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THERMOSOLUTAL CONVECTION AND MACROSEGREGATION
IN DENDRITIC ALLOYS

D.R. Poirier and J.C. Heinrich
The University of Arizona
College of Engineering and Mines
.. Tucson, Arizona 85721

A mathematical model of solidification, that simulates the formation of channel
segregates or freckles, is presented. The model simulates the entire solidification process,
starting with the initial melt to the solidified cast, and the resulting segregation is predicted.
Emphasis is given to the initial transient, when the dendritic zone begins to develop and the
conditions for the possible nucleation of channels are established. The mechanisms that lead
to the creation and eventual growth or termination of channels. are explained in detail and
illustrated by several numerical examples

A finite element model is used for the simulations. It uses a single system of
equations to deal with the all-liquid region, the dendritic region, and the all-solid region.
The dendritic region is treated as an anistropic porous medium. The algorithm uses the
bilinear isoparametric element, with a penalty function approx1mat10n and a Petrov- Galerkm

. formulation.

The major task was to develop the solidification model. In addmon this report
brleﬂy describes other tasks that were performed in conjunction with the modelling of
dendritic solidification.



TR SQ

.'?eg‘

>

t~

YR PP e N MR

NOMENCLATURE

random number

average total concentratlon of solute

heat-capacity -

concentration of solute in the liquid

interdendritic solute concentration from the liquidus line in the phase

diagram

local solute concentration in the solid -

reference solute concentration (concentration in the liquid before solidification)
primary dendrite arm spacing

solute dlffusmty in the liquid

‘Darcy number in the x and z dlrectlon respectlvely

gravitational acceleration

- reference thermal gradient

local mesh length in the direction of flow

reference length

z coordinate for the top of the contamer

auxiliary variable for total solute concentration in the solid
partition ratio

permeability in the x and z direction, respectlvely

latent heat :
first and second nondimensional latent heat, respectively -
slope of the liquidus line in the phase diagram

" unit outward normal vector

shape function

pressure

hydrostatic pressure

Petrov-Galerkin perturbation functlon
Prandtl number

prescribed boundary heat flux

cooling rate prescribed at z = 0
solutal and thermal Rayleigh number, respectively
Schmidt number

time

temperature

eutectic temperature

initial temperature

liquidus temperature

reference temperature

time step

x component of the superficial velocity
x component of the pore velocity
reference velocity
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magnitude of liquid velocity

solidification velocity

z component of the superficial velocity

z component of the pore veloc1ty

width of the container

Petrov-Galerkin weighting function

coordinates

thermal diffusivity _

Petrov-Galerkin coefficients

thermal and solutal expansion coefficient, respectlvely.
cell Reynolds number .

cell Péclet number in the energy and

solute concentration equation, respectlvely

domain boundary

convergence tolerance

angle of the gravity vector with respect to the X axis
penalty parameter :
kinematic viscosity

density

reference density

reference time

volume fraction of interdendritic liquid

global domain
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I. INTRODUCTION
* An increasing number of technological applications requires the operation of critical
meéhanical companents und~er severe conditions of high témperatufes and stressés. If
improperly manufactured, these components are subject to creep fracture and thermal fatigue
failures, which are almost always associated with grain boundaries that'.ar'e transverse to the
applied stress. The modern day directional solidiﬁcatioﬁ technique provides an effective
means of controlling the grain shape, producing a columnar r-nicrpstruc.tur'e with all the grain.
“boundaries running in the longitudinal direct_ion of the casting. This greatly improves
material performance at elevated terhperatures. Still befter propertieé can bé obtained by
casting a single crystal (i.e., a dendritic'monocrystal), in which only one columnar grain is
allowed to grow and form the main body of the casting [1].

'Without proper control,; directionally soiidiﬁed castings are not free of defects.
Particularly troublesome are localized segregates at the macroscopic scale, which are found
in many directionally solidified (DS) alloys, including some superalloys. These segregates
are observed as long and narrow trails, aligned parallel to the direction of gravity in DS
castings, and are enriched in the normally segregating elements and depleted of the inversely
segregating elements, i.e., their compoéition is shifted toward the eutectic composition. In
horizontally solidified ingots of steel similar defects are known as "A" segregates, while in
DS castings they have a more pronounced channel shape and are termed "freckles." This
non-uniformity of composition is highly undesirable because the resulting variation in

physical properties within the casting can lead to inferior performance of the components



manufactured from the casting. In ingot production, an excessive number of defects can
requife a large amount of cropping, at a-considerable cost of energy and material.;
Many analytical andiexperimental works have beeﬁ done in the recent years in order
to observe, explain and prevent the formation of both "A" segreg'ates [2-4} and freckles
[5-13] in directionally solidified alloys. This paper addresses the latter"ty‘pe of defects, i.e.,
freckles when an alloy is cooled from below. |
The opacity of metals prevents direct observation of tfle npcleatioﬁ and growth of
" channels during solidification. Observations are usually done by quenching the ingot at )
different stagés of solidification and Aanalyzing the solidiﬁed macrostructure. v- Much of whaf
is known about channel dynamics has béen learned from the transparent analogue NH,Cl-
H,0 system [5,8]. -Here, it is clearly seen that freckles are a direct consequence of upward
- flowing liquid jets that emanate from within the mushy zone. In the case of a binary alldy_
this requires that the solute be less dense than the solvent if it segregates normally or more
dense if it segregates inversely.

Because a density inversion also occurs in metallic systems where freckles are
observed, it was proposed by Copley er al. [5], and further supported in later works
[4,6,7,8,11,14], that buoyancy driven convection is responsible for channel segregation.
Although the influence of buoyancy effects in segregation seems to be evident, the large
differences in thermal conductivities, solid-liquid densities and, in particular, the fraction of
liquid in the dendritic structure can lead to a convection pattern that is very different from

that observed in the water-based mixtures, as it has been reported in experiments using




radioactive tracer techniques[14,15] and in an analytical model of thermosolutal convection
in dendritic alloys [16].

