
NASA Contractor Report 191487

ICASE Report No. 93-33

ly-37'

IC S 2O
Years of

Excellence

THE EFFECT OF CROSSFLOW ON TAYLOR VORTICES:

A MODEL PROBLEM

J

S. R. Otto

Andrew P. Bass¢

(NASA-CR-191_BT) THE EFFECT OF

CROSSFLOW ON TAYLOR VORTICES: A

MODEL PROBLEM Final Report (ICASE)

21 p

N94-13128

Unclas

G3134 0181585

NASA Contract No. N-AS 1- 19480

June 1993

Institute for Computer Applicati0ns_n Salience arid Engineering

NASA Langley Research Center

Hampton, Virginia 23681-=000I .................................

Operated by the Univ_SpaceResearch Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-000I .................





ICASE Fluid Mechanics

Due to increasing research being conducted at ICASE in the field of fluid mechanics,

future ICASE reports in this area of research will be printed with a green cover. Applied

and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.



l

z



The effect of crossflow on Taylor vortices:
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Abstract

A number of practically relevant problems involving the impulsive motion or the rapid

rotation of bodies immersed in fluid are susceptible to vortex-like instability modes.

Depending upon the configuration of any particular problem the stability properties of

any high-wavenumber vortices can take on one of two distinct forms. One of these is akin

to the structure of Gfrtler vortices in boundary layer flows whilst the other is similar to

the situation for classical Taylor vortices.

Both the G_Srtler and Taylor probtems have been extensively studied when crossflow

effects are excluded from the underlying base flows. Recently, studies have been made

concerning the influence of crossflow on Gfrtler modes and here we use a linearised

stability analysis to examine crossflow properties for the Taylor mode. This work allows

us to identify the most unstable vortex as the crossflow component increases and we show

how, like the GSrtler case, only a very small crossflow component is required in order to

completely stabilise the flow. Our investigation forms the basis for an extension to the

nonlinear problem and is of potential applicability to a range of pertinent flows.

t Research was supported by the National Aeronautics and Space Administration under NASA contract

No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and
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Crossflo_ effects on Taylor vortices

1. Introduction

The problem of predicting vortex breakdown is of great importance within the field

of transition research. In many practical situations it is desirable to influence breakdown

characteristics: for example in aerospace design the requirement is that transition be

delayed ms long a_s possible in order to reduce drag whereas in jet intakes turbulence

is promoted in order to improve fuel mixing. In numerous applications where flow

curvature is present the stability problem is .closely related to structures describing Taylor

and/or GSrtler modes at large Taylor/GSrtler numbers. Undoubtedly in many cases the

experimental flow is fully three-dimensional in character and until recently little theoretical

work had been conducted on such problems.

The linear stability of .,hort wavelength Taylor-G6rtler vortices was examined by Hall

[1] for both fully developed and boundary layer flows. The model problem considered was

the flow contained between a pair of concentric cylinders whose separation is much smaller

than the radii of the cylinders. A WKB type analysis shows that in the Dean problem (in

which both cylinders are at rest and the fluid is driven by a constant azimuthal pressure

gradient) short wavelength vortices are constrained to lie in a thin layer located at a

known position between the cylinders. In contrast, for the Taylor problem (in which the

outer cylinder is at rest and the inner cylinder rotates uniformly) the vortex structure is

trapped at the inner cylinder wall. These two idealised cases capture the essence of a large

number of important practical flows. For example, the Dean structure forms the basis for

describing the evolution of GSrtler vortices in spatially varying boundary layers (although

extra non-parallel effects do need to be considered) whereas the wall-bounded vortices are

relevant to a number of impulsively started spin-up problems, [2]. The linear stability

theories for the Taylor and Dean cases have been extended to weakly and fully nonlinear

accounts, [3-6].

The first work concerned with the effect of adding a crossflow component to the basic

flow was conducted by Hall, [7]. He showed that only a very small crossflow velocity is

needed to radically alter the linear stability properties of short wavelength G6rtler vortices.

