into several vegetation classes and these
were delineated visually using a Landsat thematic mapper (TM) image. Geographic
information system software was used to "fine tune" the TM image and the fluxes of S
gases were extrapolated for the entire park. With this procedure, it was possible to
determine which habitats were most important as sources of biogenic S gases for the

atmosphere.

Release of Biogenic S Gases from Northern Bogs and Fens

Although tundra was a very weak source of S gases, it was found that Sphagnum-
dominated fens and bogs emit unusuallyrlarge amounts of S gases, especially when
considering the low amounts of S present in these systems . Emissions of S gases from a
fen in New Hampshire were as high as 50 ymol m2d-1. High fluxes were also
encountered in wetlands in Ontario, Canada, and in other wetlands in the northeast US.
Emissions are dominated strongly by DMS. Results of studies in these northern mires
can be found in various papers and abstracts listed below. Some of the results are

summarized in Hines (in press).



Experiments were conducted to determine the influence of changes in S deposition
on S emissions. Amendments of sulfate to experimental plots increased the
concentrations of dissolved S gases by several orders of magnitude but did not have a
significant affect on fluxes over the short term. Chronic increases in S additions to an
experimental wetland in Canada also caused an increase in dissolved S gases but had not
affect on emissions. However, experimental sections of the wetland that had been
receiving S amendments for several years emitted more S than did control regions.

The presence of Sphagnum greatly influenced S fluxes. Removal of the mosses
decreased fluxes and sites devoid of mosses emitted much less S gases than moss-
inhabited areas. It was hypothesized that the mosses enhance fluxes by acting as conduits
of water through capillary action. Replacing mosses in a areas in which they had been
previously removed resulted in an immediate increase in emission rate of DMS. It also
appeared that highest DMS fluxes occur in sites that exhibit a low pH and are most
devoid of nutrients. This result is counter to what occurs for other gases such as methane.
The results also indicate that DMS is derived from the methylation of sulfide. This

differs from marine habitats where DMS is derived from the cleavage of an S-C bond.
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ABSTRACT /4 A

A PRELIMINARY STUDY OF
THE VARIABILITY AND MAGNITUDE OF
THE FLUX OF BIOGENIC SULFUR GASES FROM
A NEW HAMPSHIRE SALT MARSH

by

Michael Cope Morrison
University of New Hampshire, December, 1988

Salt marshes have highly variable spatial and temporal fluxes of hydrogen suifide,
carbonyl sulfide, methane thiol, dimethyl sulfide, and carbon disulfide (HzS, COS. MeSH,
DMS, and CS respectively). This variability was tested at nine emission sites ina New
Hampshire, USA salt marsh: three replicates in each of three vegetation zones, Spartina
alterniflora, S. patens, and a transition zone. Three sites were sampled simultaneously,
either within or across vegetation zones, using a dynamic flux chamber technique.
Difficulties with calibration and field equipment resulted in fluxes with maximum absolute
uncertainties of greater than +200%. However, the relative uncertainty between
subsequent samples was closer to £20%. Chambers are expected to affect the natural flux
of gases by altering the humidity, temperature, and composition of the gas inside the
chamber. Summertime fluxes are highest for all gases except COS which demonstrated
evidence of a springtime peak. A summertime background flux of 5t0 100 10" ¢ § m—2
min—! was observed for all gases, while S. alternifora fluxes of MeSH and DMS were ~8
fold and ~100 fold higher than S. patens, respectively., DMS‘z\ml MeSTH fluxes were
higher during the day than-at night. Evidence of COS uptake by plants was obser ed. CSa
appeared to be the quantitatively least important sulfur gas emitted. Improved Lihoratory
and sample collection techniques and further data collection in the field will yield

information on the details of salt marsh variability, will improve estimates of the error
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associated with single flux measurements, and will allow a more accurate estimation of
sulfur fluxes from salt marshes based on vegetation and area coverage data. Inabiiiv o
control the temperature and humidity inside of the chamber remain significant pro® cm-

with the chamber design.
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Sulfate reduction and other sedimentary biogeochemistry
in a northern New England salt marsh

Mark E. Hines, Stephen L. Knollmeyer,! and Joyce B. Tugel
Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham 03824

Abstract

Sulfate reduction rates, dissolved iron and sulfide concentrations, and titration alkalinity were
measured in salt marsh soils along a transect that included areas inhabited by both the tall and
short forms of Spartina alterniflora and by Spartina patens. Pore waters were collected with in situ
“sippers” to acquire temporal data from the same location without disturbing plant roots. During
1984, data collected at weekly intervals showed rapid temporal changes in belowground biogeo-
chemical processes that coincided with changes in S. alterniflora physiology. Rates of SO,*- re-
duction increased fivefold (to >2.5 umol ml-! d—!) when plants began elongating aboveground vet
decreased fourfold upon plant flowering. This rapid increase in rates of SO,2~ reduction must have
been fueled by dissolved organic matter released from roots only during active growth. Once plants
flowered, the supply of oxidants to the soil decreased and sulfide and alkalinity concentrations
increased despite decreases in SO,?- reduction and increases in SO~ : Cl- ratios. Sulfide concen-
trations were highest in soils inhabited by tallest plants.

During 1985, S. alterniflora became infested with fly larvae (Chaetopsis apicalis John) and
aboveground growth ceased in late June. This cessation was accompanied by decreased rates of
SO,2- reduction similar to those noted during the previous year when flowering occurred. After
the fly infestation, the pore-water chemical profiles of these soils resembled profiles of soils inhabited

by the short form of S. alterniflora.

The SO,?- reduction raies in S. patens soils are the first reported. Rates were similar to those
in S. alterniflora except that they did not increase greatly when S. patens was elongating. Tidal
and rainfall events produced desiccation-saturation cycles that altered redox conditions in the S.
patens soils, resulting in rapid changes in the dissolution and precipitation of iron and in the
magnitude and spatial distribution of SO,?- reduction.

Salt marshes are extremelv productive and
a large portion of their productivity occurs
belowground as roots and rhizomes (Valiela
et al. 1976; Schubauer and Hopkinson
1984). Their sediments are anoxic near the
surface, and decomposition in the soil oc-
curs primarily via dissimilatory SO~ re-
duction (Howarth and Teal 1979; Howarth
and Giblin 1983; Howes et al. 1984). The

' Present address: Analytics Environmental Labo-
ratory, Portsmouth, N.H. 03301.
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end products of SO,2~ reduction are reac-
tive and influence the chemical composition
of sediments profoundly (Goldhaber and
Kaplan 1975; Jergensen 1977; Berner 1980).

Because of variations in tidal regime,
temperature, sediment transport, topogra-
phy, and hydrology, salt marsh productivity
varies from one location to the next and
within individual marshes (Shea et al. 1975;
Howesetal. 1981; Kingetal. 1982; Wiegert
et al. 1983). Temporal variations in plant
physiology are evident, not only in the vis-
ible changes that occur, such as growth and
production of reproductive organs, but in
the allocation of carbon to various plant
organs (Lytle and Hull 1980; Gallagher et
al. 1984). Variations in tidal inundation and
desiccation complicate attempts to predict
the distribution of biogeochemically im-
portant compounds, particularly redox-sen-
sitive species like those produced during
SO,2~ reduction (Carr and Blackley 1986;
Casey and Lasagna 1987). Plant activity also
can influence redox processes in marsh soils
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by enhancing gas diffusion and transporting
water from soils to leaves (Howes et al. 1981;
Dacey and Howes 1984).

Most research related to belowground re-
dox processes involving sulfur has been
conducted in soils inhabited by the cord-
grass Spartina alterniflora, particularly its
short forms (e.g. Howarth and Teal 1979;
Lord and Church 1983; Howes et al. 1984;
Casey and Lasagna 1987). Much less is
known of these processes in other grass
species and in the tall form of S. alterniflora.

The present study describes the temporal
sulfur and iron biogeochemistry of soils in
a northern New England salt marsh includ-
ing seasonal variations in SO,%~ reduction
and related biogeochemical processes in soils
inhabited by Spartina patens and the tall
form of S. alterniflora. During the first year
of the study, samples were collected weekly,
and the data revealed the dynamic nature
of salt marshes. Furthermore, these tem-
poral variations were coincident with tem-
poral changes in the growth stages of the
vegetation and demonstrated that changes
in plant physiology were responsible for
controlling biogeochemical redox condi-
tions within marsh soils.

Area description and methods

Sampling location—Chapman’s Marsh is
a small marsh near the mouth of the Squam-
scott River in the upper regions of Great
Bay, New Hampshire (Fig. 1). This marsh
is dominated by S. patens with stands of S.
alterniflora along creek- and riverbanks. Be-
cause of the steep slope of the banks the S.
alterniflora-inhabited areas are generally
<30 m and in some locations only a few
meters wide. The tall form of §. alterniflora
is often >2 m tall. The transition is abrupt
from tall to short S. alterniflora and from
S. alterniflora to S. patens. The tidal range
at the marsh is slightly >2 m. These marsh
characteristics are common in northem New
England. The soil in the S. alterniflora-in-
habited areas contains relatively fine-grained
minerals in addition to roots and rhizomes.
The S. patens-inhabited soils are composed
primarily of decaying roots and rhizomes.
During winter, S. alterniflora-inhabited re-
gions are covered by ice which can become
up to 1 m thick in some locations. The
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Fig. 1. Location of sampling sites in Chapman'’s

Marsh, New Hampshire.

movement of ice tends to remove virtually
all of the aboveground biomass from a large
portion of the creekbank stands so that by
spring much of the S. alrerniflora region is
barren except for very short remnants of
grass stems. In these areas, the organic con-
tent of the soil is due mostly to belowground
production.

Sampling sites were chosen along a gra-
dient perpendicular to the river in an area
which was as far from drainage channels as
possible. All drainage ditches in the marsh
are natural since the marsh has not been
altered for mosquito control. Three loca-
tions along this gradient were sampled: tall
S. alterniflora (SA); S. patens (SP); and the
transition zone (T) between these two grass-
es, consisting primarnily of the short form of
S. alterniflora interspersed with S. patens.
The SA and SP sites were both sampled
from June 1984 to June 1986. The T site
was sampled only during the 1984 growing
season. Boardwalks were installed in spring
and personnel were restricted to them
throughout the experiment.

Sample collection—Sediment cores were
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collected with a Wildco handheld corer con-
taining a polycarbonate liner, plastic or
stainless steel core catcher, and a plastic nose
piece. Cores were flushed with N, imme-
diately after collection, capped, and trans-
ported back to the laboratory where they
were extruded under N, in a glove bag.

Pore-water samples were collected with
in situ “sippers” deployed during spring and
removed in fall before ice formed. Sippers
were identical in design to those described
by Short et al. (1985) except that they were
made from TFE Teflon. Sippers (lysimeters
by definition) consisted of a cylinder which
contained a 5-cm section covered by a po-
rous Teflon collar. Two Teflon tubes were
connected to the top of the device, one of
which passed through to the bottom for
sample removal. After deployment at the
desired depth, a vacuum was applied by a
hand pump, and the pore water was drawn
into the sipper through the collar. Sippers
were left full of water between sampling. On
sampling days, the water within the sipper
was removed by syringe. As water was with-
drawn it was replaced with N, supplied by
a gas-filled glass syringe flushed just before
use. Care was taken to prevent oxygen from
entering the sipper. This initial water was
discarded and the sipper was filled again by
applying a vacuum. After filling (~15-20
min), the pore water was removed with a
precleaned glass syringe while N, was al-
lowed to enter. Immediately after sample
collection the syringe was connected to an
acid-cleaned, N,-flushed plastic Swinnex
(Millipore Corp.) filter unit containinga 25-
mm, 0.4-um Nuclepore filter. The sample
was filtered directly into an acid-cleaned
plastic vial which was being flushed with
N.. Automatic pipettes that had been flushed
with N, were used to divide the filtered sam-
ple into various vials for storage. Pore-water
samples were therefore collected, filtered,
and dispensed anoxically within 1-2 min in
the field.

The sippers were left in place for several
months at a time, so we were able to study
temporal change unconfounded with vary-
ing sampling sites. In addition, the place-
ment of the sippers before plant growth in
the spring allowed nondestructive sam-
pling. Howes et al. (1985) reported that

e TR B S $TTarn B e e s @b Tt e xR TS

damage to roots during centrifugation or
sediment squeezing to obtain pore water
caused drastic changes in pore-water chem-
istry, especially organic chemistry.

An individual sipper was used for each
depth sampled. Four sippers were deployed
at each location. Each set consisted of a near-
surface sipper that contained a porous collar
2 c¢m long for a narrow sample interval at
1-3 c¢m in the soil. The remaining three sip-
pers were placed in the remaining corners
of a square array with ~10 cm on a side
and at sample depths of 3-8, 9-14, and 15-
20 cm. Studies comparing the concentra-
tions of SO,2~ and chloride in cores and
sippers demonstrated that when the 5-cm
porous collars were used, most of the sam-
ple obtained was drawn into the sipper from
the upper 2 cm of the collar and that water
was not drawn from above or below the
sipper. Further comparisons demonstrated
that in regions of live root material, dis-
solved sulfide concentrations were consis-
tently higher in sipper samples than in pore
waters collected by coring and squeezing
even when extreme care was used to prevent
oxidation of cores during processing. This
latter result indicated that the sipper sam-
ples were not oxidized during collection.

Samples for sulfide analysis were mixed
with an equal volume of 6% zinc acetate.
Dissolved iron samples were stored in acid-
cleaned plastic vials and acidified with
HNO, to a final concentration of 1.0%. Pore
water remaining in the original plastic vial
was titrated for alkalinity (Gieskes and Rog-
ers 1973) and then refrigerated for SO~
analysis.

Chemical analyses—Sulfide was mea-
sured colorimetrically according to Cline
(1969). Standards were prepared by dis-
solving and precipitating a weighed crystal
of sodium sulfide in a solution of zinc ace-
tate. This procedure precluded the need to
use anoxic technique when preparing stan-
dards and the results were very reproduc-
ible. The stock zinc sulfide standard was
stable for up to 7-9 weeks. Dissolved iron
was determined colorimetrically with Fer-
rozine (Stookey 1970). Sulfate was deter-
mined turbidimetrically (Tabatabai 1974).

Sulfate reduction —Rates of SO,*~ reduc-
tion were determined with 338 according to
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Fig. 2. Temperature (OJ) and salinity (M) in pore
waters of Chapman’s Marsh, June 1984-April 1986.

Jorgensen (1978) as modified by Westrich
(1983). Duplicate sediment cores were sliced
into sections in a N,-filled glove bag. Sliced
portions were placed into 5-ml syringes
sealed with serum stoppers. These subsam-
ples were not homogenized before use. One
microCurie of 3°SQ,*~ was injected into
each syringe and samples were incubated in
a dark N,-filled jar overnight at ambient
temperature. Activity was stopped by freez-
ing to —80°C. Attempts to collect undis-
turbed small cores for direct core injection
were unsuccessful due to the quantity of rhi-
zome material present in the sediments.

35S present in acid-volatile sulfides was
determined by distilling sulfides into zinc
acetate traps as described by Hines and Jones
(1985). 33S present in pyrite and elemental
sulfur was determined by reducing these
chemical species to sulfide with reduced
chromium (Zhabina and Volkov 197§;
Westrich 1983). Subsamples used for sulfide
distillation were filtered and washed with
distilled water to remove unused 3°SO,’~,
which otherwise resulted in a significant
blank. Filters were stored dried in a desic-
cator until chromium reduction analyses.
The reduction procedure liberated all of the
sulfur when ground pyrite and reagent-grade
elemental sulfur were used. The S: Fe ratio
of the pyrite was 2.0 as determined by mea-
suring the dissolved iron and SO,*~ liber-
ated from the mineral after oxidation and
dissolution by aqua regia. The SO~ re-
duction rate was calculated from the sum
of radiolabel present in both the sulfide and
chromium-reducible phases.

During the 1984 growing season, weekly
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Fig. 3. Sulfate reduction rates (4) in the sediments
at sites SA and SP and SO,*- : Cl- ratios (OJ) at SA,
June 1984-April 1986. Values represent averages over
the upper 20 cm of soil. Error bars equal ranges of
duplicate cores.

pore-water samples were collected from all
three sites to determine the short-term tem-
poral variability in pore-water chemistry.
Sulfate reduction rates were determined at
either the SA or SP site each week. All cores
and pore-water samples were collected at
midtide. Samples were collected less fre-
quently during the remainder of the study.

Results

The beginning and length of the growing
season varied greatly from 1984 to 1985.
During 1984, rainfall was abundant during
spring and the salinity of the pore waters
was <5%o in May and June (Fig. 2). Salinity
increased from 8 to 16%c in July. Spring
1985 was unusually dry, and the salinity
range in July was 25-32%o. Aboveground
growth of marsh grasses in 1984 began in
mid- to late June and continued until the
first week in August, when S. alterniflora
began to flower. Spartina alterniflora at site
SA reached >2 m high during that 5-6-
week period. Spartina patens at site SP be-
gan to grow a few days earlier than did S.
alterniflora. In 1985, S. alterniflora began
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to grow in mid-May and stopped at ~50
cm high in the last week of June. Spartina
patens appeared to grow normally during
that year. Examination of §. alterniflora in
July 1985 revealed larvae of the ribbon-
winged fly Chaetopsis apicalis John within
the stems of the plants. This infection was
evident in virtually all of the S. alterniflora
plants in the marsh except for a narrow band
along the creekbank. This narrow region was
the only site flooded twice each day at high
tide, including neap tides. An additional set
of sippers was deployed in this tall creekside
stand for comparison. The fly that attacked
this marsh was the same species found pre-
viously in Great Sippewissett Marsh (J.
Hartman and C. Cogswell pers. comm.).

Sulfate reduction—Rates of SO~ reduc-
tion varied throughout the year and be-
tween sites (Fig. 3). Except for a period of
~2 months in summer when rates at site
SA were considerably higher than at SP, rates
were similar in magnitude at these sites. Sul-
fate reduction maxima at SA always oc-
curred in the upper 2.0 cm of the sediment,
and rates decreased several-fold with depth.
During July 1984 this rate at 2.0 ¢cm was
>2.5 umolml-'d-!, Sulfate reduction rates
at site SP showed two maxima—one near
the surface and one at 11.5 cm. The sub-
surface maximum usually exceeded rates
measured near the surface.

Temporal SO,?~ reduction maxima at site
SA occurred during periods when plants
were actively growing aboveground, i.e.
from late June to early August 1984 and
from late May to mid- to late June 1985
(Fig. 3). In 1984, there was nearly a fourfold
decrease in depth-averaged SO,3~ reduction
rate at SA within a few days after flowering
by S. alterniflora began. In 1985, vegetative
growth ceased due to fly infestation, yet
SO,>~ reduction rates decreased as dramat-
ically as they did during the previous year.
Only one rate measurement was made dur-
ing the period of active aboveground growth
in 1985.

The SO,2- : Cl- ratio at site SA decreased
once plant growth began and increased after
flowering began, thus coinciding with tem-
poral variations in rates of SO,?~ reduction
(Fig. 3). Ratios of SO,2~ :Cl- in 1985 at SA
were much higher than in 1984 despite the

maximum in SO,?~ reduction rate noted in
May-June 1985. The occurrence of higher
ratios in 1985 probably reflects the fact that
even though the maximal SO,2~ reduction
rate at SA in 1985 was similar in magnitude
to the maxima in 1984, the high ratein 1985
was probably too short lived to remove large
quantities of SO,>~.

During summer 1984, ~80% of reduced
358 in incubated samples from site SA was
recovered as volatile and acid-volatile sul-
fides (data not shown). During winter, most
35S in the upper few centimeters at SA was
recovered in the chromium-reducible frac-
tion; below 4 ¢m the chromium-reducible
fraction accounted for ~40% of the label
recovered. During summer 1985, the 35S
recovered in the chromium-reducible frac-
tion at site SA was 40-70% of the total. The
chromium-reducible S fraction accounted
for >90% of the label recovered in most of
the samples collected at site SP during sum-
mer and winter. The acid-volatile fraction
at SP was substantial (> 50%), however, be-
low 15 cm.

Other pore-water chemistry—Changes in
the SO,2~: Cl- ratios in the pore waters at
site SPin 1984 coincided with variations in
tidal regime and rainfall (Fig. 4). Occasion-
ally, we were unable to collect sipper sam-
ples at certain depths at SP because sippers
will not collect water unless the soils are
saturated. SO,>~:Cl- ratios at SPand T
generally increased after these desiccation
events and in some instances this ratio at
SP exceeded the ratio in seawater. Soils at
site SA were flooded at least once per day
and did not experience periods of obvious
desiccation. Sediments at site T appeared
to be subjected to desiccation as at SP (Fig.
4). Desiccation events at site T were not
severe enough, however, to produce SO~ :
Cl- ratios higher than those of seawater.
Since SO,2~ : Cl- ratios are altered greatly
by tidal pore-water movements and by ox-
idation and reduction of sulfur (Howarth
and Teal 1979; Casey and Lasagna 1987),
the ratios reported here were instructive only
for qualitative examinations of geochemical
changes in the soils.

Dissolved sulfide concentrations were
very high at site SA, and values averaged
over the upper 20 cm of sediment increased
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to ~2.5 mM in August 1984 (Fig. 5). Sulfide
concentrations in August at 2.0 cm were
>1.0 mM and at 17.5 cm were >3.5 mM.
These high concentrations of sulfide were
prevalent in soils that supported stands of
S. alterniflora 2 m or more high. Concen-
trations of sulfide at SA during 1984 began
to level off near the end of the aboveground
growth period in late July, but increased
again in late August despite the fact that
SO,?- reduction had decreased nearly four-
fold and SO,2- : Cl- ratios (Fig. 3) were in-
creasing.

Dissolved sulfide concentrations were
much lower at site SA during 1985 com-
pared to the preceding year (Fig. 5), and the
concentrations of sulfide decreased once the
plants began to grow in May. Samples col-
lected from the separate set of sippers de-
ployed in the narrow band of tall S. alrer-
niflora that was not affected by fly larvae in
1985 contained nearly 2 mM sulfide (data
not shown) compared to concentrations of
~250 uM at SA (Fig. 5). High concentra-
tions of sulfide were associated routinely
with the tall form of the grass. Once plant
growth ceased in June, sulfide concentra-
tions increased at SA to 1.0 mM but never
approached the >2.5 mM levels of 1984,
This finding indicated that sulfide was re-
moved from solution most effectively when
plants were growing.

Dissolved sulfide concentrations at site
SP were low compared to SA (Fig. 5). Values
at site T were similar in magnitude to those

0 IJIJIA.SIO'NIDIJ'FIM'A.M'JIJ'AISlOI 0
1984 1985

Fig. 5. Concentrations of dissolved sulfide (O) in
pore waters at sites SA and SP. Values represent av-
erages over the upper 20 cm of soil. Sulfate reduction
rates (4) from Fig. 3 are included for comparison to
sulfide data.

at SP but did not vary as much (data not
shown). Sulfide was never detected in the
upper ~ 10 c¢m at either SP or T even though
SO,?- reduction was routinely detected in
this region at SP.

Alkalinity values varied from ~1.5 to
> 10 meq liter~! and varied seasonally in a
manner almost identical to dissolved sulfide
concentrations (data not shown). The pH of
the pore waters generally ranged from 6 to
7.5. Occasionally, we noted pH values at
site SP of ~5.8.

Average dissolved iron concentrations
were <10 uM at site SA during 1984, but
were always detectable in the pore water
even when sulfide concentrations were high
(Fig. 6). Dissolved iron concentrations de-
creased at SA when plants were actively
elongating and remained low throughout the
remainder of 1984. The highest values at
SA were in the upper 2 c¢m. The presence
of high concentrations of dissolved sulfide
and iron at SA during 1984 resulted in the
supersaturation of Mackinawite and amor-
phous ferrous sulfide in pore waters (Fig. 7).
The SA data points in Fig. 7 that represent
undersaturation of FeS minerals were from
samples collected in 1983,

During 1985, average dissolved iron con-
centrations at site SA increased to as high
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Fig. 6. Concentrations of dissolved iron in the pore waters at sites SA (0), T (4), and SP (¢). Values represent

averages of the upper 20 cm of soil.

as 30 uM and were higher than values at SP
(Fig. 6). The increase in iron occurred dur-
ing the period of rapid SO, reduction in
May-June, and dissolved iron concentra-
tions remained relatively high once SO,2-
reduction decreased in magnitude and sul-
fide increased (Fig. 5).

Dissolved iron concentrations at SP and
T varied greatly throughout the study (Fig.
6). These variations were most prevalent in
1984 and in the upper 10 cm of sediment
(depth data not shown). For example, dis-
solved iron at site SP decreased from 290
uM to <10 at 2 cm during an 8-d period in
June 1984 and increased again to 140 in
July. These large variations coincided
roughly with changes in desiccation events
and, therefore, with changes in SO,>~: CI~
ratios (Fig. 4). For example, increases in
S0O,2-: CI- ratios (indicative of sediment
oxidation) were accompanied by decreases
in dissolved iron. Dissolved iron concen-
trations were relatively low and uniform be-
low 15 c¢m in sediments where dissolved
sulfide was detected. It appeared that sedi-
ment oxidation primarily was responsible
for the removal of dissolved iron from so-
lution in the upper 5-10 cm at SP while
monosulfide precipitation was responsible
for iron removal below 15 cm.

We routinely noted large quantities of fer-
ric iron visually in the SP sediments when
coring and often found large amounts of
ferric iron in certain sipper samples before
filtering. The ferric iron within sippers was
not due to oxidation of ferrous iron as it
entered the sipper, since the sippers main-

BTN AR et € b

tained anoxia during sample collection. Fer-
ric iron was not detected visually in sippers
located at any sampling site except SP. The
pore size of the sipper collar was 50 um,
which was large enough to allow visible fer-
ric iron particles to pass.

The large variations and high concentra-
tions of dissolved iron at site SP during 1584
were not noted in 1985 (Fig. 6). We may
not have sampled during periods when dis-
solved iron concentrations were high, since
we did not sample often during 1985. In
addition, we did not note unusually high
SO,2- : Cl-ratios at SP during summer 1985.
In most instances, ferrous sulfide minerals

.., FeS (amp.) o S. alterniflora

.4-"‘,. x

x S. patens

log [Fe(ll)] activity
<
T, x
x
* Xy
x
x
x
." 'H
g o
fY
9

74 5 P
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-8
FeS (mack.) ™.
'9 ¥ T T T il“
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Fig. 7. Calculated values for the ton activity prod-
uct of (Fe?~ )}(HS-)/(H") for pore waters collected from
sites SA and SP during 1984 and 1983. Dotted lines
represent pK,, values for amorphous FeS and Macki-
nawite. Points above the dotted lines are supersatu-
rated. Activity coefficients for Fe?~ and HS- are from
Davison (1980) and stability constants are from Berner
(1967).
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were undersaturated in the sediments at SP
during 1984 (Fig. 7). The data points in Fig.
7 that represent supersaturated conditions
with respect to FeS were from samples col-
lected from the deepest sipper (15-20 cm).

Discussion

The high sampling frequency used during
the growing season in 1984 provided data
that demonstrated important relationships
between plant processes and belowground
biogeochemical transformations in S. alter-
niflora soils. Most important were the find-
ings that SO,2- reduction responded quick-
ly to changes in plant physiology and that
redox processes within the sediments also
were influenced by the growth cycle of the
plants. During active vegetative growth,
SO,2~ reduction was stimulated while the
soils were supplied with sufficient oxidants
to cause a relatively rapid turnover of the
sulfide produced by SO,%~ reduction. Com-
mencement of plant flowering in 1984 re-
sulted in dramatic changes in the magnitude
of SO,2~ reduction and the redox conditions
within the soil. The high frequency of sam-
pling in the S. patens soils delineated the
dynamic effects of desiccation-inundation
cycles on redox reactions.

Biogeochemistry of soils inhabited by tall
S. alterniflora— A likely explanation for the
sensitivity of SO,*~ reduction to plant
growth was that during active aboveground
elongation plants were leaking dissolved or-
ganic compounds into the soil and fueling
anaerobic bacterial metabolism. Although
the source of these compounds is unknown,
there are two aspects of belowground plant
metabolism that potentially influence leak-
age of DOC from rhizomes. First, it has
been shown that production and redistri-
bution of biomolecules in tall S. alterniflora
follow a trend that coincides with the tem-
poral variations noted here for SO,2- re-
duction. Rhizomes of tall S. alterniflora re-
mobilize nonstructural carbohydrates once
growth begins in spring, and these com-
pounds (primarily sucrose) help to support
early culm growth (Lytle and Hull 1980;
Steen and Larrson 1986).

It has also been shown that new rhizomes
are produced during the growth period in
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stands of tall grass (Lytle and Hull 1980).
Once flowering occurs, carbohydrates are
again immobilized rapidly in rhizomes and
the sugar content increases more than two-
fold. Remobilization of sugars in rhizomes
and downward translocation of current
photosynthate for incorporation into new
rhizomes only occurs during the period of
aboveground growth (Lytle and Hull 1980).
Hence, leakage of a portion of this material
or of associated metabolites may serve as a
source of DOC for SO,*~ reduction.

The magnitude of carbohydrate loss from
thizomes studied by Lytle and Hull (1980)
was insufficient to support the large increase
in SO,2~ reduction noted at site SA during
summer 1984, particularly since most of the
remobilized carbon was certainly used for
plant growth and metabolism. Therefore,
photosynthate transported from aerial plant
parts during rhizome structural production
must have contributed to DOC loss to the
soil.

Short stands of S. alterniflora do not dis-
play the temporal trends in organic carbon
distribution noted for tall stands. This dis-
crepancy presumably occurs because short
stands do not produce significant amounts
of new rhizome material during above-
ground growth and because shorter stands
continue vegetative growth after the onset
of flowering but tall stands do not (Lytle and
Hull 1980; Steen and Larrson 1986). This
distinction between tall and short stands of
S. alterniflora may explain why previous
studies have not noted the relationship be-
tween plant growth stage and soil microbial
activity, since no previous studies have
measured temporal changes in microbial ac-
tivity in tall stands of S. alterniflora so fre-
quently.

The second aspect of root metabolism that
was probably important in regulating mi-
crobial activity in soils at site SA was the
anaerobic metabolic activity of the roots.
Spartina alterniflora roots have been shown
to produce low-molecular-weight organic
compounds such as ethanol and malate when
roots metabolize anaerobically (Mendels-
sohn et al. 1981). Sulfate-reducing bacteria
can use these compounds directly. It has
been suggested that ethanol produced by
roots diffuses into the surrounding pore
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water (Mendelssohn et al. 1981; Mendels-
sohn and McKee 1987).