Solidification simulation is motivated by the need to undérstand the basic mechanisms
of the segregation of alloy components. The earliest works considered only the solute
conservation equation [17-19]. Soon thereafter, natural convection of tf\e. interdendritic
liquid. [20-22] and in the all-liquid region [23] were stu(iied. Thermosolutal convecti'on,
however, was not considered, so early models were not capaﬁle qf predicﬁng thermosolutal .

" instabilities at the solidifying interface that rgsult in se_:gregation defects in solidified alloyé. q .

Models that incorporate the effect of thermosolutal convection have been. developed‘"
by other researchers as well, e.g., Bennbn and Incropera [3,24-26], and Beckermann andf
Viskant_a [27-28] simulated horizontal solidification of aqueous solutions of ammonium B
chloride. |

In our work, we have used a finite element algorithm to calculate macrosegregation‘
and the formation of channels and freckles in Pb-Sn alloys. The algorithm has also been
used to reproduce a calculation for horizontal solidification of an NH,CI-H,O solution
presented in Ref. [3]. Calculations presented herein show that the present model is capable

of capturing the formation of channels and freckles during vertical solidification of alloys.

II. SOLIDIFICATION MODEL
We consider an alloy melt undergoing directional solidification under the following basic
assumptions:

1. Only solid and liquid phases may be present, i.e., no pores form.




2. The flow is two dimensional and laminar, and the solid phase is stationary.
3. The solid and liquid phases have equal thermal properties and densities.

4, There is no diffusion of solute in the solid phase. | |

5. The thermal properties are constant, and the Boussinesq approximation is
made; hence, the density is constant except in the body férée term of the
momentum equations. | |

6. The dendritic region (often called the mushy zéne) is-tregted as a porous
medium with anisotropic permeability where the fluid velocities are the

| superficial velocity cdmponents.
With these assumptions, the basic nondimensional equations of momentum,

continuity, energy, and solute transport can be written [29] as

. 2 2
Pr%+i u%+wﬂ =—.§£+Pr ﬂ+é_u
- ot ) ax 9z ox w2 oz
Pr Ry
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The variables are defined in the nomenclature.

In the mushy zone, where ¢ < 1, wé use u and w as the supgrﬁcial velocities, i.e.,’
u = du, w = ¢w, | ©)

where u, and w, are the components of the pore velocity. |
‘The nondimensional numbers are defined By Pr = v/a, Da, = K/H?, Da, = KZ/HZ;- |

Ry = (BrgGH*)/va, Rg = (BsgC.H)/vD, Sc = v/D, and L = L/¢GH. Note that His the

reference length, G is a reference thermal gradient, and C, is the reference concentration.

Implicit in Eqs. (1) and (2) is a constitutive relation of the form

p=0pgll - By (T-Typ-Bs(C-C.) 7

in the body force terms, where p, and T, are reference density and temperature, respectively,
and C_, the reference solute concentration, is the concentration in the liquid before
solidification. The nondimensionalization given above also uses a reference velocity U =
o/H, a reference time 7 = H?/v, and a reference pressure poUz. The temperature and solute
concentration in the liquid are nondimensionalized using (T - TO;/GH and C/C,,,

respectively, and the total solute concentration by E‘/Co,.
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The momentum equations above are similar to the ones used by Beckermann and
Viskanta [27-28], but differ from the ones used by Bennon and Incropera [3,24-26]. Readers
.are referred to Ganesan and Poirier [30] and Na'ndapurkar‘, et al. [31] for more det:;.Lils
pertaining to the momentum equations.

To complete the model, we require a relation between.the total solﬁté concentration C

and the solute concentration in the liquid C; of the form

C=4¢C+(1-$C -+ S ®
where Z‘s is the average local solute concentration in the solid. The model allows for

microsegregation in the solid; hence, Z‘S. is not uniform but is given by

l .
Cs = Lj kC, dé | o 9
1-¢

') R
where £ is the equilibrium partition ratio defined as the ratio of the concentration of solute at-
the solid dendritic interface to the solute concentration in the interdendritic liquid. In this
work, we assume k is constant.

At a given temperature in the mushy zone, the composition of the interdendritic liquid

is nearly uniform, and the local liquid-solid interface is very near equilibrium [32]; hence,

the composition of the interdendritic liquid is given by the liquidus line in the phase diagram

of the alloy. Consequently,

C, = C,(T) (liquidus line in the phase diagram) ¢ < 1
C,=C ¢ =1
and Eq. (8) can be used to calculate the local volume fraction of liquid, ¢.
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In this work, we present two-dimensional simulations in rectangular domains (Fig. 1).
’The boundary conditions associated with Eqs. (1) and (2) are no-slip at solid boundaries;
i.e., u = w = 0 at solid boundaries thaf include cbmpletely .soli‘diﬁed regions in the domsiﬁ.
For solidification in a'very tall container, the normal stresses along the top boundary are

zero; viz.,

ou ow ow ' ' .
—_F = 2 Pr== = =H 11
6z+6x . raz 4 z T ) (b

If we want the upper boundary to be a free surface, we assume that the surface is

undeformable. The boundary conditions are then
— =w=90 Z=HT (‘12)‘

The boundary conditions for temperature along any of the walls can be of two types

a prescribed heat flux,

-poeag_: =q (13)

(along the boundary), where 3/dn denotes the normal derivative in the direction of the
outward unit normal to the boundary and q is the prescribed heat flux along that boundary;

or a prescribed temperature written as
T=T -n (14)

(along the boundary), where T; is the initial temperature and r is a prescribed cooling rate.

-

Any combination of the above-cited conditions can be imposed along the boundaries of the

domain.



No transfer of solute mass is allowed at solid boundaries or at an undeformable free

surface (it is assumed at the top of the cqntainer), ie.,
ac, |
2% — o (15)
on :
along those boundaries. If the assumption of a very long container is made, we must require
a balance of diffusive and convective transport along that boundary so that
aC,

D
ox

+WC -C) =0 | - 19

at the top boundary.