In many practical situations interest cannot be legitimately restricted to high wavenumber

modes alone and, on a linear stability basis, it is frequently the fastest growing (or most

unstable) vortex which is likely to be important. That this mode is of interest is clear for

often there will be a whole spectrum of vortex wavenumbers that may be excited in any

one particular problem and the fastest growing of these is the one that is dominant. The

most unstable GSrtler mode within a two-dimensional boundary layer was identified by

Denier et. al. [8] and the linear and nonlinear properties of this mode as the erossflow

component is increased have been developed in [9-11]. To the best of our knowledge the

most unstable vortex in the Taylor problem has yet to be noted.

The purpose of this concise article is to outline the effect of crossflow on vortices in
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the Taylor situation for cylinders with a small separation. In particular we shall describe

the influence of crossflow on high wavenumber modes, specify the structure of the most

unstable vortex and track the linear stability properties of this mode as the crossflow grows.

It may be argued that this problem is very specific and therefore is of little, or no, practical

use. However we should emphasise that the analysis here encompasses the ideas behind

a large number of important causes including problems involving rapidly rotating bodies

and impulsive motion. Thus the merit of using the cla_ssical small gap Taylor problem as

a paradigm is that the analysis is very straightforward, enables the important features of

the flow development to be seen and our workings may be easily generalised to account for

more complicated situations.

The remainder of the paper is organised _s follows. In §2 we describe the relevant

stability equations and in §3 show how increasing crossflow modifies the large wavenumber

structures. The most unstable mode is obtained in §4 and we then outline the influence of

crossflow on this vortex. We close with a brief discussion.

2. The governing stability equations

The linearised disturbance equations pertaining to Taylor vortices have been derived

many times and so here we restrict ourselves to the briefest of descriptions of these

equations. Consider the flow of incompressible fluid of density p and kinematic viscosity u

in the gap between a pair of concentric cylinders of radii Rl and R2 (> R1). We assume

that the curvature of the gap is small; that is _5- (R2 - R1)/R1 << 1. The inner cylinder

rotates with angular velocity Uo/R1 whilst the outer cylinder is at rest. It is convenient

to define variables x, y, z, t by

Re81 r' - R1 z I Uo tl

x= _, Y= R2 - RI' z= n2 - nl' t= Re(n2 - n,)' (1)

where (rl,0_,z _) are the usual cylindrical polar co-ordinates, t I is the time variable and

Re - Uo(R2 - R_)/u >> 1 is the Reynolds number. Writing the velocity field (scaled

on the characteristic fluid speed U0) with respect to (x, y, z) a.s (u, v, w) and scaling the

pressure p on pU 2 gives that in the basic state

(u, v) _= (fi, 9) = (1 - y, 0) q- O(_). (2a)

In order to introduce a crossflow component into the flow we suppose that a constant

axial pressure gradient acts and the size of this gradient is chosen so that the crossflow

affects the subsequent stability equations. It is a routine calculation to show that this

occurs when the axial velocity component _ = O(Re -1) and then the remainder of the

basic state solution is

1(w,p) - = {y(1- v) + ,- n---z
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where we have introduced _ as a measure of the strength of the scaled axial flow. The

situation discussed in this article has been studied by many prolific authors, the reader is

referred to [12] for further reading. The earliest theoretical and experimental studies were

apparently made by [13] and [14] respectively.

The Taylor number T =_ 2Re2_ is taken to be an 0(1) parameter and we perturb the

basic state by writing

(u,v,w,p) = (_,0,_,_)+A (U(z,y,z,_),
1

_v(_,[

1 W_ xy,_,t),_ _ ,y,z,t), _---jP(x,y,z,t)} ,

(3)
where A is a vanishingly small parameter. If we substitute (3) into the linearised forms of

the continuity and Navie.r-Stokes equations and neglect terms of relative size O(b'), we are

left with the four disturbance equations

OU OV OW

0"-x- + _y + 0--7 = 0, (4a)

( 02_y2+Oz202 otO)u=(1-Y)_x-V+/ky(1-y)_z U, (4b)

( 0 2 0 2 O) OP = (1 - y) OV OV _ T(1 - y)U, (4c)-_u_ + Oz_ . v _ -g-;z+ _u(1-u)-g-;z

( 02 02 0 ) OP = (1 - y) OW (4d)+ Oz_ ot w - Oz _ + _(_ - 2y)v + _y(_- _)°wOz '

which need to be solved subject to the no-slip conditions U = V = W= 0 on y = 0, 1.

