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ABSTRACT

We study the long-wave, modulational, stability of steady periodic solutions of the

Kuramoto-Sivashinsky equation. The analysis is fully nonlinear at first, and can in prim

ciple be carried out to all orders in the small parameter, which is the ratio of the spatial

period to a characteristic length of the envelope perturbations. Ill the linearized regime we

recover a high-order version of tile results of Frisch, She and Thual, [1], which shows that

the periodic waves are much more stable than previously expected.

IResearch was supported by the National Aeronautics and Space Administration under NASA Contract
Nos. NAS1-19480 and NASl-18605 while the author was in residence at the Institute for Computer Applica-

tions in Science and Engineering (ICASE), NASA Langley Research (',enter, Hampton, VA 23681. Research
was also supported by the NATO grant CRG. 920097.

-"Research was supported by grants AFOSR F49620-92-J-0023 and NSF-DMS-9003227.
3Research was supported by the NATO grant CRG. 920097.

°°.

III





1 Introduction

The Kuramoto Sivashinsky (KS) equation

ut + uu_ + u._ + vu_.. = O,

(x,t) E R1 x R+, (1.1)

u(x,o)= u0(x),

with v a positive parameter, arises as an amplitude equation in long-wave, weakly nonlinear

stability analysis, in a variety of applications. It arises, for example, in free surface flow of

viscous liquids [2, 3, 4, 5], in concentration waves in chenfically reacting systems [6, 7, 8], in

ion diffusion in plasmas [9], in flame propagation [10, 11] and in the dynamics of interfaces

in two-phase flows [12, 13, 14]. It is the simplest equation with a convective nonlinearity

and a band of unstable linear modes and therefore a good example on which to apply the

general notions of inertial manifold theory. This means that the long time dynamics of KS is

captured wellby a finite dimensional dynamical system whose number of degreesof freedom

is at least as large as the number of linearly unstable modes [15]-[19]. For 27r periodic

solutions the number of linearly unstable modes is of order v -_/2 while the best estimate for

the dimension of the inertial manifold is const, v -21/4°, [16], which is quite good except that

the constant in the estimate is large.

The KS equation has been studied numerically by many authors [20]-[25]. The main

objective of the numerical studies is to observe the appearance of low-dimensional dynanfic

behavior, including complicated time-periodic and chaotic behavior. Feigenbaum, [26, 27],

and others [28, 29], have shown that period doubling and transition to chaos in the iteration

of one dimensional maps have a universal behavior. This universal behavior is expected

also in bifurcation of periodic solutions in low-dimensional dynamical systems, for example

the Lorenz system [30]. Numerical computations [31] have verified this Feigenbaum period

doubling route to chaos for this system. It is reasonable to expect then that partial differential

equations whose large time behavior is captured by finite dimensional dynamical systems

should also exhibit universal period doubling behavior. This was first seen numerically for

the Ginzburg-Landau equation in [32], for thermal convection in [33] and for the KS equation

in [34, 35]. Other aspects of the inertial manifold as its dimension increases are explored

numerically in [36, 37].

When v > 1 there are no nontrivial steady, 2_"periodic solutions of KS. For v just below

one there exist steady periodic solutions [38]. Steady solutions with Dirichlet boundary

conditions and their stability were studied by Novick-Cohen [40]. In this paper we will



analyze the inodulational stability of steady 2_- periodic solutions U(y; u) normalized to

have nlean zero

UUy + Uvv+ ,,Uvyyv= 0, (1.2)

1 fo 2__7= _ U(y)dy=0 , U(y)=U(y+2_).

For any constants p and c the KS equation (1.1) has the two-parameter family of solutions

u(t,x) = pU(p(x -ct);p2u)+ c. (1.;3)

which are due to scale and Gallilean invariance of the KS equation. By modulational stability

we mean the construction and analysis of solutions of KS in all of R near this family, when

p and c are slowly varying with respect to the period of the steady solution (1.2). In [1],

the linear modulational stability of U is analyzed by homogenization methods [41]. If _ is

the ratio of the period 2_r to the (long) scale of spatial modulations we must then study the
behavior of solutions to

ut + lu(X)u='+ u_ + _2uu_ = O (1.4)

as _ tends to zero, which is a homogenization problem. This analysis was carried up to second

order in € in [1]and yields an effective diffusion equation with u dependent diffusion coefficient

which may be positive, corresponding to stable modulations, or negative, corresponding to

unstable modulations. However, the stabilizing term u=_ does not influence the diffusion

coefficient since it comes in at a higher order in the expansion. It is not surprising therefore

that the stable range of u obtained in [1] is very small.

In this paper we analyze the nonlinear modulational stability of U to sufficiently high

order that the stabilizing term tt_ is accounted for fully. We use a method similar to the

one in [42]. In addition to the expansion method, our main result is the determination of a

much larger range of v than that found in [1] for which there is stability.

