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1 Introduction

NASA Grant NAG-l-1060 was initially awarded to study the possibility of using parallel

processing to accelerate the simulation of Timed Petri nets (TPNs). It was recognized that

complex system development tools often transform system descriptions into TPNs or TPN-

like models, which are then simulated to obtain information about system behaviour. Viewed

this way, it was important that the parallelization of TPNs be as automatic as possible, to

admit the possibility of the parallelization behlg embedded in the system design tool. Later

years of the grant_ were devoted to examining the problem of joint performance and reliability

analysis, to explore whether both types of analysis could be accomplished within a single

framework.

In this final report we summarize the results of our studies. We believe that the problem

of parallelizing TPNs automatically for MIMD architectures has been ahnost completely

solved for a large and important class of problems. Our initial investigations into joint

performance/reliability analysis are two-fold; we have shown that Monte Carlo simulation,

with importance sampling, offers promise of joint analysis in the context of a single tool, and

we have developed methods for the parallel simulation of general Continuous Time Markov

Chains, a model framework within which joint performance/reliability models can be cast.

However, very lnuch more work is needed to determine the scope and generality of these

approaches.
The remainder of this report outlines the results obtained in our two studies, future

directions for this type of work, and a list of publications citing support of NAG-l-1060.

2 Parallelizing Time Petri Net-Simulations

There are four fundamental aspects of parallelizing a TPN. First, given an arbitrary net-

list description, we nmst initially partition the net-list into Logical Processes (or LPs) that

identify parts of the TPN topology that must always be simulated together. Secondly, given

a partitioning, we must determine how best to map the LPs onto the multiprocessor archi-

tecture. Thirdly, we must be able to dynamically alter this mapping, as there is insufficient
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load information to accuratelymap tlle simulation prior to runtime. Finally (and not inde-
pendently), wemust be able to synchronizethe processorsto ensurethe correctnessof the
simulatioi_.

Among the variousproblemslisted above,wehave had the least successwith partition-
ing. The essentialdifficulty is that the fine-grainednature of a net-list description hides
underlying structure. For instance,we havesimulatedmany different TPN modelsof mul-
tiprocessorarchitectures. Thesemodelsare constructedby replicating a processormodel,
and connectingreplications with a network model. The aggregationmodels can be very
large--one of our modelsruns to four million placesand transitions. The problemof finding
embeddedunknown structure in the net-list, e.g., identifying the replicated processor mod-

els, has not been solved to our satisfactio!L._H0wever, we have found a fall-back position

that is acceptable, temporarily. The type of logical aggregation we desire is almost always

understood by, and implicit in a user's modeling approach. We need then for a user to

communicate this aggregation to the parallelization tool. This can be done explicitly, (as

we have done in a software tool pntool developed under this grant), or may be done more

automatically by exploiting an underlying hierarchical structure that is understood by the

system developlnent tool.

Assuming that the network has been partitioned into LPs, we must now assign the LPs

to processors so as to balance the load and minimize communication costs. Let us for the

moment assume that workload and communication estimates are available for each LP. The

general problem Of mapping workload is computatioually difficult, however, for an important

subclass of problems it is tractable. Namely, if we enulnerate the LPs and restrict ourselves

to considering contiguous partitions of that chain, then one can find optimal mappings in

low-order polynomial time. In order to avail ourselves of such algorithms, we have looked

into the problem of linearizing the LPs. The object of linearization ought to be reduction of

probable coInmunicatioll costs under the linear mapping. Since LPs that are adjacent in the

ordering can enjoy reduced communication costs by being assigned to the same processor,

we wish to find an ordering that keeps highly communicating LPs close to each other. Our

solution to this problem is to use "matching" algorithms, as follows. Given a set of LPs, we

pair them off in such a way to maximize the sum of edge weights (i.e, communication costs)

between paired LPs. Paired LPs are merged into "super-LPs", with edge weights between

super-LP's being defined in the natural manner--if LPs A and B are merged and C and

D are merged, then the edge weight between the two super-LPs is the sum of edge weights

between A and C, A and D, B and C, and B and D. Exact matching algorithms can be

expensive, so we have investigated using a linear-time approximation call "stable matching".

The resulting mapping algorithin (linearlzation plus chain mapping) executes quickly enough

to be dominated by the execution time of the simulation model. For instance, a very large

model (4 million places/transitions) is mapped in about 1 minute, with the bulk of the time

cost being devoted to I0 processing.

One serious problem is that to map accurately we must have accurate execution and

communication cost information. At the time a TPN model is initially loaded we have no

measured cost b,b.avior, and are left to estimate these costs from the TPN topology as best
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we can. We have discovered that such estimates can be good (if the topology density is in

constant proportion to the simulation workload in a region), or can be very poor. Dynamic

remapping at runtime is needed to protect against the second possibility. A substantial part

of this problem was to restructure the parallel simulation to support dynamic nlovement of

its LPs. Tile data structures had to be redesigned so that all LP's topological description

and marking could be efficiently extracted from a processor and sent to another; in addition,

tim processor's event list structure had to be localized to provide each LP with its own

event list, so that it could also be extracted and moved. Support for runtime reassignment

of global place/transition identifiers (i.e., indices in arrays) also had to be provided. Once

the support for dynamic assignment was provided, we needed to decide when to retnap,

and how to remap. The new mapping construction was treated in two steps. First, runtime

estimates of LP event intensities were gathered. To avoid undue overhead we simply measure

event counts, and use these to compute event rates (per unit simulation time). These rates

are the weights used by the mapping algorithm. A new mapping is computed, in parallel,

by all processors. We accomplish this by crafting compact codes for each LPs load, and

then distribute all codes to all processors, using the vector-OR reduction of the Intel family

of multicomputers. We approached the temporal decision problem by applying dynamic

remapping decision techniques we've developed before, to the TPN simulation problem. The

idea is to periodically recompute a tentative new mapping, and then decide whether to accept

and implement it. If the new mapping (based on updated information) appears as though it

will reduce the remaining finishing time by at least ten percent, we accept that as positive

evidence that remapping is a good idea. ttowever, we don't immediately remap. Instead, we

account for the possibility of error, and use the evidence to update a Bayesian estimate of

the probability that we benefit from remapping. The actual remapping decision policy is to

remap when this probability reaches a high level, e.g., ninety percent.

In experimental studies we observe that remapping is indeed required to support good

performance, and that the policy is both effective in remapping when it should, and not

remapping when it shouldn't.

The problem of synchronizing processors in a parallel TPN simulation can be quite diffi-

cult if arbitrary network partitions are permitted. Two fundamental features cause the most

trouble. Transitions with zero firing times are one, because a chain of these can set up a

causality chain among processors with zero elapsed simulation. Ill other words, an event

that occurs at time t in processor 1 can instantaneously cause an event at t in 2, which can

then instantaneously cause all event at t in 3, and so on. We can deal with this problem

by simp!y requiring that all output places of a zero time transition must be assigned to the

same LP as is the transition. A second difficulty lies in deciding when a transition is enabled

to be fired. To avoid necessitating inter-processor communication to make such decisions,

we require that all input places to a transition be assigned to the same LP as the transition,

and that all output places of a transition with an input place that is a "decision place"

also assigned to the same LP as the transition. A decision place is one that serves as an

input place to more than one transition. By placing these restrictions on LP formulation,

we ensure that ev,e,ry transition with input places in one LP and output places in other LPs
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has tile following properties:

• A non-zero firing time, and

• non-preemptable enabling.

These properties ensure that at tile shnulation instant t when such a transition is enabled,

we know with certainty that it will fire, and we know tile future simulation instant at which

it will fire. This permits us to "pre-send" tile effects of the firing to other LPs at the enabling

instant, rather than waiting until the firing time arrives. This is lookahead, and is key to a

conservative approach to the TPN simulation problem.

For every LP i, among all of its border transitions (those that join LPs) we can identify

tile one with least firing time, fi. At any instant we can find the least time stamp fl,

among all pending events on tile LP, and know that the LP cannot send a message ever

again with a time-stamp larger than ti + fi. Our synchronization protocol hinges on this

observation, a.s follows. Suppose the processors are all synchronized at time t (they are

initially synchronized at time 0). Each LP computes its lookahead bound described above,

and tile system cooperative computes in parallel the mininmm such over all LPs. Call this

time w(t). Now the interval of simulation time It, w(t)) has the property that no processor

will receive a message with a time-stamp in that window--these have all been pre-sent in

previous windows. Hence the LPs are free to execute all their events in [t, w(t)), completely

in parallel, upon simulating up to time w(t) (but not including time w(t)), the processors

ensure that all messages generated in [t, w(t)) have been delivered, recompute their lookahead

bounds, and compute a new value w(w(t)). The next window simulated by the processors

is and so on.
Two other approaches permit border transitions to be preemptable. One of these is en-

tirely conservative, and uses the optimistically sent token arrival messages as "appointments"

for synchronization. Another approach is optimistic, based on synchronous relaxation. This

approach might also allow zero-time transition firing at the border, if necessary. Neither of

these variations has been implemented.

A necessary condition for this protocol to do well is that many events be found to simulate

in most windows [t,w(t)). In our experience this is the case on the types of large TPN

models that require parallelization, as opposed, for instance, to models that one can adequate

simulate on a set of workstations using independent replications.

3 Joint Performance/Reliability Analysis

Our main thrust for the joint performance/reliability analysis was to determine whether we

could perform reliability analysis in a context conducive to performance analysis, using the

same basic system model. We answered this in the affirmative, with the tool ASSURE.

ASSURE accepts a model based on the Assure language (which is itself an extension of the

ASSIST langua&e) and uses Monte Carlo simulation as the basis for determining relability.
The idea is to us_ the ASSURE model description of transitions and death-conditions to
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continuouslyevolvea systemstate vector until a death-condltion is reached. At this point
the SURE theorem is brought into play, being usedto find bounds on the probability of
the systemstate taking this particular evolution path within the missiontime. hnportance
sampling plays a critical role in this approach,for without it the occurrenceof failures due
to co-incidentfaults will be very much reduced.

The ASSURE languagemakesit entirely possibleto useperformancecriteria to drive
the reliability analysis. Considera TRANTO statement. In the ASSURElanguagewemay
write

IF Condition() TRANT0Effect() BY Rate();

HereCondition (), Effect (), and Rate () are all C-languagefunctions that have accessto
the systemstate vector as C-languagevariables. The semanticmeaning is that if routine
Condition() returns value true (reflecting the existenceof somecondition), then routine
Effect() is called to transform the systemstate vector as a result. Function Rate() gives
the transition rate for this particular transition. The key point to appreciate here is the
generality of Condition() and Effect(). Onecan, for instance,haveCondition() be a
discrete-eventsimulation that estimatessomeperformancemeasurethat affects reliability,
suchas CPU workload. For example,if wewanted to model the fact that when the CPU
is over 90% utilized then OSsoftwarefails with rate .k, then Condition() can perform a

discrete-event simulation to estimate CPU utilization as a function of the current system

state, and so appropriately modify the state vector in Effect (). Similar observations apply

to DEATItlF conditions determined by C-language functions.

Other features added to the ASSURE package are

• automated parallelization on workstation clusters;

• optimizations for very long mission time scenarios;

• language features for the automated statistical estimation of performance measures in

death-states.

User documentation for the ASSURE package is included in this document.

Another area where performance and reliability meet is when a combined performance

and reliability model can be expressed as a continuous-time Markov chain (CTMC). For,

if we can combine the two features in this framework and simulate the combination with

sufficient power, we will have achieved the goal of combined analysis.

We l:lave made substantial inroads into the problem of simulating CTMCs chains on

parallel architectures. The key issue we've addressed here is that of synchronization. We
have been able to exploit the mathematical structure of continuous time Markov models for

synchronization. The basic idea is to recognize that every submodel on every processor is

itself a CTMC, and that interactions between processors form a non-homogeneous Poisson

process. Knowing this we cause the processors to sample a uniform Poisson process at a

higher rate to d_cribe potential interactions. Upon reaching a potential interaction point

with another processor, a random coin is tossed (with a weight reflecting the disparity



between tlle current rate of the interaction process and the sampled rate) to determine

whether the interaction actually occurs.

The approach outlined above has the very attractive feature that processors may first

generate a communication/synchronization schedule, and then perform the simulation ad-

hering to that schedule. Such an ability is unusual in the parallel simulation context, but

offers tremendous performance advantages. For instance, we have achieved reM speedups of

over 220 on 256 processors on the Intel Touchstone Delta architecture.

4 Future Directions for Research

Whiie we are pleased with the results of our research, there remains (as always) further work.

1. There is a great deal of room for good partitioning algorithms for TPNs. The lack of

such is probably the largest hole in our TPN work.

2. While ASSURE provides the means of exploring joint performance/reliability models,

the level of support provided covered only the tool's development. More work is needed

to gain experience with using the tool on joint models, and identifying model features

that might inspire further enhancements to the tool.

3. We have shown that the structure of CTMCs can be exploited for accelerated sim-

ulation, but are far from being able to provide that capability in a general tool. A

good deal more work is needed to find general performance/rellability model descrip-

tions from CTMCs are derived, partitioned, and parallelized. Introduction of impor-

tance sampling here may also be critical, owing to the large gap in time-scale between

performance-oriented and reliability-oriented events.

5 List of Publications

The following publications cite support of NAG-l-1060.

1. "Rectilinear Partitioning of Irregular Data Parallel Computations", Journal of Parallel

and Distributed Computing, to appear.

2. "Noncommittal Barrier Synchronization", Parallel Computing, to appear.

3. "A Sweep Algorithm for Massively Parallel Simulation of Circuit-Switched Networks",

with Bruno Gaujal and Albert Greenberg, Journal of Parallel and Distributed Com-

puting, to appear.

4. "Optimistic Parallel Simulation of Markov Chains Using Uniformization", with Phil

tIeidelberger, Journal of Parallel and Distributed Computing, to appear.

A

6



5. "Parallel Simulation Today", with Richard Fujimoto, Annals of Operations Research,

to appear.

6. "Conservative Parallel Simulation of Markov Chains Using Uniformization", with Phil

Heidelberger, IEEE Trans. on Parallel and Distributed Systems, to appear.

7. "The Cost of Conservative Synchronization in Parallel Discrete-Event Simulations",

Journal of the ACM, vol. 40, no. 2, April 1993, 304-333.

8. "Inflated Speedups in Parallel Simulations via maLloc()", hd'l Journal on Simulation,

vol 2, Dec. 1992, 413-426.

9. "Performance Bounds on Self-Initiating Parallel Discrete Event Simulations", A CM

Trans. on Simulation and Modeling, vol. 1, no. 1, pp. 24-50.

10. "Parallel Simulation of Markovian Queueing Networks Using Adaptive Uniformiza-

tion", with Phil Heidelberger, 1993 SIGMETRICS Conference, Santa Clara, CA., pp.

135-145.

11. "Parallel Algorithms for Simulating Continuous Time Markov Chains", with Phil Hei-

delberger, 1993 Workshop on Parallel and Distributed Simulation, San Diego, CA., pp.

11-18.

12. "Optimistic Global Synchronization for Parallel Discrete-Event Simulations", 1993

Workshop on Parallel and Distributed Simulation, San Diego, CA., pp. 27-34.

13. "REST: A Parallelized Reliability Estimation System", with Adam Rifkin and Dan

Palumbo, 1993 Reliability and Maintainability Symposium, Atlanta, GA, pp. 436-442.

14. "MIMD Parallel Simulation of Circuit Switched Communication Networks", with Al-

bert Greenberg, Boris Lubachevsky, Proceedings of the 1992 Winter Simulation Con-

ference, 629-636.

15. "State of the Art in Parallel Simulation", with Richard Fujimoto, Proceedings of the

1992 Winter Simulation Conference, pp. 246-254.

16. "Massively Parallel Algorithms for Trace-Driven Cache Simulations", with Albert Green-

berg and Boris Lubachevsky, Proceedings of the 1992 Workshop on Parallel and Dis-

tributed Simulation, Newport Beach, CA., pp. 3-11.

17. "Parallel Simulation of Timed Petri-Nets", with Subhas Roy, Proceedings of the 1991

Winter Simulation Conference , pp. 574-583.

18. "Performance Analysis of Massively Parallel Discrete-Event Simulations", SIGPLAN

Symposium on the Practice and Principles of Parallel Programming, Seattle, March

1990, pp 89-98.



19. "Reliability Analysis of ComplexModels using SURE Bounds", with Dan Palumbo,
submitted to IEEE Trans. on Reliability.

20. "Automated Parallelization of Timed Petri Net Simulations", subnfitted to IEEE

Trans. on Computers



Automated Parallelization of Timed Petri-Net Simulations*

David M. Nicol t

Weizhen Mao *

Department of Computer Science

College of William and Mary

Williamsburg, VA 23187-8795

Abstract

Timed Petri-nets are used to model numerous types of large complex systems, especially

computer architectures and communication networks. While formal analysis of su& models

is sometimes possible, discrete-event simulation remains the most general technique available

for assessing the model's behavior. However, simulation's computational requirements can be

massive, especially on the large complex models that defeat analytic methods. One way of

meeting these requirements is by executing the simulation on a parallel machine. This paper

describes simple techniques for the automated parallelization of timed Petri-net simulations. We

address both the issue of processor synchronization, as well as the automated mapping, static

and dynamic, of the Petri-net to tile parallel architecture. As part of this effort we describe

a new mapping algorithm, one that that also applies to more general parallel computations.

We establish certain analytic properties of the solution produced by the algorithm, including

optimality on some regular topologies. The viability of our integrated approach is demonstrated

empirically on a large scale parallel architecture, where excellent performance is observed on

various models of parallel architectures.
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1 Introduction

Timed Petri-nets (TPNs) are an important modeling tool used to study the behavior of various

types of complex systems. While a great deal of study has gone into the analytic properties of

TPNs (e.g., see [16] and its references), in practical settings TPNs are generally simulated. For

example, simulation of TPN-related models is the basis for the performance analysis in ADAS[7],

a tool designed specifically for parallel hardware and software performance evaluation. Discrete-

event simulation of TPNs is thus an important modeUng and analysis activity, and is one known to

require a great deal of computational effort. Parallel execution offers the possibility of decreasing the

execution time of TPN simulations; however, the user community will adopt parallelized simulations

only if the parallelization is largely automatic. The problem of automating such parallelization is

the topic of this paper. In particular, we describe methods for synchronizing processors in a

parallel TPN simulation, and for load-balancing parallel TPN simulations. Our methods have been

implemented in a tool where one designs the TPN graphically, after which all parallelization is

handled automatically. The target architecture for this tool is the Intel family of multicomputers.

Good performance (e.g., speedups greater than 40 using 64 processors) has been observed on

large TPN models of parallel architectures, including nearest neighbor meshes, slotted rings, and

Thinking Machines CM-1 global routing network.

Parallelized discrete-event simulation has been actively studied over the last ten years; the sur-

vey in [8] is an excellent introduction to the topic; a newer survey [21] highlights current areas

of research interest. Synchronization between processors has been and remains a subject of much

interest, owing to the complexity of the synchronization requirements imposed by discrete-event

simulations. The difficulty arises from the fact that the simulation model is typically partitioned

among processors, each of which maintains its own simulation clock. An event associated with the

submodel assigned to one processor may affect some portion of a submodel assigned to another

processor, thereby necessitating an interprocessor communication. A parallel discrete-event sinm-

lation can be viewed then as a collection of communicating discrete-event simulations of submodels.

In this context the notion of simulation time imposes synchronization requirements. Consider: an

event (e.g. a message passed by a simulated PE (processing element)) occurs at simulation time

s on some processor, and affects the submodel on another processor (e.g. the message arrives at

another PE), say at time s + d. If the affected processor has already past time s + d it may have

done so incorrectly as it has neglected to consider the effect of the message arrival at time s + d.

Synchronization protocols deal with this problem. Two fundamentally different styles of protocols

have been studied. Conservative approaches (e.g. [4, 15, 23]) ensure that a processor does not

advance its simulation clock until it is certain that it will not bypass some simulation time at which

another processor affects it. Conservative protocols are known to require lookahead in order to avoid

deadlock, and to achieve good performance. Lookahead is the ability of a processor to predict its

future behavior, as regards when next (in simulation time) it may affect another processor's sub-

model. Optimistic approaches ([11]) permit a processor to simulate ahead under the anticipation

that another processor will not affect its submodel in the "past", but then correct these temporal



errorsastheyoccur.Optimisticapproachesrequirestate-savingandrollbackto functionproperly.
Thenotionsof conservatismandoptilnismarenot mutuallyexclusive;asobservedin [29],thespace
of synchronizationprotocolsis better partitionedusingfiner distinctions.This leadsto protocols
that combineelementsof optimismandconservatism.

Thesynchronizationapproachwedevelopin this paperis conservativein all respects.A prin-
cit)alcontributionof this paperis to demonstratethat effectiveautomatedparallelizationof TPN
simulationsis possibleusinga veryconservative,verysimple,synchronizationscheme.The looka-
headcalculationis easyandautomatic,andweprovidea newautomatedmappingalgorithmwith
ademonstratedability to bManceworkloadandkeepcommunicationoverheadlow. WeMsoincor-
poratedynamicremappinglogic, and observe how it substantially boosts performance.

The parallelized simulation of TPNs has not received much attention. This is due in part to

the fact that the conceptual model of parallel simulations that is usually studied (based on the

seminal work in [4]) precludes Petri-net semantics, an observation detailed in [36]. This conceptual

model ascribes fixed communication channels between logical processes; time-stamped messages are

exchanged via these channels, and an LP's simulation clock is advanced as a result of consuming

a message. The solution described in [36] involves extension of this model to support Petri-net

semantics. SIMD simulation using recurrence relations of a constrained class of stochastic TPNs

is developed in [2]. In work more closely related to ours, Sellami and Yalamanchili [32] and [33]

consider a conservative protocol to simulate "marked graphs", which are derived from a restricted

class of TPNs. They too exploit model characteristics to optimize the synchronization protocol and

to partition the marked graph model. The conceptual model we have most recently used [23, 25, 24]

is simply that of communicating discrete-event simulations. Our model employs the same semantics

of event list manipulation as does traditional serial discrete-event simulation, and so does not suffer

fl'om the limitations of the message-consuming model. However the specifics of our synchronization

protocol require that some care be taken when partitioning a TPN among processors. In extreme

cases these requirements may preclude any parallelization by our methods. We believe these cases

are unusual, especially in TPN models of parallel architectures. One simple condition that ensures

our protocol will work is if every communication between distinct "modules" (e.g. PEs, memories)

in a simulated architecture is modeled with a transition having a non-zero firing time. This simply

models the real world constraint that communication takes time.