In the absence of crossflow (_ = 0) and with no azimuthal dependence (O/Ox -- 0) system

(4) reduces to an ordinary differential eigenvalue problem for the neutral Taylor number

as a function of vortex wavenumber a. It is well known that for a << 1 then T = O(a -2)

whilst, for large a, T = O(a4). We now analyse the effect of cr6ssflow on this right-hand

branch of the neutral stability curve; i.e. On neutral large-wavenumber vortex structures.

3. The effect of crossflow on large wavenumber modes

It was shown in [1] that large wavenumber vortices in a flow with zero axial component

are trapped in a thin zone of depth O(a-}) next to the inner cylinder wall y = 0.

Analysis of equations (4) reveals that when the scaled crossflow size _ = O(a) this wall

structure needs to be adjusted and consequently we shall examine this case now. In the

neighbourhood of the neutral stability curve it is known that the vortices have temporal

growth rate O(a s) and a waviness in the azimuthal direction on an O(a-_) lengthscale.

Using the scalings proposed in [1] we write the Taylor number

T = Toa 4 -4- Tla _ +..., (Sa)
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seek modes proportional to

[ /' ]4 2 2E, -exp iaz+a'(_o+a 'o, +...)*+a_ (ao(O+a-_a,(O+...)et , (_5)

and allow the crossflow size A = aA. If we fllrther define the O(1) co-ordinate ( within the

wall layer by
2

y = a- s (, (6a)

then the disturbance quantities (U, V, W, P) develop according to

(u.v.w.P)=

(Uo +a-}U1 +...,a2Vo + a}Vl +...,a}W 0 +aWl + ...,a}P0 + a2p1 +...) E,.

(65)
Substitution of (5) & (6) into (45, c) yields at leading orders

-(1 + f_0)U0 = -V0, -(1 + ao)V0= -ToUo,

which are consistent only if

To= (1+ a0)_. (7)

Ill order to determine the structure of the leading order disturbance functions it is necessary

to proceed to higher orders in (4). These give the governing equation

d2V° [_(1 _0 2iA)(_-_(1+_0)-2(_1+(a0 +a) _@ 110 + + - .0),. _ 0_

which is a scaled version of the Airy equation and ha.s solution

3+g0 ] _-c . (8_1

where

C = (1 + a0 + 2iA)] (1 q- a0) -- 2(al + O'0) . (85)

In order to satisfy file inviscid constraint that V0 ---+0 as _ ---+0 it is necessary to choose

C so that Ai(-C) 0 whenc.e

C _ 2.3381 (8c)
: _= :: : 72 7 7- =

and then (85) may be ,'earranged to give the Taylor number correction T1. Although

V0 --+ 0 as { -+ 0 the continuity equation (4a) gives W0 = i(dVo/d_) and so a passive

viscous layer is required to ensure that the axial disturbance velocity component vanishes

on the inner cylinder. The details Of this layer are very elementary so will not be pursued

here.
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Definition (5b) shows that for neutrally stable large wavenumber modes the frequency

terms _0'; 121 are necessarily purely imaginary. Thence result (7) gives To = 1 and (8b)

shows that

T1 = 3½C(1 + 4A2)_ cos (._ tan-l(2A)) . (9)

Consequently for large scaled crossflow A, T_ = O(A_) and expansion (5a) implies that

when _ _., a the neutral Taylor nmnber is altered by an O(a 4) amount fl'om its value in

the zero crossflow state. Furthermore, the extent of the vortex activity is compressed into

a thinner, O(a -1 ), del)th region adjacent to y = 0 and so we write

A = aS_, y = a-Ix, (10a, b)

[ /' ]E2 - exp iaz + a2([ro + . ..)x + a 2 (fi0(t) +...)dt (10c)

and write the vortex in the form

(U, V, W,P) = (_o + ... ,a2_o + ... ,a21_o + . . . ,a3_o + . . .) Es. (lOd)

Substitution into (4) leads to the disturbance equations

---1-_o-_'o-i_)/ 1 _o =ToUo,

2 1-50-ao-i_x Uo =-Vo,

01)

which need to be solved subject to U0 = V0 = dVo/dx = 0 at X = 0 and as _2 _ _.

