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ABSTRACT

The laminar-turbulent breakdown of a boundary-layer flow along a hollow

cylinder at Mach 4.5 is investigated with large-eddy simulation. The subgrid

scales are modeled dynamically, where the model coefficients are determined

from the local resolved field. The behavior of the dynamic-model coefficients

is investigated through both an a priori test with direct numerical simulation

data for the same case and a complete large-eddy simulation. Both formula-

tions proposed by Germano et al. and Lilly are used for the determination of

unique coefficients for the dynamic model, and their results are compared and

assessed. The behavior and the energy cascade of the subgrid-scale field struc-

ture are investigated at various stages of the transition process. The investiga-

tions are able to duplicate a high-speed transition phenomenon observed in

experiments and explained only recently by the direct numerical simulations of

Pruett and Zang, which is the appearance of "rope-like" waves. We also inves-

tigate the nonliriear evolution and breakdown of the laminar boundary layer

and the structure of the flow field during the transition process.
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1. INTRODUCTION

In high-speedboundary-layerflows, the physics,prediction, and control of the laminar-

turbulent transition processareof increasingfundamental,as well astechnologicalimportance

becauseof suchnationalprojectsas the designof the High-SpeedCivil Transport(HSCT) and

the National Aero-SpacePlane(NASP). In contrastto the vastprogressthat hasbeenmadein

understandingthe different mechanismsof laminar breakdownto turbulencein incompressible

flows, progresshasbeenmuchslower for compressibleflows becauseof the inherentcomplex-

ity of high-speednumericalandlaboratoryexperiments.

The road to transition in high-speedflows may involve severalstages. First, an initial

stageof linear instability of small disturbances,calledprimary instability, is well describedby

the compressiblestability equations.(SeeMack [1].) Multiple eigenvaluesof high-frequency,

amplified, and dampedmodes(Mack modes)appearin the solution of theseequations. The

first of theMack modesis calledthe secondmode,which is the mostunstableof all themodes

as a two-dimensional(2-D) disturbance.The linearstageis followed by a secondstage,where

apparentnonlinearity is revealedby the amplification of three dimensionality and the high

growth rate of thesedisturbances.At this stage,the disturbancesare still weak and the non-

linear distortion to the meanflow can be negligible. Studiesof secondaryinstability mechan-

isms in high-speedflows (seeEl-Hady [2,3], Masad and Nayfeh [4], Ng and Erlebacher[5],

Ng and Zang [6], and Pruett et al. [7]) have indicatedthat the growth rate of these three-

dimensional (3-D) disturbancesis more gradual; it persistsfor a long distancedownstream,

unlike the explosive and fast growth that was observedin incompressibleflows. This may

lead, in high-speedflows, to transition regions that are quite lengthy. These investigations

have concludedthat the subharmonlcsecondaryinstability is the most likely path to natural

transition in high-speedflows. Finally, a strong nonlinearstage takes place with high and

intensefluctuationsthat leadto the inevitablefully turbulentregime.

Experimentalstudiesat high speedshave beenreviewedby Kendall [8]. Thesestudies

stressedthe fact that the secondmodeis thedominantinstability in the high-speedrangeand is
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responsiblefor the production of persisting,well-ordered, "rope-like" waves seenin photo-

graphs(e.g.,Fischerand Weinstein [9]). In their direct numericalsimulation (DNS) calcula-

tions of a Mach 4.5 flow along a hollow cylinder at the beginningof the laminar breakdown

stage,Pruettand Zang [10] were ableto reproducethis rope-like structure. They numerically

generateda schlierenphotograph(like the laboratoryexperiment),which wasderived from the

wall-normal density gradient,and concludedthat theseflow structuresare associatedwith the

subharmonicsecondaryinstability and arise from the 2-D projection of the staggered3-D

lambdavortices.

The linear stability and secondaryinstability theoriesare not capableof describingthe

flow structure in the final stage that leadsto laminar breakdownand afterwards. The recent

approachof parabolizedstability equations(PSE)[11,12] also haslimitations and can describe

the flow structureuntil just after the onsetof transition. The flow structureduring transition

can only be describedwith DNS calculations. However, the applicationof compressibleDNS

to the laminar-turbulenttransitionprocessis anexceedinglyexpensivetaskbecauseof thewide

rangeof lengthscalespresentin the later stagesof transition;hence,more resolutionis needed

in this stage than for laminar or fully turbulent flow. Typical temporalDNS computations

require many hundredsof supercomputerhours; typical spatial DNS computations require

thousandsof hours. Becauseof its high computationalrequirement,DNS is usually usedto

simulatea forced transitionto focuson thelater stagesof the transitionprocess.

With the increasedinterest in boundary-layertransition of high-speedflows, given the

high cost of compressibleDNS and the problemsassociatedwith high-speedlaboratoryexperi-

ments, other, less computationallyintensivemethodsare neededfor engineeringpurposes.A

large number of ongoing efforts by different researchersare aimed at developing such less

computationally intensive methods that will make a distinct technological contribution to

expandingthe stateof the art in this field with large-eddysimulation(LES).

The LES techniquehasbeensuccessfullyappliedto the studyof turbulent flows (e.g.,see

the review article by Rogallo and Moin [13]) and has becomean important method of
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simulation. In DNS, all flow scalesare accuratelyresolved; in LES, only the large energy-

carrying scalesareaccuratelyresolved. The influenceof the discardedsmall or subgridscales

(SGS)must be modeledappropriatelyto simulatethe energycascade(i.e., the energytransfer

betweenthe large and small scales). A filtering processis usually usedto separatethe large-

and small-scalemotions,which resultsin the appearanceof the SGS in the residualstressand

heatflux terms.

