
July 1993 NCC2-752

NASA-CR-193 720

N94-13204

MCAT Institute
Progress Report
93-13

(NASA-CR-193720) IMPLEMENTATION OF
Aol: SCHEMES ON MIMO PARALLEL
COMPUTERS (MCAT Inst.) 23 p

Uncas

G3162 0181275

Implementation of AOl-schemes

on MIMD parallel computers

Rob F. Van der Wijngaart

1	 iiii•

I l•
•	 oil 'rit•
•*H.
u i*	 i. I t1
I III
I * I.I • I	 '	 •
uItb HI.
I f	 i• I ijI.
•*'i'.

11M

•v*V '.

MCAT Institute
3933 Blue (;LIIll Drive
San Jose, CA 95127 AU2O M3

Implementation of ADI-schemes
on MIMD Parallel Computers

Rob F. Van der Wijngaart

1 Introduction
In order to simulate the effects of the impingement of hot exhaust jets of High
Performance Aircraft on landing surfaces a multi-disciplinary computation
coupling flow dynamics to heat conduction in the runway needs to be carried
out. Such simulations, which are essentially unsteady, require very large
computational power in order to be completed within a reasonable time frame
of the order of an hour. Such power can be furnished by the latest generation
of massively parallel computers. These remove the bottleneck of ever more
congested data paths to one or a few highly specialized central processing
units (CPU's) by having many off-the-shelf CPU's work independently on
their own data, and exchange information only when needed.

During the past year the first phase of this project was completed, in
which the optimal strategy for mapping an ADI-algorithm for the three-
dimensional unsteady heat equation to a MIMD parallel computer was iden-
tified. This was done by implementing and comparing three different domain
decomposition techniques that define the tasks for the CPU's in the parallel
machine. These implementations were done for a Cartesian grid and Dirich-
let boundary conditions. The most promising technique was then used to
implement the heat equation solver on a general curvilinear grid with a suite
of nontrivial boundary conditions.

Finally, this technique was also used to implement the Scalar Penta-
diagonal (SP) benchmark, which was taken from the NAS Parallel Bench-
marks report N.

All implementations were done in the programming language C on the
Intel iPSC/860 computer.

1

i3s

2 Domain decompositions
The first domain decomposition examined was the static block-Cartesian
[2], [3]. Every CPU receives one contiguous block of the global grid and is
responsible for computation of the solution on it. This decomposition was
found to be inefficient because of the large number of interactions needed
between the different grid blocks. These interactions, which take the shape
of packets of data (messages) sent between CPU's, suffer from long start-up
times (latency).

The second domain decomposition considered was the dynamic block-
Cartesian [2]. Here every CPU again receives one contiguous grid block,
but the orientation of the grid block changes in order to accommodate the
different implicit solution directions used by ADI. This method was found
to be significantly more efficient than the static block-Cartesian, but it does
not scale well to large numbers of processors. It also requires transmission
of very large messages between all the CPU's in the parallel machine, which
will lead to congestion (edge contention) on the newest parallel architectures.

The last domain decomposition examined was a multi-partition method
that was adapted to the so-called hypercube topology of the iPSC/860 by
Bruno and Cappello [5]. Now every CPU receives a small number of con-
tiguous grid blocks (cells, or partitions) that are allocated within the overall
grid in such a way that during any of the phases of the ADI algorithm there
is work to do for each CPU. This method was found to be optimal in terms
of computational speed, because of a very equally distributed work load, a
small number of messages sent between CPU's, and the possibility to mask
communications by performing computations concurrently.

3 Curvilinear algorithm
The Bruno-Cappello method was subsequently implemented for the heat
equation in generalized curvilinear coordinates. Implementation of more
complicated boundary conditions, such as C-grid conditions, proved to be
efficient and relatively easy because of the high-level data structures used.
Consequently, the complaints voiced by other authors [6], [4] that the Bruno-
Cappello method is too complex and too inefficient for practical applications
could be construed as defects of Fortran, which does not support high-level

2

data structures. It was found that the Bruno-Cappello method was very well
suited for the more involved curvilinear problem with non-trivial boundary
conditions, since more communications could be overlapped with computa-
tions Moreover, the boundary condition implementation, which is an impor-
tant source of load imbalance for other methods, could be balanced well in
this case.

The results of the above investigations will be presented at the Super-
computing '93 conference to be held in Portland, Oregon, November 15-19,
1993. A draft of the paper to be included in the proceedings is attached in
the appendix.

4 Scalar Penta-diagonal Benchmark SP
SP is a model problem that has most of the essential features of the diagonal-
ized Beam-Warming flow solver OVERFLOW, and can be used as a stepping
stone for constructing the full-fledged flow solver. It was also implemented
using the Bruno-Cappello method, but no timings have been obtained yet.