At this point it is worthwhile to recall the results of [7] which was concerned with

describing the effect of crossflow on the neutral stability properties of high wavenumber

Ggrtler vortices. In the absence of crossflow in that case the mode is confined to a thin

layer away from the bounding surface. Three distinctlve sizes of crossflow were identified.

In the first the decay of the vortices away from the thin layer is primarily due to the fact

that the local Ggrtler number is maximised at the centre of the layer; at a higher crossflow

the decay is driven by convective effects and in the third regime the layer is driven to

the wall and the vortex is governed by a pair of viscous equations similar in style to (11)

but containing quadratic terms as well. Thus in the GSrtler (or equivalently the Dean)

problem the evolution of the vortex with increasing crossflow passes through three phases

whereas for the Taylor problem studied here we have only two stages.

Equations (11) were solved using a finite difference technique and, in order to capture

neutral modes, the quantities f_0 and 50 were taken as purely imaginary. The results

expressing To and (ft0 + _0) as flmctions of the scaled crossflow A are shown in figure 1.

Of interest is the solution of (11) in the limits of large or small crossflows. As )_ _ 0 then
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we find that To + 1 and hn (f}0 + 30) --* 0 in agreement with the large _ results for the

case presented above. When _ --* o¢ the solution divides into a double boundary layer

structure. We postulate that

To"_d_ +..., o+ao_ici _+..., (12)

for some real constants c and d. In the majority of the region where X = O(1) then

U0 = _ + ..., "_'0 = + ..., (13a)

where

and the solution of this system which decays exponentially as X --+ oc is

= :/;.(_), _:z_ I_;_ , (14)

i (see [15]). As % _ 0 thesewhere K, is the modified Bessel function of order u = +

solutions develop singularities so that in a wall layer where X = _ "_I7", IY = O(1), we write

u 5 t_ 1

U0 = )_ ]7-) +..., 1_'0 = (Y) + .... (15a, b)

These fimctions satisfy the coupled equations

)_2 ic- if" U_o = -Vo _, (15c, d)

which need to be solved subject to the conditions that U_ = V0_ = dV:/dY = 0 on ly = 0

together with suitable matching conditions to (14) as I7" _ e¢. Numerical solution of this

problem reveals that

c = -4.706, d = 0.721, (16)

and the asymptotic forms (12) for To and _0 + _0 are sketched on figure 1. As may be

seen, agreement between the numerical solution of (11) and these asymptotes is eminently

satisfactory and demonstrates that as the (scaled) crossflow moves through this O(a 2)

regime the changes induced in the neutral Taylor number are substantial. Therefore only

a very small axial field of size O(Re-la 2) is required in order to radically distort the

neutral curve for large wavenumber modes and so suggests that any such wavenumber

vortex would be completely stabilised by a tiny crossflow.

In many practical situations Taylor/GSrtler numbers are large and, whilst the effect of

any crossflow component on the neutral curve is of interest, it is also important to describe
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how the crossflow modifies the growth rate of the most unstable vortex. As was mentioned

in the introduction, the most unstable mode is frequently the one that is dominant in

practice and, as far as we are aware, the location of this mode has not been written down

for the Taylor problem. Therefore in the coming section we first obtain the most unstable

vortex in the absence of crossflow and then consider how the inlposition of a gradually

increasing crossflow component modifies the stability properties of this disturbance.

