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THERMOSOLUTAL CONVECTION AND MACROSEGREGATION
IN DENDRITIC ALLOYS

D.R. Poirier and J,C. Heinrich
The University of Arizona

College of Engineering and Mines
^? Tucson, Arizona 85721

A mathematical model of solidification, that simulates the formation of channel
segregates or freckles, is presented. The model simulates the entire solidification process,
starting with the initial melt to the solidified cast, and the resulting segregation is predicted.
Emphasis is given to the initial transient, when the dendritic zone begins to develop and the
conditions for the possible nucleation of channels are established. The mechanisms that lead
to the creation and eventual growth or termination of channels are explained in detail and
illustrated by several numerical examples.

A finite element model is used for the simulations. It uses a single system of
equations to deal with the all-liquid region, the dendritic region, and the all-solid region.
The dendritic region is treated as an anistropic porous medium. The algorithm uses the
bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin
formulation.

The major task was to develop the solidification model. In addition, this report
briefly describes other tasks that were performed in conjunction with the modelling of
dendritic solidification.



NOMENCLATURE

a random number
C average total concentration of solute.
c heat capacity
C[ concentration of solute in the liquid
CL interdendritic solute concentration from the liquidus line in the phase

diagram
Cs • local solute concentration in the solid •
€„, reference solute concentration (concentration in the liquid before solidification)
rfj primary dendrite arm spacing
D solute diffusivity in the liquid
Da^ Da,, Darcy number in the x and z direction, respectively
g gravitational acceleration -

G reference thermal gradient
h local mesh length in the direction of flow
H reference length
HT z coordinate for the top of the container
7 auxiliary variable for total solute concentration in the solid
k partition ratio
Kx, Kz permeability in the x and z direction, respectively
L latent heat
L, L first and second nondimensional latent heat, respectively
m slope of the liquidus line in the phase diagram
n unit outward normal vector
N{ shape function
p pressure
ps hydrostatic pressure
Pt Petrov-Galerkin perturbation function
Pr Prandtl number
q prescribed boundary heat flux
r cooling rate prescribed at z = 0
Rs, RT solutal and thermal Rayleigh number, respectively
Sc Schmidt number
t time
T temperature
TE eutectic temperature
7j initial temperature
TL liquidus temperature
TQ reference temperature
At time step
u x component of the superficial velocity
up x component of the pore velocity
U reference velocity
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v magnitude of liquid velocity
V solidification velocity
vo z component of the superficial velocity
vvp z component of the pore velocity
W width of the container
Wf Petrov-Galerkin weighting function
x, z coordinates
a thermal diffusivity
ak Petrov-Galerkin coefficients
j8T, /3S thermal and solutal expansion coefficient, respectively.
7, cell Reynolds number.
7a > 7a csM P6clet number in the energy and

solute concentration equation, respectively
F domain boundary
e convergence tolerance
0 angle of the gravity vector with respect to the x axis
X penalty parameter
v kinematic viscosity
p density
p0 reference density
T reference time
0 volume fraction of interdendritic liquid
Q global domain
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I. INTRODUCTION

An increasing number of technological applications requires the operation of critical

mechanical components under severe conditions of high temperatures and stresses. If

improperly manufactured, these components are subject to creep fracture and thermal fatigue

failures, which are almost always associated with grain boundaries that are transverse to the

applied stress. The modern day directional solidification technique provides an effective

means of controlling the grain shape, producing a columnar microstructure with all the grain

boundaries running in the longitudinal direction of the casting. This greatly improves

material performance at elevated temperatures. Still better properties can be obtained by

casting a single crystal (i.e., a dendritic monocrystal), in which only one columnar grain is

allowed to grow and form the main body of the casting [1].

Without proper control, directionally solidified castings are not free of defects.

Particularly troublesome are localized segregates at the macroscopic scale, which are found

in many directionally solidified (DS) alloys, including some superalloys. These segregates

are observed as long and narrow trails, aligned parallel to the direction of gravity in DS

castings, and are enriched in the normally segregating elements and depleted of the inversely

segregating elements, i.e., their composition is shifted toward the eutectic composition. In

horizontally solidified ingots of steel similar defects are known as "A" segregates, while in

DS castings they have a more pronounced channel shape and are termed "freckles." This

non-uniformity of composition is highly undesirable because the resulting variation in

physical properties within the casting can lead to inferior performance of the components



manufactured from the casting. In ingot production, an excessive number of defects can

require a large amount of cropping, at a considerable cost of energy and material.

Many analytical and experimental works have been done in the recent years in order

to observe, explain and prevent the formation of both "A" segregates [2-4] and freckles

[5-13] in directionally solidified alloys. This paper addresses the latter type of defects, i.e.,

freckles when an alloy is cooled from below.

The opacity of metals prevents direct observation of the nucleation and growth of

channels during solidification. Observations are usually done by quenching the ingot at

different stages of solidification and analyzing the solidified macrostructure. Much of what

is known about channel dynamics has been learned from the transparent analogue NH4C1-

H2O system [5,8]. Here, it is clearly seen that freckles are a direct consequence of upward

flowing liquid jets that emanate from within the mushy zone. In the case of a binary alloy

this requires that the solute be less dense than the solvent if it segregates normally or more

dense if it segregates inversely.

Because a density inversion also occurs in metallic systems where freckles are

observed, it was proposed by Copley et al. [5], and further supported in later works

[4,6,7,8,11,14], that buoyancy driven convection is responsible for channel segregation.

Although the influence of buoyancy effects in segregation seems to be evident, the large

differences in thermal conductivities, solid-liquid densities and, in particular, the fraction of

liquid in the dendritic structure can lead to a convection pattern that is very different from

that observed in the water-based mixtures, as it has been reported in experiments using



radioactive tracer techniques [14,15] and in an analytical model of thermosolutal convection

in dendritic alloys [16].