We did not measure redox potential, but
the presence of high concentrations of dis-
solved sulfide in the soils at site SA must
have kept the Eh quite low, and it is likely
that anaerobic biochemical pathways were
important in total root metabolism. Al-
though anoxic conditions have been cited
as necessary for the production of various
low-molecular-weight dissolved organic
compounds by rooted macrophytes (Men-
delssohn et al. 1981; Kilham and Alexander
1984; Pregnall et al. 1984), our study noted
that rates of SO,2- reduction decreased af-
ter plant flowering occurred even though
sulfide concentrations increased. Therefore,
since anoxia did not decrease following
flowering it seemed that plant growth stage
was more influential than anoxia in stim-
ulating SO,2- reduction. Additional re-
search is needed to determine the details of
coupling between plant metabolism and ac-
tivities of adjacent soil microflora.

Decomposition of solid-phase organic
matter would not have resulted in such rap-
id changes in the rates of SO,2~ reduction.
Background rates of 200-400 nmol ml-!
d-! before and after the period of active
plant growth were probably due to decom-
position of less labile solid-phase organic
material produced belowground by the
plants. This solid-phase material is rela-
tively recalcitrant (Schubauer and Hopkin-
son 1984) and would not be responsible for
rapid changes in the rates of soil microbial
activity.

If we assume that the increase in the rate
of SO,2~ reduction in June-August 1984
was due to the utilization of S. alterniflora
exudates by SO,>~-reducing bacteria and
that the stoichiometry of carbon utilization
during SO,%~ reduction is 2C:S0,*-, then
the quantity of exudate C needed to fuel
S0O,*~ reduction during the 42-d period of
active plant elongation was ~140 g C m~?
or 17 mg C liter~! d-'. Dissolved organic
carbon concentrations during this period
were 10-15 mgliter—! (Hines et al. in prep.),
which is similarin magnitude to the amount
of exudate C needed to fuel SO,2~ reduction
per day. Exuded C would have turned over
rapidly and probably did not accumulate in
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the pore waters, while the DOC measured
probably represented a less labile pool. If
the labile organic C accounted for 2% of the
total DOC (Meyer-Reil et al. 1980) then the
labile C would have turned over every ~30
min. This rate is not unusually fast in bac-
terially active sediments where turnover
times for labile organic monomers can be
as short as minutes (King and Klug 1682).

Rates of SO,2- reduction may have been
overestimated because of the stimulation of
SO,%~ reduction activity from leakage of or-
ganic material during coring. It is also pos-
sible that this artifact varied temporally with
changes in plant physiology and that the
relationship between plant growth and SO,2~
reduction was spurious. Although it was not
possible to determine whether SO,2~ re-
duction was artificially stimulated during
sampling, the temporal variations in SO,?~ :
Cl- agreed with the temporal changes in
SO,2~ reduction, giving credence to the con-
clusion that SO,2~ reduction responded to
changing plant activity even if actual rates
were overestimated. This ratio was mea-
sured using sipper samples and was not sub-
ject to coring artifacts.

Infiltration of tidal water and tidally me-
diated subsurface water flow in marshes
(Hemond and Fifield 1982) prevented use
of SO, :Cl~ ratios to quantify rates of
SO,?~ reduction (Howarth and Teal 1979).
Changes in SO,2~ : Cl~ ratios are good in-
dicators of relative changes in SO,*>~ reduc-
tion, however, and the SO,?- :CI- data in
Fig. 3 clearly indicate that the rates of SO,2~
reduction decreased at the end of July 1984.
Furthermore, A. Giblin (pers. comm.) found
that SO,2- reduction rates measured by in-
jecting and incubating radiolabel directly
into marsh soils in the field did not result
in rates significantly different from those ob-
tained by coring. Sediment oxidation was
enhanced greatly during S. alterniflora
growth. This oxidation would tend to in-
crease SO,2~ : ClI- ratios so that the differ-
ences in ratios noted during and after plant
growth would have been even larger if they
were controlled by differences in rates of
SO,?~ reduction alone.

The beginning of S. alterniflora flowering
in 1984 and the end of vegetative growth
in 1985 were accompanied by changes in
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the oxidation of the soils as evidenced by
increases in the concentrations of dissolved

2 m. A decrease in plant activity would re-
sult in decreased evapotranspiration and,

e sulfide. Residence time of dissolved sulfide therefore, soil oxidation; it would be ex-

[EAR TR, fooaiiio v Emet ottt i . . g . . .
T R in pore waters can be calculated by dividing pected that soil oxidation rates would de-
SES T sulfide concentrations by rates of SO~ re- crease late in the growing season or earlier
i duction and correcting for sediment water if plant activity was curtailed (e.g. June 1985

L T TR SR content. During aboveground plant growth, at site SA).

o ' sulfide was removed from pore water within To our knowledge, the present results are
it o e T R B R A 1-2d(1984) or ~0.2d (1985), whereas after the first to demonstrate such rapid change
) growth ceased, sulfide was removed less in redox status of marsh soils upon flow-
- - rapidly or even accumulated. For example, ering. It is noteworthy that we sampled in
following plant flowering at site SA in 1984, a stand of tall, quickly growing plants fre-
e e 2o T T e St the concentration of sulfide increased ~40% quently enough to delineate rapid changes.
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and the residence time of pore-water sulfide
increased to as long as 10 d. Therefore, the
plants were instrumental in supplying oxi-
dants to the soils during growth, and a major
portion of the sulfide produced was re-
moved rather quickly.

During 1985, sulfide was nearly com-
pletely removed from the soil during the
short growing season yet increased several-
fold once vegetative growth ceased. The
constant presence of dissolved iron in the
soils at site SA (albeit at low concentrations)
would be expected if the plants were con-
tinuously supplying oxidants to the soil and

Further, a large percentage of tall plants gen-
erate flowers compared to short plants (Hull
et al. 1976) and tall plants cease vegetative
growth at the onset of flowering (Lytle and
Hull 1980). Rapid reallocation of carbon to
reproductive organs in most of the culms
may have resulted in a rapid decrease in the
entrance of oxygen into the soils presum-
ably because of decreased evapotranspira-
tion. Additional work is needed to deter-
mine whether flowering and associated
photosynthate allocation result in changes
in rates at which S. alterniflora supplies ox-
idants to soils.

Dissolved sulfide removal at site SA dur-

therefore causing a subsurface redox cycle
N of iron and sulfur. , ing July 1984 could have occurred by oxi-
: - Previous studies (Dacey and Howes 1984;  dation or by precipitation as an iron mono-
o Howes et al. 1986) reported that the major sulfide mineral. It seemed unlikely that the
ot R i e SRS mechanism for plant-mediated sediment rapid formation of pyrite was a significant
o _ oxidation was the movement of air into the sink for sulfide in the soils at site SA since
soils as a result of removal of soil water by the chromium-reducible fraction, which in-
s evapotranspiration. Apparently, evapo- cludes pyrite, accounted for only a small
e —— transpiration at site SA was most active percentage of the total SO,2~ reduction rate
. when plants were growing aboveground. and solubility calculations indicated that
During rapid plant elongation in 1984, iron monosulfides were supersaturated in
e SO,*~ reduction was rapid enough to pro- the pore waters. These minerals were un-
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vide considerably more sulfide and alkalin-
ity to the pore water than were actually pres-
ent. Certainly, any oxidation of the soil by
plant activity would decrease the concen-
trations of both of these chemical constit-
uents. If evapotranspiration at site SA dur-
ing July 1984 was 10 liters m~2d~! (Howes
et al. 1986 reported 9.1 liters m~=2 d~! for
plants that were 102 cm tall), then ~90
mmol m~2d~! of oxygen entered the soil—
a quantity sufficient to oxidize nearly half
of the sulfide produced. Evapotranspiration
rates at site SA in 1984 were probably higher
since the plants quickly grew to heights of

dersaturated in pore-water samples collect-
ed in 1985 at site SA and in most of the
samples collected at site SP, suggesting that
other minerals may have been the major
end products of SO,>~ reduction at those
times. This conclusion was supported by the
finding that the percentage of 3*S recovered
by chromium reduction was much higher
in these samples than in those collected at
site. SA during summer 1984. Howarth
(Howarth and Teal 1979; Howarth and
Giblin 1983) reported that pyrite was the
major sink for sulfide produced in S. alter-
niflora-inhabited soils in Great Sippewissett
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and Sapelo Island marshes. Our data indi-
cate that the distribution of reduced sulfur
varied annually and with depth and season.

The highest dissolved sulfide concentra-
tions noted in these New Hampshire marsh
soils were always associated with the tallest
S. alterniflora plants. This contradicts the
findings that even low concentrations of sul-
fide inhibit the growth of S. alterniflora
(Howes et al. 1981; King et al. 1982). Sev-
eral hypotheses have been advanced to ex-
plain why S. alterniflora grows taller along
creekbanks, including the removal of sulfide
and the flux of iron via groundwater move-
ment (King et al. 1982) and the resupply of
iron via internal redox cycling (Giblin and
Howarth 1984). Howes et al. (1981, 1986)
found higher Eh values in stands of tall S.
alterniflora and suggested that more pro-
ductive plants oxidize the soils more fully
and that reducing conditions inhibit plant
production.

Our data clearly demonstrated that the
concentration of dissolved sulfide in marsh
pore waters can be quite high in soils that
support very tall S. alterniflora plants. In
fact, sulfide concentrations decreased where
plants were shorter. Although we did not
measure Eh values in these soils, the Eh at
site SA must have been low since dissolved
sulfide concentrations were high. Teal and
Kanwisher (1961) reported relatively low
Eh values in creekside soils in a Georgia S.
alterniflora marsh —in some instances more
reducing than soils inhabited by short plants.
They did note, however, that within the
creekside soils tallest plants usually were
present where Eh values were highest. Our
data indicate that controls of plant produc-
tivity are still unclear.

Influence of fly infestation on biogeo-
chemistry of tall S. alterniflora—Ribbon-
winged fly larvae are introduced into the
plants through holes bored into the stems
by adult flies. The larvae consume the new
shoots and therefore stop any new above-
ground growth. The infestation of S. alter-
niflora by fly larvae was a natural experi-
ment in marsh alteration and provided
additional information and support of data
from the previous year. First, comparison
of data from 1984 and 1985 showed the
close relationship between plant elongation
and SO,2- reduction in both years despite

B
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extreme differences in growing seasons. Plant
growth began several weeks earlier in 1985
than in 1984 and it is possible that total
growth in 1985 may have surpassed growth
in 1984 if fly infestation had not destroyed
new production. Second, the transforma-
tion of tall grass to short grass by larval
grazing confirmed that high concentrations
of dissolved sulfide were found only where
S. alterniflora was tall. Finally, the data
demonstrated the changes in belowground
geochemistry that occur immediately after
an infestation by such herbivores. Once the
larvae began to hinder aboveground growth,
the plants failed to produce sufficient dis-
solved organic matter to support rapid an-
aerobic activity. A decrease in SO,*~ re-
duction prevented the accumulation of high
concentrations of sulfides in the soils, and
the final result (June 1985 dissolved sulfide
profiles) was a marsh environment similar
geochemically to the short S. alterniflora
site T. These results also showed that the
belowground material that was present at
site SA at the beginning of the 1985 growing
season was insufficient to support rapid
SO,2- reduction without the production of
the dissolved organic component. Hence, in
these soils, rapid productivity during the
preceding year did not make the soils at site
SA appear significantly different from other
less productive soils.

Biogeochemistry of soils inhabited by S.
patens— The subsurface biogeochemistry of
S. patens soils has not been examined in
any detail compared to S. alterniflora. On
an area basis, however, S. patensis the dom-
inant marsh grass in northern New England.
The SO,2- reduction rates presented here
are the first seasonal data reported for S.
patens marshes, In general, SO,*>~ reduction
was less rapid in the S. patens soils than in
soils inhabited by S. alterniflora in this New
Hampshire marsh and in other marshes
where SO,2~ reduction has been measured.
SO, reduction proceeded at relatively high
levels in the soils at site SP throughout the
year, however, and the seasonal pattern fol-
Jowed changes in temperature. During sum-
mer, SO,2- reduction at SP reached levels
as high as 780 nmol ml-! d-! with inte-
grated rates of 75 mmol m~—2d-". :

Unlike the depth profiles of SO,2~ reduc-
tion at site SA, the maximum rate of SO,>~
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reduction at SP was found at varying depths
depending on the previous hydrologic con-
ditions which affected desiccation of the soil.
In general, the maximal rate was found at
~11 cm when the surface soils were oxi-
dized and at ~1-2 ¢m when the soils were
saturated with water and presumably re-
ducing in character. Changes in the location
of the SO,2~ reduction maximum were rap-
id, depending on the desiccation history of
the soil. As discussed below, this rapid
change in the depth distribution of SO~
reduction was accompanied by changes in
concentrations of redox-sensitive chemi-
cals.

Our results showed clearly that the soils
at site SP were subjected to rapidly changing
geochemical conditions mediated primarily
by desiccation events. Desiccation caused
the oxidation of reduced sulfur compounds
and an increase in the SO,2~ : Cl™ ratio in
pore water in a manner similar to that re-
ported for a Delaware marsh (Luther et al.
1986). This oxidation at site SP caused the
removal of dissolved iron(II) and the oxi-
dation of reduced iron associated with re-
duced sulfur minerals. Once the sediments
became waterlogged after spring tides or rain,
they again became anoxic, iron dissolution
occurred, and SO,2- reduction increased.
This cycle in oxidation and reduction of the
soil at site SP occurred on time scales of
days in some instances and must have re-
sulted in a supply of iron(1l) and (III) in the
upper 10 cm at SP for reaction with sulfide,
since sulfide was always depleted.

We detected rapid changes in redox con-
ditions at site SP. For example, dissolved
iron concentrations at the 2-cm depth var-
ied from 5.9 uM on 27 June 1984 to 138
on 10 July to 9.9 on 17 July. The rate of
SO,2- reduction at that depth varied from
170 to 780 umol liter—! d~! during that same
interval. Although no SO,*~ reduction rate
data were collected for the 10 July sample
at this site, the SO,2~ : Cl- ratio on that date
was even higher than on 27 June and de-
creased from 0.075 to 0.044 during the in-
terval from 10 to 17 July. Therefore, the
~4.5-fold increase in SO,*~ reduction be-
tween 27 June and 17 July probably oc-
curred from 10 to 17 July. Although there
was a dramatic decrease in dissolved iron
during that week, the increase in SO~ re-
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duction was sufficient to remove that
amount of iron more than 30 times. The
decrease in dissolved iron quantified by the
difference between valueson 10 and 17 July
thus represented only a small portion of the
iron that must have been transformed to
complétely remove sulfide.

The above illustrates only one example
of what must be a continuous desiccation-
driven cycle of oxidation and reduction in
this marsh and probably in many others.
Wide variations in iron concentrations in
the upper 10 ¢cm and even in sulfide con-
centrations at 17.5 cm at site SP attest to
the activity of the iron and sulfur cycles in
these soils. These chemical variations were
more rapid than those seen elsewhere (i.e.
dissolved iron concentrations in Sippewis-
sett as reported by Giblin and Howarth
1984), but may simply reflect our frequent
sampling at site SP. The sippers both al-
lowed this frequent sampling and avoided
confounding variation in time with hori-
zontal variation, which must be extreme in
salt marshes.
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Abstract—Three emission chambers were deployed simultaneously to measure rates of emission of dimethyl
sulfide, methane thiol and carbonyl sulfide within or across vegetation zones in a New Hampshire salt
marsh. Short term (a few hours) variation in fluxes of all S gases from replicate sites were small within a
monospecific stand of either Spartina alternifiora or S. patens. The quantity of emergent biomass and the
type of vegetation present were the primary factors regulating the rate of emission. Dimethyl sulfide fluxes
from the S. alternifiora soils ranged from 800 to 18,000 nmolm~?h~! compared to emissions of
25-120 nmolm~2h~! from S. patens. This difference was probably due to the presence of the
dimethyl-sulfide precursor dimethylsulfoniopropionate which is an osmoregulator in S. alterniflora but not
in S. patens. Methane thiol emissions from S. alternifiora were 20-280 nmolm~2h~! and they displayed a
similar diel trend as dimethyl sulfide, although at much lower rates, suggesting that methane thiol is
produced primarily by leaves. Methane thiol emissions from S. patens were 20-70 nmolm ~2h~!. Net
uptake of carbonyl sulfide of 25-40 nmolm~2h~! occurred in stands of S. alternifiora while net efflux of
10-36 nmolm~2h ™! of carbonyl sulfide occurred in stands of S. patens. In general, ranges of emissions of
sulfur gases were similar to most other published values.

Key word index: Biogenic sulfur emissions, salt marshes, variability, carbonyl sulfide, methane thiol,
dimethyl sulfide, Spartina alternifiora, Spartina patens.
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INTRODUCTION

The existence of biogenic sulfur emissions has been
recognized at least since the discovery of the atmosph-
eric Junge layer in the early 1960s (Junge, 1963). The
importance of these emissions as a component of the
global cycle of sulfur (Méller, 1984; Andreae, 1985),
their contribution to the pH of precipitation (Charlson
and Rodhe, 1982), and their potential impact on
global radiation balance and climate (Crutzen, 1976;
Shaw, 1983; Bates et al., 1987; Charlson et al., 1987;
Rampino and Volk, 1988) have spurred interest in the
composition, magnitude and variability of these emis-
sions from different sources.

The ability to estimate the annual emission of
biogenic sulfur to the atmosphere on a global scale
depends on a knowledge of the area of the emission
surfaces and the magnitude of the flux. The area extent
of emission surfaces may be determined from satellite
imagery, maps and surveys. If emissions vary predict-
ably with seasonal or diurnal cycles, or in response to
the biota, then an estimate may be made of the per
area emissions based on information about species
composition, season length, temperature regime, day
length, etc. However, if emissions vary widely and
unpredictably, then much greater uncertainty must

* To whom correspondence should be addressed.

accompany these estimates. Such wide variability has
characterized some emission measurements from salt
marsh environments. Adams er al. (1981a) attributed
this variability to ‘hot spots’, or the presence of
localized, extremely active environments. Goldan et
al. (1987) characterized salt marsh emissions as having
greater variability than agricultural environments.
Steudler and Peterson (1985) reported DMS fluxes
which varied hourly by orders of magnitude. Cooper
et al. (1987a) observed that changing tides caused a four
order of magnitude variation in H,S emissions from a
non-vegetated site in a salt marsh. Despite the wide
variation in reported S gas fluxes, the less than two-
fold variation in S gas emissions from two flux cham-
bers deployed simultaneously by de Mello et al. (1987)
suggested that emission rates are not as unpredictable
as previously thought. In addition, except for H,S
emissions, recent data tend to demonstrate that S
emissions from tidal wetlands often vary in some
predictable manner related to temperature, period of
the day and the species of vegetation present. In this
paper, we report an investigation of the short temporal
(several hours) and spatial (several meters) scale varia-
bility of biogenic sulfur emissions from a New Hamp-
shire Spartina sp. marsh using a multiple chamber
approach. In addition, we report S emission rates {rom
soils inhabited by S. patents, an abundant grass species
in marshes of northern New England.
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METHODS

Study site

The salt marsh studied (Chapman’s Marsh) was located in
Stratham, NH, U.S.A,, on the Squamscott River (Fig. 1). The
marsh soils are poorly drained silts rich in organic material
approximately 1 m thick overlying silty sand. Two vegetation
species dominate the marsh: Spartina alterniflora for several
m near the creek banks, and S. parens over much of the
remainder of the marsh. Details of the marsh and its soils
may be obtained from Breeding et al. (1974) and Hines et al.
(1989).

Nine emission sites were chosen; three in each of three
vegetation zones (Fig. 1). The first zone (sites A1-A3) was a
uniform, nearly pure stand of S. alterniflora in the middle
intertidal region ~ 2m from the creek bank. The second
zone (sites T1-T3) was located approximately 4 m from the
creek in the transition between the S. alternifiora and S.
patens zones but was dominated by S. alternifiora. The last
zone (P1-P3) was located approximately 8 m from the creek
bank and contained a uniform stand of S. patens.

Field sampling

Aluminum collars, 0.3 m x 0.3 m square, were installed at
each emission site in early spring before the grasses began to
grow insuring minimal disturbance to above and below
ground portions of the plants during sampling. The inner
surfaces of the collars were covered with an adhesive Teflon
coating (Bytac) to prevent reactions of analytes with the
aluminum. '

Flux chambers were constructed with FEP Teflon film
(0.127 cm thick) stretched over lexan {rames (Fig. 2). The
frames were assembled into boxes with open tops and
bottoms, and continuous Teflon interiors. Several boxes
could be stacked to form a chamber of any height necessary
to enclose grasses. The addition of modified frames for sweep
air inlet and vent, and a top frame, completed the chamber
which fitted snugly over the collars in the field. Chambers
were shaded to prevent excessive internal temperatures.

Sweep air was supplied from compressed gas cylinders of
purified dry air (N and O,) (Fig. 2). Sweep air was delivered
to the chambers via Tygon tubing (0.635cm id.) at a rate
sufficient to turn over the inside atmosphere every 10-15 min
(3-9¢/min~"' depending on the number of chamber tiers
needed to enclose a particular type of vegetation). Prelimi-

nary experiments determined that the addition of CO, to
sweep air had no effect on short term S gas emissions. For the
1988 samples, sweep air flow to each chamber was controlled
by a mass flow controller. Gilmont rotameters were used to
control sweep flow for the 1987 samples.

Samples were drawn from the interior of the chamber near
the vent frame via FEP Teflon tubing (0.165 cm i.d.) at a flow
rate of 250 mImin ~! (Fig. 2). Laboratory tests demonstrated
that samples could be collected at rates over 500 mlmin~!
without measurable breakthrough. Samples 0f 0.3-3.0 £ were
trapped cryogenically with liquid nitrogen in sample loops
constructed of 60 cm lengths of 0.165 cm i.d. (1.285 ml inter-
nal volume) FEP Teflon tubing. Moisture was removed from
sample air by passage through PFA Teflon pipe surrounded
by dry ice. Recovery tests showed that S gases were not lost
within the drier (Morrison, 1988).

Samples were obtained under a ~ 1/2atm vacuum to
prevent condensation of oxygen in the sample loops. The
vacuum was generated using a vacuum pump with a PFA
Teflon needle valve placed just upstream of the sample loop
(Fig. 2). Each sample loop had a Teflon-lined four-port valve
which allowed maintenance of the vacuum in the sample loop
until analysis. Sample flow rate was determined using a mass
flow controller situated downstream of the sample loop while
an integrating circuit totalized the sample volume. Sample
loops were stored in liquid nitrogen in the field until trans-
portation to the laboratory for analysis. Storage of loops up
to the maximum durations experienced in the field (8 h) had
no effect on recovery of S gases (Morrison, 1988). The
maintenance of a vacuum and the fact that oxygen did not
enter the loops over time indicated that the loops did not leak
during storage.

Blanks were obtained by sampling the sweep air just before
it entered the chamber in the field with driers and full tubing
lengths in place. Typical blank values (in 10~°gS¢ ™ 1) were
0.10 for DMS, 0.00 for MeSH and 0.25 for COS. The blanks
remained relatively constant for several hours, however they
did decrease slowly with time. Contamination of the sweep
air with COS at near ambient levels allowed for the determin-
ation of consumption of this gas. Blank values for DMS were
very low compared to samples collected from areas inhabited
by Spartina alternifiora. However, the DMS blank was only
2-5-fold lower than DMS concentrations in chambers placed
over Spartina patens. The blank values were due to contamin-
ation of the sweep air by the Tygon tubing. Although
replacing the Tygon with Teflon tubing virtually eliminated

73] GREAT BAY

43°02' 30"}

Jewell Hill Brook

Squamscott- Ny~ '"“\;’Mm Brook —

River
/
| e |
1.0 km ”

71° 57" 307
L

SQUAMSCOTT

7 I
I, 4
S alterniflore 7

4
,/ Transition /
4
/ ;. S patens
4

RIVER

P3 e« Emission
Sites

Boardwalks

N

Fig. 1. Location of Chapman’s Marsh in southern New Hampshire with a diagram of the sampling boardwalk and relative
positions of replicate sampling sites.



L s Ve R oy Rt

T e R aTE R e A

Variability of biogenic sulfur flux 1773

FLUX CHAMBERS

Teflon Film

Lexan Frame
PFA Tefion Tee

Sweep Air
e

Inlet —= To Dryer

Sweep Air Vent

Pt

Biogenic
Emissions Sample
Acquisition

Dryer
Dry Ice

Compressed Air
MFC T

SAMPLE ACQUISITION

Teflon Vacuum
Needle Gauge
Sample Valve

Line N
——>——5\, MFC + Totalizer
7,

7

Sampie Loop

Liquid Nitrogen

Vacuum Pump

ANALYSIS

Nitrogen
Carrier

Sample GC - FPD
Loop

Stondard
Sample
Loop
Liquid Hot
Nitrogen Water
Permeotion
Oven

Fig. 2. Schematic diagram of flux chambers, sample acquisition system and analytical system used to measure rates
of emission of biogenic sulfur compounds from wetlands.
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the blank, we chose to use Tygon in the areas inhabited by S.
patens to maintain continuity and to estimate COS uptake.

Three flux chambers were deployed simultaneousty. To
determine the intra-zone variability, all three chambers were
deptoyed within one vegetation zone and several samples
were collected over a short time period (3-4 h). On other
occasions, one chamber was placed within each vegetation
zone to determine inter-zone and diel variations. For sites
which displayed very high fluxes of ope particular S gas
species (i.e. DMS), a small volume sample was collected just
prior to a large one.

Analytical technique

Samples were analyzed on a Perkin-Elmer Sigma 300 gas
chromatograph equipped with a sulfur dioxide doped, flame
photometric detector and a 1.8mx03175cm OD FEP
Teflon column packed with 1.5% XE-60, 1% H,PO,, 60/80
Carbopack B (Supelco). Samples were remobilized by im-
mersing the sample loops in a boiling water bath and loaded
onto the column with a Teflon-lined ten-port valve (Fig. 2).
The oven temperature of the gas chromatograph was pro-
grammed to begin at 50°C for 0.5 min, then ramp at 32°C
min~ ! 10 90°C, stay at 90°C for 2.0 min, then ramp at 32°C
min~! to 110°C, remain at 110°C for { min and then return
to 50°C for the next sample. Sample analysis took approxi-
mately 6 min with a nitrogen carrier flow of 24 cm®min~.
Chromatograms were integrated on a Perkin-Elmer LCI-100
plotter integrator.

Several modifications were made to the gas chromato-
graph to improve its performance. The hydrogen fuel for the
detector was doped with a SO, permeation tube at ~7.6
% 10711 gSs™%in 1987 and ~ 69x 1071 gSs™" in 1988.
Doping resulted in decreased detection limits, improved
linearity of calibration curves and it allowed for the detection
of detector interference from co-trapped hydrocarbons and
CO,. Both CO, and CH, eluted early from the column and
did not interfere with any of the compounds of interest here.
A typical chromatogram for sites inhabited by either §.
alterniflora ot S. patens are shown in Fig. 3. The temperature
of the permeation tube used to dope the fuel was maintained
in a water bath at room temperature. The detector jet was
replaced with a quartz glass jet of identical configuration as
the original steel jet. A baffled vent for the detector was also
installed to prevent inadvertent air pressure changes from
affecting the detector flame.

The gas chromatograph was calibrated by dilution of
permeation tube (VICI Metronics) emissions. Permeation
tubes for each subject compound were maintained at 30°C in
a Tracor model 412 Mini-perm Permeation Tube Calibr-
ation System. Tube loss rates were determined gravimetri-
cally. Routine primary calibration was conducted just before
and after field sample analysis by varying the rate of diluent
(N,) flow across the permeation devices, injecting a known
volume from a standard sample loop (Fig. 2) and correcting
for temperature, pressure and flow rate. The rate of diluent
flow was determined using a calibrated pressure gauge which
was situated upstream of the chamber just prior to a critical
orifice. The quantities of standard §, in ng, delivered to the
analytical column from the sample loop were 0.26-23.3 for
DMS, 0.134-11.87 for MeSH and 0.16-14.12 for COS.

Relative recoveries of S gases were determined occa-
sionally using permeation standards and a laboratory flux
chamber fitied with tubing, drier and a cryogenic system
which were identical to the field apparatus. These tests were
conducted using either high concentrations of § gases pro-
vided directly from the permeation devices or from S stan-
dards which were diluted within a secondary Teflon cham-
ber. The secondary chamber consisted of an entry port from
the primary chamber, an entry port which delivered diluent
gas, an exit port which delivered diluted S gases to the
laboratory flux chamber and a vent. The rates of diluent flow
and vent loss were monitored directly with mass flow meters.

The rate of flow from the secondary dilution chamber to the
flux chamber was calculated by difference. The rate of diluent
flow to the final flux chamber was also monitored with a mass
flow meter. Mass flow meters never came in contact with the
analyte compounds. The two chamber dilution system
together with additional dilution provided by the flux
chamber/sweep air system yielded concentrations of S gases
within the chamber that were similar to those encountered in
field samples (0.3-26.0 ng# ™ *). The addition of high humid-
ity to the chamber had little to no effect on the recovery of S
gases at both high and low concentrations of S. Recoveries
using the cryotrapping system were 60-85% of results using
the direct sample loop. The lowest recoveries were for
compounds that eluted last from the column. Although the
recovery of S gases was lower using the cryotrapping system,
recovery percentages were consistent over all experimental
conditions and were used to calculate the final fluxes. The
coefficient of variation of triplicate standards of dimethyl
sulfide (DMS), methane thiol (MeSH) and carbony! sulfide
(COS) handled identically to field samples were 1.6%, 2.1%
and 1.5%, respectively at a simulated emission rate of
~ 3.0 nmolm~2h~*, However, we estimated that the error
for field samples was closer to 15% (Morrison, 1988). The
detection limits for the compounds of interest were
35-70 pgZ ! at a signal to noise ratio of 2. The minimum
emission rates that could be determined under typical field
conditions for DMS, MeSH and COS, and were 1.4, 0.8 and
0.7 nmol m~2h~1, respectively. When Tygon tubing was
used, the minimum emission rates for DMS and COS
increased to 6.8 and 12.3 nmolm™?h ™", respectively.

cos
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Fig. 3. Typical chromatograms of

gaseous sulfur compounds in sam-

ples collected from flux chambers

deployed over soils inhabited by

Spartina patens (A) and S. dlter-
niflora (B).
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Fig.4. Emission rates of dimethyl sulfide (DMS) from the various sites over short time scales on different dates. Replicate sites
" 0O,1; ®,2 A, 3. Note that vertical and horizontal scales are identical for all plots except for 19 August 1987.

RESULTS

During 1987, the S. alterniflora at site A was appro-
ximately twice as tall as the §. alterniflora at site T.
Although we did not measure the biomass within
collars, there was a much lower density of culms
within A3 compared to the other sites at A. In 1988, S.
alterniflora plants at site A were shorter and less dense
than in 1987. The S. alterniflora at site T during 1988
was nearly the same height as at site A. However, by
mid-August 1987, the biomass within site T1 was
considerably less than at the other T sites which
remained similar to all of the A sites. Large annual
variations in productivity and rates of biogeochemical
processes within this marsh were noted previously for
the period 1984-1986 (Hines et al., 1989).