References
[1] D. Bailey, J. Barton, T. Lasinski, H. Simon, The NAS parallel bench-

marks, NASA Ames Report RNR-91-002 Revision 2, 1991

[2]R.F. Van der Wijngaart, Efficient implementation of a 3-dimensional
ADI method on the iPSC1860, to be presented at Supercomputing '93,
Portland, Oregon, November 15-19, 1993

[3]J.S. Ryan, S.K. Weeratunga, Parallel computation of 3-D Navier-Stokes
flowfields for supersonic vehicles, AIAA Paper 93-0064, 31 Aerospace
Sciences Meeting & Exhibit, Reno, NV, January 11-14, 1993

[4]P.J. Kominsky, Performance analysis of an implementation of the Beam
and Warming implicit factored scheme on the NCube hypercube, Pro-
ceedings of the Third Symposium on the Frontiers of Massively Parallel
Computation, College Park, MD, October 8-10, 1990, IEEE Computer
Society Press, Los Alamitos, CA

3

[5] J. Bruno, P.R. Cappello, Implementing the Beam and Warming method
on the h!,percube, Proceedings of 3rd Conference on Hypercube Concur-
rent Computers and Applications, Pasadena, CA, Jan. 19-20, 1988

[6] N.H. Naik, V.K. Naik, M. Nicoules, Parallelization of a class of implicit
finite difference schemes in computational fluid dynamics, International
Journal of High Speed Computing, Vol. 5, No. 1, pp. 1-50, 1993

4

APPENDIX A

Efficient implementation of a 3-dimensional ADI method on the
iPSC/860

Rob F. Van der Wijngaart
MCAT Institute, NASA Ames Research Center

Moffett Field, CA 94035

Abstract

A comparison is made between several domain decomposition strategies for the
solution of three-dimensional partial differential equations on a MIMD distributed
memory parallel computer. The grids used are structured, and the numerical algo-
rithm is ADI. Important implementation issues regarding load balancing, storage
requirements, network latency, and overlap of computations and communications
are discussed. Results of the solution of the three-dimensional heat equation on the
Intel iPSC/860 are presented for the three most viable methods. It is found that
the Bruno-Cappello decomposition delivers optimal computational speed through
an almost complete elimination of processor idle time, while providing good memory
efficiency.

1 Introduction

Implicit numerical algorithms for the solution of multi-dimensional partial differential
equations (PDE's) are usually more efficient computationally than explicit methods, when
implemented on conventional (vector) computers. However, they are harder to program
efficiently on parallel computers due to a more global data dependence than is exhibited
by explicit methods. Numerical solution of PDE's typically involves more or less the
same operations for all the points in a computational grid used to discretize the prob-
lem space. Consequently, domain decomposition is the natural way of creating separate
tasks for a parallel computer: a roughly equal number of grid point is assigned to each
processor. Depending on the type of implicit algorithm chosen, some domain decompo-
sitions perform better than others. Efficiency is also affected by hardware parameters
(e.g. network latency and bandwidth, and processor memory) and operating model (e.g.
MIMD, SIMD). In this paper we compare three viable domain decompositions for the
solution of three-dimensional PDE's using ADI (Alternating Direction Implicit) on the
Intel iPSC/860 MIMD parallel computer. The results of this study also apply to other

1

line-based solution strategies, such as line-relaxation, when multiple sweep directions are
used during each iteration.

As an example, we solve the time-dependent three-dimensional heat equation. Since
the aim is to assess parallel efficiency, the problem is kept as simple as possible (i.e. Carte-
sian grid, constant mesh spacing, Dirichiet boundary conditions, constant material prop-
erties, no source term). As a result, the computational program is simple and easy to
analyze, and the computations per grid point are at a bare minimum. No effort was made
to use the simplifying assumptions to reduce communication, so a relatively bad balance
results between computation and communication time; a worst-case parallel performance
analysis is obtained.

2 Problem formulation

The equation to be solved is:

pcT =V.(kVT),	 (1)

where T is temperature, i time, p density, c specific heat, and k the conduction tensor.
Assuming k to be a constant scalar, i.e. k = kI, we get

(2)

Equation (2) is subsequently discretized using central differencing in space and the 9-
method in time:

(1 - hok[(8c)2 + (8)2 + (s:)2J)iT	
hk[(5C)2 + (5)2 + (5)

2]T.	 (3) PC

Here 8. signifies the central difference operator in the x 2 -direction, T is the temper-
ature, AT its temporal increment, and h is the size of the time step. The parameter
9 controls the 'implicitness' of the problem (9 = 0 yields Euler explicit, 9 = 1 gives
Euler implicit, and 9 = 1/2 defines the second-order-accurate Crank-Nicolson scheme).
Equation (3), which is said to be in delta form, defines a matrix equation with a very
large bandwidth due to the three-dimensionality of the discrete operator. Approximate
factorization reduces this operator to a product of three one-dimensional operators with
a bandwidth of only three each (e.g. [1]). So equation (3) is approximated by:

(1 - hk(S) 2)(l - Lk(5 c) 2)(1 - h9k (5C) 2)7 - 1th115C) 2 + (5)2 + (5)
2]T	 (4) pCL\2'

An outline of the numerical algorithm is:

1. Compute rhs, the right hand side of equation (4).

2. Solve the system (1 -	
X I = rhs along lines in the x-direction. PC

2

3. Solve the system (1 -	 = A along lines in the y-direction.

4. Solve the system (1 -	 = B along lines in the z-direction. PC z

5. Update T for all interior grid points.

3 Domain decomposition

The Intel iPSC/860 computer on which the problem is solved is of the MIMD (Multiple
Instruction Multiple Data) distributed memory type. Data is owned by the individual
processors in the processor array, which is structured as a hypercube. The only way
that data can be shared among processors is by message passing. Sending or receiving a
message takes communication time, which goes at the expense of the computing efficiency.
Moreover, synchronization and load balancing are an issue; processors should not be
allowed to idle because they are out of work or are waiting for data to be prepared by
other processors. The following sections discuss three different domain decomposition
strategies and the associated numerical implementations. Although many more such
strategies are conceivable, these appear the most viable, for they all have a good load
balance and attempt to minimize data communication in some sense.