In LES, a unified SGSmodel is usually used for different types of flows becausethe

small-scalemotion is moreuniversalfor all typesof flows. Specifically,in turbulent flows, the

small-scale motions tend to be more isotropic and homogeneous;hence, they can be

representedby simpler models,in comparisonwith the currently usedReynolds-averagedtur-

bulencemodels. On the other hand, the large-scalemotion differs sharply from one flow to

another;it is directly affectedby theboundaryconditions. The main contribution of the model

is that it allows the transfer of the correct amount of energyfrom the large to the subgrid

scales,or vice versa,nearthewall,

A central issuein LES is the developmentof models for the small subgridscales. Con-

trary to turbulent flows, the SGS model used for transitional flows is required to capture

severalstages:the primary, the secondary,and the fully nonlinearstages. The model is also

requiredto accuratelypredict the transitiononset,the transitionregion,and the fully turbulent

stage. A review of transition-regionmodelingwas recentlygiven by Singer [14]. The applica-

tion of LES to transitional flows dictatesnumerousmodificationsand extensionsfor the con-

ventional SGS models that are used for turbulent flows. Although the Smagorinskyeddy-

viscosity model [15] remainsthe fundamentalsubgridmodel in LES for incompressibleflows,

severalextensionsto this model havebeenmade. Moin and Kim [16] useda dampingfunc-

tion to accountfor the near-wall effects. Piomelli and Zang [17] modified the Smagorinsky

model by using a scalefunction to avoid the known excessivedamping of the SGSmotion.

The study by Piomelli et al. [18] establishedthe feasibility of usingLES for transitionalflows.

They applied this techniqueto the incompressibleflat-plate boundary layer with a modified
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Smagorinskyeddy-viscositymodel. The results comparequite well with the corresponding

DNS calculations.

The LES of high-speedflows has recently receivedincreasinginterest. For compressible

isotropic turbulence,Spezialeet al. [19] and Erlebacheret al. [20] havedevelopeda compressi-

ble analog of the linear combination SGS model of Bardina et al. [21] (called the SEZH

model);Zanget al. [22] usedthis modelandfound goodagreementwith theDNS datafor 3-D

compressibleturbulence. Comteet al. [23], Lesieuret al. [24], andNormandandLesieur [25]

have developedand useda structure-functionSGSmodel that is basedon the physical imple-

mentationof the conceptof eddy viscosity. They haveappliedthe structure-functionmodel to

compressibleisotropic turbulence,as well as to compressibletransition. Kral and Zang [26]

have testedboth the SEZH model and the structure-functionSGSmodel for supersonictur-

bulent flow over a fiat plate and have concludedthat the later model gives better agreement

with experiments.

In all previousstudies,the ad hoc manner in which the model constantsand the model

modifications(to satisfy certain physical conditions) have been treatedis not satisfactory,so

that the questionalwaysremains:can we makeLES as attractiveas DNS by eliminating the

needfor ad hocmodels? Recently,Germano[27] andGermanoet al. [28] haveansweredthis

questionby introducinga new SGSeddy-viscositymodel (dynamicmodel) for incompressible

flows that avoids the ad hoc treatmentand utilizes the spectralinformation in the large-scale

field to evaluate the small-scalestresses.They applied this model to both channel and

boundary-layerflows. Moin et al. [29] have extendedthe dynamic model to compressible

flows and scalartransportand haveapplied it to the LES of decayingisotropic turbulence. E1-

Hady et al. [30] haveestablishedthe feasibility of usingthe dynamicSGSmodel in the LES of

high-speedtransitionalflows.

In this paper,we study the nonlinearevolution and breakdownof the laminar boundary

layer in high-speedflows, as well as the structureof the flow field during the transitionpro-

cess. This study is achievedby using a large-eddytemporalsimulation,wherethe large flow
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structuresare computedand the small scalesare modeled. The flow field under study is the

transitionalaxial flow field on an axisymmetricbody (a hollow cylinder) at a Mach numberof

4.5 and at a Reynoldsnumberof 10000,basedon the boundary-layerdisplacementthickness.

We also study someaspectsof the dynamic modelingof the small-grid scalesapplied to this

transitional boundary layer. We expect the interaction, or the energy exchange,betweenthe

large and the small scalesto be quite different in compressibletransitionalboundarylayers in

comparison with previous applications to isotropic turbulence and incompressible transition. In

the remainder of the paper, we introduce the governing equations, develop the SGS dynamic

model, and present the numerical procedures for the LES. We then discuss the results of both

the a priori test for the model and the LES for a transitional boundary layer at a Mach number

of 4.5. Finally, we close with some concluding remarks.

2. PROBLEM FORMULATION

Governing Equations

The axisymmetric flow field along a cylinder of radius R," is described by the compressi-

ble 3-D Navier-Stokes and energy equations written in the body-fitted coordinate system x, y,

z, where x is the direction along the body, y is the normal to the body, and z is the azimuthal

direction. Lengths, velocities, and time are made dimensionless with the boundary-layer dis-

placement thickness 8' as a reference length, the edge velocity u_', and 8*/Ue, respectively. The

pressure is made dimensionless with p," .2Ue . The temperature, density, specific heats, viscosity,

and thermal conductivity of air are made dimensionless with their corresponding edge values.