III. CALCULATION STRATEGY
We adopt a strategy in which the equations are solved sequentially and an iteration :is
berformed to achieve convergence at each time step. First, we combine Eqs. (8) and (9) and

obtain

C=¢C +1 (17)
where I is the integral in Eq. (9).
To advance from time ¢,,, at which all conditions are known, to time ¢, ,; = ¢, + At,
the following steps are taken, where the dependent variables are computed using the latest
available values of all other variables on which they depend.

1. At time ¢,, parameters u,, w,, T, etc., are known.



10.

Advance to time step £,,, = £, + At. Seti =0, u,) = u, wh, = w,

I;‘,f? = T,, etc., where i is an iteration index and the subindex denotes the

time level.

Compute u'*} and w''} from Egs. (1)-(3) and (7).

n+l

n

Compute T."' from Eq. (4).

From Eq. (10), §et

ale) o, salr)

ivl .
Cl,»l - n+1 n . (18)
i+1 ~i i i+ .
Calculate ¢.., from Eq. (17) in the form
. c.o- T o
+1 +1 +1
by = —— (19)
Cln*l v
For nodes where 0 < ¢} < 1, compute I'7} .

Compute C':} using Eq. (5).

Recalculate ¢... using Eq. (19).

n+l

If [¢) - éneill < e (tolerance), then

sl i+l
Upsy = Unspy W =W Tml

n+1 n+l» = T;:i, etc.,n=n-+ 1, go to step 2.
Otherwise, set i = i + 1 and go to step 4. (Here, || / || denotes the

Euclidean norm.)



Steps 4-10 are repeated iteratively during each time step until convergence of ¢ is achieved.
The velocities are calculated only once per time step because they have negligible sensitivity
to small changes in the rest of the dependent variables [29]. At the end of each time step, .

the average concentration in the solid Es is calculated from Eq. (9).

A. Remelting

The integral / in. Eq. (17) is ébmputed incrementally by adding the increment -
corresponding to a change in ¢ to the previous value (;f I. The increment can be po'sitivg"(.')r
negative, depending on whether th'e. material undergoes solidification or femelting. Mofe
details can be found in Ref. [33]. If solidification has occurred and the increment is positivé;
1 is calculated directly. If there is remelting, however, I must be obtained from the
| solidiﬁcation history, with values of ¢ and I saved from the previous tirﬁe steps. To
élleviate the excessi;/e amount of storage required, ¢ and 7/ are not saved at every time step.
Instead, I is stored at increments of A¢ = 0.01, and linear interpolation is used for other |

values of ¢.

B. Energy Equation

A simple analysis shows that the algorithm for calculating the temperature and the
volume fraction liquid is only conditionally stable and, unfortunately, stability only holds for
values of latent heat that are much smaller than in metallic alloys. In order to obtain a stable

algorithm, the energy equation, Eq. (4), was reformulated to make the latent heat term

10



implicit. To eliminate ¢ from Eq. (4), we first differentiate Eq. (17) with respect to time,

yielding

9C _ 4% coe A (20)
at at at

If we approximate the liquidus line By a straight line with slope m (m < 0), the

temperature is related to the solute concentration in the interdendritic liquid by
T = Ty, + mC, @D

where T, is the melting point of thc solvent and m = mCd/GH. Equations (5), (20), and

(21) can then be combined with Eq. (4) to give

2 2 .32 2
Pr—é?i a_T+ 1—L u£+w£_ i—ﬂ+ﬂ
C | o . PrC, ox 0z ax?  dz?
e B B I i I O )
ScC, ax ax 0z 0z C, ot

where L is the second nondimensional latent heat defined as I:l = L/méC,. Note that when

remelting occurs, we cannot make the assumption that d/d¢[ J kC,d¢] = -kC, d¢/ot, as
¢
was done, for example, in Ref. [17]. An explanation of this point is given by Felicelli [29]

and by Felicelli et al. [33].

The fact that Eq. (22) rather than Eq. (4) must be used to calculate the temperature
introduces a computational inconvenience because Eq. (22) is nonlinear and must be
reconstructed and solved again at every time step, increasing the CPU time significantly. It

must also be pointed out that Eq. (21) is not uniformly valid throughout the domain because

11



it does not reduce to Eq. (4) when ¢ = 1. Therefore, the terms containing L apply only to

the elements in the mushy zone, where C; = C(T).

C. Solidification at Eutectic Temperature
Binary alloys solidify over a range of témperatures, and the tempefature is govemed‘by
the energy equation, Eq. (4). If we 1ook back at the computational strategy, the algori;hm
proceeds as follows: | |
1. - A decrease in the temperature of a vqlurﬁe element in the mushy zone
auiomatically results in an increase in the solute concenuaﬁon in the
interdendritic liquid, which is given by Eq. (18).
2. An increase in the concentration in the interdendritic.liquid produces a
decrease in the volume fraction of liquid according to Eq.: (19).
This means that the temperature is the variable that drives the solidification process. When #
volume element reaches the eutectic temperature, however, the remaining fraction of |
interdendritic liquid solidifies at constant temperatufe, assuming no undercooling of the
eutectic reaction. Consequently, at this point the solidification algorithm must be modified.
In formulations based on enthalpy, such as the one used by Bennon and Incropera [24-26],
the enthalpy is still valid at the eutectic temperature.
In some ways, enthalpy formulations are convenient, but they require a transformation
to obtain the temperature. Unfortunately, an algebraic transformation relating enthalpy to
temperature is only possible for simple thermophysical descriptions, such as constant specific

heat and complete diffusion in the solid. The assumption of complete diffusion in the solid

12



yields a direct relation between ¢ and T that, when combined with the additional assumption
of linear dependence of the phase enthalpies with temperature, yields an algebraic equation
*for the temperature as a function of the mixture’s enthalpy. This property was éxploited by
Bennon and Incropera [3], who used an enthalpy-based energy equation.

In order to retain the temperature formulation, an alternative is fol.lho\.;ved to solve for
solidification at constant temperature. When a node in t;he' domain reaches the eutmﬁc
temperature, the energy equation, Eq. (4), is used to calculaté thg volulme‘ fraction of liquid .