3.1 Static block-Cartesian decomposition

In the static block-Cartesian case, each processor owns one contiguous Cartesian-product
subspace —a block—of the whole grid for the duration of the entire computation. This de-
composition assumes a very small latency, relatively low communication bandwidth, and
limited storage. The grid blocks are as close to cubical as possible in order to minimize
surface area, which in turn minimizes the amount of data to be communicated between
blocks. It also minimizes storage of an extra layer of points around the grid block, a com-
mon and convenient vehicle in domain decomposition strategies for sharing information
with neighboring processors.

A serious drawback is, however, that no single block-Cartesian decomposition is effi-
cient for all line solves in steps 2 through 4. Consider step 2, for example. Here a matrix
equation is formed for each line in the x-direction across the whole grid. If this line is
contained completely in a single processor (which means that the block is of the width
of the grid in the x-direction), then all processors can solve their matrix equations inde-
pendently, and complete parallelism is obtained. However, since the grid is divided into
multiple blocks, there must be at least one coordinate direction, say y, that runs across
several blocks. That means that in step 3 no whole y-line can be formed within one pro-
cessor, and a processor must wait to receive information from neighboring blocks before
it can do its part of the forward elimination or the back-substitution; communication is
needed during line solves.

3

When using the Thomas algorithm for solving the tn-diagonal matrix equations, the
information to be passed to the next processor during the forward elimination consists of
the updated right hand side and the upper and diagonal matrix elements at the end of
each line (the matrix elements are not strictly needed in the current constant-coefficient
case, but we pass them for generality's sake to reflect the communication requirements of
curvilinear (section 6) and fully nonlinear algorithms). If the latency is very large, one can
collect all such triplets of values for all the line segments in the current grid block and send
them to the next processor as one message. On arrival, they can be unpacked and used by
the next processor to advance further along the line in the forward elimination step. But
this leads to a severe load imbalance, since only one layer of grid blocks perpendicular
to the line solve direction is active at any given time. Instead, we send each triplet
individually, giving the next processor something to chew on already before starting on the
next line segment of the forward elimination within the current processor. This process,
called Pipe-lined Gaussian Elimination (PGE) [2], [3], has a much better load balance,
provided each grid block contains many more line segments than there are consecutive grid
blocks in any coordinate direction. However, it does require sending many small messages.
An alternative to PGE that avoids the latter problem is offered by variants of the cyclic
reduction algorithm [3], called substructuring methods. These rely on eliminating as
many off-diagonal matrix elements as possible within each grid block in parallel before
communicating with processors containing neighboring blocks. Substructuring methods
are very similar in appearance to solution methods for periodic problems, and they require
a comparable number of arithmetic operations, which is almost twice as many as are
needed by PGE. Due to this added computational expense, substructuring methods are
not considered in this study.

3.2 Dynamic block-Cartesian decomposition

In the dynamic block-Cartesian case, each processor again owns a contiguous grid block,
but this time the decomposition changes between the different line solve stages. This
decomposition assumes a large latency, relatively high communication bandwidth, and
abundant storage. The dynamic redecomposition (also called Mass Reorganization [4] or
Complete Exchange [7]) enables the data lay-out to be tailored to the line solve step it
supports. Before solution in the x 1 -direction (i= 1, 2, 3), the Cartesian blocks are made
to be of the width of the grid in that same direction. The extra expense incurred is the
communication needed to redecompose the domain, but no data needs to be transferred
during any of the three solution stages.

The optimal dynamic subdivision is found as follows. The whole grid contains n x
n, x n2 points. Let np; signify the number of processors (blocks) in the x3-direction
during the x i-line solves, the total number of blocks being np. Some useful identities are:

= 1,	 =np, (i= 1, 2,3).	 (5)

4

Between the x- and y-line solves the intermediate solution A on a processor has to be
communicated to all other processors that need it. The only information that does not
need to be communicated lies in the intersection of the Cartesian blocks of the successive
decompositions that reside on the same processor during both line solve stages. The size
of the intersection region on a single processor is at most:

	

__	 flz	 -	
(6) max(np, np) max(np, np) max(np, npY) - npnp max(np, np

fl nyz The total number of grid points in a block is nz	 , which makes the total amount of
grid point data communicated equal to:

(.1.	 1
flxflflznp npnpmax(np7 ,npY) 7

Similar expressions can be derived for communications between y- and z-line solves, and
before the final temperature update (step 5). Assuming all inter-processor data transfer
can happen without conflicts, the total communication time t, is:

	

1	 -	 1	 - =	 (np - npnp max(np , np) npnp max(np, np)

1
npnp max(np, flPz)) C, (8)

with c the time to send one floating point number. Using the identities (5), tc can be
simplified to:

TZr72y12zf' 	 1	 1	 -	 1	 9 TZP k.	 max(np,np) C.