Dimethyl sulfide emissions

The variation in fluxes of DMS was a function of plant
species and the apparent biomass of grass at each site.
Fluxes of DMS from the S. alterniflora sites were the
highest of all observed fluxes with rates generally
4000-6000 nmolm~2h~ (Figs 4 and 5). Emissions of
DMS were extremely high at site A during mid-August
1987 when rates reached > 19,000 nmolm~2h~!, The
fluxes of DMS from S. patens-inhabited sites (sites
P1-P3) were much lower at 40-90 nmolm~2h~!
(Figs 4 and 5).

During experiments of short duration, there was
little temporal variation in DMS flux (Fig. 4). There
was little variation in flux among replicate sites as well,
except where there were marked differences in the
quantity of biomass within collars. These exceptions
were site A3 during 1987 and site T1 during 1988,
These two locations had considerably less biomass
than the others. Using a combination of column density
and height, it was found that site T1 in mid-August
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Fig. 5. Variations in dimethyl sulfide
(DMS) and methane thiol (MeSH) emis-
sions from sites Al (O), T1 (®) and Pt
(A)for a 24 h period in 1987. Site A soils
were flooded from ~ 20:15 to 00:15. Site T
soils were flooded from ~ 20:45 to 23:55.

1988 had ~ 15-20% of the emergent biomass as sites
T2 and T3. Site T1 also displayed ~20% of the flux of
DMS compared to the other sites at T. Earlier in the
growing season (June) there were less noticeable dif-
ferences in biomass at sites T1-3 and DMS fluxes were
similar. In contrast with 1987, sites A and T in 1988
had similar quantities of emergent biomass and DMS
fluxes from sites A1-3 and T2-3 were similar.

Fluxes of DMS varied by slightly more than a factor
of two during a 24 h period in August 1987 (Fig. 5).
Emissions were highest at site A and extremely low at
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site P. Fluxes were highest during daylight hours and
the temporal changes for the two sites inhabited by S.
alternifiora showed similar trends. The differences
noted on 5 August (Fig. 5) were similar to what was
noted 6 days earlier during a shorter term preliminary
study of these sites (data not shown). At both Aand T,
DMS fluxes increased after the marsh was flooded by
tidal waters.

Methane thiol emissions

Fluxes of MeSH generally mimicked those of DMS,
i.e. emissions were relatively constant for short time
periods, highest from sites that contained the most
biomass, highest during daylight hours and showed
increases following tidal flooding (Figs 5 and 6). Rates
of MeSH emissions were 100-150 nmolm~2h ™! dur-
ing August 1987 and ~ 80 nmolm~?h ™" during 1988
in the . alternifiora soils (sites A and T). Emissions of
MeSH from the P soils were approximately one-third
as rapid as those from the S. alterniflora-inhabited
sites. The difference between the A and T sites and
fluxes of MeSH at P were most evident during the
1987 studies when MeSH fluxes from the A and T sites
were maximal.
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Fig. 6. Emission rates of methane thiol (MeSH)

from the various sites over short time scales op

different dates. Replicate sites O, 1, @,2; A, 3. Note

that vertical scales are identical except for 19 August
1987.

Carbonyl! sulfide emissions

Quantification of COS emissions was affected by
the Tygon tubing-imposed blank. Since blanks were
not needed for the other gas species except for DMS in
the S. patens soils, we did not measure them routinely
on each sampling day. Figure 7 depicts results of a
typical set of blank-corrected data for COS emissions
from sites A and P. Although there was little variation
in COS flux among sites within a particular vegetation
type, there was net uptake of COS (~ 35 nmolm ™2
h~1) at site A as opposed to a net efflux of COS
(~ 20 nmolm~2h~1) to the atmosphere from site P.

DISCUSSION

Emissions of DMS were controlled by plant species
type and biomass. The finding that DMS flux was two
orders of magnitude higher from S. alterniflora com-
pared to S. patens, agreed with the fact that S. patens
does not produce measurable quantities of the osmo-
regulatory compound dimethylsulfoniopropionate
(DMSP) (Dacey et al., 1987). The decomposition of
this compound has been shown to be the primary
precursor of DMS in marsh grasses and oceanic
phytoplankton (Larher et al, 1977, Dacey and
Wakeham, 1986; Dacey et al, 1987). The results
presented here provide field confirmation that DMS
emissions are a function of the presence of grass
species that produce DMSP and that when calculating
regional estimates of DMS flux one must consider the
distribution and biorhass of vegetation. Goldan et al.
{1987) also found maximum fluxes of DMS from areas
inhabited by S. alternifiora in a North Carolina marsh
while DMS fluxes from Juncus romerianus were 10-
fold lower.

The flux of DMS from §. alternifiora has been
shown to occur from leaves rather than from the
sediments (Dacey et al, 1987). This explains our
finding that DMS flux was related closely to the
quantity of emergent biomass in the New Hampshire
marsh. de Mello et al. (1987) also reported that DMS
emissions were a function of biomass in a Florida §.
alterniflora marsh. We atso found that DMS emissions
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Fig. 7. Flux of carbonyl sulfide (COS) at sites A
and P, August, 1988. Tidal water never flooded
the soils when samples were being collected.
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varied by a factor of ~ 2 over a 24 h period, probably
in response to changes in light and temperature.
Others have reported a close relationship between
DMS flux and these physical parameters (ie.
Jorgensen and Okholm-Hansen, 1985; Goldan et al.,
1987, Cooper et al., 1987a; Fall et al,, 1988). Our
finding that DMS emissions increased during tidal
flooding agrees with the conclusion of Dacey et al.
(1987) that sediments are a sink for DMS and covering
the sediments with water effectively blocks this sink.
Goldan et al. (1987) also reported an increase in DMS
flux rate from S. alterniflora soils once they were
flooded with tidal water. This result is opposite to the
fluxes of sediment-derived S gases, such as H,S, which
may display large maxima just prior to high tide due
to tidal pumping (Hansen et al., 1978; Jorgensen and
Okholm-Hansen, 1985; Cooper et al., 1987a). Insuffi-
cient data are available to ascertain if the increase in
DMS flux during periods of flooding is due to physi-
ological changes related to osmoregulation.

The data presented here support the notion that
biomass and plant species distribution appear to be
dominant controlling factors with light and tem-
perature diel changes as secondary factors affecting
the magnitude of DMS flux on a regional basis during
the growing season. The obvious visual differences in
the abundance of biomass within each collar and the
coincident variations in gaseous S flux suggest that
regional estimates of S emissions can be obtained from
data that differentiate plant species and biomass.

Remote sensors are currently available which have
this capability such as the Airborne Imaging Spec-
trometer (Gross and Klemas, 1986).

Methane thiol emissions mimicked DMS emissions
in the site inhabited by S. alternifiora, although at
much lower rates. The coincidence of fluxes for these
two S species was similar to what was reported for
agricultural crops by Fall et al. (1988). As with DMS,
MeSH appears to be produced by leaves of S. alter-
niflora and production is controlled, in part, by photo-
synthesis. The similarity in DMS and MeSH emission
trends in the S. alterniflora-inhabited regions (A and
T) suggests that MeSH could be a demethylation
product of DMS. This does not seem to be the case for
S. patens since the quantity of MeSH produced is large
relative to the DMS flux rate, i.e. ~ 1:3 for S. patens
and ~ 1:100 for S. alterniflora. Methane thiol is an
intermediate in the methanogenic decomposition of
DMS in anoxic marine sediments (Kiene et al., 1986).
Our finding that MeSH fluxes increased once the
sediments were covered by tidal waters suggested that
the sediments were a sink for MeSH.

Emissions of COS were also affected by plant
species distribution with net uptake in the S. alter-
niflora soils and net efflux from the S. patens soils.
Since COS uptake by vegetation is dependent on the
COS concentration (Goldan et al., 1988) it was not
possible to calculate a natural rate of COS flux by
these species. However, the quantity of COS intro-
duced into the flux chambers by bleed from Tygon

Table 1. Ranges of emission estimates of biogenic sulfur compounds from vegetated areas of saline marshes

Emission rate (nmolm~2h™")

Location

DMS  MeSH CoSs

Reference

Spartina alternifiora, NH, June, August

800-18,000 10-300

—25t0 —40* This study

S. alterniflora, MA, all yeart 0-52,000 nr} 94-2200§ Steudler and Peterson (1985)

S. alternifiora, Cedar Island, NC, August 560-1700  9-19 7-22 Goldan et al. (1987)

S. alterniflora, NC, Summer 640,4700]| 1407 Aneja et al. (1979a,b)

S. alternifiora, FL, Jan., Oct., May 310-17,000 nr Cooper et al. (1987a); de Mello
et al. (1987)

S. alternifiora, NC 14009 < 180 1109 Aneja er al. (1981)

S. patens, June and August 0-130 0-60 10-36 This study

S. alternifiora and S. patens, VA, Aug, Sept.  nr nr 0-28 Carroll et al. (1986)

Juncus romerianus, Cedar Island, August 100-650 5-75 17-41 Goldan et al. (1987)

Juncus romerianus, FL, April, May, Jan. 3-200 nr nr Cooper ef al. (1987b)

Distichlis spicata, FL, April, May 19-720 nr nr Cooper et al. (1987b)

Marsh meadow, Denmark, July 100-1100  0-25 0-140 Jorgensen and Okholm-Hansen

(1985)

Various saline marshes**

246600 1.1-780t+ 0.7-213%%

Adams et al. (1981b)

* Negative values indicate uptake.
t Range of 24 h mean values.
} Not reported.

§ Daily mean values were positive yet some hourly values were negative indicating uptake.
#l Averages from Cox’s Landing and Cedar Island, respectively.

€ Mean values.
** Range of average values from 15 locations.

1+ Most locations. Values up to 83,000 noted in some areas exhibiting high H,S flux.

11 Two locations in NC yielded rates of 3100 and 23,000.

AE(A) 24:7-L
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tubing was approximately one-third of the typical
concentration of COS in the troposphere (Carroll,
1985) so these rates may approach the natural
rate.

Vegetation appears to act as a net sink for troposph-
eric COS (Kluczewski et al, 1983; Brown and Bell,
1986; Fall et al., 1988; Goldan et al., 1988) and COS is
probably taken up similarly to CO, (Goldan et al,
1988). Tt appears, from the data presented here, that the
rapidly growing S. alterniflora was a net daytime sink
for COS compared to the less photosynthetically
active S. patens. Previous studies have reported that
salt marshes are sources of atmospheric COS (i.e.
Steudler and Peterson, 1985; Carroll et al., 1986;
Goldan er al.,, 1987). Steudler and Peterson (1985) did
note periods of COS uptake in a S. alterniflora marsh
but on a 24-h basis these episodes were overwhelmed
by efflux events. Carroll er al. (1986) reported that
COS emissions from a salt marsh were most rapid
during the day, yet Fall et al. (1988) and Goldan et al.
(1988) reported that COS uptake by laboratory-based
agricultural plants occurred only in the presence of
light. Therefore, it is unclear whether salt marshes are
sources or sinks of COS. In addition, since COS is by
far the most abundant S gas in the atmosphere,
techniques that utilize S-free sweep air may be over-
estimating COS flux by enhancing the diffusional
flux.

The emission rates of the S compounds presented
here were similar to those published previously by
others (Table 1). The comparison in Table 1 shows
clearly that of the salt marsh species that have been
studied, more DMS is emitted from S. alternifiora than
from other grasses, a finding consistent with the
presence of high concentrations of DMSP in S. alter-
niflora. Tt is interesting that the range of DMS fluxes
measured in New Hampshire were very similar in
magnitude to those measured by Cooper et al. (1987a)
and de Mello er al. (1987) in a S. alternifiora marsh in
Florida at the southern extent of the distribution of
this grass species. Since the growing season of §S.
alterniflora is very short in New Hampshire (Hines et
al., 1989) compared to Florida, it is likely that the
annual emission of DMS is greater in Florida. How-
ever, fluxes of DMS from a Massachusetts marsh
located ~ 140 km south of New Hampshire were the
highest ever recorded (Steudler and Peterson, 1985).
Our MeSH flux data are also comparable to those of
others (Table 1), however, relatively few field studies
have measured MeSH fluxes. Although our MeSH
emission rates from §. alternifiora were much higher
than those of Goldan et al. (1987), the ratio of MeSH
flux to DMS flux was very similar. In addition, the S.
alterniflora that we studied at the SA site in New
Hampshire was much taller than this species in the
Cedar Island site studied by Goldan er al. (1987)
underscoring the relationship between biomass and
emission and the notion that MeSH is emitted prima-
rily from leaves.

CONCLUSIONS

Emissions of DMS, MeSH and COS from saline
marshes do not vary greatly over periods of a few
hours. Horizontal variation in DMS and MeSH fluxes
from S. alterniflora-inhabited regions is due primarily
to differences in abundance of emergent biomass.
Fluxes of DMS from §. alternifiora are two orders of
magnitude higher than from S. patens, presumably
because §. patens does not produce sulfonium com-
pounds for osmoregulation. Emissions of MeSH from
S. alterniflora mimicked those of DMS suggesting that
MeSH is emitted primarily from emergent portions of
these plants rather than from the marsh soil. The
apparent release of DMS and MeSH from leaves and
the relationships between emission rates, biomass and
species distribution suggests that remote sensing tech-
niques can be used to estimate S gas fluxes from saline
marshes on regional scales. Spartina alterniflora ap-
peared to take up COS, at least during the day, while
S. patens was a net source of COS.
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THE ROLE OF CERTAIN INFAUNA AND VASCULAR PLANTS IN THE
MEDIATION OF REDOX REACTIONS IN MARINE SEDIMENTS
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3 ABSTRACT

The mechanisms by which certain animals and plants affect redox processes in sediments was examined by ;
studying three environments: (1) subtidal sediments dominated by the deposit-feeding polychaete Heteromas- !
tus filiformis; (2) a saltmarsh inhabited by the tall form of Spartina alterniflora; (3) tropical carbonate sedi- .
ments inhabited by three species of seagrasses. © S-sulfide production rates were compared to pool sizes of | P
dissolved sulfide and dissolved iron. In all of the sediments studied, rates of sulfate reduction were enhanced .
by macroorganisms while the rate of turnover of dissolved sulfide increased. The polychaete enhanced microbial
activity and redox cycling primarily by subducting particles of organic matter and oxidized iron during sedi-
ment reworking. The Spartina species enhanced anaerobic activity by transporting primarily dissolved organic
matter and oxidants. Although the final result of both animal and plant activities was the enhancement of sub-
surface cycling of sulfur and iron, decreased dissolved sulfide and increased dissolved iron concentrations, the
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mechanisms which produced these results differed dramatically.

Keywords: redox cycling, sulfate reduction, porewater chemistry, bioturbation, Spartina alterniflora, tropical

Plants and animals that live in or on
sedimentary environments have consid-
erable influence on the physical and chemi-
cal conditions of these sediments. Animals
affect sediments by particle mixing due to
movements during foraging for food or es-
caping from prey (Whitlatch, 1974; Cadée,
1976; Tevesz et al., 1980) or by the ingestion
of particles during feeding and the trans-
port of those particles to the sediment sur-
face during defecation (Rhoads, 1967;
Cadée, 1979; Taghonetal., 1984). Fecal pel-
lets may be buried rapidly by new pellets as
they are deposited at the surface.

Animals also influence sediments
through irrigation of burrows (Aller et al,,

tivities can have a profound effect on the
microbiology of the sediments by transport-
ing fresh organic matter to depth (Aller and
Yingst, 1980, Hines and Jones, 1985),
breaking down aggregates which can be
colonized by microbes (Lopez and Levinton,
1978), transferring reduced compounds to
oxidizing regions (Rhoads, 1974; Hines and
Jones, 1985), and removing toxic metabo-
lites while providing nutrients (Hargrave,
1970; Aller, 1977). Bioturbation has been
reported to enhance rates of nitrification
and denitrification (Sayama and Kurihara,
1978): Kristensen et al., 1985), SO 42_ reduc-
tion (Aller and Yingst, 1980; Hines and
Jones, 1985) and ammonification (Aller and

" Yingst, 1980).
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Bioturbation affects sedimentary chem-
istry by disrupting vertical zonations of bio-
geochemical processes (Aller, 1977, 1982;
Aller and Yingst, 1985). This results in
redox gradients which may be situated hori-
zontally and vertically as in the case of ver-
tical, oxygenated burrows or more random-
ly as in microenvironments such as fecal
pellets (Aller, 1977, 1982; Jargensen, 1977).
In general, the enhanced mixing of overly-
ing water and porewater lowers the con-
centrations of most solutes in sediments.
However, redox sensitive elements which
change phases when reduced or oxidized
may display increased porewater concen-
trations as a result of infaunal activity and
subsurface redox cycling (Goldhaber et al.,
1977; Hines et al., 1982, 1984).

Vascular plants such as marsh grasses
and seagrasses can affect sedimentary
chemistry in a manner which is similar to
the effects of infauna. Although these or-
ganisms are not capable of particle move-
ment, they influence the sediments by ac-
tively or indirectly transporting solutes and
gases to the root zone (Wetzel and Penhale,
1979; Howes et al., 1981; Mendelssohn et
al., 1981). In addition, rapid production by
these plants can provide a subsurface
source of organic matter to fuel microbial
activity. Therefore, rapid subsurface redox
cycles such as those in bioturbated sedi-
ments may be prevalent in sediments in-
habited by active plant communities. The
present communication compares sedimen-
tary redox cycling in sediments subjected to
active bioturbation by a subsurface deposit-
feeding polychaete to temperate sediments
inhabited by the salt marsh grass Spartina
alterniflora and to tropical sediments in-
habited by a variety of seagrasses. The net
effect of the activities of these fauna and
flora were similar,i.e., enhancement of sub-
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surface anaerobic microbial activity, move-
ment of oxidants to depth in the sediments
and a rapid subsurface redox cycle of S and
Fe. However, the infauna produced these
events by transporting solid phase organic
matter and oxidants into the sediment
while the flora transported dissolved or-
ganic matter and molecular oxygen or dis-
solved oxidants.

MATERIALS AND METHODS

Sample locations

Bioturbated Site. Subtidal sediments in
a shallow area of Great Bay, New Hamp-
shire, U.S.A., were studied for several
years. This site, which has been described
by Hines and Jones (1985), is located just
below the low tide mark in a ~0.7 ha cove.
Mean tidal range is -2 m and the tempera-
ture ranges from —0.5 to 25°C. The sedi-
ments are predominantly silts and clays
with a large percentage of organic aggre-
gates (Winston and Anderson, 1971). Cores
collected for a 13 month period between
1984 and 1986 were examined for macroor-
ganism content by P.F. Larsen (Bigelow
Laboratory for Ocean Sciences, unpub-
lished data) and revealed that the majority
of the biomass in these sediments was at-
tributable to the subsurface deposit-feeding
polychaete Heteromastus filiformis. During
summer, this organism reached population
sizes as high as ~5000 individuals m™>.
Otherinfaunal species (36 total) were abun-
dant but very small and restricted to the
upper 1-2 cm of the sediment.

Salt Marsh Site. Chapman’s Marsh is lo-
cated near the mouth of the Squamscott
River in the upper regions of Great Bay,
New Hampshire and is described in detail
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in Hines et al. (in review). This marsh is
dominated by Spartina patens with stands
of S. alterniflora along creek and river
banks. Because of the steep slope of the
banks the S. alterniflora-inhabited areas
are generally less than 30 m wide and in
some locations are only a few meters in
width. The area sampled contained the tall
form of S. alterniflora which reached over 2
m in height. The transition from tall to
short S. alterniflora is abrupt and the tall
S. alterniflora occupies a major percentage
of the total S. alterniflora-containing soils.
The tidal range at the marshis ~2 m. The
soil contained relatively fine grained min-
eral matter in addition to root and rhizome
material.

Tropical Seagrass Site. Samples were
collected from a shallow water site near the
NE end of San Salvador Island, Bahamas.
This location is described in Short et al.
(1985). The sediments contained relatively
fine-grained carbonate material and were
inhabited by nearly pure seagrass stands of
either Thalassia testudinum, Syringodium
filoforme, or Halodule wrightii and sedi-
ment samples were collected from all three
grasses. In addition, sediment samples
were collected from a control site with no
live seagrasses but with abundant rem-

nants of seagrass roots and rhizomes. This

control area was more affected by wave
wash than in the vegetated areas.

Sample Collection. Sediment cores from
the bioturbated site were collected using a
hand-held plexiglas box corer (Hines and
Jones, 1985). These were transported to the
laboratory with the overlying water in
place. Cores from the marsh site were col-
lected using a Wildco corer which contained
a plastic core liner and core catcher. Cores

were flushed immediately in the field with
N,and transported to the laboratory. Cores
from the Bahamas sites were collected by
hand using polycarbonate core liners.
These latter samples were distributed into
vessels in the field.

Porewaters from the bioturbated site
were collected by centrifuging sediment
horizons and filtering the supernatant
under N, (Hines et al., 1984). Porewaters
from both the marsh and tropical sites were
collected using in situ “sippers” as described
in Short et al. (1985) and Hines et al. (in
review). These devices, which are deployed
several days to weeks in advance of use, are
lysimeters made of teflon which contain a
porous teflon collar at the desired depth for
water collection. Porewater is drawn into
the sipper by applicaticn of a vacuum under
N,.Samples are immediately filtered under
N, in the field and divided into storage ves-
sels anoxically. Sippers are necessary to
prevent artifacts due to the destruction of
roots during sampling (Howes et al., 1985).

Sulfate Reduction Rates. Rates of sulfate
reduction were determined using 353 ac-
cording to Jergensen (1978) as modified by
Westrich (1983). Sediment samples were
placed into 5 cc syringes which were sealed
with serum stoppers. One uCi of $5.50,~ N
was injected into each syringe and samples
were incubated in a dark N-filled jar over-
night at ambient temperature. Activity was
stopped by freezing. Sulfur-35 present in
acid-volatile sulfides (AVS) was determined
by actively distilling sulfides into Zn
acetate traps as described by Hines and
Jones (1985). Chromium-reducible sulfur-
35, which represents largely pyrite and
elemental sulfur, was determined by reduc-
ing these species tosulfide by refluxing with
acidified Chromium (II) (Zhabina and

- ——

T
BT o s T

n 4 g meted beod o

—— b r twant (O Ve

e ey e




L . 2}

278

Volkov, 1978; Westrich, 1983). Only the
AVS portion was determined in the biotur-
bated sediments.

Porewater Analyses. Sulfide was
measured colorimetrically according to
Cline (1969). Dissolved iron was deter-
mined colorimetrically using FerroZine
(Stookey, 1970). Sulfate was determined
turbidimetrically (Tabatabai, 1974).

RESULTS
Bioturbated site

Relative changes in bioturbation were
determined using X-radiographs, abundan-
ces of infauna, and changes in sedimentary
chemistry. In general, the influence of in-
faunal activity on sedimentary chemistry
commenced in June during most years and
was accompanied by an increase in rates of
SO42_ reduction, an increase in the con-
centration of dissolved Fe, and a decrease
in HS™ (Hines et al., 1984, 1985). Figure 1
demonstrates that dissolved Fe was abund-
ant in JEL sediments throughout sedimen-
tary regions that experienced relatively
rapid rates of 8042— reduction. Dissolved
sulfide was never detected (detection limit
1-2 uM) in the upper 8-10 c¢cm during the
summers in which bioturbation was ob-
served even though HS™ production in-
creased to maximal levels during this time
(Hines et al., 1985). The variations in dis-
solved Fe depicted in Fig. 1 were probably
present at very low levels in these sedi-
ments but was maintained at undetectable
concentrations by its rapid removal by FeS
precipitation. The highest concentrations of
dissolved Fe always occurred during the
summer. For comparison, a relatively non-
bioturbated site in Great Bay did not dis-
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Fig. 1. Typical depth profile of dissolved Fe and rates
of sulfate reduction (SRR) in the bioturbated sedi-
ments during summer. Dissolved sulfide concentra-
tions were below detection (<2.0 uM).

play an increase in dissolved Fe during the
summer and rates of SO 42— reduction were
much slower than at the bioturbated loca-
tion (Hines and Jones, 1985).

Salt marsh site

Above-ground plant growth in the marsh
soils studied began in mid-June and elon-
gation ceased once the plants flowered in
early August. Sulfate reduction was very
rapid in the marsh soils and rates displayed
sharp maxima when plants were actively
elongating (Fig. 2). Once the S. alternifiora
flowered, SO,%" reduction decreased -4-
fold within a few days. Temporal changes in
8042— reduction rates agreed well with
changes in S0,27/CI ratios (data not
shown). However, as pointed out by Hines
et al. (in review), 8042_/C1 ratios in these
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Fig. 2. Temporal variations in sulfate reduction rate
(SRR) and concentrations of dissolved sulfide (HS")
and dissolved Fe in the salt marsh sediments in-
habited by the tall form of Spartina alterniflora.
Values represent averages of upper 20 cm of sedi-
ment. Bar represents period when plants were active-
ly elongating above ground. The detection limit for
dissolved Fe was ~0.2 uM.

marsh sediments can only be used qualita-
tively because of the influence of vertical
and lateral groundwater movement and the
oxidation of the soils by plant activity.
Dissolved sulfide concentrations incr-
eased as plant height and rates of 8042_
reduction increased (Fig. 2). Concentra-
tions of HS™ began to level near the end of
the active elongation period. After S. alter-
niflora flowered in August, the concentra-
tions of HS™ increased rapidly again even
though rates of HS™ production had dec-
reased dramatically. These concentrations
decreased again in the Fall.
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Dissolved Fe concentrations were low in
these sediments when plants were elongat-
ing and decreased throughout the summer
(Fig. 2). However, Fe was always detectable
in the porewaters despite the occurrence of
mM levels of HS .

Tropical seagrass beds

Sulfate reduction rates were -10-fold
lower in the sediments inhabited by sea-
grasses compared to the marsh soils des-
cribed above (Fig. 3). Rates were most rapid
in sediments occupied by Halodule, and
slowest in sediments inhabited by Thalas-
sia. Concentrations of HS™ were very low in
the control sediments but reached values >1
mM in seagrass sediments. The highest
HS™ concentrations occurred in the Syrin-
godium beds while ‘concentrations were
very low in the sediments inhabited by
Halodule. Iron was not measured in these
porewaters but presumably Fe concentra-
tions were very low due to the carbonate
composition of the island and of the sedi-
ments and the fact that this island in on the
outer bank of the Bahamian islands.

There was no detectable decrease in
SO42' with depth in any of the tropical sedi-
ments examined (data not shown). This
lack of SO_.,Z_ depletion has been noted in
other carbonate sediments which exhibit
8042_ reduction which is even more rapid
than rates noted for these Bahamian sedi-
ments (Hines and Lyons, 1982; Hines,
1985).

DISCUSSION

The production rates of HS™ (SO 42_ red-
uction) in the bioturbated sediments in
Great Bay were highest during the summer
when temperatures were high and the sedi-
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Fig. 3. Depth profiles of sulfate reduction rates and dissolved sulfide concentrations in various carbonate
sediments from the Bahamas.
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ments were subjected to active bioturbation
(Hines and Jones, 1985). However, during
this time of year, dissolved Fe was at max-
imal concentrations and HS™ concentra-
tions were low or undetectable in the pore-
waters (Fig. 1). Although some Fe may have
been complexed by organosulfur ligands
(Boulegue et al., 1982), Fe cannot remain in
solution at high concentrations in the
presence of HS™ production since in anoxic
sulfidic sediments the concentration of dis-
solved Fe is controlled primarily by the
precipitation of Fe sulfide minerals (Lyons,
1979). To maintain high concentrations of
dissolved Fe in these sediments which were
experiencing rapid rates of HS production,
it was necessary that the appropriate
oxidants were continuously supplied to fuel
a subsurface redox cycle of Fe and S which
would result in the reduction and dissolu-
tion of Fe (Hines et al., 1982). Hence, Fe(III)
had to be introduced into the sediments and
reduced to Fe(ID) at a rate which was at
least fast enough to remove HS™ as it was
generated microbially. One mechanism for
providing the appropﬁate oxidant would be
the introduction of O, into the sediments
via burrow irrigation. However, a more
plausible mechanism for the sediments
studied here can be deduced from an exami-
nation of the lifestyle of the predominant
bioturbator.

The infaunal community at JEL is
dominated on a biomass basis by the sub-
surface deposit-feeding polychaete H. fili-
formis. This organism is a classic “conveyor-
belt” feeder (Rhoads, 1974) which consumes
fine anoxic sediment at 8-30 cm and passes
it, through its gut, to the surface without
oxidizing the reduced material (Cadée,
1979). Often, the fecal pellets are black
(FeS) when deposited and they are then
oxidized at the sediment surface (Cadée,
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1979). The burrows are not ventilated and
are not surrounded by a zone of oxidation
(Pals and Pauptit, 1979). The worm is ad-
apted physiologically to life in O,-deficient
environments (Pals and Pauptit, 1979).
The movement of fecal pellets by H. fili-
formis supplied the necessary oxidants to
drive a subsurface redox cycle in the sedi-
ments studied. Reduced sediment in fecal
material was oxidized at the sediment surf-
ace chemically and/or biologically.
Additional pellet production buried the
oxidized pellets into anoxic regions where
they were reduced chemically and/or bio-
logically, thus allowing for the dissolution
of Fe. The Fe(II) produced was available for
removing HS™ as FeS and HS™ never ac-
cumulated in the porewaters. In this way, a

complete redox cycle of Fe and S occurred

in deeper sediments without the need for
the introduction of molecular O, into the
sediments. Although particle reworking
rates were not measured in these sedim-
ents, the population size of H. filiformis was
sufficient to turn over the upper 10-15 cm
of sediment several times during the sum-
mer (Cadée, 1979; Shaffer, 1983).

If the reduction of Fe(III) occurred
chemically during HS™ oxidation then the
production of FeS required two moles of
HS™ for each mole of Fe since one mole of
HS™ would have been consumed during the
reduction of Fe(II). If Fe reduction was due
to the use of Fe as an electron acceptor by
bacteria then FeS precipitation required
only one mole each of Fe and HS". Iron-
reducing bacteria have been isolated from
these sediments but the extent of Fe reduc-
tion that is strictly biological is unknown
(Tugel et al., 1986).