“while setting the time derivative of T equal to zero to ’effect solidification at constant
temperature.. Equation (4) becomes‘

2 2 P
Equatibn (23) is solved only at the points“splidifying at constant temperature; the complete -
energy equation is solved elsewhere. Physically, the eutectic isotherm advances smoothiy
through the domain; that is, a coordinate does not stay at the eutectic temperature for a finite
period of time. The present model, however, treats volume-averaged quantities in a porous
"medium, so a volume element or nodal point stays at constant temperature until it is
completely solidified. After that, its temperature is calculated with Eq. (4), which reduces to

the conduction equation in the solid.

D. Time Step and Mesh Size

If thermosolutal effects are important, the relevant length scale to be resolved is D/V,

where V is a characteristic solidification speed. For the system under consideration, i.e.,

13



slowly solidifying Pb-Sn alloys, this length scale is typically of the order of 300 pm and

requires a very fine mesh spacing in the vertica.l direction. In the horizontal direction,

. channels in the mushy zone .can be narrow, comparable to the order of D/V. Finally, we"
work with uniform meshes because the location at which channels form cannot be predicted
a priori; as a result, calculations are limited to the rather small domain.;. |

A second consideration for selecting the spatial resc;lution is that there be enough nodes
to adequately resolve the distribution of the volume fraction (;f liquid ¢ in the mushy zone.

"This consideration is discussed later in relation to the mesh .spaéings used in the calculatéd _ )
results.

The choice of the time step is moré complicated because of the nonlinear nature of the
problem and the need to satisfy several stability constraints in the calculations.- So far, the
calculations are performed using a constant time step; hence, the most stringent of the
following stability criteria must be satisfied.

1. The convective terms are treated explicitly in Egs. (1), (2), and (4), so the
stability condition of the form Af; < (| u | /Ax + | w| /Az)"! applies
everywhere in the computational mesh.

2. The explicit treatment of the body force terms gives Az, < (R + Rg/Sc)’.

3. A third consideration can be added, namely, that it is more efficient to choose
a time step for which no more than three iterations are needed for convergence
within the time step.

The above criteria are not optimal bounds. However, choosing Az < min (At,, Aty)

gives a good estimate. An added difficulty is that A¢, can vary significantly as the

14



solidiﬁcation proceeds. Hence ‘careful monitoring of the flow field is required to avoid an

overly conservative time step.

IV. FINITE ELEMENT METHOD

The-computational algorithm makes use of a standard penalty fuiiciion formulation
because the pressure is not needed. The pressure in Eqs (1) and (2) is eliminated uiing the
pseudo-constitutive relation |
where p; is the hydrostatic pressure and '>\ is a large "penalty" parameter. This method haé
been discussed in detail by Mar_shall et al. [34], Heinrich and Marshall [35], and Heinrich
and Yu [36] in the context of buoyancy-driven ilows. Theoretical aspects have been studvie_d :
by Oden [37]. Equation (24) is substituted into Eqs. (1) and (2), and the continuity equatic'm,A
Eq. (3), is eliminated. As a result, the pressure is not calculated but, if needed, it can be
recovered a posteriori by solving a Poisson equation (see {38, 39]).

The present scheme is based on the bilinear Lagr;ingain isoparametric element. The
convective terms are dealt with using a Petrov-Galerkin formulation in which the weighting
function is perturbed in the convective term. If we denote the shape function corresponding

to node i by N, the perturbed weighting function takes the form

WE =N+ op,  K=1,23 @

where K = 1 corresponds to Eqs. (1) and (2), K = 2 to Eq. (22), and K = 3 to Eq. (5).

15



The parameters o are given by

ag = coth v - — @6
' Tk ‘ : : '
where
_ vh : @
"= 25 Pr - K

is the cell Reynolds number,

vhA[l - (L/Pr o)l
2[1 + (Lo/Sc C)]

v = (28)

is the energy cell Péclet number,

— SC vh | g '.29 )

Y3 '2¢—Pr ( ),
is the solute concentration cell Péclet number, v = |{u? + w? | is the local fluid speed,
and h is the local element length in the direction of flow. Details on calculating h are given
in Ref. [36].

Denoting the domain by { and its boundary by I', the weak forms of Eqs. (1) and (2)

are
aN, 3N, dN, |
I IVIPI'% + A(b__l _a_u + ﬂ +Pr | _a_u + _ ¢ % + ]ViPRbu dQ
L dat dx | dx 0z ox dx  dz Odz Da,
=-j W.‘i ua_u.+w93 + N¢ cos @ Pr RT:+E(C—1) daQ
al T | ox 9z ' T Sc' !

G0
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and

' aw ou _ aw ON; 3u  ON; 3w| . . Pré
NPr— + A —_ Pr | — -2+ —— - N aQ
In rat N ¢ [ax * az] . ox 0x * dz 0z * Dazw
=#j w' Lo . 3% +N.¢sin0Pr"RT+E(C,-1‘) dQ
ol ' | ox 9z ! T Sc "
(31)

"where the left-hand sides are treated implicitly and the right-hand sides are evaluated
explicitly with the latest values of the dependent variables. All variables are interpolated

using the bilinear isoparametric shape functions; i.e., for a generic function f{x, z) we write

f(x, Z) = ENi(x’ Z)f; | | . (32) .

where i ranges over the number of nodes in the mesh and f; = fx;, z;) is the value of the |
function at note i.

The weak form of the energy equation, Eq. (22), is

N Lo | . Lg ON; aT  ON; oT
I I C | o Sc C, ox ox 0z 0z
. LoN, | acC, ot ac, oT
SC CI ax 3x aZ 32 (33)

L u_+w_ +N,L oI dQ
Pr C, G ot

- [ ]1 - Lé | 9T pp
r Sc C,;| on
17




In Eq. (33), the line integral is taken only over those portions of the boundary where a flux
condition as given by Eq (13) is prescribed.

