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on MIMD Parallel Computers 

Rob F. Van der Wijngaart 

1 Introduction 
In order to simulate the effects of the impingement of hot exhaust jets of High 
Performance Aircraft on landing surfaces a multi-disciplinary computation 
coupling flow dynamics to heat conduction in the runway needs to be carried 
out. Such simulations, which are essentially unsteady, require very large 
computational power in order to be completed within a reasonable time frame 
of the order of an hour. Such power can be furnished by the latest generation 
of massively parallel computers. These remove the bottleneck of ever more 
congested data paths to one or a few highly specialized central processing 
units (CPU's) by having many off-the-shelf CPU's work independently on 
their own data, and exchange information only when needed. 

During the past year the first phase of this project was completed, in 
which the optimal strategy for mapping an ADI-algorithm for the three-
dimensional unsteady heat equation to a MIMD parallel computer was iden-
tified. This was done by implementing and comparing three different domain 
decomposition techniques that define the tasks for the CPU's in the parallel 
machine. These implementations were done for a Cartesian grid and Dirich-
let boundary conditions. The most promising technique was then used to 
implement the heat equation solver on a general curvilinear grid with a suite 
of nontrivial boundary conditions. 

Finally, this technique was also used to implement the Scalar Penta-
diagonal (SP) benchmark, which was taken from the NAS Parallel Bench-
marks report N. 

All implementations were done in the programming language C on the 
Intel iPSC/860 computer.
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2 Domain decompositions 
The first domain decomposition examined was the static block-Cartesian 
[2], [3]. Every CPU receives one contiguous block of the global grid and is 
responsible for computation of the solution on it. This decomposition was 
found to be inefficient because of the large number of interactions needed 
between the different grid blocks. These interactions, which take the shape 
of packets of data (messages) sent between CPU's, suffer from long start-up 
times (latency). 

The second domain decomposition considered was the dynamic block-
Cartesian [2]. Here every CPU again receives one contiguous grid block, 
but the orientation of the grid block changes in order to accommodate the 
different implicit solution directions used by ADI. This method was found 
to be significantly more efficient than the static block-Cartesian, but it does 
not scale well to large numbers of processors. It also requires transmission 
of very large messages between all the CPU's in the parallel machine, which 
will lead to congestion (edge contention) on the newest parallel architectures. 

The last domain decomposition examined was a multi-partition method 
that was adapted to the so-called hypercube topology of the iPSC/860 by 
Bruno and Cappello [5]. Now every CPU receives a small number of con-
tiguous grid blocks (cells, or partitions) that are allocated within the overall 
grid in such a way that during any of the phases of the ADI algorithm there 
is work to do for each CPU. This method was found to be optimal in terms 
of computational speed, because of a very equally distributed work load, a 
small number of messages sent between CPU's, and the possibility to mask 
communications by performing computations concurrently. 

3 Curvilinear algorithm 
The Bruno-Cappello method was subsequently implemented for the heat 
equation in generalized curvilinear coordinates. Implementation of more 
complicated boundary conditions, such as C-grid conditions, proved to be 
efficient and relatively easy because of the high-level data structures used. 
Consequently, the complaints voiced by other authors [6], [4] that the Bruno-
Cappello method is too complex and too inefficient for practical applications 
could be construed as defects of Fortran, which does not support high-level 
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data structures. It was found that the Bruno-Cappello method was very well 
suited for the more involved curvilinear problem with non-trivial boundary 
conditions, since more communications could be overlapped with computa-
tions Moreover, the boundary condition implementation, which is an impor-
tant source of load imbalance for other methods, could be balanced well in 
this case. 

The results of the above investigations will be presented at the Super-
computing '93 conference to be held in Portland, Oregon, November 15-19, 
1993. A draft of the paper to be included in the proceedings is attached in 
the appendix. 