It is not easy to see how this expression can be minimized for a certain choice of the np'.
Therefore, two extreme cases are considered.

First, map the planes perpendicular to each line solve direction to a square processor X(i+1)mod3	 X(i+2)mod3	 . array, i.e. np, = flx, = (z = 1, 2, 3). This leads to a small aspect ratio
of the blocks in the plane perpendicular to the lines solve direction. The corresponding
communication time P q is:

- flxflYflz (3 - ---- C	 10 C — flp \

Second, map the planes perpendicular to each line solve direction to a linear processor
array, i.e.	 (i+1)mod3 = np or p42)m0i3

= fip, (i = 1,2,3). This leads to a large aspect
ratio of the blocks in the plane perpendicular to the line solve direction; the domain
is dissected into slices stretching across the entire width of the grid in two coordinate
directions. Equation (9) shows that the corresponding communication time t' is, in
general:

- flxflyflz (3 -
C - fl	 np (11)

Lii

An additional gain is obtained by selecting one particular coordinate direction s 0 and
requiring np; = 1, (i = 1, 2,3). Then one of the terms on the right hand side of equation
(9) is 1, and the communication time drops to:

jim	 flxflYflz
(_ 	 (12)np

Now there is one pair of solution steps between which no communication is necessary at
all. For example, suppose that jo = 2, then the grid dissection chosen for either the s-line
solves or the z-line solves will also be adequate for the y-line solves. Coordinate direction
xjO is called the pile-direction of the decomposition (see below). A comparison of the
communication times for the square and the linear decompositions yields:

lin = (1 + 1),(np	 1).	 (13)

For np > 4 the linear decomposition is superior, with gains increasing as np grows.

3.3 Bruno-Cappello multi-cell decomposition

In the Bruno-Cappello case ([4], [5]), each processor owns a collection of grid blocks, called
cells. This decomposition supports a large latency and a relatively low bandwidth, and
requires somewhat more memory than the static but a lot less than the dynamic block-
Cartesian decomposition. The arrangements of the equally-sized cells is such, that every
coordinate plane that cuts the grid intersects with exactly one cell of each processor. The
number of cells is the smallest possible to satisfy the above requirement. If the number
of processors is again np, then each processor owns /5j cells. Consequently, the total
number of cells is np/5, which are laid out in a x x ,/iji three-dimensional
array. No two cells belonging to the same processor abut, so that no complete lines in
any coordinate direction can be formed within one processor; communication is again
necessary during line solves, but now we do not have to worry about load balancing the
algorithm. Therefore, each cell can finish all its line segments during forward elimination
before sending a packet of consolidated data to the adjacent cell for processing.

3.4 Right hand side evaluation

So far the cost of assembling the right hand side of equation (4) has been ignored. Whereas
the computing cost of that assembly depends only weakly on the decomposition chosen,
the communication cost is proportional to the surface area of each block. The surface
area is smallest for the static and largest for the dynamic block-Cartesian decomposition.
In the latter case the surface area does not scale with the number of processors; the
communication overhead of evaluating the right hand side appears to grow indefinitely.
But in all three cases the right hand side can be computed for points interior to the
blocks or cells owned by each processor while boundary information is being sent to other

6

processors. Experiments with the AIMS performance monitoring system [6] show that
this communication does not lead to processor idle time for any grids of reasonable size.

4 Implementation issues

All cases are programmed in C. This language provides the flexibility and convenience
of mixed-type data structures that keep parameter lists short and clean. It also has
the advantage that functions are built in for computing the length of system- or user-
defined data types (important for sending messages), that dynamic memory allocation
is supported, and that interfaces with Fortran subroutines are possible. Tests on the
iPSC/860 show that Fortran77 and C have the same computational efficiency. What
seems to be a drawback of C is that it does not allow multi-dimensional arrays of variable
size in parameter lists, which forces the programmer to map them into one-dimensional
arrays with explicit computation of indices. But this can be done easily and efficiently,
with no performance degradation. In fact, having explicit control over array lay-out
obviates the need for the auxiliary arrays reported in [4].

4.1 Static block-Cartesian

In the static block-Cartesian approach each grid block has dimensions augmented by
one in all directions to account for block interface information. The blocks themselves
are arranged in a three-dimensional array such that communication between neighboring
blocks is also between neighboring processors (Hamming distance of 1). This can be
achieved using binary reflected gray codes (see e.g. [10]). The processor number p of a
block with indices (i,j, k) in the three-dimensional array of size ('size, Jsize, Ksize) is given
by p = gray(i) + 'size * (gray(j) + * gray(k)). Experiments using gray codes show a
performance improvement of about 5% over the canonical numbering p = i + 'size * (j +
Jsize * k) for medium-sized grids (60 x 60 x 30 to 80 x 80 x 40 grid points) on a 32-processor
hypercube.