The marsh and seagrasses studied also
affected the subsurface redox chemistry in
the sediments. One major difference be-
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TABLE 1

REDOX REACTIONS IN MARINE SEDIMENTS

Calculated resident times (days) of dissolved sulfide in the various sediments studied. Values equal the
quoatient of the concentration of sulfide divided by the rate of sulfate reduction

Bioturbated Marsh sediments Tropical sediments
site During growth  After flowering Halodule Syringodium Thalassia control
<.0067 1.5-2.0 5.1-10 0.16 2.7 2.4 1.2

tween the effects of bioturbation in Great
Bay and the effects of the vascular plants
was that the infaunal activities resulted in
the complete removal of HS™ from solution
while considerable HS™ remained in the
plant inhabited porewaters. However, com-
parisons of the HS™ concentrations and
rates of SO42_ reduction in the grass-in-
habited areas revealed that plant activity
had a strong influence on the redox chem-
istry of S in the sediments. The turnover
time or residence time of HS™ in the pore-
waters was calculated by dividing the HS™
concentration by the rate of HS™ production
or 8042- reduction (Table 1). Since the rate
measurements represent a value for the in-
cubation period only and the concentration
values are the result of previous and ongo-
ing activity in the sediments, this calcula-
tion represents only an approximation of
the reactivity of HS™ in the sediments.
However, the wide range in values in Table
1 gives credence to use of these calculations
for estimating the effect of the macroor-
ganisms on S transformations.

Sulfide was not detected in the pore-
waters at the bioturbated site during sum-
mer so the HS residence times were calcu-
lated by using the detection limit of the
method whichis 2uM (1 ;,1mol'l whole sedi-
ment at 50% porosity). Therefore, the resi-
dence time of HS™ during bioturbation was
<10 min. This value represents removal of

HS by all mechanisms and is not necessari-
ly a measure of HS™ oxidation.

Although the HS™ concentrations in the
marsh porewaters were high, the highest
concentrations were encountered after
SO‘,,2~ reduction had decreased greatly.
Therefore, the calculations of HS residence
times revealed a nearly 10-fold increase
after the plants flowered (Table 1). The
onset of flowering produced dramatic chan-
ges in the biogeochemistry of the soils in-
cluding a ~4-fold decrease in 8042' reduc-
tion and an increase in HS™ concentrations.
The fact that the residence time of HS™ in
the porewaters increased rapidly after
flowering and was similar to values
measured after the growing season ended
(Table 1) demonstrated that the plants
were able to oxidize the soils significantly
only when they were elongating actively
above ground. Although it was not clear
whether the plant-mediated oxidation of
the soil was due to molecular O, or to some
other oxidized chemical species produced
biochemically (Howes et al., 1981), it seems
certain that the oxidizing agent was dis-
solved as opposed to the solid phase oxidant
present in the bioturbated sediments at
JEL. The possibility of O, as the oxidant in
Spartina marshes has been discussed by
Boulegue et al. (1982). Even though a
decrease in residence time of HS™ does not
indicate that HS™ is being removed ex-
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clusively by oxidation in the soil, the intro-
duction of an oxidizing agent is required to
continually remove HS™ whether removal
occurs via oxidation or precipitation as an
Fe mineral.

The result of sediment oxidation by the
S. alterniflora was not as apparent as that
noted for the bioturbated sediments. How-
ever, the enhancement of 8042_ reduction
by the plant was dramatic. The rapid in-
crease in 8042— reduction that occurred
when plants were elongating above ground
could not have been due to the utilization of
solid phase organic matter. It was likely
that dissolved organic exudates produced
by the plants (Mendelssohn et al., 1981)
were responsible for fueling the majority of
SO 42— reduction. The “background” rates of
~200-300 nmol ml™ d7! which occurred
before and after the occurrence of the SO42'
reduction maximum were probably due to
the utilization of this solid phase material.
Therefore, in contrast to the bioturbated
sediments, when the plants were elongat-
ing, anaerobic microbial activity was fueled
primarily by dissolved organic matter and

particle transport
surface oxidation

=
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the subsurface redox cycle was sustained by
the production of dissolved oxidants.

The residence time of HS™ in the tropical
seagrass-inhabited sediments were similar
to those in the marsh soils. However, the
rates of 8042' reduction and the concentra-
tions of HS™ were considerably less thanin
the marsh soils. Halodule tended to oxidize
the soils much more than did the other gras-
ses. In fact, these sediments were the only
ones which yielded HS  residence time data
which were more rapid than the control. It
was difficult to compareresidence time data
to the control since the low level of HS™ and
8042— reduction in the control probably in-
creased the importance of diffusional losses
and oxidation in control sediments. The
wave activity at the control site may have
enhanced HS™ removal as well. A better
control would have been obtained if vege-
tated areas had been cut to prevent photo-
synthesis. The enhancement of sediment
oxidation in seagrass-inhabited sediments
was most likely due to dissolved oxidants as
in the marsh soils. Sulfate reduction was
also most rapid in the sediments inhabited
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Fig. 4. Summary of the net result of bioturbation and plant activities on the redox conditions of the marine
sediments studied. Both types of macroorganisms cause subsurface redox cycling but the mechanisms utilized

are different.
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by Halodule which may indicate that this
species is active at providing oxidants and
organic exudates to the sediments. Wetzel
and Penhale (1979) demonstrated the cap-
acity of seagrasses to release organic ex-
udates from the root zone. However, the
data from these Bahamian sediments were
insufficient to determine whether SO42"
reduction was fueled primarily by dissolved
(DOC) or particulate (POC) organic matter.

The net result of the occupation of the
marine sediments studied by eitherinfauna
or flora was an enhancement of anaerobic
microbial activity measured as sulfate re-
duction and the establishment of a subsur-
face redox cycle which caused high dissol-
ved Fe and low HS concentrations. This
process and the mechanisms by which these
organisms produced these changes are
summarized in Figure 4. The deposit-feed-
ing polychaete community provided solid
phase organic matter and oxidized Fe to
subsurface sediments and were efficient at
removing HS™. Conversely, the flora
studied enhanced anaerobic activity and
maintained a subsurface redox cycle by
providing dissolved organic matter and dis-
solved oxidants to the sediments. These
HS removal mechanisms may be impor-
tant for maintaining HS™ concentrations
below levels which are toxic to macro-
organisms.
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EMISSIONS OF BIOGENIC SULFUR GASES FROM ALASKAN TUNDRA
Mark E. Hines and Michael C. Morrisen

Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham

Absmract. Fluxes of the biogenic sulfur gases carbonyl
sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan
(MeSH), and carbon disulfide (CSa) were determined for
several freshwater and coastal marine tundra habitats using a
dynarsic enclosure method and gas chromatography. In the
freshwater undra sites, highest emissions, with a mean of 6.0
nmol m2 bl (1.5-10) occurred in the water-saturated wet
meadow areas inhabited by grasses, sedges and Sphagnum
mosses. In the drier upland tundra sites, highest fluxes
occured in areas inhabited by mixed vegetation and labredor
tea at 3.0 nmol m-2 h-! (0-8.3) and lowest fluxes were from
lichen-dominated areas at 0.9 nmol m2 h-l. Sulfur emissions
from a l2ke surface were also low at 0.8 nmol m2 h'l. Of the
compounds measured, DMS was the dominant gas emined
from all of these sites. Sulfur emissions from the marine sites
were up to 20-fold greater than fluxes in the freshwater
habitats and were also dominated by DMS. Emissionsof
DMS were highest from interidal soils inhabited by Carex
subspathacea (150-250 nmol m-2 b-1)." This Carex sp. was
grazed thoroughly by geese and DMS fluxes doubled whea
goose feces were left within the flux chamber. Emissions *-
were much lower from other typés of vegetation which were .

more spatially dominant. Sulfur emissions from tundra were

among the lowest reported in the literature. “When emission

data were extrapolated to include all tundra globally, the alobal

flux of biogenic sulfur from this biome is2-3x108gyrl
This represents less than 0.001% of the estimated annual
global flux (~50 Tg) of biogenic sulfur and <0.01% of the
estimated terrestdal flux. The low emissions are atibuted to
the low availability of sulfate, ceriain hydrological charac-

teristics of tundra, and the tendency for tundra to accumulate
organic mager. . .

Ingoducdon

Sulfur gases contribute t0 precipitadon acidity [Charlson
and Rodhe, 1982; Nriagu et al., 1987], are involved in various
important atmospheric chemical reacdons, and have bean
implicated as potential regulators of climate by increasing
global altedo [Bates ef al., 1987a; Charlson et al., 1537}. A
major guesdon in our understanding of the natural sulfur cycle
is the role of biogenic sulfur emissions in the ammospherc
[Andreae et al., 1990} Although wemendous progress in
delineadng the sources and sinks of sulfur gases has been
achieved recently, there remains considerable uncertainty as 1o
the role of certain terrestrial environments as sources of
biogenic sulfur gases [Andreae, 1985]. Recent work has
contibuted greatly to an understanding of the role of temperate
soils and vegetation as sources and sinks of sulfur gases
[Goldan et al., 1987, 1988: Lamb et al., 1987; Fall et al.,
1988). Several studies have examined the emissions of sulfur
gases from temperate salt marshes (sec references listed in
Aneja and Cooper [1989)) and recent studies have begun to
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examine the emissions of sulfur gases from tropical environ-
ments [Andreae and Andreae, 1988; Andreae et al., 1990].

Nriagu et al. [1987] suggested that wedands in Ontario,
Canada, may emit quantities of biogenic sulfur which are
similar in magninde to oceanic fluxes of dimethyl sulfide
(DMS). Although high latitude wedands consttute a reladvely
large area of the terrestrial Earth [Marhews and Fiung, 1987],
no studies have directly determined the flux of sulfur gases
from these environments. In this paper we present results of
sulfur emission measurements made in freshwater and marine
wetlands in Alaskan mndra during the Arcdc Boundary Layer
Expedition’ 3A (ABLE 3A) in July 1988 . These data
indicated that this type of tundra emits very small amounts of
gascous sulfur and accounts for a very small percentage of the
global flux of biogenic sulfur to the atmosphere.

) Methods
Sampling Locations

The freshwater sites studied were located near Bethel,
Alaska, in the Yukon-Kuskokwim delta (Figure 1). In this
area, flux measurements were made in varjous types of upland
tundra vegetation including regions dominated by graminoids,
labrador tea (Ledum palustre), Sphagnion mosses, and lichen

cies and in wet meadow sites dominated by Sphagnum
spp., grasses (Eriophorim spp.) and sedges (Carex spp.).
The wet meadow sites contained standing wates while the
upland sites were moist without standing water. Emissions
from a lake surface were also measured.

In addidon to the freshwater sites, emission measurements
were made in 4 coastal area of the Delta at the mouth of the
Tutakote River near Angyoyaravak Bay on the Bering Sea
(Figure 1). Here, emissions were measured in an interddal
mud flat, an interddal area inhabited by the sedge Carex
subspathaceqa, and two supralirtoral sites in monospecific
stands of Carex ramenskii and Elyinus arencrins. Carex
subspathacea is grazed extensively by geese, arnd emission
measurements were made in the presence and absence of
goose feces. Samples and equipment were masporied via
float plane.

Sampling and Anclysis

Net emission measurements were made using 30 x 30 x 30
c¢m dynamic FEP Teflon flux chambers placed on Teflon-lined
aluminum collars which had been deployed previously in the
various habitats. For the lake samples, chambers were placed
on collars which were attached to Styrofoam floats. Three
chambers were deployed simultaneously, each over a different
vegetation mixture. Compressed synthedc air was used for
sweep airat2.0L min-! and 5.0 L gas samples were removed
at 500 mL min- and rapped in Teflon loops immersed in
liquid N7. Laboratory studies demonstrated no measurable
breakthrough of sulfur gases at this sampling rate [Morrison,
1988]. However, thesc tests were conducted using higher
concentragions of sulfur gases than those encountered in the
present study so itis possible that the rates reported here are
undercstimated. Oxygen condensation within loops was
prevented by trapping gases under a slight vacuum. Rates of
sweep air flow and sample air collection were regulated using
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Fig. 1. Locaton in Alaska of the freshwater sampling site in
Bethel and the coastal sampling site near Angyoyaravak Bay
(163°36'W, 61°20'N).

mass flow controllers. Sample size was determined by
integrating meter output. Samples were collected every 30-60
min for several hours. Diel experiments were not conducted.”
However, this area of Alaskain July receives sunlight for
approximately 20 hours cach day. For comparison, in some
instances static chambers, which entrapped ambient air, were
employed. Samples were collected every 30 min. ™~
Sample loops were transported to a laboratory, where they
were analyzed within at least 5 hours. In laboratory tests, . .
samples could be stored in loops under liquid N2 for over 3.
hours without loss [Morrison, 1988]. Sulfur gases were T
remobilized by heating loops in a hot water bath, separated on ~
a column packed with 1.5% XE-60, 1% H3PO4, 60730 - -,
Carbopack B (Supelco) and quantified by a sulfur-doped flame
photometric detector. Calibration was conducted using sulfur
gases liberated from gravimetrically calibrated permeation” .
devices maintained in 2 permeadon oven. The minimum
flukes that could be detected under the condigons used were
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0.15, 0.2, 0.25 and 0.3 nmol m2 h-! for carbony! sulphice
(COS), methane thiol (CH3SH, (MeSH)] DMS and carten
disulfide (CS), respectively. Hydrogen sulfide (HaS) cculd
be detected but could not be quantfied because it elutes on the

" tail of negatve peaks duc to hydrocarbons and carbon dioxide.

For further analytical details, see Morrison and Hines [1650].
Results and Discussion

Rates of sulfur gas emissions were low atall of the
freshwater sites (Table 1). Carbonyl sulfide was emitted fom
all sites and was the most dominant sulfur gas in many
instances. Dimethyl sulfide emissions wee also importasi and
this gas was the dominant sulfur gas emitied from the wet
meadow areas. Carbon disulfide was fourd less frequendy
and MeSH was detected only rarely at low concentratons 2nd
is not presented. Hydrogen sulfide was dezected routinely tut
could not be quantfied.

The data in Table 1 include replicate measurements from the
same chamber made on the same day as weil a5 measurem.eats
made on separate days. The collars remaired in place
throughout the experiment so the exact location could be

. sampled on several days. In most instances, variadon within

one day at one site was less than 2 factor of two. Fluxes were
most variable in the upland sites. Fluxes increased from J ely
11 to 16, 1988. The highest increase of eighdfold occurred in
the lichen-dominated area, while emissions increased 2.8- 1
4.5-fold in the wet meadow/slough areas. During this peniod
the weather was unusually warm and dry. The midday
ambient temperature ranged from 19 to 25" C throughout the
experiment.

When employing the flow-through dynamic flux chambess,
COS fluxes were 0.23 to 12 nmol m-2 h-1 with highest fluxes
in the upland sites and lowest fluxes in the wet meadow (Table
1). These higher rates are rapid enough to double the COS
concentration in an hour in our stadc chambers. However,
when static chambers were used over an upland site, ambient
COS concentrations decreased exponentially over time (dz2
not shown) indicating that tundra vegetaton was consurming

" COS. Others have reported the uptzke of COS by photo-

synthesizing vegetation [Fall et al., 1988; Goldan et al.,
1988]. e

TABLE 1. Summary of Sulfur Gas Emissions From Freshwa:2r Tundra Near Bethel, Alaska

Emissions, nmol S m2 hl

COS DMS CSa

Site Range”™  Mean Range”  Mean Range”™  Mean
Wet meadow grass and sedge 1.3-5.2 2.7 2.7-10 6.1 0-1.1 0.22
Wet meadow moss’ 0.23-39 4.9 1.5-9.5 57 0-3.3 0.6
Upland mixed* . 23-12 1.6 0-5.0 2.6 0-12 04
Upland Labrador Tea$ 2.9-10 6.5 0.5-83 35 -0 0
Upland moss? 3384 58 0-7.6 2.0 0 0
Upland lichen$ 11-12 12 08-1.1 09 0 0
Lakel 29 2.9 0.7-05 038 0-1.1 0.5

Methyl mercaptan (MeSH) was detected occasionally.

* Al values including daily replicates and measurements made on separate days.

tMixed with grass and sedge.

$Variety of species including dwarf birch, graminoids, lichens, labrador tea, and mosses.

§Mixed tundra dominated by this type of vegetation.
fEmission chamber floating on lake surface. )
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Emissions of COS measured using dynamic chambers did
not vary significantly with time once equilibrium was
established (~1.5 h). This indicated that the tundra soil wasa
source of COS since COS emissions , i.e., COS concen-
trations within the chamber, would have decreased with time if
the only source of COS was that which was in equilibrium
with the atmosphere. In addition, using the following
equatdon [Liss and Slater, 1974], we calculated the expected
flux of COS from water when the aqueous COS concentration
was in equilibrium with the atmosphere and then the atmos-
phere was suddenly replaced by COS-free air:

F=kAC ¢))

where F is flux in nmol m2 h-1, k is piston or exchange
velocity in m h-! and AC is COS concentration gradient Since
the ammosphere in the dynamic chamber was devoid of COS,
AC equals the concentration of COS in water that is in
equilibrium with ambient air. This concentration of COS in
water was 9.2 pM as calculated as the quotient of an ammos-
pheric concentration of COS of 500 ppt(v) divided by the
Henry's law constant of COS in seawater at 20° C of 2.22
[Johnson and Harrison, 1986]. Hence, using equation (1),
the flux of COS expected in the absence of COS production
when COS-free sweep air is used is ~0.18 nmol m2 h-L. This
is an underestimate, since the Henry's law constant used was
determined for seawater. However, this emission rate is
substantially lower than the rates actually measured using the
dynamic chambers. This fact and the finding that the COS _

cmission rates in dynamic chambers did not decrease over hme

indicated that these tundra soils were producing COS.
The discrepancy in the COS data between the dynamic and

the static chambers was probably due to the uptake of ambient .

COS by vegetation when static chambers were employed. In
the dynamic chambers, the concentration of COS, and, hence,
the calculated flux, was a net result of emission from soils and

consumption by vegetation. When using dynamic chambers, -

the most rapid COS emssions were from the lichen and other
dry areas while COS fluxes were slower in the areas which
were wet and contained much more biomass. These latier
results suggested that the lower COS fluxes measured using
dynamic chambers were not duc to 2 smaller flux from wet
meadow areas but to a faster rate of consumption. A similar
conclusion was derived from our recent study of a temperate
salt marsh [Morrison and Hines, 1950]. Therefore, we

believe that the emission data for COS from these tundra sites, -

which were derived from dynamic chambers, do not represent
the acrual fluxes from the habitats and that it is possible that
tundra is 2 net sink for COS. Unfortunately, since we only
employed the static chambers on one occasion at two dry sites
to test the utility of the dynamic enclosures for this gas, we
were unable to quandfy the uptake the COS thoroughly to
make conclusions about the role of tundra in regulating
atmospheric COS. We have included the COS flux data from
dynamic chambers in Table 1 for comparison to other
published COS emission data, most of which were derived
from dynamic chamber deployments. In addition, it appears
that of the sulfur gases quantified, DMS was the dominant S
gas emitted from these habitats rather than COS.

Emissions of sulfur gases from the freshwater sites were
highest in the wet meadow areas and slightly lower in most of
the upland tundra sites (Table 1). Sulfur emissions were very
low from upland areas dominated by lichens, and these fluxes
were similar in magnitude to those from a lake surface.

Sulfur fluxes at the coastal sites were more rapid than the
inland areas in most instances (Table 2). In addition, we were
able to detect MeSH emissions from most of these sites. We
did not uglize static chambers with ambient COS concen-
trations to test whether COS fluxes were artificial so the COS
emission data, like those presented in Table 1, are suspect.
Highest rates were noted In the intertidal area inhabited by C.

16,705

TABLE 2. Summary of Sulfur Gas Emissions at the
Coastal Site on the Tutakote River, Alaska

Range of Emissions, nmol S m2h!

Site COoS MeSH DMS G52
Carex subspathacea  5.7-10  1.6-2.6  70-81 5.0-9.7
C. subspathacea

+feces 43-82 24-45 150-250 59-6.9
C. ramenskii 11-16 0-0.7 0-1.7 1.6-84
Elymus arenarius 18-21 1.2-2.7 75 4.3-7.8
Mud flat 9.3-11 <02 10-16 2.1-4.2

All measurements made on July 18, 1988.
*Only one measurement.

subspathacea, and fluxes of DMS in this area more than
doubled when goose feces were left within the flux chambers.
Fluxes of DMS from C. subsparhacea were six (vegetation
alone) to 15 (vegetation plus feces) dmes faster than from the
adjacent mud flat which was devoid of vegetadon. The
quantity of emergent biomass of C. subspathacea was low at
~10 g dry weight m2. '

Fluxes of sulfur gases from E. arenarius were similar in
magnitude to those from C. subsparkacea . Although we did
not measure the biomass of E. arenarius, it was dense and
over 30 cm tall and appeared to be at least 20 times more
abundant in emergent biomass than C. subspathacea.

Except for CS3, the rates of sulfur emissions from C.
ramenskii were extremely low, even less than most of the
inland freshwater sites examined (Tables 1 and 2). These low
fluxes were surprising since the stand studied was only 2-3m
from the C. subspathacea site and, due to its close proximiry
to the ocean, this region must receive considerably higher
inputs of sulfur than the Bethel sites. The C. ramenskii was
dense, bright green, ~15 cm tall and we observed large areas

of C. ramenskii from the air.
The highest sulfur emissions recorded in the freshwater

 tundra sites (exclusive of COS) were ~4% of those recorded

for the average open ocean [Barnard et al., 1982; Andreae,
1986; Bates et al., 1987b], ~10% of fluxes from upland soils
in the Amazon Basin during the dry seasen [Andreae and
Andreae, 1988) and ~3.5% of esdmates of sulfur emissions
from waters in wetlands of southern and ceneal Ontario,
Canada [Nriagu ef al., 1987). These mus: be considered
lower estimates, since we were unable to quandfy HaS, which
was always present. Fluxes of DMS from freshwater rundra
were similar in magnitude to fluxes of DMS from decaying
cattails, and native grasses in Ohio [Golden eral., 1937].
fluxes of DMS from organic-poor soils in Germany [Staubes
et al., 1989], the lowest detectable rates of sulfur emissions
from a freshwater wetland in southern Florida [Cooper et al.,
1987], and rates of emission of DMS from upland soils in the
Amazon Basin during the wet season [Andrege et al., 1990].

Although the sulfur emissions from the coastal sites were
considerably higher than from the freshwater locations
examined, the highest fluxes from the coastal sites were up {0
100-fold lower than sulfur fluxes from stands of temperate salt
marsh grasses [Steudler and Peterson, 1984; Aneja and
Cooper, 1989; Morrison and Hines, 1960]. The biomass of
C. subspathacea was only ~10 g m-2, so the ratio of flux to
biomass of 8-20 was similar to the rado for temperate S.
alterniflora of 10 (Morrison and Hines [1590] and our
unpublished biomass data).

The enhanced DMS flux in the presence of C. subspathacea
and the similarity between flux and biomass for this species



16,706

and S. alterniflora suggested that C. subspathacea produces 2
sulfonium compound like dimethylsulfoniopropionate
(DMSP), a known precursor of DMS [Dacey et al., 1987].
The only marsh species that have been previously shown to
produce significant quantities of this compound are Spartina
alterniflora [Dacey et al., 1937} and S. anglica [Larher et al.,
1977). The increased DMS flux in the presence of goose feces
was probably due to the decomposition of DMSP after
ingesdon of C. subsparhacea by geese. This is similar to the
enthancement of DMS emissions when DMSP-producing
marine phytoplankton are grazed by zooplankton [Dacey et al.,
1987] or when S. alterniflora is decomposed by microbes
(Kiene and Visscher, 1987). However, validation of the
suppositon that C. subspathacea is indeed 2 DMSP-producing
macrophyte remains 10 be conducted. Despite the higher
fluxes of sulfur gases from the coastal sites, the abundance of
C. ramenskii and the fact that the coastal region is small
relagve to the freshwater wedands in Alaska indicated that only
the freshwater areas arc of importance when considering the
role of rundra in affecting the atmospheric sulfur cycle.
During the period of this srudy (July 1988), the wet
deposition of sulfur in Bethel averaged 0.21 mg S m2d1 @6

mg m2 yr'!) [Talbot et al., this issue]. Hence, the measured
loss of sulfur as gaseous efflux represented only 0.5% of the
input during that period as compared to estimates of 30% for
the Amazon Basin during the dry season {Andreae and
Andreae, 1988].

There are several reasons why the fluxes of sulfur gases
from Alaskan tundra are small. First, the supply of sulfate
must be low since the rate of amospheric deposition of sulfur
to this locale is small even when compared to other remote
arcas [Andreae and Andreae, 1988]. The Canadian wetlands
studied by Nriagu et al. [1987] were subjected to relatively
high levels of pollutant sulfur with deposition rates up to 40-
fold higher than those encountered in our Alaskan study. Itis
interesting that the calculated rates of sulfur emission from the
Ontario bogs studied by Nriagu et al. [1987] were ~40-fold
higher than those measured by us in Alaska. Hence, even
when the rate of sulfur deposidon is very low, the percentage
that is re-emitted appears to be similar to areas experiencing
higher deposition rates. Too few data are available to discern
if this is a common phenomenon for high latitude wetlands or
if reemission percentages arc commonly high in tropical
environments like those studied in the Amazon dry season.

Second, the biologically active component of the tundra peat
is a relatively thin secton near the surface. Sulfur-containing
waters which percolate through this region probably do not
remain in contact with the active zone long before draining into
deeper layers just above the permafrost (~50 cm). The upland
wundra sites studied here were never saturated with water
during the study period and meteoric waters must have drained
into lower, wet meadow regions. These wetter areas are sites
of increased nutrient accumuladon because of drainage of
nutrients from upland areas [Matthes-Sears et al., 1938]. Wet
meadows probably tend to accumulate more sulfur than upland
areas as well and this may explain the higher fluxes of sulfur
in the wet meadow sites. The wet meadow sites exhibited
fluxes of methane which were approximately 100-fold higher
than in the upland, drier sites [Bartlett et al., this issue].
Substrate anoxia, which appears to enhance methane flux from
the wet meadow areas did not enhance fluxes of sulfur gases
similarly. During early spring thaw, a large portion of the
precipitation runs off tundra rather quickly while flow is
retarded during summer [Marthes-Sears et al., 1938]. This
surface flow probably also removes a large portion of any
pollutant sulfur which is deposited during late winter by Arctic
haze. ~ .

Third, tundra communites ar¢ characterized by organic
matter accumulation with slow decomposition rates [Chapin et
al., 1978). Tundra vegetation is active during the short
summer season and tends to strongly sequester needed
elements from the environment. Our flux measurements were

4

Hines and Morrison: Sulfur Emissions From Tundra

made during the most productive period of the year and itis
possible that sulfur emissions increased as plants began to
senesce in August. Increases in DMS emissions in salt marsh
soils in the fall have been reported [Steudler and Peterson,
1984]. In addition, there was a large increase in emissions
from tundra during the final five to eight days of the experi-
ment as the ecosystem became warmer and drier suggesung
that emission rates are quite variable throughout the growing
season. Others have reported good correlations between the
log of sulfur emissions and enclosure temperatures with
ermissions increasing ~10-fold when temperawure increase from
10 to 30° C in sites in Ohio [Goldan et al., 1987; Fall et al.,
1988]. Unfortunately, too few emission data were collected
and temperatures did not vary enough during our Alaska swudy
to determine more than a semi-quantitative relatonship
between these variables. However, sulfur gas emissions from
these tundrasites increased more per degree C than the
increases reported for temperate sites (Goldan et al., 1987].

If the global tundra area is 9 x 10! m? (esdmate for
nonforested bog [Matthews and Fung, 1987]) and the actve
season is 100-150 days, then we estimate that the global flux
of biogenic sulfur from tundra is 2.1-3.2x 108 g yr'L. This
represents slightly less than 0.001% of the esdmated global

flux of biogenic sulfur (~50 Tg yr-1) [Méiler, 1984). This
value is probably smaller sl since a large percentage of
tundra is covered by lakes which we found emit very linde
sulfur compared to the vegetated terrestrial surfaces.
Extrapolation of our data to northem wetands in general,
including both nonforested and forested bogs [Marthews and
Fung, 1987), would increase this contribudon by only a factor
of ~3 which is still an insignificant contribution to the global
atmospheric sulfur burden. Andreae et al. [1950] recently
estimated the annual terrestrial flux of biogenic sulfur as —3.2
Tg, making the tundra flux <0.01% of the global terrestial
emissions of biogenic sulfur. If our emission data were -
underestimated by as much as a factor of 10, the flux of
biogenic sulfur from this ecosystem would sdll be very low.
It should be pointed out that we were not able to quandfy
emissions of HaS. If H,S is a major component of the sulfur
emissions from tundra, then these esdmates of the importance
of this ecosystem to the atmospheric sulfur burden may be
significandy low.

There appears to be insufficient atmospheric sulfur input to
expect a large increase in biogenic sulfur emissions from
tundra and even a 100% recycling of atmospherically-
deposited sulfur would contribute only slighdy (<0.1%) to the
global atmospheric sulfur burden. Although areas which
receive high inputs of sulfur, such as coastal regions or
locations subjected to anthropogenically derived sulfur,
certainly contribute considerably more recycled sulfur to the
atmosphere, the bulk of indra globally, such as in Siberiz and
Alaska, probably emits too little biogenic sulfur to significandy
affect the global atmospheric sulfur budget
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FACTORS CONTROLLING FLUXES OF VOLATILE SULFUR
COMPOUNDS IN SPHAGNUM PEATLANDS

by

william Zambonl de Mello
University of New Hampshire, December, 1992

Exchange of DMS and OCS between the surface of Splrgnum
peatlands and the atmosphere were measured with dynamic (S-
free sweep air) and static enclosures. DMS emission rat:s

determined by both methods were comparable. The dynamic

YN

method provided positive 0CS flux rates (emission) for
measurements performed at sites containing Sphagnum.
Conversely, data from the static method indicated that OCS

was consumed from the atmosphere.

Short and long-term impacts of increased S deposi’ ton

on fluxes of volatile S compounds (VsCs) from Sphagnur
peatlands were investigated in a poor fen (Mire 239) a the

Experimental Lakes Area, Ontario, Canada. Additional

experiments were conducted in a poor fen (Sallie’s Fen in

(0

Barrington, NH, USA. At Mire 239, emissions of VSCs we
monitored, before and after acidification, at control nd
experimental sections within two major physiographic a eas

of the mire (oligotrophic and minerotrophic). DMS was ’"he
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predominant VSC released from Mire 239 and varied largely
with time and space. Sulfur addition did not affect DMS
emissions in a period of hours to a few days. DMS emissioc' s
in the experimental oligotrophic area of the mire was ~3-
fold greater than in the control oligotrophic area, and ~10-
fold greater than in the minerotrophic zones. These
differences could be due to a combination of differences 'n
types of vegetation, nutritional status and S input. At
sallie’s Fen, DMS fluxes was not significantly affected b
sulfate amendments, while DMS and MSH concentrations
increased greatly with time in the top 10 cm of the peat
colunmn.

