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Abstract

Filter banks and wavelet decompositions that employ recursive filters have been considered

previously and are recognized for their efficiency in partitioning the frequency spectrum. This

paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these

computationally efficient filters may be changed adaptively in response to the input. The fil-

ter bank is presented and discussed in the context of finite-support signals with the intended

application in subband image coding.

In the absence of quantization errors, exact reconstruction can be achieved and by the

proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield

improvement over conventional ones.

1 Introduction

Subband image coding is a well-known technique in which an input is split into a small number of

subband images, each of which is associated with a different region in the spatial frequency plane.

The subband images are decimated to their Nyquist rates prior to being quantized and coded.

In reconstruction the images are decoded, upsampled, and then merged together. The process

in which the input is split and merged is called analysis/synthesis. There are many performance

and systems related design issues associated with analysis/synthesis as discussed in [2], [4], [7]

and elsewhere. Recursive analysis and synthesis filter banks have been shown, to be particularly

attractive because they can be designed to reconstruct the input exactly in the absence of coding

and can achieve tremendous computational efficiency relative to comparable FIR systems [4],

[5]. These filter banks are typically two-band systems that serve as building blocks for uniform

and non-uniform band tree structured systems. However, parallel form recursive filter banks

have also been shown to work well [11]. In such a case, the subband images are complex valued.
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Thus to avoid increasing the data rate, Hermitian symmetry is exploited to counter the sample

increase due to the presence of complex numbers in the subband images.

When subbands are quantized, distortion results and the degree of the distortion is inversely

proportional to the bit rate. The quantization noise generates three types of interrelated dis-

tortions:

1. Aliasing. This is due to the partial loss of aliasing cancellation in the synthesis section that

arises from quantization. It appears subjectively as blurring in the reconstructed images.

2. Ringing distortion. This appears as amplitude oscillations (or ringing) in the vicinity of

edges in the image. As discussed in [4], its cause may be directly related to the ripples in

the step response characteristics of the analysis/synthesis filters.

3. In-band spectral distortion. This distortion is attributed to the deviation in the spectral

magnitude and phase of subband images excluding the inter-band effects of aliasing and

ringing. In essence, this form of distortion accounts for all remaining deviations when

aliasing and ringing effects are removed.

Much attention has been given to minimizing the perceptually important coding distortions

in image coding systems. For low bit rate subband image coding systems, aliasing and ringing

distortions are often cited as being objectionable. Efforts to reduce these effects have been

considered previously but with limited success [4], [5], [12]. The difficulty is that the ripples

of the step response of the filters, which are the source of the ringing distortion, are needed to

achieve good filter magnitude response characteristics. Good spectral magnitude characteristics

are important for reducing the effects of aliasing in the presence of coding. Aliasing distortion

appears as blurring in the image and is subjectively noticeable. If filters with good magnitude

characteristics are used to reduce the aliasing, then ringing distortion results that is noticeable

and objectionable. As to which is worse is a matter of opinion. It is clear, however, that the

elimination or reduction of both is desirable. This dilemma is a consequence of the Gibbs Phe-

nomenon which implies that is it impossible to have filter banks with good (i.e. monotonic) step

response characteristics and good magnitude response characteristics within the conventional

paradigm. However, it is possible to overcome this seemingly fundamental difficulty by using

time varying filter banks as we shall see. The first introduction of the concept of time-varying

filter banks appears in [3] and is based on the time domain theory and design methodology

presented in [15], [14], and [13]. The approach taken in [3] has some attractive features: time-

varying capability is conceptually simple in this framework and system delay can be controlled

very easily. On the other side of the coin, the approach is inherently limited to FIR systems

and the system design task can be difficult for practical filters.

In this paper, we introduce the concept of time-varying recursive filter banks and demonstrate
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Figure 1: Two-Band Analysis/Synthesis System

that they provide the additional degree of freedom that allows them to overcome the step-

response-magnitude-response constraint associated with the Gibbs Phenomenon. We derive the

conditions under which we can switch between filters of desirable properties. Furthermore,

this new time-varying recursive filter preserves the exact reconstruction property and maintains

very high computational efficiency. We presented this idea at the 1992 DSP Workshop [16] and

discussed some of the analysis issues at the 1992 Asilomar Conference [17]; both [16] and [17]

are rather limited due to page length constraints.2

This paper begins with a discussion of the exact reconstruction IIR filter bank after which

the time-varying conditions are derived. The equations for time-varying analysis/synthesis are

derived and a design strategy is developed that allows for much improved performance over

conventional filter banks.

