
NASA-CR-194359 J

/ 8 £>

Status Report
for NASA Langley Grant NAG- 1-1 133,

Supplement 3:
Method of Characteristics .Design

of a Supersonic Wind Tunnel Nozzle
with Square Cross-Section

Principal Investigator:
Steven P. Schneider

Assistant Professor of Aerodynamics
School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN 47907-1282

Period Covered: 9/1/92 to 1/1/93

(NASA-CR-194359) METHOD OF N94-12824
CHARACTERISTICS DESIGN OF A
SUPERSONIC WIND TUNNEL NOZZLE WITH
SQUARE CROSS-SECTION, SUPPLEMENT 3 Unclas
Status Report, 1 Sep. 1992 - 1 Jan.
1993 (Purdue Univ.) 41 p

G3/09 0185521

Summary
Nozzle design codes developed earlier by the author under NAG-1-1133

were modified and used in order to design a supersonic wind tunnel nozzle
with square cross-sections. As part of the design process, a post-processing
code that generates square nozzles from the output of the Sivells code was
written. The method is based on the results of an axisymmetric method of
characteristics code and an axisymmetric boundary layer code. These design
codes are documented in this report.

Introduction
As part of earlier work aimed at development of supersonic quiet wind

tunnels with axisymmetric or 2D cross-sections, the author adapted and used
the Sivells wind tunnel nozzle design code (J.C. Sivells, AEDC-TR-78-63,
1978) and the Harris boundary layer code (Harris and Blanchard, NASA
TM 83207, 1982). The codes were adapted to run in Fortran-77 with simpli-
fied input/output. These codes have since been used at NASA Langley. A
requirement for design of quiet nozzles with square cross-sections was later
identified at Langley. The work reported on here used these existing codes
to carry out an approximate method of characteristics design of two such
square nozzles. The postprocessing code developed for this work is described
in this report.

Description of Design Method
The square nozzles were designed based on the results of Sivells axisym-

metric method of characteristics solution for a supersonic nozzle. The design
method was suggested by Ivan E. Beckwith. Internal streamlines were deter-
mined for the axisymmetric nozzle. For the purpose of quiet-flow design, it
is important to note that Sivell's code can produce nozzles with a section of
radial flow - see figure 3 in the reference above. The Sivells code was already
capable of generating internal streamlines for nozzles, although a one-line
modification was necessary in order to successfully generate these stream-
lines for general nozzles with non-zero lengths of radial flow. The Sivells
code was modified slightly to write this information to a file in a simple form
to be read by a post-processing code. The streamlines of the axisymmetric
flow are thus determined, along with the flow properties along them.

At the exit plane of the nozzle a square cross-section is then located
within the axisymmetric flow. The streamlines associated with each point

on the square cross-section are identified. These streamlines are then traced
backwards towards the throat^ giving at each streamwise station a new cross-
section of the nozzle, which is identified. The cross-sections upstream of the
exit are of course not exactly square. An approximate square is however
drawn, by drawing the square with the same cross-sectional area as that of
the original cross-section. This process continues back to the throat region.
Thus, the post-processing code produces an array of tKe side length of the
square versus the axial distance, for the square nozzle.

A boundary layer correction is then performed, based on the Harris code.
Flow data on the streamline in the centerplane is used as input to the Harris
code running in axisymmetric mode to produce boundary layer displacement
thicknesses as a function of streamwise distance. These thicknesses are used
as approximate thicknesses for the boundary layer at all locations in the real
3D nozzle at the given streamwise location. Thus, this thickness is just added
to the half-side length of the square to give the design half-side length.

Results

The work described here produced a slightly modified Sivells code (again,
modified only in terms of the input/output form, with the addition of one
statement to allow correct creation of streamlines for general geometries). It
also produced a Fortran-77 post-processing code which manipulates geome-
try, the Sivells output, and the isentropic flow relations to give square nozzle
designs. The code produces files for input to the Harris code, and uses the
Harris output to approximately correct the square nozzles for the boundary
layer growth. It is this code that is documented in this report.

This code is currently being further modified to include a Hopkins-Hill
transonic solution technique for the region upstream of the throat, to allow
the design of square supersonic nozzles with an upstream bleed slot designed
in the same way as earlier quiet nozzles. These modifications will be reported
on at a later date.

The Appendix to this report contains the user's manual for the post-
processing code, along with a brief description of how to obtain an electronic
version of the source code.

Appendix
An electronic version of the source for the Fortran-77 post-processing code

can be obtained from the Experimental Methods Branch at the NASA Lang-
ley Research Center, Hampton, VA, 23665. Contact Dr. Steven Wilkinson or
Dr. Gregory Jones. Alternatively, contact Prof. Steven P. Schneider, Aero-
nautical and Astronaiitical Engineering, Purdue University, West Lafayette,
IN 47907-1282, email stevesiaecn.purdue.edu, telephone (317) 494-3343.

The following pages contain the manual for the post-processing code,
written by Micheal J. Moen.

SNODEC: A POST PROCESSING CODE FOR THE DESIGN OF SLOW-EXPANSION

SQUARE SUPERSONIC NOZZLES

Michael J. Moen, M.S.

Purdue University, West Lafayette, IN

November 15,1992

Abstract

A computer code is written to aid in the design of a square supersonic nozzle. The code

utilizes the output of an existing method of characteristic code that was written by Sivells [6] to

design axisymmetric nozzles. Sivells' code is run in an inviscid mode to provide a record of

streamlines. A square cross-section is defined in the nozzle exit plane and the streamlines that lie

on the square wall are tracked upstream to the nozzle throat. Some bowing in the wall cross-

sections is seen to develop during the tracking process. To account for the area change due to the

wall bowing, the cross-sections are made perfectly square through a numerical integration. The

boundary layer code called VGBLP written by Harris and Blanchard [3] is then used to estimate

the boundary layer thickness based on the square dimensions and the corresponding 6* is added to

the wall dimensions to provide a final nozzle geometry. Every cross-section of the nozzle

geometry is square and the code outputs the geometry as the wall height from the nozzle

centerline for stations along the streamwise axis.

Introduction

In order to design a suitable nozzle for a high-speed, low disturbance wind tunnel, high

quality mean flows as well as very low levels and low frequencies of fluctuating disturbances must

be achieved. One way of obtaining such flow conditions is to maintain a laminar boundary layer

on the nozzle walls as far downstream as is possible. In order to maintain a laminar boundary

layer in rapid expansion nozzles, wall smoothness must be maximized and machining tolerances

must be kept very tight. In the case of axisymmetric nozzles, the machining tolerances and wall

smoothness required to obtain a test rhombus of useful size can be prohibitively expensive

depending upon the material chosen for the nozzle. One proposed way of improving the size of

the test rhombus in a high-speed tunnel without having to pay the price in machining tolerances is

to utilize a three-dimensional slow-expansion nozzle design. Design of a slow-expansion nozzle is

achieved by first designing a nozzle to meet a specific Mach distribution in the inviscid region.