A simulation's workload cannot in general be predicted in advance of actually performing the

simulation. Consequently a parallelized simulation must be prepared to measure workload at run-

time, and dynamic remap if needed to balance it. Early work on the problem was developed in [22].

The basic idea is to measure multiple trial runs, analyze critical path information from each, and

cluster pieces of the simulation model based on aggregated critical path information. Later work

done developing the Time Warp Operating System (TWOS) [12] approached the problem with

multiprocessor scheduling heuristics, with workload measured as "effective utilization". The opti-

mistic nature of TWOS synchronization adds interesting dimensions to the load-balancing problem.

Similar ideas are explored in [9], [34], save that the notion of workload is slightly different. These

methods rely upot_.a centralized process to compute and distribute new load distributions. Their
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rebalancingalgorithmstypically considerincrementalmovementof LPsin efforts to reducethe
total communicationcost.

Anotherrecentlineof inquiry is basedonheuristicgraphpartitioning,e.g.,[17],[30]andtheir
references.Itereoneseeksto aggregatenodes(elementalpiecesof themodel)intoequal-sizedblocks,
soasto minimizethesumof edge(e.g.,communication)costsbetweennodesassignedto different
blocks.This problemformulationhasa largeliterature in the VSLI designcommunity.While the ,
approachhasbeenappliedto the mappingproblemin parallelprocessing,and to discrete-event
simulationin particular[17],wehavechosena differentapproachfor two reasons.First, onecan
rarely analyticallyquantifythe quality of a graph-partitioningsolution,exceptto assertthat the
solutioncannotbe improvedoveranysetof smalllocalexchangesbetweenblocks.The approach
wedevelophassomeanalyticassurances.Secondly,theobjectiveof minimizingthetotal sumof all
communicationcostsdoesnot capturethefact that communicationisparallelized.In ourapproach
weseekto minimizeanobjectivefunctionthat bettermodelsexecutiontime.

The contributionsof this paperare two-fold.First, wedevelopa newheuristicfor static map-

ping, and analyticallyquantifycertainaspectsof the solutionsproduced.In somecaseswecan
bound the deviationof the resultsfrom optimal, in other caseswecan proveoptimality itself. ,
Secondly,weextendpre-existingworkin synchronizationandalsoin dynamicremappingdecision-
makingto theTPN simulationproblem,and synthesizetheseadaptationswith the newmapping
algorithm. The resultingsystemis capableof acceptinga TPN modeldesignedgraphicallyand
without explicit cbncernfor parallelization,then automaticallymapping,synchronizing,_nd dy-
namicallyremappingthe simulationexecutingon a largescaleparallelarchitecture. We prove
the feasibilityof this automatedapproachby demonstration,simulatinga numberof largeTPN
models,includingoneof the ThinkingMachinesCM-1globalrouting network,and a slotted-ring
parallelarchitecture.Goodperformance,obtainedautomaticallyfromgraphicalTPN descriptions
is reportedfor thesesimulationson largescaleparallelarchitectures.In one casewe observea
speedupin excessof 43 on 64 processors of the Intel Touchstone Delta.

The remainder of this paper is organized as follows. In Section §2 we discuss how TPNs

work. Section §3 develops our synchronization and simulation algorithms. Section §4 discusses

the automated mapping algorithms we use. Finally, Section §5 presents the performance results of

simulating several parallel architectures. Section §6 summarizes this paper.

2 Background

A Petri-net can be viewed as a bipartite graph, with each node classified as either a place, or a

transition. The usual graphical conventions depict a place by a circle, and a transition by a straight

line. Places may direct arcs to transitions, and transitions may direct arcs to places. Each place

that directs an arc to a transition t is known as one of t's input places; likewise, each place to which

t directs an arc is known as one of t's output places. Input and output transitions are similarly

defined with respect to a place. A place may hold any number of tokens; the tokens may move

from place to pla_.in accordance with the transition firing rule. A transition t may fire if each of

I
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its input placeshasat leastonetokeneach.The effectof t's firing is to remove one token from

each of t's input places, and to add one token to each of its output places.

A place with more than one output transition is known as a decision place. The arrival of a

token at a decision place may fulfill the firing requirements of more than one transition, ttowever,

only one of these transitions should actually be permitted to fire, as the firing of the first such will

remove the enabling token from the decision place. A standard means of resolving this dilemma is

to non-determinlstically choose which transition (among those able to fire) will actually fire.

An ordinary Petri-net has no notion of "time". A common variant of timed Petri-nets associates

time with transition firings, as follows. Suppose the conditions to fire a transition are met at time

_, and the firing time associated with that transition is _. Then

• At time s, one token is removed from each of t's input places;

• From time s to time s + (_ the transition is considered to be firing;

• At time s + _ a token is added to each of t's output places.

We say that the transition firing is enabled at time s, and completes at time s + $. Note that

tokens are committed to the transition firing at the time of the transition being enabled, not at the

point when the transition actually fires. The interpretation that commits tokens upon firing is also

common; we will later discuss how our synchronization protocol is able to handle this variation as

well.

Using the rules above, we may construct a discrete-event simulation of a TPN whose events

are TokenArrival, BeginFiring, and EndFiring, which denote the arrival of a token to a place,

the beginning of a transition's firing, the removal of a token from a place, and the ending of a

transition's firing, respectively. Assuming that the initial marking of tokens to places appropriately

initializes the event list with TokenArrival events, the simulation may be implemented using the

following sequence.

1. Fetch the next event from the event list, say with time T_im. Advance the simulation clock

to time Tsi,,_.

2. Execute the event, in one of the following manners.

Case: TokenArrival Let p denote the associated place. Increment the token count at p. If

the previous token count was non-zero, then the event processing is finished. Otherwise,

this token's arrival may enable the firing of some transition. In this case, among all

of p's output transitions, identify those now enabled to fire due to the token's arrival.

Choose one of these uniformly at random, say t, and insert a BeginFirlng event for i

in the event list, with time-stamp T,{,,,.

Case: BeginFiring Let t denote the associated transition, and let _fLdenote its firing time.

Decrement the token count at each of t's input places. For every one of t's output places

p', insex_, a TokenArrival event with time-stamp T_{,,_ + ,it into the event list. Finally,

insert an EndFiring event with time-stamp Tsi,,_ + _ft into the event list.
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Case: EndFiring This event is usedonly to permit the measurementof any statistics
desiredat this time by the modeler.No additionaleventsarescheduledby processing
anEndFiring event.

3. Returnto step1if terminationconditionsarenot met.

It may seemcuriousthat we insert TokenArrival eventsinto the eventlist as a result of

BeginFiring processing, instead of EndFiring processing. We deliberately formulated the solu-

tion this way in order to highlight the lookahead that exists in TPN simulations--at the time a

transition begins its firing we can predict exactly when tokens generated by the firing appear in

their new places. Our parallel solution will exploit this fact. Lookahead of this type is not necessary

in purely serial simulations.

As discussed in [16], there are a number of ways one can augment this basic structure of

TPNs, some of which we have used in our architectural models. Some arcs may inhibit rather

than enable transitions, which means that the associated place must be empty for the transition to

fire. Another modification allows one to specify a priority ordering on output arcs from a decision

place, to give some control over which transition might be enabled. Yet another allows one to

associate a probability distribution with the output arcs of a transition--on firing, one randomly

chosen output place receives a token. Additional modifications include the association of colors

with tokens, and allowance for an arc to carry more than one token when it fires. All of these have

important applications, and can be incorporated directly into the framework we propose.

In the section to follow we show how to implement this algorithm on a parallel computer.

3 Synchronization

We anticipate that parallel simulation will be practical primarily when large simulation models are

distributed over a moderate number of processors. The usual use of discrete-event simulations is

to construct confidence intervals from simulation output. Confidence intervals call for independent

replications, and there is scarcely any easier way to exploit parallelism than to concurrently run

independent replications. However, one rarely wants to run more than, say, twenty replications of

a long-running simulation, because the width of a confidence interval decreases only in proportion

to the inverse square root of the number of replications. The implication is that given a 500 node

multiprocessor, one is more likely to devote 25 processors to each of 20 independent replications

than one is to devote an independent replication to each processor. It is also frequently the case

that simulation is used as an exploratory tool, where a decision is made on the basis of one run.

It may be useful then to execute that run as quickly as possible, on one of the widely available

parallel systems. Thus we believe that techniques for parallelism have practical interest. We

also believe that parallel simulation will be useful primarily on large simulation models. Small

simulation models are simulated sufficiently quickly on workstations or PCs. Parallel architectures

offer increased main memory size over conventional architectures, which helps to avoid running the

simulation in virt_$tl memory and its attendant paging costs.



Forthe reasonsoutlinedabovewehaveconcentratedonparallelsimulationtechniquessuitable
for largesimulationmodels. We havestudieda conservativesynchronousapproachto synchro-
nizationanddemonstratedanalyticallythat it canachievegoodperformancewhenthe sizeof the
simulationmodelis large[25,24]. The solutionwenow developfor TPN simulationsis an ap-
plication of this approachto the TPN problem. We extendour previouswork by tailoring the
approachto workaroundTPN featuresthat causedifficultyfor parallelizedsimulation,andto take
advantageof TPN featuresthat easeparallelizedsimulation.

The remainderof this sectionis dividedinto threeparts. Thefirst part providessomegeneral
informationneededto understandthe synchronizationissue.The secondpart discussesthe basic
synchronizationitself, while the third part extendsthe methodto TPNs wheretransition firings
maybepreempted.

3.1 Preliminaries

We assume that the TPN model is partitioned by the lnodeler into logically cohesive subnets we

call Logical P_vcesses, or simply, LPs. LPs are mapped to processors. Every processor maintains

its own simulation clock, and an event list for every LP. A rain-heap maintained over the minimM

elements of each LP's event list allows us to treat the processor as having a single event list. One

processor communicates with another by sending a time-stamped message. In our framework that

message always reports the arrival of a token to some place, and the time-stamp records the arrival

time.

All places and transitions in a given LP will always be executed on the same processor, even if

the LP's processor assignment changes. The 1)roblem of effectively aggregating a netlist description

of a TPN into LPs seems to be extraordinarily difficult, and perhaps unnecessary. Petri nets are

commonly developed using graphical tools; these tools frequently let the modeler aggregate and

then duplicate some subnet, e.g., a processor or an interface logic module. These are excellent

candidates for LP aggregation, and it is a siml)le matter for a modeler to graphically communicate

such aggregation to the tool. We have done exactly this in our tool pntool[20], that serves as the

graphical front-end for our automated TPN parallel simulation testbed.

Our solution requires that two rules be followed when aggregating (and pntool enforces these

rules).

* All input places for a transition are assigned to the same LP as the transition.

• Every transition t with an output place that is assigned to a different LP than t must have a

non-zero firing time.

The first rule vastly simplifies the logic needed to decide when a transition may fire. Alternate

synchronization schemes for timed Petri nets do not make this assumption [36, 13]. The second

rule ensures that there is always a lapse of simulated time between when a transition firing on one

processor may affect the state of another processor. This requirement could be relaxed (with some

modifications to dar approach), but at the cost of increased synchronization communication. We



havechosennot to doso,both for thepurposesof increasedperformance,andbecausewefeelit is
natural to havenon-zerotime transitionsbetweenLPs.

The eventprocessinglogiconeveryprocessoris identicalto the eventprocessingdescribedin
Section§2,savethat the codemustdetectwhento senda TokenArrival messagerather than
insert a TokenArrlval eventin an eventlist. Our synchronizationprotocolestablishescontrol
overtheseinter-LP messagecommunications.The protocolrelieson two key activities: the pre-

sending of TokenArrival messages, and the computation of lower bounds on the time-stamp of

tile next message all LP might send to an off-processor LP. We have already introduced the notion

of pre-sending TokenArrival messages--these messages are sent as part of BeglnFirlng event

processing, rather than EndFirlng event processing.

Given that TokenArrival messages are pre-sent, one can, at any time, compute a lower bound

on the time-stamp of the next message a processor may send to another. For any LP, consider the set

of border transitions, those transitions assigned to it which have output places assigned to a different

LP, on a different processor. Let 5m_,, be the minimum firing time among all border transitions in

all LPs. Now suppose that T_im is the value of a processor's simulation clock after completing some

event's processing (the lookahead we discuss here is computed between the processing of events, not

during). The next message sent off-processor cannot have a time-stamp smaller than Tsi,,_+5,,,i,_, for

only BeginFiring events send messages, and the time-stamps on these messages are constructed

by adding the processor's clock vahm to the transition's firing time. Thus, Tsim + 5,,_i,, always

provides the desired upper bound. A potentially larger co_ditional bound can be constructed with

very little extra cost by replacing Tsi,,_ with the least time-stamp on any event in the event list,

say Emi,_. We take E,,_i,_ = oo if the list is empty. The validity of this bound is conditioned on the

processor not receiving a TokenArrlval message with a time-stamp smaller than Emin. We have

shown in [25] that bounds conditioned on the absence of further message arrivals suffice for our

protocol. Our parallel solution assumes the existence of a routine BoundNextMsgTime() that

finds E,,,,_ and returns the sum E,,_i,_ + 5,,_i,_. We turn next to a discussion of the protocol and its

integration into the simulation algorithm.

3.2 Parallel Algorithm

The following is a brief overview of the protocol. Suppose that all simulation events in all processors

up to (but not including) time Tsi,,_ have been simulated. Our protocol will compute a simulation

time w(T_i,n), such that all events with time-stamps in the window [T_i,,,, w(Tsim)) can be executed

without further communication between processors. The openness of the upper window edge is

deliberate, in order to avoid the receipt of the message with time-stamp w(Tsim) which defines the

window. Off-processor messages generated in the course of processing BeginFiring events may be

buffered and delivered at the end of the window processing; alternatively, they may be sent and

received directly. Upon receipt a message is converted into a TokenArrival event and is inserted

into the recipient's event-list. Messages sent between co-resident LPs are converted immediately

into events. If pro, grammed properly, there is virtually no additional overhead due to on-processor

inter-LP commnnication. Once all events up to time w(T_i,,,) are known to have been simulated, a



newwindowis computed,andthe processrepeats.
Fromthe descriptionaboveit is clearthat the time w(Tsi,,,) must be chosen carefully. Given

that all processors have simulated all events up to time Tsim, w(Tsi,,,) is computed by having each

processor call BoundNextMsgTime(). w(Tsim) is defined to be the minimum conditional bound

returned, among all processors. The global nlininmm computation can performed in O(logP)

time on most multiprocessors, where P is the number of processors. We have proven elsewhere

[25] that every off-processor message the simulation will send after this point has a time-stamp

of at least w(Tsim). Thus, all inter-processor messages that the simulation will generate in the

interval [Tsim,w(Tsim)) have already been identified, and converted into events. Every processor

may therefore simulate its submode] up to (but not including) time w(Tsi,,,) without danger of

receiving a "late" message. This property leads us to the protocol given below.

1. For every initial token, insert a TokenArrlval event in the appropriate processor's event

queue, with time-stamp 0.

2. Setsl =0, seti= 1.

. For every processor, call BoundNextMsgTime(). Use a logarithlnic time rain-reduction to

compute w(_)--the nlinimum value returned by any BoundNextMsgTime() call. Every

processor learns the value of w(si).

. Every processor may now simulate its submodel up to time w(si), independently of and in

parallel with all other processors. Event processing is identical to that described in Section §2,

save that TokenArrival events destined for off-LP places are passed as time-stamped mes-

sages. Messages between co-resident LPs are converted immediately into events.

. The processors synchronize globally. Following the synchronization, every processor accepts

any remaining unreceived messages sent to it during the processing of window [si, w(si)). A

processor consumes a received message siml)ly by inserting the described event into its event

list.

6. Define si+l = w(si), then increment i. Check termination conditions, return to step 3 if the

termination conditions are not satisfied.

The reason for this protocol's success on large models is quite intuitive. Imagine the simulation

time line, and mark it wherever an event occurs. This protocol slides a window across the time-line,

allowing processors to execute simulation workload in parallel during the span of a window. Each

window is at least 6,Hin time units long. As we increase the size of the simulation model (presuming

(_mi, does not also increase), the density of events on the simulation time line will increase, and

so the number of events within a window will increase. The overhead of the protocol lies only

in determining the size of the window; hence, as tim model size grows the protocol's overhead is

amortized over an increasing number of events. Of course, one still strives to keep the overhead

low, but it is rea_s'_'lring to know that regardless of its cost, it can be spread over the processing
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of many, many events on large models. The protocol can identify many events even when there is

no minimum firing time. Applying tile results of [25] to TPN, we are assured that if firing times

are random and exponentially distributed, then the number of events in a window grows without

bound as the model size is increased.

3.3 Tokens Committed at Firing

We are also able to handle TPNs with a different firing rule: if a transition with firing time (f is

first enabled to fire at time s, and remains enabled throughout time interval [s, s + _f], then (and

only then) the firing occurs at time s + _ and token counts are adjusted at the transition's input

and output places. Due to the influence of decision places, we cannot commit to the effects of firing

a transition until the full euablement duration has elapsed. For instance, suppose transitions tl

and t2 share a input decision place p. A token arrives at p and enables both of them. The first to

fire consumes the token at p, and so disables the other. A serial simulator would post EndFiring

events for both transitions at the instant they become enabled. Then, the first EndFiring event

processing will include a re-analysis of the status of all transitions that might have been disabled;

the EndFiring event for each such is removed from the list. Consequently, in the parallel simulation

one cannot safely pre-send TokenArrival messages for preemptable transitions.

The easiest solution is to prohibit errant messages from being sent. We simply constrain LP

formulation further so that if t is a transition with a decision input place, than all of t's output

places are assigned to the same LP as t. This rule ensures that erroneous TokenArrival arrival

messages are never sent, since nothing can interfere with the firing of a border transition once it is

enabled.

The solution above may cause a model to be so over-aggregated so that opportunities for

parallelism are limited. If this is the case, it is possible to deal with the situation in a number of

ways; however all require some increased communication. One method is to have TokenArrival

messages be sent as before, recognize that those from transitions with decision input places are

tentative. Tentative TokenArrival messages are treated as "appointments" [23]. A processor Q

receiving one with time-stamp s from processor P will not simulate any event with time-stamp s

or greater until it is given permission by P. If P ends up canceling that TokenArrival event, it

immediately sends a message to Q notifying it to cancel the event. If P ends up actually simulating

the associated EndFiring event, then it sends a message to Q indicating the TokenArrival event

is correct. Deadlock is avoided if one ensures that there is a positive delay _ > 0 between when the

receipt of a TokenArrival message to an LP can affect the behavior of any of its border transitions.

If event cancellations are rare, then we may be able to avoid the additional message-passing

and synchronization costs of appointments by using optimism. It is not difficult to synthesize our

approach with the method of synchronous relaxation [6]. The idea here is to sinmlate a window

as before, with pre-sent TokenArrival messages, which we assume are correct. We can always

detect when a tentative message was incorrect, because the sending processor will simulate the

disenablement of the transition whose firing was already reported. That "error" is easily corrected

by sending an eve[_; cancellation message after the erroneous TokenArrival message. The window



is resimulatedthen. If moreerrorsarediscoveredin the nextpass,then they arerepairedand the
windowis resimulatedagain.This processcontinuesuntil the windowis simulatedwithout error.
Convergenceisassuredbecausethecorrectionto theearliestfault in an iterationcannotbeundone
by anylater iteration. State-savingis requiredin orderto supporta window'sresimulation.This,
andthe costof repeatinga window'ssimulationarethemainoverheadsof the method.

Oneof theattractionsof usingsynchronousrelaxationwith ourwindowsis that wecantakead-
vantageof windowpropertiesto minimizethecommunicationoverhead.In thegeneralsynchronous
relaxationmethoda correctionmayendup causingthe transmissionof a messagethat hasnever
beenseenbefore.This hasnontrivial ramificationson the typesof error correctionsthat haveto
be anticipated,ttowever,wecanusesynchronousrela_xationsothat the only issueto be resolved
by iteration is the validityof tentativeinter-processorTokenArrival messages.

Wewouldlike to minimize the communication cost of message cancellation, and so modify the

protocol so that any message with time-stamp s r is buffered until the simulation reaches the window

[s,w(w)) containing s'. The message is sent just prior to simulating [s,w(s)). IIolding back the

message this way does not affect the value of w(s) computed (because the TokenArrival message

being withheld has a corresponding EndFiring event with the same time-stamp in the sending

processor's event list). This arrangement permits a processor to cancel any tentative message locally

(i.e., without interprocessor communication) in any window prior to the one containing its arrival

time. Of course, if sent, the message might still be cancelled by some event between times 8 and s r.

The processor P that originally sent the message to Q discovers the cancellation conditions, and

sends a cancellation message after it. Receiving the cancellation, Q changes the validity status of

the message, recovers its state at s, and resimulates the window.

The algorithm executed by each processor is presented below. We presume that every tentative

message has a "valid/invalid" bit. It is possible for an event cancellation message to be itself

canceled, so we define the effects of a cancellation on a tentative message to be an inversion of its

valid bit. In the description below, set Active contains all tentative messages sent by the processor

in the present window, and Buffered holds all known messages generated by the processor which

have not yet been sent. Cancellation lnessage generation is handled simply. During any iteration,

the processing of an EndFiring event for transition t checks to see if (i) an associated tentative

TokenArrival message in Active or Buffered was considered to be valid or not in the previous

iteration, and (ii) whether any tentative TokenArrival message in Active or Buffered cancelled

by this event was considered to be valid in the previous iteration. These checks are performed on

status bits of lnessages in Active and Buffered. Tim effect of a conflict between the valid bit and the

simulation state is to invert the valid bit. If the errant message is in Active, a cancellation message

is sent to the message's recipient.

The algorithm's description follows.

1. For every initial token, insert a TokenArrival event in the appropriate processor's event

queue, with time-stamp 0. Assign sl = 0, i = l, Buffered=_, and Active=O.

2. Compute anti'distribute w(si).
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. Move all messages in set Buffered with time-stamps less than w(si) into set Active. Set the

valid bit in each message in Active, and send copies of all messages in Active to recipient

processors.

4. Synchronize, and store received messages. Call this set Received. Checkpoint state.

5. Convert all valid messages in Received into events.

6. Every processor independently simulates its submodel up to time w(si). Generated messages

to be sent off-processor are placed in Buffered. Validity of messages in Active and Buffered

is checked on EndFiring events. With any inconsistency, the message's valid bit is inverted;

if the message is in Active a cancellation message is sent and the processor is considered to

have faulted.

7. Synchronize, and determine whether any processor faulted. If not, terminate (if appropriate)

or set si+l = w(si), i = i + 1, Active=Received=D, remove invalid messages from Buffered,

and goto step 2 .