Solidification simulation is motivated by the need to understand the basic' mechanisms

of the segregation of alloy components. The earliest works considered only the solute

conservation equation [17-19]. Soon thereafter, natural convection of the interdendritic

liquid [20-22] and in the all-liquid region [23] were studied. Thermosolutal convection,

however, was not considered, so early models were not capable of predicting thermosolutal

instabilities at the solidifying interface that result in segregation defects in solidified alloys.

Models that incorporate the effect of thermosolutal convection have been developed

by other researchers as well, e.g., Bennon and Incropera [3,24-26], and Beckermann and

Viskanta [27-28] simulated horizontal solidification of aqueous solutions of ammonium

chloride. '

In our work, we have used a finite element algorithm to calculate macrosegregation

and the formation of channels and freckles in Pb-Sn alloys. The algorithm has also been

used to reproduce a calculation for horizontal solidification of an NH4C1-H2O solution

presented in Ref. [3]. Calculations presented herein show that the present model is capable

of capturing the formation of channels and freckles during vertical solidification of alloys.

II. SOLIDIFICATION MODEL

We consider an alloy melt undergoing directional solidification under the following basic

assumptions:

1. Only solid and liquid phases may be present, i.e., no pores form.



2. The flow is two dimensional and laminar, and the solid phase is stationary.

3. The solid and liquid phases have equal thermal properties and densities.

4. There is no diffusion of solute in the solid phase. '

5. The thermal properties are constant, and the Boussinesq approximation is

made; hence, the density is constant except in the body force term of the

momentum equations.

6. The dendritic region (often called the mushy zone) is treated as a porous

medium with anisotropic permeability where the fluid velocities are the

superficial velocity components.

With these assumptions, the basic nondimensional equations of momentum,

continuity, energy, and solute transport can be written [29] as

du
dt

+ 1 [udu + wdu] _ .dp +pr

<t> [ dx dz\ dx

Pr- <t> u - <j> cos 6 Pr

32w + 32w
3^2 dz2

R T 4- ^(C1 11T v^-/ -U (1)

dt
1 L^ +
0 [ dx

Pr- 0__w

9vv] , 3p T,>v = - <p— £- + Pr
dz J dz

/> sin 6 Pr

d2w d2w
'dx2 + ~dz2

RTr + ^(crD (2)



™ + ™ = 0 (3)
dx dz

(4)

dC + dCi +
 dci _ Pr

dt dz dz Sc dx dx dz dz
(5)

The variables are defined in the nomenclature.

In the mushy zone, where <£ .< 1, we use u and w as the superficial velocities, i.e.,

u = <£w w = <j)W (6)

where «p and vvp are the components of the pore velocity.

The nondimensional numbers are defined by Pr = v/a, Dax = K^H2, Da^ =*= KZ/H2,

RT = (j8T<gG£TO/va, Rs = (PsgCet&)/vDtSc = v/D, and L = L/cGH. Note that His the

reference length, G is a reference thermal gradient, and Cn is the reference concentration.

Implicit in Eqs. (1) and (2) is a constitutive relation of the form

r i o /T T \ fi (f^ f^ "\T l ft

in the body force terms, where p0 and T0 are reference density and temperature, respectively,

and C,,,, the reference solute concentration, is the concentration in the liquid before

solidification. The nondimensionalization given above also uses a reference velocity U =

ot/H, a reference time r = H2/v, and a reference pressure pQU2. The temperature and solute

concentration in the liquid are nondimensionalized using (T - TQ)/GH and

respectively, and the total solute concentration by €/€„.



The momentum equations above are similar to the ones used by Beckermann and

Viskanta [27-28], but differ from the ones used by Bennon and Incropera [3,24-26]. Readers

are referred to Ganesan and Poirier [30] and Nandapurkar et al, [31] for more details

pertaining to the momentum equations.

To complete the model, we require a relation between.the total solute concentration C

and the solute concentration in the liquid C, of the form

C = 4>C, + (I - 0)CS (8)

where Cs is the average local solute concentration in the solid. The model allows for

microsegregation in the solid; hence, Cs is not uniform but is given by

_ i
cs = -L. f kc, d<t> (9)

l~<t> I

where k is the equilibrium partition ratio defined as the ratio of the concentration of solute at

the solid dendritic interface to the solute concentration in the interdendritic liquid. In this

work, we assume k is constant.

At a given temperature in the mushy zone, the composition of the interdendritic liquid

is nearly uniform, and the local liquid-solid interface is very near equilibrium [32]; hence,

the composition of the interdendritic liquid is given by the liquidus line in the phase diagram

of the alloy. Consequently,

C; = CL(T) (liquidus line in the phase diagram) 0 < 1

C, = C <t> = 1

and Eq. (8) can be used to calculate the local volume fraction of liquid, </>.



In this work, we present two-dimensional simulations in rectangular domains (Fig. 1).

The boundary conditions associated with Eqs. (1) and (2) are no-slip at solid boundaries;

i.e., u = w = 0 at solid boundaries that include completely solidified regions in the domain.

For solidification in a very tall container, the normal stresses along the top boundary are

zero,- viz. , • •

!» - !L = 0 2 Pr ^ tp z = H T (U)
dz dx dz

If we want the upper boundary to be a free surface, we assume that the surface is

undeformable. The boundary conditions are then

^ = w = 0 z = HT (12)
dz .