2 Exact Reconstruction IIR Filter Banks

The starting point for this work is the two-band analysis/synthesis system shown in Figure 1

where {Ho(z), HI(Z)} and {Go(z), G\(z)} are the pairs of lowpass/highpass analysis/synthesis

filters. The analysis filters have the form:

H0(z) = (1)

(2)

and may be implemented using the well-known polyphase structure shown in Figure 2 where

PO(Z) and PI(Z) are the analysis polyphase filters and Qo(z) and Qi(z) are the synthesis

polyphase filters.

The exact reconstruction property of this recursive filter bank is evident from an examination

of the polyphase structure. Observe that the criss-cross networks in the analysis and synthesis

sections of Figure 2 are simply two-point DFT butterflies and that the cascade of the two

2The authors recently became aware of similar work developed independently in Norway by Husoy and Aase [18].
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Figure 3: Two-Band Polyphase Implementation with DFT Butterflies Omitted

results in an identity system. Therefore the combined analysis/synthesis polyphase system can

be simplified as shown in Figure 3. By inspecting Figure 3, it is clear that if

Q0(Z) =
1

P0(z)
and Qi(z) =

1

then the overall system reduces to an identity system and hence the reconstruction is exact.

A few points are noteworthy in this regard. First, PQ(Z) and P\(z) are assumed to be causal

stable recursive filters with zeros strictly outside the unit circle and have allpass or near allpass

characteristics. Second, by definition, the synthesis polyphase filters Qo(z) and Qi(z) will have

their poles outside the unit circle and their zeros inside the circle. Consequently, they are

anti-causal and stable. Third, because the image boundaries are finite in length, the circular

convolution method discussed in [4] is used to handle the analysis and reconstruction at the

image boundaries in order to avoid an increase in the subband data. It should be noted that

the recursive polyphase filters are well-behaved and do not attempt to invert stopbands or

magnify selected regions of the spectrum that might lead to adverse emphasis of coding noise

[4]. Comparisons were given to systems based on linear-phase FIR filters and to those based on

linear-phase and non-linear-phase IIR filters. The interested reader is directed to this reference

[4] for further details.

3 The New Time- Varying IIR Filter Banks

In this section, we derive a new variant of the IIR filter bank in which the coefficients of the con-

stituent filters are allowed to vary with time. The coefficients of the polyphase filters PQ(Z) and

PI(Z) are selectively changed at some point in the filtering process to another set of polyphase

filters. This process of changing the filters allows us to improve the coding performance. The

problem we address in this section is how to reconstruct without distortion once we have switched

the filter coefficients. By examining the simplified polyphase structure in Figure 3, it is apparent

that it is sufficient to determine the conditions under which r,-[n] = ti[n] for i = 1, 2. Clearly if we

can guarantee that r<[n] = ti[n] at all times before, during, and after switching the coefficients,

then exact reconstruction is also guaranteed.

To illustrate the analysis and reconstruction problem, consider the graphical illustration

shown in Figure 4. Assume that the impulse response Pi[n] shown in the figure corresponds to



that of a causal, stable analysis polyphase filter

PL(Z) = 1 . A—i1 . oi

At time n = 0, the filter is changed to p/j[n] corresponding to a new polyphase filter

off + qf *-*

The labels L and R signify that the signal or filter coefficient is associated with the left and

right halves of the time index, respectively.

3.1 Time Domain Analysis

The direct form difference equations that implement the polyphase filters are:

Mo No

vL(n] = £ aL
mx[n - m] - ^tfvL[n - f\ - co < n < -1 (3)

m=0 /=!

and
Ml JV,

»*[»] = 51 <*£*[" - "»] - 530?w*l»» - 0 0 < n < oo (4)
m=0 /=!

Here, fi[n] and vp\n\ are the left-sided and right-sided components of the output v[n], i.e. v[n] =

VL[TI} + VR[n]. In addition, equation (4) requires the initial conditions VR[— NI], VR[— NI — 1],

. . . , VR[— 1] in order to evaluate VR[O] since

Ml Nt

f\ (5)
m=0 1=1

Rather than making these initial conditions zero, which effectively discards the recent history

of the input, we assume the more desirable initial conditions

Vfi[n] = VL[n] in the range — JVi < n < — 1.