As was mentioned earlier, the computation of the right hand side vector for points
interior to the grid block can concur with the exchange of boundary face information
between neighboring grid blocks. This requires the use of asynchronous message passing.
Extra speed-up is obtained by using so-called forced messages, which bypass system wait
buffers and get copied immediately into the application space of the receiving processor.
Once the boundary data has been received, the right hand side for points on the edge of
the grid block can be evaluated. This strategy offers a significant increase in efficiency,
although there is a hidden cost; since the computation of the right hand side is split
in two (interior and boundary points), the vector length for each of these steps—most
notably for the boundary points—is reduced, which leads to a loss of performance on the
iPSC/860 vector processors.

The left hand side matrices for the simple Cartesian-grid case are constant, so they
need not be constructed explicitly. Consequently, there is no computational work that
can be done when transferring information between neighboring cells during the line-solve
phases of the algorithm, and simple synchronous message passing is used.

4.2 Dynamic block-Cartesian

In the linear dynamic block-Cartesian approach each processor owns a slice of the whole
grid, whose orientation depends on the phase of the solution process. Each processor
contains a number of slice variables—one for each physical variable defined on its part
of the grid—that hold the data in an array of function values. That array is distributed
over a number of pile data structures, each of which contains a block of data that can
be transferred monolithically to other processors during the change of decomposition
direction (Figures 1 and 2). A pile stretches across the grid in the x 30 -direction (see
section 3.2). No rearrangement of the values within a pile is necessary after transfer.

During the redecomposition phase, each processor needs to send a (different) pile of
data to every other processor in the allocated hypercube. These cannot all be nearest
neighbors, so there is a danger of edge contention [7]; two messages cannot normally share
the same data path—edge—between two processors in the hypercube, so if communication
requires the paths of several messages to overlap (partially), then they will have to wait
for each other until the contended edge is freed.

In Figure 2 the data transfer needed for changing the decomposition direction between
the x-line solves and the y-line solves is depicted, assuming the pile is aligned with the
z-axis. The hatched piles sitting on processor 1 during the x-line solves have to be
distributed among processors 0, 2, 3, 4, 5 for use during the y-line solves. Note that pile
1 (open box) need not be communicated, since it stays on processor 1. This is generally
true for pile i on processor i. Conversely, processor 1 also receives piles (shaded) from
processors 0, 2, 3, 4, 5 for use during the y-line solves. It obviously does not receive
information from itself.

It is found in [7} and [8] that this type of communication, called complete exchange,
suffers from significant edge contention if programmed in a naive way, i.e.:

for pile = 0, np-i do: if pile 54 mynumber then send-pile-to-processor(pile)

Communication conflicts are avoided by using Bokhari's linear algorithm [7]:

for pile = 1, np-i do: send-pile-to-processor((pile+mynumber) mod np)

This is the strategy employed in this study. It is on a par with the stable method and
the pairwise-synchronized method with forced messages also described in [7], while outper-
forming all other algorithms for the global exchange of medium to large-size messages on
medium-size hypercubes. Again, asynchronous communication and forced message types
are used, which has the advantage that no delay is caused by placing sizeable messages

8

associated with each pile on the network.
In order to compute the right hand side vector, each processor needs to have access

to temperature values on adjacent slices; these are stored in buffer zones. Buffer zones
are not included in the slices themselves—as was the case with the static block-Cartesian
decomposition—since this would necessitate a certain repacking of pile data during the
complete exchange. Instead, interface data is stored in two buffer arrays on each node,
one for either side of a slice. The thickness of each buffer is one, because a seven-point-
star stencil is used for computing the right hand side. Buffers are shipped to neighboring
processors as single messages. In order to keep these communications as efficient as
possible, they are overlapped with the computation of the right hand side vector for
points interior to the slices. In addition, the slices are numbered using gray codes such
that neighboring slices are on neighboring processors, i.e. p = gray(slice).

4.3 Bruno-Cappello multi-cell

In the Bruno-Cappello approach each cell has dimensions augmented by one in all direc-
tions to account for cell interface information. Many lay-outs are conceivable that satisfy
the requirement that each coordinate plane cutting across the whole grid intersect with
exactly one cell of each processor. In addition, we demand that for a given communi-
cation direction all cells belonging to a certain processor send information to only one
other processor. For example, suppose a cell on processor 0 has neighbors on processors
as indicated in Figure 3, then all the other cells owned by processor 0 exhibit the same
configuration.

Such a lay-out of cells can be constructed as follows; starting with a certain assignment
of cells in the 'ground' plane (k = 0), every subsequent plane has the same relative
assignment of cells to processors—save boundary effects—and is shifted in both the i- and
j-directions. In order to preserve the neighbor relation in the z-direction, the (periodic)
shift for plane k should be of the form (a * k, b* k). Bruno and Cappello show [5] that it is
not possible to construct a hypercube mapping of cells to processors that results in nearest-
neighbor communication only, but that it is possible to have a maximum communication
distance of 2 in one coordinate direction while preserving nearest-neighbor relations in
the other two directions. This mapping is constructed easily using gray-code mappings
for the assignment of cells to processors in the ground plane, and by applying either the
(k) —k) or the (—k, k) shift to subsequent z-planes. In the latter case, cell (i,j, k) lies on
node number p = gray ((i + k) mod /i) + iJñ*gray ((i - k) mod This mapping
requires only one message per processor in each of the six coordinate directions (east, west,
north, south, top, bottom) when exchanging boundary information with neighboring cells,
regardless how many cells there are per node. Again, we can overlap this copying action
with computation of the new right hand side vector for interior points of all cells.