4 Scalar Penta-diagonal Benchmark SP 
SP is a model problem that has most of the essential features of the diagonal-
ized Beam-Warming flow solver OVERFLOW, and can be used as a stepping 
stone for constructing the full-fledged flow solver. It was also implemented 
using the Bruno-Cappello method, but no timings have been obtained yet. 
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Efficient implementation of a 3-dimensional ADI method on the 
iPSC/860 

Rob F. Van der Wijngaart 
MCAT Institute, NASA Ames Research Center 

Moffett Field, CA 94035 

Abstract 

A comparison is made between several domain decomposition strategies for the 
solution of three-dimensional partial differential equations on a MIMD distributed 
memory parallel computer. The grids used are structured, and the numerical algo-
rithm is ADI. Important implementation issues regarding load balancing, storage 
requirements, network latency, and overlap of computations and communications 
are discussed. Results of the solution of the three-dimensional heat equation on the 
Intel iPSC/860 are presented for the three most viable methods. It is found that 
the Bruno-Cappello decomposition delivers optimal computational speed through 
an almost complete elimination of processor idle time, while providing good memory 
efficiency. 

1 Introduction 

Implicit numerical algorithms for the solution of multi-dimensional partial differential 
equations (PDE's) are usually more efficient computationally than explicit methods, when 
implemented on conventional (vector) computers. However, they are harder to program 
efficiently on parallel computers due to a more global data dependence than is exhibited 
by explicit methods. Numerical solution of PDE's typically involves more or less the 
same operations for all the points in a computational grid used to discretize the prob-
lem space. Consequently, domain decomposition is the natural way of creating separate 
tasks for a parallel computer: a roughly equal number of grid point is assigned to each 
processor. Depending on the type of implicit algorithm chosen, some domain decompo-
sitions perform better than others. Efficiency is also affected by hardware parameters 
(e.g. network latency and bandwidth, and processor memory) and operating model (e.g. 
MIMD, SIMD). In this paper we compare three viable domain decompositions for the 
solution of three-dimensional PDE's using ADI (Alternating Direction Implicit) on the 
Intel iPSC/860 MIMD parallel computer. The results of this study also apply to other 
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line-based solution strategies, such as line-relaxation, when multiple sweep directions are 
used during each iteration. 

As an example, we solve the time-dependent three-dimensional heat equation. Since 
the aim is to assess parallel efficiency, the problem is kept as simple as possible (i.e. Carte-
sian grid, constant mesh spacing, Dirichiet boundary conditions, constant material prop-
erties, no source term). As a result, the computational program is simple and easy to 
analyze, and the computations per grid point are at a bare minimum. No effort was made 
to use the simplifying assumptions to reduce communication, so a relatively bad balance 
results between computation and communication time; a worst-case parallel performance 
analysis is obtained. 

2 Problem formulation 

The equation to be solved is: 

pcT =V.(kVT),	 (1) 

where T is temperature, i time, p density, c specific heat, and k the conduction tensor. 
Assuming k to be a constant scalar, i.e. k = kI, we get

(2) 

Equation (2) is subsequently discretized using central differencing in space and the 9-
method in time: 

(1 - hok[(8c)2 + (8)2 + (s:)2J)iT	
hk[(5C)2 + (5)2 + (5)

2]T.	 (3) PC 

Here 8. signifies the central difference operator in the x 2 -direction, T is the temper-
ature, AT its temporal increment, and h is the size of the time step. The parameter 
9 controls the 'implicitness' of the problem (9 = 0 yields Euler explicit, 9 = 1 gives 
Euler implicit, and 9 = 1/2 defines the second-order-accurate Crank-Nicolson scheme). 
Equation (3), which is said to be in delta form, defines a matrix equation with a very 
large bandwidth due to the three-dimensionality of the discrete operator. Approximate 
factorization reduces this operator to a product of three one-dimensional operators with 
a bandwidth of only three each (e.g. [1]). So equation (3) is approximated by: 

(1 - hk(S) 2)(l - Lk(5 c ) 2 )(1 - h9k (5C ) 2)7 - 1th115C ) 2 + (5)2 + (5)
2]T	 (4) pCL\2' 

An outline of the numerical algorithm is: 

1. Compute rhs, the right hand side of equation (4). 

2. Solve the system (1 -	
X I = rhs along lines in the x-direction. PC 
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3. Solve the system (1 -	 = A along lines in the y-direction. 