The boundary conditions for temperature along any of the walls can be of two types:

a prescribed heat flux,

-Po^H = q

(along the boundary), where d/dn denotes the normal derivative in the direction of the

outward unit normal to the boundary and q is the prescribed heat flux along that boundary;

or a prescribed temperature written as

T = T{- rt (14)

(along the boundary), where Tj is the initial temperature and r is a prescribed cooling rate.

Any combination of the above-cited conditions can be imposed along the boundaries of the

domain.



No transfer of solute mass is allowed at solid boundaries or at an undeformable free

surface (it is assumed at the top of the container), i.e.,

= 0 (15)
dn

along those boundaries. If the assumption of a very long container is made, we must require

a balance of diffusive and convective. transport along that boundary so that

D—l + w(C, - CJ = 0 (1.6)
ox

at the top boundary.

III. CALCULATION STRATEGY

We adopt a strategy in which the equations are solved sequentially and an iteration is

performed to achieve convergence at each time step. First, we combine Eqs. (8) and (9) and

obtain

C = </>C; + 7 (17)

where 7 is the integral in Eq. (9).

To advance from time tn, at which all conditions are known, to time tn+1 = tn + Af,

the following steps are taken, where the dependent variables are computed using the latest

available values of all other variables on which they depend.

1. At time tn, parameters un, wn, Tn, etc., are known.



2. Advance to time step tn+1 = tn + At. Set i = 0, u'n'+l = un, %+1 = wn,

T1^ = Tn, etc., where / is an iteration index and the subindex denotes the

time level.

3. Compute ul
nl\ and w£J from Eqs. (l)-(3) and (7).

4. Compute 7^+1 from Eq. (4).

5. FromEq. (10), set

6. Calculate ^\ from Eq. (17) in the form

.
C/

'n*l

7. For nodes where 0 < ^V, < 1, compute

8. Compute C'nl\ using Eq. (5).

9. Recalculate j>*\ using Eq. (19).

10. If 1C1! - 0i+ill < « (tolerance), then

«»+i = Ci. w«+i = wn+
+!» r,,+i = d» e?c-'' « = n + 1; go to step 2.

Otherwise, set i = j + 1 and go to step 4. (Here, || / || denotes the

Euclidean norm.)



Steps 4-10 are repeated iteratively during each time step until convergence of <j> is achieved.

The velocities are calculated only once per time step because 'they have negligible sensitivity

to small changes in the rest of the dependent variables [29]. At the end of each time step,

the average concentration in the solid Cs is calculated from Eq. (9).

A. Remelting

The integral / in Eq. (17) is computed incrementally by adding the increment

corresponding to a change in $ to the previous value of 7. The increment can be positive or

negative, depending on whether the material undergoes solidification or remelting. More

details can be found in Ref. [33]. If solidification has occurred and the increment is positive,

7 is calculated directly. If there is remelting, however, / must be obtained from the

solidification history, with values of <f> and / saved from the previous time steps. To

alleviate the excessive amount of storage required, <£ and 7 are not saved at every time step.

Instead, 7 is stored at increments of A<£ = 0.01, and linear interpolation is used for other

values of <£.

B. Energy Equation

A simple analysis shows that the algorithm for calculating the temperature and the

volume fraction liquid is only conditionally stable and, unfortunately, stability only holds for

values of latent heat that are much smaller than in metallic alloys. In order to obtain a stable

algorithm, the energy equation, Eq. (4), was reformulated to make the latent heat term

10



implicit. To eliminate <£ from Eq. (4), we first differentiate Eq. (17) with respect to time,

yielding

dt dt ' Bt dt
(20)

• If we approximate the liquidus line by a straight line with slope m (m < 0), the

temperature is related to the solute concentration in the interdendritic liquid by

T = TM + (21)

where TM is the melting point of the solvent and m '= mC^/GH. Equations (5), (20), and

(21) can then be combined with Eq. (4) to give

P r - ^ BT +

Bt •

L
ScCi

1 - L

PrC,
f BT\ u + i
[ Bx

f a Larl + B f , a
[to [ toj 3z [ 3

vdT] - d'T +
dz J Bx 2

rll + I BI
zjj C[ Bt

B2T
Bz2

(22)

where L is the second nondimensional latent heat defined as L = LlmcC0. Note that when

remelting occurs, we cannot make the assumption that B/Bt[ f kC( d<t>] = -kC, S<f>/3t, as
i

was done, for example, in Ref. [17]. An explanation of this point is given by Felicelli [29]

and by Felicelli et al. [33].

The fact that Eq. (22) rather than Eq. (4) must be used to calculate the temperature

introduces a computational inconvenience because Eq. (22) is nonlinear and must be

reconstructed and solved again at every time step, increasing the CPU time significantly. It

must also be pointed out that Eq. (21) is not uniformly valid throughout the domain because

11



it does not reduce to Eq. (4) when <£ = 1. Therefore, the terms containing L apply only to

the elements in the mushy zone, where C, = CL(T).

C. Solidification at Eutectic Temperature

Binary alloys solidify over a range of temperatures, and the temperature is governed by

the energy equation, Eq. (4). If we look back at the computational strategy, the algorithm

proceeds as follows:

1. A decrease in the temperature of a volume element in the mushy zone

automatically results in an increase in the solute concentration in the

interdendritic liquid, which is given by Eq. (18).

2. An increase in the concentration in the interdendritic liquid produces a

decrease in the volume fraction of liquid according to Eq. (19).

This means that the temperature is the variable that drives the solidification process. When a

volume element reaches the eutectic temperature, however, the remaining fraction of

interdendritic liquid solidifies at constant temperature, assuming no undercooling of the

eutectic reaction. Consequently, at this point the solidification algorithm must be modified.

In formulations based on enthalpy, such as the one used by Bennon and Incropera [24-26],

the enthalpy is still valid at the eutectic temperature.