8. (Faulty window processing) Process cancellation messages by inverting valid bits on cancelled

messages in Received.

9. Synchronize. Any processor receiving a cancellation message recovers its checkpointed state,

and goes to step 5. All other processors go to step 7.

We have not yet implemented this algorithm. Issues to be examined are the cost of state-saving,

the number of resilnulations that are required on average to determine the correct behavior, and

optimizations that permit a processor to realize it is insensitive to a message cancellation. If its

costs turn out to be low, then synchronous relaxation is an attractive method for exploiting more

parallelism than our strictly conservative method.

4 Automated Mapping

Given that the simulation has already been divided into LPs, our approach to the mapping problem

has two components. First, at load-time, the LPs must be assigned to processors without knowing

either the distribution or intensity of workload. This is accomplished using a static mapping

algorithm, operating on topological estimates of workload. Secondly, at run-time, the program

monitors the simulation activity of each LP. Based on these measurements, the program periodically

decides whether to redistribute the LPs. The decision is based on projected finishing times under

the present mapping versus a proposed mapping (computed using the static mapping algorithm

applied to the measured workload). In this section we develop the static mapping algorithm and

analyze some of its properties. Then we describe the dynamic remapping decision policy that

governs when remapping occurs, and its implementation. Performance data presented in Section

§5 is taken from rh'ns managed by these techniques.
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4.1 Static Mapping

Supposethat the TPN has been partitioned into a set of n LPs. We need to assign an execution

weight ei to each LP i, however, we have no idea of what its computational requirements will be.

As an initial guess we could set ei equal to the number of places and transitions in LPi. Similarly,

for every communicating pair i and j we assign an estimated communication cost; the rate of actual

communication between i and j is unknown, as an initial guess we take the number of arcs crossing

between the two. Now consider the mapping problem, given these costs. This weighted graph

model has been studied in many contexts, assuming many different objective functions. The cost

of parallel processing is best captured if we seek to mininfize the load on the most heavily loaded

processor, where the cost of a processor's load is defined to be the sum of the execution weights

of its LPs, plus the sum of the costs of its LP's edges that are "cut" by the mapping (i.e., edges

whose LPs lie on different processors). Formally, if ei is the execution weight of LP i, W(i, j) is the

communication weight between LPs i and j, and Ri(m) is the set of vertices assigned to processor

i under mapping m, then the bottleneck cost is

,n x{ cj +
|

Unlike many other objective functions in the mapping literature, this one explicitly considers paral-

lelism in both computation and communication. Fast algorithms for finding optimal mappings with

respect to this function are known when the LPs are arranged in a linear order, and the mapping

satisfies the contiguity constraint [3, 10, 26, 5]. This means that the workload assigned to a pro-

cessor must be a contiguous subchain of LPs in the linear order. If we are to use these techniques

we must rationally order the LPs, attempting to force the highest rates of communication to be

between co-resident or nearby LPs. We then apply a fast mapping algorithm. Since the mapping

algorithms themselves are not new, we focus on the problem of linearization. Following this we

prove that the algorithm finds optimal mappings on balanced ring and hypercube graphs, and we

explain why many different linearizations enable the chain mapping algorithm to find the optimal

solution.

4.1.1 Linearization

We seek an ordering that concentrates highly communicating LPs close together everywhere through-

out the ordering, because these have a much better chance of being co-resident. It is useful then

to take a global rather than incremental view when ordering. Furthermore, it seems that even the

simplest ways to quantify an ordering create a computationally intractable optimization problem.

For example, the problem of maxinfizing the sum of weights between adjacent (in the ordering)

LPs is a variation of the famous traveling salesman problem, which is is NP-complete. We desire

even stronger conditions on our linearization, in keeping with its eventual usage. The linearized

workload is to be partitioned into contiguous subchains, so that communication between LPs in

the same subchaid'is essentially free. To measure this, consider an ordering r and the partitioning
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of LPsunder_-into contiguoussubchainsof equallength2"/ (excepting the last one, which may be

shorter). Let Sj(_r) denote the sum of weights on edges between LPs assigned to the same subchain,

the sum being taken over all subchains. The larger Sj(Tr) is, the less communication would occur

between processors if the chain were partitioned as assumed. An ordering _ that maximizes Sj(_)

for all j = 1,2,..., [log IGI] captures our desire that the more closely LPs communicate, the closer

they are in the ordering.

We have developed a greedy approach based on a maximal weight matching algorithm [35]. We

call this the match/merge a]gorithm. Given an undirected graph (G, E) with n vertices and m

edges with nonnegative edge weights, a matching is a subset M C_ E constrained so that no two

edges in M share a vertex. A maximal weight matching maximizes the sum of edge weights possible

in a matching. Sophisticated algorithms determine a maximal matching in O(nmlog m) time [35].

If we weight the edges of an LP communication graph with estimates of communication volume

per unit simulation time, then a maximal weight matching will find a good way of simultaneously

pairing together LPs with high communication costs.

Our algorithm will ensure that LPs paired under the matching will be adjacent in the ordering,

consequently any ordering _ it discovers will always maximize Sl(Tr). Of course, a single application

of a matching algorithm will not linearize the LPs. In preparation for another matching step

we reduce the graph size by merging paired LPs, into super-LPs (and any LP not paired in the

matching is also considered to be a super-LP). Edges between super-LPs are defined naturally: an

edge between super-LPs A and B exists if A contains an LP a and B contains an LP b such that a

and b share an edge in the original LP graph. The weight of an edge in the super-LP graph is the

sum of all edge weights of edges it represents, i.e., the total communication volume between LPs in

A and LPs in B. Following this reduction, we apply the same matching algorithm to the super-LP

graph. If super-LPs A and B are paired, then in our ordering the LPs represented by A and B

will be adjacent in the sense that no LP from a super-LP other than A and B can lie between any

two LPs in the concatenation (A, B). Following a pairing of super-LPs we can reduce the graph as

before, and continue the process until the entire graph has been reduced to a single super-LP. The

object at each step j of the algorithm then is to maximize Sj(Tr), given the existing grouping into

sets of size 2j-l. The algorithm is described below.

1. Initialize n = number of LPs, index LPs from 0 to n - 1. hfitiaiize edge weights W(A, B) for

all LPs A, B. ( W(A, B) = 0 if m and B do not communicate ).

2. Find maximal weight matching M.

3. Order the super-LPs: for every {A, B} E M, if index(A) < index(B) then C = (A, B) else

C = (B,A); index(C) = min{index(A),index(B)).

4. Renumber the merged super-LPs to maintain their represent ordering, but to range over

[0, I__J- 1].

5. If some LP g;is not matched under M, then index(Z) = [_J.
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6. For all (A,B), (C,D)matched above,

W((A,B),(C,D))= W(A,C) + W(A,D) + W(B,C) + W(B,D).

7. If n is odd then n = [_J + 1, else n = L_J. If > 1 goto step 2.

The ordering of merged two super-LPs ((A, B) vs. (B, A)) is specified in terms of inherited

index numbers. This is somewhat arbitrary. While values of Sj(Tr) are insensitive to this choice,

other objectives (such as distributing workload evenly along the chain) are not. The match/merge

process is depicted naturally by a binary tree whose leaf vertices represent original LPs, and where

parent-child relationships reflect merging decisions. Given the merging decisions, each possible

linearization is uniquely determined by a set of decisions that order each interior vertex's children.

As there are n/2 interior vertices, then there are 2'_/2 different linearizations derivable from a given

set of match decisions. If the decision is made that child A precedes child B, the effect is that all

LPs descended from A will precede all LPs descended from B in the ordering. It might be useful to

delay ordering decisions until the tree is constructed, and then choose orderings to spread out the

workload as well as to better localize the communications. We have not yet explored this problem,

but feel it is worthy of future attention.

We can bound the deviation from optimal of the linearizations produced by this method. Let

rrh be a linearization produced by our heuristic, and for every j let a-y be a linearization that

maximizes Sj(Tr) over all linearizations 7r.

Lemmal For all j= 1,2,...,[log[G H,

,.-, ,, opt',
,_ATrj ) Sl(# _)

- Sj( h)"
op_

Proofl Let $1 be the set of first 2 j vertices under rrj , $2 be the second set, and so on. The

vertices in every set 5'/have up to 2J(2 j - 1)/2 number of edges between them. These edges can be

partitioned into 2 j-I sets Ei,k = {{i,(i + k) rood 2j) I i = 0, 1,...,2 j - 1}, for k = 1,2,...,2 j-1.

Note that each Ei,k is a matching on SI. Now for every k, uiE/.k is a matching on the unordered

graph (G, E). Since Sl(Tr h) maximizes the sum of weights of a matching on (G, E), we have

< (2J-

The result is obtained dividing through by Sj(rh). •

Notethat since Sj(Tr h) >_ S_(r h) for all j, we get a loose "pre-computation" bound of 2j - 1.

This bound will be sharpened given measured values of S_(Tr h) and SjQrh).

Another feature of a match/merge algorithm linearization is that the sum of edge weights

between adjacent LPs is not less than half of optimal.

Lemma 2 Let w°pt be the maximum possible sum of edge weights between adjacent LPs in any linear

ordering, and let w h be the sum of such weights under a linearization produced by the match/merge

algorithm. Then w_Pt /2 <_w h.
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Proof." Let _-ovtbealinearizationthat maximizesthesumof weightsbetweenadjacentLPs,and
renumberthe LPs with respectto 7r°pt. Let S_w,_ be the set of edges of the form (i,i + 1), for

i even, and let Sodd be the set of edges of the form (i,i + l) for i odd. Both Se_,_,_ and Sodd are

matchings, hence the sum of edges in either is no greater than $1 (Trh). This gives

w°p t < 2S1(7r h) _< 2oJh,

from which the result follows. |

This result is essentially the same as a similar one for a TSP heuristic based on a matching step

[181.

To accelerate solution time (possibly at the expense of solution quality) we normally use a

O(n)-time approximation to the maximal weight matching step, called a "stable" matching. This

is one in which it is not possible to find matched pairs (A, B), (C, D) such that

max{W(A,C) + W(B,D),W(B,C) + W(A,D)} > W(A,B) + W(C,D).

Such an algorithm is obtained from a modification to the stable marriage problem [31] for bipartite

graphs. The sense of the original stable marriage solution is to loop over all "males", each one

attempts to become engaged by proposing to the "females" in decreasing order of preference. If a

suitor finds a previously engaged debutante such that the debutante prefers the new suitor to her

engaged, the old engagement is broken and a new one forged, and the jilted suitor is left to pick

up and continue his search for a mate.

Restated in our context, every LP orders all other LPs with which it communicates. Higher

communication implies higher preference. We cannot immediately apply the stable marriage algo-

rithm, as we lack distinct sexes. A minor modification to the algorithm has the effect of selecting

sexes: once an LP becomes engaged playing the role of a debutante, it is not later considered to be

a suitor. This effectively separates the LPs into two equal sized groups; the matching found will

be stable with respect to the sex roles discovered during the process.

The effects of match/merge using stable matching on a 3-dimensional hypercube and on a 2-

dimensional mesh are illustrated in Figure 1. Ties between equal weighted edges are resolved in

favor of LPs with lower index numbers (this is an important aspect of the match process when

matching balanced graphs). We see that the hypercube with equal weight edges collapses along

dimension lines, and that tile mergings in tile mesh alternate between dimensions. Linearizations

based on these processes are clearly dealing with the global structure of the graph rationally.

Petri:net models of parallel architectures exhibit high connectivity locally, for instance, reflect-

ing the interconnection pattern of a modeled parallel architectures. This feature has an impact on

the algorithmic cost of linearization. If each of n LPs communicates with every other LP then there

are O(n 2) distinct inter-LP communication costs to calculate, and the computation of preferences

requires _(n21ogn) time. IIowever, these costs drop to O(nB) and _(nBlog B) if an LP commu-

nicates with no more than B others. This makes a real difference when n is large, and B << n. It

is also true for our,CM-I router example.
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Match/Merging a Hypercube with unit edge weights

2 I :
2

2

2

Match/Merging a Mesh with unit edge weights

Figure 1: Behavior of match/nmrge algorithm on a hypercube, and mesh

The cost of a matching step is dominated by the cost of computing and sorting inter-LP com-

munication costs. The first step exacts an O(nBlogB) cost. At the second step the number

of super-LPs involved is halved, but in the worse case the number of connections a super-LP

has doubles. This gives the second step a cost of O(nBlog(2B)). In general the i th step costs

O(nB log(2 i-1B)); the cost sum over all log n steps is

0 |__,nBlog(2 i-lB) = 0 nB_(logB+log2 i-')
\i=1 i=1

: o .)log, + log ,,)

One of the attractions of the match/merge algorithm is that on certain graphs it is optimal in

the sense that the linearization it finds simultaneously maximizes Sj(Tr) for all j. We will specifically

argue for its optimality when applied to rings and to hypercubes. Then we'll examine an asymptotic

bound on the deviation of the algorithm from optimality on a multidimensional mesh. In all of

these cases the cox]_hmnication topology is very regular, and we assume unit edge weight costs. This

A
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situationcorrespondsto aninitial mappingof ahomogeneousPetrinetmodelof sucharchitectures,
prior to run-timemeasurementof executionandcommunicationcosts.This is still an important
problem,becauseevenwith measuredcoststhe modelmay wellbe uniformlyweighted.This in
fact wasanunexpectedconsequenceof our CM-1routerexample.

LP enumerationhasa definiteaffecton the matchesmade,andalittle careis requiredfor our
optimality resultsto hold. Forthe specificcasesweconsiderwesupposethe LPsto beenumerated
in a "natural" way.Wepresumea ring is enumeratedsothat adjacentverticesin the enumeration
sharea communicationedge;wepresumethat verticesin a 2k × 2k x ... 2 k torus are enumerated

in row-major order, just as they would be in an multi-dimensional array; we presume the usual

enumeration of a hypercube where vertex i and j share an edge if and only if the Hamming distance

between i and j is exactly one.

Lemma 3 Let (G, E) be a ring, enumerated naturally, with unit edge weights, and [G[ = 2k. Then

for all j = 1,2,...,k, any linear ordering r produced by the match/merge algorithm maximizes

Proof: For any integer j, it is obvious that the partition into 2k-j pieces maximizing the number

of edges between vertices in a common partition element is obtained by grouping the first 2J vertices

together, then the next 2j, and so on. This is precisely the grouping defined by the match/merge

algorithm.

Lemma 4 Let (G, E) be a hypcrcube of dimension k, suppose that G is enumerated naturally, and

that all edges have unit weight. Then for all j = 1,2,..., k, any linear ordering rr produced by the

match/merge algorithm maximizes Sj( rr ).

Proof: We first induct on x to prove that the number of edges between members of any subset

of x vertices is no greater than (x log x)/2. The base case of z = 1 is trivially satisfied. Suppose

then that the claim is true for any subset of size x - 1 or smaller, and choose any subset A with x

vertices. Split A evenly into two subsets A1 and A2. The number of edges between vertices in A is

the sum of the edges on A1 plus the edges on A2 plus the edges between them. There are at most

Ix/2] edges between them, and by the induction hypothesis the sum of edges on Al and on A2 is

no more than (x log(x�2))�2. Therefore the number of edges on A is no more than

 log( /2) <Lx/2J + 2 2

which completes the induction. Now observe that when x = 2i the bound is met, and is met

by sets that themselves form hypercubes (which have x2 x-I edges contained within them). Now

at every step i the match/merge algorithm merges hypercubes of dimension i - 1 into hypercubes

of dimension i (a consequence of G being ordered naturally). Thus Sj(r) is maximized for each j. •

Pg;;,
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Finally,considera d-dimensional mesh, where G may be placed in one-to-one correspondence

with integer-vector elements of [1,2 k] × [1,2 k] x... [1,2k], and edges exist between nearest neighbors

in each dimension. Assuming a natural ordering and unit weight edges, the match/merge algorithm

cycles through each dimension, i.e., at the jth step it merges all vertices that are neighbors in

dimension j rood d. The super-LPs it aggregates are themselves nearly cubic submeshes. The

problem of partitioning such a grid optimally has been studied in the context of meshes used for

numerical problems [28]. These studies look at the ratio of computation to communication costs,

where computation is measured as the number of mesh points in a partition element, and the

communication cost is measured as a function of mesh edges between partition elements. For our

purposes we consider the communication cost to be simply the number of such edges. In this

context the problem of maximizing Sj(Tr) is the problem of partitioning the mesh into 2 d-i pieces

so as to maximize the computation/communication ratio of a partition element. It is known that

cubic partitions are not optimal, being bested for instance by hexagonal partitions[28]. We can

bound however the asymptotic deviation of cubic partitions (and hence the asymptotic deviation of

our Sj(Tr) from optimal) by considering the continuum limits. For a given volume V in Euclidean

d-space, the topology that maximizes the volume to surface ratio is a sphere. Surface area here

directly corresponds to numbers of cut edges, if we think of the sphere as enclosing many many

mesh points, and we count the edges cut by the sphere's outer shell. Let rd(V) be the radius giving

rise to volume V for a sphere in d-space. The ratio of volume to area is rd(V)/d (a fact established

from straightforward principles of calculus). Suppose then that V = s d, the volume of a cube with

side s in d-space. The ratio of volume to surface of the cube is sd/(2ds _t-1). It follows then that the

ratio of the cube's surface to the sphere's surface given volume s d is just 2rd(Sd)/s. As d increases,

rd(J)/s decreases, hence we may use r(s2)/s = _ as an upper bound for all d >_ 2. Consequently,

the asymptotic ratio between the number of cut edges in a cube to that cut under the optimal

partition (which will maximize Sj(Tr) and thereby minimize "surface") is no more than 2v/-_.

4.1.2 Chain Mappings

Suppose that some linearization of the LPs is given. The most general formulation of the remaining

mapping problem allows any two LPs in the linear order to have non-zero communication costs. A

dynamic programming programming formulation solves the problem in O(Pn 2) time, P being the

number of processors. To see this, let C(j,p) be the optimal bottleneck cost achievable mapping

LPs 1 through j onto p processors. Then the principle of optimality asserts that

j J

C(j,p) =,nin{n, ax{C(i,P- 1), _ ek + _ _ W(k,m)}}.
i<j k=i+l k=i+l m<i,m>j

A key thing to remember is that this solution permits non-adjacent LPs to have non-zero commu-

nication costs. Previous treatments of the chain mapping problem have restricted their attention

to the alternate case. Not surprisingly, under the more constrained assumption the algorithms have

lower complexity., _;
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Oneof tile interestingaspectsof the match/merge/mapapproachis that wecanprovethere
are instancesof the mappingproblemwherethe approachwill find the optimal mapping.First
weshowthat match/merge/mapfinds the optimal solutionfor rings and hypercubeswith unit
communicationcostsoneachedgeandcommonexecutioncostsfor eachLP.This mayseemweak,
but is strongerthan it looksat first glanceowingto the tensionbetweenloadbalanceand com-
municationcosts.Furthermore,it is not anassurancethat is givenby othermappingheuristics.
The secondresult is entirelygeneral.Weshowthat that anyoptimal mappingcanbeembedded
in a linearization,and that therearea greatmanydifferentequivalentlinearizationsuponwhich
the chainmappingalgorithmwill discovera solutionwith optimalcost.This result givesussome
measureof theresilencyof restrictingourattentionto chainmappings.

Thefirst conclusionis obvious.

Lemma 5 Let (G, E) be a ring, enumerated naturally, with unit edge weights. Suppose every vertex

has common weight w. Then for any power-of-two number of processors P, the match/merye/map

algorithm minimizes the bottleneck over all possible partitions of the ring into nonempty P sets.

Proof: Under any mapping, every processor has a communication cost of at least two. The

linearization produced by the match/merge algorithm gives every processor a communication cost

of exactly two. The chain mapping algorithm will map no more than [IG[/P] LPs to any processor,

yielding a bottleneck cost of 2 + w[[G[/P], which is optimal. II

The second conclusion shows that in balanced hypercubes, for moderate values of w it is optimal

to assign equal sized hypercubes of smaller dimension to each processor--as does match/merge/map.

Lemma 6 Let (G, E) bc a hypcrcube, enumerated naturally, with unit edge weights, and IG[ = 2 k.

Suppose every vertex has common weight w >__1/(2 ln2). Then for any power-of-two number of

processors 2j < 2/', the match/merge/map algorithm minimizes the bottleneck over all possible

partitions of the hypercube into up to 2j pieces .

Proof: Consider a processor assigned any x LPs. The proof of lemma 4 shows that the sum

of edges between LPs on that processor is no greater than (x/2)logx; hence there are at least

(k - x log x)/2 edges to LPs on other processors. The function

kx - xlogx
f(x) = wx + 2

is thus a lower bound on the cost of assigning x LPs to a processor. Note that the bound is achieved

if the set forms a hypercube. Considering x as continuous, we have

k - log x 1
if(x) = w -t- 2 2 ln2

Note that logx is maxinfized when equal to k, hence f is increasing over x e [0, 2 k] if w > 1/(2 ln2).

If xl, x2,...x2J are workload assignments (xi >_ O, _i2_=1xi = 2 t' then the function

g(xl,..., =

4

I
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is a lowerboundon tile bottleneckcostof the assignment.Sincef is increasing, g is nlinimized

when the maxinmm xi is as small as possible--that is, when the xi's are identically 2k-j. This

situation is achieved when the LPs are partitioned into 2j hypercubes, furthermore the value of g

then is also exactly the bottleneck. If G is enumerated naturally, the match/merge/map algorithm

will produce this assigmnent. •

Other situations where the matcll/nmrge/map approach finds optimal solutions occur as a result

of the definition of the bottleneck cost. Any solution that minimizes the bottleneck can be embedded

in a linearization. For example, given the optimal mapping we can renumber the LPs assigned to

processor 1 starting at 1, then carry over the enumeration to LPs assigned to processor 2, and so

on. ttowever, a large number of lJnearizations are equivalent in the sense that the chain mapping

algorithm will find the optimal bottleneck on them. For example, any permutation of the processor

ordering does not affect the bottleneck cost, and does not confuse the chain mapping algorithm.

Likewise, within the LPs assigned to a processor there is an insensitivity to their ordering within the

processor. The net effect is that given an optimal solution and an associated linearization 7r°pt, there

are a number of permutations of rc°vt that will not affect the sets of LPs that are co-resident. Given

any one of these linearizations the chain mapping algorithm with discover the optimal bottleneck.

Lemma 7 For any mapping problem involving m LPs and P processors and minimized bottleneck

cost b, there are at least P! x F(m/P) p different linearizations upon which the chain mapping

algorithm will discover a solution with cost b.