2 Formulation.

We will construct modulated solutions of KS based on the family of solutions (1.3). Let

ou(t,x)= Pu O;p2u,(l+-+w( ,t,x). (2.1)

where p(t,x), c(t,x), O=(t,x) = p(t,x) and w(y,x,t), which is periodic in the y variable and

has mean zero, are to be such that for € sufficiently small u solves the suitably scaled KS

equation
1
-ut + uu= + u=_.+ _2uu_:_=== 0, (2.2)
€

2



Ill (2.1), € is the ratio of the period 27rto a characteristic scale of the modulations. We will

consider (2.1) at first as a change of variables from u to the triple p, c, w (with 0_ = p and

the average of w over y, _ = 0) and find the exact equations that p, c and w must satisfy
so that u is a solution of KS. Then we solve the equations for p, c and w approximately for

small _. The transformed KS equation (2.1) has the form

p2L(w) + F(_)(c,p,w) = 0 (2.3)

where F (_)is a function that depends o11p, c and w and their derivatives (it is given in

Appendix A) and L is the linearized operator for (1.2) with u replaced by p2_,

L(¢) = (U¢)y + Cyy+ p2uCyyyy (2.4)

governing the stability of the cellular solutions U = U(y, p2u). As explained further in

Appendices A and B, in order to be able to solve (2.3) and have a solution w that averages

to zero in the y variable it is necessary that F (_)have mean zero and that the coefficient of

Uyin F (_)be zero. This leads to two equations for p and c which are

p, + (cp)_ + 3_p_ + _3u[ (a(_)_ + _)_ + _=]p ._ =0, (_..5)

and

ct + cc:_+ U2---pp_:+ 2uUU,,p3p_+ cU(pw)_,+ 2_uU_,wp2p::

+_c_::+ _2_-_-+ _3uc:_:_:= O, (2.6)

where the overbar stands for average over the y variable. When these equations are satisfied

then (2.3) takes the form

p2L(w) + Fo(c,p;,,') + _Fl(C,p,w;,,') + _2F2(c,p,w;u)

+caFa(c,p,w;u) + c4uw_:: = O. (2.7)

where Fo, F1 and Fa are given in Appendix A.

We will also use below the linearized operator L when p = 1 and we will then denote it

by

L(¢)= + + (2.8)

Some properties of the linearized operator £ (or L) are discussed in Appendix B.
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3 Nonlinear modulation theory.

The equations (2.5)-(2.7) are a coupled nonlinear system equivalent to the KS equation. The

two modulation equations for p and c are, of course, not closed since they depend on the

fluctuation term w which in turn depends on p and c. To get a modulation theory we must

close the p and c equations. We do this by expanding the fluctuation w in a power series in
with € _ 0

w = w0 . eWl + €2w2+ .... (3.1)

The main point of our modulation analysis is that the modulation equations (2.5) and (2.6)

are exact to all orders in _ and we can make the error be formally smaller than the terms

kept if we retain only the three leading order terms in the expansion of w shown above.

Substituting (3.1) into (2.5)-(2.7) yields the following equations for the first three terms in

the expansion of w:

p2L(wo) + Fo(c,p;_,) = 0 (3.2a)

p2L(w,) + F,(c,p, wo;,,) = 0, (3.2b)

+2,,p_p=(_UÈ- _u=)+_,, + (_,=)=+p(_0w,_+ _,_0_)- 2p_,_

+2pw,_y + 61/p'2p_wlyyy + 41/p3wlxyyy = O. (3.2c)

The functions Fo, F,, F.z are given h_ Appendix A. Equations (3.2_-c) appear to be linear but

they are in fact nonlinear because they are coupled to the modulation equations (2.5) and

(2.6). Very little can be said about them at this stage. They must be simplified further.

In the next two sections we will study the linearized modulation equations and then their

weakly nonlinear form.

4 Linear stability theory.

We now linearize equations (2.5), (2.6) and (3.2a-c) about the exact solution

p(t,x)----1 , c(t,x)---0 , w--0

while regarding _ as a fixed parameter. We obtain the following linear equations for the

small perturbations to p, c and w

Pt + c_ + 3_p_ + 5c31zp_,: = 0, (4.1)
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ct + (-U-_- 2vUU-_)p_ + _w::U -t-cc_ + c3uc_:: -- O, (4.2)

£(Wo) - 2vU_,c:_+ p_:(U2 - (7_ + 2v(UU_,- UU,)

+4uU_,y+ 8u2U_,yyy+ lOuUyyy)= O, (4.3a)

,_(Wl) _-p_(-2U - 4uU_+ lOuUuy+ 12u=U_yy)

+Wo_. (wo=U - wo_U) + 2Wo_y+ 4uw0_yyu= O, (4.35)