The inviscid contour is then corrected by adding on the displacement thickness of the boundary

layer. The three-dimensional nozzle provides another improvement in the tunnel capabilities by

potentially decreasing the effect of wall waviness on boundary layer transition thereby increasing

the region of uniform flow in the test section.

This work is interested in developing a code that is useful in aiding the design of slow-

expansion, three-dimensional square nozzles. A two-dimensional and axisymmetric design code

based on the Method of Characteristics was written in 1978 by Sivells [6] for Arnold Engineering

Development Center (AEDC). While this code is not capable of designing square nozzle

geometries, it can provide the streamline locations for an axisymmetric tunnel and these

streamlines can then be used to approximate a square nozzle design. By defining a square cross-

section in the exit plane of an axisymmetric nozzle, the streamlines located on the square wall

section can be tracked all the way back to the nozzle throat and beyond. The cross-sections that

result from the tracking process typically have some amount of bowing in the wall. The bowing in

the wall can be eliminated by numerically integrating the cross-sectional area and adjusting the

geometry to correspond to a perfectly square cross-section with an identical area. Next, the

boundary layer code written by Harris and Blanchard [3] called VGBLP is used to calculate the

boundary layer displacement thickness 8* for the nozzle wall and this displacement thickness is

added to the inviscid contour. The result of the design process is a square nozzle geometry that

should match the Mach number requirement of the axisymmetric design. The reliability of the

calculation and flow field will be determined through a parabolized Navier-Stokes code by Korte

and McRae [4].

Further benefits in designing a square supersonic nozzle can be seen in that there is no

complex geometry transitioning from a axisymmetric nozzle to a square test section. Square test

sections are much better from the standpoint of optical flow visualization and wall waviness

problems. Though vortices are known to restrict the size of the uniform flow test region

somewhat, the use of the slow-expansion design should alleviate the effects of these vortices.

Using The Code

The SNODEC code is intended to be used with two other previously developed codes.

One code, referred to as Swells' code [6], is used to produce an inviscid axisymmetric nozzle

contour with continuous curvature that has uniform parallel flow at the nozzle exit The other

code called VGBLP, written by Harris and Blanchard [3], calculates the boundary layer growth

on the contour and this correction is added to the wall dimension to create a slow-expansion

nozzle. The SNODEC code was written as a patch to derive the square nozzle geometry from the

axisymmetric geometry produced by Sivells' code and then utilize the boundary layer correction to

create a three-dimensional nozzle geometry. The standard procedure of operations is stated as

follows:

1. Run Sivells' code to design the desired inviscid axisymmetric
nozzle contour.

2. Run SNODEC to define the square cross-section in the exit plane
and then track the streamlines up the x axis to produce square
cross-sections.

3. Run VGBLP to calculate the required boundary layer thickness
correction for the contour.

4. Run SNODEC to adjust the square cross-sections to provide a
final three-dimensional nozzle geometry.

The process for running Swells' code and VGBLP are described in their separate manuals

[6, 3]. SNODEC will search for, or provide the necessary files in order to run efficiently with the

other two codes. When the Swells' code has been run, the streamline output is written to a file

with the name *.bl (* indicates a file root name). Before SNODEC can be run, this extension

must be changed to *.st. When SNODEC is executed, the user is first prompted for the file root

name that all data files should be named with:

What is the root name of the file to be converted?

The user responds by typing in the file root name of the *.st file. Next the user is prompted with:

How many streamlines were tracked on the half wall?

When the input file was created for Sivells' code, the user was asked to specify a number of

streamlines that should calculated. The number that was specified for the Swells' code input file

should be entered in response to this question. Next, the user is prompted with:

How many cross sections downstream of the
throat should be calculated?

The number that the user types in defines the number of cross-sections that will be calculated in

between the nozzle throat and the nozzle exit plane. In addition, the step size that is defined by

determining the number of cross-sections between the throat and exit plane is applied to calculate

how many cross-sections upstream of the throat will be calculated by SNODEC. The distance

upstream of the throat that SNODEC calculates is controlled within the source code with the

variable rtup. By default, SNODEC is set to calculate additional cross-sections one throat

radius upstream of the throat (rtup=l. 0). Due to poor accuracy of the transition region

solution in Sivells' code, cross-sections further than one throat radius upstream of the throat may

contain erroneous data. Therefore, it is suggested to use rtup as it has been set in the source

code. Furthermore, it is advised that no more than 200 cross-sections be calculated in the region

between the throat and the exit plane. It is possible to calculate more cross-sections, but too

many points will strain the limits of accuracy for the interpolation procedure that is used to locate

and calculate streamwise points.

Once this data has been entered, SNODEC creates a file with the extension *.stp that

contains the streamline data that will be interpolated for each streamwise cross-section. Next, the

program presents five options for operation. Options 1 through 4 must be executed in the order

that they appear because each option creates files that are used by the following options. The

options are presented as:

Choose an option:

(1) Interpolate streamlines to uniform stations
and write axisymmetric geometry

(2) Convert axisymmetric geometry to square
geometry and write cross sectional info

(3) Perform numerical integration to square
off cross sections

(4) Make boundary layer correction to cross
sections (requires that Harris code be run
using previously created *.bl output file)

(5) Exit

When option 1 is chosen, SNODEC reads in the streamline data from *.st and interpolates

the values of Y and ?,/?„ for each cross-section X along each streamline. The interpolation data

is then written to a file called *.int. In addition to the interpolation file, a file is also written to be

used for the VGBLP program called *.bl, as well as a file containing data for the Navier-Stokes

calculation called *.ccr. Option 1 also writes a file called *.cir containing the data for the

axisymmetric nozzle geometry as produced by Sivells' code.

When option 2 is chosen next, SNODEC takes the interpolated data and creates a file

called *.noz containing the data for the three-dimensional geometry with square cross-sections

that results from the interpolation and streamline tracking process. Option 2 also creates several

files for a more in depth analysis of the resulting geometry. These files include a file called *.csa

that contains the geometry of each individual cross-section, a file called *.vpc that shows the

pressure distribution along the half wall of each cross-section, a file called *.vpm that represents

the pressure contours along the nozzle half wall, a file called *.pdf that contains data for the

pressure difference in between the wall centerline streamline and the wall comer streamline along

the streamwise direction and a file called *.zdf that shows the difference in between the height of

the wall centerline streamline and the wall corner streamline along the streamwise direction.

When option 3 is chosen, SNODEC numerically integrates each cross-section with a

simple trapezoidal rule in order to calculate the area. The dimensions of each cross-section are

then adjusted so that the cross-section retains the same area, but has the dimensions of a perfect

square. Option 3 writes the dimensions of the newly squared cross-sections to a file called *.csb.