The displacement thickness 8* is defined for the axisymmetric boundary layer by the quadratic

equation

8" _r* **_ff___.] * (1)
8" [1 + -_,] = 6 _--s-; [1 - dyRa Pe Ue

where r ° is the radial coordinate defined as r*(y)=Ra+Y*. Equation (1) reduces to the
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standardplanarboundary-layerdefinition as R2 _ _.

ties, the goveming equations in vectorial form read

+ v.(_)v)= o
Ot

_(pv) 1
+ v.(pvv) + A = -Vp + -a-V.o +

at

I
a_p_at+ V.Vp +wv.v - M2FR

with the state equation for an ideal gas

In terms of these dimensionless quanti-

(2)

(3)

Ou Ra bw Ov v

v.v-_+ -r -gz _r+ +-- (8)

V.Vp =--u Oo-_xx + Ra w OP +
Op

r OZ v--_-y (9)

and some extra terms h and Z appear in the momentum equation; these are defined as

A = --P-E(0, v,-w) (10)
r

Z = -r-_( 0 , %, (_=) (1 1)

Here, y is the ratio of specific heats ('t = 1.4); Me is the edge Mach number; R = 9e Ue 8"/_te is

the Reynolds number; r" = cp_te/ke is the Prandtl number (r = 0.72); _t and _. are the first and

second coefficients of viscosity, respectively; k is the thermal conductivity; I is a unit tensor;

and ()r denotes a transpose. The Stokes hypothesis is assumed, and the viscosity and thermal

In the above equations, a is the dimensionless viscous stress tensor, and • is the dimensionless

dissipation function. They are defined as

a = _t[W + (W) r] + _, (V.V) I (6)

¢, = (_:vv (7)

Also, in this coordinate system, the vector operators are defined as

vM2p= po (5)

V.(k VO) + ZT_ (4)
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conductivity are relatedto thetemperaturethroughSutherland'slaw.

Insteadof solving equations(2) through (5) directly for the full rangeof scales,we limit

the resolvablescalesizeby explicitly applying the spatial filter G to each term in the Navier-

Stokes and energy equations. This filtering process will separate the resolvable field from the

SGS field, which is accomplished by decomposing each field quantity F in the flow domain D

as

F = F + F" (12)

where the filtered quantity F is defined as

F(x,t) = i G(x - _, A) F(_,t) d_ (13)

and F" is the SGS part that accounts for those scales not resolved by the filter width zx. We

note here that the filtered quantity f in equation (12) or (13) is a spatially averaged, time-

dependent resolved quantity, rather than a time-averaged or ensemble-averaged mean quantity

as in the Reynolds-averaged Navier-Stokes equations. We keep A as a parameter in the

integral (equation (13)) to clearly show that the structure of the large-scale field and, conse-

quently, the structure of the SGS field will depend on the filter width. The smallest scale

allowed by the filter and the SGS model, which is O(6), should be greater than the smallest

scale resolved by the grid size, which is o(h). This relationship will ensure that the computa-

tions are independent of the numerical algorithm used in the simulations. In these calculations,

we choose the filter width _ = 2 hi, where hi is the grid size in the i th direction.

We use a sharp Fourier cutoff filter in these calculations and apply it in the wave space; it

is conveniently defined as

(10 f°r ki < KciGi (kl) = otherwise (14)

where Gi is the Fourier coefficient of the filter function in the ith direction and Kci is the cutoff

wave number in the i th direction (related to the corresponding filter width _Xi by Kci = n/zX_).

For laminar-turbulent transition flow problems, a cutoff filter is more appropriate than other
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commonlyusedfilters (e.g., a Gaussianfilter or a variable-width box filter). This filter ensures

clear identification of the SGS with scales that have wave numbers larger than the cutoff wave

number Kc_, rather than a mixed identity with both small and large scales, which is the case for

other filters (see Piomelli et al. [31]).

To account for large density fluctuations in high-speed flows, the resolved velocity and

temperature fields are written in terms of Favre-filtered quantities (Speziale et al. [19]), which

are defined as

Now F is decomposed to

= p_/g (15)

where F' is the SGS part of F,

governing equations used for the large-eddy simulation are

+ v.(_) = o
Ot

0(_% + V.(__9 + X = -v_ + lwV.(_ - V.x + 2:
Ot

F = ? + F" (16)

based on Favre filtering; consequently, the Favre-filtered

---L--Iv.(_vo) + • - _-TV.qOffOt+ V.V/T + ")'ffV._¢ = (T - l)(Y.Vp - V.Vff) + M_rR

with the state equation

(17)

(18)

(19)

(x) and the heat flux _ into its resolved (i_¢_) and SGS components (q). Also, in the filtering

Also, we have decomposed the stress tensor _VV into its resolved (_¢_¢) and SGS components

v.--_ =v.P (21)
Ot 0t

filtering process with space and time such that

In deriving equations (17) through (20), we have utilized the commutative property of the

rM)_= _ (20)
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process, the extra term X that results from the use of a body-fitted coordinate system will con-

tribute to the SGS; it is now defined as

X = --g--_-(0, _, -_) - 1(0, _y, x=) (22)
r r

Equations (17) through (20) are further simplified by assuming that _=oN),

(_- 1)(V.'-"_ - +¢.Vt_) = 0, k V0 = k-V_), • = _(%, and neglecting the contribution to the SGS by the

viscous dissipation.

The SGS stress tensor x and the SGS heat flux vector q appear in the right-hand side of

the momentum and energy equations, respectively; they must be modeled to close these equa-

tions. The SGS stress tensor x consists of the Leonard, cross, and Reynolds stresses, which are

defined as

Lkl = i5 (_ _ - _k_t) (23)

Ckl = _ (uk'_ + _kut') (24)

Rkl = _ (U_"ff"l) (25)

The SGS heat flux vector q consists of similar components, which are defined as

qLk = i5 (uk 0 - uk 0) (26)

qC k = _ (u'_ + uk 03 (27)

qRk = _ (u'_"_') (28)

Supplemented with appropriate initial and boundary conditions, equations (17) through (20) are

used to yield the resolved flow field for all later times.