In some ways, enthalpy formulations are convenient, but they require a transformation

to obtain the temperature. Unfortunately, an algebraic transformation relating enthalpy to

temperature is only possible for simple thermophysical descriptions, such as constant specific

heat and complete diffusion in the solid. The assumption of complete diffusion in the solid

12



yields a direct relation between <£ and T that, when combined with the additional assumption

of linear dependence of the phase enthalpies with temperature, yields an algebraic equation

for the temperature as a function of the mixture's enthalpy. This property was exploited by

Bennon and Incropera [3], who used an enthalpy-based energy equation.

In order to retain the temperature formulation, an alternative is followed to solve for

solidification at constant temperature. When a node in the domain reaches the eutectic

temperature, the energy equation, Eq. (4), is used to calculate the volume fraction of liquid

while setting the time derivative of T equal to zero to effect solidification at constant

temperature. Equation (4) becomes

30 = j.
dt L

- u— - w—
Bx2 dz2 dx dz

(23)

Equation (23) is solved only at the points solidifying at constant temperature; the complete

energy equation is solved elsewhere. Physically, the eutectic isotherm advances smoothly

through the domain; that is, a coordinate does not stay at the eutectic temperature for a finite

period of time. The present model, however, treats volume-averaged quantities in a porous

medium, so a volume element or nodal point stays at constant temperature until it is

completely solidified. After that, its temperature is calculated with Eq. (4), which reduces to

the conduction equation in the solid.

D. Time Step and Mesh Size

If thermosolutal effects are important, the relevant length scale to be resolved is D/V,

where Vis a characteristic solidification speed. For the system under consideration, i.e.,

13



slowly solidifying Pb-Sn alloys, this length scale is typically of the order of 300 /zm and

requires a very fine mesh spacing in the vertical direction. In the horizontal direction,

channels in the mushy zone can be narrow, comparable to the order of D/V. Finally, we

work with uniform meshes because the location at which channels form cannot be predicted

a priori; as a result, calculations are limited to the rather small domains.

A second consideration for selecting the spatial resolution is that there be enough nodes

to adequately resolve the distribution of the volume fraction of liquid $ in the mushy zone.

This consideration is discussed later in relation to the mesh spacings used in the calculated

results.

The choice of the time step is more complicated because of the nonlinear nature of the

problem and the need to satisfy several stability constraints in the calculations. So far, the

calculations are performed using a constant time step; hence, the most stringent of the

following stability criteria must be satisfied.

1. The convective terms are treated explicitly in Eqs. (1), (2), and (4), so the

stability condition of the form A^ < ( \ u \ /Ax + | w | /Az)'1 applies

everywhere in the computational mesh.

2. The explicit treatment of the body force terms gives At2 < (RT + Rs/Sc)'1.

3. A third consideration can be added, namely, that it is more efficient to choose

a time step for which no more than three iterations are needed for convergence

within the time step.

The above criteria are not optimal bounds. However, choosing At < min (Atlt

gives a good estimate. An added difficulty is that A^ can vary significantly as the

14



solidification proceeds. Hence careful monitoring of the flow field is required to avoid an

overly conservative time step.

IV. FINITE ELEMENT METHOD

The computational algorithm makes use of a standard penalty function formulation

because the pressure is not needed. The pressure in Eqs. (1) and (2) is eliminated using the

pseudo-constitutive relation .

'-'•-'4£*£]' . <24)

where ps is the hydrostatic pressure and X is a large "penalty" parameter. This method has

been discussed in detail by Marshall et al. [34], Heinrich and Marshall [35], and Heinrich

and Yu [36] in the context of buoyancy-driven flows. Theoretical aspects have been studied

by Oden [37]. Equation (24) is substituted into Eqs. (1) and (2), and the continuity equation,

Eq. (3), is eliminated. As a result, the pressure is not calculated but, if needed, it can be

recovered a posteriori by solving a Poisson equation (see [38, 39]).

The present scheme is based on the bilinear Lagrangain isoparametric element. The

convective terms are dealt with using a Petrov-Galerkin formulation in which the weighting

function is perturbed in the convective term. If we denote the shape function corresponding

to node / by Nt, the perturbed weighting function takes the form

W* = Ni + olKP( K= 1, 2, 3, (25)

where K = 1 corresponds to Eqs. (1) and (2), K = 2 to Eq. (22), and K = 3 to Eq. (5).

15



The parameters aK are given by

where

is the cell Reynolds number,

aK = com
J_
7*

vh
Pr

vh[l - (L/Pr C,)]

2[1 + (L0/Sc C,)]

is the energy cell Peclet number,

Sc vh

(26)

(27)

(28)

(29)

is the solute concentration cell Peclet number, v = \\ ju2 + w2 | is the local fluid speed,

and h is the local element length in the direction of flow. Details on calculating h are given

in Ref. [36].

Denoting the domain by Q and its boundary by F, the weak forms of Eqs. (1) and (2)

are

* .Pr du
dx dx dz dz 'Da

dti

- - J . W1 1 «*i cos « Pr Rr . (

(30)
16



and

dt dx dx dz

dN( d

dx dx dz dz 'Da

dx dz
dtt

(31)

where the left-hand sides are treated implicitly and the right-hand sides are evaluated

explicitly with the latest values of the dependent variables. All variables are interpolated

using the bilinear isoparametric shape functions; i.e., for a generic function/fr, z) we write

, z) = £ Ni(x> $ fi (32)

where / ranges over the number of nodes in the mesh andyj = f(xit z,-) is the value of the

function at note /.