4. Solve the system (1 -	 = B along lines in the z-direction. PC z 

5. Update T for all interior grid points. 

3 Domain decomposition 

The Intel iPSC/860 computer on which the problem is solved is of the MIMD (Multiple 
Instruction Multiple Data) distributed memory type. Data is owned by the individual 
processors in the processor array, which is structured as a hypercube. The only way 
that data can be shared among processors is by message passing. Sending or receiving a 
message takes communication time, which goes at the expense of the computing efficiency. 
Moreover, synchronization and load balancing are an issue; processors should not be 
allowed to idle because they are out of work or are waiting for data to be prepared by 
other processors. The following sections discuss three different domain decomposition 
strategies and the associated numerical implementations. Although many more such 
strategies are conceivable, these appear the most viable, for they all have a good load 
balance and attempt to minimize data communication in some sense. 

3.1 Static block-Cartesian decomposition 

In the static block-Cartesian case, each processor owns one contiguous Cartesian-product 
subspace —a block—of the whole grid for the duration of the entire computation. This de-
composition assumes a very small latency, relatively low communication bandwidth, and 
limited storage. The grid blocks are as close to cubical as possible in order to minimize 
surface area, which in turn minimizes the amount of data to be communicated between 
blocks. It also minimizes storage of an extra layer of points around the grid block, a com-
mon and convenient vehicle in domain decomposition strategies for sharing information 
with neighboring processors. 

A serious drawback is, however, that no single block-Cartesian decomposition is effi-
cient for all line solves in steps 2 through 4. Consider step 2, for example. Here a matrix 
equation is formed for each line in the x-direction across the whole grid. If this line is 
contained completely in a single processor (which means that the block is of the width 
of the grid in the x-direction), then all processors can solve their matrix equations inde-
pendently, and complete parallelism is obtained. However, since the grid is divided into 
multiple blocks, there must be at least one coordinate direction, say y, that runs across 
several blocks. That means that in step 3 no whole y-line can be formed within one pro-
cessor, and a processor must wait to receive information from neighboring blocks before 
it can do its part of the forward elimination or the back-substitution; communication is 
needed during line solves.
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When using the Thomas algorithm for solving the tn-diagonal matrix equations, the 
information to be passed to the next processor during the forward elimination consists of 
the updated right hand side and the upper and diagonal matrix elements at the end of 
each line (the matrix elements are not strictly needed in the current constant-coefficient 
case, but we pass them for generality's sake to reflect the communication requirements of 
curvilinear (section 6) and fully nonlinear algorithms). If the latency is very large, one can 
collect all such triplets of values for all the line segments in the current grid block and send 
them to the next processor as one message. On arrival, they can be unpacked and used by 
the next processor to advance further along the line in the forward elimination step. But 
this leads to a severe load imbalance, since only one layer of grid blocks perpendicular 
to the line solve direction is active at any given time. Instead, we send each triplet 
individually, giving the next processor something to chew on already before starting on the 
next line segment of the forward elimination within the current processor. This process, 
called Pipe-lined Gaussian Elimination (PGE) [2], [3], has a much better load balance, 
provided each grid block contains many more line segments than there are consecutive grid 
blocks in any coordinate direction. However, it does require sending many small messages. 
An alternative to PGE that avoids the latter problem is offered by variants of the cyclic 
reduction algorithm [3], called substructuring methods. These rely on eliminating as 
many off-diagonal matrix elements as possible within each grid block in parallel before 
communicating with processors containing neighboring blocks. Substructuring methods 
are very similar in appearance to solution methods for periodic problems, and they require 
a comparable number of arithmetic operations, which is almost twice as many as are 
needed by PGE. Due to this added computational expense, substructuring methods are 
not considered in this study. 

3.2 Dynamic block-Cartesian decomposition 

In the dynamic block-Cartesian case, each processor again owns a contiguous grid block, 
but this time the decomposition changes between the different line solve stages. This 
decomposition assumes a large latency, relatively high communication bandwidth, and 
abundant storage. The dynamic redecomposition (also called Mass Reorganization [4] or 
Complete Exchange [7]) enables the data lay-out to be tailored to the line solve step it 
supports. Before solution in the x 1 -direction (i= 1, 2, 3), the Cartesian blocks are made 
to be of the width of the grid in that same direction. The extra expense incurred is the 
communication needed to redecompose the domain, but no data needs to be transferred 
during any of the three solution stages. 