Before option 4 is chosen, SNODEC must be exited using option 5. At this point,

VGBLP can be run using the *.bl file that was produced earlier with option 1. Once VGBLP is

executed and the output is obtained in the *.prt file, SNODEC should be executed again. After

answering the initial questions in SNODEC, options 1 through 3 can be bypassed to choose

option 4. Option 4 takes the file *.prt from VGBLP, interpolates it and adds the 8* correction on

to the wall geometry from the file *.csb. This final data is written to a file called *.csc in the form

of a wall profile as well as a file called *.csd in the form of individual cross- section geometries.

Following this, SNODEC may be exited

SNODEC Output Files

Most of the output files that are created by SNODEC are written in a specific format so

that they may be plotted using the Tecplot program. The following text describes the format and

content of each file in the order they are created or used by SNODEC. In all cases except for

where specified, the coordinates are normalized as follows.

X=x/rthroat Y^/r^, Z=z/rthroat R=r/rthroat 0=9

The coordinates are shown in Figure 1.

{filename}.st contains the raw streamline data for each streamline as well as the wall geometry as

produced by Swells' code. The streamwise X stations for each streamline are not aligned to each

other so interpolation is required.

{filename}.stp contains the streamline data for each streamline as well as the wall geometry as

produced by Swells' code. This data file is a version of {filename}.st that can be plotted with

Tecplot in order to check the Swells' code output (see Figure 2). Each streamline is represented

in X-R coordinates. This file contains no information on the angular component of the streamline

locations.

{filename}.int contains the streamline data in its interpolated form. The file has data for the

specified number of streamlines at the specified number of cross-sections in X-R-0 coordinates

where 0 is in degrees. This file is used by other subroutines to provide the interpolated data.

{filename}.ccr contains a record of a streamline along the axisymmetric geometry wall that can

be used for a Navier-Stokes calculation. The data represents the streamline with the X-R

coordinates This file can be plotted with TecploL

{filenamej.bl contains data on the three-dimensional centerwall streamline along with the data

?,/?„ for the boundary layer calculation. Because the Cartesian Y component of the centerline

streamline is zero, data is provided for only the X and Z components of the streamline. The file

format is set to be compatible with the VGBLP program.

{filename}.cir contains the axisymmetric nozzle geometry in X-Y-Z coordinates based on the

output of the Swells' code. This file can be plotted with Tecplot (see Figure 3). It includes data

on Pt/P0 so that pressure contours may be plotted on the nozzle geometry.

{filename}.noz contains the three-dimensional nozzle geometry in X-Y-Z coordinates before wall

bowing correction and boundary layer correction. This file can be plotted with Tecplot (see

Figure 4). It includes data on P/P,, so that pressure contours may be plotted on the nozzle

geometry.

{filename}.csa contains the Y and Z coordinates for the cross-section at each X location of the

three-dimensional nozzle to show the amount of wall bowing that is occurring. This file can be

plotted with Tecplot (see Figure 5).

{filename}.vpc contains the value of (Pe-P,)/P0 along the half wall of the cross-section at each X

location where the distance to the wall is represented as Y/Y^. This file can be plotted with

Tecplot (see Figure 6).

{filename}.vpm contains the value of (Pe-P,.)/P0 for the half wall mesh. This differs from the

three-dimensional nozzle contour data in that the Z data is not included. The value of (Pt-PJ/P0

replaces the Z value for each X-Y location instead. This file can be plotted with Tecplot to

physically show the non-dimensional pressure contour along the half wall (see Figure 7).

{filename}.zdf contains data for the difference in the altitude Z for the streamlines located at the

wall centerline and the wall corner along the streamwise axis X. This gives an indication to the

amount of wall bowing that is occurring at each cross-section. This file can be plotted with

Tecplot (see Figure 8).

{filename}.pdf contains data for the difference in the pressure ratio P,/P0 for the streamlines

located at the wall centerline and the wall corner along the streamwise axis X. This gives an

indication of the uniformity of the pressure distribution in the nozzle exit as well as each cross-

section (see Figure 9).

{filename}.csb contains data for the nozzle contour with the wall bowing correction using only

the X and Z components. This file is later combined with the boundary layer correction data to

produce the final nozzle geometry. This file can be plotted with Tecplot.

{filename}.re contains the Reynolds' number information that is used to scale the boundary layer

output in VGBLP and in the case of SNODEC, the geometry output.

{filename}.prt contains the boundary layer thickness correction 8* for the nozzle wall contour.

This data is interpolated to match the cross-section locations already in use by SNODEC. The

data is in the dimension of feet

{filename}.csc contains data for the three-dimensional geometry with both the wall bowing

correction and the boundary layer correction. This is the final form of the nozzle geometry. The

data is represented as the X streamwise location and the wall centerline height Z as measured

from the nozzle X axis. For this file, the geometry is in the dimension of feet This file can be

plotted as a wall profile with Tecplot (see Figure 10).

{filename}.csd contains data of the Y and Z coordinates of the cross-sections along the

streamwise X locations for the three-dimensional geometry with both the wall bowing correction

and the boundary layer correction. For this file, the geometry is in the dimension of feet This file

can be plotted with Tecplot (see Figure 11).

10

References

1. Beckwith, I.E., Ridyard, H.W.; "The Aerodynamic Design of High Mach Number
Nozzles Utilizing Axisymmetric Flow With Application to a Nozzle of Square Test
Section"; NACA-TN-2711,1952.

2. Beckwith, I.E., Chen, F.J., Wilkinson, S.P., Malik, M.R., Turtle, D.G.; "Design and
Operational Features of Low-Disturbance Wind Tunnels at NASA Langley for Mach
Numbers from 3.5 to 18"; AIAA-90-1391,1990.

3. Harris, I.E., Blanchard, D.K.; "Computer Program for Solving Laminar, Transitional,
or Turbulent Compressible Boundary-Layer Equations for Two-Dimensional and
Axisymmetric Flow"; NASA-TM-83207,1982.

4. Korte, J.J., McRae, D.S.; "Explicit Upwind Algorithim for the Parabolized Navier-Stokes
Equations"; AIAA-88-0716,1988.

5. Sivells, J.C.; "Aerodynamic Design of Axisymmetric Hypersonic Wind Tunnel
Nozzles"; Journal of Spacecraft, V. 7, No. 11, November 1970, pp. 1292-1299.

6. Sivells, J.C.; "A Computer Program for the Aerodynamic Design of Axisymmetric and
Planar Nozzles for Supersonic and Hypersonic Wind Tunnels"; AEDC-TR-78-63,
1978.

O
LU
Q
O

CO
>,

CO
-o
CD
CO

CO

CD
to
>»

CO
0)
to

o
o
o

O)

X
0)

03
CD

to
Q.
Z)
O)c
1̂
o
o

X
LU
_CD
N
N
O

N
N
O
z
o
'c
O
(/}
<D
Q.

o
Q.
0)
C

CO

CO

"q.
ci

Ql

C

o
Q.