The major environmental factors controlling fluxes ¢ .
DMS in a Sphagnum-dominated peatland were investigated i~
sallie’s Fen, NH. DMS emissions from the surface of the
peatland varied greatly over 24 hours and seasonally.
Temperature seemed to be the major environmental factor
controlling these variabilities. Concentrations of disso’ red
vsce varied with time and space throughout the fen.
pissolved DMS, MSH and OCS in the surface of the water t: dle
were supersatu?ated with respect to their concentrations in
the atmosphere. Sphagnum MoSSeS did not appear to be a
direct source of VSCs, however they increase transport o

DMS from the peat surface to the atmosphere.

x1

ORIGiH 4L PAGE
H IS
OF POOR QUALITY




]

- R

-

U

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. D5, PAGES 8991-8999, MAY 20, 1993

NO4- 1525?

Emissions of Sulfur Gases From Marine and Freshwater Wetlands

of the Florida Everglades:
Rates and Extrapolation Using Remote Sensing

MARKE. HINES

Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham

RAMONA E. PELLETIER

PATRICK M. CRILL

Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham

Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH),
dimethyl sulfide (DMS), and carbon disulfide (CS;) were measured in a variety of marine and freshwater
wetland habitats in the Florida Everglades during a shont duration period in October using dynanuc chambers
cryotrappmg techniques, and gas chromatography. The most rapid emissions of >500 nmol m~ bl occurred
in red mangrove-dominated sites that were adjacent to open seawater and comamed numerous crab burrows.
Poorly drained red mangrove sites exhibited lower fluxes of ~60 nmol m” b'! which were similar to fluxes
from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades.
DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene
from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories
were delineated using geographical information system software and S gas emissions were extrapolated for
the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion
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National Aeronautics and Space Administration, Science and Technology Laboratory, Stennis Space Center, Mississippi

of S gas emissions to the area. The large area extent of the saw grass communities (42%) accounted for

~24% of the total S emissions.

INTRODUCTION

Sulfur (S) gases are important components of the global
cycle of S [Andreae, 1985; Mdller, 1984]. Through their
atmospheric oxidation to sulfate they influence the pH of
precipitation [Charlson and Rodhe, 1982] and they affect
global radiation balance and possibly climate [Bates et al.,
1987a; Charlson et al., 1987, Crutzen, 1976; Rampino and
Volk, 1988, Shaw, 1983} Although anthropogenic emissions
constitute a large source of gaseous S, mass balance
considerations indicate that the release of biogenic S into the
atmosphere makes up a significant percentage of S that enters
the troposphere annually. Emissions of oceanic dimethyl
sulfide (DMS) are a large source of this biogenic S gas
[Andreae, 1986, Bates et al., 1987b]. However, continental
habitats are much more diverse and their role as producers of
biogenic S gases remains as one of the most uncertain aspects
of our understanding of the atmospheric S cycle [Andreae,
1985].

Waterlogged areas are conducive to the production and
emission of reduced gases such as methane and reduced S
compounds. When considered on an area basis, wetlands are
strong sources of atmospheric S gases such as hydrogen sulfide
(H,S), DMS, methyl mercaptan (MSH), carbonyl sulfide (COS),
carbon disulfide (CS;), and dimethyl disulfide (DMDS) [Hines,
1993]. The majority of previous work on continental S gas
exchange was conducted in salt marshes which emit large
quantities of H,S and DMS [Jorgensen and Okholin-Hansen,

Copyright 1993 by the American Geophysical Union.
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1985; Morrison and Hines, 1990; Steudler and Peterson,
1985]. However, it appears that high fluxes of DMS from salt
marshes are restricted to regions inhabited by certain species of
Spartina and that other marsh areas do not emit unusually large
amounts of gaseous S to the atmosphere [Dacey et al., 1987,
Morrison and Hines, 1990]. In addition, the small spatial
extent of salt marshes precludes them as major global sources
of gaseous S [Carroll et al., 1986]. Freshwater wetlands and
organic rich soils, in some cases, emit relatively large amounts
ol gaseous S [Adamns et al., 1981, Goldan et al., 1987, Staubes
et al, 1989], while other freshwater sites, such as Alaskan
tundra [Hines and Morrison, 1992], emit very little. Cooper et
al. [1987b] reported that several freshwater wetlands emitted S
gases at rates similar to some marine habitats. Because of the
uncertainty in the rates of emissions of biogenic S gases,
global estimates of the annual emissions of S from terrestrial
sources have decreased from ~25 Tg yr! in 1984 [Mdller,
1984] to <0.4 Tg yr'! today [Bales et al., 1992].

One approach to refining estimates of regional and global
emissions of biogenic gases is to utilize remote sensing data
from airbome or orbital platforms to map the distribution and
extent of various habitat types. These data, in conjunction
with gas flux measurements in these habitats and geographic
information system (GIS) software, can be used to derive
estimates of gas flux at large spatial scales. Matthews and
Fung [1987] used this approach with several habitat categories
to calculate global CH,; emissions. Bartlett et al. [1989] used a
much higher resolution remotely sensed data set and a suite of
actual flux measurements to examine vanability in emissions
of CH, from a region of the Florida Everglades.

The present study was conducted to determine the magnitude
and range of emission rates of organo-S gases from a vanety of
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Sample loops were transported to the South Florida
Research Center where they were analyzed within a maximum of
5 hours. In laboratory tests, samples could be stored in loops
under liquid N, for over 8 hours without loss [Morrison, 1988].
Sulfur gases were remobilized by heating loops in a hot water
bath, separated on a column packed with 1.5% XE-60, 1%
H3POy4, 60/80 Carbopack B (Supelco), and quantified by a CS;-
doped flame photometric detector on a Shimadzu model 9A gas
chomatograph. The total GC run time was ~6 min with
baseline separation of all compounds. Occasionally, when
DMS concentrations were high, CS, eluted as a skimmed peak
on the following edge of the DMS peak. Calibration was
conducted using sulfur gases liberated from gravimetrically
calibrated permeation devices maintained in a permeation
oven. The minimum fluxes that could be detected under the
conditions used were <0.4 nmol m'2h-l. Hydrogen sulfide
(H,S) could be detected but could not be quantified because it
eluted on the tail of negative peaks due to hydrocarbons and
CO;,.

REMOTE SENSING AND CALCULATION OF REGIONAL S FLUXES

To scale up S gas emissions for the Everglades system, we
utilized an approach which was similar to that used by Bartlett
et al. [1989] for CH, fluxes in the Shark River slough region of
the central Everglades. The distribution of habitats {vegetation
types) was inventoried using interpretation of orbital remote
sensor data collected by the Landsat thematic mapper (TM) on
November 2, 1985, The TM uses seven spectral bands
encompassing the visible and infrared regions, and the pixels
are 30 x 30 m cells. The TM scene covered much of South
Florida, including most of the Everglades National Park, except
for the very northwestern edge and some of the islands in
Florida Bay to the south. All data processing was done with
ELAS software [Junkin et al., 1980]. A vegetation
classification was developed to coincide with habitats from
which the ground gas flux measurements were taken.
Considering these habitats, a parallelepiped classification
scheme [Addington, 1975] offered the best overall
classification results when compared with several other
classification procedures (e.g., maximum likelihood). Ground
truthing of the classification was based on field inspections
during the in situ sampling and partly by interpretation of
color infrared photography for the more inaccessible
locations. We also utilized vegetation maps provided by the
National Park Service. The TM geographic information data
base was combined with S emission data for the selected
vegetation classes and a regional map was produced which was
used to calculate S fluxes for the majority of the Everglades
National Park.

RESULTS

Marine Sites

The marine sites exhibited a wide range in rates of S gas
emissions (Figure 2). In all instances, except the site
dominated by Batis, DMS emissions were highest. The well-
drained sites (type 1) released the most S gas with summed
fluxes of nearly 600 nmol m2 h™! at one location. At this site
and the second most active site, enclosures were placed over
bare soils that contained openings to crab burrows. The soils
within an enclosure placed over a live mangrove in this area did
not have any noticeable crab burrows and S emissions were
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Fig. 2. Rates of sulfur gas emissions {rom the marine wetland sites in the
Everglades. The three types of red mangrove areas (Rhizophora) and
the Batis sites were in carbonate sediments, while the black mangrove
sites (Avecennia) were in peat sediments. The asterisk represents sites
where whole mangrove plants were entrapped within the emission
chamber. Site numbers described in the text are included within
parentheses. Error bars are standard deviations of replicate
measurements at €ach site.

~200 nmol m™2 h"! which were the lowest rates of the well-
drained sites. All of these sites were within 2 m of open Florida’
Bay water.

The intermediate sites (type 2), which were considered
transitional between the well drained coarSer sediments and the
less drained finer-grained sediments, exhibited S fluxes of ~150
nmol m2 h'! which was less than half of the average rate in the
well-drained mangrove sites (Figure 2). Differences in S fluxes
among all five of the drained sites were attributable to
variations in DMS emissions.

Fluxes of S gases from the poorly drained mangrove sites
(type 3) were <80 nmol m'2 h! (Figure 2). We noted little
variation (<30%) in S gas emissions between these four sites
despite the fact that one site included a live mangrove tree and
one site was located over one kilometer away from the others.

Fluxes of S gases from the black mangrove sites (type 4)
ranged from 60 to 95 nmol m'2h-! (Figure 2). These sites were
located ~4 km from open water (Figure 1). Despite the extreme
differences in soils between this site and the poorly drained
sites described above, S emissions were similar in magnitude
and speciation for both types of habitats.

Emissions of S gases from the Batis-dominated site (type 5)
were twice those of the poorly drained mangrove area (which
was ~3 m away) and similar in magnitude to the intermediate
mangrove area at ~150 nmol m'2h! (Figure 2). More than half
of the S gas emission from Batis was due to COS, and COS and
MSH fluxes were the highest recorded for all of the marine
sites.

Freshwater Sites

Emissions of S gases from the freshwater sites were
generally lower than the marine sites (Figure 3). The dwarl
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Dwarf Red Mangrove (6)

Fig. 3. Rates of sulfur gas emissions from the dwarf red

where plants were entrapped within the emission chamber.

were Eleocharis sp. Site numbers described in the text
deviations of replicate measurements at each site.

mangrove sites (type 6), which are influenced by marine
waters, exhibited fluxes which were nearly identical in
magnitude to the poorly drained red mangrove and the black
mangroves sites, while the saw grass sites (type 7) emitted less
S than any of the other sites studied. There was very little
variation in emissions for each of the replicates examined at
the two freshwater sites. The occurrence of plants within the
flux chambers had no significant effect on flux rates at these
sites (Figure 3). However, the plant biomass was quite low and
bare areas (periphyton alone) were common.

Fluxes of S gases from the recently burned sites (type 8)
were ~2-fold higher than from the adjacent unbumed sites
(Figure 4). Flux rates from the unbumed site were similar to
those in the saw grass site discussed above despite the fact that
the emergent biomass was visually much more dense in the
unburned area. Emissions from the bumned area were similar to
those in the dwarf mangroves. Burned and unburned sites
containing live plants emitted nearly twice as much gaseous S
as bare soils. Plant density at the bumed sites was much lower
than at the unburned sites and it was possible to place
enclosures over areas containing solely hair grass or saw grass.
The unbumed site was a relatively well-mixed stand of both
these species and both were included in enclosures.

Scaling S Emissions 1o the Region

A color-infrared simulated image of the park derived from
TM bands 3, 4, and 5 is depicted in Plate 1. Red shades
represent green vegetation (generally, the redder the shade the
more vigorously growing or denser the vegetation). Blue and
black shades represent water or significant wetness. Greyish
shades represent inert matenals such as roads, beach sands,
rock outcrops, and in some cases yellowing grasses.

Several modifications were made to the initial vegetation
classification obtained from the TM image and to the relative
grouping of S flux data to provide a useful final categorization.
Some of the vegetation classes were not easily discernible
because of their small spatial extent and/or spectral similarity
to other vegetation types. In some instances the water
background predominated over vegetation in spectral response
which resulted in mixed vegetation classes. Upland tree
species were occasionally spectrally similar to mangroves. By
considenng the separation between the freshwater and the more

Sawgrass (7)

mangrove and wet saw grass sites. The asterisks are sites
At the dwarf mangrove site, the plants within the chamber
are included within parentheses. Error bars are standard

saline environments, the upland pines and the hardwood
hammocks were carefully regrouped differently from the
mangroves. Widely spaced dwarf mangrove, Eleocharis sp.,
and other related plant communities that had a water-dominated
background were also clustered together in a dwarf mangrove
category. It was possible to separate other classes of
vegetation spectrally, but these were clustered to obtain the six
final classes examined during the S flux sampling.

Red mangroves did not spectrally separate consistently
from black or white mangrove species. At least part of this was
due to their tendency to border along waterways and fall within
mixed pixel areas on a frequent basis. Therefore a red mangrove
class was artificially incorporated as a border class along all
open water bodies within the more saline regions of the image.
Any larger clusters were incorporated into the black mangrove
class. Since we observed that the well-drained red mangrove
sites (type 1) occupied a very small region within a few meters
of open water, fluxes from these areas were not used to calculate
the regional flux of S gases. The red mangrove regional
calculations were made using flux data derived from the mean of
the intermediate drained sites (type 2) and the poorly drained
sites (type 3).

Salt marsh grasses such as Juncus and Spartina spp. were
moderately separable but were clustered with the Batis sp. and
other coastal prairie plant communities just as was done in a
generalized vegetation map published by the National Park
Service. We did not measure emissions from areas dominated

5

120 . . 120
AL
7] ¢S
] oMs
2 ~ 80dppls 71 MSH L 80
57 l cos
S
& E
5 B
5 &
av

0
Sawgrass Hairgrass  Bare Mixture Bare
Sawgrass and Hairgrass
Burned Unburned

Fig. 4. Rates of sulfur gas emissions from the burned and unburned sites
(site 8 in the text). Error bars are standard deviations of replicate
measurements at each site.
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Plate 1. Thematic mapper image of the Everglades National Park taken on November 2, 1985. The image has been trimmed to
include only the park.

el i A

Red Mangroves
Coastal Prairie
Black Mangroves
Dwarf Mangroves
Wet Sawgrass

Dry Sawgrass

Pines and Hammocks
Clouds

Cloud Shadows
Water

i W

Plate 2. Map of the classes, derived from thematic mapper data, used for scaling up the S emissions for regional estimates.
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TABLE 1. Regional Estimate of Sulfur Gas Emissions From Various Wetland Habitats in the Everglades

S Flux,*
Vegetation Category No. of nmol m2 bl Category Category Flux, Total
(Site Typef) Samples Mean (SE) Area, km moles h”! Flux, %

Red mangrove (2 and 3) 11 108 (14) 200 216 11.9
Black mangrove (4) 8 77(5.9) 810 624 344
Coastal prairie (Batis) (5) 1 145 210 305 168
Dwarf mangrove (6) 6 5144 470 24.0 132
Wet saw grass (7) 4 29(6.7) 770 223 123
Dry saw grass (8)i 6 46 (4.2) 450 20.7 114
Regional total 36 62 2940 181.5 100

*Total emission combining all four S gases measured.

Refers to habitat types listed in study site section of text.

¥Emissions from unburned saw grass community.

by these former species which were restricted largely to areas
northwest of where emission measurements were made.
However, since these sites were mostly indistinguishable on
the image and only occupied a small percentage of the scene,
for scale up purposes, we used S flux data from the Batis site
only. This grouping of classes is partially justified by the
finding of Cooper et al. [1987b] that rates of S gas fluxes were
similar for Batis and Juncus sites in Florida. However, sites
dominated by Spartina can emit large quantities of DMS
depending on the species of Spartina present [Morrison and
Hines, 1990].

The saw grass sites were divided between those similar to
the mahogany hammock sites (type 7) and the saw grass
community represented by the unbumed sites (type 8). The
former contained less biomass with standing water and was
designated as wet saw grass, while the latter canopies were
more dense, devoid of standing water and designated as dry saw
grass.

The final six vegetation classes selected from the TM image
analysis and recategorized for scaling up S gas emissions were
(1) red mangroves, (2) coastal prairie (Batis and salt marsh
plants), (3) black mangroves, (4) dwarf mangroves, (5) wet saw
grass, and (6) dry saw grass. A few other classes, e.g., clouds,
cloud shadows, pines, hardwood hammocks, and water, were
included in the mapping exercise to fill out the remainder of the
image. We did not measure S fluxes from open water or upland
habitats, so these areas were omitted from the scale up.

Plate 2 shows a color-coded distribution map of the
vegetation classes utilized here for scaling up S emissions.
These vegetation category areas and S gas {luxes were used to
calculate gas flux rates for all of the Everglade wetlands (Table

TABLE 2. Percentage of Total Regional Flux of S Gases
Attributable to Individual Gases

Vegetation Category

(Site Type*) QoS MSH DMS (o]

Red mangrove (2 and 3) 26 12 52 9.6
Black mangrove (4) 21 10 54 14
Coastal prairie (Batis) (5) 38 23 36 33
Dwarf mangrove (6) 18 28 69 Il
Wet saw grass (7) 19 12 58 11
Dry saw grass (8) 25 40 - 65 57
Regional total 26 13 58 9.7

*Refers to habitat types listed in study site section of text.
Emissions from unburned saw grass community.

1). Although individual fluxes varied 20-fold throughout the
study area, the contribution of each vegetation category to the
regional flux varied by a maximum of a factor of ~3 (Table 1).
Black mangroves were the most abundant category on an area
basis and accounted for the largest percentage of the S gas flux
at ~34%. All the other categories accounted for 11 to 17% of
the regional wetland flux. Combining both wet and dry saw
grass areas accounted for 24% of the flux even though saw grass
covered 42% of the total vegetated area considered.

As expected from data for individual sites, DMS dominated
the flux of S gases from all sites regardless of whether they
were marine or freshwater (Table 2). In fact, the highest
percentages of DMS emitted were from the predominantly
freshwater sites.

DiscussioN

Rates of emissions of the sulfur gases studied varied between
sites by a factor of ~25. However, spatial variation within
sites was usually much less than a factor of 3 and in most
instances less than 10%. The fact that all samples were
collected within less than a 2-week period, at similar
temperatures and during the same time of day made it possible
to compare these data without severe complications due to
seasonal, diel, or temperature variations. Hence variations
were due primarily to spatial variability. This is an important
consideration for studies of S gases since diel variations can be
large and related to temperature vanation [Goldan et al., 1987].

The S flux rates reported here were similar in magnitude to
those reported by others for a variety of marine and freshwater
wetland habitats (Table 3). The notable exceptions are the
rapid fluxes of S gases from salt marsh soils inhabited by
Spartina alterniflora. In particular, DMS is emitted at high
rates from §. alterniflora since the DMS precursor,
dimethylsulfoniopropionate (DMSP), is abundant in this
species [Dacey et al., 1987]. However, when S. alterniflora
areas are omitted, the sites that we studied emitted S gases at
rates that were similar to other habitats regardless of whether
they were marine or freshwater. Emissions from the Everglade
wetlands were much higher than those from Alaskan tundra
[Hines and Morrison, 1992] but similar to or less than fluxes of
DMS from the ocean [Bates et al., 1992].

Cooper et al. [1987b] measured emissions of gaseous S from
some similar sites in the Everglades (Table 3). Their DMS
fluxes at sites inhabited by black mangroves, Batis, and saw
grass ranged from <0.5 to up to 5.5 times those reported here.
Their data were collected over a 24-hour period which explains
the wide range. Their chambers were not shaded during the day,
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TABLE 3. Ranges of Emission Rates of Biogenic Sulfur Gases From Various Habitats

Emission Rate, nmol m2h!

Location DMS MeSH CcGs CS, Reference

Marine subtropical wetlands

red mangrove, Rhizophora*, Oct.t 40 . 600 5 - 22 8 - 42 5 - 30 1

black mangrove, Avicennia, Oct. 25 - % 5 - 8 4 - 19 7 - 14 1

Avicennia, Jan. 9 - 310 NRY NR 0 - 19 2

Bais, Oct.! 52 M 54 5 1

Batis, Jan.} 31 - 220 NR NR 3 - 9 2
Marine temperate wetlapds

Spartina glternifiora 0 -2x10t 0 - 300 -40 10 140 0 - 700 3.7

S. paten 0 - 130 0 - 60 10 - 36 NR 5

Juncus romerianus 100 - 630 s - 75 17 - 4 7 - 30 78

Distichlis spicata 19 - 720 NR NR 6 - 53 78
Freshwater subtropical wetlands*

Cladium, Oct.! 16 - 57 19- 4 30 - 17 1L5- 4 1

Cladium, Jan., March, Mayi 0 - 220 NR NR 0 - 16 2

Mthlenbergia, Oct.} 39 . 65 25- 8 12 - 34 29- 7 1

dwarf mangroves, Oct. 34 1.7 Il 6.2 1
Freshwater temperate wetlands

swamps! | 14 - 700 NR 18 - 85 21 - 78 9

decaying cattails 04 - 3 NR 10 - 19 NR 7
Subarctic freshwater tundral 0 - 12 0 02 - 12 o - 3 10
Subarctic marine tundra 0 - 250 0 - 5 6 - 21 2 - 10 10
Ocean average 170 - 340 Il

(1) This study; (2) Cooper et al. [1987b]; (3) Cooper et al. [1987a]; (4) de Mello et al. [1987}; (5) Morrison and Hines [1990], (6) Steudler and
Pete*rson [1985}; (7) Goldan et al. [1987]; (8) Aneja et al. [1981]; (9) Adams et al. [1981]; (10) Hines and Morrison [1992]; (11) Bates et al. [1992].

Allsites in Florida.
t Samples collected midday.

Samples collected over a 24 -hour period.
§Not reported.

I1ncludes histosols (peat and muck), areas in Florida that may be subtropical, and one fen in Minnesota.

IMidsummer values.

so depending on weather conditions, it was possible that
temperatures inside the chambers were unusually high on some
occasions. Although some of the sites studied by Cooper et al.
[1987b] were in the Everglades, in some cases, such as the
black mangrove sites, they sampled areas which were several
kilometers from the sites we investigated. However, the flux
rates measured in both studies were quite similar. This was
surprising since the degree of inundation and the tidal and
temperature regimes might have differed enough to cause large
dissimilarities in fluxes for sites which were spatially separated
and studied several years apart. The similarity noted may
indicate that this type of habitat is relatively uniform with
regard to emissions of S gases from sails.

The greatest variation in S emissions in the present study
was due to the high DMS fluxes from the well-drained carbonate
soils inhabited by red mangroves. When mangrove sediments
were poorly drained and relatively fine grained, emissions were
much slower. The bulk of this difference was due to DMS fluxes
which were high in the well-drained carbonates. In addition,
highest DMS fluxes occurred in sites containing crab burrows.
Smith et al. [1991] found that these crabs transport virtually all
of the mangrove leaf litter into their burrows where the leaves
decompose. It appears that the decomposition of leaves in
burrows was responsible for the high DMS fluxes noted. The
presence of small (60 cm) mangroves within enclosures did not
result in any increase in DMS flux relative to sediments alone.
Hence the positive relationship between live plant biomass
and DMS flux noted for §. alterniflora [de Mello et al., 1987,
Morrison and Hines, 1990] was not apparent in the red

mangrove sites. However, the decomposition of dead leaves in
burrows appeared to generate significant quantities of DMS.

Recently bumned sites emitted twice the quantity of S gases
as unbummed sites which were only 10 m away. Photosynthesis
and CH, emissions, which were measured at these sites within a
few days of the measurements reported here, were twice as high
in the burned areas as well [Whiting et al., 1991]. Since the
biomass in the burned areas was sparse compared to the
unbumed sites, the plant activity per unit of live biomass must
have been much higher in the burned sites. Tt was unclear
whether the enhancement in S fluxes from bumed areas was due
to enhanced plant metabolism or the sedimentary utilization of
S that was liberated from biomass during burning. Within both
the bumed and the unbummed sites, faster rates of S gas release
occurred within enclosures placed over plants suggesting they
were involved in S gas exchange. Because of the frequency of
fires in the Everglades, burning should be considered when gas
exchange is estimated.

Data on emissions of COS must be viewed with caution
since it was likely that the dynamic enclosure system used here
resulted in data which made it appear that all sites were net
sources of this gas. However, data from enclosure systems
which contain ambient or COS-supplemented air demonstrated
that some habitats are net sinks for COS [Hines and Morrison,
1992, Morrison and Hines, 1990; Steudler and Peterson,
1985]. Plants are known to consume COS [Fall et al., 1988,
Goldan et al., 1988, Kluczewski et al., 1983, 19835] and it has
been proposed that this consumption is a major global sink for
the gas [Brown and Bell, 1986, Goldan et al., 1988]. However,
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since COS is abundant in the atmosphere compared to other S
gases, when dynamic chambers use S-free sweep air, there can
be an increase in COS concentration within the chamber
relative to the S-free sweep gas which is interpreted as a net
flux even though a net removal may be occurring at ambient
COS levels [Hines and Morrison, 1992]. We have not observed
this artifact for the other S gases measured. If COS is indeed
consumed by the system rather than emitted by it, which is
likely, then the total organo-S gas fluxes from the Everglades
will be ~25% lower than calculated in Table 1. The percentage
of flux due to the other S gases will also increase accordingly
(Table 2), making DMS account for over 70% of the total flux.
The scaling of S gas emissions to a regional area using
vegetation classes and remote sensing data was intended to
provide a "snapshot” of S flux and to help decipher which
habitats, if any, deserve attention in future work. It was not
intended that the regional data would serve as benchmark of §
fluxes in this system, particularly with the small data set
employed. Unlike CHy, S flux data are difficult and tedious to
obtain and relatively large data bases, such as those used for
regional estimates of CH, flux by Bartlett et al. [1989], are not
available. Furthermore, biogenic S fluxes from terrestrial
sources, including the Everglades [Cooper et al., 1987b,
1989], exhibit strong diel vanability. Emissions of CH,
apparently do not vary greatly throughout a 24-hour period
unless plants actively transport gas. In addition, the present
study was conducted over a relatively short time period with
measurements made over a small portion of the day. Since all
of the measurements here were determined under similar
climatic conditions for each of the sites, it was assumed that
flux data for each site could be compared. However, the scaling
exercise yields a regional estimate of flux for the conditions of
this study only and are not applicable to nighttime or any other

season.
We had insufficient data to adequately address the variability

within each habitat. In all sites except Batis, chambers were
deployed in more than one location and the variation between
these local sites was usually less than 15% (expressed as
percent of the standard error/mean). However, the individual
emissions chambers were never more than 36 m apart. Bartleit
et al. [1989] reported that sample sizes greater than 20 were
needed to achieve a varability of <15% (calculated as above)
for CH, fluxes along a 1 km transect in a particular freshwater
habitat in the Everglades. The lower variability noted here for
S gases may be due simply to the fact that all the samples for a
particular habitat type were collected in close proximity to
each other. Hence the S gas data probably provided a much
cruder estimate of regional flux than the variability alone
indicated. In addition, Bartlett el al. [1989] found no
correlation of flux with temperature and Harriss et al. [1988]
found that CH4 flux in the Everglades was not sensitive to
seasonal changes in temperature. However, Cooper et al.
[1987b] found that DMS emissions from a saw grass site in the
Everglades increased ~10-fold from January to May.

The "snapshot” approach to estimating regional S gas
emissions suggested that over half of the S flux from regions
harboring emergent vegetation in the Everglades was from
marine-influenced wetlands, i.e., mangroves and the Batis/salt
marsh sites. The saw grass sites were less important because of
the low area flux from saw grass areas with standing water such
as those at mahogany hammock. However, if emissions of §
gases from open waters (depths greater than 30 cm) were
significant then the freshwater areas could have been similar to

the marine sites. We did not determine S gas emission rates for
open walfer sites. However, other studies have demonstrated
that both marine [Bates et al., 1987b] and fresh [Richards et
al., 1991] open water sites can emit significant quantities of S
gases to the atmosphere. Although open water sites deserve
some attention in the future, the Landsat thematic mapper
sensor is designed for delineating terrestrial vegetated habitats
and is not suited for discriminating water bodies on the basis of
variations in water color. Since emissions of S gases from
water should vary depending on their particular chemistries and
productivities, our scaling up exercises were restricted to sites
with emergent vegetation. In addition, if the burned saw grass
areas were to occupy a large area of the Everglades then S fluxes
for the whole region would increase slightly as well.
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Abstract
Data on the emissions of sulfur gases from marine and freshwater wetlands are
- summarized with respect to wetland vegetation type and possible formation
mechanisms. The current data base is largest for salt marshes inhabited by Spartina
alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate
emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH),
carbony! sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being
emitted. High emission rates of DMS are associated with vegetation that produces the
DMS precursor dimethylsulfoniopropionate (DMSP). Although large quantities of HpS
are produced in marshes, only a small percentage escapes to the atmosphere. High
latitude marshes emit less sulfur gases than temperate ones, but DMS is still the
dominate. Mangrove-inhabited wetlands also emit less sulfur than temperate S.
alterniflora marshes.

Few data are available on sulfur gas emissions from freshwater wetlands. In
most instances, sulfur emissions from temperate fréshwater sites are low. However,
some temperate and subtropical freshwater sites are similar in magnitude to those from
marine wetlands which do not contain vegetation that produces DMSP. Emissions are

low in Alaskan tundra but may be considerably higher in some bogs and fens.

Keywords: Biogenic sulfur gases, wetlands, hydrogen sulfide, dimethyl sulfide,

carbonyl sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan



Introduction

Gaseous sulfur compounds are inte-rmediate metabolites or end products of
biological processes in natural environments. Although the majority of hydrogen sulfide
(H2S) is probably produced through dissimilatory sulfate reduction, other reduced sulfur
gases appear to be generated 1) during a variety of anaerobic respiratory or fermentative
processes which may be complex; 2) as a cleavage product during decomposition of a
biologically-produced compound or; 3) photochemically (Kadota and Ishida 1972;
Bremner and Steele 1978; Khalil and Rasmussen 1984; Jgrgensen and Okholm-Hansen
1985). It appears that waterlogged areas are conducive to the production and emission of
sulfur gases and, when considered on an areal basis, wetlands are strong sources of
atmospheric sulfur compounds such as H2S, dimethyl sulfide (DMS), methyl mercaptan
(MeSH), carbonyl sulfide (COS), carbon disulfide (CS7) and dimethyl disulfide (DMDS)
(Jorgensen and Sorensen 1985; Steudler and Peterson 1985; Cooper et al. 1987b;
Morrison and Hines 1990).

Much of the recent information concemning sulfur gases in wetlands has been derived
from studies of rates of gaseous sulfur emissions from these habitats in response to a need
to balance the atmospheric sulfur budget and concerns about acid precipitation (Maroulis
and Bandy 1977; Moller 1983). However, studies of gas emissions have provided
insights into some of the mechanisms of formation and release of sulfur gases. Research
on sulfur gas emissions from wetlands, especially those from higher latitudes, and
mechanisms which may be responsible for the production of some of these gases will be
emphasized in this paper. The reader is referred to recent reviews by Aneja and Cooper
(1989) and Giblin and Wieder (in press) who tabulated rates of biogenic sulfur gas

emissions from various habitats including salt marshes and freshwater wetlands.