Modeling the Small-Grid Scales

To model the SGS stress tensor x and the SGS heat flux vector q, we use the approach

given by Speziale et al. [19] and Erlebacher et al. [20], which is based on the eddy-viscosity

Smagorinsky model [15] and an analogous eddy diffusivity model; these are modeled as



11-

xkt ='p (V-tk_t -_k_t)- 2Cr'_A21SISkt" + -_Ci2 _A21_128k t

where 8k_ is the Kronecker delta.

of-strain tensor Sk_ are defined as

and

(29)

(30)

The characteristic filter width A and the Favre-filtered rate-

zX= (Ax Ay A_)m (31)

_=- 0_ (32a)
_x

Sx_ 1. R. 0ti _) (32b)=  {7-gz + 0x

I. O_ O_) (32c)S*y= + ox

(Sz.z- Ra OV¢ V (32d)
r Oz +-r

1. Ra Of_ Off _.___)
S_ = 2{--7--_-z + _ r

(32e)

O_ (32f)s.- ay

- 1-
S_'= r&__ _S_8kl {33)

IS I = (2 Sk, "_kt)_,2 (34)

Note that the first term in equations (29) and (30) represents the scale similarity part of the

model; it is the sum of the Leonard and cross portions of the SGS stress or heat flux fields.

The remaining part of the equation represents the model for the Reynolds portion of the stress

or heat flux fields. Piomelli et al. [31] indicated the need for the model to be consistent with

the type of filter used in the analysis. With the cutoff filter, the scale similarity portion of the

model is neglected, and the SGS field is modeled by the eddy-viscosity and its analogous
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The coefficientsof themodel Cr, G, and Co are to be determined.

The Dynamic Model

In accordance with Germano et al. [28] and Moin et al. [29], the filtered equations of

motion (equations (17) through (20)) are filtered once more. Again, a sharp Fourier cutoff

filter is applied in the wave space (see equation (14)), where 2_ represents the new filter width

in the ith direction and the ratio 8 = _i/A_ > 1. A ratio of 8 = 2 is adopted in the present calcu-

lations. The filter is applied in the x-direction along the body and in the z-azimuthal direction;

no filter is applied in the direction normal to the wall. The first and the second filters, usually

called grid and test filters, respectively, will each produce a resolved flow field. The difference

between the two resolved fields is the contribution by the small scales of length between the

first and the second filter widths. In deriving a dynamic model, several assumptions are made,

which we will identify. First, the same type of filter (a sharp Fourier cutoff filter) is used in

both the grid and test filtering. Second, the same functional form, based on the Smagorinsky

eddy-viscosity closure, is used to model the SGS stress terms from both filters. Third, the

same functional form based on an analogous eddy-diffusivity closure is used to model the SGS

heat flux terms from both filters. Fourth, a plane-averaging process is used in the derivation of

the model coefficients, where the averaging is taken over a plane that is parallel to the wall.

Finally, the model coefficients are independent of the filtering process. Each of these assump-

tions has its merits and can open the way for future adjustments of the dynamic model (e.g.,

Ronchi et al. [32] and Ghosal et al. [33]). Here, we briefly describe the derivation of the

model and leave the details to other references. (See references [28] and [29]).

In accordance with Germano et al. [28] and Moin et at. [29], we apply a test filter to the

equations of motion (17) through (20). We again use a sharp Fourier cutoff filter in the x-

direction along the body and in the z-azimuthal direction (with no filtering in the y-direction

that is normal to the wall). This new filter has the characteristic width

-----(SA a. my 8Az)l/3 (35)
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The SGSstressesandheatflux that appearin equations(18) and (19) canbedefinedas

Xkl = g (UkUt -- U_U]) (36)

qk = P (uk 0 - u_ _)) (37)

Analogous to the above equations, the SGS stresses and heat flux that appear in the test-filtered

equations can be defined as

Tkt = _ (ukut - ukut) (38)

Ok = _ (uk 0 - uk 0) (39)

By assuming the same functional form and model coefficients and neglecting the similarity

portion, the "test" SGS stresses and heat flux are modeled the same way as in equations (29)

and (30), with the scale similarity portion neglected as

rk, = -2c, A2t g I + 3c, A21

Ok = - Co _/_Zl g l _
3xk

aks (40)

(41)

The grid-filtered SGS field and the test-filtered SGS field are related by the Germano identity

[27], such that

Dkt - Tkt - 'tki = g['tk fit - "ffuk'O_t_/_5

Ek - Qk - _k = iS_kb - P_k g0/p

where Dkt and E_ are computable from the resolved large-eddy field.

(42)

(43)

They are the resolved

components of the stress tensor with scales of motion between the test and the grid scales.

Lilly [34] called it the test window.

By using the traces of equations (29), (40), and (42), the following expression can be

derived to solve for Ci

D_ = 2C/(A2_51SI - A2_51Xl2 ) = C_B (44)

By substituting equations (29), (40), and (44) into equation (42) and equations (30) and (41)
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into equation(43), the following expressionscanbederivedto solvefor C, and Co:

] _ , -_
Oja - -_OaSkt = -2Cr(h_ I S ISkt - A2_I S I Su') = c,.gu (45)

"2 " 30 _0) (46)Ek -- -Co(A i_l S I - a2i51g l = Ca Nk

Each of the expressions (45) and (46) represents a set of six independent equations in one unk-

nown. In order to uniquely determine the model coefficients c, and Co, we use the contrac-

tions proposed by Germano et al. [28] and Moin et al. [29] in which equation (45) is con-

tracted with _ and equation (46) is contracted with 3b/Oxk. We refer to this contraction as c l

in our calculations. We also use another contraction obtained from the least-squares analysis

of Lilly [34] in which equation (45) is contracted with Mkt and equation (46) is contracted with

Nk. We refer to this contraction as c2 in our calculations. The model coefficients in expres-

sions (44), (45), and (46) are functions of space and time. They can locally become negative,

which allows for backscatter (i.e., the transfer of energy from the SGS to the large scale). In

their DNS calculations of transitional and turbulent channel flows, Piomelli et al. [35] have

shown that about half of the grid points experience a backscatter when a Fourier cutoff filter is

used. To alleviate an observed numerical instability caused by ill-conditioned local quantities,

we perform a spatial averaging technique in a plane parallel to the wall (indicated by < >).