The weak form of the energy equation, Eq. (22), is

I
Ci

3T
dt

^ UN{

Sc C?

r

J o

1 f
L<6 ^^i 3T 5^; dT]_ — +

Sc C; [ dx dx dz dz

AC1 AT AC1 ATdC, dT + <*C, dT [ ^

>\

w2 L
1 Pr

+

c,

f \
J r 1

dx dx dz dz \

1 (dT + wdT] + NL 3/1 r f f i

[ dx dz\ 'Cl dt

-A

^ _ L<p OY j-jp
Sc C, 3n

(33)

17



In Eq. (33), the line integral is taken only over those portions of the boundary where a flux

condition as given by Eq. (13) is prescribed.

The weak form for the solute concentration equation is given by

J oPr Ni dt

= - f wfJo '

Q . f I* *
J o

dC,
u •*•

dx

Sc

dC,
w

dz

1 1 + i I

dx dx

**Jr'

dz

y P r t f
1 Sc

dz

dCt

dn

d$l

DT

(34)

where the line integral is only calculated along the top boundary when the long-container

assumption is made and Eq. (16) is used. In the all-liquid region, C = C/5 and the left-hand

side is treated implicitly. In the mushy zone where 0 < 1, however, we have C ^ Ch and

the second term on the left-hand side is calculated explicitly using the latest values of C/.

After interpolating the functions using Eq. (32), all integrals can be evaluated, and

three sets of linear algebraic equations result:

v + KlV = - , 0, T, C,)

M2(0, K2(<t>, cyr = Q2(v, 0, T,

M3C

(35)

(36)

(37)
:, = - Q3(v, </>, c;)

In the equations above, v = (UiWlu2w2 . . . UNWN)T, where N is the number of nodes and u{

and w,- are the velocity components at the nodes; also, 0 = (</>j</>2 • • • 0#)r, T —

(T{T2 . . . TN)T, C, = (CijC^ . . . Cyr, and C = (QQ . . . Q)7". The mass matrices M

and M2 are lumped diagonal matrices (see Refs. [36, 40, and 41] and are given by

18



'«- J.
KL = 0

Pr Nt dQ i = 2a - 1 i = j

i = lot i = j

i * j

(a = 1, 2, . . . , N)

(38)

Pr- ±£ Nt d£l i = j
(39)

(i = 1, 2, . . . , N)

The mass matrix M3 in the solute 'concentration is treated consistently and is given by

i , j = l , . . . , N (40)

The stiffness matrices Kj are given by

W* = |o '
•dN, dN

Pr

Da

= Jo' dx dz

dx dx dz dz

i = 2a - 1
j = 2/3 - 1

dti i = 2a - 1

dx dz

19



dN, dN,
> ' ^J H. Pr

dz dz dx dx dz dz

Da,
AW i = 2a

7 = 2/3 (41)

(a, |8 = 1, 2, . . . , N)

1 -
Sc C,

dN, dNj dN

dx dx • dz dz

L<f>N{

Sc C,2
dC

dx dx dz dz
(/,; = 1, 2,. . . . , N) (42>

Pr
Sc dx dx dz dz

(43)

= 0

(/, j = 1, 2, . . . , N)

The vectors Q; are obtained by replacing Eq. (32):

dx dz

cos e Pr i = 2a - 1 (44)
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l(v, 0, r, c,)],. =

^ sin 6 Pr
Sc

, - 1) i = 2a

(a = 1, 2, . . . . , N)

W
Pr Cf

- 1 .
'C,

*

1 -
Sc C,

.(i = 1,2,
(45)

r, Pr
~Sc dz dz

dC, dC,

dz

I NPr 4> dC,
~ I — ^ ^TJ r Sc dn

< 1
(46)

- J."? (" * "

(/ = 1, 2, . . . ,
(47)

The time integration of the systems of ordinary differential equations represented by

Eqs. (35)-(37) is performed using a backward implicit scheme. Specifically, discretize the

time derivative of a sealer function/using

A
_ f

21



V. NUMERICAL RESULTS

Calculations were performed for a Pb-10 wt pet Sn alloy under a variety of cooling

and boundary conditions. The computational domain is shown in Fig. 1 and consists of a

rectangular region of width W and height HT, discretized with a uniform mesh of 20 elements

in the x (horizontal) direction and 30 elements in the z (vertical) direction. This mesh was

selected after several preliminary calculations were performed with different resolutions to

assess the sensitivity of the results to the mesh size. The chosen mesh was found to capture

all the dynamic features of the-flow at a reasonable computation cost, whereas coarser

meshes were unable to reveal the formation of the channels. A uniform resolution was used

because the locations of channels and regions of macrosegregation were found to be

unpredictable. .

In all calculations, the channels turned out to be very narrow, comparable to one to

several primary dendrite arm spacings (which is also comparable to the solute distribution

decay scale DIV). The mesh size has to be kept comparable to this scale if proper resolution

of the channels is desired. This requirement imposed a limitation on the size of the domain,

in order not to make a single computation excessively expensive. Fortunately, all the effects

associated with channel creation and growth could be observed in calculations even though

the domains were rather small. Furthermore, when different sizes were used, it was found

that channels developed under the same thermal conditions irrespective of size of domain.

A reference length scale H = 300 pm was chosen for all the calculations. The

following nondimensional parameters were also used:
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RaT = 3.4 x 10'3 Ra, = 1.86 x 104

Pr = 2.3 x 10;2 Sc = 8.23 x 101

LIZGH = 7.5 X 10*

The reference time, T, was 0.65 s, and the reference velocity, U, was 27 mm-s"1. The

reference temperature was taken to be the freezing point of the Pb-10 wt pet Sn alloy

(TQ = 577 K), and the reference concentration was C0 = 10 wt pet Sn.