The weak form for the solute concentration equation is given by

3N, 9C, _ 9N, i€,

aC Pr ¢
Pr N..=dQ + dQ)
0 ! Q o
I at I Sc dax Ox dz 0z (34)
acC aC . acC
3 1 ! Pr ¢ !
= - w: aQ + | N_* ___- DT
[ "% = Ir's; T

"where the line integral is only calculated along the top boundary when the long-containef' . :
assumption ié made and Eq. (16) is used. In the all-liqﬁid region, C= C, and the left-hahd
side is treated implicitly. In the mushy 2one where ¢ < 1, however, we have C # C,, and
the second term on the left-hand side is calculated explicitly using the latest values of C;. |

/After interpolating the functions using Eq (32), all integrals can be evaludted, and |

three sets of linear algebraic equations result:

My + Kyv=-Q, ¢, T, C) 35)
M2(¢y C[)T + K2(¢, C[)T = Q2(v’ d)a T7 C[) (36)
- 37
M3C + K;(@)C, = - Q3(V; ¢, C)
In the equations above, v = (W U,W, . . . uywy)T, where N is the number of nodes and u;
and w; are the velocity components at the nodes; also, ¢ = (¢,¢, . . . o), T =

(T\T,. .. Y, G = (GG, - - C,N)T, and C = (C,C, . . . Cy)’. The mass matrices M,

and M, are lumped diagonal matrices (see Refs. [36, 40, and 41] and are given by
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mly = [(PrNde  i=2a-1 i=j
. -. . . N (38)
[md; =0 . 0 #E ] ‘

(40)

L
[m2(¢, C[)],'j = Iﬂ [Pl‘ - ?d)- Ni dQ i=j
- o (9
.[m2(¢, Cz)] j=20 . i #] -
=12 ...,N
The mass matrix Mj in the solute_'cbncentration is treated consistently and is given by
[m;); = IﬂPr NNdQ  i,j=1,...,N

The stiffness matrices K are given by

o AL dN;, ON;, N, oN,
i = _ r +
1 I 0 ox ox ox ox dz 0z

+Pr¢1v,.1vj i  i=2a-1

Dax J — 23 -1
{. 8N, N,
[k,],.j=JQ M —[d 0= 20-1
| o * j=28
r
{. 3N, aN,
[kl]ij = Jn Np— >dQ i = 2a
{ ox 6zj ] — 2B -1
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aN. aNJ dN. ON.
i + i Jj
ax 0Jx dz 0z

+ Fr
dz 0z R

. ]P;rd’ NN.f d? i = 2a

(1)
@B8=12_...,N

’ ie | | N, aN,  aN, N,
k@6, C)L: = [ 1 |1 - J ]
(@, Gy In_ Sc C,] x ox - 0z 9z
L DN 193G 0N OGNk e G i— 12Ny @D
2 | ax ox dz 0z ‘ o .
Sc C; :

8N, 3N, dN; oN,

' _ Pr ¢
k@l = |, x & 6

dQl =1
Sc ¢

Gj=1,2,...,N)
The vectors Q; are obtained by replacing Eq. (32): |

. Wi 3
9w, 6, T, G =[] = [uéﬂ -

R
+ N cos 6 Pr [RTT + (G - 1)] (e i= 2a-1 @9
C

V.
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W) oS
@i ¢, T, O = [ ] [u%_‘: -l

+ N¢ sin 6 Pr
, Sc

Rg .
R,T + = (C, - 1) dQ i = 2«
a=12,....,N
| _ | L oT _ aT L ol
. [qz(v, ¢a T’ C[)]i = jﬂ “’l [T)r—a-l- 1] [ua + Wsz—] + Nla -a—t aqQ

| Lo | T L |
N, |1 - Spr (i=1,2,...,
: Jr ! [ Sc C,] an ¢ - N)

(45)

' , ¢, T, CD], = : _¢ _ ! 0
[9:Cv, & el I 0| Sc dx ax * 0z 0z “.ax W 0z d
- J _ . dr ¢ < 1 :
r Sc an (46)
G, ¢, T, O = [ W [u";_f . w%—f] an - [ L s =1
i=.4,2,...,N)
“47)

The time integration of the systems of ordinary differential equations represented by
Eqgs. (35)-(37) is performed using a backward implicit scheme. Specifically, discretize the

time derivative of a scaler function f using

- fm+l _fm
f= At
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V. NUMERICAL RESULTS

Calculations were performed for a Pb-10 wt pct Sn alloy under a variety of cooling
and boundary conditions. The computaﬁonal do'méin is shov'vn in Fig. 1 and consists of a. .
rectangular region of width W and height H;, discretized with a uniform mesh of 20 elements
in the x (horizontal) direction and 30 elemeﬁts in the z (vertical) directién. This mesh wés
selected after several preliminary calculations were performed with different resolutions to
assess the sensitivity of .the results to the mesh size. The chosen mesh was found to capture
all the dynamic features of the flow at a reasonable Acor.npuvtation cost, whereas coarser
meshes were unable to reveal the fférmation of the channels. A uniform .resoluti_on was used -
because the locations of channels and regions of macrosegregation were fouﬁd to be
unpredictable.
| | In all calculations, the cﬁannels turned out to be very narrow, cdmparable to one td |
several primary dendrite arm spacings (which is also comparaﬁle'to the solute distribution
decay scale D/V). The mesh size has to be kept comparable to this scale if proper resolutién
of the channels is desired. This requirement imposéd a limitation on the size of the domain,
in order not to make a single computation excessively expensive. Fortunately, all the effects
associated with channel creation and growth could be observed in calculations even though
the domains were rather small. Furthermore, when different sizes were used, it was found
that channels developed under the same thermal conditions irrespective of size of domain.