An additional advantage of the Bruno-Cappello decomposition is that all processors
have exactly one cell face on each of the six faces of the global grid. That means that

boundary effects are the same for all processors, yielding a perfect load balance automat-
ically. In the static and dynamic block-Cartesian cases, processors owning interior grid
blocks have a different work load than those that face a grid boundary.

It should be noted that the Bruno-Cappello method described here is a special case of
the more general class of multi-partition methods described in detail in [9]; it is tailored
towards a scalable implementation on a binary hypercube topology.

4.4 Resources summary

In Table 1 we summarize the number of messages and the amount of communication (8-
byte words) needed during one time step of each of the three implementations, as well as
the amount of storage (8-byte words) per grid variable. All numbers are for one processor.
The grid contains n x n x n points, and the total number of processors is np.

It should be stressed that one third of the communication cost in the dynamic and
Bruno-Cappello decompositions is hidden by computations, whereas the static decom-
position offers hardly any savings in this regard. That is because most messages in the
latter case are sent during the line solve stage, when no overlap of computation and com-
munication is possible. The amount of storage required is just for one variable. What
makes the dynamic algorithm memory-inefficient is the fact that certain variables have to
be stored multiple times because of the different decompositions. This is especially true
when generalized coordinates or nonuniform material properties are used, in which case
multiple versions of properties and metrics data need to be stored.

5 Comparison

Three sets of computations were done in order to assess the impact of the different domain
decompositions on the parallel performance 0, the results of which are presented in Tables
2-4. 0, also called the efficiency, relates the time to execute a certain problem on np
processors (time(np)) to the time it takes to solve the same problem on just 1 processor,
i.e.

(.	 time(l)	 / fl)

	

	 .	 14 np tzme(np)

It should be noted that time(1) is the true serial execution time on one processor, stripped
of all the parallel overhead.

For each case are also listed the computing speed Mflops (millions of double precision
floating point operations per second). Mflops were computed by multiplying the total
number of grid points by the number of floating point operations per point (41 in this
case), and dividing the result by the total elapsed time during one time step. The elapsed
time is wall-clock time averaged over 50 time steps. Only the smallest grid will fit on a
single processor, so speed-ups for larger grids are computed by comparing with the Mflops
for that smallest grid.

10

The numerical problem solved is the same for each case; the time integration is fully
implicit (9 = 1), and the initial values are T(x, y, z, 0) sin(7rx) sin(7ry) sin(7rz) on the
unit cube. If the boundary values are kept at zero (Dirichlet boundary conditions), the
analytical solution is easily found through separation of variables, i.e. T(x, y, z, t) =
exp(—ir 2t)T(x, y, z) 0).

From the three sets of computations (Tables 2-4) it is concluded that the parallel
performance of the algorithms generally improves—as expected—when the total grid size
increases. It is also clear that the dynamic block-Cartesian decomposition is almost twice
as efficient as the static one. The Bruno-Cappello multi-cell decomposition, in turn, is
significantly faster than the dynamic block-Cartesian approach, even when only half the
number of available nodes is utilized (Bruno-Cappello requires the number of nodes to be
a square). Moreover, the grids chosen favor the dynamic block-Cartesian decomposition,
which is most efficient for grids that have some small aspect ratio, whereas Bruno-Cappello
performs best on a cubic grid. We therefore conclude that the last method is best suited
for AD I-type applications.

6 Curvilinear algorithm

Now that the optimal algorithm has been selected for the high-communication ADI-
algorithm on a simple rectangular grid, we also apply the Bruno-Cappello decomposition
to the solution of the heat equation on a curvilinear grid. It is a straightforward ex-
ercise to rewrite equation (2) using the general coordinate transformation (x, y, z) =
(x(, ij, , y(,), z(, 77, ()). The resulting equation is subsequently discretized again,
using central differences for all derivatives. In order to enable approximate factorization,
mixed second derivatives are all moved to the right hand side, leading to the following
(factored) difference scheme:

(1 -	 - "'[8,,J_ '9'7 7 6,7 1)(1 -	 [5J_1gCCS})T =
PC	 Pc

hk (5J_195eT + 8,7 J 1g'"6T + 8J 1g6T+ Vc

5(Jl[g?76,7T + g eC 6T]) + 8,(J 1 [g'7 8T + g77 8T]) + 6(J 1 [g8T + g'"ö,,T])) , (15)

where g is the metric tensor and J the determinant of the Jacobian of the transformation.
This scheme involves 150 floating point operations per grid point per iteration, pro-

vided g and J are stored for every grid point. The algorithm for doing one time step has
to be modified slightly to account for the fact that the difference stencil is no longer a
seven-point star on a non-orthogonal grid, but a 3 x 3 x 3-cube with the eight corners
excluded. Thus, in order to evaluate a new right hand side, points on the corner of a
cell need information from six other processors, instead of just three in the Cartesian-grid
case. In order to exchange all necessary boundary data a communication scheme similar
to the one outlined in [11] is used, whereby the face data transfer is broken up into three

11

pairs (east-west, north-south, top-bottom). After the third transfer, all boundary data
of the augmented cells has been updated. While each pair is being sent, one third of the
right hand side for interior points is computed. This strategy is not as efficient as the one
in the Cartesian grid case, where all face data was sent at the same time and the whole
right hand side for interior points was computed in one loop, but it still takes advantage
of the overlap of communication and computation.