_(W2) "J- Wit-_- Wox x -_- (wlxU - WlxU ) -_- 2Wlxy

+4uwl_yyy + 6UWo_,:yy+ 8u: p_,:_:U_y= 0. (4.3c)

The solutions of (4.3a-c) can be written in the form

Wo = p_xl(y) + c_x2(y), , (4.4)

Wl -- PxxX_l)(y) -_- cxxx_l)(y), (4.5)

w2 = p_X_2)(y) + c_X_2)(y) , (4.6)

where the functions X1 etc. are functions of y alone and are obtained from

£(X1) + Us - e 2 + 2u(UU. - e_) + 4uU_,y+ 8u2Uvyyy+ lOuUyyy = O, (4.7a)

£(X2) - 2uU. = O, (4.7b)

_(X_ 1)) -_- (x1U xIU)- (U 2 -Jv 21]ueu)x2 -_- 2Xly

_-4lJXlyyy -- 2U - 4uU_ + lOuUyy + 12u:U_y = O, (4.7c)

£(X_ 2)) + (x2U - x2U) - X1 + 2X2y + 4uX2yyy = O, (4.7d)

- 2- (1) ._ 9:1 Xlyyy_(X_ 1)) -_- (X_I)u- X_ 1)) (-U -_ -_- 212UUu)x_ 1) _- A,y



6uXlyy - 2X, - (l.:Xl)X2 + 8u2U,,y = 0, (4.7e)

, : (1)4, X2yyy+ 6,:X2yy- (Ux2)x2 = O. (4.7f)

It is convenientto define tile weightedaveragesof tile X'S with weight the cellular solution
U(y). We let

Ogl _-- {IX1 , 0_2 _- U-X2 , 0_3 : {IX{ l) ,

0_4 : UX_1) , a5 = UX{'2), a6 = UX_2). (4.8)

Using (4.4)-(4.6) and tile definitions (4.8) in tile linearized modulation equations (4.1) and

(4.2) gives

Pt + c_+ 3_p_x+ 5_aup_ = O, (4.9)

ct q- (U '2+ 2,UU,)p_: + _o_,p_xq- _(1 + c_2)cx_

-kc2(_ap_ + _4c_) + c3(_sp_x=-+ €3(_6 + u)c_ = 0. (4.10)

Equations (4.9) and (4.10) contain the linear modulational or long-wave stability characteris-

tics of the cellular steady states U of the Kuramoto-Sivashinsky equation up to order _a. The

parameters of the problem are the coefficients o_1,..., c_6which are determined numerically
as described in Section 6.

To analyze the stability of U it is sufficient to look for plane-wave solutions of the form

(p(t,x),c(t,x)) = (_,U)eik_+'t , (4.11)

where p,c are constants, /c is the wavenumber of a particular disturbance and co is the

corresponding growth rate. Substituting (4.11) into (4.9) and (4.10) gives the dispersion
relation that determines co as a function of k

5O2 +co +.:)k:+ +k2A2

+_k_(a+a_2-_)-::(8,+a_+_,)+_::,(,+_) = o. (4.17.)
Here

A2= _ + 2uUU.

and in deriving this relation we have anticipated (6.6). We note here that A2 can be either

positive or negative, a fact that is central to the modulational stability of the cellular solution.

It is easy to get the exact solution of the quadratic equation for co. Tile main feature of our
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analysis here is the inclusion of higher order terms in e. We will focus o11tile (linearized)

structural stability of the celular solution of KS. For k large we have

w = :l:ikA + _wlk'2+... ,

where

w, = 2(4 + a2) (4.13)

-I

The parameter wl plays the role of a diffusion coefficient. Clearly the system is stable if both

)_2> 0 and wl < 0. Such a two-tern1 result obtained in [1]in their related study. Based on

the two-term result, they determined a range of values of u for which the cellular solutions

are linearly stable. It turns out, however, that the extent of this region is very small and

consequently of limited significance (see [1]and our Section 7). Tim two-term analysis gives

an incomplete answer to the linear and weakly nonlinear stability of the system because it

does not account for the effects of the stabilizing fourth derivative terms in the modulation

equations. ]}hese contributions are easily computed here. We find that there is a correction

term of O(ic2ka) to w which is dispersive and does not contribute to growth or decay. The

physically significant for stability correction is obtainable from a large k analysis of the

dispersion relation (4.13), and is given by

w=_ak4wa , Wa=-u-a6 or -5u (4.14)

The results (4.13), (4.14) can be used to determine the structural stability of the cellular

solutions. First, a range of u must be found which satisfies A'2> 0 so that stable solutions are

obtained to leading order. The next correction to the real part of w is ck2wl. For stability

this term must be negative, and so the range of u for which A2 > 0 and -wl > 0 is a

linear stability region. As mentioned earlier, this range of u is very small because the next

correction to the real part of w given by (4.14) is neglected. We have structural stability

when u is such that -wa = u + a6 > 0. Wtien wl is positive but wa is negative then we have

structural stability and a finite band of linearly unstable wave numbers. This is a regime of

u values for which the weakly nonlinear modulation theory of the next section is applicable,

and it is much larger than the one for which o.,1is negative [1]. The computations leading to
these conclusions are described in Section 7.