The first calculation considers a container of width W = 10 mm with a domain height

of HT = 20 mm. Zero tangential stress and zero vertical velocity are imposed on the top '

boundary (z = Hj), and no-slip at the other three boundaries. The alloy is initially all liquid

of concentration C0 = 10 wt pet Sn, and has a linear temperature distribution varying from

r0 (the melting point) at the bottom boundary to T0 + GHT at the top boundary, with G =

1000 K-m"1. The side walls are insulated, and a vertical gradient of BT/dz = G is imposed

at the top boundary. A time dependent boundary condition is prescribed at the bottom of the

form:

,0 = r0 - rt

where r is the cooling rate (0.0783 K s"1). With this value of r, the initial solidification rate

was approximately 0.042 mm s"1. The values of the cooling rate, r, and the thermal

gradient, G, were selected from the thermal history of ingots of Pb-10 Sn alloy that exhibited

channel segregates in the experiments of Sarazin and Hellawell [7]. .

The thermodynamic and transport properties used in the calculations are given in

Table I. The functions used for the anisotropic permeability are given in the Appendix.
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Table I.

Thermodynamic and Transport Properties Used for Calculations
in Pb-10 wt pet Sn. Taken from Ref. [33].

Property

Reference concentration (C0), 10 wt pet Sn
Reference temperature (T^, 577 K
Equilibrium partition ratio (£), 0.31
Melting point of lead (rM), 600 K
Slope of liquidus (ro), -2.33 K (wt pet)'1

Density [p0 = p(C0,T0)], 1.01 X 104 kg-nV3

Thermal expansion coefficient (187-), 1.2 x 10"4 K"1

Solutal expansion coefficient (j3c), 5.15 x 10"3 (wt pet)"1

Kinematic viscosity (v0), 2.47 x 10'7 m2 s'1

Latent heat (L); kJ kg'1:
At (C0,r0), 26
At (Q.Ti), 56
Used in calculation, 37.6

Heat capacity (£); U kg'1 K'1:
Liquid at (C0, r0), 0.161
Solid at (CE,T£, 0.173
Used in calculation, 0.167

Thermal conductivity (/c); kW m"1 K"1:
Liquid at C0,T0), 0.0167
Mixture at (CE,T^), 0.0198
Used in calculation, 0.0182

Thermal diffusivity (a = K/p0t), 1.1 X 10"5 m2 s"1

Solutal diffusivity (D), 3 x 10'9 m2 s'1

Figure 2 shows calculated results after 3 min. The contours of equal fraction liquid

(Fig. 2a) show a very narrow region of high fraction liquid at the center of the casting,

indicating the presence of a freckle or a channel. Note that the mesh size is not sufficiently

small to resolve an all-liquid jet. Nevertheless, it can be seen from the streamlines (Fig. 2b)

that the flow is upward within the channel and extends into the bulk liquid as a column of

rising fluid. Although the streamlines penetrate into the mushy zone, the strength of the
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convection rapidly diminishes within the mushy zone where the permeability is low.

Figure 2c shows that the fluid within the channel is richer in solute than the surrounding

fluid. . '

A more detailed view of a freckle is obtained in the next example (Fig. 3), where a

very small container of dimensions 2.5 mm by 4.5 mm was used, together with a slower

initial.solidification rate of V = 0.0139 mnvs"1. The width of the channel is approximately

equal to the reference length scale (H = 0.3 mm). Note the steep gradient of fraction liquid

on the channel walls, indicating that the channel is surrounded by a region of low volume

fraction liquid. The flow is upward inside the channel, and two cells have developed next to

the mold walls (Fig. 3b), where there is also upward flow and a higher than normal fraction

of liquid.

In the examples of Figs. 2 and 3 the channels in the centers were induced'by

introducing an initial perturbation in the concentration of the melt along the vertical

centerline and letting the system evolve thereafter. The form of the perturbation was

C{ = 1.01 C0 for* = W/2.

In this way, an initial upward flow at the center of the container is established. The situation

is similar to experiments done by Sample and Hellawell [8] in NH4C1-H2O, in which they

created channels in the mushy zone by inducing an upward flow in the liquid just ahead of

the dendritic tips by suction up through a capillary tube.

In the next calculation no perturbation is introduced, and the system is left to evolve

undisturbed. The width of the mold is 5 mm, and the height of the computational domain is

HT = 10 mm. No-stress conditions are imposed on the top boundary, simulating an
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infinitely high column of liquid above the mushy zone. The cooling rate is r = 0.0167 K

s"1, corresponding to an initial solidification rate of V = 0.0139 mm s"1 (50 mm h"1). All

other boundary conditions were the same as in the examples of Figs. 2 and 3. The results of

this calculation are given in Figs. 4 and 5.

After 2 minutes, two channels begin to form (Fig. 4a) at locations corresponding to

zones of upward flow of four convective cells (Fig. 5a). The channels, however, do not

keep growing upward, but they turn toward the sides and continue to grow along the walls of

the mold (Figs. 4b through d), following the path of upward convective flow (Figs. 5b

through d). An additional channel can be seen in Figs. 4c and 5c that appears as a pocket in

the upper part of the mushy zone (indicated by arrows). However, the channel rapidly closes

leaving a pocket of liquid surrounded by a dendritic network with a greater volume fraction

of solid (Fig. 4d). Abrupt transitions in the volume fraction of liquid surrounding the pocket

or the channels are indicated by the dark regions of closely packed contour lines.

A plot of total concentration of the partially solidified casting (Fig. 6) shows that

within the mushy zone there is obvious positive macrosegregation in the channels along the

wall and within the now isolated pocket.