Marine-Influenced Wetlands
Temperate Salt Marshes

Rates of emission of sulfur gases from salt marshes vary diurnally, from one
location to the next and from one type of vegetation to another (Table 1). Until the mid-
1970's it was thought that salt marshes were a significant global source of gaseous sulfur
because they contained large quantities of sulfide (Kellogg et al. 1972; Ivanov 1981).
During the last five years it has been demonstrated that the small areal extent of salt
marshes precludes them from being an important global source of gaseous sulfur.

The majority of salt marsh work was conducted in stands of Spartina alterniflora
which is the predominant grass in many temperate salt marshes. Emissions of DMS
usually dominate the flux of sulfur from areas inhabited by this grass (Table 1). Fluxes of
H»S can be high as well. The high rates of DMS emissions from S. alterniflora are
undoubtedly due to the presence of high concentrations of the DMS precursor
dimethylsulphonioproprionate (DMSP) in all parts of the plant (Dacey et al. 1987). This
compound is an osmoregulant in certain marine algae and higher plants. Its enzymatic
cleavage yields DMS plus acrylic acid (Cantoni and Anderson 1956; Larher et al. 1977;
Stewart et al. 1979; Dacey et al. 1987). Although the turnover of only a small portion of
the endogenous pool of DMSP would be needed to produce a large DMS flux, recent
investigations supported the premise that the bulk of DMSP cleavage to DMS occurs
through microbial decomposition of plant tissue or possibly exuded DMSP rather than by
the metabolism of S. alterniflora (Kiene, this volume).

It was demonstrated in laboratory studies that the bulk of DMS loss from soils
inhabited by S. alterniflora occurs from the emergent portion of the plant and that the
sediments act as a sink (Dacey et al. 1987). Field emission studies showed increased
DMS fluxes from sites with the most aboveground biomass (Hines et al. 1989).
Conversely, de Mello et al. (1987) reported a two-fold difference in DMS emissions from

sites that contained essentially equal quantities of aboveground biomass but contained a



large difference in the amount of belowground biomass. Although roots and rhizomes of
S. alterniflora contain large quantities of DMSP (Dacey et al. 1987), concentrations of
DMS in marsh sediment pore waters are low (< 100 nM; Howes et al. 1985). Apparently,
DMS released from DMSP in marsh soils is utilized rapidly by soil microflora.
Methanogenic and sulfate-reducing bacteria have been shown to decompose DMS in
marsh soils (Kiene et al. 1986; Kiene 1988; Kiene and Capone 1988).

Only three species of Spartina have been shown to contain high levels of DMSP: S.
alterniflora, S. anglica ( Larher et al. 1977, Dacey et al. 1987) and S. foliosa (J.D.H.
Dacey, pers. comm.). Field emission studies by Morrison and Hines (1990)
demonstrated rates of DMS flux from $. alterniflora which were 100-fold faster than
emissions from an adjacent stand of Spartina patens, another common marsh grass.
Spartina patens does not produce DMSP (Dacey et al. 1987) which underscores the
dominant role of DMSP as a precursor of DMS in these environments.

It is beyond the scope of this paper to address the biogeochemistry of H»S in salt
marshes. Considerable work has been conducted on sulfate reduction in salt marshes (eg.
(Howarth and Teal 1979; Howes et al. 1983; King 1983; Hines et al. 1989). Even though
sulfide concentrations can be very high (mM levels) in marsh sediment pore waters (King
1983; Hines et al. 1989), only a minor portion escapes to the atmosphere (Jgrgensen and
Okholm-Hansen 1985). Emissions of H2S are affected strongly by tidal pumping which
can increase flux rates by as much as four orders of magnitude (Jgrgensen and Okholm-
Hansen 1985; Cooper et al. 1987a). Emissions of HpS generally increase at night
(Hansen et al. 1978; Jgrgensen and Okholm-Hansen 1985; Castro and Dierberg 1987).
During the day certain anaerobic photosynthetic microorganisms at the sediment surface
consume sulfide while other oxygenic microorganisms increase the depth distribution of
oxygen which oxidizes sulfide before it escapes. However, Carroll et al. (1986) reported
daytime maxima in H2S emissions from a Spartina marsh. The distribution of dissolved

sulfide is influenced strongly by iron geochemistry, and it would be expected that



emissions would be higher in iron-poor soils such as carbonates. Vegetated soils also
tend to prevent the release of HaS compared to organic-rich sulfureta-type sediments
(Jgrgensen and Okholm-Hansen 1985) because marsh plants deliver oxygen to roots
which enhances sulfide oxidation. Periodic dessication during neap tides also tends to
oxidize the sediments (Howes et al. 1981; Dacey and Howes 1984; Hines et al. 1989) .
Sulfureta-type sediments emitted 20-90% of the sulfide produced from sulfate reduction
compared to non-sulfureta sediments which emitted <0.02% (Hansen et al. 1978;
Jprgensen and Okholm-Hansen 1985).

Emissions of MeSH, CSj, COS and DMDS from salt marshes are considerably
slower than the fluxes of DMS or H3S (Table 1). Although emissions of MeSH from a S.
alterniflora-inhabited area in New Hampshire were less than DMS emissions they also
varied in a similar fashion throughout the day (Morrison and Hines 1990). This
suggested that MeSH flux was related mechanistically to DMS emissions or that the
demethylation of DMS was responsible for the bulk of the MeSH released. The
coincidence between MeSH and DMS emissions was reported for other S. alterniflora
soils (Goldan et al. 1987), for agricultural plants grown in the laboratory (Fall et al. 1988)
and for certain sites in a Danish estuary (Jorgensen and Okholm-Hansen 1985). The
similarity between the daily variation in flux of these gases was not noted for sites
dominated by S. patens (Morrison and Hines 1990) or Juncus romerianus (Goldan et al.
1987) and the emission ratio MeSH:DMS was 30-fold higher in §. patens soils compared
to sites inhabited by S. alterniflora.

Emissions of COS from salt marshes are also much lower than DMS emissions from
S. alterniflora-inhabited sites (Table 1). Laboratory studies revealed that vegetation
consumed COS in the daylight similarly to CO (Fall et al. 1988; Goldan et al. 1988).
When flux measurements were made using chambers that employed sulfur-free sweep air
only an efflux of gaseous sulfur was determined. However, studies using ambient sweep

air containing COS (Steudler and Peterson 1985) or sweep air with COS added (Morrison



and Hines 1990) demonstrated uptake of COS by §. alterniflora. Conversely, light
stimulated the emission of COS from sediment cores devoid of vegetation (Jgrgensen and
Okholm-Hansen 1985).

Emissions of CS7 and DMDS were detected in many studies of salt marshes (Table
1). Rates of emission of both these compounds were generally very low and DMDS
fluxes were usually lower than those for CS; (Steudler and Peterson 1985; Cooper et al.
1987a; de Mello et al. 1987). The low emission rates and the often inconsistent temporal
trends noted for the emissions of these compounds make interpretations of possible
production and emission mechanisms difficult.
Subarctic Salt Marsh

Emissions of sulfur gases from a salt marsh on the Alaskan coast in the Bering Sea
were much slower than for temperate salt marshes (Table 1) (Hines and Morrison in
press). Unlike temperate marshes, subarctic regions are devoid of vegetation throughout
the majority of the intertidal zone with various grasses situated near the high tide line.
Hines and Morrison (in press) measured sulfur emissions from sites inhabited by various
plants and from a bare mud flat. The site exhibiting the highest flux of sulfur contained
the sedge Carex subspathacea. This Carex sp. which emits primarily DMS is grazed
thoroughly by geese during the summer. Emissions of DMS doubled when geese feces
were left within the emission chamber. Although the DMS emissions were low from this
site, the ratio of flux to emergent biomass was similar to data for temperate S. alterniflora.
This similarity suggested that C. subspathacea produces a sulfonium compound like
DMSP and that emission of DMS from geese feces is analogous to the enhancement of
DMS emissions when DMSP-producing marine algae are grazed by zooplankton (Dacey
and Wakeham 1986). Supralittoral vegetation (C. ramenskii) at the Alaskan site was

orders of magnitude more abundant than C. subspathacea yet emitted little to no DMS.



Subtropical

Emissions of sulfur gases from mangrove-dominated wetlands (Table 2) were
reported in three studies (Castro and Dierberg 1987; Cooper et al. 1987b; Hines et al. in
prep.). Cooper et al. (1987b) reported data for soils inhabited by black mangroves
(Avicennia germinans) where DMS and HjS emissions were similar in magnitude and
varied greatly in response to soil temperature. Emissions of CSp and DMDS were an order
of magnitude lower than DMS or H2S. The fluxes all of these gases were much lower than
fluxes from S. alterniflora in Florida (Cooper et al. 1987a; de Mello et al. 1987). Hines et
al. (in prep.) also found that sulfur emissions from black mangrove peatty soils were much
lower than those for S. alterniflora soils and that their measurements of mid-day rates were
nearly an order of magnitude less than those rates reported by Cooper et al. (1987a).

Emissions from salt-tolerant red mangrove (Rhizophora sp.) were also measured by
Hines et al. (in prep.). These were consistently higher at sites that were frequently
flooded, well drained at low tide and directly adjacent to open water. Areas with a few cm
of standing water over fine-grained carbonate material had surprisingly low emissions
compared to drier well-drained sites. Emissions of DMS were dominant. Fluxes of MeSH
and CS, were often relatively high especially from the well drained areas near open water.
Emissions of COS were much higher from the well-drained areas as well. There was no
significant increases in fluxes when intact Rhizophora sp. plants were included within the
enclosures. Sulfur gas fluxes from all of these marine subtropical sites seem to indicate
greater emissions from the soil rather than plants. Castro and Dierberg (1987) reported
highly variable H3S fluxes from areas dominated by red mangroves. Emissions of sulfur
gases have also been determined by Castro and Dierberg (1987) and Cooper et al. (1987a)
for regions inhabited by Distichlis sp. and Juncus sp. (Table 1) and by Cooper et al.
(1987a) and Hines et al. (in prep.) for the Batis sp. (saltwort) in Florida (Table 2).

Temperature variations strongly affected the measured gas fluxes.



It appears that emissions of sulfur from subtropical marine wetlands are not as high
as those from temperate S. alterniflora soils. The major difference is probably the high flux
of DMS from S. alterniflora. Even when the year round growing season in the tropics is
taken into consideration, these environments do not seem to be significant global sources of
atmospheric sulfur. This is in contrast to the estimates made by Adams et al. (1981b) who
reported that emissions of sulfur gases increased exponentially along a north to south
gradient. More recent work by Andreae et al. (in press) indicated that tropical soils are not
unusually high sources of atmospheric gaseous sulfur. However, they sampled only
upland soils. As pointed out by Aneja and Cooper (1989), most of the data reported
recently appear to indicate ihat terrestrial sulfur emission rates are as much as 20-fold lower
than those reported nearly a decade ago (i.e. Adams et al. 1981a,b). Although a portion of
this descrepancy is probably due to methodogical improvements and a larger data base,
recent data suggested that emissions do not increase exponentially from temperate to the
tropical regions.

Freshwater Wetlands
Temperate to Subtropical

Few studies have addressed the production and emission of sulfur gases in
freshwater environments (Table 3). The majority of emission data for inland sites are from
soils. However, some of these studies also measured emissions from wetlands. Adams et
al. (1981b) found that sulfur emissions were relatively slow in swamps and several peatty
"muck" areas throughout the eastern U.S.A. Aneja et al. (1981) reported that emissions of
HjS from a freshwater marsh in North Carolina were relatively high but that fluxes of
DMS, COS, CS7, MeSH and DMDS were less than their detection limit of ~175 nmol m-2
hrl. Goldan et al. (1987) found that emissions of COS, H2S and DMS from decaying
cattails were low and 10 to 1000-fold less than those from a salt marsh site . Although

H5S fluxes were similar to those from grasses and clover, COS fluxes from cattails (Typha



sp.) were ~10-fold higher and DMS fluxes were ~10-fold lower than fluxes from grasses
and clover.

Emissions of sulfur gases from freshwater subtropical wetlands were measured by
Cooper et al. (1987b), Castro and Dierberg (1987) and Hines et al. (in prep.) (Table 3).
Emissions from sawgrass (Cladium sp.)-dominated areas were similar in magnitude to
emissions from some ofthe marine areas investigated. In fact, emissions from freshwater
sites studied by Hines et al. (in prep.) were similar to those from the wet and peatty
mangrove sites sampled within a few days of the freshwater areas. Cooper et al. (1987b)
found much higher emissions of sulfur during the hottest times of the year. Unlike the
marine sites inhabited by mangroves, fluxes of sulfur gases from various freshwater sites
doubled when enclosures were placed over sawgrass and/or Muhlenbergia sp. plants
(Hines et al. in prep.). The lower total fluxes and the larger leaf areas of these freshwater
habitats may result in an increased importance of direct leaf emission of sulfur from
freshwater wetland grasses compared to the marine mangrove sites situated within this
same large wetland system in the Everglades. Many types of terrestrial plants have been
shown to directly release sulfur gases (Rennenberg 1984, 1989; Fall et al. 1988).

Emissions of sulfur from Everglades freshwater sites were twice as high from
locations that had burned five months previously compared to adjacent unburned sites
(Hines et al. in prep.). Fires are common in wetlands like the Everglades where they
contribute to natural species succession and preservation. The recycling of sulfur through
plant organic matter, ash, soil microorganisms and plants may influence the natural
emissions of sulfur from these environments, or perhaps the enhanced productivity of
newly-growing species accounts of the enhanced fluxes. The aboveground biomass was
much smaller at the burned sites but its photosynthetic activity was higher (G.J. Whiting,

pers. comm.).
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Higher Latitudes

Wetlands are important features in high latitude terrestrial environments. Bogs, fens
and non-forested tundra, which remain wet throughout the warmer months, occupy a large
percentage of the terrain. Nriagu et al. (1987) found that DMS, and perhaps H3S,
concentrations were relatively high in standing waters within bogs in Ontario. His
calculated fluxes of DMS were similar in magnitude to average oceanic fluxes (Table 3).
On the basis of isotopic data he suggested that some of the sulfur emitted from industrial
activity that was deposited in these bogs was biologically transformed into DMS and H»S
which was re-emitted to the atmosphere.

Recent data for Alaskan tundra (Hines and Morrison in press) demonstrated that
emissions of gaseous sulfur from this environment are very low and similar to rates of
sulfur emissions from temperate cattails, native grasses and organic-poor soils (Goldan et
al. 1987; Lamb et al. 1987; MacTaggart et al. 1987; Staubes et al. 1989) (Table 3). Using
enclosures, emissions from tundra were highest from wet meadows and slough areas
which contained grasses and some standing water. Sulfur fluxes were slowest from sites
dominated by lichens. Emissions from all sites were dominated by DMS; however, HS
could not be quantified with the techniques used at the tundra sites. Since complete water
inundation appeared to enhance emissions from tundra it was postulated that low fluxes of
sulfur were due in part to hydrological changes in water levels. Tundra environments also
tend to accumulate organic matter that is never completely decomposed. However, this
environment receives very little input of sulfur from the atmosphere (Talbot et al. in press),
of which approximately 0.5% is re-emitted as DMS.

Contrary to the Alaskan tundra data, emissions of sulfur gases from bogs and fens in
New Hampshire were among the highest ever measured for freshwater environments
(Hines unpublished data; Table 3). Emissions of DMS which appeared to originate from
below the water table in the New Hampshire fen clearly overwhelmed the other quantified

gases. Even though H)S was not determined quantitatively, it was routinely noted. There

11



are some indications that sulfur gas emissions are strongly influenced by the position of the
water table relative to the surface of the mosses. It appears that DMS is produced under
anaerobic conditions in bogs as opposed to its possible aboveground source in salt
marshes. The fluxes of sulfur gases from the New Hampshire bogs/fens were greater than
the calculated emissions reported from bogs in Ontario (Nriagu et al. 1987) even though
atmospheric sulfur deposition is probably substantially higher at the Ontario sites. One
reason for this discrepancy may be that the Canadian rate data were derived from
measurements of DMS in standing water while those in New Hampshire were measured
directly at the vegetated sites. From these studies it is unclear 1) if sulfur emissions are
relatively rapid from bogs and fens in general; 2) if this emission is regulated primarily by
the amount of atmospheric sulfur deposition and is, thus, only rapid in polluted areas and,
3) how sulfur gases are produced in bog environments. Adams et al. (1981b) reported
very low emissions of sulfur' gases from a fen in Minnesota. The sulfur budget for a bog
in Minnesota was nearly balanced indicating that the the loss of gaseous sulfur had to be
small on an annual basis (Urban et al. 1989). In addition, Morgan et al. (this volume)
found that the concentrations of sulfur gases in the pore waters of a New Jersey fen were
quite low and dominated by H3S and DMS.
Conclusions

Considerable progress has been made in the last 10-15 years in the quantification of
rates of emissions of sulfur gases from wetland habitats. However, the only habitats that
have been characterized fairly well are temperate salt marshes and, even there, data are
sparse, especially results from seasonal studies. It appears that earlier studies of the role of
terrestrial environments in the global sulfur cylce overestimated their importance by as
much as a factor of ten. The low latitudes probably emit much less gaseous sulfur to the
atmosphere while the high latitudes may be a larger source of these gases than previously
thought. The paucity of data underscores the need to include all of the major habitats when

assessing the importance of wetlands as sites for production and recycling of gaseous
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sulfur. In addition, studies are needed which address the mechanisms of production and
transformation of sulfur gases within the various terrestrial ecospystems.
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Acetate concentrations and oxidation in salt marsh sediments
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Abstract ,bzﬁf 93

Acetate concentrations and rates of acetate oxidation and /57 53 oL

sulfate ‘reduction were measured in S. alterniflora sediments

in New Hampshire and Massachusetts. Pore water extracted
from cores by squeezing or centrifugation contained >0.1 mM
acetate and, in some instances, >1.0 mM. Pore water sampled
non destructively contained much less acetate, often less

" than 0.01 mM. Acetate was associated with roots, and
concentrations varied with changes in plant physiology.
Acetate turnover was very low whether whole core or slurry
incubations were used. Radiotracers injected directly into
soils yielded rates of sulfate reduction and acetate
oxidation not significantly different from core incubation
techniques. Regardless of incubation method, acetate
oxidation did not account for a substantial percentage of
sulfate reduction. These results differ markedly from data
for unvegetated coastal sedlments where acetate levels are
low, oxidation rate constants are high and acetate oxidation
rates greatly exceed rates of sulfate reduction. The
discrepancy between rates of acetate oxidation and sulfate
reduction in these marsh soils may be due either to the
utilization of substrates other than acetate by sulfate
reducers or artifacts associated with measurements of organic
utilization by rhizosphere bacteria. Care must be taken when

interpreting data from salt marsh sediments since the release



of material from roots during coring may affect the
concentrations of certain compounds as well as influencing

results obtained when sediment incubations are employed.
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Anaerobic decomposition is an important component of the
cycling of carbon in sediments. Acetate is a significant
intermediate in this decomposition, both as a fermentation
product and a substrate (Lovley and Klug 1986). It is
generally assumed that acetate is an important precursor for
bacteria, such as sulfate-reducing and methane-producing
bacteria, which are situated at the terminal step in the
anaerobic decomposition pathway. 1In fact, acetate
accumulates in sediments in which these processes have been
inhibited (Smith and Klug 1981; Michelson et al. 1989). 1In
subtidal marine sediments, the measured rate of acetate
oxidation often exceeds the rate of sulfate reduc£ion
(Sansone 1986). However, it has been proposed that the
discrepancy betweenrthese two rate measurements is due to the
presence of an acetate pool that is not bioavailable
(Christensen and Blackburn 1982; Novelli et al. 1988) leading
to an overestimation of acetate oxidation.

Sulfate reduction accounts for more than half of the
decomposition that occurs in salt marsh sediments and rates
of sulfate reduction in marsh sediments are among the highest
recorded (Howarth and Hobbie 1982). These high belowground
rates are due to high rates of primary production in salt
marshes and the fact that a large fraction of this
productivity is allocated to growth belowground (Schubauer
and Hopkinson 1984). Studies of the utilizationzéf organic
substrates in these sediments could potentially be hampered

by the fact that common techniques such as coring, squeezing



and centrifugation of sediments destroy root and rhizome
material. Howes et al. (1985) reported that dissolved

organic carbon concentrations in Spartina alterniflora

sediments were as much as 7 times higher in samples collected
using destructive techniques than concentrations in pore
waters obtained using non-destructive hethods. Since the
actual concentration of a substrate is multiplied by a rate
constant (obtained using radiotracers) to obtain actual rates
of bacterial utilization of a compound (Wright 1978),
erroneocusly high natural concentrations due to destructive
sampling should yield erroneous rates of organic uptake.

Although several previous studies have investigated
acetate cycling in freshwater and marine sediments, sediments
inhabited by vascular planté‘have not been examined similarly
even though it has been shown that anaerobic bacterial
metabolism is high in vegetated sediments relative to
unvegetated habitats (Hines 1991). The present study was
conducted to determine the potential role of acetate in salt
marsh sediments. In particular, the objective was to examine
the effects, if any, of the release of acetate during
sediment processing on the use of acetate by microbes in
vegetated sediments.

Samples were collected from two New England salt marshes
from 1983 through 1988. The first was Chapman'sVMarsh in
southern New Hampshire (Hines et al. 1989) where sediments

were sampled in a creekside stand of tall S. alterniflora and

in a stand of S. patens. Samples were also collected in



adjacent areas in which S. alterniflora had been recently
killed by wrack. The second site was in a stand of short S.
alterniflora in Great Sippewissett Marsh in Massachusetts
(Howarth et al. 1983). Samples here were also collected in

areas in which the S. alterniflora had been killed by

covering grasses with wooden planks.

Sediment cores from Chapman's Marsh were collected and
handled anoxically as described previously (Hines et al.
1989). Sediment samples from Sippewissett Marsh were
obtained using a 6.4 cm diameter corer which was immediately
capped.

Pore waters were collected anoxically by destructive and
non-destructive methods. For destructive samples from
Chapman's Marsh, core sections werefcentrifuged at 5,000 x g.
Core material was chopped for placing into centrifuge tubes
when necessary. In one set of Chapman's Marsh samples, cores
were sliced vertically and one half was processed as
described above. The other half was sectioned and the
sediments separated from root and rhizomes by washing with
seawater. The remaining plant material was chopped and
placed into centrifuge bottles similarly to whole core
material, mixed with artificial sea water and then
centrifuged. The resulting water was then processed
similarly to other pore-water samples. The non—destructive
pore water samples from Chapman's Marsh were collected
anoxically using in situ Teflon sippers (Hines et al. 1989)

which were deployed several days prior to the first sampling.



For pore-water sampling in Sippewissett Marsh, cores were
extruded, sections were immediately placed in a Reeburgh
press (Reeburgh 1967) and pore water pressed out. For non-
destructive sampling, core sections were placed within a
Reeburgh press and pore water collected without applying
pressure using a syringe with a 12-gauge needle inserted into
the sediment.

Pore waters from Chapman's Marsh were filtered through
0.4-um Nuclepore filters, the pH was adjusted with 2 N NaOH
and they were stored frozen in acid-washed serum vials sealed
with Teflon-lined septa. Samples from Sippewissett Marsh
were filtered through 0.45-pym Millipore filters and the pH
adjusted with 1 N NaOH.

Acetate was measured using gas chromatogfaphy (GC) . For
Chapman's Marsh, thawed pore water samples were concentrated
by evaporation at 80° C, mixed with 100 pl of 10% H3PO4, and
desalted using a microdistillation system (Christensen and
Blackburn 1982). The efficiency of distillation was
determined using standards and [l4C]acetate. Most samples
collected by centrifugation contained sufficient acetate such
that preconcentration by evaporation was not necessary.
Desalted samples were immediately mixed with an equal volume
of 1% formic acid in a microliter syringe and injected into a
Perkin Elmer model Sigma 300 gas chromatograph equipped with
a 1-m, 4-mm-diameter glass column packed with 0.3% Carbowax
20 M, 0.1% H3PO4 on 60/80 mesh Carbopack C (Supleco, Inc.)

and a flame ionization detector. The injector was 200° C,
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the oven was 120° C, the detector was 130° C and the Nz flow
rate was 80 ml min-l. Standard mixtures of volatile fatty
acids (Supleco, Inc.) were put through the entire procedure.
The detection limit was ~10 pM. Sippewissett Marsh samples
were analyzed similarly to those above and as described by

Novelli et al. (1988).

Acetate oxidation rate constants were determined using
14c. Anoxic subsamples (1.0 ml) from Chapman's Marsh cores
were mixed with an equal volume of deoxygenated (N2)
artificial sea water in a serum vial and then sealed with a
Teflon-lined septa. Slurries were injected with 0.1 or 1.0
uCi of uniformly labeled [l4C]acetate. After incubation for
2-24 h, bacterial activity was stopped by injection of 0.25
ml of 10% formaldehyde. Production of l4coy from acetate
oxidation was determined by acidifying killed slurries,
stripping with N2, and trapping CO2 in vials containing a
1:1:2 mixture of methanol, phenethylamine and a scintillation
cocktail, respectively. Replicate control samples were
killed with foramldehyde prior to incubation with 14cC and
were treated similarly. An insignificant quantity of [l4c;
acetate was carried over from the slurry to the traps. The
efficiency of recovery of COz was determined by adding a
solution of [l4C]bicarbonate to killed controls.
Radioactivity was determined by scintillation counting. Rate
constants were calculated using a linear equation. Because
uptake was very slow in most instances, there was no

significant difference between rate constants calculated this



way and constants calculated using natural log transformed
data. Acetate oxidation rates were calculated as the product
of the rate constants and the pore-water concentrations of
acetate corrected for sediment porosity.

Acetate oxidation in Sippewissett samples was determined
by injecting uniformly labeled [l4C]acetate directly into
subcores held within syringes. Sample processing was similar
to that described by Novelli et al. (1988). Briefly, after
2-3 h the incubation was terminated by extruding samples into
jars containing formaldehyde and NaOH. After mixing, the
jars were fitted with phenethylamine impregnated glass fiber
filters, the samples were acidified with H2S04, and the
trapped 14c07 determined by scintillation counting.

Rates of sulfate reduction were determined using 3°s
(Howarth and Merkel 1984; Hines et al. 1989). In all cases,
except the in situ experiment described below, sediment cores
were subcored and sections in syringes were injected with 335
and incubated in the dark for 12-18 h at in situ
temperatures. Reactions were stopped by either injection of
10% zinc acetate followed by freezing (Massachusetts samples)
or by rapid freezing alone (all other samples). The
incorporation of 355 into the acid-volatile (HS~ and iron
monosulfides) and chromium-reducible (S° ana pyrite) phases
were determined for all samples.

On one occasion, rates of sulfate reduction and acetate
oxidation were measured in the field by injecting 35504 or

[l4cjacetate directly into undisturbed Sippewissett Marsh



sediments at depths of either 5 or 10 cm. The experiment was
carried out at low tide and inside very large diameter core
tubes which had been placed in the marsh a month previously.
After incubation, cores containing the radioisotope were
collected using 6.4-cm-diameter core tubes and sulfate
reduction rates determined as described above. Cores for
sulfate reduction were frozen using Dry Ice after injecting
zinc acetate. Cores for acetate oxidation were immediately
sectioned and placed in a solution of formaldehyde and NaOH.
All the sediment within the tubes was removed from the field
for disposal as radioactive waste. Parallel experiments were
run on marsh samples collected near the experimental site but
with the incubations conducted in situ in syringes as
described above for acetate oxidation and sulfate reduction
rates in Sippewissett Marsh.

Dissolved acetate concentrations were highest in samples
collected using destructive techniques (Tables 1 and 2). The
highest concentrations (>1.5 mM) were in the tall S.

alterniflora in Chapman's Marsh during vegetative growth

(i.e. June 1986) (Table 1). The disturbed (cored) samples
yielded acetate levels that were greater than undisturbed
samples by as much as 500-fold or more. When cores were
washed free of sediment and the remaining root material was
processed like an intact core, ~75% of the acetate found in
intact cores was recovered (Table 1). 1In additidn, acetate

concentrations in squeezed Sippewissett samples collected
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during summer were 5-10 fold higher than in pore-water
samples removed using a syringe and needle (data not shown).

In most -instances, acetate concentrations were much
higher than other volatile fatty acids such as propionate and
butyrate. The GC techniques used were not able to detect
formate, but 67 uM formate, 245 uM acetate, and 27 uM
propionate were found in Sippewissett pore waters in the
summer using a derivatization GC method (D.G. Shaw pers.
comm.). Subtidal unvegetated marine sediments generally
contain low concentrations of acetate (14-70 upM) (Novelli et
al. 1988; Michelson et al. 1989) compared to these vegetated
sediments, even when destructive techniques are used to
collect pore water.

Acetate concentrations using destructive techniques

during the growing season were highest in the upper 5 and 15

cm in S. patens and S. alterniflora sediments, respectively

(Table 1), corresponding to the depths where live roots and
rhizomes generally existed. Below the live root zone,
acetate concentrations decreased and were usually similar in
samples collected by non-destructive or destructive
techniques. These data indicated that acetate was associated
with root and rhizome material and that ambient pore water
acetate levels were low. Although samples from destructive
techniques were collected rapidly, in many instances the
acetate concentrations were very high. This resuit indicated
that acetate was probably released directly from roots rather

than from precursors released from roots during processing.
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The latter could only occur if acetate production from a
precursor was extremely fast.

Acetate concentrations in marsh sediments varied greatly
throughout the year and these variations, in samples
collected destructively, corresponded to major changes in the
physiological state of marsh grasses (Table 1). Highest

acetate concentrations were noted in S. alterniflora

sediments when plants were growing rapidly aboveground, i.e.,
June 1986 when levels exceeded 1.5 mM (Table 1). After
flowering in August, acetate levels were ~10 times less than
during June. However, the June and August data are not
directly comparable since samples were collected in different
years. In September 1985 when plants were senescing, acetate

concentrations increased in S. alterniflora sediments in New

Hampshire, decreased by December, and were at the lowest
recorded levels prior to the initiation of growth in May
1986. The only New Hampshire samples that contained

significant concentrations of VFA other than acetate were

those collected in September when S. alterniflora was

senescing. The lowest acetate concentrations were in sipper
samples collected during the summer.