Generalizing the reconstruction procedure discussed in [4] for conventional recursive filter

banks, we obtain the reconstruction shown in Figure 5 which is based on anti-causal filtering.

Here tfn[n] and q>i,[n] are impulse responses corresponding to the stable, anti-causal polyphase

synthesis filters. The corresponding difference equations are

, M, 1 N!
xR(n -A}= —3- ^a^_txR[n + t-A] + -g- ^/3^.mvK[n + m-B] (6)

MI 1=1 MI m=0

for 0 < n < oo and

1 Mo * NO

xL(n-C] = ~[- ^aL
Mo-tXL(n + e-C] + — £>£0_mt>i[n + m- D] (7)

~~QMo t=i M0 m=0
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Figure 5: Graphical Illustration of Time-Varying IIR Synthesis Polyphase Filtering

for —oo < n < —1, where A, B, C, and D are arbitrary integer shift constants. The reconstruc-

tion sections, xjj[n] and xi,[n\ are right-sided and left-sided components of the reconstructed

signal x[n], as shown in Figure 5 and have the property that

r I r I . ri /Q\

Although the form of the reconstruction is given by equations (3- 7), the unknown parameters

A, B, C, and D must be determined.

3.2 z-Transform Domain Analysis

In this section, we determine the exact reconstruction conditions under this new time-varying

filter bank paradigm (i.e. find A, B, C, and D) and show explicitly that reconstruction is exact.

The time-varying filter bank problem can be analyzed in the z-transform domain in terms of a

causal and anti-causal unilateral z-transform. We define the causal unilateral z-transform as

(9)
n=0

and the anti-causal unilateral z-transform as

-1

*[n]z-. (10)

The sum of XR(Z) and XL(Z) is identical to the bilateral z-transform of x[n]. These causal and

anti-causal transforms have shift properties associated with them that may be described in the

following way. Suppose that no is an integer and u[n] is the unit step function. Then, for a time



shift of no in x[n]

w[n] = x[n — no]

the causal unilateral z-transform WR(z) is

no—1 —n 0 —1

lV/j(z) =; z °XR(z) + y x \ t— HO]Z u[no — 1] — z ° y %[~\z "[—"o — 1J. (11)
/=0 /=0

Similarly, for the anti-causal z-transform, the same time shift

w[n] = x[n — no]

results in the anti-causal transform

WL(z) = z-n°XL(z) - z-B°5^x[-<|z*u[no - 1] + z~n° £ x[Qz-lu[-n0 - 1]. (12)
/=! ^=0

This shift property will be used to take the transforms of the analysis equations (3) and (4) and

the synthesis equations (6) and (7). A derivation of this shift property is given in appendix A.

Using the causal and anti-causal z-transforms and their corresponding shift properties, we

can take the z-transforms of the analysis and synthesis equations. The transform properties

allow us to model the initial conditions explicitly for the point at which we switch the filter

coefficients. In this analysis, we assume that we switch the filter coefficients at n — 0.

For convenience in taking the transform, we express equation (4) as

NI Mi

2*01 vR[n ~ Q — / J,
amx[n ~ m] 0 < n < oo (13)

£=0 m=0

(where /?jf = 1) and compute its z-transform using the definition (9) and shift property (11).

We obtain

N! NI t-1 Mi Mi m-1

/=0 /=! k=0 m=0 m=l /=0

Next we can write the right-sided synthesis equation (equation (6)) as

-B] (15)
t=0 m=0

and take its z-transform to obtain

MI MI A-t-l

*=0 /=0 m=0

->t+*-l

—Z

m=0

NI B-m-1

-«.( E
m=0 m=0



-B+m-1

/=0

This is the z-transform of the synthesis equation for the right-sided sequence 2r/z[n]. If the

right and left sides of this equation can be shown to be identical, then we have shown exact

reconstruction for z/j[n]. To explicitly show that the equality holds, we must express VR(z) in

terms of XR(z), the initial conditions, and the filter coefficients. Using equation (14), we can

remove the VR(z) term by substituting

Mj Mi m-l JVj t-l

m=0 m=l /=0 1=1 t=0

for

,m-B
ft-mW*)*"

m=0

in equation (16). After the substitution, equation (16) becomes

Mi M! A-t-l

1=0 t=0 m=0

(1) (2)

Mi -A+l-1

/=0 m=0

(3)

Mi Mi m-l AT, l-l

m=0 m=l 1=0 t=l k=0

(4) (5) (6)

B-m-1 Ni -B+m-1

- E ^-B + m]z-tu[B-m-l]-^i^l.mzB-m

m=0 ^=0 m=0

(7) (8)

(18)

By examining this equation, it becomes apparent that we can group like terms and that there

must be equivalence within these groups in order for the equality to hold. Consider, first, terms

6, 7, and 8, which are the only terms containing vR[n] components. The sum of these terms

must be zero, i.e.