5 Weakly nonlinear theory.

To get a suitable weakly nonlinear modulation theory we must return to (2.5), (2.6) and

(3.2a-c) and simplify them in a way consistent with the expansion (3.1) without, however,

altering the construction of the X functions of the linearized theory. This can be achieved by
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making the size of the perturbations in p, c and w about 1, 0 and O, respectively, of order

ea in which case nonlinear terms enter into the modulation equations for c and p and are

comparable with the stabilizing fourth derivative terms. We therefore let

p(t,x) = 1 + _3_(t,x) , c(t,x) = _afi(t,x) , w(t,x) = e3tS(t,x) (5.1)

and substitute this into (2.4)-(2.6) to get the following equations for p and c (with the tildes

omitted)
;, +_ + 3_p_+ _(_p)_+ 5_p== = 0 , (5.2)

+_3(ccx+;ppx)+_3(_+,,)c===0 (5.3)
These are the weakly nonlinear modulation equations. The difference between the system

(5.2) and (5.3) and the linear system (4.10) and (4.11) is the appearance of the nonlinear

terms of O(€3) in the former. The constants A2, as, aa, 36 for (5.2) and (5.3) are identical

to the constants of the linear theory in Section 4.

6 Computation of stability parameters.

We must solve problems of the form

£(x)=f(Y) , X(Y+2_')=X(Y) , x=O , (6.1)

with f(y) a known 2_-periodic function of mean zero and the operator £ defined by (2.8).

Since X(Y) and f(y) are periodic in y and have mean zero, we can find periodic functions

¢(y) and F(y) such that
X=Oy , f=Fy (6.2)

Substituting into (6.1) and integrating with respect to y gives

UOy - goy + ¢yy + uOyyyy= F, T = 0, (6.3)

with ¢ determined only up to a constant which we take to be zero. It is convenient to

introduce the operator .Ad defined by

Integrating each of the equations (4.73-f) gives the following sequence of problems

z4(_,)+f_(u_- _)_y+'2,,f_(uu_ UU_,)dy

8



+10uUyv + 8u2U_yv + 4uU, = 0, (6.3a)

Y
AJ(¢2) - 2u U, dy = O, (6.3b)

Y
.A4(¢}')) + (¢,yU - ¢,vU)dy - (_7:i + 2uUU,)¢2 + 2¢,v + 4u¢,vvv

-2 f v 4u fVU,,d, + + =0,Udy - lOuUv 12u2U,_v (6.3c)

YM(¢_ 1)) + (¢2vU - ¢2vi-)')dy - ¢1 + 2¢2v + 4u¢2vvv = 0, (6.3d)

fY{,,/,(1). __ 2vueu)¢_l) 2¢_1y)M(¢_ 2)) + j _u ,_ - g,_)U)dy (_-_ + +

- ,,-0)_1Wlvvv+ 6uT/_lyv+ 8u2Uv - 2¢1 - O, (6.3e)

+ - +
(1)

+4u¢:yy v + 6u¢2yu - (e¢2y)¢2 = 0. (6.3f)

The function U_ is needed in the calculations and is computed by solving

.A4(V) =-Uyyvv , V_ = Vy (6.3g)

We now solve numerically the integrated equations (6.3a-f). We have also solved (5.7a-f)

by a similar method and with ahnost identical results but (6.3a-f) is more convenient. The

central element in the construction of numerical solutions of (6.3a-f) (or (6.1)) is the steady

state, periodic solutions U of the Kuramoto-Sivashinsky equation, which can be described

by a very small number of Fourier modes. Since we are interested in a range of values of u

(approximately 0.3 < u < 1.0) which is above any bifurcations, we know that steady states

are unique global attractors. The numerical calculations of [34, 35] show that a practical

estimate of the number of modes required is a few more than u -_/2, the number of linearly
unstable ones. We therefore write

N

v(y;,4= _ v,_sin(ny),
n=l

9



where N and Un depend on u and are found numerically. With this approximate solution,

the linear operator (6.3) becomes a matrix equation for the constants a,_, b,_where
N

¢(y)-- E(a,, sin(ny)+ b,, cos(ny)). (6.4)