This plane averaging enhances the numerical stability of the simulations at the expense of los-

ing some of the conceptual advantages of the dynamic modeling formulation.

averaging leads to the following expressions for the model coefficients:

< Oa > (47)
Ci- <B>

< (Dkt - D_5_a/3) )_kt >
C,. = (48)

< M_t _kJ >

< EkAk >
Co - (49)

<NkAk >

where _ and Ak assume the value given by the type of contraction.

The plane

With the calculation of
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the modelcoefficients,equations(29) and (30) are usedto calculatethe SGSstressesand the

heatflux to closethe governingequations(17) through(20).

3. TESTING THE DYNAMIC MODEL

In this section, we investigate the behavior of the dynamic model coefficients using the

DNS data of Pruett and Zang [10] for a transitional boundary-layer flow along a hollow

cylinder at a Mach number of 4.5. This so called a priori test serves as a qualitative evaluation

of the model coefficients, the modeled SGS stresses, and the heat flux at various stages of the

laminar-turbulent transition process. It also serves as an assessment of the two types of con-

tractions that are used in calculating a unique value for the coefficients of the dynamic model.

But, one should note that the output of an a priori test may not include the anticipated interac-

tion between the modeled scales and the large scales, which can only be achieved through a

complete LES.

The initial resolution of the DNS data at time t = 0 was 12 x 6 × 96 in the streamwise,

azimuthal, and wall normal directions respectively (symmetry was enforced about the plane z =

0 to reduce the number of grid points by half in the azimuthal direction). As time evolved, the

streamwise and azimuthal grid refinements were made as necessary to maintain at least a

difference of eight orders of magnitude between the most and the least energetic Fourier har-

monics. A well-resolved flow field was reached until the period 55 (time is given here in terms

of the period of the primary wave) with a resolution of 96 x 48 × 144, beyond which the simu-

lation became increasingly ill-resolved.

We use the DNS data to examine the model coefficients on a coarse grid that is overlayed

on top of the fine DNS grid. The effect of the filter width is investigated first by applying the

grid filters 48 x 24 x 96, 32 x 16 × 96, and 24 x 12 x 96 to the DNS data (which correspond to

Fourier cutoff wave numbers of 24, 16, and 12, respectively, in the streamwise and azimuthal

directions). To evaluate the dynamic model coefficients, test filters are then applied to the

DNS data and the ratio 8-- 2 is kept fixed. All calculations in this paper enforce a symmetry



- 16-

about the plane z = 0 to reduce by half the number of grid points in the azimuthal direction.

The numerical grid is always given in this order: streamwise, symmetric azimuthal, and wall-

normal directions.

We find that the model coefficients Cr, Ci, and Co have a zero value at the wall and van-

ish in the free stream; they oscillate at locations in the wall region. The coefficients are very

small in the early linear region, and their values increase sharply as the laminar breakdown

begins. Figure 1 shows the effect of the filter width on the plane-averaged values of the model

coefficients at t-- 54 inside the transition region. Their values increase as the filter width

increases (coarser grid). A very coarse grid results in a sharp rise in the value of the

coefficient with high oscillations in the wall region. This result will have a direct effect on the

amount of energy contained in the SGS as the filter width changes. For example, Fig. 2 shows

this effect on the plane-averaged values of the component xx_ of the SGS Reynolds stress ten-

sor, the SGS kinetic energy K, and the component qz of the SGS heat flux vector. Contraction

c_ is used in the calculations of Figs. 1 and 2. Figure 2 shows that the SGS stress, heat flux,

and energy are very small for the grid 48 x 24 x 96 (as compared to the corresponding

resolved quantities in Fig. 17 below), which indicates that with the Fourier cutoff filter the grid

48 x 24 x 96 might be capable of resolving the flow field without modeling.

The ratio 8 is the only input parameter needed for the dynamic model. For a fixed-grid

filter, the effect of changing 8 on the model coefficients is expected to be the same as chang-

ing the grid filter in Fig 1. As 8 increases, the test-filter width increases which results in high

oscillations in the model coefficients and, consequently, in the SGS field. Figures 3 and 4

show that effect on the model coefficients and the SGS field, respectively, at t = 54 using con-

traction c_. The ratio 8 = 3 gives high oscillations in the wall-normal distribution of Cr, Co, and

the SGS Reynolds stress and heat flux. A ratio of fi = 1.3 results in negative values of c_ and

the SGS turbulent kinetic energy. The ratio 6 = 2 is kept fixed throughout all the calculations.

An example of the effect of the proposed contractions ci and c2 is shown in Figs. 5 and 6.

Figure 5 illustrates the effect on the coefficients cr and c0. Figure 6 shows the effect on the
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componentx_ of the SGS stress and on the component qz of the SGS heat flux, which is given

for a grid filter 32 x 16 x 96 at t = 54. The effect is a typical example for other grid filters and

for different times. The contraction c_ obtained from the least-squares analysis produces model

coefficients, as well as SGS stress and heat flux components, that are more than 50 percent less

than their counterparts with the contraction c_. Note that the model coefficient Ci and, there-

fore, the SGS kinetic energy are not affected by the type of contraction in an a priori test. We

will show in section 5 that this may not be the case for a complete numerical simulation.

Although the numerator and the denominator of the expressions in equations (47) through (49)

are dealiased, the high oscillations persist, as shown in the figures for the model coefficients

and the SGS field. These oscillations are probably unphysical and caused by ill-conditioned

behavior.

4. NUMERICAL PROCEDURES FOR LARGE-EDDY SIMULATIONS

The solution of equations (17) through (20) uses basically the same algorithm used by

Erlebacher and Hussaini [36] to simulate compressible flow over a flat plate, and by Pruett and

Zang [10] to simulate compressible flow over axisymmetric bodies. Here, we briefly describe

the main features of the algorithm.