Acetate oxidation rate constants in vegetated marsh
sediments ranged from 0.002 to 1.8 d-1 (Table 3). The
highest values were obtained in sediments in which S.

alterniflora had been previously killed while the lowest

values were in S. patens sediments. Rate constants did not

vary consistently with depth. Triplicate subsamples



generally varied by less than 20%. The rate constants in
these vegetated sediments were 5 to several thousand-fold
lower than in unvegetated subtidal sediments studied by
others (Table 3). The inverse of the rate constants yields
turnover or residence times of acetate of 0.5-500 d in
vegetated sediments. Because of the slow turnover in the
marsh sediments, it was often difficult to obtain data which
were linear over time. Some of the lower values in Table 3
were obtained using data from only the 0 and ~20 h time
points.

Figure 1 depicts acetate oxidation as a function of
sulfate reduction for the salt marsh sediments studied. The
acetate oxidation rates (acetate concentration * rate
constant) were calculated using acetate concentrations
obtained from destructive techniques. The 1:1 line
represents a situation where all of the sulfate reduction
could be due to acetate utilization using the 1:1
stoichiometry of acetate oxidized to sulfate reduced. Values
above this line indicate that processes other than sulfate
reduction were responsible for acetate oxidation while values
below this line indicate that sulfate-reducing bacteria were
utilizing substrates other than acetate. Acetate did not
appear to be an important substrate for sulfate reduction.
This lack of imporatnce was most pronounced in the S. patens
sediments where often less than 1% of the sulfate reduction
was due to acetate oxidation. For comparison, the

unvegetated Buzzards Bay data of Novelli et al. (1988) are
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included in Fig. 1. These sediments are typical of
unvegetated sediments in that they exhibited high rates of
acetate oxidation compared to sulfate reduction activity.

There were no significant differences in rates of sulfate
reduction and acetate oxidation when measured using either in
situ or core incubation techniques (Table 4). Therefore,
sediment disturbance during sampling did not affect these
processes. Unfortunately, this experiment was conducted in
October when plant and microbial metabolic activity and
acetate concentrations in pore water were relatively low.
Therefore, we did not anticipate a large stimulation of
acetate uptake. However, despite the lack of difference in
acetate concentrations using the two pore water collection
methods, the large discrepancy between sulfate reduction and
acetate oxidation persisted.

Acetate concentrations in marsh samples collected using
destructive techniques were much higher than those reported
for unvegetated coastal marine sediments (<70 upM) (Novelli et
al. 1988; Michelson et al. 1989). The destructive techniques
also yielded acetate concentrations that were much higher
than those obtained using sippers in the marsh. We
previously noted a 5-fold increése in acetate concentrations
in centrifuged samples of unvegetated subtidal sediment
compared to samples obtained using sippers (Hines and Tugel,
unpublished). In addition, Shaw and McIntosh (1990), working
in subtidal coastal sediments, reported that the first 5 ml

of pore waters obtained from sediment squeezers was enriched
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~10-fold in acetate compared to the remaining water obtained.
However, this enrichment in acetate in unvegetated sediments
was small relative to our marsh results. Obviously, the
higher concentrations in vegetated sediments were due to the
presence of roots.

Acetate concentrations in disturbed samples of marsh
sediments were highest when plants were at their peak of
physiological activity. In addition, acetate in S.

alterniflora sediments was found closely associated with root

material devoid of sediments. Since pore water samples were
collected rapidly, these findings indicated that the bulk of
the sedimentary acetate, or its precursor, was produced by
roots. Acetate has been shown to be a fermentation end
product of unicellular algae (Gfeller and Gibbs 1984) and
certain lower animals (Crawford 1980). To our knowledge, the
production of acetate by roots of marine vascular plants has
not been previously determined, nor have data on the
abundance of root-associated acetate been reported. It
remains unclear how acetate is produced in the Spartina
rhizosphere.

Acetate oxidation rate constants in the salt marsh
sediments were often extremely low (Table 3) compared to
constants reported for unvegetated coastal sediments (Novelli
et al. 1988; Michelson et al. 1989). These low rate
constants also persisted in samples that were not disturbed
prior to or during incubation, including the experiment where

radiotracers were injected directly into the sediment in the
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field. Hence, the unusually slow acetate turnover in the
marsh was not an artifact of acetate liberation from roots by
coring and sample processing.

Sulfate reduction rates in salt marsh sediments greatly
exceeded rates of acetate oxidation (Fig. 1). This result
differed greatly from studies of unvegetated marine sediments
where acetate oxidation rates exceeded rates of sulfate
reduction in some cases by several-fold (Novelli et al. 1988;
Michelson et al. 1989). We noted a few instances in the salt
marsh sediments where rates of these processes approached the
1:1 stoichiometry expected if acetate were an important
substrate for sulfate reduction. However, none of the rates
in the marsh samples exhibited a ratio of acetate oxidation
to sulfate reduction that was as high as in the majority of
samples collected from unvegetated sediments (Fig. 1).

Ratios were low in marsh samples regardless of the type of
incubation used, be it sediment slurries or direct injection
of tracer in the field. This discrepancy persisted even when
incubations for measuring acetate oxidation were as long as
those used for measuring sulfate reduction, i.e., overnight.
If acetate was a significant substrate for sulfate reduction,
then any effects of coring on the acetate pool would have
affected sulfate reduction and acetate oxidation similarly.
Therefore, the low ratio noted here was probably not due
simply to the release of large quantities of acetate during

sample handling.
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Tt was unclear why there was such a large mismatch
petween acetate oxidation rates and sulfate reduction and why

it was more pronounced in S. patens than in §S. alterniflora.

One explanation is that acetate was simply not a major
substrate for sulfate reduction. Other compounds which are
produced by Spartina roots, such as malate and ethanol, are
known to be utilized directly by sulfate-reducing bacteria.
Hines et al. (1989) suggested that seasonal changes in the

allocation of carbon in S. alterniflora were responsible for

much of the temporal variations in sulfate reduction
activity. Aquatic vascular plants are known to excrete
significant quantities of organic carbon from roots and this
carbon can be utilized by the sediment microflora (Moriarty
et al. 1986). However, it is not known whether these

exudates from S. alterniflora are capable of replacing

acetate as the primary substrate for sulfate-reducing
bacteria in the marsh.

Another more likely explanation for the mismatch between
acetate oxidation and sulfate reduction is the possibility
that the radio-acetate used for measuring acetate oxidation
did not thoroughly reach the microsites of active acetate
oxidation. Roots and rhizomes supply acetate (or its
precursor) to the sediments and provide three dimensional
diffusional gradients. Therefore, it is unlikely that
sediment incubations involving injections, cores or slurries
could mimic the in situ chemical conditions and the physical

juxtaposition of microorganisms and substrates. Our
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inability to mimic natural rhizosphere conditions may be
similar to problems encountered in studies of mycorrhizal
nutrition in the rhizosphere of terrestrial plants (Coleman
et al. 1978). One would not expect this type of artifact to
affect measurements of sulfate reduction rates since sulfate
is abundant and derived from overlying waters.

Another reason for the mismatch may be that during the
slow utilization of tracer substrates by bacteria there is a
delay in the release of terminal products (CO2) because of
differences in the relative turnover times of intracellular
intermediates (King and Berman 1984). This artifact is
severe for substrates like glucose which also yield
extracellular fermentation products which must be further
oxidized to CO2 (King and Klug 1982). The artifact also
should be most pronounced in environments exhibiting
relatively slow rates of substrate turnover such as the marsh
sites presented here. We measured only the production of CO2
and did not include the uptake of acetate into intracellular
pools or into biomass. It is conceivable that a significant
percentage of 14C had yet to be released as CO2 when the
incubations were terminated and that the actual rates of
acetate consumption were substantially faster.

We still do not know whether to use acetate
concentrations in cores or from sippers to calculate acetate
oxidation rates; an uncertainty that complicates our
interpretation. Since acetate oxidation rate constants were

determined using cores, we chose to use acetate
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similar rates of sulfate reduction. However, since acetate
jevels were low when this experiment was conducted, these
data are probably not representative of what would occur in
sémples COllected during the growing season when large
quantities of acetate are present in the root zone. Hence,
the experiments to verify whether coring yields erroneous
sulfate reduction rate data in marshes remain to be
conducted. However, when surficial unvegetated marine
sediments were amended with acetate 5 to 50-fold over in situ
concentrations, sulfate reduction activity increased ~2-fold
(Hobbie et al. unpublished data). These results are not
directly comparable to marsh sediments but they demonstrate
the potential for stimulation of sulfate reduction during
coring. This enhanced sulfate reduction phenomenon cannot be
used to reduce the discrepancy between acetate oxidation and
sulfate reduction since any stimulation of sulfate reduction
by acetate release would also increase the rate of acetate
oxidation. However, a 2 or even 5-fold change in sulfate
reduction would not eliminate the majority of the difference
between the rates of these processes.

In conclusion, acetate concentrations in salt marsh
sediments are much higher than in unvegetated sediments.
Acetate is released during coring and increases pore water
acetate levels several fold. Acetate turnover and oxidation
rates in salt marsh sediments are much lower than in
unvegetated sediments. In addition, unlike unvegetated

sediments, acetate oxidation in salt marsh sediments accounts



for only a small percentage of the sulfate reduction
activity. The discrepancy between acetate oxidation and
sulfate reduction in marsh sediments may be due to compounds
other than acetate acting as major substrates for sulfate
reduction, to artifacts from an inability to introduce radio-
acetate into the appropriate bioactive pool, or to
intracellular pool artifacts. Investigators studying salt
marshes must be careful in interpreting results from samples
obtained from destructive sampling techniques such as coring

when compounds are released from roots.
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- Table 1. Acetate concentrations (uM) in sediments from Chapman's Marsh, New
Hampshire on various dates using destructive (core) and non-destructive

(sipper) sampling techniques.

Depth Spartina alterniflora Spartina patens Dead 8. alt.* S. alt
(cm)

Core Sipper Core Sipper Core Rootst

August 1985

2 144 0.2 115 0.8

5.5 147 0.7 S 5

11.5 271 2 17 2

17.5 25 11 22 1
September 1985

2 417 3 101 unsaturéted#

5.5 338 <0.1 50 2

11.5 159 1 7 3

17.5 61 1 44 29
December 1985

2 i15 14 4 7

5.5 53 9 12 2

11.5 8 59 9 3

17.5 86 7 1 2
May 1986

2 115 8 18

5.5 53 5 23

11.5 8 6 18

17.5 86 11 4
June 1986

2 1600 240

5.5 1500 160 970

11.5 870 23

17.5

870 36 630

xS. alterniflora killed by wrack during previous summer.
thalf of core washed free of sediment and roots processed like whole core
(see text). 5.5 cm value = 0-8 cm, 17.5 cm value = 9-20 cm.

tneap tide, upper few cm not saturated with water so unable to collect sipper

sample.



Table 2. Acetate concentrations
in short Spartina alterniflora
soils in Sippewissett Marsh on
various dates using destructive

(core) techniques.

Date Depth (cm) Acetate (uM)
Jun 1983
1.2 290
4 300
7 170
15 63
Oct 1983
1.2 390
4 270
7 250
15 230
Oct 1983 (dead)*
1.2 250
4 230
7 130
15 130
Aug 1984
2 77
6 130
10 52
15 44
20 18
25 26
Aug 1984 (dead)*
2 35
6 95
10 23
15 19
20 15
25 21

*Grass killed during summer of

1982 by covering with plywood.



Table 3. Acetate oxidation rate constants for salt marsh sediments.

pata from unvegetated marine sediments included for comparison

Site Date Depth (cm) n Rate constant (d‘l)

Chapman's Marsh, NH

Tall S§. alterniflora Jun-Aug 1.0-20 20 0.068 - 0.48

Spartina patens Jun-Aug 1.0-20 12 0.002 - 0.12
Sippewissett Marsh

Short S. alterniflora Jun, Oct 1.2-15 8 0.31 - 2.9

Dead S. alterniflora Oct 1.2-15 4 0.48 - 4.0
Unvegetated

Novelli et al. 1988 Aug 0.0-16 12 - 48

Michelson et al. 1987 Apr 0.0-10 7.9 - 31




Table 4. Sulfate reduction and acetate oxidation in Sippewissett Marsh in
samples incubated either by direct injection of radiotracers into sediments
in the field (Field) or injection of tracers into previously retrieved cores
(Laboratory). Included are acetate concentrations and rate constants. All

acetate data are for 5 cm depth.

Parameter Field Laboratory

S042- reduction (nmol mi-1 a-1)

5 cm 339 £ 112 (n=3) 200 + 79 (n=3)
10 cm 118 + 12 (n=2) 64 * 64 (n=3)
Acetate (uM) 46* 23-75%
Acetate oxidation rate constant (d-1) <0.144 <0.144
Acetate oxidation (nmol ml-1 d-1) <5 <10
Acetate oxidation:SO42‘ reduction ratio <0.01 <0.01

*pore water removed with syringe.

t+Pore water removed by squeezing in Reeburgh press.
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Fiqure Legend

Fig. 1. Acetate oxidation rates vs. sulfate reduction rates
in sediment samples from various salt marsh sediments. The
non-vegetated sediments are from Buzzards Bay,

Massachusetts as reported in Novelli et al. (1988).
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in Sphagnum Peatlands o I
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ABSTRACT

A static enclosure method was applied to determine the exchange of DMS and
OCS between the surface of Sphagnum peatlands and the atmosphere. Measurements
were performed concurrently with dynamic enclosure measurements with S-free air used
as sweep gas. DMS emission rates determined by both methods were comparable
between 5 and 500 nmol m-2 h-1. The dynamic method provided positive OCS flux rates
(emission) for measurements performed at sites containing Sphagnum.. Conversely, data
from the static method indicated that OCS was consumed from the atmosphere.
Measurements using both techniques at a site devoid of vegetation showed that peat is a
source of both DMS and OCS. Results suggested that OCS is produced in surface peat
but it is taken up from the atmosphere by Sphagnum mosses. However, the net effect of
both processes is that OCS uptake exceeds emission. The dynamic enclosure technique is
adequate to measure rates of emissions of S gases which are produced in peatlands but
not consumed, as long as attention is paid to the rate of sweep flow.
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Sphagnum Peatlands IO -
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ABSTRACT

Short and long-term impacts of increased S deposition on fluxes of volatile S
compounds (VSCs) from Sphagnum peatlands were investigated in an artificially acidified
(sulfuric and nitric acids) poor fen (Mire 239) at the Experimental Lakes Area (ELA),
Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen) in
Barrington, NH, USA. At Mire 239, emissions of VSCs were monitored, before and after
acidification, at control (unacidified) and experimental sections within two major
physiographic zones of the mire (oligotrophic and minerotrophic). The experimental
segments of the mire have received S amendments since 1983, in amounts equivalent to the
annual S deposition in the highest polluted areas of Canada and US. Dimethyl sulfide
(DMS) was the predominant VSC released from the mire and varied largely with time and

space (i.e., from 2.5 to 127 nmol m=2 h-1). Sulfur addition did not affect DMS emissions
in a period of hours to a few days, although it stimulated production of DMS and MSH in
the anoxic surficial regions of the peat. DMS emissions in the experimental oligotrophic
segment of the mire was ~3-fold greater than in the control oligotrophic segment, and ~10-
fold greater than in the minerotrophic zones. These differences could be due to a
combination of differences in types of vegetation, nutritional status and S input. At Sallie's
Fen, DMS fluxes were ~8 times higher from a Sphagnum site than from a bare peat site.
Fluxes of VSCs were not significantly affected by sulfate amendments at both sites, while
DMS and MSH concentrations increased greatly with time in the top 10 cm of the peat
column. Our data indicated that although Sphagnum is not the direct source of DMS
released from Sphagnum peatlands, it might play a role in regulating DMS emissions to the
atmosphere.
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ABSTRACT

The major environmental factors controlling fluxes of DMS in a Sphagnum-
dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions
from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum
DMS emissions occurred in summer with minima in the late fall. Temperature was the
major environmental factor controlling these variabilities. There was also some evidence
that that changes in water table height might have contributed to the seasonal variability
in DMS emission. The influence of the water table was greater during periods of elevated
temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound
(VSC) in the surface of the water table. Concentrations of dissolved VSCs varied with
time and space throughout the fen. Dissolved DMS, MSH and OCS in the surface of the
water table were supersaturated with respect to their concentrations in the atmosphere
suggesting that the peat surface was a source of VSCs in the peatland. VCS in peatlands
seemed to be produced primarily by microbial processes in the anoxic surface layers of
the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct
source of VSCs. However they increased transport of DMS from the peat surface to the
atmosphere.
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Hampshire Salt Marsh -
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M.E. HINES, S.L. KNOLLMEYER, A. ELDRIDGE, D. LUKEN,
J.B. TUGEL and W.B. LYONS (Jackson Estuarine 3. (a). Mark E. Hines
Laboratory, Univ. New Hampshire, Durham, NH 03824) Jackson Estuarine Lab
' Univ. New Hampshire

Summer sulfate reduction and sulfide and iron Durham, NH 03824
chemistry were monitored in marsh soils along a
gradient from a creekside Spartina alterniflora -’ (b) 603-862-2175
region to an inland area dominated by S. patens.
Sulfate reduction rates measured using.~~S increased 4. ASLO
from 0.4 in June to as much as 4.5 | mole'ml'ld'l in
July in S. alterniflora soils with most rapid rates 5. Sulfur Cycling in
occurring in the upper few cm. Rates in S. patens Organic Rich
soils were ¥ 5-8 fold slower with the most rapid Environments
rates occurring generally in soils deeper than 10
cm. The recovery percentage of reduced 355 sulfur 6. 0
varied with depths at both locations; dissolved and .
acid-volatile sulfides dominating S. alterniflora 7. 0%
regions while chromfum-reducible solid phases were
abundant in S. patens soils. Dissolved sulfide in 8. (a). above
S. alterniflora soils increased throughout the (b), --
summer to = 2.8mM while sulfide in S. patens (c). --
soils was abundant only in soils deeper than 15 d). _£$gchoo
cm. Dissolved sulfide covaried inversely with
iron. Diel studies demonstrated that sulfide 9. C

and iron varied® two-fold in response to a
semi-diurnal tide. Dissolved sulfide turnover
was most rapid during periods of active plant
growth.
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Coastal wetland areas occupy a small percentage of the terrestrial environment yet
are extremely productive regions which support rapid rates of belowground bacterial
activity. Wetlands appear to be significant as biogenic sources of gaseous sulfur,
carbon and nitrogen. These gases are important as tracers of man’s activities, and
they influence atmospheric chemistry. The interactions among wetland biogeochemical
processes regulate the anaerobic production of reduced gases and influence the fate
of these volatiles. Therefore, spatial and temporal variations in hydrology,
salinity, temperature and speciation and growth of vegetation affect the type and
magnitude of gas emissions thus hindering predictive estimates of gas flux. Our
research is divided into two major components, the first is the biogeochemical
characterization of a selected tidal wetland area in terms of factors likely to
requlate sulfide flux; the second is a direct measurement of gaseous sulfur flux as
related to changes in these biogeochemical conditions. Presently, we are near
completion of phase one.

The New Hampshire marsh under investigation is subject to a 3m tidal range, seasonal
salinity variations of ~20 ppt, contains a productive creekside stand of Spartina
alterniflora and a nearby high marsh stand of Spartina patens. We have been
conducting a seasonal study of pore water and solid phase chemistry in conjunction
with measurements of rates of sulfate reduction and methanogenesis along a gradient
between both grass species. Pore waters were collected using in situ "sippers" to
prevent artifacts due to the destruction of plant material. Microbial activity rates
were determined using radiotracers. Samples were collected weekly during summer to
establish the influence of plant growth on biogeochemical processes. The S.
alterniflora inhabited sediments which received no detrital input year round were
inf luenced strongly by plant growth. Microbial activity, for example, increased
drastically once alterniflora growth began and decreased again in August as the grass
began to flower. Dissolved sulfide increased to > 4.0 mM during this period.
Sulfate reduction was less active in the S. patens soils and sedimentary
biogeochemistry was influenced strongly by variations in tidal regime and rainfall.
Sulfide was produced throughout the S. patens sediment column but only accumulaed
below 15 am because the changing hydrologic conditions caused sulfide removal by the
enhancement of iron cyclint?. The alterniflora soils were sulfide rich b ile the
anoxic patens soils were Fe * rich.” This discrepancy affected the fate of “-S during
rate measurements. Methanogenesis was slow in the alterniflora soils even when the
salinity was low. Methanogenesis was absent in patens soils. Attempts to delineate
the important methane precursors were hindered by slow rates and the possibility of
gross artifacts due to sampling techniques. Diel studies of pore water chemistry
demonstrated that the concentrations of certain solutes changed dramatically in
response to tides. Dissolved sulfide and organic carbon varied inversely by as much
as 2.0 and 0.5 mM respectively in a 6 h period. The interactions among plant
activity, bacterially-mediated processes and hydrologic regime produced a rapidly
changing and biogeochemically dynamic system which potentially will alter rates of
production of biogenic gases and influence the immediate fate of these gases.
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REGULATION OF SULFIDE FORMATION IN NEW HAMPSHIRE TIDAL WETLANDS.
Mark E. Hines, Stephen S. Knollmeyer, Audrey L. Eldridge and
W. Berry Lyons. University of New Hampshire, Durham, NH.
Salt marshes are productive and support active belowground anaerobic
microbial populations which produce reduced gases. To better understand the
regulation of sulfide formation, a study of soil biogeochemical processes was
conducted along a marsh gradient from a riverside stand of Spartina
alterniflora into a stand of S. patens. Rates of sulfate reduction and
methanogenesis were compared to pore water data obtained using in situ
samplers. Sulfate reduction was most rapid in S. alterniflora soils but only
during periods of active plant growth. Dissolved sulfide reached 4 mM in
soils inhabited by S. alterniflora which was 2.5 m tall. Variations in
tidal flooding and rainfall strongly affected sulfur and iron cycling in
patens soils which restricted sulfide to sediments deeper than 15 ¢cm. Pore
water concentrations of sulfide and organic carbon varied as much as two-
fold in response to tidal variations. The belowground production and fate
of sulfide was influenced primarily by plant growth, redox cycling due to
irregular dessication events, and the large tidal range encountered.

Gas cycling in wetlands

Mark E. Hines and David S. Bartlett
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° THE ROLE OF CERTAIN INFAUNA AND VASCULAR PLANTS IN THE MEDIATION OF
REDOX REACTIONS IN MARINE SEDIMENTS. M.E. HINES, INSTITUTE FOR THE
STUDY OF EARTH, OCEANS AND_SPACE, UNIVERSITY OF NEW HAMPSHIRE,

)

DURHAM, NEW HAMPSHIRE, USA.

P R S
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Bioturbation by deposit-feeding infauna affects certain redox processes in sediments in a manner
which is similar to what occurs when plants transport oxygen into the anaerobic root zone. The
. mechanisms by which these macroorganisms do so was examined by studying three differing
» gedimentary environments: 1) subtidal temperate estuarine sediments dominated by the subsurface
- deposit-feeding polychaete Heteromastus filiformis; 2) a temperate saltmarsh inhabited by Spartina

sp.; 3) and tropical carbonate sediments inhabited by three species of seagrasses. 355-sulfide
production rates were compared to pool sizes of dissolved sulfide, other solid phase S species,
dissolved iron and data related to animal and plant abundance and activity. In all of the sediments
studied, rates of sulfate reduction were enhanced by macroorganisms while the rate of turnover of
dissolved sulfide increased. The polychaete enhanced microbial activity primarily by subducting

articles of organic matter and oxidized iron during sediment reworking. Rates of sulfate reduction
were ~5-fold faster in sediments inhabited by the polychaete compared to similar sediments which
did not support a deep-feeding infaunal community. Sulfide was removed from solution primarily
by interactions with dissolved iron. The Spartina species enhanced anaerobic activity by
transporting primarily dissolved organic matter during periods of active leaf elongation. Rates of
sulfate reduction increased more than 5-fold as soon as plants began to grow aboveground and rates
decreased again within a few days of the cessation of growth as plants flowered. Molecular oxygen
transported to roots caused the oxidation of reduced species within the sediment. In addition, iron
was remobilized and a portion of the sulfide generated was precipitated as iron sulfide. The turnover
of dissolved sulfide slowed ~5-fold once the plants flowered. The tropical seagrasses, which grew
more slowly than the Spartina, oxidized the sediments but to a lesser degree. Dissolved sulfide
turned over every 2-4 days in grass-inhabited sediments compared to >20 days in control areas. The
enhanced turnover of sulfide in the seagrass sediments was due primarily to oxidation by oxygen
since these sediments were nearly devoid of iron. The final result of both animal and plant activity
was subsurface cycling of sulfur and iron, decreased dissolved sulfide and increased dissolved iron
concentrations. The magnitude of the enhancement of subsurface redox cycling was polychaetes >
Spartina > tropical seagrasses. Sulfide turnover times decreased from greater than 30 days in
control sediments to seconds in some experimental sediments. All three sites displayed dramatic
seasonal changes in this activity. Although the final result was the same, the animals affected redox
conditions by transporting particulate organic material and Fe(II) while plants transported dissolved
organic material and molecular oxygen.

WG
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BIOGEOCHEMISTY AND GASEOUS SULFUR RELEASE IN TIDAL WETLANDS

Mark E. Hines

University of New Hampshire

Institute for the Study of Earth, Oceans and Space
Science & Engineering Research Building

Durham, NH 03824 U.S.A.

Phone: (603) 862-4725



The production and flux of biogenic gases from terrestrial eco-
systems is a function of several interrelated conditions and processes
including floral speciation and physiology, soil chemistry, salinity,
temperature and the duration and vigor of the growing season. Tidal
wetlands are especially influenced by the physical environment since
they act as an interface and buffer between the aquatic and terrestrial
enviromments. Hence, these ecosystems are unusually complex and produc-
tive and can act as a source of biogenic compounds which greatly exceeds
an averaged ecosystem.

Because of the juxtaposition to the sea and the varying redox
gradients, salt marshes have an abundant source of sulfur and potential-
ly can generate an unusually large quantity of biogenic sulfur gases.
To fully understand the role of wetlands in atmospheric chemical budgets
it is necessary to study the total environment, including the soil, to
clarify the effects of physical factors on gaseous emissions. The
present study has been examining the short and longer term changes in
the biogeochemistry of tidal wetlands in terms of sulfur cycling and the
production and flux of sulfur gases to the atmosphere.

Two temperate East Coast marsh systems have been studied during the
past three years. The New Hampshire marsh under investigation is

dominated by Spartina plant species particularly S. patens with a narrow

but productive stand of S. alterniflora along river and creek banks.
The Great Mafsh in Lewes Delaware was investigated during June of 1986
as part of an interdisciplinary study to examine the flux of various
gases from tidal wetlands along a salinity gradient. The Delaware marsh

contained a variety of grass species but was dominated by

s. alterniflora and S. patens.




Sedimentary pore water samples were collected wusing in  situ
samplers which were deployed several days prior to use and which mini-
mize disturbance to the plant root-rhizome system. Rates of bacterial
sulfate reduction were determined using radioisotopes. Solid phase
analyses were conducted on core samples which were handled anoxically.
Emission rates of the gaseous sulfur compounds methane thiol (CH3SH),
hydrogen sulfide (st), dimethyl sulfide (DMS), carbonyl sulfide (COS)
and carbon disulfide (CS2) were determined using a dynamic flow-through
teflon flux chamber. Gas samples were concentrated in cryogenic traps
and, after remobilization, were analyzed using a gas chromatographic
system with a flame photometric detector.

The sedimentary biogeochemistry of the New Hampshire marsh was
influenced primarily by the growth of marsh plants and the desiccation
of marsh soils by periodic precipitation events and the cycling of the
tide. Rapid bacterial anaerobic activity occurred only during periods
of rapid plant growth. However, this vigorous growth of marsh vege-
tation also caused an oxidation of marsh soils which enhanced the
turnover of sulfide in the sediments. The high marsh soils were sub-
jected to severe desiccation during neap tides and periods of d&rought
which caused a reoxidation of iron and the recycling of iron and sulfur.
This prevented the accumulation of reduced sulfur compounds in the high
marsh soils.

Diel measurements of sulfur gas fluxes revealed that the total S

flux rate was similar at S. alterniflora-containing locations which

differed tremendously in terms of sedimentary chemistry. A large
portion of the Delaware marsh contained sediments which were oxidizing

and low in pH due to sulfur oxidation within the soil. However, the



flux of DMS from these sites was similar in magnitude to the flux noted
at a site which exhibited reducing, neutral soils rich in dissolved

sulfide. Conversely, H_S fluxes were influenced strongly by subsurface

2

chemistry and a rapid flux was noted only at sites rich in dissolved
sulfide.

Sulfur gas fluxes varied greatly throughout the day. DMS flux
rates were most rapid at night and appeared to be enhanced by the
condensation of water on grass leaves. HZS fluxes also increased at
night but decreased rapidly at dawn, presumably because of the pumping
of photosynthetically-generated oxygen to roots. st fluxes also
increased very quickly as a result of tidal pumping of sedimentary pore
waters. The fluxes of CSZ' COS and CHBSH were much slower than the
fluxes of DMS and HZS and fluxes of the former gases varied throughout

the day. DMS was the major S gas emitted from 8. alterniflora-

containing soils. However, DMS fluxes from 5. patens were slow. The
results suggested that DMS is emitted from the leaves of marsh plants

while st is emitted directly from soils. Although the sites studied

were marine, the flux of sulfur gases amounted to ™~ 2% of the flux of
methane from the same locations.

Extrapolation of f£flux data revealed that salt marshes contribute
n~ 1.5 T¢ of S globally to the atmosphere. This estimate is 2 maximum
since mezsurements were made during an active period of the year and

orlv rates for 5. alterniflora were considered in the calculation.
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‘ompgns;ted by cither condensation or evaporation of the

concentration was passed through three teflon flux boxes

solid phase ammonpium nitrate. The system was ‘ '"~‘
1o investigate these relaxations under different conditions
1o ascertain the efect of these conditions on the measured
guxes of all three components. Numerical simmlations
iacorporating differing atmospheric concentrations, surface
Juxes, system eqt ilibration relaxation times and lurbn}ent
(rapsport parameters have been carried out. Comparison
with the feld experimental results have been made.

pIA-0S 0916K :
K rements of Con r e} Tal T £a
spheric Nitr fn_the Pr [l

A nia V. r

W. LUKE (Department of Chemlstry, Unfv. of
Haryland, College Park, HMD 20742),

. H RT (Center for Atmospheric Chemlstry
studies, Grad. Schoot of Oceanography. Univ.
of Rhode [sland, Narragansett, RI 02882-1197)

A.C. DELANY, R. BROST (NCAR, Boulder, CO B0307)

We measursd summertime gradients of nitrate
aerosol and vapor at the 8AD tower, in the
presence of occasionally high ammonia vapor
concentrations from nearby agricultural facil-
itfes. The nitrate vapaor gradlients were much
flatter than expected, based on earlier field
work and on thecretical constderatlions. 1n some
cases the apparent vapor concentration was ac-
tually greatest near the surface, tmplying an
upflux of nitric acid and a negative deposition
velocity! Aerosol nitrate somet imes showed more
of a gradient than the vapor.