JV, t-l Ni B-m-l

-z"'-B£/?f5>[*-£]z-t + E^-'n E VR(l-B + m]z-<U(B-m-l]
1=1 k=0 m=0 t=0

(6) (7)

-E^-m^B-m E t,«MU[-B + m-l] = 0 (19)
m=0 t=0

(8)



At initial glance, it is apparent that cancellation can only occur between either terms 6 and 7

or 7 and 8 because these are the only combinations in which the signs are opposite. A closer

examination shows that terms 7 and 8 are disjoint in the variable m due to the u[B — m — 1]

and «[— B + m — 1] terms. Thus, it is sufficient to focus on terms 6 and 7. In term 6, if we let

t = NI — m we obtain

m=0 t=0

which cancels with term 7 when B = N\. Moreover, when B = NI, term 8 disappears because

u[— B + m — 1] goes to zero.

We can now group terms 1 and 4 together in equation (18) because only they contain the

XR(Z) components. Letting i = MI —mm term 1, we obtain

m=0

This becomes identical to term 4 when A = MI, resulting in cancellation.

The only remaining terms are 2, 3, and 5. Immediately we observe that term 3 is zero. Note

that because A — MI, the u[— A + £ — 1] forces term 3 to be zero. Thus all that is left is to show

that terms 2 and 5 cancel. Letting t — M\ — n in term 2, we obtain

MI n-l MI n-l

n=0 m=0 n=l m=0

which is equivalent to term 5. Thus we see that when A = —Mi and B — —N\, we can exactly

reconstruct £fl[n].

What remains is to prove that we can reconstruct XL[TI]. The same procedure can be applied

to the left-sided equations. In particular, the analysis equation (3) can be written as

No Mo

Y ttfvL(n-e\='£at tx(n-m} (20)
t=0 m=0

where /?£ = 1. Its corresponding z- transform is

No No t Mo Mo

/=0 *=0 t=l m=0 m=0 /=!
(21)

The z-transform for the left-sided synthesis equation (7) is

Mo Mo C-t l-C-1

£<4o-/**(*)*'-C - ^aL
Mo-tz

l-c(Y,*L(-k}zku(C - t - 1] + ^ XL [k]z-ku[t - C - 1]) =
/=0 /=0 t=l i=0

No No D-m -D+t-l

E^o-m^-^w - XXo-2""^ E t*MI*M0 -"»-!]+ £ taMz-Mm -0-i]) (22)
m=0 m=0 /=! 1=0



Applying equation (21) to equation (22), we can remove the VL(Z) components and we obtain

Mo Mo C-t

*=o *=o t=i

t-c-i

1=0

No I Mo

m=0

MO

m=0 /=! m=0

D-m -D+/-1

(£>M*M£> -m-l] + ^ tfcM*-<tt[m -£>-!]) (23)
/=! /=0

Again we can equate like terms and solve for the unknowns. Doing so, we find C = MO and

D = NO, and consequently prove that X£,[n] may be exactly reconstructed.

4 Results

The time- varying filter bank reconstruction problem shares similarities with conventional inverse

polyphase reconstruction. However, the interactions at the filter coefficient switching points

make the analysis very different for the time-varying case. Analysis and interpretation of time-

varying filter banks is complicated by the fact that the tools we would like to use, such as the

DTFT and z-transform, are inherently time-invariant. By couching the problem in terms of left

and right signal components and the initial conditions associated with them, we have proved

that maximally decimated time-varying filter bank analysis/synthesis systems can be exactly

reconstructing. We determined that the unknown parameters in the analysis equations (3) and

(4) and synthesis equations (6) and (7) are

A = MI

B = Ni

C = Mo

D = AT0

(24)

and that the resulting reconstruction synthesis equations are

M, 1 Nl

XR[n - MX] = - g- yM l-^f l [" + 1- ~ Mi] + — /Jft.n.tttln + m-N1] (25)
~ "M, m=0



for 0 < n < oo with WR[H] = vi[n] in the range — NI < n < — 1 and

1 ^o -I ^o

n - Mo] = —f- 5>£0_4*L[n + t-M0] + -r- ]T/?£o_m,;L[n + m - N0] (26)
M0 /=1 Afo m=0

for — oo < n < —1.