4. The most unstable mode

In order to deduce the most unstable linear vortex in the absence of crossflow it is

easiest to proceed in the manner of Denier et. aI. [8]. In this work the authors considered

both the growth rate of-inviscid (0(1) wavenunlber) G6rtler nlodes as the wavenunlber

increases and also the properties of modes in the vicinity of the right hand branch of the

linear neutral curve. It was then possible to identify an intermediate wavenunlber reginle

in which infinitesimal high Ghrtler number vortices are the fastest growing.

The inviscid problem relevant to Taylor vortices for T >> 1 has been considered

numerous times (see [16] for exanlple) and for vortex wavenumber a = 0(1) the

disturbance takes the form

(U,V,W,P) =

{ /' }(Uo(y)+...,T{Vo(y)+...,T½Wo(y)+...,TPo(y)+...)exp iaz + T{ _2(t)dt .

Substitution of these forms into the governing equations (4) shows that V0 satisfies

)\ dy 2 a2Vo = -a2(1 -- y)V0,
(17)

subject to the boundary conditions that V0 = 0 at y = 0, 1. This gives an eigenproblem

for the growth rate f_ as a function of a. In order to locate the most unstable vortex across

the entire wavenumber spectrum it is useful to consider the behaviour of the solution to

(17) as a ---* oo. Elementary analysis (see [2]) shows that the eigenfunction V0 is confined

to a thin zone of depth O(a-_) attached to y = 0. Thence

1 2
ft = 1 - 7Ca-_ +..., (18)

where the constant C satisfies Ai(-C) = 0 and has been given in (8c). Thus as a _ oz

the growth rate of the vortex asymptotes

T} (1- ½Ca-] + ...). (19)

Otto [2] obtained this result for his problem concerning the impulsive spin-up of a cylinder

within an expanse of fluid and we conclude that for large a the growth rate becomes

independent of wavenumber to leading order.
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Results (5a) and (7) demonstrate that at large vortex wavenumbers the right hand

branch of the neutral stability curve is given by T = a 4 + .... Then for T >> 1 if we
1

examine a vortex of wavenumber a = aTz + ... with fi = O(1) it is straightforward to

deduce that the vortex is confined to a region of depth O(T-_) next to the inner cylinder

wall. Furthermore, the sizes of the disturbance components (U, V, W, P) are in the ratios

(1, T½, T_, TI) and the leading order vortex growth rate tern: is O(T½). If we let this

growth rate _ = T½ _ + ... then the compatibility criterion arising from the leading order

balaa:ces from nmmentun: equations (4b, c) reduces to

_= 1-52.

Thus, as would be expected, the vortices are unstable for _ < 1 and stable for fi > 1. In

addition, the overall growth rate is

T½ (1 - _2) +... (20)

aa:d thus the expressions (19) and (20) become comparable when

52 = ,,_ a-] ==:> a ,,- T_.

This suggests that the most unstable Taylor vortex has wavenumber O(T_) and

we shall confirm this presently. Meanwhile we note how the geometry of growth rate/

wavenmnber space for the Taylor problem contrasts with that for the GSrtler (or Dean)

case. We have seen from (19), (20) that for a large wavenumber range, specifically

1 << a << T¼, the g,'owth rate of the Taylor mode is constant at leading order and only

varies in higher order term s. Conversely, in the Ggrtler case the leading order growth rate

increases both as a --+ oo in the inviscid problem and as _ ---+ 0 in the right-hand branch

case. Therefore in the intermediate regime where the growth rate is greatest the maxinmm

is a nmch more pronounce(t feature. This difference in growth rate behayiours for the two

problems does have important consequences for the subsequent analysis. For the Ggrtler

case the calculations of Bassom & Hall [9] show that steadily increasing crossflow stabilises

the vortices and only a small crossfiow is required in order to ensure tlmt the flow is stable

to infinitesimal modes irrespective of their wavelength. In addition it was found that

as the crossflow grows so tl_e location of the most unstable vortex remains in the same

wavenumber regime: behaviour which is not repeated for the Taylor case discussed below.