Because the parallel mean flow does not satisfy the goveming equations (17) through

(20), forcing terms are added to the right-hand side of these equations to suppress the temporal

evolution of the unperturbed mean flow, so that the laminar state becomes stationary. The ini-

tial value problem defined by equations (17) through (20) is explicitly integrated in time by

using a third-order low-storage Runge-Kutta method. The time step is automatically controlled

by the minimum of the maximum time steps allowed by the linearized advection and diffusion

problems. The streamwise and the azimuthal directions are periodic so that the flow variables

can be represented by Fourier series in these directions. The periodicity lengths in the stream-

wise and azimuthal directions (2Lx and Lz) are related to the corresponding wave numbers o_

and 1_ by Lx = 2trot and Lz = 2rd[_. The spatial derivatives in these directions are evaluated at'
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each time step by spectral collocation methods. In the wall-normal direction, a sixth-order

compact difference scheme is implemented. To increase the resolution requirements in the

direction normal to the wall without drastically decreasing the time step in an explicit scheme,

Pruett and Zang [10] have implemented a sixth-order compact difference scheme in the wall-

normal direction, instead of the Chebychev collocation method used by Erlebacher and Hus-

saini [36].

The grid is uniform in the x- and z-directions; a mapping is used in the y-direction, which

clusters points near the wall and the critical layer and stretches the grid toward the far-field

boundary. Symmetry is enforced about the plane z = 0 to save computational time. Spectral

methods are known to introduce both truncation and aliasing errors. To minimize these errors,

we adopted the same method as in Ref. [10]; we check the decay of the spectrum of the

Fourier coefficients and refine the grid accordingly as needed.

Equations (47) through (49) are used to evaluate the model coefficients at each time step

from the flow field at the previous time step. The SGS stresses and heat flux are evaluated

with equations (29) and (30) at each time step and added to the right-hand side before the

governing equations are advanced in time.

At each time step, the energy content Et_13 in any Fourier mode (a,_), normalized with the

mean-flow energy Eo is calculated from the Fourier coefficients of the velocity %,_ as

dad_Y_---, r(Y ) dy
Ea,_ (t) = -_0 _ prY) I%,_(Y,t)l 2 Ra

4 = 2 - _ko (50)

Simulations are carried out for the flow along a cylinder with a Mach number of 4.5, a stream

temperature of I I0°R at the edge of the boundary layer, and at a streamwise station that

corresponds to R = 10000.

The initial conditions for the temporal numerical simulation match those of the DNS of

reference [10]. They consist of the mean flow over a hollow cylinder q0(y), an axisymmetric
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second-modeprimary disturbanceq l(X,y,/), and a secondary subharmonic disturbance q2(x,y,z,t).

The mean flow is a spectral solution of the axisymmetric compressible boundary layer [37].

The solution of the primary disturbance [5] assumes the form

ql(x,y,t) = el [01(Y) ei(_-_) + cc] (51)

and the solution of the secondary disturbance [7] assumes the form

N

q2(x,y,z,t) = e2 [e ict(x-'_ttcOI2 e i[_Raz E q2,n(Y) e _a(x--_':a) + cc] (52)
n --'--S

where a--0.2523 and co = 0.2285 + i0.319 x 10 -3 are, respectively, the real wave number and the

complex frequency of a primary disturbance of amplitude el = 0.085. The secondary disturbance

has four wave components (N = 4), an azimuthal wave number 13= 0.2673, and an amplitude

e2 = 0.017. The eigenfunctions of both the primary and secondary disturbances are normalized

such that their amplitudes measure the maximum root-mean-square value of the corresponding

temperature disturbance.

Dirichlet boundary conditions are applied to the total flow (except density) at the wall and

at the far field. The density is calculated by projecting forward in time with the Runge-Kutta

integrator, and the state equation is used to calculate the pressure.

5. RESULTS OF LARGE-EDDY SIMULATIONS

Features of the Dynamic Model

A large-eddy simulation is conducted with the dynamic model and the initial grid 24 x 12

x 96 by using the contraction c2 and 6 = 2. The grid is fixed at 24 x 12 x 96 throughout the

transition region. Figure 7 shows the time evolution of the dynamic model coefficients C, C,,

and Co. Although the coefficients are functions of y and t, they are averaged in the wall-

normal direction for the purpose of this graph. The figure illustrates one of the favorable

characteristics of the dynamic model; it turns itself off and on without the need for any added

ad hoc functions. The model is turned off in the linear and weakly nonlinear regions. These
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regionsare approximatedfrom the evolution of the primary and secondarydisturbances;the

linear region is betweenthe period 0 and the period 15,and the weakly nonlinearregion fol-

lows until the period 35. The model turns itself on in the strong nonlinear region (from

periods35 to 45). The valueof the modelcoefficientsgradually increasesasthe laminarbreak-

down commences,continuesto increasethroughthe transitionregion,and thendecreasesagain

in the fully turbulent region.

A secondLES is conductedin which a grid of 24 x 12x 96 is usedat the initial stages,

and is refined as necessaryto maintain at least a difference of four orders of magnitude

betweenthe most andthe leastenergeticFourierharmonics.The final grid reachedis 48 x 24x

96. The time evolution of the dynamic model coefficientsCr, Ci, and Co (averaged in y) is

included in Fig. 7 for comparison with the first LES of grid 24 x 12 x 96.

For the LES with final grid 48 x 24 x 96, we examine the evolution of the wall-normal

distribution of the model coefficients with time. Figure 8 shows the y-variation of plane-

averaged values of c,, ci, and co at t = 45, t = 54, and t = 62, which correspond to nearly the

beginning, the middle, and the end of the transition region. First, the figure shows that the

model gives the proper asymptotic behavior near the wall and vanishes in the free stream

(without the need for ad hoc damping functions). As y approaches the free stream, we notice

in the calculations that either the numerator of the formula for the model coefficient goes to

zero or both the numerator and the denominator go to zero. In the later case, we assign a zero

value for the model coefficient. Second, the model is first turned off and then turned on

automatically in the transition region (without the need for an ad hoc intermittency function).