4.1 Constraints on Switching in the System

This 2-domain analysis and the resulting synthesis equations reveal some interesting and impor-

tant properties of the analysis/synthesis system. To begin, observe that the derivation leading

to equation (25) proves that the samples of the input a:[n] in the range —Mi < n < oo can

be reconstructed using equation (25), where x[n] = xn[n]. Similarly the samples of x[n] in the

range — oo < n < —Mo can be reconstructed using equation (26), where x[n] = ZL[O] in this

region.

In order to reconstruct all sample values using equations (25) and (26), constraints upon the

variables MO and MI must be imposed. This observation can be drawn from Figure (6) with

the following constraint being placed upon MO and MI :

M! + I > M0.

If this constraint is not met, the values in between MO and MI can not be recovered from

the reconstruction equations (25) and (26) as shown in Figure (6). There exists a gap of

unrecoverable samples in between MO and MI .

Equations (25) and (26) also show that by supplying the original sample values in the

transition regions explicitly, the constraint on the separation between switching points can be

removed completely. As we saw, switching coefficients at an interval less than or equal to MI

precludes the recovery of all samples in the region —Mi < n < 0. If these missing samples were

supplied externally, then reconstruction can proceed without difficulty. Unfortunately, such an

approach results in a data increase, i.e. the analysis/synthesis system is no longer maximally

decimated.

For convenience of being able to use the conventional unilateral z-transform, the analysis

has been given under the assumption that the switching of filters occurs at n = 0. But nothing

is changed by switching the coefficients at an arbitrary time, n = n0, except for a time shift.

All the equations derived are applicable to a system with arbitrary time shift at n = r»0 • Based

on the analysis, it should be clear that these results hold independent of when the filters are

switched.

However, the equations reveal limits on how frequent these switching of the filter coefficients

can occur within a given interval and on the numerator/denominator orders of the polyphase

filters. To illustrate this, consider the example in Figure (6). Equation (25) reconstructs valid
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Figure 6: Reconstructing Samples using Equations 25 and 26 Illustrating Constraint on MQ and
MI

samples of XR[TI] = xi,[n] for n = —1, —2, ..., —Mi. These samples are used as initial conditions

in equation (26). However, if another switch of coefficients occurs at time n = K where — Mj <

K < 0, only K valid samples can be reconstructed from equation (25), the remaining samples

in the interval will be erroneous due to the switch in coefficients. Thus, the analysis proves

that exact reconstruction can be achieved when the filters are changed at arbitrary intervals

provided that the switch points are separated by a number of samples equal to or greater than

the numerator order of the associated analysis polyphase filter. Assuming nt and rij+i are

consecutive switch point indices in n, the criterion for exact reconstruction is

"•+i -",- > MI.

We hasten to point out that this is an extremely mild restriction in practical applications. This

is because the orders of practical recursive polyphase filters tend to be very low. Recursive filters

which are first-order allpass polyphase filters can have magnitude characteristics comparable to

a 24- or 32-tap QMF. Such filters have extremely good magnitude characteristics and generally

provide more than enough stopband rejection with sufficiently narrow transition bands. Because

the polyphase filter order is just one in this case, the polyphase filters can be switched every

other sample if needed.

4.2 Stability Issue

Another issue to address is stability. It is well known that if the filter coefficients are allowed

to change arbitrarily, the system is not guaranteed to be stable. In our case, however, this is

not a problem. In the formulation for the recursive time-varying analysis-synthesis system, the

general problem is decomposed into piecewise constant coefficient system components, each of

which is stable Since the switch points are separated by MI samples, each region (after a switch)

that is reconstructed by equation (26) can be represented uniquely by a unilateral z-transform

term. In fact, all reconstructed regions that lie between switch points can be represented by

separate unilateral z- transforms.