In order to prove that it is the O(T_) wavenumber regime which contains the most

unstable Taylor mode we write
3

a -- 80T v_, (21a)

and seek disturbances of the form

(:,u w,p) -- +. +. + + ) (2:b)



Crossflow effects on Taylor vortices 9

[ j(where Ea-exp i&oT_z+T½ _o(t)+T-_,(t)+... dt, (21c)

and U0, V0, • • • are functions of 7#- T_ y. Therefore these vortices axe trapped in an O(T-_ )

thick zone adjacent to y = 0 and we shall impose a crossflow of scaled size

A = T_ A. (22)

This scaling is arrived at by choosing sufficient crossflow so as to perturb the vortex

structure relevallt to the zero crossflow problem without grossly changing its underlying

characteristics. We substitute (21), (22) into equations (4) and compare like powers of T.

The consistency condition arising from momentum balances (4b, c) leads to

S0 = 1, (23)

as would be rmticipated from result (20). At next order we find that V0 satisfies the scaled

Airy equation

2(_t_ + 1:1,) ]d2V°&72 a2(I + 2iX5o) 7}+ (I + _o)J Vo = 0.

Demanding that Vo = 0 at _7 = 0 and as z] _ c_ leads to a_1 expression for _i and thence

we deduce the overall vortex growth rate Gr = T½ + _lT_ + o(T'}) where

_, = C(1 + 4_TAs)½ {cos (2 ta_,-l(2_o_)) +/sin (2 tan-l(2_oA))} -_o _. (24)
2a_

2

l C5o _ _ &02which clearly -ooIn the absence of the crossflow component Re(_/_) = -_

as _0 --* 0 or as a0 --* co. The maximum value of this expression is -4(C/6)_ _ -1.973

which occurs when _0 = (C/6)_ ,_ 0.702 and consequently we have the result that in the

classical Taylor problem the the most unstable mode has wavenumber _ 0.702T_. As the

scaled crossflow increases then Re(_) is greatest when _0 = O(A-}) and lfill = O(A_).

Furthermore, for a fixed h0, as A increases so the overall vortex growth rate diminishes and

crossflow is seen to have a stabilising effect. It is clear that a revised solution structure

whenis needed when the second term in Gr becomes comparable with the first, i.e.

fl, = O(T 1) or A = O(T_ ).

We therefore define

= T½i, (25a)

and seek the wavenumber of the most unstable vortex for this case. We find that for a large

range of wavenumbers, specifically 1 << a << T¼, the leading order component of the normal
2

velocity field, say V0, is given by the solution of a Whittaker-type equation (see [15]). The

disturbance structure is confined to lie within a thin zone adjacent to y = 0 whose precise
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depth is a flmction of the wavenumber. However for all vortex wavenumbers I << a << T¼

the leading order disturbance forms are determined by the solution of a common equation

which may be solved analytically in terms of the modified Bessel function K,. In order to

satisfy both the no-slip conditions at the wall and suitable decay conditions at the edge of

the thin zone it is found that the leading order growth rate of the vortices is f_0T: where

f_0 is a solution of the equation

^-2

2

The dependence of f/0 upon

wavenumber 1 << a << T¼

rate diminishes. Indeed, as

wavenumber within 1 << a <<

is shown in Figure 2. When )_ = 0 vortex modes with
^ 2

have growth rate _0 = 1. As )_ increases so the growth

)_: --* 1/v_ so _o _ O- i/v_ and all the modes with

T¼ are made neutral. Again therefore, just as in the Ggrtler

problem, crossflow is seen to have a stabilising influence and at crossflows of greater than

Re -1 T½/v_ the flow configuration is stable to vortices of any wavenumber << T¼.

One question we have not addressed here is that concerning the structure of these vortex

modes as the crossflow parameter _ increases through the critical value 1/x/'-2. Indeed

when _ = l/v/'2 precisely then the formal solution for V0 develops a singularity and the

disturbance structure requires a critical layer type zone in order to smooth this out. This

situation has similarities with the scenario discussed by Blackaby & Choudhari [17] who

were concerned with inviscid vortex modes in slightly three-dimensional boundary layers

and how such perturbations are related to the Taylor-Goldstein equation for stratified shear

flows. These authors found solutions for which the leading order 'vertical' (i.e. normal to

wall) velocity component of the inviscid disturbance becomes infinite at the critical layer

and they msserted that theirs was the first case in which this type of behaviour has been

found. We also believe this to be the case and Suggest that we have here another problem

where this phenomenon is seen.