Q)i_
,0
CD

CO
(O
CD

03
CD

N
N
O

o
H—i

CD

E

'x

LO

CO

Ô
cu

Ĉ\J

D)

OD

CD

CN

CO
o

CO

CO

CvJ

CM
in
c\i

p
c\i

LO
CD

q
C)

(0
o

Q
CVJ

o
H-̂
CD

I,
CO

Q.

"o

j "c

fc
Q
CO

c
o

CD

C
O
O
Qi
CO
CD

00

N
N
O

O
-i— i
Q)

E
>%
CO
'x<
LO

CO

O
OJ

CO

O)

o
O
0)

CO
CO
Q)

CO
CD

q-i
N

c
o

c
o
o
O)
c
1̂ :o
CO

0
_c

co
Q

CO

E

O)
c

CD
DC

N
N
O

Q
i

CO
LO
CO

Ô
CO

Q
CO

CO

o
0)

CO
CO
CO
o
O

"cB

O.
co
CO
o

TD

<
O)

_C

Om

CD
£
0

DQ
CO
c
O

"o

CO
c
O

"o
CD

CD
>»cu

CO
CO
o
o -i
«> «
N T3

CO
LO

CO

o

in
D)

cq
CO

10
o

CD
CD

in
CD

g

I

in in
o

p
o

in
o

in

m

q
oi

in
c\i

Q
CM

J/Z

o<u
co

o
O
"flj

c
o

CL
(D

0>

(X

o
Q.

CO
c
g
"o
<D
0)
(O
CO
o
o

OJ
X

N
N
O

Q
I

CO
LO
CO

o
CO

CD

o
CO

1
Q_
CD

CO
CO
CD

OL

CD

O>

o
o

I I I

LO

O

x
CO

LO
CM

O
O

o
LO
o

LO
CM
o

o
o
o

LO
<M
O

Q
CM

LLJ

CO
CD

CO
T.
c
o
CO

Q_

CD

CO
CO
CD

Q.

Q.

CO
zi

"̂c
o
O
CD

!5
CO
CO
CD

OJ
X

N
N
O

Q
i

CO
Lf>

CO
.C
O
OJ

c

C

Ql

CO

CO
00

p
o

CM O>
•r- 00

rv m coco -a- CMoo in
o oo co .o h- m co

T- O) CO
T- O> 1̂ -oo co in CM

CM LLJ CM
T- co in oo oco oo T- co

w s T- •* co en •»- co co
.̂ O) T— CO CO OO Or- p? CM Tt co oo

C M O) i n C M O) C O C M O) C O C O C V I C O C O C » C V I C O O) C N i n o O C M l O C O i - i n

p o p
d d

T - i - C V I C M C M C O C O C O T j - T l -
q q q p q q q q q p p

C > C > C) C) C > C) C > C J C > C) O C >i i i i i i i i i i i i

.§>
N
N
o

O)
c
o

o
00

"ni

TJ
N

CD
E
o
CD
o

CD
co
3
C7

CO

D)
c
1̂ :
o
OJ

CD
c

OJ
CD

CO
O

CD

O)
c

o
CD

~OJ

CX)

D)

IT)

CD

q
in

Lf)

cJ

q
d

O
in
o

in
C\J
o

o
o
o

j

LO
eg
o

Q
C\J

CO

"c
CD

.2
O
0)

CO
CO
CD

Q
CM

CO
c
g
"o
CD

C/D

Oi_
O
CD

OJ
CDi_-»— •

CO
i_
o
LL

CO
I

c
CDi_
CD

CO
CO
CD

ol
0>

cb

p
LT>

in
cvi

CD

d

to

*> 1

"jf

O
in

LT)

c\i

p
o

o
LO
o

in
cvj
o

o
o
o

CM
O
C>i

'(°d/8d) - Td/d)

2
Q_

NN
o

o
0)

ol
O

ICQ
•o"
£
CO
3
a-

CO

o

8
o

"c
let

Q
CM

CO
C
g

'•*— •o
(D

C/)
(O
CO

2
O
•o
CD

o

o
O

CD ,_
:= CD

W o
8 QQ

9 <
CO
IT)
CO

O
cd

D)
i-L

o
o

LO
h-.

O

CD

X
o
LO

LO
C\J

C>

O
q
0

O
O
CO

o
LO
CM

O
O
CM

o
LO

o
o

o
LO
o

o
o
o

a

)s
s

S
ec

tio
ns

6
•n
<D
n
0)
i_
o
O
i

OJ

T3
2
co
3
O"

CO

"o.
"̂
0

IE
ol

E?
C\J^

c
g
"o
CD

o
0
i_
CD
>,
CO

^
fT4CD
"O

3
O

CO
f—-L_

^

^
c
o
"o
CD
0)
CO
CO
o
0
T3
CD

CO
3
CT

C/D

N
N
O~z_

1

CO
LO

CO
x:
o
co

d) u
iZ

IJB—S

.

-

-

~

~

1̂ =

")

D

••••••

i i

sa

=

C
T

C

•«

^

D

D

-•

s

—

^

— i

isi

=wm S*

i

••

=

L
<
(

' ' ' ' 1 ' ' ' '

•• -™^ mmmî —m—mm—^̂ ^̂ ss

1 i i i 1 i i i i

n o LT
D O C
D O C

1 1

(199J) Z

•g

-^—
•a

)
»

>

=

s

=

s

^

B

^

=

1

M

a

^
=

^

C
•̂
C

•

s

3

D

^gg= "̂1

.

.

-

_

-

-

-

-

~

^1

LO

O

o
.

o

LO

o

•*—•
o <i>
0 ^°>
LO
o
0

o
•̂

*

LO

o'

SNODEC Source Code

c This program takes in streamline data from Si veils' code
c and converts converts an axisymmetric inviscid nozzle design
c into a square three dimensional nozzle. It also uses output
c from Harris and Blanchard's VGBLP program to make the
c boundary layer correction to the wall geometry. The resulting
c data files can be plotted using TecploL
c Written by Michael J. Moen 10-1-92.
c
c Begin main program SNODEC (square nozzle design code)
c
c Set up program and prompt for geometry calculation data.
c Istrm is entered as the number of streamlines calculated
c by the Sivells code. loss is entered as the number of
c cross sections wanted past the throat, but the program
c will adjust to calculate more cross sections so the the
c transonic region upstream of the throat may be included.
c Before this program is run, the Sivells' *.bl file must be
c renamed to *.st.
c

implicit real(a-h,l-z)
integer iopt
character*20 iname
common istrm 4crss,icr
write(*,*) "What is the root name of the file to be converted?1

read(*,10) iname
write(*,*) 'How many streamlines were tracked on the half wall?'
read(*,*) istrm
write(*,*) "How many cross-sections downstream of the'
write(V) 'throat should be calculated?1

read(*,*) icrss
call rawtotp(iname)

c
c Presents options for conversion.
c

1 write(*,*)''
write(*,*) 'Choose an option:'
write(*,*)''
write(*,*) '(1) Interpolate streamlines to uniform stations'
write(*,*)' and write axisymmetric geometry'
write(*,*) '(2) Convert axisymmetric geometry to square'
write(*,*)' geometry and write cross sectional info'
write(*,*) '(3) Perform numerical integration to square'
write(*,*)' off cross sections'
write(*,*) '(4) Make boundary layer correction to cross1