A reference length scale H = 300 um was chosen for all the calculations. The

following nondimensional parameters were also used:
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Rag 1.86 x 10*

1l

3.4 x 103 Ra,

Pr = 2.3 x 107 | Sc'= 8.23 x 10

L/tGH = 1.5 X 10* | |
The reference time, 7, was 0.65 s, and the reference velocity, U, was 27 mm-s!. The
reference temperature was taken to be the ffeezing point of the Pb-10 v;'t pct Sn alloy
(T, = 577 K), and the reference concentration was C, = 10 wt pct Sn.

The first calculafion considers a container of width W = 10 mm with a domain height
of Hr = 20- mm. Zero tangential stress and zero ve;rtfcal velocity are imposed on the to.p:
boundary (z = HQ, and no-slip at t.he other three boundaries. The alloy' is initially all iiquid :
of concentration C, = 10 wt pct Sn, and has a linear temperature distribution varying from :
T, (the melting point) at the bottom boundary to 7, + GHjy at the top boundary, with G = '
| 1000 K-m!. The side walls are insulated, and a vertical gradient of aTkaz = Gis impose;‘i‘

ét the top boundary. A time dependent boundary condition is i)rescribed at the bottom of the

form:

Tx,0,0) =T, - rt

where r is the cooling rate (0.0783 K s'!). With this value of r, the initial solidification rate
was approximately 0.042 mm s'!. The values of the cooling rate, r, and the thermal
gradient, G, were selected from the thermal history of ingots of Pb-10 Sn alloy that exhibited
channel segregates in the experiments of Sarazin and Hellawell [7].

The thermodynamic and transport properties used in the calculations are given in

Table I. The functions used for the anisotropic permeability are given in the Appendix.
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Table 1.

Thermodynamic and Transport Properties Used for Calculations
in Pb-10 wt pct Sn. Taken from Ref. [33].

Property

Reference concentration (Cp), 10 wt pct Sn
Reference temperature (7)), 577 K
Equilibrium partition ratio (k), 0.31
Melting point of lead (7)), 600 K
Slope of liquidus (m), -2.33 K (wt pet)’!
Density [p, = 0(Cy,Tp)], 1.01 X 10* kg-m™
Thermal expansion coefficient (85), 1.2 X 104 K!
Solutal expansion coefficient (8.), 5.15 X 10 (wt pct)!
Kinematic viscosity (vp), 2.47 X 107 m? s’! :
Latent heat (L); kJ kg*': -

At (Co,To), 26

At (Cy,Ty), 56

Used in calculation, 37.6
Heat capacity (2); kJ kg'! K1

Liquid at (Cy,Tp), 0.161

Solid at (Cz,Ty), 0.173

Used in calculation, 0.167 _
Thermal conductivity (x); kW m! K'1: -

Liquid at C,,T;), 0.0167

Mixture at (Cg,Tg), 0.0198

Used in calculation, 0.0182
Thermal diffusivity (o« = «/pgC), 1.1 X 10 m? !
Solutal diffusivity (D), 3 X 10® m? s°!

Figure 2 shows calculated results after 3 min. The contours of equal fraction liquid
(Fig. 2a) show a very narrow region of high fraction liquid at the center of the casting,
indicating the presence of a freckle or a channel. Note that the mesh size is not sufficiently
small to resolve an all-liquid jet. Nevertheless, it can be seen from the streamlines (Fig. 2b)
that the flow is upward within the channel and extends into the bulk liquid as a column of

rising fluid. Although the streamlines penetrate into the mushy zone, the strength of the
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convection rapidly diminishes within the mushy zone where the permeability is low.
Figure 2c shows that the fluid within the-channel is richer in solute than the surrounding
‘ fluid.

A more detailed view of a freckle is obtained in the next example (Fig. 3), where a
very small container of dimensions 2.5 mm by 4.5 mm was used, togefhef with a slower
initial solidification rate of V = 0.0139 mm-s!. The width of the channel is approximately
equal to the reference length scale (H = 0.3 mm). Note the 'stee_p gradierit of fraction liquid.
“on the channel walls, indicating that the chaqnel is sur;ound.ed by a region of low volume
fraction liquid. The flow is upward-inside the channel, and two cells have deve_loped next vto
the mold walls (Fig. 3b), where there is.also upward flow and a higher than normal fraction
of liquid.

In the examples of Figs. 2 and 3 the chz;nnels in the centers were induced by
introducing an initial perturbation in the concentration of the melt along the vertical

centerline and letting the system evolve thereafter. The form of the perturbation was
C, = 1.01 G, forx = Wi2.

In this way, an initial upward flow at the center of the container is established. The situation
is similar to experiments done by Sample and Hellawell [8] in NH,CI-H,O, in which they
~ created channels in the mushy zone by inducing an upward flow in the liquid just ahead of
the dendritic tips by suction up through a capillary tube.

In the next calculation no perturbation is introduced, and the system is left to evolve
undisturbed. The width of the mold is 5 mm, and the height og the computational domain is

Hp = 10 mm. No-stress conditions are imposed on the top boundary, simulating an
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infinitely high column of liquid above the mushy zone. The cooling rate is r = 0.0167 K

s’ corresponding to an initial solidification rate of V = 0.0139 mm (50 mm h''). All
other boundary conditions Were the same as in the exampllesA of FigS. 2 and 3. The results of
this calculation are given in Figs. 4 and 5.

After 2 minutes, two channels begin to form (Fig. 4a) at locatioﬁs.corr'.esponding to
zones -of upward flow of four convective cells (Fig. 5a).' The channels, héwever, do not
keep growing upward, but they turn toward the sides and cor;tinqe to g_rm;v along the walls of

"the mold (Figs. 4b through d), following ihe' path of upward convective flow (Figs. 5b |
through d). An additional channel c.an be seen in Figs. .4c and Sc that appeérs as a pocket in
the upper part of the mushy zone (indicéted by arrows). However, the channel rapidly closes
leavi_ng a pocket of liquid surrounded by a dendritic network with a greater volume fraction
of solid (Fig. 4d). Abrupt transitions in the volume fraction of liquid surrounding the poéket '
or the channels are indicated by the dark regions of closely packed contour lines.