The discussion above implies that for a large range of vortex wavenumbers all modes

have the same leading order growth rate. However, such vortices are not the fa_stest growing

ones as further investigation reveals that within the O(T¼) wavenumber regime we have

the unique most unstable mode. In order to demonstrate this we define the crossflow
~ I

parameter _ as in (25a) and look for disturbaa:ces of wavenumber a = aTe. If we let

|

_=

i

{/'(E4=exp iaT¼ z + T½ ('l(t) + . . . dt ,

and seek solutions of the type

(U, V, W, P) = (_] + . . . , T½ V + . . . , T½12V + . . . , T_ F + . . .)E4,

(26a)

(26b)
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where U, V, W, P are functions of the scaled co-ordinate ¢ = T-¼y we find that _" and

are given by the coupled viscous equations

_/ i_¢_ (rid@2 1)1/= fi4[_, (27a)
-- - 1 _2 a2 ]

d _ i_¢_/._ = __, (27b)d-¢2 1 _2 52 ]

subject to the conditions that U = V = d_'/d¢ = 0 at ¢ = 0 a_ld as ¢ --+ _. As would be

expected in view of the scalings, these equations are essentially identical to those relevant

to determining the right-hand branch of the neutral curve, (11).

We solved (27) for the (in general complex-valued) growth term _ as a function of the
2

crossflow parameter A and-scaled wavenumber 5 and the results of these ca_lculations are

summarised in figure 3. This figure shows that for A < 1/v/2 the vortex is unstable over

a finite range of wavenumbers including those with _ --, 0 and the extent of this unstable
^

range decreases with increasing A. Indeed When A reaches the value 1/v_ the mode with

= 0 is made neutral in agreement with the results of the analysis relevant to modes

with wavenumber 1 << a << T¼. For increasing _ beyond 1/v_ the unstable band reduces
2

further until when A _ 0.942 the whole wavenumber spectrum is made stable.

The results given in figure 3 also show the dependence of the most unstable vortex

wavenumber upon the crossflow )_. If we denote the wavenumber of this most unstable

mode by 5,, then as A --* 0 so _= _ 0 since we know from our previous workings that as

the crossflow diminishes so the most unstable vortex reverts to within the O(T_) regime.
2 2

In addition, 5_ is not a monotonic function of A and as A _ 0.942 it is the mode with

wavenumber _t _ 0.103 which is the last to be made stable.

The calculati0ns in this and the preceding section give related but not identical

information. The work of §3 may be regarded as describing the stability properties of

a vortex of specified, large wavenumber. In particular, the solution of equations (11)

accounts for the dependence of tl_e neutral Taylor mm_ber on the size of the imposed

crossflow whereas the work of tliis Section describes how crossflow affects the stability of

vortices within a flow at a specified large Taylor number. W_ notice how the most unstable

vortex has wavemunber O(T_) in the absence of crossfiow; with increasing crossfiow this

fastest growing mode moves into the O(T¼)wavenumber regime. At this stage the right

hand neutral branch of the stability curve is also within the O(T¼) range so that we can see

that as the crossflow component increases from zero so the location of the most unstable

linearised mode moves out into the asymt)totic regime containing the right hand branch.

This contrasts with the situation in the GSrtler case where, for a large GSrtler munber G

and in the absence of crossflow the right hand branch is at an O(G¼) wavenumber whilst



12 S. R. Otto and Andrew P. Bassom

the fastest growing mode has wavenumber O(G_), [8]. As the crossflow increases the

most unstable vortex remains within the O(G'_) regime and the right hand neutral branch

moves into this regime so that it is a mode of wavenumber O(G_) which is the last to be

stabilised.