The left hand side matrices for the different approximate factors are recomputed each
time step in order to save memory. Here the Bruno-Cappello decomposition offers yet
another advantage; during the forward elimination phases the communication of end-of-
line data to the next cell can be overlapped with the computation of the next left hand side
matrix. This cannot be done in the static block-Cartesian approach, because the messages
to be sent are many and small. So in the Bruno-Cappello case the only communication
that is not overlapped with computation is that of the solution as it is passed on during
the back-substitution phases. This involves only one data item per point of each cell face,
as opposed to three during the forward elimination phases.

An additional computational gain is obtained by writing the line solve routines such
that the inner loops always run over the first array index of the (intermediate) solution;
since all partial line solves within a cell are completely independent, it does not matter if
we first finish one line segment and then proceed to the next, or if we do one computation
at a time for each line segment within a cell in the direction of increasing first index
while keeping the others fixed. This again is not possible using the static block-Cartesian
approach, because Gaussian-elimination pipe-lines have to be filled one line segment at a
time.

The results of computations done with the thus generalized scheme are presented in
Table 5. The program was modified such that some processors were allowed to idle within
a hypercube, so that the program could be run on any square number of processors
smaller than 128. Speed-up figures refer to the actual number of active processors. If
the number of processors is not a power of 2, no useful cell-to-processor mapping can
be constructed using gray codes. Consequently, some performance degradation occurs,
although this effect is minimized through the overlap of communication and computation.
The cases run are selected such that they constitute the biggest grid possible on some
number of processors (e.g. a 56x56x56 grid on 4 processors). Interestingly, the increase
of the problem size on a fixed number of processors does not always yield a monotonically
increasing performance. This may be due to a degeneration of the cache utilization and
the increase of memory strides as the problem size grows.

Table 5 shows that the parallel performance of the Bruno-Cappello decomposition
degrades relatively slowly for increasing numbers of processors, and that an efficiency of
about 75% is feasible on any number of processors, provided the grid is large enough. A
maximum performance of 526 Mflops is attained for a 170 grid on 121 processors, at an
efficiency of 74%.

12

7 Discussion, summary, and conclusions

Three methods have been investigated for solving ADI-type problems on a MIMD dis-
tributed memory parallel computer. The most efficient uses the Bruno-Cappello multi-
cell decomposition, which automatically ensures a near-perfect load balance and is easily
amenable to overlap of computations and communications —the most important source
of reduction of parallel overhead. It also sends the smallest number of messages per
iteration, which minimizes communication cost due to high latency, and allows high com-
putational efficiency on individual processors. Solution of the three-dimensional unsteady
heat equation in curvilinear coordinates shows good scalability, and performance figures
of up to 526 Mflops (double precision) on 121 processors of the Intel iPSC/860 for a large
enough grid, even though only 150 floating point operations per grid point are carried
out per iteration. The current implementation in C has been extended to include more
complex boundary conditions (e.g. adiabatic wall, prescribed time-varying wall tempera-
ture or heat flux, wrap-around C-grid, etc.), and it was found that the use of high-level
data structures kept the programming complexity as low as that of the static or dynamic
block-Cartesian decompositions.

The multi-cell method is expected to offer an even larger relative benefit on the new
generation of ring-, mesh- and torus-connected MIMD computers, since their connectivity
is less than that of a hypercube, which means that communication distances will increase.
Contention-free implementation of the dynamic block-Cartesian decomposition is virtually
impossible on these machines, and the static block-Cartesian decomposition will suffer due
to increased lengths of message paths of non-overlapped communications.

References
[1] T.H. Pulliam, D.S. Chaussee, A diagonal form of an implicit approximate factoriza-

tion algorithm, Journal of Computational Physics, Vol. 29, p. 1037, 1975

[2] J.S. Ryan, S.K. Weeratunga, Parallel computation of 3-D Navier-Stokes flowfields
for supersonic vehicles, AIAA Paper 93-0064, 31" Aerospace Sciences Meeting &
Exhibit, Reno, NV, January 11-14, 1993

[3] S.L. Johnsson, Y. Saad, M.H. Schultz, Alternating direction methods on multiproces-
sors, SIAM Journal of Scientific and Statistical Computing, vol. 8, No. 5, pp. 686-700,
1987

[4] P.J. Kominsky, Performance analysis of an implementation of the Beam and Warm-
ing implicit factored scheme on the NCube hypercube, Proceedings of the Third Sym-
posium on the Frontiers of Massively Parallel Computation, College Park, MD, Oc-
tober 8-10, 1990, IEEE Computer Society Press, Los Alamitos, CA