Proof: Suppose that a solution nlinimizing the bottleneck value b assigns ni LPs to processor i,

for i = 1,2,..., P. From the discussion above there are at least P[ x I-IP=l ni! different lineariza-

tions for which the chain mapping algorithm will produce a solution with bottleneck cost b. In the

continuous domain, F(nl) = hi!, and for fixed EP=1 ni = m the product YI/P=I I_(?tl) is minimized

when ?_l : '/_'2 : "'" ?lp : ?1tIP. •

4.2 Dynamic Remapping

Our approach to dynamic remapping has essentially been laid out before, in [27], with an emphasis

on physical computations that exhibit distinct phases. The issue there is to determine with sufficient

confidence that a phase change has occurred and that performance wiU benefit from remapping.

The general approach is to periodically consult an "oracle" that judges whether it is worthwhile

to remap now. The oracle's decision is not immediately acted upon though, it is used to update

(via Bayes Theorem) a gain probability that performance will improve by remapping now. The

optimal decision policy was shown to be a threshold policy--lf the gain probability is larger than

some step-specific threshold, then one ought to remap. As computation of the optimal decision

thresholds proved to be impractical, a heuristic was proposed to use a constant, high, threshold.

We apply this work to the present context, as follows. Periodically, just prior to the beginning

of a window's processing the processors all coordinate to make a remapping decision. The decision
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is basedon measurements of the average processing cost undergone so far by every LP. As the

simulation runs, a processor keeps track of the number of events executed so far on behalf of each

LP. The processor also keeps track of the total time spent so far processing events, by measuring

the time spent by a routine which in one call processes all the events done by a processor in a

window. With these figures we compute the average time spent by each LP processing events in

a window; the average may be exponentially decayed to allow sensitivity to time-varying averages.

The averages become the LP weights for the static mapping algorithm. It makes a great deal

of sense to balance based on ttmse per-window averages, since windows are separated by barrier

synchronizations. Furthermore, given these averages, a prospective mapping, and knowledge of the

simulation's termination time (in simulation time) we may estimate the remaining time required to

complete the simulation under the assumed mapping. Our approach then is to have an oracle routine

compute the best mapping given the present LP workload averages, then predict the expected time

to remap (with an estimated remapping cost of 1 second) and finish the computation under the

new mapping. The oracle similarly predicts the expected finishing time if one does not remap.

The oracle recommends remapping if its projections suggest a performance improvement of at least

10%. This judgement is used to update the gain probability. The purpose of the 10% padding

is to protect from underestimating the remapping cost (which isn't known until it is observed).

Since we have observed that the initial mapping can be truly inferior, we modified the heuristic so

that a remapping is performed automatically if the oracle judges the new mapping to be twice or

more faster than the old. In our experiments we have seen remapping triggered both by the gain

probability crossing the threshold (which requires 2-3 consecutive positive oracle judgements), and

by the twice-as-good rule. The remapping logic is not disabled after the initial remapping; if the

initial remapping decision turns out to be very wrong it is still be possible to correct it. Similarly,

if the workload has a time-varying average, then the decayed sample averages can reflect this, and

trigger a remapping.

Our implementation of this policy deserves comment, as it would be easy to implement the

logic inefficiently. The basic idea is to provide every processor with an estimate of every LPs

workload, and then have every processor execute exactly the same code and make exactly the

same remapping decision as all the others. We attempt to distribute workload information with

relatively little communication, as follows. In a first step we compute the maximum and minimum

LP loads throughout the system, using a software combining tree that operates on vectors (e.g., a

global reduction rain on vectors). Such reductions are supported by fast library routines on Intel

multicomputers. Next, every processor discretizes the range of LP workloads into 16 levels. Then,

for each of its LPs, a processor generates a 4-bit code describing which of those levels best describes

the LPs load. These 4-bit codes are inserted into an array, initially empty, of codes for all LPs.

The processors engage in a global bitwise-OR reduction on this table, which serves to distribute the

code information to every processor. From these codes the processors can now reconstruct the same

approximate workload levels as any other processor, and execute the remapping logic based on these

estimates. Every processor computes which LPs it must shed, and which ones it will receive. The

actual disengagen|_nt of an LP from one processor and integration into another involves some work
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relatedto bundlingandunbundlingstateinformation,andkeepingthe processorsdatastructures

up to date.
Wehavechosento ignorecommunicationcostsin the mappingstep,for two reasons.First,

the numberof differentcommunicationvaluesis quadraticin the numberof LPs, which implies
a greatdealof informationto gatherand distribute at run-time. Intuition suggeststhat if the
linear ordering is successfill in keeping closely communicating LPs together, then ignoring the

communication costs while mapping should not grossly affect performance. This does beg the issue

of recovering from a bad linearization.

Three areas of the scheme above bear further investigation. The bit-vector approach to dis-

tributing load information is efficient for for small-to-medium numbers of LPs, after which the

communication cost can be overly high, requiring a different method, and so a different approach

for computing the tentative Secondly, certain parameters may need dynamic adjustment, par-

ticularly the frequency of computing tentative mappings, and the decay parameter for workload

averaging. Thirdly, we ought to investigate dynamic re-linearization.

5 Empirical Study

Our empirical study considers TPN models of a a slotted ring network, and of the Connection

Machine CM-1 global routing network. Our models to not attempt to accurately capture all aspects

of behavior; instead they are intended to be representative of large TPN problems to which one

might apply parallel processing.
The CM-1 network model is based on the description in [1]. It captures the dimension-by-

dimension structure of message-passing, the effects of limited buffer space, and the interaction

between a router and the mesh of processors that directly access it. Every node of the global

network serves 16 PEs; a PE signals its decision to colnmunication (made randomly) by placing a

token in a specified location. For each message, a dimension is chosen and the message is enqueued

to be sent across that dimension. When a message arrives at a new PE, a random decision is

made to either absorb the message (modeling its terminal arrival), or to send it through another

dimension, chosen uniformly at random among all dimensions higher than the one through which

it came. The model explicit mimics the petit and grand cycle nature of the CM-1, and explicitly

mimics handshaking that ensures a buffer is available for a message before it is sent. The dimension

d of the hypercube parameterizes this model. A model with 6 dimensions has over 10,000 places

and 10,000 transitions. A model with 8 dimensions has over 100,000 places and transitions.

The slotted ring model is comprised of some N LPs that model fine-grained workload, we call

these workload generators. A workload generator is basically a loop within which a set of tokens

circulate. Every pass through the loop (five events) the workload generator randomly decides

whether to communicate over the ring. The ring itself is an LP, hence the communication topology

of the system is a tree with one root (the ring) and N leaves. The simulated communication is non-

blocking and serves simply to generate some simulation workload (a round-trip for a message) for the

ring LP. We cont_¢_l workload intensity by varying the firing time on loop transitions. The smaUer
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thefiring time, themoresimulationworkperunit simulationtime is required.This modelclearly
demonstratestheneedfor dynamicremapping,becausereasonableworkloadestimatesderivedfrom
thetopologyalonefail miserablyto balancetheload. A modelwith 64workloadLPsand one ring

LP has 4672 places and an equal number of transitions.

The timing delays in both models are based on realistic disparities between computation and

conmmnication times. This has a definite impact on the synchronization protocol. For example,

certain "slow" transition firings in the CM-1 network model are two orders of magnitude larger

than the smallest delays on firings that cross processor boundaries. There is a very sizable lag (in

simulation time) between the last "fast" transition to fire, and the firing of the slow transition. It

would be disastrous to simply advance time by the minimum boundary firing time amount each

window, for many windows would contain no events. However, the technique of adding the least

on-processor event time-stamp to the minimum boundary firing time effectively skips over these

periods.
The simulations were conducted on the YAWNS (Yet Another Windowing Network Simulator)

parallel simulation testbed [19, 25], implemented on the Intel family of multiprocessors. We present

data from runs executed on the Intel iPSC/860, and upon the Intel Touchstone Delta [14], a large-

scale multiprocessor also based on Intel's i860 CPU. The time spent in the merge/match/mapplng

algorithm was dominated by the IO time to read the network description, and so proved to be

inconsequential.

The CM-1 routing network example defines an LP naturally as the submodel associated with

one router node. The problem communication topologies thus forms a hypercube. Since all LPs

are structurally identical, any topological measure of workload will assign the same workload to

each LP, and the merge/match/map algorithm maps it optimally under the assumptions of uniform

communication and execution costs. Moreover, under the homogeneous model assumptions, the

average execution cost for every LP was identical. No long term load imbalances could be expected

to develop, so that dynamic remapping should probably not be used.

Figure 2 plots the measured performance of the CM-1 model on sixteen processors of the Intel

iPSC/860, as a function of the hypercube dimension (d = 6, 7, 8, 9). The various random decisions

were given parameters to cause the greatest amount of interprocessor communication. Each problem

size was executed long enough to simulate over ten million events, and was simulated both with

remapping logic enabled, and disabled. The dynamic remapping mechanism never caused the initial

mapping to be abandoned, even though at some individual remapping assessments it appeared

(temporarily) that some gain might be achieved by rearrangement. This illustrates the essential

safety offered using the Bayesian filter.

The left vertical axis demarks the aggregate average number of events executed per second (in

units of a thousand). The right vertical axis delineates the corresponding speedup, measured using

an optimized serial code that employs the same Petri net event processing logic, but uses a splay-

tree priority list to manage events. AH speedup measurements are computed using the measured

serial rate on a six dimensional problem, as the larger models would not fit in one node's memory.

The overhead'_f gathering workloads and projecting remapped performance can be seen as
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Figure 2: Performance oll Connection Machine global router example

the gap between tile two performance curves. On this problem the difference is less than 10%, a

difference that is increasingly amortized as the problem size grows. With increasing problem size

performance gets better, but it is clear that if the growth trend continues, by dimension 9 the event

rate is close to its maximal level. The fact that this occurs at a speedup less than 12 is due to

the cost of communication on tile iPSC/860, which is quite high relative to the speed of the CPU.

These same speedups on the more balanced Intel iPSC/2 are nearly 20% better (but the iPSC/2's

CPU is a factor of 7 slower on this problem!).

We have also investigated our synchronization algorithm on various TPN models of mesh-

based architectures; these results are reported in [20]. Like the CM-1 model, these are essentially

self-balancing (at the time of that paper we had not yet developed the mapping and remapping

methods). This study also shows increasing performance as the problem size grows, but also shows

the dependence of good performance on a favorable computation to communication ratio. The

cost of communication on the Intel iPSC/2, iPSC/860, and Delta architectures we've used is high

enough to require substantial computation on average between communications.

We use the slotted ring model to better explore the benefits of dynamic remapping. As a test

case for unbalanced workload, we created a model with 64 workload LPs where the first 6 and last

24



47 LPsgenerateeventsat a rate of 50eventsper unit simulationtime, while the remaining17
LPsgenerate500eventsperunit simulationtime. This particularassignmentof workloadstresses
thestatic mappingalgorithm,as adjacent heavy workloads are harder to distribute under its linear

ordering constraints. Itowever, the initial assignment estimates workloads based solely on topology,

and is unable to distinguish between heavy and light workloads. Furthermore, the ring LP has many

more places and transitions than a workload LP, but ends up having nowhere near the same event

intensity. As a consequence we can usually expect the initial mapping to be very bad. Finally, the

unbalanced workload model is simple enough to compute an upper bound on the speedup possible,

by assuming the LPs are distributed optimally (an easy calculation by hand), communication costs

are free, and the initial mapping is perfect.

Figure 3 plots the results of simulating this model on 16, 32, and 64 processors of the Intel

Touchstone Delta. All runs generated approximately 10 million events. The vertical axes are as

before, this time with the event execution rate expressed in millions of events per second. We plot

three sets of data associated with "bad balance", the unbalanced workload described above. For

the purposes of comparison we also plot data associated with a "good balance" model where all LPs

have the same weight (50 events per unit simulation time). In all these runs communication with

the ring LP is infrequent. This allows us to isolate the effects of load imbalance from communication

costs. We still do have inescapable communication costs due to synchronization, which occurs every

unit of simulation unit.

On all runs where remapping was employed, remapping was chosen very shortly into the run,

as it was quickly evident that a new mapping based on event count measurements was superior.

Although theoretically possible, no subsequent remappings were performed. The necessity of dy-

namic remapping is clearly seen by examining performance when remapping is disabled. The jump

in performance at 64 processors is a consequence of the mapper initially always using as many pro-

cessors as are available. The worst that can happen (which did) is that the one processor assigned

two LPs gets two workload LPs.

We also see that the dynamic remapping mechanism comes close to achieving the optimal

performance possible, given the unbalanced workload. Performance of the balanced workload is

nearly perfect for 16 and 32 processors; it falls away at 64 processors owing to the low number of

events performed on each processor between synchronizations (50).

6 Summary

This paper studies the problem of automatically paralleUzing the discrete-event simulation of large

timed Petri-nets executing on parallel architectures. The methods we described have been imple-

mented in a tool where one designs a Petri-net using a graphical tool, and then all remaining steps

for parallelization are performed automatically.

We describe a synchronization algorithm and automated load balancing techniques, both static

and dynamic. We present a new static mapping algorithm, and study its properties analytically.

This algorithm is'$mt restricted to TPN simulations, it applies to more general parallel compu-
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Figure 3: Performance oil slotted ring network example

tations. We study tlLe effectiveness of our methods on the performance of a simulation of the

Connection Machine CM- 1 routing network oil 16 processors of an Intel iPSC/860, and on a simu-

lation of a slotted-ring architecture that is executed on up to 64 processors of the Intel Touchstone

Delta. Significant performance benefits are observed, and the effectiveness of (and need for) dy-

namic remapping clearly demonstrated.
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Abstract

As computer and communications systems become more complex it becomes increasingly

more difficult to analyze their hardware reliability, because simple models may fail to ade-

quately capture subtle but important model features. This paper describes a number of ways
we have addressed this problem for analyses based upon White's SURE theorem. We point

out how reliability analysis based on SURE mathematics call be extracted from a general C

language description of the model behavior, how it can attack very large problems by accepting

recomputation in order to reduce inemory useage, how such analysis can be parallelized both on

multiprocessors and on networks of ordinary workstations, and observe excellent performance

gains by doing so. We also discuss how tile SURE theorem supports efficient Monte Carlo based

estimation of reliability, and show tile advantages of the method.
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1 Introduction

White's SURE theorem has laid the foundation for a number of reliability tools, including SURE

[3] itself, ASSIST [2, 11], TOTAL, and PAWS. The latter three tools provide the user with a formal

framework within which a model is described, then use the model description to explicitly build a

semi-Markov state-space. The tool SURE is then applied, determining upper and lower bounds on

the transient probability of the system entering a state reflecting system failure (i.e., a death-state)

within a specified period of time. These tools have a large user base and have proven to be very

useful in a wide range of contexts. For example, a survey conducted by NASA Langley found

that the ASSIST/SURE toolset is used by United Technologies to model redundant engine control

architectures, by Boeing to model fighter flight control systems, by Raytheon to model space-borne

systems, by Rockwell-Collins to evaluate trade-offs in the reliability and safety of primary flight

control architectures, and General Electric to model engines, engine controllers, locomotive engines,

and satellite controllers. Industrial interest in SURE-based analysis is apparently strong.

One drawback of these tools is that they are unable to efficiently explore (i) very large models,

(ii) models where the state transformation cannot be expressed in terms of simple modifications to

state variables, or (iii) models where recognition of a death-state is complex. For example, model

sizes become large any time one desires a detailed analysis of a detailed model; state transformations

become complex if recovery transitions involve non-trivial computations, such as finding new routes

for messages through a fault-tolerant network; death-state recognition may be complex if system

operability is defined in terms of the system's ability to provide some service, e.g., every pair of

operable processors are able to communicate using some specific routing protocol. We later give

examples of all three situations.

This paper describes methods we have used to address these situations, and a software tool called

ASSURE that embodies these methods. ASSURE combines the functions of ASSIST and SURE.

The user's interface to ASSURE is an enhanced version of the ASSIST [2] language. ASSIST's

power of expression is extended to almost arbitrarily complex models by allowing the user to

write C language routines to recognize system failure, to recognize system transition conditions,

and to express system state modification following a transition. Other techniques we describe are

related to using the SURE bounds to efficiently analyze some large models. One method is to

concurrently generate and analyze a model's state-space via depth-first-search (DFS) exploration.

Memoryrequirements are limited to that needed to manage the DFS stack, instead of the entire

state space (as is presently required with ASSIST/SURE); however, memory efficiency comes at

the price of state recomputation. The method has the intentional and important advantage of

supporting parallel processing on ordinary networks of workstations. We also investigate user-

assisted methods for trimming the model space. Even with the fore-mentioned features, the sheer

size of state-spaces involved in some models prohibit an exact and exhaustive analysis. To address

this problem we I_£ve developed efficient ways of jointly using Monte Carlo simulation and the



SUREboundsto constructconfidenceintervalsonestimatedupperandlowerreliability bounds.
In addition,ourmethodsupportsestimationofarbitrary measuresofsystemperformancein death-
states,andwehaveextendedtheASSISTlanguageto supportautomatedestimationof theseuser
definedstatistics.Finally,theMonteCarloanalysis is easily parallelized as well, again on a network

of ordinary workstations.

ASSIST/SURE is only one of many good reliability tools; i.e., see the recent survey [8]. Various

of the features we've incorporated into ASSURE have been used in the past by other tools. The no-

tion of expressing models in a high level language and then automating the generation and analysis

of the underlying Markov chain is common to all modern reliability tools. For example, HARP [5]

uses a fault tree description of failure processes and a petri-net description of recovery processes.

From these a Markov chain is constructed and analyzed to provide system state probabilities. SAVE

[7] uses a language describing a machine-shop with repairmen. SItARPE [17] provides a number of

different model types, in a sort of analysis toolbox. The notion of truncating a state-space (while

developing it, or searching it) is found in the tools above, as well as in [6]. The idea of using a

common programming language as a vehicle for describing a model is exploited in DEPEND[9],

which also uses Monte Carlo simulation, as does SAVE [7]. A Monte Carlo version of HARP has

also been developed ill. Our intent is to show how ASSURE's features together allow us to attack

very large and complicated system models, and to demonstrate a single tool that seamlessly allows

either an exact analysis or a simulation analysis, and/or a serial solution or a parallel solution from

a common (but general) model description. Our main contributions are implementation methods

suitable for solving such models. These contributions are three-fold. First, we demonstrate that on

an interesting set of large problems there is much to be gained by regenerating states in a depth-

first analysis, rather than saving each generated state against the possibility that it will be visited

again. This style of analysis permits solution of some models considered to be "out of reach" at

the time [8] was written (i.e., l0 s states, l01° ratio of repair rates to component failure rates). One

should note, however, that the relative advantage of the method decreases as the number of failures

required to push the system into a death-state increases. Consequently, exact analysis using the

method is best suited for systems that tolerate 2-5 failures in the mission time. We demonstrate

empirically that this approach is ideal for parallel processing--a new and highly practical aspect of

reliability analysis. Thirdly, we show how the SURE bounds lend themselves to an efficient Monte

Carlo analysis, which itself is parallelizable.

It might be argued that detailed analysis of large models is unnecessary, since at some level a

reliability model will have to mask details anyway, and an expert modeler can often craft a good

model from a detailed understanding of the system being modeled. While we will never dispute

the power of a expert modeler using a simple tool, we believe that the need to analyze large

detailed models is inevitable. We anticipate the day when a system is specified and designed using

a single tool fron) which reliability and performance analyses are automated. An automatically



generatedmodelis far morelikely to be largeand complicatedthan onedevelopedby a human
expert. Furthermore,an automatedanalysisaccommodatesa system design or parameter change

by simply redoing the analysis--that same change may invalidate a human expert's entire approach.

Towards this end, we are exploring ways in which large complex models might be automatically

analyzed.

It might also be argued the SURE approach is inadequate, owing to its assumption of time-

independent failure rates. While this argument has some validity, we are not attempting to advance

any particular side in the sometimes heated debate over reliability tools. We believe that the

techniques we describe are not limited to SURE; they can be applied to any mathematical analysis

based on paths through a state-space. Perhaps the potential shown by ASSUP_E for large problems

may motivate mathematical research on path-ba_ed analysis that overcomes SURE's limitations.

This paper is organized as follows. Section 2 describes two model problems that exhibit chal-

lenging characteristics. Section 3 describes extensions we've provided for the ASSIST language to

enhance model expression. Section 4 presents the SURE bounds. Section 5 describes implemen-

tation techniques that support tim analysis of large complex models, and Section 6 explains how

SURE bounds can be used in the context of an efficient Monte Carlo analysis. Section 7 presents

our conclusions.

2 Two Examples

Our work has been motivated in large part by the challenges presented by two diverse yet repre-

sentative reliability models. The first model is of a fault-tolerant flight-control computer network

having a complex recovery mechanism, the second is that of a large computer network that achieves

fault-tolerance through redundancy of communication channels. This section discusses both mod-

els, and the characteristics which challenge the capabilities of existing SURE-based tools.

The first problem presents the challenge of state-space size, and complexity of expressing a

complex reconfiguration strategy within the confines of the modeling language. These challenges

are both present in a model based roughly on AIPS [12], an architecture developed by Stark Draper

Labs. The model is comprised of a Fault-Tolerant-Processor (FTP), that manages a collection of

"devices" (sensors). The devices are replicated four times for quad redundancy, and are distributed

across two networks, accessed by the FTP from six channels. Only selected links in the network

are "in use" at any time. The set of selected links in a network establish a virtual bus between

one FTP ct_annel, and every operational node in the network. In the event a selected llnk or a

network no(le fails, the network is considered to be down. However, it may be repaired if another

set of links can be found to establish the virtual bus. During recovery the FTP knows to ignore

the downed network, and to take its sensor data from the other network. The system is considered

to have failed if t_le FTP itself fails, if both networks are simultaneously down, or if the majority

of operable devices of any type are not able to communicate with the FTP. Figure 1 illustrates an

3



exampleof this networkand its hardwarecomponents.Shownarefour channelslinking the FTP
to the networks,sixnetworkinterfaces,thirty-two links, fourteenswitchingnodes,eightinterface
devices,andsixteendevices."In-use"linksin oneparticularsystemstatearehighlighted;a number
of links areshownto havefailed.

The particular set of links chosenduring repair to re-implementa virtual bus will impact
the distributionof the remainingtime until systemfailure,especiallyif failureratesof remaining
componentsareheterogeneous.Greateraccuracyis obtainedthenby explicitly modelingthe re-
configurationprocessthanby assigninganapproximaterecoveryrate to a networkfailure. If we
acceptthedesirabilityof an accuraterecoverymodel,weconsequentlyrequirethat thereliability
tool beableto conciselyexpressthereconfigurationstrategy.