5. Conclusions

In this work we have studied how the imposition of a small crossflow velocity

component affects the linear stability characteristics of vortices in .high Taylor number::

flow. In particular we have identified the most unstable vortex, illustrated that for

large wavenumbers a crossflow of size O(Re-la 2) is sufficient to completely stabilise

the mode and proved that crossflow of O(Re-IT _) makes the flow immune to unstable

vortices irrespective of their wavenumber. In some ways it is this last result which is

the more significant for it shows that in many flows where an appreciable degree of

three-dimensionality is present the Taylor vortex mechanism is likely to be unimportant

compared with other instability forms.

Our results may be compared with those of the equivalent Ggrtler or Dean problem

in the following way. Suppose that instead of having the inner cylinder of our geometry

moving with speed U0 it is at rest and an azimuthal pressure gradient is imposed of

sufficient strength so as to induce an O(Uo) fluid speed across 0 _< y _< 1. The analysis

of [8] suggests that in the absence of crossflow the most unstable vortex has wavenumber

O(T_). In addition a crossflow of size O(Re -1T_) would be needed to completely stabilise

the flow- a value which is seen to be greater than that in the Taylor problem considered

here. This suggests that in situations which are composed partly of a Taylor-type situation

and partly a Dean-type then it the latter component which is dominant in determining the

stability characteristics when crossflow is present. However, there will still be circumstances

in which the structure presented in this paper is important and such cases include spin-up

configurations oftlxe type studied by Otto [2]. In that problem a cylinder at rest in an

incompressible fluid is given an impulsive angular velocity. A Rayleigh layer is set up

and this flow is prone to vortices which are identical in character to t!mse examined here.

If a basic flow component is added along the axis of the cylinder (so this could model

a spinning cylindrical object moving through a fluid) this axial flow may be determined

using the method of Glauert & Lighthill, [18].

This applicability of our analysis to other flow problems is an attraction of our working.

The flow configuration chosen at the outset was deliberately taken to be very simple but

it does capture most of the essential features of a wide class of flows over rotating bodies

whenever the inviscid Rayleigh criterion for instability is most violated at the body surface.

Not only can our analysis be extended to other geometries but it may also be easily adapted
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to allow for vortex motions modulated in the azimuthal direction. Consequently it has the

potential_of proving to be useful in a number of related prol)lems.

There are several directions in which our calculations might be extended. The most

obvious of these is the question of nonlinearity. In order to give a definitive account of

crossflow effects it would be necessary to allow for other than infinitesimal vortex modes

by pursuing weakly nonlinear or strongly nonlinear computations. Equivalent work for

the GGrtler problem is reported in [10, 11, 19] where it is shown that weak nonlinearity

stabilises near neutral but linearly growing modes to give non-zero finite amplitude vortex

states. Inclusion of full nonlinearity tends to suggest that the vortices break down in a

finite distance singularity which would be the analogue of a finite time singularity in the

present work. In addition, of theoretical interest would be a rigorous analysis of the criticM

layer structure which arises just a_s vortices of wavenumber 1 << a << T¼ near neutrality as

the crossflow approaches Re -1 T½/v/2. This analysis would certainly be required in order

to investigate nonlinear configurations near this cut-off. However the practical significance

of such considerations is far from clear at this juncture for at this crossflow size we have

shown that there is still a wide ra_lge of higher wavenumber vortices which are linearly
1 1

unstable. Indeed it is not until that the axial flow becomes greater than _ 0.942Re- T=

that infinitesimal Taylor vortices of arbitrary wavenumber are made stable.
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work. The research of the first author was supported by the National Aeronautics and
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Figure 3. Solution of viscous equations (27) to determine leading order vortex growth

rate Re(_)T½ a.,_a function of vortex wavenumber aT¼ and crossflow _T½. The graphs

correspond to crossflow values $ = 0.02, 0.05, 0.1 and thereafter at intervals of 0.1 up to

and including $ = 1.1. The /k symbols indicate the locus of the most unstable vortex

wavenumber.
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