write(*,*)' sections (requires that Harris code be run'
write(*,*)' using previously created *.bl output file)'
write(V) '(5) Exit'
write(*,*)''
read(*,*) iopt
if(iopt.eq.l)then
call geompp(iname)

goto 1
elseif(iopt.eq.2)then

call intertotpOname)
goto 1

elseif(iopt.eq.3)then
call areacalc(iname)
goto 1

elseif(iopt.eq.4)then
call blcorrect(iname)
goto 1

elseif(iopt.eq.5)then
go to 500

elseif(iopt.lt. 1 .or.ioptgt.5)then
write(*,*)''
write(*,*) 'Not an option. Pick again.'
write(*,*)''
goto 1

endif
500 stop
10 format(a20)

end

cc
c c
c This makes a preliminary file of streamlines called c
c *.stp, which can be used by tecplot. c
c c
cc

subroutine rawtotp(iname)
implicit real(a-h,l-z)
integer istrm,icrss
character*20 iname,ist,istp
character* 12 itle.inull
common istrnucrss,icr
dimension x(50,500),y(50,500),peo(50,500)
dimension ipts(50)
ist=iname
istp=iname
ileng=index(iname,' ")-!
ist(ileng+l:ileng+3) = '.st'
istp(ileng+l:ileng+4) = '.stp'
open(unit=l, file=ist, status='old')
open(unit=2, file=istp, status='unknown')

c
c First loop reads in nozzle wall geometry,
c

read(l,95) itle,xbin,xcin,sf,frip
read(l,96) ipts(istrm)
write(*,*)''
write(*,*) Heading wall geometry for',ipts(istrm),' points'
write(2,*) TTrLE="Streamline Plot For Supersonic Nozzle1"

write(2,*)1VARIABLES="X","R","Pe/Po1"
write(2,*) 'ZONE T="Wall Countour" J=',ipts(istnn),'J=l,F=POINT
do5j=l,ipts(istrm)
read(l,*) x(istrmj),y(istnnj),peo(istnn j)
write(2,99) x(istrmj),y(istrm,j),peo(istnnj)

5 continue
c
c Following loops read in streamlines,
c

do20i=l,istrm-l
read(l,102)inull
read(1,103) ipts(i)
write(2,*) 'ZONE T=BStreamlineM=14pts(i),1J=l ,F=POINT
write(*,*) "Reading streamline set of ,ipts(i),' points'
dolOj=Upts(i)

read(l,*) x(i,j),y(io),peo(io)
write(2,99) x(i j),y(i j),peo(ij)

10 continue
20 continue

write(V)''
write(*,*) "Writing ordered streamline set to ',istp

c
c Adjust cross section to include area upstream of throat When
c rtup is 1.0, the program will look one throat radius upstream of
c the throat If this value were changed to 2.0, it would look
c two throat radii upstream, etc.
c

rtup=1.0
xstt=x(l,ipts(l))
xcrss=xstt/float(icrss)
icr=icrss+aint(rtup/xcrss)

c
c Closes the files,
c

close(l)
close(2)

95 format(2x,al2,15x,f 11.6,6x^11.6,6x,f 11.6,7x,f 11.6)
96 format(/ i6)
99 format(3(lx,e!4.7))
101 format(a20)
102format(/a20)
103 format(i6)

return
end

cccccccccccccxxccc
c c
c This option converts the *.st file into a file called c
c *.int, which contains the interpolated streamlines c
c at uniform stations. This option also creates the c
c *.bl file to be used by VGBLP. c
c c
cc

subroutine geompp(iname)
implicit real(a-h,o-z)
character*20iname,ist4int,ibl,icir,iccr
character* 12 itle,inull
common istrm4crss,icr
dimension ipts(SO)
dimension x(50,500),y(50,500),peo(50,500)
dimension xa(3),ya(3),pa(3)
dimension xs(50,500),ys(50,500),ps(50,500),theta(50,500)
dimension xd(18UOO),yd(181^00)^d(18UOO),pd(18UOO)
ist=iname
iint=iname
ibl=iname
icir=iname
iccr=iname
ileng=index(iname,' ")-l
ist(ileng+l:ileng+3) = '.st1

iint(ileng+l:ileng+4) = '.int1

ibl(ileng+l:ileng+3) = '.bl'
icir(ileng+l:ileng+4) = '.cir'
iccr(ileng+l:ileng+4) = '.ccr'
open(unit=l, file=ist, status='old')
open(unit=2, file=iint, status='unknown')
open(unit=4, file=ibl, status='unknown')
open(unit=8, file=icir, status='unknown')
open(unit=3, file=iccr, status='unkown')

c
c First loop reads in nozzle wall geometry,
c

read(1,200) itle,xbin,xcin,sf,frip
read(1,201) ipts(istrm)
do 5 j=l,ipts(istrm)
read(l,*)x(istrm,j),y(istrmj),peo(istnn,j)

5 continue
c
c Following loops read in streamlines,
c

do20i=l,istrm-l
read(1,203) inull
read(l,204)ipts(i)
do 10j=Upts(i)
read(l,*) x(ij),y(ij),peo(ij)

10 continue
20 continue

c
c Locates starting coordinates and determines size
c of steps along x axis,
c

xstt=x(l,ipts(l))
ystt=y(l,ipts(l))
write(* *)' '
write(*,*) 'Interpolation will track streamlines for square'

write(*,*) 'half wall (square eighth space) starting at exit1

write<V)
write(*,*) 'Starting x-coord = '.xstt
write(V) 'Starting y-coord = '.ystt
write(V)"
write(*,*) 'Beginning interpolation and writing to ',iint
dz=ystt/float(istrm-l)
xcrss=xstt/float(icrss)

c
c Interpolates stations on x along with y and pe/po.
c

do40i=l,istrm
do30j=l,icr
xloc=xstt-xcrss* (float(j)-1 -0)

c
c Locates the points bounding the x station of interest,
c

ml=0
mu=ipts(i)+l

25 if(mu-ml.gt.l)then
mm=(mu+ml)/2
if((x(i,ipts(i)).gt.x(i,l)).eqv.(xloc.gt.x(i,mm)))then

ml=mm
else

mu=mm
endif

go to 25
endif
m=ml

c
c Set up an array to feed in points for interpolation,
c

xa(l)=x(i,m)
xa(2)=x(i,m+l)
xa(3)=x(i,m+2)
ya(l)=y(i,m)
ya(2)=y(i,m+l)
ya(3)=y(i,m+2)
pa(l)=peo(i,m)
pa(2)=peo(i,m+l)
pa(3)=peo(i,m+2)
if(xa(2).eq.0.0.and.xa(3).eq.0.0)then
k=l

elseif(xa(2).gt.0.0.and.xa(3).eq.0.0)then
k=2

else
k=3

endif
c
c Interpolate points on each streamline,
c

thet=atan(dz*(float(i)-1.0)/ystt)
theta(i j)=thet* 180.0/3.14159
call polint(xa,yajc,xloc,yloc,dy)

xs(ij)=xloc
ys(ij)=yloc
call polint(xa,pa,k,xloc,ploc,dp)
ps(ij)=ploc
write(2^05)xs(ij),ys(io)>theta(io))ps(ij)