The secondproblemarosein a studycomparingthe effectivenessof fault-tolerantroutingpro-
tocolson a binary hypercube.Nodesand links may fail; whenonedoes,no explicit recoveryis
attempted, ttowever,networkmessagescanaccommodatesuchfailuresby adaptivelyrerouting
aroundfailednodesor links. A varietyof fault tolerantroutingprotocolsexist,someof whichmay
not find a extantroute. Givena protocol,the systemis consideredto haveentereda death-state
if either more than half of the nodeshavefailed, or if thereexist two operablenodesbetween

whichthe protocolcannotestablisha messagepath. The complexitiesof theseprotocolsdefeat
moreelegantgraph-basedbasedreliability analyses,andweareleft to usesimulationif weare to
estimatereliability.

This modelpresentsuswith twofundamentalproblems.First, dependingon the networksize,
tensto hundredsof link andnodefailurescanbe toleratedbeforethesystementersa death-state.
The sizeof the state spaceabsolutelyprohibitsan exhaustiveanalysis. The secondproblemis
that recognitionof a death-stateisexpensive.Giventhestateof thenetwork,onemustessentially
simulatemessageroutingbehaviorbetweeneverypair of nodes.The costof a singleconnectivity

checkis O(L), implying an O(LN _) death-state recognition cost.

The sections to follow describe the methods we've used to address the challenges posed by these

problems.

3 Language Extensions to ASSIST

The ASSIST language (see [2]) provides a simple means of describing a system and how it evolves

in the presence of failures and recoveries. The notion of state variable is central to ASSIST; one

of the first roles of an ASSIST model is to declare the state variables (and their initial values) just

as variables are declared in programming languages. Evolution of the system is described in terms

of Boolean conditionals on the state variables (describing conditions under which a transformation

may occur), and simple modification of state variables (describing the transformation itself). For

example, a state yarlable N may describe the number of working processors, any of which may fail.

The ASSIST statement
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Figure 1_ Example of reconfigurable flight control computer network, highlighting virtual bus

connections.

IF N>O TRANTO N=N-I BY N,LAMBDA;

declares that from any system state where N exceeds zero, another processor can fail, and change

the system state l_y;decrementing H. The mathematics of SURE assume that a component's lifetime



is exponentially distributed; the statement above declares that the transformation occurs with rate

N*LAMBDA (LAMBDA is defined as a constant elsewhere). Boolean conditionals also identify death-

states, for instance,

DEATHIF N=O;

declares that the system is in a death-state whenever all processors have failed.

This particular example is unrealistically simple. Larger ASSIST models employ compound

Boolean expressions as conditionals, and modify several state variables as a result. For instance,

the statements below were taken from a working ASSIST model.

(* COVERAGE *)

DEATHIF (FT[I]+FT[2]+FT[3]+FT[4]) <=

(FF [I] +FF [2] +FF [3]+FF [4] );

(* EXHAUSTION *)

DEATHIF FT[I] + FT[2] + FT[3] + FT[4] < 2;

DEATHIF NI[I] + NI[2] + NI[3] + NI[4] + NI[5] + NI[6] < 1;

(, TRANSITION RULES *)

FOR 1=1,6;

IF NOIG[I]=I TRANTO NOIG[I]=O, P[I]=O, CT=CT+I BY LNO;

IF NO2G[I]=I TRANTO NO2G[I]=O, P[2]=O, CT=CT+I BY LNO;

ENDFOR;

Here we see that ASSIST allows arrays of state variables, multiple DEATHIF and TRANTO

statements, and looping constructs. An important aspect of ASSIST models is that they are

essentially algorithmic. The TRANTO statements give a set of rules; any time the system state

satisfies a rule, a transition from that state is possible. The statements following the keyword

TRANTO describe how the system state is correspondingly modified, and the statement following

keyword BY gives the transition rate.

We found that the ASSIST syntax for describing state modification was too limited to efficiently

express the dynamic network reconfiguration required by our first model problem. There, given the

operational status of network links, nodes, and devices, we must apply an algorithm to find a subset

of these components that form a bus. Nevertheless, we saw that it was still possible to exploit the

essential idea behind ASSIST, which is to express state transitions in terms of recognizing when

and how they occur. Our simple extension is to allow the statement following a TRANTO to be a

call to a subroutine in the C programming language, where declared ASSIST state variables may be

both read and written directly. Similarly, the ability to express DEATHIF and TRANTG conditions is

extended by allowing calls to C routines that analyze the variables of the present system state and



return a Boolean value indicating whether a particular condition is satisfied. To our knowledge,

ASSURE is the only tool which both provides a.n analytic solution (as opposed to only simulation),

and allows manipulation of model state variables by a general progra.mming language. In our

experience this ability proved invaluable when describing complex reconfiguration strategies, and

when analyzing models with complex death-state conditions. In support of these extensions, we

also allow a user to write a subroutine to compute the initial system state variable values, and to

build static C data structures (which ought only to be read, not modified) for use by other routines.

For example, we've used this feature to describe static network topologies and let the system state

vector contain only the operational status of each component.

These extensions are conceptually simple, and are implemented by using an ASSURE-to-C

source code translator. The translator parses the ASSIST model, translates references to AS-

SIST state variables into references to C variables, and uses the ASSIST model structure to cre-

ate problem-dependent C subroutines for detecting death-states and for generating all transitions

possible from a given state. These subroutines are compiled and linked to pre-compiled problem-

independent code that controls the generation process and performs the SURE analysis. On most

models, the translation step requires a few seconds and the compilation/linking step requires a few

tens of seconds, on ordinary workstations. This relatively small front-end cost is easily amortized

when a large model's execution phase takes minutes, or longer.

4 The SURE Theorem

Subsequent discussions are better understood following a brief description of the SURE theorem.

A fuller treatment of these bounds are given in [3].

We may think of a semi-Markov state-space as a directed graph whose nodes represent states,

and whose edges represent transitions. A precise mathematical definition can be found in many

standard texts, e.g., [16]. The SURE theorem applies to semi-Markov processes with two types of

transitions. Slow transitions are exponentially distributed, with small transition rates as compared

with the fast transitions, that may have general distributions. Slow transitions typically model

hardware component failure, whereas fast transitions model repair processes. The difference in

transition rates may span severM orders of magnitude.

The sequence of transitions defining a path through a semi-Markov state space reflect a possible

system behavior in time. The amount of time the system takes to traverse a given path p is random,

call it S v. Given a mission time T, the SURE theorem gives formulae for upper and lower bounds

(Up(T) and- Lp(T), respectively) on Pr{Sp < T, path p is taken). These bounds are of particular

interest when the last state on p is a death-state.

Let /) be the set of death-states, let I be the initial system state, and let 7) be the set of all

paths from I throl1_h states not in/), to some member of/:). The probability that the semi-Markov



processentersD within time T is

Pr{Death state entered within time T} = _ Pr{Sp _<T, path p is taken}. (1)
pep

To use the SURE bounds one discovers and analyzes every path in P (at least the ones with

sufficient probability) as follows. We classify every state on a path p as being a class 1,2, or 3 state.

A state is in class 1 if its transition on p is slow, and every other transition from the state is also

slow. Any state whose transition on p is fast is in class 2; the transition from a class 3 state is slow,

and there is at least one fast transition from that state. The following class-specific parameters are

needed to state the SURE bounds.

Class 1 Let k be the total number of class 1 states on p. For the ith class 1 state define Ai to be

the rate of the transition out of the state, and define 7i to be the sum of rates of all other

transitions from that state.

Class 2 Let m be the total number of class 2 states on p. For the i th class 2 state define ei to be

the sum of rates of all slow transitions from it. Let pi be the probability that the particular

transition on p is successful (as opposed to some other transition from that state); let #2,i

and Pi respectively be the conditional mean and standard deviation of the state holding time,

given that the selected transition on p is successful.

Class 3 Let n be the total number of class 3 states on p. Let t_i be the rate of the transition out

of the i th class 3 state on p, and/3i be the sum of rates of all other slow transitions from that

same state. Define #3,; and a3,i to be the mean and standard deviation of the holding time in

that state, given that a fast transition occurs (instead of the slow transition that did occur).

Finally, let Q(T) be the probability of traversing by T a path constructed by concatenating the

k class 1 states, and let rl,r2,...,rm, and Sl,S2,...,s,, be strictly positive numbers such that

T>A=rl+r2+...+r,,,+_l+s2+'"+s,,. Then

Lp(T) <_ Pr{Sp _<T, path p is taken} _< U_,(T)

where

and

Lp(T)

Up(T) = Q(T) 1-I Pi IX aj#a,j (2)
i=l j=l

[ ]Q(T- A) 1"I pi 1 -ei#2,i- #_,i + °'_,i + P_
i=1 r2

( 3,j + + 3,, (s)
,,; x c_j #a,j- 2 sj

j=l
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Computationof the c_, #, a, and p values is standard. The following suggestions for ri, si, and

bounds on Q(T) are given in [3]:

,-,= +
2 2 I/2

\ #3,.i /

I-I_=I(AiT)( T k ) l-ik=, (A_T)k[ 1 k+l_(Ai+7i) -<Q(T)<- k! (4)
i=l

An important characteristic of these bounds is that they depend only on a small amount of

information pertaining to the path. In fact, the products in Equations (2)-(4) can be accumulated

in a small, fixed amount of storage space as a path is extended. For computational reasons (for

Q(T)) we do separately save the Ai and 7i values from each class 1 transition, but this requires the

storage of only two floating point numbers per transition.

One way to use these bounds is to explore all paths from I to 7). Whenever a path p E P is

discovered, Lp(T) and Up(T) are computed and added to accumulating totals L(T) and U(T). It

is important to prune loops, or other paths with very small (relative) probabilities. SURE-based

tools typically prune a path p once Up(T) is smaller than some threshold 4) (which may be given

by the user, or can be found automatically). Upon pruning p, Up(T) is added to an accumulating

total P(T); the final lower and upper bounds on system failure by time T are then L(T) and

U(T) q- P(T). One typically desires to find ¢ such that P(T) is an order of magnitude smaller than

U(T).
A user of the original ASSIST/SURE toolset constructs a state-space using ASSIS T, and an-

alyzes it using SURE. In the next section we describe how the generation and analysis can be

combined, and how the whole process is easily parallelized.

5 Analysis Techniques

This section describes ASSURE's technique of depth-first generation and analysis of a model,

parallelization of this method, and a user-assisted technique for trimming the model during its

generation and analysis. We demonstrate empirically that these techniques effectively accelerate

the solution time of some large ASSURE models.

5.1 Depth-First Generation and Analysis

Memory usage seriously degrades the execution time of ASSIST and SURE on very large state-

spaces. Not only may tens of megabytes be required to store the model, but both the generation

and analysis processes may suffer thrashing in a virtual memory system.



Wecanaddresstheproblembytradingoff computationalefficiencyfor spaceefficiency.ASSIST
storesall generatedstates;uponcreatinga stateit looksto seeif that state alreadyexists,and
extendsa path through that state only upon its initial discovery. A differentapproachis to
simultaneouslygenerateandanalyzethestate-spacealonga path,andto discarddiscoveredstates
oncethey areno longerneededfor that path. This provides a significant memory savings since

memory requirements are proportional only to path length times fanout. The price paid for memory

efficiency is the recomputation of state descriptions. This tradeoff works to our advantage for an

important class of problems. As we will see, oil the large examples we have studied the benefits of

memory efficiency are evident. Furthermore, the approach lends itself to parallel processing (which

was our initial consideration) because distinct paths can be generated and analyzed separately on

different processors. Itowever, the approach has its limitations. Best results are obtained when the

system of interest tolerates only a few number of failures within the mission time, say, 5 or fewer.

Beyond that, the combinatorics of the approach threatens to create unacceptable solution times.

Our tool ASSURE combines the functions of ASSIST and SURE as follows. A path p is

represented internally by a data structure we call a path-record. A path-record contains a copy

of every ASSIST state variable, whose values represent the last state on the path. A path-record

Mso contains a list of the )_ and 7_ values of all class 1 transitions on the path, and accumulated

products for Equations (2)-(4). ASSURE begins by initializing a path-record to reflect I, and

places it on a working list. ASSURE enters a loop where the first path-record on the working

list is removed and Up(T) is computed and compared against the pruning threshold. If Up(T) is

sufficiently high, the path-record's state variables are checked against all death-state conditions.

The code that performs this check is C code translated from ASSIST DEATItIF statements. A

path-record that survives pruning and death-state testing is subjected to extension through all

possible transitions, by checking its state variables against every TRANTO condition specified in

the ASSIST model. Every time a TRANTO condition evaluates to true a copy of the path-record

is created, its state variables are modified as proscribed by the ASSIST model, and the value of

the transition rate specified following the transition's BY keyword is recorded. Again, these tests

and modifications are performed by C code translations of ASSIST model statements. By testing

the path-record against all TRANTO conditions we discover and generate all transitions possible

from the path-record's last state. Given these transitions and their rates, all the quantities needed

by the S.URE bounds for each new path are computed, and recorded in each new path-record. The

new path-records are attached to the head of the working list, and the process continues until the

working list is empty.

The description above shows that ASSURE generates all sufficiently probable paths from I to

7) via a depth-first generation and analysis strategy. In addition, ASSURE provides the additional

capability of determining whether a model can survive any K failures without entering a death-

state. This is ea,_iJy encorporated by recording the number of slow transitions on the path, and
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pruneoncethat countreachesK. If no death-states are uncovered, then the system model survives

any combination of K failures.

It is important to observe that the techniques described above do not depend on the specifics

of the ASSIST language. Any formal description of a reliability model will do, provided that one

can automatically and quickly find all transitions and their rates from any given state system

state. Indeed, as a follow-on to ASSURE, we have built an object-oriented language and tool,

REST, that is based on these same principles [15]. Within that framework we have also written

a SAVE-to-REST translator, thereby providing transient SAVE models with the computational

advantages described in this paper. Furthermore, we believe other tools could also incorporate

such an approach. For instance, HARP is widely used, but encounters memory problems on large

models [18]. Since HARP analysis is based on a Markov chain, and since system death conditions

are recognizable from the defining fault-tree, one could apply a depth-first combined state-space

generation and analysis method as we have done with ASSURE. Upon reaching a death-state or

a pruned state one could examine the path and numerically compute the exact probability (by

uniformization [16]) of reaching that state by time T.

At any time, the memory requirements of ASSURE are basically those of storing the working

list. However, ASSURE ends up doing more computation to generate the state-space than does

ASSIST. The tradeoff often works to ASSURE's advantage. On moderately large ASSIST models

of our first model problem (models that lack complex reconfiguration), ASSURE runs ten to twenty

times faster than does ASSIST/SURE. A simple analysis helps to quantify the tradeoff. Component

failures essentially drive changes in a system state. Let X be a state-vector with N components, and

suppose that any given collection of failures results in the same state of X regardless of the sequence

in which the failures occur. Ignoring effects of possible aggregation (i.e., different collections of

failures resulting in the same state), a state _ defined by j failures will lie on j! different paths.

But s has j immediate predecessors, implying that ASSIST will discover s exactly j times. To a
i

first approximation then, if the model tends to tolerate j failures before entering a death-state or

being pruned, ASSURE does j!/j = (j - 1)! thnes more computation than does ASSIST. On the

other hand, ASSURE's memory requirements are small enough that it tends to operate without

page faults, whereas ASSIST is observed to thrash on large models. We estimate that ASSIST's

average cost of "touching" a state is several hundred times higher than ASSURE's. These estimates

suggest that ASSURE is more efficient than ASSIST when the system model tolerates a handful of

errors within the mission time, say, 6 or fewer.

5.2 Parallelization

ASSURE's generation and analysis technique is highly suitable for parallel processing, because

processors can independently generate and analyze distinct paths from I to/). One way is have a

controller process'generate all one-step paths Pl,P2,...,PN from the initial state I, then distribute
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thesepath-recordsamong processors to seed their working lists. Once seeded, a processor is free

to execute exactly as in the serial case. Each processor then independently accumulates a pruning

bound, and SURE bounds. The overall bounds are obtained by adding the contribution from each

processor.

The method above has the disadvantage that one processor may complete its work long before

another processor does. We have used two different methods of dealing with this problem. ASSURE

has been parallelized on a 32-processor Intel iPSC/860 multiprocessor. This machine has a fast

communication network, making it feasible for a processor with excess path-records to send some

to deficient processors. We implemented and studied several dynamic load-balancing schemes that

balance the number of path-records per processor nearly perfectly when called. Our studies found

that for ASSURE problems it didn't matter very much how the load was rebalanced, so long as it

was rebalanced. A discussion of the different schemes studied is given in [14].

This type of balancing is not suitable for a loosely coupled network of workstations. However,

load-balancing here is simple if the workstations share a common file system. The trick is to have

every workstation generate path-records for every descendent of the initial state, and enumerate

them the same way. Every workstation i begins by seeding its working llst with descendent i;

some dedicated process writes the number of unassigned descendents into a commonly viewed file.

A workstation executes independently until its working list is empty, at which point it consults

the remaining descendent count file to look for more work. If the value in the file is non-zero,

the workstation decrements the count, and reseeds its working list with the appropriate descen-

dent. Otherwise, the workstation writes its own results into a reserved file. The computation is

complete once all workstations have attempted and failed to acquire additional workload. A mon-

itoring process accumulates and reports the individual workstation results. ASSURE does all this

automatically, given a run-time option specifying the network names of machines to use.

The simplicity and power of parallelizing SURE bounds calculations gives us reason to believe

that extremely large models can be generated and analyzed in a reasonable amount of time. For

example, we considered two different ASSURE models of our example reconfigurable network prob-

lem. The first, called NetA, has 61 elements in its state-vector. Recovery from network failure is

simplified enough to be expressed in pure ASSIST. The second model uses our language extensions,

and has 83 elements in its state-vector. Each hardware component (channel, network interface,

link, node, .device interface, device) has its own failure rate; the ratio of the fastest recovery rate

to the slowest failure rate is 10m. In the data reported below, a path-record was pruned as soon as

the upper bound on its probability dropped below ¢ =le-15. The analysis of NetA generated 3.6

million nodes with an average number of failures when a path terminated of 3.9. If we estimate the

actual size of the state-space explored as W choose L (i.e., W!/((W- L)!L!)) where W is the length

of the state vector and L is the number of component failures, then the NetA analysis is of ap-

proximately 0.5 million unique states. NetB generates 57.5 million nodes, with 4.0 average failures
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Model 1 Sparc 6 Spares 12 Spares 18 Sparcs 1 i860 32 i860s

NetA (3.6M nodes) 22 min 4 rain 2 rain 2 rain 2.66 min 0.15 rain

NetB (57.5M nodes) 7.5 hr 75 rain 35 rain 24 nfin 79.5 rain 2.5 rain

Table 1: Timings of first model problem on parallel platforms

at termination, and an estimated true state-space size of 2 million states. We report experiments

conducted on 32 processors of the Intel iPSC/860 multiprocessor (based on the i860 CPU), and on

a local area network using 6, 12, and 18 SUN Spare workstations of various models. The iPSC/860

was dedicated to the application, whereas the network runs were competing with everything else on

the network (which was lightly loaded) at the time. Also, our network tinfings have a resolution of

only one minute, being taken from last-modification times on files. Table 1 presents these results.

The primary conclusion we draw from these timings is that the paratlelization techniques work

to dramatically reduce solution time. Furthermore, while the performance shown is nearly an order

of magnitude faster on a dedicated multiprocessor, one can still get impressive performance from

workstation networks commonly found in research labs.

5.3 Model Trimming

The combinatorial growth of models explored by our method encourages us to search for ways

of reducing the number of states generated and analyzed. For instance, consider a path that

has undergone j failures, and suppose we could bound the probability of entering a death-state

following any two additional failures. Instead of generating the model for an additional two levels

we might trim it, and accumulate the death-state probability bound in the pruning sum. This

mechanism couhl reduce the model size by a factor of as much as (j + 1)(j + 2). We have developed

a way of doing exactly that, and observe significant reductions in the model size. The method is a

generalization of the notion of a trimming bound, described in [19].

Consider all slow transitions out of an arbitrary state X. Typically each one is related to the

failure of a component or to a set of components. Some transitions may lead immediately to death-

states; call these transitions unsafe. At the other extrelne, there are transitions which may also

be taken from the next state if not taken from the present one, and which are guaranteed to be

"not-unsafe" from the next state; call these safe. For example, safe transitions are defined whenever

one has a collection of components and spares that can tolerate a component failure by using a hot

spare to immediately replace it. Such a transition is safe because it may occur in any state and not

cause system to fail. Finally, we call a transition conditionally safe if the system does not enter a

death state by taking it, nor will a death-state be entered if a safe transition is taken first.

Our method is different from [19] in that we make a distinction between safe and conditionally

13



safetransitions.Like theearlierwork,weassume(i) that componentsfail at a low constantrate,
(ii) fault recoverydependsonlyonthetimesincefault occurrence,and(iii) all transitionsto system
failurearecomponentfailuretransitions.

NowfromanystateX, let U(X), C(X) andS(X)bethesumofratesof unsafe,conditionallysafe,
and safetransitions,respectively.Also,let R(X) be the sumof ratesof exponentiallydistributed
recoverytransitionsfrom X, andlet M(X) beanupperboundon thesumof slowtransitionratesin
anystatereachablefrom X in two transitions.To constructa trimmingboundwemayconsiderthe
behaviorof asimpleMarkovchainshownin Figure2. FromX it describesanaggregaterecovery,an
aggregateunsafetransition,aggregateconditionallysafetransition,andaggregatesafetransition.
The chainalsoexpressesa secondlevelof behavior,with unsafeandnot-unsafetransitions. The
rateson thesecondleveltransitionsareupperboundson theaggregateratesin theactualsystem.
Theeffectof recoverytransitionson thesestatesareomitted,whichservesto acceleratethesimple
chaintowardsfailurestateF evenfasterthan the actualsystem. Our trimming bound is given
by addingthe SUREupperboundson eachof five pathswhichextendthe path to X further to
the failedstateF. This sumis greaterthan thesumof probabilitiesof reachingany deathstate
eventuallyreachableby taking afailuretransitionfromX.

In theoryonecouldusethe trimmingboundby comparingit to a threshold¢ (like thepruning
threshold).If 4) is larger, the only transitions from X that are generated are the recoveries, and the

trimming bound is added to the accumulating pruning bound. In practice it is difficult for a general

tool such as ASSURE to automatically compute the necessary failure rates (note, however, that

this is less of a problem with tools that impose more structure on their model input description,

from which the rates might be inferred). We've addressed the problem in ASSURE by allowing a

user to write a C language function that computes U(X), C(X), S(X), R(X), and M(X) for any

state X. ASSURE then automatically invokes and uses the results of the routine. This mechanism

allows a modeler to exploit knowledge of the system structure in order to quickly compute these

transition rates, or upper bounds upon them (or a lower bound on R(X)).