13

[5] J. Bruno, P.R. Cappello, Implementing the Beam and Warming method on the hy-
percube, Proceedings of 3'' Conference on Hypercube Concurrent Computers and
Applications, Pasadena, CA, Jan. 19-20, 1988

[6]J.C. Yan, P.J. Hontalas, C.E. Fineman, Instrumentation, performance visualization
and debugging tools for multiprocessors, Proceedings of Technology 2001, vol. 2.,
pp. 377-385, San Jose, CA, December 4-6, 1991

[7] S.H. Bokhari, Complete exchange on the iPSC-860, Technical Report 91-4, ICASE,
NASA Langley Research Center, Hampton, VA, 1991

[8]S. Seidel, M-H. Lee, S. Fotedar, Concurrent bidirectional communication on the Intel
iPSC1860 and iPSC12, Computer Science Technical Report CS-TR 90-06, Michigan
Technological University, Houghton, MI, 1990

[9]N.H. Naik, V.K. Naik, M. Nicoules, Parallelization of a class of implicit finite differ-
ence schemes in computational fluid dynamics, International Journal of High Speed
Computing, Vol. 5, No. 1, pp. 1-50, 1993

[10]T.F. Chan, On gray code mapping for mesh-FFTs on binary N-cubes, Technical
Report 86.17, RIACS, NASA Ames Research Center, 1986

[11]S.J. Scherr, Implementation of an explicit Navier-Stokes algorithm on a distributed
memory parallel computer, AIAA Paper 93-0063, 31 Aerospace Sciences Meeting &
Exhibit, Reno, NV, January 11-14, 1993

14

t^y.
Figure 1: Storage of slice variable in terms of piles of data

- R1

x-sweep	 y-sweep

Figure 2: Exchanging piles of data during change of decomposition

Figure 3: Neighbors of a cell on processor 0

15

static	 dynamic Bruno-Cappello

communication	 18	 2n2 + 2 n(np
-1) 18(j- 1)

I	 np2 iFp
# messages	 6 +6n	 2np,

I	 3	 3 2(fl	 ___
np,storage	 +2)
	

n	 + 2)	 y'i	 + 2)

Table 1: Storage and communication for all three decompositions

Number of processors
Grid 1	 2	 4	 8	 16 32 64 128
48x48x24 1.00	 0.53	 0.50	 0.28	 0.20 0.15 .091 .066

2.94	 3.12	 5.75	 6.55	 9.22 14.8 17.2 24.7 Mflops
96x96x48 0.24 0.25 0.17 0.13

11.4 23.4 31.3 49.0 Mflops
192x192x96 0.22 0.19

41.5 71.8
I

Mflops

Table 2: Parallel performance of static block-Cartesian decomposition

Number of processors
Grid 1	 2	 4	 8	 16	 32 64 128
48x48x24 1.00	 0.83	 0.72	 0.58	 0.44	 0.27

2.94	 4.87	 8.43	 13.7	 20.8	 25.2 Mflops
96x96x48 0.69	 0.60	 0.49 0.29

16.3	 28.1	 46.0 55.3 Mflops
192x192x96 0.47 0.28

89.0 104.	 Mflops

Table 3: Parallel performance of dynamic block-Cartesian decomposition

16

Number of processors
Grid 1	 4	 16	 64
48x48x24 1.00	 0.94	 0.60	 0.23

2.94	 11.0	 28.0	 42.9 MIlops
96x96x48 0.85	 0.54

40.2	 101. Mflops
192x192x96 0.77

144. Mflops

Table 4: Parallel performance of Bruno-Cappello decomposition

Number of processors
Grid 1	 4 9 16 25 36 49 64 81 100 121
36 3 1.00	 0.88 0.76 0.67 0.53 0.43 0.34 0.30 0.23 0.18 0.16

__ 5.91	 20.7 40.3 63.2 77.6 92.3 99.3 112. 109. 109. 114. Mflops
56 0.89 0.83 0.74 0.70 0.63 0.56 0.52 0.44 0.37 0.32

_ 21.1 44.3 70.4 103. 135. 162.195.209.217.232.Mflops
743 0.86 0.82 0.76 0.72 0.66 0.63 0.57 0.50 0.45

___ 45.6 77.6 112. 153. 191. 240. 271. 294. 325. Mflops
89T_ 0.80 0.76 0.72 0.68 0.64 0.59 0.55

_ 78.2 118. 161. 208. 258. 307. 350. 390. Mflops
102 0.80 0.78 0.73 0.72 0.66 0.63 0.55

_ 118. 165. 211. 273. 318. 375. 394. Mflops
113,T- 0.76 0.72 0.71 0.65 0.64

_____ 166. 221. 272. 339. 382. 455. Mflops
124 0.67 0.75 0.71 0.69 0.66

196. 282. 339. 410. 474. Mflops
138 0.75 0.74 0.70 0.69

_____ 282. 354. 415. 494. Mflops
149 0.72 0.71 0.70

_ 347. 421. 500. Mflops
160 0.74 0.71

______ 438. 508. Mflops
170 0.74

526. Mflops

Table 5: Parallel performance of Bruno-Cappello decomposition for curvilinear case

17

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