Third, the values of the model coefficients are almost negligible in the linear and early non-

linear stages and increase sharply in the wall region as the breakdown progresses. As the tur-

bulent stage approaches, the values of the model coefficients drop and are not confined to the

wall region, but spread away from the wall (not shown). At any plane parallel to the wall, the

model coefficient Ci(x,z,t) is always positive by the definition of the SGS kinetic energy,

although negative values of C_ sometimes occur during the calculations (see Fig. 8) in the
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linear and the early nonlinearstageswhen the SGSkinetic energy is very small. This result

leadsto speculationon the validity of using the dynamic model to accuratelyrepresentthe

physicsof flow fields that aredominatedbythe large-scalestructure.On the otherhand,model

coefficients G(xlz,t) and Co(x,z,t) can take a positive or negative value, but their plane-

averaged values are rarely negative.

The plane-averaged value of the turbulent Prandtl number Prt is defined by the ratio G/Co.

This parameter directly influences the modeling of the SGS heat flux in Eq. (30). In the y-

region, where both G and c0 have a nonzero value, Fig. 9 shows the evolution of the wall-

normal distribution of the turbulent Prandtl number with time. The figure indicates that Pr,

reaches an average value of 0.2 to 0.5 in the transition region.

Contraction c_ is used in the simulations that produced Fig. 8. When contraction c2 is

used, similar observations are noted in addition to the reduction in the value of the model

coefficients predicted by the a priori test. Figures 10 and 11 show the effect of the contraction

type on the model coefficients at t = 54 and t = 62, respectively. Although the type of contrac-

tion does not affect the value of Ci in an a priori test, a large-eddy simulation does affect their

values, most probably because of the interaction between the modeled and large scales.

Although the values for G and co predicted by the contraction c_ are higher than those

predicted by the contraction c2, the value of Ci calculated with contraction cl is slightly lower

than that calculated with contraction c2 as shown in Figs. 10 and 11.

Global Features of the Flow Field

For the LES with a fixed grid at 24 × 12 × 96 throughout the transition region, we

checked the one-dimensional energy spectra against the corresponding spectra of a coarse-grid

DNS (no SGS model) and a fine-grid DNS. The coarse-grid DNS seems capable of resolving

the flow field only to a stage near the onset of transition. Its one-dimensional energy spectra in

both the streamwise and the spanwise directions gives good agreement with the fine-grid DNS

until t = 50. Beyond t= 50 and inside the transition region, the disagreement is slightly
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enhancedby the dynamicSGSmodel becauseof the largeincreasein the value of the model

coefficients.However, the dynamicmodel with the 24 × 12× 96 grid seemsunableto provide

the right amount of energytransferbetweenthe large and subgridscales,as shownin Fig. 12

at t = 55. Also, the energy content of some of the principal modes (Fourier harmonics) is

checked against the corresponding energy content of a fine-grid DNS. This check demonstrates

that the dynamic model with the grid 24 × 12 × 96 is capable of predicting the correct energy

content of various Fourier modes only to a stage near the onset of transition.

For the second LES calculations, where we reached a final grid of 48 × 24 × 96, Fig. 13

shows the one-dimensional spectra of the kinetic energy in both the streamwise and spanwise

directions at t = 55 (where the grid is 36 × 24 × 96). The figure exhibits good agreement with

the fine-grid DNS.

Figure 14 shows the time evolution of the principal Fourier harmonics in terms of its

energy content. Of these, three harmonics ((1,0), (1/2,1), and (3/2,1)) are present in the initial

conditions (together with their complex conjugates); however, the others ((0,2), (1,2), and

(2,2)) emerged from the self-interaction of different components of the secondary disturbance.

The different stages of evolution (linear, weakly nonlinear, strongly nonlinear, and breakdown)

are recognized in accordance with the development of the primary mode (1,0) and the secon-

dary subharmonics (1/2,1) and (3/2,1). The evolution of the various modes agrees well with

the fine-grid DNS [10]. Of interest is the LES prediction of the domination of the mode (0,2)

near the period 30 as indicated by the DNS [10].

In Figs. 15 and 16, we show a close comparison inside the transition region between the

two LES presented in this paper (with grids 24 × 12 × 96 and 48 × 24 x 96) and the fine-grid

DNS 96 × 48 × 144 of Pruett and Zang [10] for the energy content of the principal modes

(1,0), (1/2,1), (0,1), and (0,2). The dynamic model with the grid 48 × 24 × 96 shows good

agreement with the DNS and is capable of predicting the correct energy content of various

Fourier modes all the way to and through the transition region; as mentioned before, in the

case of the dynamic model with the grid 24 × 12 × 96, the comparison stops near the onset of
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transition.

The evolution of the model coefficients will directly influence the developmentof the

SGSstressesandthe SGSheatflux. However, the local valuesof the SGSfield arenot essen-

tial to the evolution of the large-scalefield. The divergenceof the SGSfield is the quantity

that entersthe momentumand energy equations. Figure 17 shows the developmentof the

resolved field with time. The figure gives the y-variation of the plane-averaged values of the

Reynolds stress component z_z, the kinetic energy K, and the heat flux component q_ at pro-

gressive times. The figure also shows a comparison with the fine-grid DNS results at t = 45

and t = 54, where the DNS results are filtered on the same grid that is used for the LES.

Fine-grid DNS results are not available at t = 62.

Figure 18 shows the effect of the contraction type on the resolved field and a comparison

with the fine-grid DNS results at t = 54. The fine-grid DNS results are filtered on the same

grid that is used for the LES. Although both types of contraction resulted in a resolved field

that is slightly overpredicted at this time (t = 54), contraction c2 is better able to predict the

peak values than contraction c 1.