Consider our first example problem. The ASSURE model defines the system to fail if any of

the following conditions holds.

• A fault occurs in one network partition while the other partition is under repair.

• The number of FTP channels that are "good" (operable and in use) is zero, or is equal to the

number of channels that are operable but are involved in a network repair.

• For every device type, the number of devices that are "good" is zero, or is equal to the number

of channels that are operable but are involved in a network repair.

• A failed network is unable to establish a virtual bus to operative devices.

Using this information, one can write a routine that examines the model state variables and clas-
P,v:,

sifies the effect of every component failure as being safe, conditionally safe, or unsafe. Since the
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S(X)= sumof safe transition rates

C(X) = sum of conditionally safe transition rates

U(X) = sum of unsafe transition rates

R(X) = sum of exponential recovery rates

M(X) = maximum sum of slow transition rates

C(X) s(x) I+u(x)

M(X)

M(X)

Failed State

s(x)

x)

Figure 2: Markov chain used to construct the trimming bound

classification will be done often it is important to do it quickly. One can always misassign a tran-

sition to a class with less safety, e.g., assign what is actually a safe transition to the conditionally

safe class. The bounds needed by ASSURE are obtained by summing rates within a class. For

example, suppose X reflects a state in our model NetB where one partition is under repair. Then

every transition related to a component failure that might trigger a network recovery in the other

partition is classified as unsafe, e.g., the failure of a link on the virtual bus. On the other hand,

transitions related to FTP channel failures may be in any of the three classes. If there is only

one good FTP its failure will cause system failure, and hence that transition is unsafe. If there

are two g6od FTP channels, and two failed channels then each FTP channel failure transition is

conditionally safe; with three good FTP channels and one failed channel each transition is safe.

Other component failures may be similarly analyzed.

A simple modification of this scheme deserves special comment. While ASSURE needs user

assistance to produce U(X), C(X), S(X), and R(X), it does not need help computing M(X), provided

that M(Xi) does not increase along any set of states in any path X1,X2, .... For this reason

ASSURE provides _t'-fiautomatic trimming bound from state X where it is assumed that all slow

15



transitionsfrom X are unsafe. Wheninitiating any solutionrun, ASSUREcanbe told not to
assumemonotonicity.

To investigatethe utility of thesetrimming optionswesolvedthe first modelproblem(NetB)
usingthreedifferentoptions,all with a trimming(or pruning)thresholdof ¢ = le - 15.Tile first
optionwecall standard--a path is pruned if the upper bound for that path is less than ¢. We call

the second option monotonic--this method uses the automatic monotonic trimming method, and

needs no user assistance. The third option we call user-assisted, because the user supplies a routine

that computes and classifies transition rates. The table below illustrates the results, noting the

total number of states generated, the pruning bound, and the time required for solution on a single

Sparc 1+ workstation. All methods obtained the same unreliability bounds for a 3 hour mission,

3.77e-9 and 3.96e-9.

Method Total Number of States Pruning Bound Execution Time

Standard 57.5M 9.3e- 11 590 min

Monotonic 7.2M 4.3e- 11 112 rain.

User Assisted I. l M 4.5e- 11 17 min.

From this data we see the tremendous advantage of exploiting a monotonic property over not

exploiting it, and the further advantage of providing user assistance. It is also interesting to note

that the standard method's node execution rate is nearly twice as fast as the others, since it suffers

no overhead to compute lookahead trilnming bounds. Ilowever, the overhead of computing more

advanced trimming bounds is clearly worth the effort.

The key ingredient to making the user-assisted bounds work well is that the user-supplied

routine be able to quickly compute upper bounds on the transition rates. The alternative is to let

ASSURE discover these rates (at least U(X) and C(X)+S(X)) by generating the descendents of X.

We tested the alternative, and found no performance gains.

6 Simulation

Despite the promise of analyzing large state-spaces via parallel processing and smart trimming, the

problem remains that gargantuan state-spaces defeat any approach based on exhaustive analysis.

This is especially true in systems which tolerant many failures. Even if a tool can analyze a model,

albeit slowly, a modeler may desire loose upper bounds on reliability in the course of exploring a

model design. Alternatively, one may first wish to exhaustively test to ensure that any combination

of K failures will not cause system failure, and then get a rough estimate of reliability. In such cases

a Monte Carlo simulation approach can help. This section outlines such an approach, based on

importance sampling. We first discuss the mathematics of sampling and show that the basic method

is sound. We also point out that importance sampling based on SURE bounds achieves variance

reduction over another standard method. We then consider parallelization, and observe excellent
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speedups.Next wediscussoptimizeddeath-statechecking,and alsofurther languageextensions
to supportgeneralstatisticalmeasurements.Finally wediscusssomeimportant implementation
considerations.

6.1 Mathematical Basis

Foranypath p ending in D (i.e., p E P), let f(p) denote the probability that the system chooses p

on its way to D, if left to run sufficiently long. Then

Thus

Pr{System failure by time Tlpath p is taken } = Pr{Sp _< T[path p is taken).

Pr{Systen| failure by time T} = _ f(p) Pr{Sp _< Tlpath p is taken)

pEP

= EI[Pr{Sp < TIpath r is taken)] (5)

where P is the random path chosen to 79. A Monte Carlo approach is to estimate this expectation

via random sampling of Pr{Sp _< TIP is taken).

Given a path p and SURE bounds Lp(T) and Up(T), we know that

L1,(T ) U_,(T)

f(p------_< Pr{Sp < Tlpath p is taken) < f(p) . (6)

This inequality could be used to estimate bounds on EI[Pr{Sp < Tlpath P is taken}], but

there is a serious problem with such an approach. When P is sampled from f, from any state

with both fast and slow transitions we will ahnost always chose the fast (recovery) transition. The

majority of death-states occur in those rare cases when recovery mechanisms are defeated by low

probability additional failures. Sampling paths using f means missing some of the death-states one

is attempting to find. This problem has been recognized before [13, 4, 10, 8], where the notion of

importance sampling is used. Intuitively, importance sampling is used to skew the path sampling

towards rare events. Mathematically, let g(p) be a different probability mass function for sampling

paths such that g(p) # 0 whenever f(p) # O. Then

EI[Pr(SP < TIP is taken)] = _ f(p) Pr{Sp < T]path p is taken)

pEP

=_-_f(P)g(p) Pr{Sp _< Tlpath p is taken}
pET 9

= Eg[R(P)Pr{Sp < Tlpath P is taken)]

where R(p) = f(p)7"g(p).
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To useimportancesalnl)lingis to estimatethelatter expectationby randomlysampling(with
respectto g) bounds on R(p) Pr{Sp < :/'IP is taken}. From inequality (6) we see that for any path

P

Up(T)R(p) <_ R(p) Pr{Sp < T[path p is taken} _< R(p) f(p) ,

or equivalently,

Lp(T) Up(T)

g(p-----_-< R(p) Pr{5'p _<Tlpath p is taken} _< g(p) . (7)

The Monte Carlo analysis consists of sampling (with respect to g) many independent replications

of paths to/9, and for each computing Lp(T)/g(p) and Up(T)/g(p) as samples. Following many

replications we compute confidence intervals on Eg[R(P)Lp(T)] and Eg[R(P)Ur,(T)], and use these

to construct confidence intervals on the probability of system failure by T.

Many different ideas have been suggested for important sampling, e.g., see [10]. We have been

successful with a strategy that partitions transitions from a state into slow and fast classes, chooses

the slow class with some probability q and chooses the fast class with complimentary probability.

Within a class a transition is chosen with probability proportional to its transition rate. For a

given path p, g(p) is computed as the product of the probabilities of each forced transition decision.

This transition selection strategy was proposed in [13]. However, part of that proposal is to also

sample holding times, conditioning them on no transition time exceeding T. When/9 is reached,

the sample statistic is of the form d(p)f(p)/g(p), where d(p) is the product of ratios of the form

h(tilti_l, k)/J_(tilti_l, k). Here tl is the sampled transition time from the i th state on p, say k, given

that k is entered at time ti-1. h(ti[ti_l) is the density of that transition time using k's true holding

time distribution, and ]_is the forced density function. Contrast the measure d(p)f(p)/g(p) with the

SURE-based measure Up(T)/g(p). A key point is that conditioned on taking path p, d(p)f(p)/g(p)

is still a random variable (d(p) varies), whereas Up(T)/g(p)is deterministic. This immediately

implies that the expected average measure in the original scheme has a larger variance does the

expected average SURE measure. Therefore confidence intervals based on SURE bounds (when

using the same transition selection strategy) will on average be smaller.

The quality of results obtained from importance sampling schemes are known to be sensitive to

the problem class. We were naturally concerned whether the schemes we examined were effective on

problems for which SURE was intended, ltappily, the scheme above with q = 0.5 has proven to give

results c6nsistent with SURE analysis (this setting was also recommended in [4]). We tested the

simulation-based results with SURE predictions, on a suite of problems used at NASA to validate

ASSIST. Three of these are listed below, as well as models NetA and NetB, described earlier, using

standard pruning. All simulation runs are based on 10,000 replications. The simulation-based lower

and upper bounds are given as 95% confidence intervals, and timings are taken on a SUN Sparc

workstation. This data suggests that the simulation based approach is able to find small intervals

around the exact 'bounds, and in the case of the very large models do so more rapidly than the
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Model Size

(nodes)
aclust3 34623

arcsxodl 1032
billee 991
NetA 3.6M
NetB 57.5M

Exact Solution
Bounds time

4.94e-8,4.95e-8 9sec
6.81e-3,6.92e-3 0.4sec
2.24e-7,2.25e-7 0.4sec
4.02e-6,4.12e-6 22min
3.76e-9,3.97e-9 7.5hr

SimulationBounds

(10,000replications)
(5.00+ 0.14)e-8,(5.014- 0.14)e-8

(6.63 4- 0.25)e-3, (6.74 4- 0.26)e-3

(2.25 4- 0.11)e-7, (2.25 4- 0.11)e-7

(3.47 4- 0.51)e-6, (3.82 4- 0.57)e-6

(3.68 4- 0.28)e-9, (4.04 4- 0.35)e-9

Solution

time

31 sec

21 sec

27 see

2.2 rain

5.4 min

Table 2: Comparison of SURE-based and simulation-based analysis

exact analysis. However, it is also clear that orders of magnitude more replications are needed if

we wished to shrink the confidence intervals to less than one percent of the mean. The advantage

of simulation is that reasonably good numbers can be gotten relatively quickly. We expect there is

utility in numbers known to be uncertain within 10%.

We also estimated reliability on the models above using skewed holding times as described

in [13, 8]. On the small models there was no appreciable difference between the relative errors

(confidence interval width divided by sample mean) of the two approaches, ttowever, on NetA

and NetB the SURE-based approached yielded relative errors that are 20% smaller. The SURE

approach also runs 10-20% faster, since it avoids random number generation for holding times. For

the 10,000 replications examined here, the confidence intervals for both approaches are not small

enough to distinguish between an estimate based on SURE's upper bound, or the estimate of the

precise probability.

The primary motivation for importance sampling is variance reduction. It is therefore instructive

to examine how the sample variance achieved under our scheme changes as the class probability

threshold q changes. This is illustrated in Figure 3, where for the NetB model we plot 95%

confidence intervals on the upper bound 3.97e-9, following 10,000 replications. This data shows

the danger of skewing q too far one way or the other, q = 0.5 appears to be a satisfactory setting.

However, since effective importance sampling is known to be l)roblem class dependent, ASSURE can

call a user written routine to do the importance sampling. Such a routine is passed a description of

the system state, and all transitions possible from that state (and their rates). The routine chooses

a transition, and reports back the probability of making that choice under the importance sampling

strategy. This is all the information ASSURE needs to correctly compute its statistics.

6.2 Parallelization

Simulation replications are trivially parallelized; we have done so on the workstation network. The

only challenge is to,u_e a load-balancing scheme that does not incur excessive overhead, but which
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Figure 3: Confidence intervals as function of importance sampling parameter q

is responsive to changing network loads. Our scheme is to maintain a commonly accessed file,

to contain the remaining number of replications. A workstation devoid of work accesses this file,

acquires some fixed number G replications (G is user-defined so that replications are acquired no

more than, say once a minute), modifies the file and releases it. The simulation is complete after

every workstation finishes its work, and sees zero remaining replications. A monitoring process

combines and reports the aggregate results. To demonstrate the effectiveness of this approach,

we simulated NetB for 100,000 replications on 1, 6, 12, and 18 workstations at a time when the

network load was low. The running times were respectively 35, 6, 3, 2 minutes. Once again we see

the tremendous advantage offered by parallel processing.

6.3 Additional Issues

We now consider some auxiliary issues. In ASSURE, simulation-based analysis generates different

problem-dependent code than does exact analysis; the generation of a state's descendents is done

in two passes. The first pass identifies the existence of each descendent, and its transition rate.

This pass does not actually perform the state-space modification. ASSURE's simulation control

code selects a descendent, and in a second pass that descendent's state is created. We judged this

approach to be cr't[¢ial for problems with large state vectors, and/or complex state-modificatlon
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routines. Indeed, this approad_ yielded a factor of two reduction in execution time on NetA and

NetB.

Our study of the second model problem led us to consider another implementation issue, that of

death-state checking. ASSURE's basic scheme checks death-state conditions after every transition.

This makes sense for many models, including all of the ones we've considered so far in this paper.

IIowever, consider our second model problem, where a system is considered to have entered 7) if

there exist two operable processors that cannot communicate under the constraints of the fault-

tolerant routing protocol. We noted earlier the high computational cost of checking that condition.

The problem is that a path may be extended many times before reaching 7:); most of the death-state

checks are unnecessary, as they do not observe a death-state.

We exploit the fact that once the system state enters 7) it will not depart. The optimization

is to only periodically check whether a path under expansion has entered 7), say, check every

d transitions. We keep an ordered list of all path-records generated in the last d transitions.

Upon reaching the d_h transition since the last check, we check the DEATttIF conditions on the

present state variable values. If the state is not in 7) we release the first d - 1 of the stored path

records, and continue for another d transitions. Once a death-state is uncovered we must find

the .first state to enter 7) among the last d visited. Since their path-records have been saved in

order of generation, we may perform a binary search. The number of death-state checks is thus

approximately logarithmic in the path length, rather than linear. Observe that when systems can

be repaired it may be possible to express a model that can pass into and out of 7), even though

that may not be intended. For this reason, the optimization under discussion must be requested

by a user, it is not automatic. Itowever, one could adapt the scheme by always checking for a

death-state on recognition of a recovery transition--we check the state just prior to the recovery

and use that state as the terminus of a search interval.

In order to both illustrate the advantage of periodic checking and illustrate that simulation

based analysis can handle large problems, we consider the second model problem. The routing

protocol studied permits at most two "miss-steps", which means that the number of links crossed

when i and j communicate is no larger then four plus the Hamming distance between i and j. With

some straightforward tricks it costs O(nodes × links) time to determine whether a given network

configuration is dead. We check the death-state condition every 100 transitions. Table 3 shows the

effect on the simulation rate (replications/minute) of the "constant check" and "periodic check"

methodsl as the size of the problem increases. The table shows the problem size (in numbers of

components), the average number of failed components when 7) is entered, and the simulation rates.

This data clearly shows the advantage of periodic checking on problems of this type, and also shows

that simulation-based ASSURE analysis is able to deal with relatively large problems, especially

if we use parallel processing. On the largest problem shown here, we could expect to complete a

1000 replication run in approximately an hour using 18 workstations in parallel.
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llypercube Size Avg. ConstantCheck PeriodicCheck
Dimension (nodes,links) Failures sire. rate sim. rate

6 (64,192) 73 4.52reps/min 28.8 reps/min

7 (128,448) 166 0.4 reps/min 5.2 reps/min

8 (256,1024) 400 0.04 reps/min 0.92 reps/min

Table 3: Simulation rates on fault-tolerant routing problem, as the problem size varies

On this data the relative error from the SURE-based approach is approximately 33% smaller

than that using skewed sample times, showing again the variance-reduction advantage of using

SURE bounds.

Needs of the second model problem also gave rise to another language extension. The users

were interested in obtaining statistical information about the system configuration in death-states,

e.g., the average number of failed nodes and/or links. It was relatively easy to provide this by

allowing "statistics" variables to be declared in the ASSIST model, e.g.,

SAMPLE FailedNodes ;

A userprovidesa routine,calledwhen a death-stateisrecognized,thatassignsvaluesto allSAMPLE

variables.ASSURE automatical]ycomputes averagesand confidenceintervals,reportingtheseat

the end of the analysis.

7 Conclusions

This paper demonstrates methods for accelerating tile solution thne of reliability analyses based on

the SURE bounds. Our methods are centered around the notion of simultaneously generating and

analyzing a state-space along a failure path, but discarding the state information once the path

is analyzed. This provides a significant memory savings, but exacts a cost of recomputing state

information. We have shown that this tradeoff is advantageous when system failure occurs after

a small number of component failures. In addition the approach is easily parallelized, either on

a dedicated multlprocessor or on an ordinary network of workstations. An important part of our

method isto use a minimum of specialized syntax to describe a framework for a model's transition

behavior, and to let a modeler use the full resources of the C programming language to describe

tile details of that behavior.

We also investigate tile integration of SURE bounds and Monte Carlo simulation based on

importance sampling. We find that the approach produces accurate results using as few as 10,000

replications on models with two orders of magnitude more states. Consequently, on large models the

simulation-based analysis executes more quickly. Furthermore, we observe that SURE-based Monte
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Carlo estimation has desirable variance reduction properties. Finally, simulation-based analysis

admits solution of problems that are too large for exact analysis, and admits easy exploitation of

parallelism by simulating independent replications in parallel.

All of the methods described are encorporated in a tool called ASSURE. From a single user

interface, ASSURE provides exact analysis or simulation-based analysis, serial execution or parallel

execution. Empirical studies of large models solved with ASSURE show that the methods we

describe are effective in accelerating the solution time of large complex problems.

Our results show the promise of attacking large reliability problems by path analysis. Further

work may be directed towards generalizing the SURE bounds to include non-homogeneous failure

rates, and to sharpen confidence intervals with more advance importance sampling schemes.

Distribution

ASSURE is available by request. Contact the first author at nicol_cs .ura. edu.
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1 Introduction

Tile ASSURE program was developed to rapidly analyze the reliability of avionics control

systems, o11 a parallel computer architecture. As its name suggests, ASSURE combines

the functions of the existing SURE [2] and ASSIST [3] tools developed at the NASA

Langley Research Center by Butler, Johnson, and White. ASSURE's analysis is identi-

cal to that of SURE. ASSURE accepts reliability models developed using the ASSIST

grammar. In addition, ASSURE extends ASSIST syntax by allowing one to directly

refer to functions written in C within the model description. The principle utility of

this extension is to perlnit the calculation (rather than an ASSIST-style specification)

of modified state variables, initial state values, and static read-only data-structures. In

addition, ASSURE permits Monte-Carlo based analysis, and automatically parallelizes

either SURE-based analysis or Monte Carlo analysis.

ASSURE differs algorithmically from ASSIST and SURE, in that it simultaneously

creates portions of the state space (like ASSIST) analyzes it (like SURE) but then

discards the memory used to represent that portion of the state space. ASSURE thereby

achieves considerable savings in memory usage; for models that are moderately large

and larger ASSURE runs significantly faster than ASSIST/SURE. However, ASSURE's

functionality is more limited than SURE and ASSIST--it will report the reliability

bounds, but little less. ASSURE's proper role in the ASSIST/SURE/ASSURE tool

suite is as a fast computational engine. Models are most easily developed using ASSIST

and SURE; ASSURE can then be used to quickly grind out relability bounds as problem

parameters (e.g. pruning level) are varied. The Monte Carlo analysis option extends

this capability to systems that are even larger than ASSURE's exact analysis capability

can attack.

ASSURE runs only under the Unix operating system. It assumes the availability of

the standard Unix utilities lcz, yacc, sed, grep, awk, rsh the csh shell, and cc.

This documentation has several parts. Section 2 describes how one sets up an AS-

SURE system. Section 3 explains how to run ASSURE. Section 4 describes the C

language extensions to ASSIST. Section 5 illustrates ASSURE's use through an exam-

pie of a complex system. Sectionsec:Commands/Constraints summarizes the command

scripts through'_which a user invokes ASSURE, enumerates constraints ASSURE places



on the modeler,and explainserror messages.Finally, Section7 describesthe format of
a userwritten routine for modelingtrimming.

2 Setting up ASSURE

ASSURE is distributed as a file called AssureVX.tar.Z, where X is the current version

number (presently 5). To build ASSURE, create a base directory (assumed here to be

called assure) and a subdirectory assure/src into which AssureVX.tar.Z is placed.

Then uncompress and untar the file, e.g.,

Y, uncompress AssureV5.tar. Z

Y, tar -xf AssureVS.tar

Next, execute a build script setupassure to build the ASSIST parsers and pre-compile

the problem independent code.

setupassure

Various steps in tile setting up process are reported to the screen. One of the results

of executing setupassure is that a new subdirectory of assure is created, called obj.

All of the compilation and file manipulation that occurs in tile course of using ASSURE

happens in obj and a further subdirectory obj/working; the problem independent object

code is also kept in obj. The contents of src may therefore be compressed or archived.

Finally, move up to the base directory assure, and we're ready to go.

3 Running ASSURE

ASSURE will evaluate any ASSIST file subject to constraints identified in Section 6.

From the assure directory, one executes

% runassure filename

where filename is the name of an ASSIST model file. This file must reside in the base

assure directory.

runassure requires additional option flags when the C extensions are used. As will

be described in Section 4.1, the C source code for initialization must be placed in one

file; to. signal the inclusion of this file and its role as initialization code one includes a
-i filename on the runassure command line. Likewise, tim source for testing death-

state and transition conditions must be placed in a distinct file and flagged with a -d,

and the source for modifying a state-vector following a transition is in a distinct file and

is flagged with a -t. Each type of extension is optional. Any global data and/or data

structure definitions, and macro definitions that do not explicitly reference the ASSIST

model system state variables ought to be placed at the front of the file flagged with -i.

Four other ralntime optious that are always legal are given below.
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-upper This option convertsall alphabetic charactersin the ASSIST model file (but
not the extensionfiles) to uppercase.This ensuresthat the ASSISTkeywordsare
all in uppercase,which ASSURErequires.

-dbx Setting -dbx causesall ASSURE source code to be copied into subdirectory
assure/obj/working, where it is compiledinto executablefile assure-run, and
executed. The option is useful while debugging,as one can invoke a debugging
(suchasdbx) on the executable.