Expanding also the forcing F(y)
N

F(y) = _(f,, sin(ny) + g,, cos(ny)),

the system of linear equations to be solved is

-_3ajUm-j + E 2(Jai{½+'" - (j + m)aj+mgj)
j----1 j=l

+m2(um 2- 1)a,,, = f,,, , (6.5a)

m-1 1 b N-m I
ju,,,_j- 2(JbJUJ+'"+(j+m)bj+,,uj)

j=l j=l

- a)b,,,=j,,, , (6.5b)
for 1 _<m _<N wherethe first or secondsums are omitted when m = 1or N respectively. We

see from (6.5a,b) that the equations for the sine and cosine coefficients of _bare decoupled. In

particular if f,,, = 0 (g,,, = 0), for m = 1, N then a,,, = 0 (b,,, = 0), m = 1, N also. This holds

as long as the determinant of the n × n matrix defined by (6.5a) or (6.5b) respectively, is

non-vanishing. This condition is monitored throughout the computation and is also checked

analytically near the bifurcation point u = 1 (see Appendix C). The symmetry is due to the

odd parity of the steady state U(y; u). We expect, therefore, that

O_1 = 0 , O_4 = 0 , as = 0 (6.6)

For a given value of u the coefficients U,_were obtained numerically by solving the unsteady

KS equation until a steady state is reached (see [35] for a description of the numerical

scheme). For values of u near 1, the integration requires longer times to reach a steady state.

The results reported here have the same accuracy for all values of u.

With the Fourier coefficients of U(y; u) known, the solution vector (a_, as, ..., aN, bl , ..., bN)t

is found by a single matrix inversion for each value of u. The stability constants ai, i = 1, ..., 6

are determined easily from their definitions (5.8). The symmetry result (6.6) is confirmed

by our computations which do not explicitly assume the odd-parity property of U(y) and

can therefore be extended to general steady states. We note, however, that for the range of

u studied here, any steady state can be described by the odd-parity solutions by means of a

suitable translation or Galilean transformation, if necessary.

10



7 Numerical results for linear stability.

We now present the results of our computations of the stability constants al,..., a6. First

we consider the behavior of the solutions near the bifurcation point v = 1. This analysis is
given in Appendix C and the main results are that

12

A2=-24+O(_) , a2 _ +28-16_ (7.1)

where _ = 1 - v. Analogous results for the asymptotic form of ¢2 are given ill Appendix

C. Table 1 below compares the asymptotic results for a2 with direct computations when
N= 10.

'v-l-_) Exact(N=10) Asymptotic
0.11 -84.61 -82.85

"0.12 -72.62 -7:3.92
0.13 -62.84 -66.39

0.14 -54.73 -59.95
0.15 -47.90 -54.40

The asymptotic results show that for small _ tile solutions are unstable to leading order.

The next order correction, however, is stable since wl < 0 for small _. For general values of

v the coefficients are computed numerically as explained in Section 6. In Table 2 below we

present tile results for the parameters X2 and Wl for a range of values of v. The table also

gives tile values of _. These results were produced with N = 6 or 10 and no change in the
accuracy was observed.

/2 ,_2 __031

0.89 -14.59 40.30 2.11
0.85 -10.88 21.95 2.79

0.80 -6.84 10.77 3.51
0.75 -3.33 4.73 4.09
0.70 -0.287 1.07 4.51

0.65 2.30 -1.29 4.79
0.60 4.4;3 -2.86 4.93
0.55 6.14 -3.94 4.92
0.50 7.41 -4.69 4.74
0.45 8.23 -5.22 4.41
0.40 8.70 -5.64 3.92
0.35 8.77 -6.09 3.25
0.30 8.57 -6.97 2.37

11



From Table 2 we see that there is a small region, approximately 0.65 < v < 0.7, where

both _2 and -wl are positive and so the solutions are stable. The results of Table 2 are

shown in Figure 1. The stability window (the same as in [1]) is present but is very small.

When Wa < 0 then there is a stabilization by the fourth derivative and the structural

stability window is enlarged to 0.36 < u < 0.7, approximately. Note that -w3 becomes

negative somewhere in 0.36 < u < 0.365 and in 0.695 < u < 0.7, respectively.

8 Numerical solution of the weakly nonlinear modu-

lation equations

We will solve numerically equations (5.2) and (5.3). We consider the following initial value

problem

pt + c,:+ 3_p_,:+ _3(pc)x+ 5eaupx_ -- 0 , (8.1)

ct + A2px+ €(1 + a2)cxx + _2a3pxxx

+ 3(cc+ 2pp )+ + = o, (8.2)

p(x,O) = po(x) , c(x,O)=c0(x), (IC)

where the initial conditions satisfy

p--+ l , c--+ O as Ix1_o0. (Be)

We want to see how a localized perturbation in p and c will evolve, when u and _ take
different values.