The time evolution of the shape factor H and the plane-averaged skin friction CI are

shown in Fig. 19. The results from both types of contraction are compared with a fine-grid

DNS and a coarse-grid DNS. The coarse-grid DNS is the same grid used for LES, but without

the SGS modeling. A remarkable agreement exists between LES calculations and the fine

DNS results, which indicates that the dynamic model ensures the transfer of the correct amount

of energy between the large and the subgrid scales. Without the SGS dynamic modeling, the

coarse-grid DNS results fail to predict the evolution of the skin friction during the transition

region. Notice that both types of contraction used in the LES calculations give the same

results until the end of the transition region, where some differences appear.
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The Structure of the Flow Field

The subharmonic secondary instability is the most likely path to natural transition in

high-speed flows [2-7]. This instability leads to a flow-field structure that is dominated by

periodic lambda-shaped vortices that are shifted by one half of a wavelength in the spanwise

direction and staggered in the streamwise direction. Figure 20 shows a plan view, just below

the critical layer, of the total vorticity predicted by the LES with the contraction c l and by the

fine-grid DNS at t = 45. The figure indicates an excellent prediction of the flow structure by

LES at this time. The contraction c2 gives identical results (not shown).

The rope-like wave structure that was observed in high-speed experiments and was

explained recently by DNS is associated with the subharmonic secondary instability [10] that is

manifested in these computations at the time t = 45. This structure is the result of a 2-D pro-

jection of the 3-D lambda vortices. The LES is able to capture the rope-like wave structure,

even with the coarse grid (24 × 12 × 96). Figure 21 compares the rope-like structure that is

derived from the wall-normal density gradient at t = 45 with the corresponding structure from

the fine-grid DNS of Pruett and Zang [10] with the 64 x 36 x 128 grid. In Fig. 21 and in the

following comparisons with DNS, the DNS grid is filtered to the corresponding LES grid. The

significance of Fig. 21 is that although a coarse-grid DNS (24 x 12 x 96, which is the same as

the LES grid) might be able to capture this rope-like structure, LES, with the dynamic model,

causes no damping to the flow structure during the early stages of transition as does the stan-

dard Smagorinsky model [15].

Following the periodic lambda-shaped vortices, detached high-shear layers of the stream-

wise velocity are subsequently developed, which ride on top of the lambda vortices. With the

intensity of the high-shear layers increasing, they stretch and eventually roll up. Sharp, low-

velocity pulses (spikes) are then observed in the peak positions. At several stages in the transi-

tion region (t = 50, t = 53, t = 54, and t = 55), we compare the flow structure, in terms of

the spanwise vorticity that results from LES calculations, with the DNS results [10]. Figures

22-25 show this comparison for both contractions used in the LES calculations. These figures
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illustrate severalpoints.First, excellentagreementexistsbetweenthe LES andDNS results;the

LES, with the dynamicmodel, is able to capturethe bulk of the flow structure. Second,both

contractionsgive identical resultsat the early stagesof the transition region (at t = 50, the

maximum spanwise vorticity is 4.9 for both contractions, compared with 5.1 for DNS) Third,

slight differences in the details of the flow structure begin to occur in the late stages of transi-

tion. Fourth, at these late stages of transition, the LES flow-field structure with contraction c l

compares more favorably with the DNS results.

As the transition process continues, small structures are formed due to the breakdown of

the high-shear layer. This results in the periodical appearance of local regions of turbulence in

the streamwise and spanwise directions. These regions spread as they travel downstream until

a fully turbulent flow is attained. The later developments of the flow field are never under-

stood in high-speed flows because of rare DNS calculations that cover the high computer

demand of this stage. In Fig. 26, we present the results of the LES with contraction cl; these

results describe the spanwise vorticity structure of the flow field during the entire transition

region and for the beginning of the turbulent region. The figure shows different stages: the for-

mation of the lambda vortices, the development of the high-shear layers, the appearance of

spikes, the decay of the large-scale structure, and the formation of new, small structures.

6. CONCLUDING REMARKS

The dynamic eddy-viscosity subgrid-scale model of Germano [27] and Germano et al.

[28] has been applied to a high-speed transitional boundary layer at a Mach number of 4.5. In

this method, the model coefficients Cr, Ci, and Co are determined dynamically as the calcula-

tions proceed. The values of the model coefficients are adjusted automatically at different time

steps with the local information contained in the resolved flow field.

The application of the dynamic model to a high-speed transitional boundary layer is suc-

cessful. The model gives the proper asymptotic behavior of the modeled quantities near the

wall and in the free stream. The model has no dissipative character like the standard
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Smagorinskymodel; on the contrary, it turns dynamicallyoff in the linear and early nonlinear

regions and on both as the flow approaches the breakdown and in the transition region. The

LES with the dynamic model is able to capture the "rope-like" wave structure, even with the

coarse grid 24 x 12 x 96.

The LES with the dynamic model is able to capture the bulk of the flow-field structure.

While both contractions give identical results at the early stages of the transition region, slight

differences in the details of the flow structure occur in the late stages of transition. For these

stages, the LES flow-field structure with contraction cl compares more favorably with the DNS

results.

Large-eddy simulation of transitional flow along a cylinder at Mach 4.5 is achieved with

one sixth of the grid resolution that was used for DNS. The structure of the flow field during

the entire transition region and the beginning of the turbulent region is demonstrated with LES.
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Figure 21. Rope-like structurederived from wall-normal density gradientat t 45 for LES

with grid 24 x 12 x 96 compared with corresponding structure from DNS with fine grid [10].
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Figure 22. Comparisonof spanwisecomponentof vorticity at t = 50 between LES and DNS

with fine grid [10].
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Figure 23. Comparisonof spanwisecomponentof vorticity at t =

with fine grid [10].
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Figure 26. Continued.
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Figure 26. Continued.
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