30 continue
40 continue

c
c Write axisymmetric profile to a file
c for a Navier-Stokes calculation,
c

write(V)''
write(*,*) "Writing axisymmetric wall streamline to 'uccr
write(*,*) 'for Navier Stokes calculation'
write(3,*) TITLE="Navier-Stokes Calculation Data"'
write(3,*) 'VARIABLES="X","Rm

write(3,*) 'ZONE T="Axisymmetric'',I=',icr,',J=l,F=POINT
do50j=icr,l,-l
write(3,205) xs(i,j),ys(ij)

50 continue
c
c Write points for the center wall streamline to a
c separate file called *.bl to be used for calculating
c the boundary layer correction,
c

write(* *)''
write(*,*) "Writing center wall streamline to ',ibl
write(*,*) 'for VGBLP boundary layer calculation'
write(4,*) This file is used by the Harris code to calculate'
write(4,*) 'the streamline shift for the square nozzle'
write(4,*> icr
do70j=icr,l,-l
write(4,206) xs(l j),ys(l,j),ps(l,j)

70 continue
c
c Write points out to a axisymmetric nozzle file called
c *.cir just for looks,
c

write(*,*)''
write(*,*) "Writing data to ",icir
write(*,*) 'for axisymmetric nozzle geometry'
write(8,*) TITLEs" Axisymmetric Nozzle"1

write(8,*)'VARIABLES="XYYn,"Z","Pe/Po"'
writeCS,*) 'ZONE T="Nozzle'"J=18U=',icr,'J=POINT
do90j=l,icr
do80i=l,181
xd(ij)=xs(istrmj)
yd(i j)=ys(istrm j)*sin(2.0*(float(i)-1.0)*3.14159/180.)
zd(ij)=ys(istrm j)*cos(2.0*(float(i)-1.0)*3.14159/180.)
pd(ij)=ps(istrm,j)
write(8,*)xd(ij),yd(ij)^d(ij),pd(i,j)

80 continue
90 continue

c Closes the files,
c

close(l)
close(2)
close(3)
close(4)
close(8)

200 format(2x,a 12,15xjF 11.6,6x,f 1 1.6,6x,f 11.6,7x,f 11.6)
201 format(/i6)
202 format(a20)
203 format(/a20)
204 format(i6)
205 format(4(lx,e!4.7))
206 format(3(lx,e!4.7))

return
end

ccc
c c
c Subroutine polint does the interpolation on the c
c streamline to give y and pe/po data for each x. c
c Based on Numerical Recipes routine. c
c c
ccc

subroutine polint(xa,ya,n,x,y,dy)
parameter (nmax=10)
dimension xa(n),ya(n),c(nmax),d(nmax)
ns=l
dif=abs(x-xa(l))
do 10j=l,n
dift=abs(x-xa(j))
if(dift.lt.dif)then

ns=j
dif=dift

endif
cO)=ya(j)
d(j)=ya0)

10 continue
y=ya(ns)
ns=ns-l
do30m=l,n-l

do20j=l,n-m
ho=xa(j)-x
hp=xa(j+m)-x
w=cG+l)-dG)
den=ho-hp
if(den.eq.0.0)pause
den=w/den
dQ)=hp*den
c(j)=ho*den

20 continue

if(2*ns.lt.n-m)then
dy=c(ns+l)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

30 continue
return
end

cc^
c c
c This option takes the *.int file and creates c
c files for cross sectional area, pressure c
c information and full geometry. All files can c
c be used by tecplot. c
c c
cc

subroutine intertotp(iname)
implicit real(a-h,o-z)
character*20iname,iint,inoz,icsa,ivpc,ivpm,izdf,ipdf
common istrm4crss,icr
integer istrm,icrss
dimension x(50,500),y(50,500),theta(50,500),peo(50^00)
dimension yd(50^00),pd(50^00),dz(500)
dimension xc(500,500),yc(500^00),zc(500^00),pc(500,500)
iint=iname
inoz=iname
icsa=iname
ivpc=iname
ivpm=iname
izdf=iname
ipdf=iname
ileng=index(iname,' ") -1
iint(ileng+l:ileng+4) = '.int'
inoz(ileng+l:ileng+4) = '.noz'
icsa(ileng+l:ileng+4) = '.csa'
ivpc(ileng+l:ileng+4) = '.vpc'
ivpm(ileng+l:ileng+4) = '.vpm1

izdf(ileng+l:ileng+4) = '.zdf
ipdf(ileng+l:ileng+4) = '.pdf
open(unit=l, file=iint, status='old')
open(unit=2, file=inoz, status='unknown')
open(unit=3, file=icsa, status='unknown')
open(unit=9, file=ivpc, status='unknown')
open(unit=10, file=ivpm, status='unknown')
open(unit=ll, file=izdf, status='unknown')
open(unit=12, file=ipdf, status='unknown')
ifull=istrm*8-7
write(* ,*)''

write(*,*) "Writing data to ',inoz
write(V) 'for 3-D nozzle geometry'
write(2,*) TITLE="Wall Mesh With Pressure Contour"1

write(2,*)1VARIABLES="X","Y","Z",nPe/Po'"
write(2,*) 'ZONE T="Streamlines"4=',icr,',J=14full,1J?=POINT

c
c Creates streamline values for whole nozzle geometry
c by translating streamline values to points of symmetry.
c The output is to a file called * .noz.
c

do 20 i=l,istrm
do 10j=l,icr

read(l,*)x(ij),y(ij),theta(i,j),peo(ij)

yc(ij)=y(ij)*sin(theta(ij)*3.14159/180.)
zc(ij)=y(i,j)*cos(theta(ij)*3.14159/180.)
pc(ij)=peo(ij)
write(2,301)xc(ij),yc(ij),zc(ij),pc(i,j)

10 continue
20 continue

do40i=l,istrm-l
do30j=l,icr
xc(istrm+i j)=xc(1 j)
yc(istrm+ij)=zc(istrm-ij)
zc(istrm+i,j)=yc(istrm-ij)
pc(istrm+ij)=pc(istrm-i,j)
k=istrm+i
write(2,301)xc(kj),yc(kj)^c(kj),pc(k,j)

30 continue
40 continue

do60i=l,istrm-l
do50j=l,icr
xc(2* istrm- 1 +i j)=xc(1 ,j)
yc(2*istrm- l+ij)=yc(2* istrm- 1 -i j)
zc(2*istrm-l+ij)=-zc(2*istrm-l-ij)
pc(2*istrm-l+i,j)=pc(2*istrm-l-i,j)
k=2*istrm-l+i
write(2,301)xc(kj),yc(kj),zc(kj),pc(kj)