-machines :file This option indicatesthat this executionought to beparallelized, file
is the nameof a file in the assure directory that containsthe network file names
(recognizableby rsh) of machinesto usein the parallelization. All machinesmust
shareaidNFSfile systemin which assure isbuilt--every machinewill begiventhe
samepath-nameof whereto locate assure-run, and everymachinewill execute
the sameexecutableimage.

-time t This option givesa missiontime, overridding the missiontime declaredin the
ASSISTfile.

Four additional options canbe invokedonly widenusingSURE analysis(asopposed
to Monte Carlo analysis,to be described).

-userprune n This option specifiesthat the userhassupplied a routine to aid in prun-
ing. The value of n givesthe smallest "level" (number of transitions from initial
state) at which one ought to begin to engagethis routine, n ought to be set to
a level2-3 lessthan the level at which you desirepruning to be conducted. The
specificsare describedin Section7.

-fop n This option declaresthat thesystemoughtonly to test whetherany death-states
areencounteredin any sequenceof n componentfailures.

-prune p This option sets ASSURE'spruning level to p, overriding any pruning level
declaredin the ASSIST model.

-noraono ASSURE's pruning mechanism assumes that the sum of all slow component

failure rates never exceeds that of the sum out of the initial state. If this assumption

does not not hold, the user ought to include -nomono on the command line, causing

a more conservative pruning method to be used.

-monoto n This option declares that the sum of all slow component failures out of a

state does not increase along any path of n or fewer transitions from the initial

state.

ASSURE supports both SURE based and Monte Carlo based analysis. To select

Monte Carlo analysis one specifies a command line argument -r n where n gives the

total number of replications desired. For example, -r 10000 serves as a flag to link into

the Monte Carlo analysis engine, and perform 10000 replications. Some other command

line options are_vailable when doing Monte Carlo analysis.
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-s seed This option lets you set tile random numbergenerator seedas desired. Two
runs of the samemodel with the samespecifiedseedwill yield the exact same
samplepaths.

-trace n This option causestrace information to be printed everyn replications.

-de freq This is option is usedwhen death-statecheckingis very expensive,and the
numberof failures tolerated beforefailure is large. The valueof freq ought to be
set to an estimatedaveragenumberof componentfailuresthe systemwill tolerate.

-pruneif This option declaresthat onewishesPRUNEIF (and PRUNIF) states to be
countedasdeath-states.They areotherwiseignored(sincetheir intented useis to
prune the state-generationprocessin ASSIST).

-thrs p This option relates'to ASSURE's default importance sampling schelne. When

choosing between the fast class or the slow class, the slow class is chosen with

probability p. The default value is p = 0.5.

-grab n This option has meaning when performing parallel Monte Carlo analysis. Load

balancing is "self-scheduling", meaning that a processor gets more workload (repli-

cations) for itself whenever it has exhausted its present supply. -grab n indicates

that when it grabs workload, it ought to grab n replications, n ought to be set so

that a processor executes at least several seconds for every group of replications

"grabbed". The default setting is the total number of replications divided by the

number of processors.

4 Extended ASSIST

ASSURE extends the ASSIST syntax by permitting some of its statements to be replaced

by C-functions. These C-functions are defined by the user in auxiliary files which depend

ou their usage. Any such C-function may refer to any ASSIST model state vector

variable; it should interpret each state component as having type int. In this section we

describe how these extensions are properly used.

4.0.1 TRANTO Statement

TRANTO statements can call C-functions to algorithmically compute state vector mod-

ifications following a transition. All such functions have to be stored together in a file

which is included on the runassure COlnmand line with the -t extension. The syntax

of calling a function in the TRANTO statement is given below.

TRANTO (function_nan_e(single_parameter)) BY rate;

Thus, one may replace a sequence of ASSIST state vector modifiers with a call to a C

function which performs tile same task. This function may include a single, optional,

parameter. To illustrate, consider the following example.

Normal TRAN_O statement:



TRANTO NCF = NCF+I, PE[4+I]=O, PE[I]=O, FAILURE = i,

spares [i]=spares [i]+I, ns=ns-I BY C*LAMP+LAMT;

TRANTO statement with C-function:

TRANTO (C_func(1)) BY C*LAMP+LAMT;

C-function in the -t flagged file will be the following:

C_func (J)

int J;

{

NCF = NCF+i ;

PE[4+I] = PE[4+I] + 2;

PE[I] = PE[I] - I;

spares[l] = spares [l]+l ;

ns = ns-I ;

}

It is important to note that the function call is surrounded by parenthesis, and that

the function contains no more than one parameter. Note the usage of ASSIST state

variables as simple C variables. The internal ASSURE system treats these variables as

having type int. This fact should be borne in mind while writing the C functions.

It is even possible to pass pointers to system state variables to subroutines which

do not explicitly reference state variables. However, caution is advised--it must never

be forgotten that the components have type int; furthermore, the internal ASSURE

mechanism uses the standard C convention of starting arrays at index 0, rather than

1. Also, the internal ASSURE mechanism expects references to state variable arrays to

always specify an array element. The implications of this are illustrated by example.

Consider a function that sums the first three elements of a state vector array SE and

stores it in the fourth:

SumVer I()

{

int i;

SE[4] = 0;

for(i=l; i<=3; i++) SE[4] += SE[i];

}

We might write a commonly used subroutine SumSub() to sun'l the first j - 1 elements

of a vector and store it in the jth. This subroutine would be placed in the initialization

file.

SumSub (j,V)

int j ;

int,.*V;



{
int i;

VEj] = O;

for(i=O; i<j; i++)

}

V[j] +: V[i];

We couh[ then replace SumVerl with SumVer2 which calls SumSub:

SumVer2 ()

{

SumSub (4,&SE [i]);

}

Tlle first important feature of this example is that within the file which permits explicit

reference to state variables, array index of tile first logical SE element is 1, while in the

ordinary C function tlle array begins at index 0. This is explained by understanding

that the ASSURE process for transforming references to state variables into references

to internal C variables automatically subtracts one from all state vector array indices.

The second important feature of this example is that while no explicit declaration of SE

as an array of char is needed witlfin the file containing SumVerl() and SumVer2(), the

SumSub () subroutine must recognize tile array as being of type int.

4.0.2 DEATHIF and Condition Statements

Similar to the TRANTO statements, C-functions can be used to flag death-state con-

ditions, and transition conditions. The C-functions called must return a value of type

integer, to indicate the outcome of their testing. The normal C convention for Boolean

interpretation of integers is followed; 0 =_ FALSE, otherwise TRUE. All such functions

are contained in a common file, which is flagged on the runassure command line with

a -d. The syntax for using such functions is given below. Note again the need for paren-

thesis around the function calls, and the limit of one functional parameter.

DEATHIF (function_name(single_parameter));

Example:
Normal DEATHIF statement:

DEATHIF ((seca<3 and pri<2) or vlvl<2) and

((secb<3 and (pri=2 or pri=O)) or vlv2<2) or

(seca=l and pri<2) or (secb=l and (pri=2 or pri=O))

vlvl=O or vlv2=O;

or

DEATHIF stateinent with C-function:

DEATHIF (Death_Cond());

C-function in DEATIIIF_and_COND_EXPR--file will be the following:



int Death_Cond()

{

if (((seca<3 and pri<2) or vlvl<2) and

((secb<3 and (pri=2 or pri=O)) or vlv2<2) or

(seca=l and pri<2) or (secb=l and (pri=2 or pri=O)) or

vlvl=O or vlv2=O)

return(1);

else

return(O);

}

IF (function_name(single_parameter))

Example:

Normal Condition Expression statement:

IF PE[I] + PE[2] + PE[3] + PE[4] > 0

TRANTO .......

Condition Expression statement with C-function:

IF (Cond_func())

TRANTO .......

C-functionin DEATIIIF_and_COND_EXPR-file will be the following:

int Cond_func()

{

if PE[I] + PE[2]

return(1);

else

return(O);

+ PE[3] + PE[4] > 0

4.0.3 Initialization and Global Data Structures

It is sometimes desirable to engage in certain initialization activities. For example, the

start state given in tile ASSIST file call be modified to reflect components that are most

easily c.omputed, rather than figured out by hand and included ill tile ASSIST START

statement. Ally such initialization to be done has to be a consequence of executing a

procedure whose name must be Initialize(). Tile function, and any others which

do not explicitly reference ASSIST state vector components are gathered together in a

single file which is flagged on the runassure command line with a -i. Any file flagged

by -i must include a function named Initialize(), even if that function is null. It is
also useful to define certain global data structures to be used by the various C-functions.

These definitiorm should be placed at the head of the file flagged by -i.

a
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Figure 1: Example: Fault-tolerant hypercube architecture

5 Example

We now illustrate tile use of ASSURE using an example. The problem is based upon the

fault-tolerant architecture described in [1], illustrated in Figure 1. The basic architecture

is that of a three-dimensional llypercube of fault-tolerant processing nodes, with one

spare processing node for each of two two-dimensional subcubes. For the purposes of

this example, the spares are assumed to be cold. Each processing node is comprised of

(i) four communication ports, (ii) four processors, (iii) one spare processor (assumed to

be hot), (iv) one shared memory, and (v) one communication bus. A node is considered

to have failed if fewer than four processors are operative, or if fewer than three links

are operative, or if either the memory or bus have failed. Upon failure of a processing

node, the appropriate spare is brought in, if possible, after a recovery delay. A subcube

is considered to have failed if more than one if its nodes has failed. Finally, the system

is considered to have failed if either subcube has failed, or if two operative nodes in a

non-recovery state are unable to communicate.

5.1 ASSURE Files

The entire ASSURE model of this problem is given at the back of this document. It is

comprised of files cb. ast, cb. i, cb. t, cb. d. These files are also found in subdirectory

src/problems/space-cubo of the ASSURE distribution.

Let us first examine cb.ast. Here we see that the mission is one year (in hours).



Other elementsof tlle preamble declare the various transition rates (in failures/hr),
and declarethree statistics variables. The ten processingnodesare indexed from 1 to
10, with the two sparesbeing numbers9 and 10. Most state variablesare indexed by
the identity of a processingnode. NODE[i] describestile state of a node, as having
attributes GOOD, BAD, INUSE, and DORMANT. MEM_BUS[i] is 1 if both the memory
and busof nodei areoperative. PROC[i] givesthe numberof operativeprocessors(plus
spare) in the node, and PORT[i] givesthe number of operativecommunication ports.
There are twenty links in the system,indexedfrom 1 to 20. Array LINK givesthe state
(GOOD,BAD) of each. Finally, SUB[1] givesthe state of one subcube(nodes1-4and
9) while SUB[2] givesthe state of the other.

The START statement gives default initial state variable values. These may be
changed(and someare) by the initialization routine Initialize().

The two DEATHIF statementsexpressthe two high level requirementsfor failure--
oneof the subcubeshas failed, or weare unable to establishconnectivity. Tim first of
theseis tested directly using ASSIST syntax. The secondof thesecalls a C function
to determine the connectivity. Later wewill seehow individual componenterrors may
percolateup and havesystemfailure be reflectedin a SUBvariable.

The TRANTO loopoverK=I, 10identifiesprocessors,memories,and busesthat may
fail. Sinceeither a memory or bus failure will fail a node, we have combined the effects

of the two elements into one. The loop over K=9,10 identifies components of on-line

spare nodes that may be failed.

The loop over K=1,20 identifies links that may fail. For simplicity we have combined

the failure of a link and either of its end-point ports.

The last set of transition rules are for recovery transitions, flagged by the keyword

FAST. The first operative node to fail in a subcube initiates a subcube recovery, where

the cold spare is brought in. To reflect this transition, the appropriate component of SUB

is set to REPAIRING. Completion of this transition restores the SUB state to GOOD,

and brings the spare node's components on-line. Before examining the details of the

various C routines that are referenced, consider the overall structure. Each component

or subsystem in this model has an "Effect" routine. Calling an Effect routine for an

elemental component is a signal to fail the component. Calling an Effect routine for

a subsystem (like NODE, or SUB) is a signal that at least one of the subsystem's

constituent parts has changed, and so the subsystem ought to evaluate its own state.

Thus, the ASSURE loop calls a component's Effect routine to signal a failure, e.g.,

ProcEffect. This routine decrements the number of active processors, and then calls

Nodeffect, the Effect routine for its subsystem NODE. NodeEffect determines whether

tim node is still alive. If not, it signals node failure to the next higher subsystem

contaihing it, by calling SubCubeEffect. This routine determines whether the node

failure brings down the subcube, or whether there exists a spare and the spare can

be brought in to replace the failure. If the spare can be brought in, the appropriate

SUB component is modified to value RECOVERING. It is otherwise set to FAILED, a
condition that will be discovered with a DEATHIF check. Thus, we use ASSURE to

construct a hierarchical layer of Effect functions that determine local subsystem state

conditions, an_l,signal higher levels when events occur that may affect them.



Now considerfile cb. i. At the beginningwe find macro definitions, structure defi-
nitions, and global variables.Next there is routine Initialize. Note that it selectsan
initial set of node and links to be in-use,thereby overriding the initial valuesgivenby
the START statement. It also calls a routine maplinks() that generatessomeglobal
data structuresthat describethe network topology.

File cb. d containsroutine ConnoctionFailure(), which determineswhether a net-
work that is not under repair is still connected. Note the early exit if the states of
either SOBvariablereflect anongoingtransition. Recall that IsUnderRepair is a macro
definedin cb. i. The routine worksby building a spanning-treerooted at any NODEthat
is in use. The spanning-treeis built usinga recursivedepth-first traversal that "marks"
every node it touches. Thus, the network is disconnectedif and only if there exists a
node that is not reachablefrom the root though the spanning-tree.

cb. d alsocontainsroutine Measure(), whichweusewith the simulation option. This
routine measuresthe numberof processors,links, and memory/bus componentsthat are
not failed at the point a death-stateis entered. We alsofind routine TrimAnalysis(),
which isusedaspart of theuser-assistedtrimming option discussedearly. TrimAnalysis ()
loopsoveroperational nodes. It first analysesthe criticality of the node'ssubcube--a
critical subcubeis onethat cannot tolerate anodefailure. Next it looksat the numberof
workingprocessorsin the node. If thereis a full complement,then oneof them can fail,
at any time, and not bring the systemdown. Hence,there is a safe transition (see [4],

included with the ASSURE distribution) with rate 5*PF (recall that PF is the processor

failure rate). If the node has only four processors, a failure by one will drop the node,

and may drop the system--depending on whether the subcube is critical. Thus the next

processor failure is conditionally safe if the subcube is critical, and is unsafe otherwise.

Shnilar logic applies for the node's MEM_BUS component.

File cb .t contains the Effect functions. As previously described, Effect functions for

elemental components PR0C, LINK, and MEM..BUS simply mark the component as having

failed, propagate the effects locally (e.g., LinkEffect alters port counts in affected

nodes), and then call the Effect function for NODE. On being called NodeEffeci()

analyzes all components of the NODE state. Observe that NodoEffect () does not know

the reason it is called. This is deliberate. Each Effect function ought to be completely

self-contained, and free from any pre-determined assumptions about the state of the

system. If this policy is adhered to in every Effect module, the logic of model will

be correct. The logic will otherwise depend on assumptions concerning the order of

Effect function evaluation. If NodeEffect determines that the node has failed, then

all components touching the node are treated as though they have failed. This is an

entirely practical matter, relating to the size of the state-space ASSURE must explore.

Since later failures of components in an already failed node cannot further degrade the

system state, there is no point in modeling those failures. Finally, SubCubeEffect is
called. This routine examines the state of the subcube and determines whether repair

is possible. If it is the subcube state is set to "repairing" mode, otherwise the subcube

state is set to failed (which will be detected by the DEATHIF conditions).
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5.2 Some Sample Runs

Now let us examine ASSURE's output oll this problem. Figure 2 illustrates the command

line and resulting information from using SURE-based analysis on a single workstation.

First one sees that as ASSURE transforms the model into C code, it reports on inter-

mediate steps. This takes about a minute. The statement "This is ASSURE ..." is

printed just prior to execution of the ASSURE model. The first line of output reports

that 801,842 states were generated in the course of this run, and that 778,882 paths

were analyzed. Remember that the node count does not give the number of unique

states, ASSURE regenerates states as needed along a path. The second and third lines

of output report that 138,012 death-states were discovered; LBOUND and UBOUND give the

sum of upper and lower bounds on the probabilities of reaching these states within the

mission time. The P-SUBTOTAL numbers relate to states pruned by ASSIST PRUNEIF

statements, of which there are none in this model The TOTAL bounds are the sum of the

D-SUBTOTAL and P-SUBTOTAL bounds. The sum of pruned states probabilities gives the

sum of upper bounds on the paths that are pruned. To construct a conservative upper

bound on the probability of failure one adds this sum to the TOTAL UBOUND. The exe-

cution is prefaced with the Unix "time" command, which explains the cryptic last line.

The first three nmnbers relate to rulming time: this run required 1641.32 "user" seconds

of CPU time, 2.13 "system" seconds, and an elapsed wallclock time of 27 minutes, 51

seconds.

Now let us consider a parallel execution of ASSURE. We construct a file, mr. 10, with

names of 10 workstations that all have the same NFS'd view of the directory in which

ASSURE is built. As shown with the more command in Figure 3, the William & Mary

workstations are named after states. Then we add -machines mr. 10 to the command

line. Unlike the serial ASSURE command, the parallel version returns control to the

command line as soon as the execution is initiated. In order to monitor the progress

of the computation, we invoke the script Peek, whose ulthnate results are shown. Peek

displays the time at which the run was initiated, and for every workstation shows the

total number of nodes processed and its termination time. These times are taken from

time-stamps on files, and hence have a resolution of about 1 minute. Following this

report Peek gives a summary similar to that in the serial case. ttappily we observe that

tim parallel version finds precisely the same result, and achieves a significant speedup (a

3-4 parallel minute run versus a 28 minute serial run).
Now let's do a serial Monte Carlo analysis. As shown in Figure 4, we remove the

-userprune option (since no pruning is done during simulation), and include -r 10000

and -de tO. The first of these signals our intention that Monte Carlo analysis be done,

with 10,000 replications, the second invokes the death-state checking optimization. The

output is understood as follows. Under the Mollte Carlo option the upper bound and

the lower bound are considered to be "statistics", just as are any declared SAMPLE

variables. A confidence interval is constructed for each statistic. The output gives,

for every statistic, the salnple mean (called "point estimate") and sample standard

deviation, the 95% confidence interval, and the "relative error" which is measured as

the width of the confidence interval divided by the point estimate. The smaller the

ll



_runassure cb.ast -i cb.i -t cb.t -d cb.d -userprune 3

Translation of assist file to C code

.'bdl.c:

bdx.c:

Compilation of problem specific code

Linking:

This is ASSURE Version 5.0 (SURE Analysis)

the no. of nodes 801842, no. of paths 778882

D-SUBTOTAL :LBOUND:Z.O79588e-04 UBOUND:Z.O80437e-04

The no. of deathstates are : 138012

P-SUBTOTAL :LBOUND:O.OOOOOOe+O0 UBOUND:O.OOOOOOe+O0

TOTAL :LBOUND:7.079588e-04 UBOUND:7.080437e-04

The sum of pruned states probabilities < 7.255260e-05

The no of paths pruned at level l.O00000e-09 is 640870

The avg # transitions for a path is (a:4.669932e+OO,s:4.652597e+O0)

1641.430u 2.130s 27:51.73 98.3_ 0+198k O+Oio Opf+Ow

Figure 2: Example ofserial SURE based analysis run

P @1.
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_more mf.lO

nc ct md ri ny ga de mn in il

Zrunassure cb.ast -i cb.i -t cb.t -d cb.d -userprune 3 -machines mf.lO

Translation of assist file to C code

''bdl.c:

bdx.c:

Compilation of problem specific code

This is ASSURE Version 5.0 (Parallel SURE Analysis)

Execute script Peek to monitor progress of analysis

ZPeek

Run began at Feb 17 10:12

Processor 0 did 79284 nodes by time Feb IZ 10:14

Processor 1 did 91481 nodes by time Feb 17 10:14

Processor 2 did 73436 nodes by time Feb 17 10:15

Processor 3 did 79872 nodes by time Feb 17 10:14

Processor 4 did 73436 nodes by time Feb 17 10:14

Processor 5 did 81815 nodes by time Feb 1Z 10:14

Processor 6 did 79284 nodes by time Feb I? 10:14

Processor 7 did 91481 nodes by time Feb 17 10:15

Processor 8 did 72164 nodes by time Feb 1Z 10:15

Processor 9 did 79589 nodes by time Feb 17 10:15

With I0 of 10 processors reporting .....

the no. of nodes 801842

D-SUBTOTAL :LBOUND:7.OZ9588e-04 UBOUND:Z.O80437e-04

The no. of deathstates are : 138012

P-SUBTOTAL :LBOUND:O.OOOOOOe+O0 UBOUND:O.OOOOOOe+O0

TOTAL :LBOUND:7.OZ9588e-04 UBOUND:7.080437e-04

The sum of pruned states probabilities < 7.255260e-05

The no of paths pruned at level 1.000000e-09 is 640870

Figure 3: Example of parallel SURE based analysis run
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relative error, tile tighter tile confidence interval is. We see then that tile reported

confidence intervals for upper and lower bounds statistics UB and LB do indeed contain

the bounds given by the SURE analysis. Furthermore, the Monte Carlo option's running

time is somewhat less-- 5 minutes versus 28 minutes.

We invoke the parallel Monte Carlo option just as we did tile parallel SURE option, by

simply adding a machine-list file name to the command-line. This is shown in Figure 5.

For good measure we have boosted tlle number of replications to 100,000. As with the

parallel SURE option, we monitor the computation by executing script Peek.

6 Commands, Constraints, and Errors

6.1 Command Scripts

The user's interface to ASSURE is through command scripts.

setupassure This is executed from the assure/src subdlrectory. It either creates, or

overwrites directory assure/obj, building ASSURE's parsers and problem inde-

pendent object code. This need only be executed once.

runassure This script is called from the base directory, assure. Its first argument

must always be an ASSIST model file name, which must also reside in the base

directory. Other extensions are possible, as described earlier in the document. The

effect of calling runassure is to parse the ASSIST file and create problem-specific

C language files which are compiled, and linked with the problem-independent

object files. The resulting file is executed to solve the problem.

rerunassure This script provides a short-cut to re-run a model with a different set of

problem parameters, by avoiding the translation and compilation step. It is neces-

sary that the "re-run" be of the same type as the previous run, e.g., both SURE-

based, or both Moate-Carlo based. Options that affect problem code compilation--

notably -is and -userprune n--must be identical between runs. rerunassure is

called from the base assure directory.