The effect of heat flow between the casting and the furnace is studied in the next

example. The two calculations are shown in Figs. 7a and b for a domain with a width of

5 mm and a no-stress top boundary at 10 mm as in the previous example. The cooling rate,

however, is only 8.33 x 10"3 K s"1. In Fig. 7a heat is also extracted from the casting by

imposing a temperature gradient | dT/dx \ = 0.1 K mm"1 at the side walls. Except for

channels at the walls, the mushy zone adopts a concave shape toward the bulk liquid. Only
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channels at the walls develop and no interior channels or pockets are observed. In Fig. 7b,

heat is added to the casting by imposing | dT/dx \ = 0.3 K mm"1 at the side walls and by

specifying a lower, temperature at the center of the base (increasing linearly toward the

sides). Apart from the channels, the overall shape of the growth front is convex to the

liquid; now channels develop in the interior of the container, although the channels at the

walls still remain.

It is evident from the above example that channels tend to develop in the leading part

of the growth front. This fact has been observed in experiments with NH4C1-H2O mixtures

[5,8]. Copley et al. [5] varied the configuration of their bottom chill so as to make the

growth front either concave or convex to the liquid. When it was concave, channels in the

NH4C1-H2O system tended to form on the outside, and when it was convex the channels were

prevalent in the center. Similar results were obtained by Sample and Hellawell [8], who

tilted the ingots.

Based on the calculations presented, herein, it is also evident that there is a strong

tendency for freckles to form at the walls of the mold. In order to investigate why a wall

might be an attractive place for freckling, a numerical experiment was done using the same

domain with insulated walls and prescribing a zero horizontal velocity along the vertical

center line (i.e., x = W/2). It is observed in Fig. 8a that a freckle forms at the center of the

casting and keeps growing, supported by a column of upward flowing liquid, in a similar

way as the channels along the walls (Fig. 8b). Two additional channels develop at positions

intermediate between the center and the walls, but they do not persist (Fig. 8c) because they

face an unfavorable flow pattern in the liquid zone. It is important to remark that in this
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example the upward flow at the center of the container is not induced by an initial

perturbation, but it arises naturally as a consequence of restricting the horizontal movement

of fluid. A similar result was obtained by prescribing a highly anisotropic perm'eability

(Kx = 10"3 Kz) along the vertical center line in the mushy zone, showing that a restriction to

horizontal convection in the mushy zone can sustain a column of upward flow in the liquid.

VI. DISCUSSION

The results presented herein illustrate some of the most common effects observed in

experiments on freckles. Several remarks can be made that are based upon the results.

1. The convection starts immediately, as soon as the liquid next to the base of the

container begins to solidify. The convection cells nucleate near the advancing

solidification front'(i.e., at the tips of the dendrites). From the calculated

temperatures and concentrations in this region, it is found that the vertical density

gradient is positive there, i.e., it is gravitationally unstable.

2. As the solidification proceeds, the convective cells do not keep organized. The

flow pattern changes continually, driven almost entirely by the solute

concentration field. The isotherms are practically flat because of the low Prandtl

number. The convection in the bulk liquid penetrates deeply into the mushy

zone, although the velocities decrease by 2 or 3 orders of magnitude below the

upper 20 pet of the mushy zone.

3. The first channels begin to form in regions of upward flow, between two

convective cells (e.g., Fig. 2a). Because the solute concentration in the liquid is
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higher at the bottom of the casting, the upward flow transports solute-rich liquid

to the tips of the dendrites, decreasing the freezing point. Therefore, the growth

front advances more slowly in regions where there is upward flow, it distorts,

and a channel begins to develop backward from the tips toward the bottom of the

mushy zone. This process is helped further by remelting of already existing solid

in the mushy zone. The diffusion of solute is too slow to spread away from the

column of rising solute-rich liquid, so remelting occurs in order to decrease the

solute concentration in the liquid back to an equilibrium value that corresponds to

the local temperature. In other words, without remelting a volume of rising

interdendritic liquid is unable to maintain its thermodynamic equilibrium because

heat diffuses much faster than the solute; remelting counteracts this by diluting

the liquid with respect to the solute.

4. The larger concentration of solute in a column of rising liquid tends to keep it

rising because of buoyancy and double diffusion effects (assuming that the solute

is lighter than the solvent, e.g. Sn in Pb-rich alloys). This keeps the channel

growing vertically, until the pattern of convection changes, and the column of

liquid emerging from the channel is disturbed. The flow change is caused by

accumulation of solute in a nearby place, creating a competing channel. The old

channel deviates from its vertical trajectory, induced by the upward flow at the

new position, and eventually merges with the new channel or closes before

reaching it, forming a pocket or streak.
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5. In most of our calculations, we observe a strong accumulation of solute at the

walls of the mold, leading to-long, well defined channels that dominate the flow

and prevent other similar channels from growing in the interior of the casting.

Channels that develop in the interior of the casting, either naturally or induced by

a perturbation, are eventually absorbed by the channels at the walls. This

predominance of freckles at the surface of the mold has been observed in

Ni-based alloys [6]. The solute accumulates next to the walls because of the

limitation of lateral transport; i.e., it is harder to remove solute away from the

wall because the horizontal component of the velocity is small. For high

solidification rates (-4.2 X 10~2 mm s"1) the formation of channels at the walls

can be delayed or prevented, because not enough time is allowed for solute

accumulation. •

6. Long, vertical channels, similar to the ones at the surface of the casting, can be

obtained in the interior if a restriction to lateral convection is introduced (Fig. 8).

The purpose is to provoke an accumulation of solute that can sustain the channel

growth. Such an accumulation could occur in regions of high anisotropy in the

mushy zone (Kx « Kz), as might be the case in grain boundaries, dendrite

misalignments or other defects in the dendritic network of the mushy zone.