To illustrate this, consider the first-order allpass polyphase filter all-pass polyphase filters

which we assume to be a filter employed over a finite interval. The corresponding difference

equation is

yo[n] = ay0[n - 1] + ax0[n] - x0[n - I]

and is used to generate all the samples in the interval. The initial conditions for the equation

are derived from the output in the previous interval and in general will not be zero. If we take

unilateral z-transforms on the above equation, we obtain the transform-domain equation

V (*\ - a ~ z ~ 1 \y <7\ .
 ttM>[-l] ~ »o[-l]1Yo(z) ~ rroT^ r o(z) + — ̂ r^i — J

where yo[— 1] is the initial condition. Since, the value of a is less than one, the equation output

will always be bounded.

The stability is thus completely determined by the locations of the poles of the corresponding

transform. That is to say, for stability the poles associated with the analysis polyphase filters

should be inside the unit circle and the zeros of the analysis polyphase filters (which become

the poles of the synthesis polyphase filters) should be outside the circle.

5 Experiments and Performance Analysis

The analysis presented here used the simple case of a two-band polyphase system to develop the

reconstruction equation derivation. Since the result applies to the actual polyphase and inverse

polyphase filtering operations, banks with complex- valued channels [11] and an infinite variety

of tree structures composed of two-band and/or parallel form filter banks.

Finally, as alluded to in the introduction, time- varying filter banks can improve the subjective

and objective performance because of the input dependency of the error characteristics. This is

clearly the motivation for the development of time- vary ing filter banks. It is also a measure by

which one can judge its utility.

As an initial gauge of performance, we compare a conventional two-band subband coder

and a two-band subband coder with time-varying filter coefficients. A finite length sequence

was used as the input — shown in Figure 7 as the solid line. This input is a section of a row

taken from the 256 x 256 test image "Lena." In each case, the lowpass channel was coded

with 4-bit uniform quantization while the highpass channel was coded with 2 bits. Notice that

the conventional subband coder displays ringing (or overshoot-undershoot) distortion at the

discontinuities as indicated by the dashed line in Figure 7. However, the other regions of the

row are represented well. The magnitude and step response characteristics for HQ(Z) used in

the conventional subband coder are shown in Figure 8.
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Figure 7: Performance of a two-band subband coder on an image row taken from "Lena." The
sofid line is the original row. The dashed line is the coded result.
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Figure 8: Magnitude and step response for the lowpass filter HQ(Z).

The new subband coder with time-varying coefficients employs two filter sets, one with good

magnitude response characteristics (i.e. HO(Z) shown in Figure 8) and the other with good

step response characteristics. The magnitude and step response characteristics for the latter

filter are shown in Figure 9. In the regions of large discontinuity, the filter set with good step

response characteristics is used. In other regions, the filter set with good magnitude response

characteristics is used. Figure 10 shows the improvement that results for this example.

6 Remarks

Such an approach involves having to convey switching point information to the receiver for

reconstruction. This can be done simply by sending side information as was the case in the

example or potentially through a procedure based on feedback, the latter of which is presently

being studied. For natural images, the amount of side information is negligible. Thus, even

with the transmission of side information, this new approach seems attractive.
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Figure 9: Magnitude and step response for the second lowpass filter used in the time-varying filter
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Appendix: Derivation of Shift Property

The unilateral z-transform is defined as

XR(z) =
oo

n=0

If x[n] is shifted by a positive integer time shift N, and the transform computed, we obtain

n=0

Substituting n = k + W, results in

t=0

~N ~lx[Jk]z~l.
t = -7V

If we let * = N — £ and substitute, we obtain

N-l

1=0

Because this is valid only for integer N > 0 we can append the term u[N — 1]. For negative

shifts, N < 0, the transform becomes

][>[«-AT]z- =
k=-N

= XR(z)z~N - z-»

n=0 k=-N k=0 k=0

-N-l

i=0

where u[— N — 1] restricts N to be less than zero. Combining these results yields

AT-l -N-l

x[n -N]<=* z-NXR(z) + z-NYs*(t ~ N]z-'u[N -1]- z~N ^ x[k]z-ku[-N - I}.
1=0 k=0

For the anti-causal case, the derivation is similar. The transform of the time shifted input is

-i
x[n-N]z-".

o

Assuming N > 0 and substituting n — k + N, results in

-N-l -1 -1

£ x[k]z-k-N = z-» £ x[k]z-k-z-N £ x(k]z~k

k=-oo k=-oo k=-N

-z-»£x(-k]zk

k = l



For N < 0, the transform becomes

~ 1

Combining both results we obtain

x[n -N]*=* z~NXL(z) - z-N
JV

/=!

t=0

-JV-l
/«[--^ - 1]. (27)

1=0