We belleve that the data is consistent with
nitric acid vapor deposition which is coupled
to the evaporation of NHdNO aerosol. Aerosol
evaporation flattens the vasor gradient by re-
supplying vaper to the depleted air near the
surface. In such & sltuation, the total nlitrate
Fiux s conserved, but the vapor and aerosol
Fluxes vary wlith helght.

The deposition veloc(ty/concentrat!on method
for estimating surface fluxes may result in
gross errors (even sign errors) when a phase
equilitbrium Is coupled to the deposition.

The time scale for the evaporation of
ammonium nitrate aeroscl must be small compared
to the vertical eddy-transport time, to have
the cbserved effect on the vertlcal gradients.

Au18-6 09304

Trace Gas Emissions from Prescribed Chaparral Fires

WESLEY R. COFER III (Atmospheric Sciences Division,
A Langley Research Center, Hampton, YA 23683~

§225)

JOEL 5. LEVINE

DANIEL T. SEBACHER

EDMARD L. WINSTEAD (ST Systems Corporation,

Hampton, YA 23666)

Gas samples were collected from smoke plumes over
the San Dimas Experimenta) Forest fn the San Sabriel
Nountains of southern Caiifornia during prescribed
chaparral fires on December 12, 1986, and on June 22,
1987, A helicopter was used to collect the samples
over areas of vigorous flaming combustion and over
areas of transitional and smoldering combustion.
Sampling was conducted at altitudes as Tow as 35 m
and a3 Righ as 670 m above ground level. Saaples
were callected in pairs, then returned by helicopter
to our field ladoratory and immediately analyzed for
carbon dioxide {CO2}, carbon monoxide (CO), hydrogen
{H2), methane (CM;;. total nonmethane hydrocardans
{TNMHC), and nitrous oxide (N20). Samples of gas
were also collected upwind of the burn and analyzed
to determine amdient background levels,

Emission ratios [AX/ACO2; X = each species; vIV)
determined for these gases relative to COp were
generally lower (except for Ny0) than the emission
ratios reported in the literature for other large
Blomass burning field experiments. Relatively ia-
significant differences in COz normalized emission
ratios {except for Nz0) for these gases were deter-
mined when samples from vigorously flaming and
smoldering stages of combustion were compared,

The very high surface-to-volume fuel ratio typical
of chaparral fires {which minimizes the smoldering
aspects) may have accounted for both the consistency
in the emission ratios and the overall Tower emission
Fatios of the measured gases.

M. E. Hines (Both at: Institute for the Study of Earth Oceans and
Space, University of New Hampshire, Durham, NH 03829)

Dynamic flux chambers were used to deiermine the emission rates of
teduced sulfur gases (H,S, COS, CH3SH, DMS, CSa) and the
variability resulting from spatial, biological and physical
heterogencity. Zero-grade sweep sir with controlled CO;

i ly within and acToSS specics ranges.

DMS emissions from wll Sparting alterniflora were greatest with
rates from 1000 to >5000 ng S m-2 min-1, Fluxes from short §.
alterniflora were about half that of the tall form and emissions from
§. patens were ncgligible. Photosynthetic rate and humidity appear
10 be the primary controlling factors.

The remaining gases were emitied in the range from 0 w 80 ng S m-2
min-! with COS fluxes being higher in S. parens than 5. alterniflora
and CH,SH higher in §. alterniflora. Tide and temperarure appear to
be the primary conuolling factors for these gases.

Spatial variability within species ranges was observed to be less than
the experimeaal error.

A4TA-08 )
Ozone Budgets in the Cloud-Topped Marine Boundary Layer

10184

8. R. Kawa and R. Pearson, Jr., (Department of Atmospheric
Science, Colorado State University, Fort Collins, CO 80523)

Fast-respanse, high-sensitivity ozone (Os} measurements were
obtained from aircraft in summer, 1985, during the Dynamics
and Chemistry of Marine Stratocumulus Experiment
{DYCOMS) off the California Coast. Concurrent measurement
of winds and atmospheric scalars allowed the vertical Oy Hux
to be caleulated by eddy correlation. The Oy fux and mean
concentration measurements are used to estimate the rate of de-
struction of Oy at the sea surface and the net rate of chemical
production or destruction in the marine boundary layer. These
are important quantities in the global Oy budget. The surface
Jestruction rate for the DYCOMS regime compares reasonably
well with previous measurements but shows significant variabil-
ity from flight to flight which does not correlate with any other
measured or observed variables. The net chewmical production or
destruction rate is calculated as the residual of measured terms
in the conservation equation. Values of this rate for individual
cases are near zero and of either sign. The mean rate for the
entire experiment is consistent with with photochemical model
predictions for pristine marine air.

A414-09 103
IR Laser Absorption Fddy Correlation
Instrumens for Atnosoheric Methane

P.L. KEBABIAN, §, ANDERSON, A. FREEDMAN, X.S. ZARNISER
and C.E. XOLB (Ceater for Chemical xnd Esvironmental
Physics, Aerodyne Research, Inc., Billerica, HA
01321)

The development of opan path IR absorption {nstrumen-
tation for atmospheric trace gas flux mensurements is
discussed. The principle of eddy correlation {s uied
to measurs surfice amission or uptake of trace gises
without enclosures or traps that would disturbd the
local enviroament. Fluctuations in traca gas concen~
tration are correlated with fluctuations in the verti-
cal component of the wiad. The IR laser is coupled to
an open-path (atsospharic pressure} multipasz absorp~
tion csll which provides sdequats sensitivity (at 10
Hz) and permits simultaseous measurement of gas comcen-
tration and vindfiald parsmetara in the ssme volums of
air.

The instrument for methans massurements amploys s
HeNe laser for vhich an sccidental coincidenca betveen
molaculsr sbsorption and the laser line occurs (2947.%
ca~l). The natural lasar frequency is Zesemam-split
using permanent or slectromsgnats with a commercial
lasar tube. VYith 3 desonstrated avallable tunisg
range of 1.6 GRz for the 2347.9 ca~! lige, we astimete
that 1T fluctuations {n the 1.6 ppa smbient methane
concantration can be messured at 10 Hz without inter-
ference from stmospheric water vepor. Transsission of
the 3.37 im» laser light to and from the multiple pass
cell can be sccomplished using fiber optlcs, reducing
the complexity of the opticsel train. Rasults of pre-
liminary testing and fisld measurements will be
Teported.

A41A-10 1046w
Or the Lack ¢f Ezuilibriyn gf Amngnis Soecies Qver
the Qcean

PATRIGIA K, QUINN arg RCBERT J. CHARLSON (Tept. af
Chesistry. University of Hashington, Sesttle, ua
98195

TIMQTHY S. BATES «MMWA/Pacific Marine Environmental
Laboratory, 7630 Sand Paint Way NE, Seattle, WA
93113

Ammgnia exists in five phases in the remole marine
enviranment: 10 sedwater 3% ammanium and dissolved
ammonia, NH,T [s) and Ne3 {s), in atmaspheric gas and
particulate phases, NHy (gl and MH,* (p),
in cloudwater, NH,® (<), and in rainwater, NH.Y tr).
The ammonia species MN* (3] + NH3 (), Ny gy and
NH, " (p) ware sascled aimultanegusly along with
articulate non-seasalt sulfate, xs S0, {p), to
nvestigate the equilibrium of ammonia between these
hases during nomcloudy condltions in the marine
roposphere. Concentrations of Nig (s3] were der tved
ra® srawater equilibrater measurements of NHj [g).
amples were collectea concurrently al a coastal

Vol. 68, No. 44, November 3, 1987 Eos

mountaintop site, Cheeka Pear wnich is located on the
northwest tip of Washington State. and aboara the NOAA
research vessel, McArthur, overating 0 to 140 ka

aff the coast of Washingisn State.

Concentrations were found to range detween 0.21 arg
2.4 unal 171, 10 ana 53 neol 171, 0.1 anc 2.8 neal a3,
1.6 and 15 nmeol a™3, arc 1.2 and 1% neal 3 for
NA,* (31, NHg [s), NHg (g1, NM.™ (o1, arc »1 S0.% (o3,
respectively. Comparison of the gas and pacticulate
phase data thrcugh a Siscie equilibriua agzel indic
that Ny (g) and NH,* ta1 are not in equilidrius.
The seawater and gas phase datd suggest that a Henry's
Law equilibrium does nct #¢ist Delepen tre ocean
surface and the atmosgnere for ammonia and that the
ocean in this region is a saurce of NH3 (g to the
aarine traposphere.

AQIA-11 11004
Pine Scale Iexooral Faciahilicw in zba Azzosohezic
Degosition aof 3e=7 .

Jack E. Rihk (Oaniversity of Mavyland,

Environmentsl and Eszaarine Scudies,
Biclogical Laboracory, S5cloaons,

Center for
Chesapeake
MD 204238)

The cosmogenic radionuclide Je-7 cac be a useful
tracer of a variety of aixing and transport processes
operating on tioe scales of weeks to nouths on the
earth’s surface, Atmosszeric deposition is generally
the dominant iaput of 3e-7, therefore, knovledze of the
stmospheric flux is esse=tial in studies eaploying de-7
23 a tracer. Is eitustions vhere iz has not been
possible to measure the atmospheric deposition of Be-7
some resesrchers have estizated cthe flux on the basis
of published regressic=s of Be~7 deposition againsc
precipitation.

Oa the basis of the fizst 15 zoaths of an ongoing
observation program at a site on the vestern shore of
the Chesapeake Bay {Solomons, MD) it iy apparenc that
such an estization technique can yield serious
overestimates of Be-7 flux. The ianteasity of a
precipicacion event, zhe tize interval since the
previous event, and the time of year {aad, presumadly,
several other factors) alter azy siaple relacion
betveen Be-7 depositisn and total precipitaricn. A
simple escination technique that considers Be-7 flux te
be a function of seasoral variatiosn ia de-7 production
and the tioing and aoouat of precipitation provides
inproved estizates of 3e¢-7 atzospheric deposition.

Au1A-12
ATMOSPHERIC
RANEAN REGION

Uity

INPUT OF METALS INTO THE MEDITER-

STEFANGQ GUERIONE, FENIO LENAZ and GTANNE DUA-

RANTOTTO (Istitute d: Gealogia Marina, CTKNR,
Via lambani n.45, 40127 Hologna, ltaly?
(Sponsoar: D.E. Hasaond]
To study atmospreric transport of eolian

dusts and trace metals into the HMediterranean
Sea, samples were collected at the sEawater-
air fnterface, with the contemparary use of
an impingment catcning system on nylon  mesh
panels and a high volume (75 m3/h} filtration
system, During shid> cruises metearological
data are collected, Oy means of an  automatic
portable meteo stat:on, together with T“true
wind" velocity and cirection. Samoles collec-
ted with the impingment catching svstem mainly
consist of silty clavs or clavey silts, with a
modal class of 4-5 um or 2-3 um, and with a
lgw sand cantent.

Observed ampunts cF dust-lcading range from
15 to 35 wg/m3, w1t no correlation with the
average wind speed recarged onooarz during tne
sampling perios (10-13 hours).

Preliminar resul:s on trace metals shcw
values ranging from % to 76 ng/a3 for Pb, O.1-
1.3 for Cd. 10-80 scr In, 3-12 ¢or Ni, 2-11
for V and 8-%4 for Ma

A rough estimate cf dry Qepositisn into the

basin (based on a ceposition velocity of 1
cm/sec), gives the Ffollowing: F> = 160-2300
tavg. 700) ng.cm-2.v-1, Ca = 3-42 tavg. t3),

In = 315-2320 favg. &33).

The aerosols over the Mediterranean Sea have
concentrations of Fe, Ni, An and V similar to
those of continental crust. In contrast, non-
crustal sources govern the concentrations of
Ce, Pb and In; dus: samples show EFlcrust)
values as foliows: In = 15 (5-62), Pb = 49 (7-
234), Cd = 71 (32-133), with the maxima in the
Eastern Mediterranesn,

AulA-13 11234
The Effect of Light, Dark and CO, on Short-term
Measurements of Methane Flux.

G.J. WHITING (N.R.C./NASA Langley Res. Cen., Hampton,
TA~23 ~ P.M. CRILL (College Of William and Mary,
Williams| urg, VA 23185}, J.P. CHANTON (Univ. of North .
Carolina, Chapel Will), X.B. BARTLETT (College of
lciiH;am and Mary) and D.B. BARTLETT (NASA Langley Res.
en.

. Methane fluxes from wetlands are commonly measured
using static chambers sealed to the ground with flux
rates calculated from the accumulation of methane
within the trapped air space. The chambers are usually
dark boxes of varying complexity that are placed over
plants. Rarely has the effects of containment on the
flux been evaluated. Ve report here on an experiment
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Emissions of Biogenic Sulfur Compounds from Alaskan
Tundra

M E Hines and M C Morrison (Institute for the study of Earth,
Oceans and Space, University of New Hampshire, Durham, NH
03824; 603-862-4725; OMNET M.HINES.UNH; NASAMAIL
MHINES)

Fluxes of COS, DMS, CS; and MeSH from a variety of habitats in
the Yukon-Kuskokwim Delta were measured using Teflon, dynamic
flux chambers. Sampling sites included upland tundra, wet meadow
tundra and lake waters near the town of Bethel and several locations
within and directly adjacent to an intertidal region on the southwest
Alaskan coast. Concentrations of S gases in sedimentary bubbles
and stems of emergent macrophytes were also determined. Gas
samples were cryogenically trapped and measured using GC-FPD.

Sulfur gas fluxes were extremely low in the inland sites with highest
rates of ~10 nmol S m-2 h-1 in wet meadow areas inhabited by
grasses and sedges. Upland areas with a mixture of grass, berries
and dwarf birch averaged ~3 nmol S m-2 h-1, Labrador Tea ~5 and
regions dominated by lichens ~1. Sulfur emissions from lake water
was <1 nmol S m-2 h-1. Fluxes were dominated by DMS with lesser
amounts of MeSH and occassionally CS2. Small amounts of
hydrogen sulfide (H2S) were detected routinely but could not be
quantified. Lake sediment bubbles contained, in pmols S 1-1,350
COS, 425 DMS and 350 CS,. Only COS was detected within plant

stems. Using 1012 m2as the global area of non-forested bog and a
150 day season, the global flux of biogenic S to the atmosphere from
tundra is 4 x 108 g yr-! or 0.001% of the estimated global flux of
biogenic S.

Emissions of S from the marine sites were more rapid but still 50-
fold lower than fluxes from temperate salt marshes. Rates of DMS
flux from sites inhabited by the intertidal sedge Carex subspathacea
were 80 nmol m-2 h-1 and more than doubled when geese feces were
left within the flux chamber. When normalized to aboveground
biomass, DMS fluxes from this species were equal to fluxes from
temperate cordgrass suggesting that the former uses DMSP during
osmoregulation. Emissions were extremely slow from Carex sp.
which dominated the supralittoral. Another salt-tolerant species,
Elymus, emitted modest quantities of DMS.
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Emissions of Dimethyl Suifide and Related Biogeochemistry in Northern
Sphagnum-Dominated Wetlands.

Mark E. Hines*, William Z. de Mello*, Georgia L. Murray*, Suzanne E. Bayley",
Joyce B. Tugel* and Patrick M. Crill*.

Institute for the Study of Earth, Oceans and Space
University of New Hampshire, Durham, NH 03824 *

Department of Botany, University of Alberta, Edmonton, Alberta T6G 2E9+

Sulfur gases are important components of the global cycle of S. They contribute to
the acidity of precipitation and they influence global radiation balance and climate. The role
of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as
major unanswered questions in our understanding of the natural S cycle. We have been
investigating the role of northern wetlands as sources and sinks of gaseous S by measuring
rates of S gas exchange as a function of season, hydrologic conditions and gradients in
trophic status. In addition, we have been examining the processes of methanogenesis and
sulfate reduction.

Experiments have been conducted in wetlands in New Hampshire, particularly a poor
fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario.
Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas
chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static
enclosures were employed which yielded similar results. Dissolved S gases and methane
were determined by gas stripping followed by GC. Depth profiles of sulfate reduction
were determined by 35S and methanogenesis was determined by peat incubations.

Emissions of dimethy! sulfide (DMS) dominated S gas fluxes from all sites. In New

Hampshire, DMS fluxes were >1.6 umol m-2 d-! in early summer, 1989 when
temperatures were warm and the water table was ~5 cm below the surface. These rates are
several-fold faster than average oceanic rates of DMS emission. Despite continued warm
temperatures, a rapid drop in the water table resulted in a 6-fold decrease in DMS emissions
in late July. In 1990, a new beaver dam kept water levels above the surface of the fen for
the bulk of the season and S gas emissions were much lower than during 1989. However,
emissions of methane were ~3-fold higher during that period compared to 1989.
Concentrations of methane and DMS in surface waters co-varied closely until the water
table dropped below the surface. The elimination of the beaver and a drop in the water
table in August produced a rapid increase in S gas emissions. However, the low
temperatures in late August prevented S gas fluxes from being as high as those noted in
1989. Emissions of DMS were highest in the most oligotrophic areas. Using static
chambers, we observed that these fens are sinks for atmospheric COS.

Similar measurements were made at the ELA in July, 1990. Mire 239 was irrigated
with sulfuric and nitric acids to simulate acid rain. Sulfur gas emissions,.dissolved S gas
and methane concentrations, and rates of methanogenesis and sulfate reduction were
determined before and after an acidification event in control and experimental areas in both
minerotrophic and oligotrophic regions of the fen. Emissions of DMS dominated the S
gases and fluxes followed a smooth diel pattern. Emissions of DMS were higher in the
acidified areas compared to unacidified controls. Emissions were also much higher in the
oligotrophic regions compared to the minerotrophic ones. Despite the wide differences in S
gas fluxes (20-fold), it was difficult to determine if acidification or variations in trophic
status were most responsible for differences in S gas emissions. DMS dissolved in the
surface of the water table (25 cm below the fen surface) did not vary throughout the fen.
DMS emitted into the atmosphere was not derived from the water table but originated in
peat situated above the water table. Measurements using only dissolved concentrations of
DMS may grossly underestimate fluxes. Following a rain event, dissolved methane



decreased greatly while dissolved sulfide concentrations increased. However, rates of
methanogenesis did not decrease after rain or the acidification event.

Highest S gas emissions (DMS) occurred in the most oligotrophic regions of mires
despite the fact that these locations received the smallest S input. Our preliminary data from
Alaska to the northeastern US suggest that DMS emissions correlate with atmospheric S
depositions and complications from terrestrial inputs may be insignificant in affecting these
fluxes. If this is true, then scaling up using remotely sensed information would be greatly
facilitated. However, hydrologic variations influence emissions by perhaps orders of
magnitude and this and other influences need to be addressed in detail.
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ABSTRACT

Our research focuses on understanding the role of Sphagnum-dominated
peatlands as sources and sinks of atmospheric reduced sulfur gases, such as dimethyl
sulfide (DMS), hydrogen sulfide (H2S), carbonyl sulfide (OCS), methane thiol

(MSH) and carbon disulfide (CS5). These reduced sulfur species are precursors of

tropospheric acid suifate and stratospheric sulfuric acid aerosols, which control the
acidity of rain and are potential climate regulators.

This research is being conducted in a poor fen in Barrington, NH, where fluxes
of reduced sulfur gases are systematically being monitored. Last summer, an
intensive one-week study also took place in a poor fen in the Experimental Lakes
Area (ELA) of northwestern Ontario. Three distinct methods were used to .
determine and estimate fluxes: dynamic chambers, static chambers and a stagnant-
film model Other physical and chemical parameters are measured simultaneously,
such as 1) temperature in the atmosphere, in the Sphagnum cushion, and at various
depth below the peat surface, 2) concentrations of reduced sulfur gases and methane
in the surface of the water table, 3) dissolved oxygen, 4) pH, and 5) water table’
level

Emission of reduced sulfur gases varied in space and time. Spatial variability
occurred on small and large scales, ie. within the same physiographic area and
latitudinally. Temporal variability occurred on daily and annual scales. Fluxes were
higher during the day and lower during the night. Fluxes were higher in summer and
decreased toward the end of the fall Fluxes in NH were higher than at the ELA.
There was some evidence that the surface of the peatland may, in fact, consume
OCS from the atmosphere. Although investigations on the potential factors
controlling fluxes from peatlands still continue, it seems that capillary transport of
water from the peat surface by the Sphagnum is the principal factor regulating
reduced sulfur gas emissions in these environments. '
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THE EFFECTS OF ACID DEPOSTION ON SULFATE REDUCTION AND METHANE /
PRODUCTION IN PEATLANDS -
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Peatlands, as fens and bogs, make up a large percentage of northern latitude terrestrial
environments. They are organic rich and support an active community of anaerobic bacteria,
such as methanogenic and sulfate-

reducing bacteria. The end products of these microbial activities, methane and hydrogen
sulfide, are important compgnents in the global biogeochemical cycles of carbon and sulfur,
Since these two bacterial groups compete for nutritional substrates, increases in sulfate
deposition

due to acid rain potentially can disrupt the balance between these processes leading to a decrease
in methane production and emisston. This is significant because methane is a potent
greenhouse gas that effects the global heat balance.

A section of Mire 239 in the Experimental Lakes Area, in Nortwestern Ontario, was artificially
acidified and rates of sulfate reduction and methane production were measured with depth.
Preliminary results suggested that methane production was not affected

immediately after acidification. However, concentrations of dissolved methane decreased and
dissolved sulfide increased greatly after acidification and both took several days to recover. The
exact mechansim for the decrease in methane was not determined. Analyses are under way
which will be used to determine rates of sulfate reduction. These results will be available by
spring and will be discussed.
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The role of terrestrial sources of biogenic S and their effect on atmos-
pheric chemistry remain as major unanswered questions in our under-
standing of the natural S cycle. We have been investigating the role of
northern wetlands as sources and sinks of gaseous S by measuring
rates of S gas exchange as a function of season, hydrologic conditions
and gradients in trophic status.

Experiments were conducted in wetlands in New Hampshire (NH),
and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in
Ontario. Emissions were determined using Teflon enclosures, gas
cryotrapping methods and GC with flame photometric detection.

Emissions of DMS dominated fluxes. In NH, DMS fluxes were >1.6

umol m2 d-!in early summer, 1989 when temperatures were warm
and the water table was ~5 cm below the surface. These rates are
several-fold faster than average oceanic rates of DMS emission. A
rapid drop in the water table resulted in a 6-fold decrease in DMS
emissions in late July. In 1990, a new beaver dam kept water levels
above the surface and S emissions were much lower than during
1989, The elimination of the beaver and a drop in the water table in
August produced a rapid increase in S gas emissions. Emissions of
DMS were highest in the most oligotrophic areas.

Mire 239 (ELA) was irrigated with sulfuric and nitric acids to simulate
acid rain. S emissions were determined before and after an acidi-
fication event in control and experimental areas in both minerotrophic
and oligotrophic regions. Emissions of DMS were higher in the acidi-
fied areas compared to unacidified controls. Emissions were also
much higher in the oligotrophic regions compared to the minerotrophic
ones. Despite the wide differences in S gas fluxes (20-fold), it was
difficult to determine whether acidification or variations in trophic
status was most responsible for differences in S gas emissions. DMS
emitted into the atmosphere was not derived from the water table but

originated in peat in the unsaturated zone.
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Sulfur gases are important components of the global cycle of S. They contribute to the acidity of
precipitation and they influence global radiation balance and climate. The role of terrestrial sources
of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in
our understanding of the natural S cycle. We have been investi gating the role of northern wetlands
as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season,
hydrologic conditions and gradients in trophic status.

Experiments have been conducted in wetlands in New Hampshire, particularly a poor fen, and in
Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined
using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame
photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded
similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

Emissions of dimethyl sulfide (DMS) dominated S gas fluxes from all sites. In New Hampshire,

DMS fluxes were >1.6 gmol m-2 d-! in early summer, 1989 when temperatures were warm and the
water table was ~5 cm below the vegetation surface. These rates are several-fold faster than
average oceanic rates of DMS emission. Despite continued warm temperatures, a rapid drop in the
water table resulted in a 6-fold decrease in DMS emissions in late July. In 1990, a new beaver dam
kept water levels above the surface of the fen for the bulk of the season and S gas emissions were
much lower than during 1989. Concentrations of methane and DMS in surface waters co-varied
closely until the water table dropped below the surface. Emissions of DMS were highest in the
most oligotrophic areas. Using static chambers, we observed that these fens are sinks for
atmospheric COS.

Similar measurements were made at the ELA in July, 1990. Mire 239 was irrigated with sulfuric
and nitric acids to simulate acid rain. Sulfur gas emissions, dissolved S gas and methane
concentrations, and rates of methanogenesis and sulfate reduction were determined before and after
an acidification event in control and experimental areas in both minerotrophic and oligotrophic
regions of the fen. Emissions of DMS dominated the S gases and fluxes followed a smooth diel
pattern. Emissions of DMS were higher in the acidified areas compared to unacidified controls.
Emissions were also much higher in the oligotrophic regions compared to the minerotrophic ones.
Despite the wide differences in S gas fluxes (20-fold), it was difficult to determine if acidification or
variations in trophic status were most responsible for differences in S gas emissions. DMS
dissolved in the surface of the water table (situated ~25 cm below the vegetation surface) did not
vary throughout the fen. Estimates of S gas flux using dissolved concentration data were
significantly lower than directly measured fluxes. This discrepancy may have been due to enhanced
diffusivity of S gases from water sequestered during capillary action by Sphagnum mosses.
Measurements using only dissolved concentrations of S gases may grossly underestimate fluxes
when the water table is below the vegetation surface.

Highest S gas emissions (DMS) occurred in the most oligotrophic regions of mires despite the fact
that these locations would be expected to have the smallest S input. Our preliminary data from
Alaska to the northeastern USA suggest that DMS emissions correlate with atmospheric S
depositions. If this is true, then scaling up using remotely sensed information would be greatly
facilitated. However, hydrologic variations influence emissions by perhaps orders of magnitude
and this and other influences need to be addressed in detail.
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ELEVATED ACETATE CONCENTRATIONS IN THE RHIZOSPHERE OF SPARTINA ALTERNIFLORA
AND POTENTIAL INFLUENCES ON SULFATE REDUCTION.

Acetate is important in anaerobic metabolism of non-vegetated sediments but
its role in salt marsh soils has not been investigated thoroughly. Acetate
concentrations, oxidation (14C) and 8042~ reduction (33S) were measured in S.
alterniflora soils in NH and MA. Pore water from cores contained >0.1 mM
acetate and in some instances >1.0 mM. Non-destructive samples contained
<0.01 mM. Acetate was associated with roots and concentrations were highest
during vegetative growth and varied with changes in plant physiology.
Acetate turnover was very low whether whole core or slurry incubations were
used. Radiotracers injected directly into soils yielded rates of S042-
reduction and acetate oxidation not significantly different from core
incubation techniques. Regardless of incubation method, acetate oxidation
did not account for a significant percentage of S042- reduction. These
results differ markedly from data for non-vegetated coastal sediments where
acetate levels are low, oxidation rate constants are high and acetate
oxidation rates greatly exceed rates of S042- reduction. The discrepancy
between rates of acetate oxidation and S042~ reduction in marsh soils may be

due either to the utilization of substrates other than acetate by S042"
reducers or artifacts associated with measurements of organic utilization by
rhizosphere bacteria.

y
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FACTORS CONTROLLING SULFUR GAS EXCHANGE IN SPHAGNUM-DOMINATED
WETLANDS ‘

Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in a fen in NH, and in
an artificially-acidified fen at the ELA in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates
as high as 400 nmol m-2 hr-1. DMS fluxes measured using enclosures were much higher than those
calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature
controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques
indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused
DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these
gases to the atmosphere were not affected. However, emission data from sites experiencing large
differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate
inputs enhance DMS emissions from northern wetlands.
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Sulfur gases are important components of the global cycle of S. They contribute to the acidity
of precipitation and they influence global radiation balance and climate. The role of terrestrial
sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered
questions in our understanding of the natural S cycle. We have been investigating the role of
northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a
function of season, hydrologic conditions and gradients in trophic status. We have also
investigated the effects of inorganic S input on the production and emission of gaseous S.

Experiments have been conducted in wetlands in New Hampshire, particularly a poor fen, fens
within the Experimental Lakes Area (ELA) in Ontario, Canada and in freshwater and marine
tundra. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas
chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static
enclosures were employed. Dissolved gases were determined by gas stripping followed by GC.

Emissions of dimethyl sulfide (DMS) greatly dominated S gas fluxes from all sites. In New

Hampshire, DMS fluxes were >1.6 ygmol m2 h-! in early summer, 1989 which were several-fold
faster than average oceanic rates of DMS emission. After construction of a dam by a beaver in

1990, DMS fluxes decreased for the next two years to ~150 nmol m-2 h-l. Fluxes displayed a
smooth diel pattern which followed temperature. Dissolved DMS and methyl mercaptan (MSH)
concentrations varied throughout the fen both temporally and spatially. Concentrations were
highest in the most minerotrophic areas and in the spring.

Additions of SO42- caused a rapid increase in dissolved DMS and MSH concentrations in pore
waters. However, emissions of gases were not affected. Dissolved S gases were 100-fold higher
in a site in which vegetation was removed. Conversely, emissions of DMS were higher in the
vegetated sites. Although dissolved MSH concentrations increased in response to SO42- additions,
MSH efflux did not occur. The results suggested that DMS and MSH were formed from the
methylation of sulfide.

S gas emissions in a Canadian wetland varied greatly along a transect running from the central
pond to the upland. Emissions of S gases were slow in the floating Sphagnum mat next to the
pond and were dominated by hydrogen sulfide (H2S). Fluxes a few meters away from the pond
were much higher and restricted to DMS, whereas sites adjacent to the upland exhibited low to
undetectable fluxes of all S gases. Emissions from the lake surface were insignificant.

Carbonyl sulfide (COS) was consumed by Sphagnum wetlands in both the light and dark.
However, when Sphagnum was removed, COS was emitted to the atmosphere. Dissolved COS
concentrations varied from <0.1 to 10 nM and were highest in the summer and in minerotrophic
areas.

Emissions of S gases (DMS) from these wetlands were much faster than expected from the low
S content of the ecosystem. Sphagnurn appeared to greatly enhance S gas flux compared to other
types of vegetation, and fluxes were often highest in ombrotrophic regions. Fluxes calculated
from S gas concentrations in standing water pools or in pore waters will often greatly
underestimate rates compared to direct measurements using chambers. Emissions of S gases from
northern wetlands probably do not contribute greatly to the global burden of atmospheric S.
However, they may affect regional budgets. More importantly, investigations of controls on these
relatively rapid fluxes may be useful for understanding S cycling in northern, continental areas.