50 continue
60 continue

do80i=l,istrm-l
do70j=l,icr

xc(3*istrm-2+i j)=xc(1 j)
yc(3*istrm-2+ij)=yc(istrm-ij)
zc(3*istrm-2+ij)=-zc(istrm-ij)
pc(3*istrm-2+ij)=pc(istrm-ij)
k=3*istrm-2+i
write(2,301)xc(kj),yc(kj)^c(kj),pc(k,j)

70 continue
80 continue

do 100 i=l, istrm- 1
do90j=l,icr

xc(4*istrm-3+ij)=xc(1 j)
yc(4*istrm-3+ij)=-yc(4*istrm-3-i,j)

zc(4*istrm-3+ij)=zc(4*istrm-3-ij)
pc(4*istrm-3+iJ)=pc(4*istrm-3-ij)
k=4*istrm-3+i
write(2301)xc(kj),yc(kj)^c(kj),pc(kj)

90 continue
100 continue

do 120i=l,istrm-l
dol!0j=l,icr
xc(5*istrm-4+i j)=xc(1 j)
yc(5*istrm-4+ij)=-yc(3*istnn-2-i,j)
zc(5*istrm-4+ij)=zc(3*istrm-2-ij)
pc(5*istrrn-4+ij)=pc(3*istrm-2-i,j)
k=5*istrm-4+i
write(2301)xc(kj),yc(kj),zc(kj),pc(k,j)

110 continue
120 continue

do 140i=l,istrm-l
do 130 j=l,icr

xc(6*istrm-5+i j)=xc(1 j)
yc(6*istrm-5+i,j)=-yc(2*istrm-l-i,j)
zc(6*istrm-5+i j)=zc(2*istrm-1 -ij)
pc(6*istrm-5+i,j)=pc(2*istrm-1 -ij)
k=6*istrm-5+i
write(2,301)xc(kj),yc(kj),zc(kj),pc(kj)

130 continue
140 continue

do 160i=l,istrm-l
do 150j=l,icr
xc(7*istrm-6+ij)=xc(lj)
yc(7*istrm-6+i,j)=yc(5*istrm-4-i,j)
zc(7*istrm-6+ij)=-zc(5*istrm-4-ij)
pc(7*istrm-6+i,j)=pc(5*istrrn-4-ij)
k=7*istrm-6+i
write(2301)xc(kj),yc(kj)^c(kj),pc(k,j)

150 continue
160 continue

c
c Creates individual cross sections for file,
c Each cross section is shown, but it has not
c yet been corrected for wall curvature. The
c resulting file is called *.csa.
c

write(V)''
write(*,*) "Writing data to ',icsa
write(*,*) 'for 3-D geometry cross-sections'
write(*,*) '(includes wall bowing)'
write(3,*) TTrLE="Wall Cross Sections'"
write(3,*) 'VARIABLES=ltY","Z","X'"
do 180 j=icr,l,-l
write(3,*) 'ZONE T="Section",I=',ifull,',J=
do!70i=l,ifull
write(3,301) yc(i j),zc(ij),xc(i,j)

170 continue
180 continue

c
c Creates pressure differential for each cross section
c of square half wall streamlines. Pressure differential
c calculation is done by substracting centerline pe/po
c from the pe/po of a streamline on a given cross-section.
c The resulting file is called *.vpc.
c

write(V)''
write(V) "Writing data to ',ivpc
write(*,*) 'for half wall pressure profiles at each'
write(*,*) 'cross section1

write(9,*) TITLE="Pressure Profiles on Wall Cross Sections'"
write(9,*)'VARIABLES="Y/YmVPe-Pc/PoYXm

do200j=l,icr
write(9,*) 'ZONE T="SecaonM='4stnn,'J=l ,F=POrNT
do 190i=l,istrm
yd(ij)=yc(ij)/yc(istrmj)
pd(io)=pc(io)-pc(l,j)
write(9,302) yd(ij),pd(ij),xc(i j)

190 continue
200 continue

c
c Creates pressure differential mesh for half wall
c section. The pressure differential is calculated
c by subtracting centerline pe/po from the pe/po of a
c streamline on a given cross-section. The resulting
c file is called *.vpm.
c

write(V)''
write(*,*) "Writing data to '.ivprn
write(*,*) 'for overall half wall pressure contours'
write(10,*) TITLE="Pressure Profiles on Half Wall Mesh"'
write(10,*)IVARIABLES="X","Y",Te-Pc/Po'"
write(10,*) 'ZONE T="SectionM=t,icr,'J=',istrm,1rF=POINT'
do220i=14strm
do210j=l,icr
write(10303) xc(io),yc(io),pd(U)

210 continue
220 continue

c
c Creates a file for the difference in z between the
c streamline at the wall centerline and the wall corner
c along the streamwise direction x. The resulting
c file is called *.zdf.
c

write(* ,*)''
write(*,*) "Writing data to ',izdf
write(*,*) "for wall centerline to wall corner1

write(*,*) 'height differences'
write(ll,*) TTrLE="Wall Bowing Along Nozzle Axis'"
write(ll ,*) 'VARIABLES="X","dZ'"
write(l 1,*) 'ZONE T="Profile1M=1,icr,1,J=l,F=POINT
do230j=l,icr

dzO)=zc(1 j)-zc(istrm j)

write(l 1,302) xc(lj),dzG)
230 continue

c
c Creates a file for the difference in pe/po between the
c streamline at the wall centerline and the wall corner
c along the streamwise direction x. The resulting
c file is called *.pdf.
c

write(*,*)''
write(*,*) "Writing data to '4pdf
write(*,*) 'for wall centerline to wall corner'
write(*,*) 'pressure differences'
write(12,*) TITLE="Wall Pressure Differentials'"
write(12,*) 'VARIABLES="X","dP'"
write(12 *) 'ZONE T="Profile'M=1,icr,',J=l ,F=POINT
do240j=l,icr
write(12,302) xc(lj),pd(istrm,j)

240 continue
c
c Closes the files,
c

close(l)
close(2)
close(3)
close(9)
close(lO)
close(ll)
close(12)

301 format(4(lx,e!4.7))
302 format(2(lx,e 14.7))
303 format(3(lx,el4.7))

return
end

cc
c c
c This option calculates the area of an eigth c
c of a square cross-section. It then adjusts c
c the wall height to account for the wall c
c curvature. It uses a trapezoidal rule for c
c the area integration. c
c c
CCCCC(XCCCCCCXXXX(XXXXCCCCCC(XXXCCCCCCCCCCCCCCCCCCCCCCCC

subroutine areacalc(iname)
implicit double precision(a-h,o-z)
character*20 iname.iintjcsb
common istrm4crss,icr
integer istrm,icrss,icr
dimension x(50,500),y(50,500),theta(50,500),peo(50,500)
dimension yc(50,500),zc(50,500)
dimension area(SOO) jn(500)

iint=mame
icsb=iname
ileng=index(iname,' 0-1
iint(ileng+l:ileng+4) = '.inf
icsb(ileng+l:ileng+4) = '.csb'
open(unit=l, file=iint, status='old')
open(unit=2, file=icsb, status='unknown')

c
c Read in the streamline points to be used
c for trapezoidal integration,
c

write(* ,*)''
write(*,*) "Numerically integrating cross sectional area1

write(*,*) 'and adjusting height to accomodate wall bowing'
do20i=l,istrm
dolOj=l,icr
read(1 ,*) x(i j),y(iJ),theta(i,j),peo(iJ)
yc(io)=y(ij)*sin(theta(ij)*3.14159/180.)
zc(ij)=y(ij)*cos(theta(ij)*3.14159/180.)