For the numerical work it is convenient to transform to new variables p _ 1 + Ap and

c _ Ac which makes the boundary conditions homogeneous, so that (8.1) and (8.2) become

Pt -4- (1 -4- c3)cx nt- 3cpxx -'}-_3A(pc)x -4-5_3upxzzz = 0 , (8.3)

+c3a(cc_ + .X2pp_:)+ ca(a6 + u)c_x_x= 0 (8.4)

The constant A is a measure of the nonlinearity and in the numerical experiments it is such

that caA = 0.1 or 0.5.

We will use a spectral method to represent spatial derivatives and a time splitting scheme.

We will therefore be solving (8.3) and (8.4) on a large (compared to the support of the initial

data) but finite spatial region, with periodic boundary conditions. We will integrate the

equations up to the time that p and c disturbances reach the ends of the spatial region, since

unphysical effects due to the boundary conditions will then be felt which are inconsistent

12



with the modulation theory. For tile tilne splitting scheme, wtlich is second order accurate,

tile nonlinear and linear terms are treated separately. The split equations are

p,+  3A(pc)= 0, (8.5)
1 3 2

ct + _ A(c" + A"2p'2)_:= O, (8.6)

all d

pt+(l+c3)cx+3_pxx+5_3,,p_=O , (8.7)

ct + A2(1 + c3)p_ + _(1 + a2)c_ + _2c_3px_x+ e3(c_6+ v)c_ = 0 (8.8)

The nonlinear equations (8.5) and (8.6) are a pair of conservation laws. It is easy to see that

tile system is strictly hyperbolic with eigenvalues

1_= c3A(c -4-Ap) ,

the strict hyperbolicity being a consequence of A2 > 0 for all v of interest. The time integra-

tion is done by a second order accurate Lax-Wendroff scheme with no artificial viscosity. Tile

linear part of the equations is solved exactly in Fourier space. Denoting Fourier transforms

by a caret, the solutions of (8.7), (8.8) subject to initial conditions (IC) are given by

_(k,t) = Alc_'(k)t+ A2c _:(k)t , (8.9)

_(]c,t) = Bie_'(k)t. B2e _2(k)t , (8.10)

where A1, A:, B1, B2 are constants determined from the initial conditions

_(k,O) = _o(k) , &(k,O) = &o(k) , (8.11)

_t(k,O) = (3ok 2- 5E3uk4)_o(k)- ik(l+ c3)_0(k) , (8.12)

_t(lc, O)=(ic2k3aa-ikA'z(1 +ca))_0(k)+(_k2(1 +a.2)-0k4(u+a6))_o(k) , (8.13)

and given by

501 _ 032 032 -- 501

B1 - N - w2_o B2 6 - wl _o
501 -- 502 0")2 -- 0")1

The eigenvalues wl, w2 are the two roots of the dispersion relation

w: + 50 [-_(4 + a:)k: + _3/_4(6v + a6)] + (1 + _3)ukuAu

.€2_4(3 . 30_ 2 -- (1 + _3)a3) - _4k6(8v + 3aa + 5va_) + 5_6/csv(v + aa) -- 0 (8.14)

13



Tlle solution of the linear part of the problem can then be advanced to the level t+At once

the spectrum of p and c are known at level t. A further accuracy requirement, particularly

in the case of imaginary values of wl and w2, is that the exponents wlAt and w2At must

be smaller in absolute value than a certain tolerance, typically no larger than 0.1 in our

computations.

Representative computations are given for the values u = 0.69 and u = 0.55. The

corresponding values of e used are 0.008 and 0.01 respectively. The linear spectra for these

parameters computed from the dispersion relation (8.14) are given in Figures 2, :3and 4 and

the nonlinear evolutions in Figures 5, 6a-b and 7a-b.

9 Conclusions

We have considered the modulational stability of a class of steady spatially periodic solu-

tions of the Kuramoto-Sivashinsky equation. The theory is initially developed in a fully

nonlinear framework and analytical and computational results are presented for linear and

weakly nonlinear regimes. We find that the periodic waves are much more stable than

previously thought due to a high-order stabilizing correction which follows easily from our

theory. Nonlinear evolution solutions are also presented and indicate spatial spreading of
the disturbances.

Appendices

A Derivation of the exact nonlinear stability equa-
tions

In this Appendix we derive equations (2.5), (2.6) and (3.2a-c). Substituting the exact trans-

formation (2.1) into the KS equation (2.2) and noting that

0 0 1 0 0

-_ --+--_+ -_01-_9+ 2vppt-_u,

0 0 1 0 0

o-7-_gi+;PN+2,,pp--x O12_

with the o derivative acting only on U, yields the transformed KS equation in which € is

an order parameter.