A plot of total concentration of the partially solidified casting (Fig. 6) shows that
within the mushy zone there is obvious positive macrosegregation in the channels along the
wall and within the now isolated pocket.

The effect of heat flow between the casting and the' furnace is studied in the next
example. The two calculations are shown in Figs. 7a and b for a domain with a width of
S mm and» a no-stress top boundary at 10 mm as in the previous example. The cooling rate,
however, is only 8.33 x 103 K s'!. In Fig. 7a heat is also extracted from the casting by
imposing a temperature gradient | d7/0x | = 0.1 K mm™! at the side walls. Except for

channels at the walls, the mushy zone adopts a concave shape toward the bulk liquid. Only
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channels at the walls develop and no interior channels or pockets are observed. In Fig. 7b,
heat is added to the casfing by imposing - | 9T/dx | =0.3 K mm" at the side walls and by
| speéifying a lower. temperatﬁre at the center of the base (ihcfeasing linearly toward the
sides). Apart from the channels, the overall shape of the growth front is convex to the
liquid; now channels develop in the interior of the container, although t.l'le' channels at the
walls still remain. |

It is evident from the above example that channels ten& to develop'in‘the leading part .

“of the growth front. This fact has been observed in experiments with NH,CI-H,0 mixtufes_ .
[5,8]. Copléy et al. [5] varied the cbnﬁguration of theif bottom chill so as to make the |
growth front either concave or convex té the liquid. When it was concave, channels in the
NH,CI-H,O system tended to form on the outside, and when it was convex the channels were
prevalent in the center. Similar results were obtained by Sample and Hellawell [8], who" | |
tilted the ingots. .

Based on the calculations presented, herein, it is also evident that there is a strong
tendency for freckles to form at the walls of the mold. In order to investigate why a wall
might be an attractive place for freckling, a numerical experiment was done using the same
domain with insulated walls and prescribing a zero horizontal velocity along the vertical
center line (i.e., x = W/2). It is observed in Fig. 8a that a freckle forms at the center of the
casting and keeps growing, supported by a column of upward flowing liquid, in a similar
way as the channels along the walls (Fig. 8b). Two additional channels develop at positions
intermediate between the center and the walls, but they do not persist (Fig. 8c) because they

face an unfavorable flow pattern in the liquid zone. It is important to remark that in this
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example the upward flow at the center of the container is not induced by an initial
perturbation, but it arises naturally as a consequence of restricting the horizontal movement

. of fluid. A similar result Was obtained by prescribing a highly émiéotropic permieability
(K, = 10? K,) along the vertical center line in the mushy zone, showing that a restriction to

horizontal convection in the mushy zone can sustain a column of upward flow in the liquid.

V1. DISCUSSION

The results presented herein illustrate some of the most common effects observed in ' .

experiments 6n freckles. Several reinarks can be made that are based upon the results. |

1. The convection starts immediately, as soon as the liquid next to the base of the
container begins to solidify. The convection cells nucleate near the advancing
solidification front (i.e., at the tips .of the dendrites). From the calculated
temperatures and concentrations in this region, it is found that the vertical density-
gradient is positive there, i.e., it is gravitationally unstable.

2. As the solidification proceeds, the convective cells do not keep organized. The
flow pattern changes continually, driven almost entirely by the solute
concentration field. The isotherms are practically flat because of the low Prandtl
number. The convection in the bulk liquid penetrates deeply into the mushy
zone, although the velocities decrease by 2 or 3 orders of magnitude below the
upper 20 pct of the mushy zone.

3. The first channels begin to form in regions of upward flow, between two

convective cells (e.g., Fig. 2a). Because the solute concentration in the liquid is
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higher at the bottorn of the casting, the’ upward flow transports solute-rich liquid
to the tips of the dendrites, decreasing the freezing point. Therefore, the growth
front advances rﬁore slowly in regions where there is ubward' flow, it distorts,
and a channel begins to develop backward from the tips toward the bottom of the
-mushy zone. This process is helped further by.remelting of Qready existing solid
in the mushy zone. The diffusion of solute is too slow to spread away from the
column of rising solute-rich liquid, so remelting (;ccu;s in Qrdér to decrgase the .
solute concentration in the liquid back to an equilibrium value that corresponds t'o~.
tﬁe local temperature. In other words, without remelting'a volume of rising |
interdendritic liquid is unablé to maintain its thermodynamic equilibrium because
heat diffuses much faster than the solute; remelting counteracts, this by diluting
the liquid with respect to the solute. |
The larger concentration of solute in a column of ﬁsing liquid tends to keep it |
rising because of buoyancy and double diffusion effects (assuming that the solute
is lightér than the solvent, e.g. Sn in Pb-rich alloys). This keeps the channel
growing vertically, until the pattern of convection changes, and the column of
liquid emerging from the channel is disturbed. The flow change is caused by
accumulation of solute in a nearby place, creating a competing channel. The old
channel deviates from its vertical trajectory, induced by the upward flow at the
new position, and eventually merges with the new channel or closes before

reaching it, forming a pocket or streak.
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In most of our calculations, we observe a strong accumulation of solute at the
walls of the mold, leading to-long, well defined channels that dominate the flow
and prevent other similar channels from growing in the interior of the casting.
Channels that develop in the interior of the casting, either naturally or induced by
-a perturbation, are eventually absorbed by the channels at tfie 'wall'§. This
predominance of freckles at the surface of tt;e mold has been observed in.
Ni-based alloys [6]. The solute accumulates next.to t_helwalls ‘because of the
limitation of lateral transport; i. e., it is ha:der to remove solute away from the _ .
wall because the horizontal component of the velocity is small. 'For_ high
solidification rates (~4.2 x 10 mm s'!) the formation of channels at the walls
can be delayed or prevented, because not enough time is allowed for solute -
accumulation. |

Long, vertical channels, similar to the ones at the surface of the casting, can be
obtained in the interior if a restriction to lateral convection is introduced (Fig. 8).
The purpose is to provoke an accumulation of solute that can sustain the channel
growth. Such an accumulation could occur in regions of high anisotropy in the
mushy zone (K, << K,), as might be the case in grain boundaries, dendrite
misalignments or other defects in the dendritic network of the mushy zone.
Another mechanism that can favor the formation of long interior channels is the
deposit of dendrite debris, produced by remelting or erosion of the dendrite
arms, along the channel sides. This phenomenon has been observed in the

NH,CI-H,O system [5]. The debris grow as small randomly oriented grains that
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entangle with the sides of the channel and reduce the horizontal permeability. In
effect, the solute is confined to the channel. Because this decreases the lateral
feeding of liquid, the channél activity is signiﬁcz;nt only in the neighborhood of
the dendrite tips, and the liquid in the bottom part of the channel is essentially

stagnant.