KillNetRun This option is executed to prematurely kill a distributed ASSURE run,

either SURE-based or Monte Carlo based. Whenever a workstation begins its

execution of a distributed ASSURE run, it creates a shell script for killing itself

via the Unix kill command. KillNetRun simply remotely executes each one of

these scripts. It may happen that KillNetRun attempts to kill a workstation that

has already completed, in which case an error message is printed. These may be

ignored. KillNetRun is called from the basis assure directory.

Peek This script is called to monitor the progress of a distributed ASSURE computation.

It too is called from the basis assure directory. The user infers the completion

or non-completion of the computation by examination of the Peek output. For a

SURE run, the computatio,l is completed when Peek reveals that all processors

14



%runassure cb.ast -i cb.i -t cb.t -d cb.d -r I0000 -dc i0

Translation of assist file to C code

''bdi.c:

bdx.c:

Compilation of problem specific code

This is ASSURE Version 5.0 (Simulation Analysis)

--- Fast/Slow Class:Prop. Transition Sampling (Pr{slow} = 0.500000)

%%%%%%%% RESULTS FOLLOWING I0000 REPLICATIONS %%%%%%%%

Statistic UB

point est. = 6.200053e-04

std dev. = 6.802262e-03

95% conf. int. (4.866810e-04, 7.533297e-04)

rel. err. = 3.539602e-01

Statistic LB

point est. = 6.199230e-04

std dev. = 6.801605e-03

95% conf. int. (4.866116e-04, 7.532345e-04)

rel. err. = 3.539TOTe-01

Statistic LIVEPROC

point est. = 7.279000e+00

std dev. = 1.037249e+01

95_ conf. int. (7.075699e+00, 7.482301e+00)

rel. err. = 5.434179e-02

Statistic LIVEGUTS

point est. = 7.279000e+00

std dev. = 1.037249e+01

95% conf. int. (7.075699e+00, 7.482301e+00)

rel. err. = 5.434179e-02

Statistic LIVELINK

point est. = 1.186240e+01

std dev. = 1.671584e+01

95% conf. int. (I.153477e+01, 1.219003e+01)

rel. err. = 5.375385e-02

340.4u 1.0s 5:46 98% 0+364k O+Oio Opf+Ow

Figure 4: Example of serial Monte Carlo based analysis run
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%runassure cb.ast -i cb.i -t cb.t -d cb.d -machines mf.lO -r i00000 -grab i000

Translation of assist file to C code

''bdl.c:

bdx.c:

Compilation of problem specific code

This is ASSURE Version 5.0 (Parallel Simulation Analysis)

Execute script Peek to monitor progress of analysis

_Peek

Statistics from 100000 replications total

Run began at Feb 17 I0:59

Processor 0 has 10946 reps at time Feb 17 ii:04

Processor I has 12002 reps at time Feb 17 ii:04

Processor 2 has 6003 reps at time Feb 17 11:04

Processor 3 has 12004 reps at time Feb i7 ii:04

Processor 4 has 12005 reps at time Feb 17 ii:04

Processor 5 has Ii006 reps at time Feb 17 Ii:04

Processor 6 has 12007 reps at time Feb 17 II:04

Processor 7 has 8008 reps at time Feb 17 Ii:04

Processor 8 has 8009 reps at time Feb 17 ii:04

Processor 9 has 8010 reps at time Feb 17 11:04

Statistic UB

point est. = 6.866804e-04

std dev. = 8.211339e-03

95% conf. int. (6.357860e-04, 7.375748e-04)

rel. err. = 1.380047e-01

Statistic LB

point est. = 6.865932e-04

std dev. = 8.210591e-03

95Z conf. int. (6.357034e-04, 7.374829e-04)

rel. err. = 1.380093e-01

Statistic LIVEPROC

point est. = 7.451200e+00

std dev. = 1.039726e+01

95Z conf. int. (7.386757e+00, 7.515643e+00)

rel. err. = i.714900e-02

Statistic LIVEGUTS

point est. = 7.451200e+00

std dev. = 1.039726e+01

95% conf. int. (7.386757e+00, 7.515643e+00)

rel. err. = 1.714900e-02

Statistic LIVELINK

point est. = 1.212298e+01

std dev. = 1.671392e+01
P_

95_ conf. int. (1.201939e+01, 1.222657e+01)

rel. err. = 1.694570e-02
16
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havecompleted. II1contrast,the MonteCarloversionprovidesintermediatestatis-
tics, evenif the computation hasnot completed.The computation is known to be
completedwhenthe immberof replicationsreported equalsthe numberrequested.
There is no needto call KillNetRun if the distributed computation is shownto
havecompletednormally.

6.2 Constraints

There are certain important assumptions that have been made about the input ASSIST

file. These have to be followed so that it can be parsed for the translation process.

• The reserved words are in CAPS. ASSIST is treated as case sensitive.

• DEATHIF and PRUNEIF statements have to follow the Start statement.

• If any statement contains a**b then it has to be enclosed in parenthesis.

• Arrays of constants are not permitted; nor are not-system- state variable arrays. Can

do it using C.

• Cannot use definitions of the form

A = S TO 50 BY 5;

• The FOR statement has to end with a semicolon.

• The functions should be in C.

• If functions are used in TRANTO statements then it has to be within parenthesis

IF cond_expr

TRANTO (function_name()) BY rate;

• If functions are used in DEATHIF statements then it has to be of the following

form

DEATHIF (function_name());

• Mission time is a real number and has to be defined in the ASSIST file.

6.3 Error Messages

The error messages printed by ASSURE are the following:

1. Syntax error in line line_no in file file_name.

Reason: Syntax error in the ASSIST code.

2. unable to open file file_name.

Reason: ASSIST file not found.
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3. Dynamic memoryexhausted
Reason:No more memoryavailablefor carrying on the depth-first searchof the

state space. Usually an indication that the user model is mismanaging dynamic

memory allocation, e.g., not freeing up discarded memory blocks.

4. Various compile errors.

Syntax errors ill a user's model will provoke cc into generating many error mes-

sages. It is recommended that the -dbx switch not be used until the ASSURE

model compiles correctly, as the error messages from cc accurately pinpoint the

file and line number of the problem. When -dbx is set, the compile errors are re-

ported in a file prob. c, which is found in obj/working. The cause of the error can

usually be inferred from the error report on prob. c, it is just not as convenient.

The reason, in fact, for the -dbx switch is that the mechanism used to accurately

pin-point compile errors seems to confuse dbx. Invoking -dbx circumvents the

problem, at the cost of more mysterious error messages.

5. Various Command Script Errors

runassure will report that a command line error exists if the command line con-

tains illegal switches. A user may neglect to include a required argument to a

switch, in which case runassure may or may not complain, depending on the er-

ror. In most cases of this type the error is caught, but it may also manifest itself in

the assignment of strange unintended values to to problem paraineters. Be careful

out there.

7 User Assisted Trimming

A user may assist ASSURE with smart trimming, by writing a routine that provides

ASSURE with classification of transitions out of the present state. An ability to do this

can reduce the number of states analysis by as much as two orders of magnitude.

The user signals ASSURE that this assistance is present with the -userprune n

switch. This implies that a file with a -d extension exists, and contains a function

TrimAnalysis(SafeSum, CondSum, UnsafeSum, SumMax,RecovSum )

float *SafeSum, *CondSum, *UnsafeSum, *SumMax,*RecovSum;

ASSURE calls TrimAnalysis expecting to have values assigned to the locations pointed

to in the argument list. The role of TrimAnalysis () is to quickly analyze the ASSIST

current state variables, using knowledge of the system structure, to classify transitions

out of the current state. These are understood, as follows.

An unsafe transition is one that may lead to a death-state. It is permitted to classify

a transition as unsafe, even if the possibility exists that the transition does not cause

system failure. The converse is not l)ermitted. TrinuningBound() is expected to record

the sum of rates of all unsafe transitions in the location pointed to by UnsafeSum.

Non-unsafe transitions are to be classified as safe or conditionally safe. A condi-

tionally safe'eransition is one that will not cause system failure, if taken immediately.

18



A safe transition is one that may be deferredfor one step, and still not causesystem
failure. Typically instancesof safe transitions are transitions that causeavailablehot
sparesto be immediately switchedill. TrimmingBound() is expectedto record the sum
of rates of conditionally safe transitions in the location pointed to by CondSum,and
to record the sum of ratesof safe transitions in the location pointed to by SafeSum.In
both cases,upper boundsoll thesesumssuffice. TrimAnalysis() is also expectedto
recorda lower bound oi1 the sum of rates of possible recovery transitions, in the location

pointed to by RecovSum.

Finally, TrimAnalysis () may optionally write into the location pointed to by SumMax

an upper bound on the sum of slow transition rates out of any state reachable from the

present one. ASSURE assumes a value for this, Tr±mAnaa.ysis() may tighten it, if

desired.
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cb.ast Wed Feb 17 11:05:19 1993 1

(* CB.AST *)

TIME= 8760;

PRUNE=IE-9;

(* MISSION TIME = 1 YR *)

(* SURE PRUNE LEVEL *)

(* FTP AND ITS NETWORK INTERFACES *)

MF = 3.477E-7;

BF = 1.147E-7;

PF = 1.99E-6;

LF = 1.0E-7;

RR = 1.0E+3;

(* MEMORY FAILURE RATE *)

(* BUS FAILURE RATE *)

(* PROCESSOR FAILURE RATE *)

(* LINK FAILURE RATE *)

(* REPAIR RATE TO SWAP IN SPARE NODE *)

SAMPLE LIVEPROC;

SAMPLE LIVEGUTS;

SAMPLE LIVELINK;

DEAD = 0;

GOOD = i;

INUSE = 2;

DORMANT = 4;

REPAIRING = 4;

(* STATE SPACE DEFINITION *)

SPACE = (MEM_BUS:ARRAY[I..10] OF 0..i,

PROC: ARRAY[I..10] OF 0..5,

PORT: ARRAY[I..10] OF 0..4,

LINK: ARRAY[I..20] OF 0..1,

NODE: ARRAY[I..10] OF 0..I,

SUB: ARRAY[I..2] OF 0..2);

START = (i0 OF i,

i0 OF 5, i0 OF 4,

20 OF 4, 8 OF 3, 2 OF 4,

2 OF i);

(* Failure Conditions *)

DEATHIF SUB[I] = DEAD OR SUB[2] = DEAD;

DEATHIF ConnectionFailure();

(* A dead subcube *)

(* can't connect *)

(* TRANSITIONS *)

FOR K=I,10;

(* Fail a working node's parts *)

IF NODE[K] = INUSE+GOOD THEN

IF PROC[K] > 0 TRANTO (ProcEffect(K)) BY PROC[K]*PF;

IF MEM_BUS[K] = 1 TRANTO (Mem_BusEffect(K)) BY (MF+BF);

ENDIF;

ENDFOR;

FOR K=I,20;

IF LINK[K] = INUSE+GOOD TRANTO (LinkEffect(K)) BY LF;

ENDFOR;

(* Repair Transitions *)

IF SUB[I] = REPAIRING TRANTO (SubCubeRepair(1)) BY FAST RR;

IF SUB[2] = REPAIRING TRANTO (SubCubeRepair(2)) BY FAST RR;



cb.i Tue Feb 16 21:14:06 1993 1

#include <stdio.h>

#define Good 0xl

#define Bad 0x0

#define InUse 0x2

#define Dormant 0x4

#define UnderRepair 0x4

#define SetBad(a) a = 0

#define SetInUse(a) (a = GoodlInUse)

#define SetUnderRepair(a) (a = UnderRepair)

#define SetDormant(a) (a = Dormant)

#define IsGood(a) (a&Good)

#define IsOK(a) (a&Good)

#define IsInUse(a) (a&InUse)

#define IsBad(a) (!a)

#define IsUnderRepair(a) (a&UnderRepair)

#define IsDormant(a) (a&Dormant)

int NumNodes, NumLinks;

int visited[10];

typedef struct conn *CONNPTR;

struct conn[

int node, link;

CONNPTR next;

);

struct conn *ptrarray[10];

struct link_end_struct [int endl, end2; ) LinkEnds[20];

int NumNodes, NumLinks;

Initialize()

(
int i;

CONNPTR ptr;

NumNodes = i0; NumLinks = 20;

maplinks();

for(i=0; i<8; i++) (

/* mark first eight nodes as in use */

SetInUse( NODE[i+i] );

ptr = ptrarray[i];

while(ptr) ( SetInUse(LINK[ptr->link+l]);

ptr = ptr->next;

)
)
SetDormant( NODE[9] );

ptr = ptrarray[9-1];

while(ptr) ( SetDormant(LINK[ptr->link+l]);

ptr = ptr->next;

)
SetDormant( NODE[10] );

ptr = ptrarray[10-1];

while(ptr) ( SetDormant(LiNK[ptr->link+l]);

ptr = ptr->next;

)

)

P&z

LinkNeighbor(NNum, Neighbor, link, ptr)

int NNum, Neighbor, *link;

CONNPTR ptr;

(
int idx = *link;



cb.i Tue Feb 16 21:14:06 1993 2

CONNPTR tmp;

if(NNum < Neighbor) (

LinkEnds[idx].endl = NNum; LinkEnds[idx].end2 = Neighbor;

ptr->link = idx; (*link)++;

)
else {

tmp= ptrarray[Neighbor];

while(tmp->node l= NNum) tmp = tmp->next;

ptr->link = tmp->link;

}

maplinks()

(

CONNPTR ptr,tmp;

int LNum, NNum;

/* build up basic nodes */

for(NNum=0, LNum=0; NNum<8; NNum++) {

ptr = (CONNPTR)malloc(sizeof(struct conn));

ptr->node = NNum^0xl;

ptrarray[NNum] = ptr;

LinkNeighbor(NNum, NNum^0xl, &LNum, ptr);

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = NNumA0x2;

LinkNeighbor(NNum, NNumA0x2, &LNum, ptr);

LinkEnds[LNum].endl = NNum;

LinkEnds[LNum].end2 = (NNum<4?8:9); /* the spare */

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = LinkEnds[LNum].end2;

ptr->link = LNum++;

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = NNum^0x4;

LinkNeighbor(NNum, NNum^0x4, &LNum, ptr);

ptr->next = 0;

/* build the link structures for the spares by hand */

ptr = (CONNPTR)malloc(sizeof(struct conn));

ptrarray[8] = ptr;

ptr->link = 2;

ptr->node = 0;

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = i;

ptr->link = 5;

P_

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = 2;

ptr->link = 8;
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ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = 3;

ptr->link = i0;

ptr->next = 0;

ptr = (CONNPTR)malloc(sizeof(struct conn));

ptrarray[9] = ptr;

ptr->link = 14;

ptr->node = 4;

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = 5;

ptr->link = 16;

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = 6;

ptr->link = 18;

ptr->next = (CONNPTR)malloc(sizeof(struct conn));

ptr = ptr->next;

ptr->node = 7;

ptr->link = 19;

ptr->next = 0;

A
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ConnectionFailure()

{

int i,j,base;

/* ...... only check for a connection failure if neither

subcube is under repair .................... */

if( (IsUnderRepair(SUB[l])) lJ (IsUnderRepair(SUB[2]) )) return 0;

/* find a base for a spanning tree */

for(i=0;i<10;i++)

if(IsInUse(NODE[i+l])) break;

if(i==10) return i;

else base = i;

/* do a depth-first traversal , marking visited nodes */

for(j=0; j<10; j++) visited[j] = 0;

dfs(base);

/* visited[j] is 1 if i can get to j.

check for violations */

for(j=0; j<10; j++)

if( (IsInUse(NODE[j+1])) && (!visited[j]) ) return i;

/* touched them all, so we're OK */

return(0);

dfs(nodenum)

int nodenum;

(

CONNPTR ptr;

visited[nodenum] = i;

ptr = ptrarray[nodenum];

while(ptr) {

if( (IsInUse( LINK[ptr->link+l] )) &&

(!visited[ptr->node])) dfs(ptr->node);

ptr = ptr->next;

}

Measure ()

(

int idx, cnt;

for(cnt=0,idx=l; idx<=10; idx++) cnt += (int)(PROC[idx] l= 0);

LIVEPROC = cnt;

for(cnt=0,idx=l; idx<=20; idx++) cnt += (int) (LINK[idx] != 0);

LIVELINK = cnt;

for(cnt=0,idx=l; idx<=10; idx++) cnt += (int) (MEM_BUS[idx] l= 0);

LIVEGUTS = cnt;

P_

STATETYPE *TmpState; "

TrimAnalysis(SafeSum, CondSum, UnsafeSum, SumMax, RecovSum )

float *SafeSum, *CondSum, *UnsafeSum, *SumMax,*RecovSum;

(
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STATETYPE SaveLink;

float TmpSafeSum, TmpCondSum, TmpUnsafeSum, TmpSumMax, TmpRecovSum;

int idx, Critical, cnt;

STATETYPE *SaveState;

TmpUnsafeSum = TmpSafeSum = TmpCondSum = TmpSumMax = 0.0;

TmpRecovSum = 0.0;

/* determine if the subcubes are critical by looking to see

if the cube's spare processor is in use

*/

for(idx=l; idx<=10; idx++) {

/* don't do anything if this node is bad or dormant */

if( IsBad( NODE[idx] ) II IsDormant(NODE[idx]) ) continue;

if(idx==l) Critical =

(IsInUse(NODE[9]) II (IsUnderRepair(SUB[l])));

if(idx==5) Critical =

(IsInUse( NODE[10] ) ll(IsUnderRepair(SUB[2])));

if(idx==9)

(IsInUse( NODE[9] ) ll(IsUnderRepair(SUB[l])));

if(idx==10)

(IsInUse( NODE[10] )ll(IsUnderRepair(SUB[2])));

/* any PROC component == 5 gives a Unconditional SAFE trans.

Any other for an active node gives an UNSAFE transition

*/

if( PROC[idx] == 5 ) TmpSafeSum += 5*PF;

/* only 4 working processors. Classification

depends on whether cube is critical */

else {

if(Critical) TmpUnsafeSum += (4*PF);

else TmpCondSum += (4*PF);

}

/* any MEM_BUS transition from a critical subcube is unsafe */

if(Critical) TmpUnsafeSum += (BF+MF);

else TmpCondSum += (BF+MF);

/* examine each link. Any link that disconnects the network

of InUse nodes is UnSafe. Any other link is Conditionally

Safe. Play some dirty games so that we can call

CHECK_CONNECT.

*/

/* fetch state vector space if needed */

if(!TmpState) TmpState =

(STATETYPE *)malloc(sizeof(STATETYPE)*num_states);

/* Save pointer to current state, and copy that state */

SaveState = atnodeptr->num;

atnodeptr->num = TmpState;

memcpy(TmpState, SaveState, sizeof(STATETYPE)*num_statee) ;

for(idx=l; idx<=20; idx++) {

if( (IsBad( LINK[idx] )) II (IsDormant(LINK[idx]) )) continue;
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/* save the link state */

SaveLink = LINK[idx];

LINK[idx] = 0;

/* look and see if things are fully connected

even following this link's failure

*/
if(ConnectionFailure()) TmpUnsafeSum += LF;

else (

TmpCondSum += LF;

)
LINK[idx] = SaveLink;

atnodeptr->num = SaveState;

if(IsUnderRepair(SUB[l])) TmpRecovSum += RR;

if(IsUnderRepair(SUB[2])) TmpRecovSum += RR;

/* report measurements */

*SafeSum = TmpSafeSum;

*CondSum = TmpCondSum;

*UnsafeSum = TmpUnsafeSum;

*RecovSum = TmpRecovSum;
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SubCubeEffect(subid)

int subid;

{
int idx, cnt,spare,base;

/* enumerate number of working nodes */

for(idx=l,cnt=0,base=(subid-l)*4; idx<=4; idx++)

if( IsOK( NODE[base+idx] )) cnt++;

if(cnt==4) return;

/* at least one node is dead. Check the spare */

if(subid==l) spare = 9;

else spare = i0;

if( IsDormant( NODE[spare] )) cnt++;

if(cnt==4) [

/* the spare is OK. Mark the cube as under

recovery */

SetUnderRepair(SUB[subid]);

return;

/* subcube failed */

SetBad( SUB[subid] );

NodeEffect(nodeid)

int nodeid;

(
int sb;

CONNPTR ptrl, ptr2;

/* something in the node has failed. Figure out whether

the node is still operative.

*/
if( (IsGood( MEM_BUS[nodeid] )) &&

(PORT[nodeid] > 2) && (PROC[nodeid] > 3)) return;

/* this node is down. Drop all the components and tell the

subcube manager

*/
SetBad( NODE[nodeid]);

SetBad( MEM_BUS[nodeid] );

PROC[nodeid] = 0;

PORT[nodeid] = 0;

ptrl = ptrarray[nodeid-l];

while(ptrl) (

SetBad( LINK[ptrl->link+l] );

ptrl = ptrl->next;

}

if(nodeid<9) sb = l+(nodeid-l)/4;

if(nodeid==9) sb = i;

if(nodeid==10) sb = 2;

SubCubeEffect(sb);

4

ProcEffect(nodeid)

int nodeid;

(
PROC[nodeid] = PROC[nodeid]-l;
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NodeEffect(nodeid);

Mem_BusEffect(nodeid)

int nodeid;

[
SetBad(MEM_BUS[nodeid]);

NodeEffect(nodeid);

]

LinkEffect(linkid)

int linkid;

(
int el,e2;

/* drop the state */

SetBad(LINK[linkid]);

/* decrement PORT count at endpoints */

el = l+LinkEnds[linkid-l].endl;

e2 = l+LinkEnds[linkid-l].end2;

if( PORT[ el ]) PORT[ el ] = PORT[ el ] - i;

if( PORT[ e2 ]) PORT[ e2 ] = PORT[ e2 ] - i;

NodeEffect(el);

NodeEffect(e2);

SubCubeRepair(subid)

int subid;

{
CONNPTR ptr;

int spare;

int cnt, idx,base;

/* see if bringing up the spare will save the subcube */

for(cnt=0,idx=l, base=(subid-l)*4; idx<=4; idx++)

if( IsGood( NODE[base+idx] )) cnt++;

/* this subcube is dead if either there are too few

original nodes, or if the spare has already been

swapped in

*/
if(cnt < 3 II !(IsDormant(NODE[8+subid]))) [

SetBad( SUB[subid] );

return;

)

/*--- subcube is saved

SUB[subid] = i;

spare = ((subid==l)?9:10);

SetInUse(NODE[spare]);

------*/

ptr = ptrarray[spare-l];

/* bring the the links connecting the spare */

while(ptr) (

SetInUse(LINK[ptr->link+l]);

ptr'=, ptr->next;

}