Another mechanism that can favor the formation of long interior channels is the

deposit of dendrite debris, produced by remelting or erosion of the dendrite

arms, along the channel sides. This phenomenon has been observed in the

NH4C1-H2O system [5]. The debris grow as small randomly oriented grains that
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entangle with the sides of the channel and reduce the horizontal permeability. In

effect, the solute is confined to the channel. Because this decreases the lateral

feeding of liquid, the channel activity is significant only in the neighborhood of

the dendrite tips, and the liquid in the bottom part of the channel is essentially

stagnant.

VII. CONCLUSIONS

A mathematical model of solidification of dendritic alloys with thermosolutal

convection has been presented. The solidification is initiated from an all-liquid state, and the

dendritic zone is allowed to grow as the volume fraction of liquid in the mushy zone adjusts

according to local thermodynamic equilibrium conditions. Calculations were performed for

the vertical solidification of a Pb-10 wt pet Sn alloy, with the following results:

1. Channels form during the growth of the mushy zone.

2. The shape of the channels vary from small pockets or short streaks of

interdendritic liquid to long vertical penetrations.

3. The formation of a channel occurs near the leading part of the growth front.

4. The liquid within the channels is enriched in solute.

5. The channels form in regions of upward flow. The mushy zone grows around

the columns of rising liquid, forming the channels backward from the tips of the

dendrites toward the bottom of the mushy zone. Remelting also takes place.

6. The convection is driven mainly by the solute field.- Zones of solute

accumulation are potential starters of channels.
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7. Channels can be induced by establishing a column of upward flow in the bulk

liquid, by introducing a restriction to the horizontal convection in the mushy

zone, or by enhancing the vertical convection.

8. There is a strong preference for channels to form at the mold walls.

VIII. OTHER ACCOMPLISHMENTS

The major emphasis in the research program was to model thermosolutal convection

during the dendritic solidification of binary alloys, and the results of this effort are given in

the preceding chapters. In this chapter, we summarize other accomplishments pertaining to

the subject research. Details are not given here, but publications resulting from the work

may be consulted. . .

The two most important publications on the model, itself, are given as References 33

and 46. The former appears in Metallurgical Transactions, which is widely read by the

materials community, and the latter appears in Numerical Heat Transfer, where the

mathematical details pertaining to the finite element algorithms and computational strategy

peculiar to the solidification scenario are given. Our results were also presented at several

conferences, all of which resulted in publications (References 47-50).

In setting up the conservation equations for the mushy zone, we found it necessary to

derive the momentum equation [30] and to numerically test our calculations [31] and contrast

them to results calculated from a form of the momentum equation used by other researchers.

This was necessary because in analyzing dendritic solidification j the mushy zone is modeled

as a porous medium with a spatially varying fraction of liquid, unlike the uniform porosity in
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most porous media. There were also fundamental issues, which had to be addressed, in both

the energy equation and the solute conservation equation, resulting in the publication of

Reference 51.

APPENDIX-

Functions Used for Permeability

We assume directional solidification with dendritic columnar grains. The

permeability is anisotropic with components Kx and Ky for flow perpendicular to the

columnar dendrites and flow parallel to the columnar dendrites, respectively.

In this work thermal conditions, corresponding to ingots studied by Sarazin and

Hellawell [7], were used in the simulations, so we also used their reported primary dendrite

arm spacing of 300 fim. Lacking a value for secondary dendrite arm spacing, Eq. [30] from

Poirier [42] was selected for Kx; it is

Kx = 7.08 X 10-16 d2'08 03-32

with Kx in m2 and d\ in /im.

Equation [Al] is based on a regression analysis of empirical data that cover the scope

0.19 < 4 < 0.66 and 144 < rf, < 420 /xm.

For the regime with <£ > 0.66, we use

[A2]

where OQ = -5.955449 x 10'2 and a\ = 5.652925 x 10
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Equation [A2] and the coefficients were determined by a linear regression of results

given in Tables 1 and 2 of Sangani and Acrivos [43] for 0.6 < <£ < 0.95, and calculated

with their Eqs. (17) and (25) for 0.95 < </> < 0.99. Sangani and Acrivos [43] studied the

slow flow past square arrays and triangular arrays of circular cylinders; Eq. [A2] is a

compromise between the square array and the triangular array.

Flow Parallel to Columnar Dendrites

The empirical data are listed in Reference 42; the scope is 0.17 < 0 < 0.61 and

28 < dj < 420 ^m for which-the following empirical relationship was determined:

_£ = 3.75 X 10'4 02 [A3]

There are no empirical data for <£ > 0.61, so we use the results of Drummond and Tahir

[44] and Ganesan et al. [45].

Drummond and Tahir [44] derived equations for laminar flow parallel to regular

arrays of circular cylinders. Based upon values of drag forces given in their Table 5 and

their equations for small values of (1 - <£), permeabilities were calculated.

Ganesan et al. [45] calculated the permeability for flows parallel to primary dendrites

based upon actual microstructures. Their results agree very well with the results derived

from Drummond and Tahir for gL > 0.55. Therefore, when 0 > 0.61 we use an equation

given by them; it is
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^ = a \ In
d,2 L

(1 - 0)-1 - ft + 2(1 - 0) - ^ " *> [A4]

where a and ft are constants that depend on the array of the cylinders. In this work, we

selected average values for triangular and square arrays: a = 0.07425 ft = 1.487.
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Fig. l~Domain and coordinate system for vertical solidification.
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CONTOUR FROM 6.5 TO 12.5
BY 0.25

Fig. 6~Total concentration (weight percent in solid plus liquid) showing macrosegregation in

channels, corresponding to Figs. 4d and 5d (7 min).
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