VII. CONCLUSIONS
A mathematical model of solidification of de'ndfiticvalloys with thermosolutal’
convection has béen presented. Thé solidification is initiated from an all;liquid state, and the -
dendritic zone is allowed to grow as the volume fraction of liquid in the muﬁhy zone adjusts |
according to local thermodynamic equilibrium conditions. Calculations-were performed f'or”
| the v-ertical solidification of a Pb-10 wt pct Sn alloy, with the following :results: |

1. Channels form during the growth of the mushy zone.

2. The shape of the channels vary from small pockets or short streaks of
interdendritic liquid to long vertical peﬁetrations.

3. The formation of a channel occurs near the leading part of the growth front.

4. The liquid within the channels is enriched in solute.

5. The channels form in regions of upward flow. The mushy zone grows around
the columns of rising liquid, forming the channels backward from the tips of the
dendrites toward the bottom of the mushy zone. Remelting also takes place.

6. The convection is driven mainly by the solute field.- Zones of solute

accumulation are potential starters of channels.
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7. Channels can be induced by establishing a column of upward flow in the bulk
liquid, by introducing a restriction to the horizontal convection in the mushy
zone, or by enhancing the vertical convection.

8. There is a strong preference for channels to form at the mold walls.

VIII. OTHER ACCOMPLISHMENTS

The major empﬁasis in the research program vx;as to model thermosolutal convection
durihg the dendritic solidification of binary alloy.s, and‘ the results of this effort are given in
the preceding chépters. In this ch_'ai)ter, we summarize other accomplishﬁents pertaining to
the subject research. Details are not given here, but publications resulting ffom the work
may be consulted.

| The two most important publications on the model, itself, are gi\;en as References 33
and 46. The former appears in Metallurgical Transactions, which is widely read by the
materials community, and the latter appears in Numerical Heat Transfer, where the
mathematical details pertaining to the finite elemenf algorithms and computational strategy
peculiar to the solidification scenario are given. Our results were also presented at several
conferences, all of which resulted in publications (References 47-50).

In setting up the conservation equations for the mushy zone, we found it necessary to
derive the momentum equation [30] and to numerically test our calculations [31] and contrast
them to results calculated from a form of the momentum equation used by other researchers.
This was necessary because in analyzing dendritic solidification; the mushy zone is modeled

as a porous medium with a spatially varying fraction of liquid, unlike the uniform porosity in
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most porous media. There were also fundamental issues, which had to be addressed, in both
the energy equation and the solute conservation equation, resulting in the publication of

Reference S1.

APPENDIX:
Functions Used for Permeability

We assume direétional solidification with dendritic columnar grains. The
permeability- is anisotropic with components K, and‘Ky- for flow perpendicular to the
columnar dendrités and flow parallél to the columnar dendrites, respectiyély.

In this work thermal conditions, corresponding to ingots studied by Sarazin and
Hellawell [7], were used in the simulations, so we also use_d their reported primary dendr'itgl
.arm gpacing of 300 pum. Lackiﬁg a value for secondary dendriie arm sﬁacing, Eq. [30] fréfn

Poirier [42] was selected for K,; it is
K, = 7.08 x 10716 g7% ¢332 [Al]
with K, in m? and d, in gm.
Equation [A1] is based on a regression analysis of empirical data that cover the scope

0.19 < ¢ < 0.66and 144 < d;, < 420 um.

For the regime with ¢ > 0.66, we use

K 6 1M _ :
— =aqy +a | —— [A2]
d;

where a, = -5.955449 x 107 and @, = 5.652925 X 102,
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Equation [A2] and the coefficients were determined by a linear regression of results
given in Tables 1 and 2 qf Sangani and Acrivos [43] for 0.6 < ¢ < 0.95, and calculated
with their Eqgs. (17) and (25) for 0.95 s o < 0.99. Sangaﬂi and Acrivos [43] studied th.e‘
slow flow past square arrays and triangular arrays of circular cylinders; Eq. [A2]. isa
compromise between the square array -and the- triangular array.

Flow Parallel to Columnar Dendrites
The empirical déta are listed in Reference 42; the scope is 0.17 < ¢ < 0.61 and
28 < d, <-420 um for which- the following emg.)iri'cal. relationship was determined:”
K55 10 g2 o o [A3]'}
dy :
.(There are no empirical data for ¢ > 0.61, so we use the results of brﬁmmond and Tahir
[44] and Ganesan et al. [45]. |

Drumfnond and Tahir [44] derived equations for lamiﬁar flow parallel to regular
arrays of circular cylinders. Based upon values of drag forces given in their Table 5 and
their equations for small values of (1 - ¢), permeabilities were calculated.

Ganesan et al. [45] calculated the permeability for flows parallel to primary dendrites
based upon actual microstructures. Their results agree very well with the results derived
from Drummond and Tahir for g; = 0.55. Therefore, when ¢ > 0.61 we use an equation

given by them; it is
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K — 4)2
L =a|llnd-¢"-b+2(-9)- a4y [A4]
dlz | | -. 2 ,
where a and b are constants that depend on the array of the cylinders. In this work, we

selected average values for triangular and square arrays: a = 0.07425.b = 1.487.
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Fig. 6--Total concentration (weight percent in solid plus liquid) showing macrosegregation in

channels, corresponding to Figs. 4d and 5d (7 min).
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