10 continue
20 continue

c
c Integrate the area for each cross section using
c a basic trapezoidal rule.
c

do40j=l,icr
sum=0.0
do30i=l,istrm-l
s=(yc(i+l ,j)-yc(ij))*(zc(i+1 ,j)+zc(i,j))/2.0
sum=sum+s

30 continue
area(j)=sum-(yc(istrmj)**2.0)/2.0
mO)=dsqrt(area(j)*2.0)

40 continue
c
c Creates file for squared profile called *.csb.
c This data file can also be used for a Navier-
c Stokes Calculation,
c

write(*,*)''
write(V) Writing data to ',icsb
write(*,*) 'for squared geometry profile with'
write(*,*) 'no wall bowing but no b.l. correction.'
write(*,*) Data can also be used for Navier-Stokes'
write(*,*) 'calculation.'
write(2,*) TITLEs-Squared WaU Profile"'
write(2,*) 'VARIABLES^XYZ"'
write(2,*) 'ZONE T="Profile",I=',icr,',J=l ,F=POINT
do50j=icr,l,-l

write(2,401)x(lj)oTi(j)
50 continue

c
c Closes the files,
c

close(l)
close(2)

401 format(2(lx,el4.7))
return
end

CCCCC(XCC

c c
c This option takes the squared cross section file c
c * .csb, and takes into account the boundary layer c
c correction to adjust the wall geometry. c
c c
C£CCCCCCCCCC(XCCCOXCCCC£(XCCCCCCCCCCC^

subroutine blcorrect(iname)
implicit real(a-h,o-z)
character*20 iname,inull ,icsbjcsc,iprt,ire,icsd
common istrm4crss,icr
integer istrm,icrss,icr
dimension xbl(500),delst(500)
dimension x(500),y(500)
dimension yf(500),xr(500),yr(500),ds(500)
dimension xa(3),da(3)
iprt=iname
icsb=iname
icsc=iname
ire=iname
icsd=iname
ileng=index(iname,' ") -1
iprt(ileng+l:ileng+4) = '.prt'
icsb(ileng+l:ileng+4) = '.csb1

icsc(ileng+l:Ueng-i-4) = '.esc1

ire(ileng+l:ileng+3) = '.re1

icsd(ileng+l:ileng44) = '.csd'
open(unit=l, file=iprt, status='old')
open(unit=2, file=icsb, status='old')
open(unit=3, file=icsc, status='unknown')
open(unit=4, file=ire, status='old')
open(unit=8, file=icsd, status='unknown')

c
c Reads in delta star correction from Harris code
c output file,
c

read(1,502) ipts
do!0j=ipts,l,-l
read(l,*)xbl(j),dum2,dum3,dum4,delstG)

10 continue
c
c Reads in wall geometry from squared wall file *.csb
c and calculates new wall geometry based on boundary
c layer correction,

read(2,503) inull
do20j=l,icr
read(2,*) xO),y(j)

20 continue
c
c Reads scaling data from Reynold's number information file
c and converts dimensionless geometry to actual geometry,
c

read(4,*) inull
read(4,*) resc
do 40 j=l,icr
yr(j)=y(j)*resc
xr(j)=x(j)*resc

40 continue
c
c Writes additional points to delta star string to
c match solution point geometry to nozzle geometry,
c

xbl(ipts+l)=xr(icr)
delst(ipts+l)=0.0

c
c Enter interpolation loop,
c

do 50j=l,icr
xloc=xr(j)

c
c Locates the points bounding the x station of interest,
c

ml=0
mu=ipts+l

45 if(mu-ml.gt.l)then
mm=(mu+ml)/2
if((xbl(ipts).gt.xbl(l)).eqv.(xloc.gt.xbl(mm)))then

ml=mm
else

mu=mm
endif

go to 45
endif
m=ml

c
c Set up an array to feed in points for interpolation,
c

xa(l)=xbl(m)
xa(2)=xbl(m+l)
xa(3)=xbl(m+2)
da(l)=delst(m)
da(2)=delst(m+l)
da(3)=delst(m+2)
if(xa(2).eq.0.0.and.xa(3).eq.0.0)then

k=l
elseif(xa(2).gt.0.0.and.xa(3).eq.0.0)then

k=2
else

k=3
endif

c
c Interpolates solution stations of Harris code output to the
c calculation stations of this conversion code,
c

call polint(xa,da,ktxloc,dloc,dd)
dsO)=dloc

50 continue
c
c Creates file for boundary layer corrected cross
c sections called *.csc.
c

write(*,*)''
write(*,*) "Writing data to ',icsc
write(*,*) 'for boundary layer corrected square'
write(*,*) 'nozzle wall profile. This data can'
write(*,*) 'also be use for a Navier-Stokes'
write(*,*) 'calculation.'
write(3,*) "nTLE=l'Squared, B.L. Corrected Nozzle Profile"'
write(3,*) 'VARIABLES="X","Z'"
write(3,*) 'ZONE T=1IProfilell,I=',icr,',J=l,F=POINT
do60j=l,icr
yf(j)=ds(j)+yrO)
write(3,501) xrO),yfO)

60 continue
c
c Creates file for boundary layer corrected cross
c sections called *.csd.
c

write(V)''
write(*,*) Writing data to 'jcsd
write(*,*) 'for boundary layer corrected square'
write(*,*) 'nozzle cross sections'
write(8,*) 'TrTLE="Squared, B.L. Corrected Cross Sections'"
write(8,*) 'VARIABLES="Y","Z","Xm

do70j=l,icr
write(8 ,*) 'ZONE T=nSection"J=5 J=l J=POINT
write(8,*)yf(j),yfG),xr(j)
write(8*)yfG),-yf(j),xrG)
write(8,*)-yf(j),-yf(j),xrG)
write(8,*)-yfO),yfO)^rO)
write(8,*)yf(j),yf(j),xr(j)

70 continue
c
c Close the files,
c

close(l)
close(2)
close(3)
close(8)

501 format(2(lx,e!4.7))
502 format(// i6)
503format(//a20)

504 format(lx,a20)
return
end