1
[(p0,+p2c+3.px+ +€-'_

14



+p3(UUy + Uyy + lVUyyyy )] + ~ [p2((UW)y + Wyy + p21lWyyyy)
E

+(Pt + (Cp)x)U + (Ot + Cp)Wy + 2Vp2(pt + Cpx)Uv + 4vlPxUVY + 8112p5 PxUvyyy

+PPxU2 + 211l PxUUv + 10vlPxUyyy + Ct + CCx + f(pW)x lJ

+2f11p 2PxUvW + ECxx + f2 WWx + f31lCxxxx]

1[ 2) 2 232+~ Wt + (CW)x + PWWy + PxxU + 211((p px X+ PPx)Uv + 411 p' PxUvv

+PxWy + 2pwxy + v(pF + 6(p2 px )x)Uyy + 2v2(pFVY+ 3(p4 px )x + 6lp;)UVYy
352 2 3]+2411 P PxUVVYy +611p PxWyyy +411p Wxyyy

[Wxx + 2v2(pFV+ F;y + PPxF)Uvy + 4113(pFVV + 3(p4 p;)x + PPxFVY)lJvvy

+:32114p5p;UVVVY + 12VppxWxyy + 611p2WXXYy + 11 FWyy ]

+w [PxxxxU + 2v(F; + PPxPxxx)Uv + 4112(F;V + PPxFV)Uvv

-t-SV3((p4 p;)x + PPxFVV)Uvvv + 16v4p5p~Uvvvv + 4pwxxxy

]
2+4pxxWxy + 6pxWxxy + pxxxWy + f llWxxxx = O.

(AI)

Here

F = 3(ppx)x + ppxx ,

FV= (p2 px )xx + (pp;)x + ppxpxx,

F vy • (3) 2 2 (2)= 2 P px x + 4p Px + P P px x ,

F VV (3 2) (2) + 2 3= P Px x + ppx p px x p Px'

Equation (AI) above has been rearranged in ascending powers of f and certain terms

have been grouped together as we explain next. The objective is to derive exact nonlinear

modulational equations which hold in the asymptotic regime f ~ 1 without the need of

cumbersome solvability conditions at each order of the expansion, The modulation equations

act as all order solvability conditions. This is achieved by making the fluctuation w f have

zero mean. Since the determination of w f depends on solutions of an equation of the form

L(w f
) = f(y) where f(y) is a known forcing function, it is necessary that f have mean zero

and that w f has zero mean if f(y) does not contain terms proportional to Uy • All terms

proportional to Uy , therefore, are grouped together, as shown in (A 1) above, and c, pare

chosen so that the mean of f and the coefficient of Uy vanishes for all x and t. The equations

are

+( ') +'} + 3 [(:3(PPx)x+PPxx)x+PPxxx] -0Pt cp x .Jfpxx f 11 - ,
P x

15
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Ct + CCx + U2 ppx + 211UUvlpx + EU(pW)X +2WUvWp2px

+ECxx + E2WWX+ E3VCXXXX = O. (Aa)

Note that (2.:3a) is obtained by dividing (A2) by p and differenting with respect to x. With

the above choice of modulation functions, the equation that governs the fluctuation W be-

comes
223 4P L(w)+Fo+EFI+E F2+E vF3 +E VWxxxx=O.

where the functions Fo, F I , F2 , F.'3 are

Fo = -21llcxUv + lOlll PxUyyy +8112p5PxUVYyy

+411p3PxUvy +PPx(U2 - U2) +2Vp3Px(UUv - UUV) ,

FI = (pw)xU - (pw)xU +2Vp2px(WUv - wUv) +Wt + (CW)x

,2 ( 2 (2 ))+PWWy - 2pxwy - 6vp PxxUv - 3pxx +PxxU + 2v PPx + P px X Uv

+4V2p3p;Uvv + v(pF +6(p2 px )x)Uyy +2v2(pFVY+ 3(p4 px )x +6p3p;)UVYy

24 3 5 3 U 2 6 2 4 3+ 11 P Px vvyy + pWxy + IIp pxWyyy + vp Wxyyy ,

F2 = 2112(pFV+ F;y + PPxF)Uvy + 4113(pFVV +3(p4 p;)x + PPxFVY)Uvvy

+:32v4p5p;Uvvvy + wxx + wWx - wWx + 121/PPxWxyy + 6Vp2Wxxyy + v(pPxx + 3(PPx)x)wyy ,

[ (
pPxxx + Fx) ] U ' [v 2 (pPxxx + Fx) ] UF.'3 = pxxxx - p x + 211 Fx + ppxpxxx - p p X V

+4v2 (F;V +PPxFV)Uvv +8113((p4p;)x +PPxFVV)Uvvv + 16v4p5p;Uvvvv

[
ppxxx + Fx] 4 4 6+ pxxx - p wy + pWxxxy + pxxwxy + pxwxxy ,

B Properties of the linear operator 'c.

At several points in the analysis we have to solve

£(W) = h,

16
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where, omitting x and t dependence , h = h(y) is a given forcing function with mean zero

and w ='w(y) is also a periodic function with mean zero. The operator £ is defined by (2.8).
It is clear that

£(1)= Uy

and so to make the solution of (B1) have mean zero we must set to zero the coefficient of Uv

in h. Thus, the solvability condition for (B1) is

* h = 0, and

• The coefficient of Uv in h (if any) is zero.

C Stability analysis near v = 1.

We are interested in the modulational stability of the cellular solution U for values of v just

below 1. Let v = 1 - _ where _ << 1. A two-term Fourier expansion is sufficient to describe

the steady state U(y) :

U(y;_) : e I sin(y) + U2 sin(2y) + ... ,

Ua =-2 12'/2_ _/2 , U2 =-2( ((71)

We also need U, which from (C1) is

V,(y; _) = 12112_-'12 sin(y) + 2 sin(2y) + .... (C2)

To fix matters, consider the asymptotic solutions for ¢2 from equation (6.3b). This solution

leads directly to the value of a2 which is one of the important stability parameters. The

solution ¢2 is

¢2(Y) = a, sin(y) + a2 sin(2y) + bl cos(y) + b2cos(2y) + .... (C3)

Since the forcing terms of (6.3b) can be expanded in a series of cosines, we expect al = a2 = 0.

This holds for general values of u (verified numerically), and it is shown here that the result

also holds near u = 1. Substituting (C3) into (6.5a) and (6.5b) with N = 2 and m = 1,2

yields the decoupled linear equations

1U
(-_ 2+(v-- 1))al-U, a2--0 (C4.1)

1

-_elal. + 4(4v - 1)a2 = 0 , (C4.2)

17



(- U2 + (v- 1))bl -U_b2 - -2(1 - _)12:/2_ -_/2 , (6,).1)
z

(flbl "_-4(4V -- 1)b2 = -2(1 - _) ((,o.2)

The determinant of the coefficient matrix of the first system is D = 32_2, and so the trivial

solutions al = a2 = 0 follow as expected. The second system gives

1 12 30 1

bl =-121/2((3/2 _1/2 + 18_:/2) , b2 =-_ + 1 (C6)

These expressions are exact in (. From the definition (4.9) of c_2and using X2 = _b2ywe find

1 12

_ = -_u_, - u_ = -T + 28- 16_ (c7)

We note that this result can also be obtained from an asymptotic analysis of the differenti-

ated equation (5.7b) for X:. Comparison of the asymptotic expression (C6) with the direct

simulations shows that they are in excellent agreement (see Section 7).
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Stability results
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• Figure 1 Linear stability characteristics, f = 0.025. Structural stability is achieved

when ,\2 and -W:3 (from the fourth derivative terms) are positive. If we stop at O(k2 ),

a small structural stability window is obtained when ,\2 and -WI are positive, as seen

in the figure. Inclusion of higher order terms extends the structural stability window

significantly.
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Spectrumof mostunstablemode
v-=0.69_0.95

0.0 , _, ,
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k

• Figure 2 The most unstable eigenvalue computed from the exact dispersion relation

(8.14) or equivalently (4..12) (the difference is a scaling factor due to a change of

variables). The parameters are z/= 0.69, _ = 0.95 corresponding to a stability window

where both the O(k 2) and O(k 4) terms are dissipative.

Spectrumof mostunstablemode
v_,0.691_=,0.008
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• Figure 3 As ill Figure 2, but _ = 0.008. For this _ a large but finite band of unstable
modes is obtained.
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Spectrumof mostunstablemode
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• Figure 4 As in Figure 2, but u = 0.55, _ = 0.01. For this v the O(k 2) term is unstable

and the O(k 4) term is dissipative. There is a small band of stable modes near k = 0

and a large band of unstable modes.

Weaklynonlinearevolution
v_.69 m._.95
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• Figure 5 Solution of the nonlinear system (8.3), (8.4). The initial condition for p

and c is a Gaussian of amplitude 0.25 centered at the midpoint of the domain. The

evolution of p is shown for u = 0.69, e = 0.95. The corresponding c decays fast to a

steady state (equal to the mean of the initial condition) by the end of the computation.

The spectrum corresponding to this run is shown in Figure 2.
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Weakly nonlinear evolution
v--0.69_'=0.008
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• Figure 6a As ill Figure 5, the evolution of p for _ = 0.008. The spectrum is shown in

Figure 3.

•Weakly nonlinear evolution
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• Figure 6b As in Figure 6a but evolution of c.
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Weaklynonlinearevolution
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• Figure 7a As in Figure 5, evolution of p for v = 0.55, _ = 0.01. The spectrum is

shown in Figure 4.

Weaklynonlinearevolution
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• Figure 7b As in Figure 7a but evolution of c.
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