The optimal dynamic subdivision is found as follows. The whole grid contains n x 
n, x n2 points. Let np; signify the number of processors (blocks) in the x3-direction 
during the x i-line solves, the total number of blocks being np. Some useful identities are: 

= 1,	 =np, (i= 1, 2,3).	 (5) 
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Between the x- and y-line solves the intermediate solution A on a processor has to be 
communicated to all other processors that need it. The only information that does not 
need to be communicated lies in the intersection of the Cartesian blocks of the successive 
decompositions that reside on the same processor during both line solve stages. The size 
of the intersection region on a single processor is at most: 

	

__	 flz	 -	
(6) max(np, np) max(np, np) max(np, npY) - npnp max(np, np 

fl nyz The total number of grid points in a block is nz	 , which makes the total amount of
grid point data communicated equal to: 

(.1.	 1 
flxflflznp npnpmax(np7 ,npY) 7 

Similar expressions can be derived for communications between y- and z-line solves, and 
before the final temperature update (step 5). Assuming all inter-processor data transfer 
can happen without conflicts, the total communication time t, is: 

	

1	 -	 1	 - =	 (np - npnp max(np , np) npnp max(np, np) 

1 
npnp max(np, flPz)) C, (8) 

with c the time to send one floating point number. Using the identities (5), tc can be 
simplified to: 

TZr72y12zf' 	 1	 1	 -	 1	 9 TZP k.	 max(np,np) C. 

It is not easy to see how this expression can be minimized for a certain choice of the np'. 
Therefore, two extreme cases are considered. 

First, map the planes perpendicular to each line solve direction to a square processor X(i+1)mod3	 X(i+2)mod3	 . array, i.e. np, = flx, = (z = 1, 2, 3). This leads to a small aspect ratio 
of the blocks in the plane perpendicular to the lines solve direction. The corresponding 
communication time P q is: 

- flxflYflz (3 - ---- C	 10 C — flp \ 

Second, map the planes perpendicular to each line solve direction to a linear processor 
array, i.e.	 (i+1)mod3 = np or p42)m0i3 

= fip, (i = 1,2,3). This leads to a large aspect 
ratio of the blocks in the plane perpendicular to the line solve direction; the domain 
is dissected into slices stretching across the entire width of the grid in two coordinate 
directions. Equation (9) shows that the corresponding communication time t' is, in 
general:

- flxflyflz (3 - 
C - fl	 np (11) 
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An additional gain is obtained by selecting one particular coordinate direction s 0 and 
requiring np; = 1, (i = 1, 2,3). Then one of the terms on the right hand side of equation 
(9) is 1, and the communication time drops to: 

jim	 flxflYflz
(_ 	 (12)np 

Now there is one pair of solution steps between which no communication is necessary at 
all. For example, suppose that jo = 2, then the grid dissection chosen for either the s-line 
solves or the z-line solves will also be adequate for the y-line solves. Coordinate direction 
xjO is called the pile-direction of the decomposition (see below). A comparison of the 
communication times for the square and the linear decompositions yields: 

lin = ( 1 + 1 ),(np	 1).	 (13)

For np > 4 the linear decomposition is superior, with gains increasing as np grows. 

3.3 Bruno-Cappello multi-cell decomposition 

In the Bruno-Cappello case ([4], [5]), each processor owns a collection of grid blocks, called 
cells. This decomposition supports a large latency and a relatively low bandwidth, and 
requires somewhat more memory than the static but a lot less than the dynamic block-
Cartesian decomposition. The arrangements of the equally-sized cells is such, that every 
coordinate plane that cuts the grid intersects with exactly one cell of each processor. The 
number of cells is the smallest possible to satisfy the above requirement. If the number 
of processors is again np, then each processor owns /5j cells. Consequently, the total 
number of cells is np/5, which are laid out in a x x ,/iji three-dimensional 
array. No two cells belonging to the same processor abut, so that no complete lines in 
any coordinate direction can be formed within one processor; communication is again 
necessary during line solves, but now we do not have to worry about load balancing the 
algorithm. Therefore, each cell can finish all its line segments during forward elimination 
before sending a packet of consolidated data to the adjacent cell for processing. 

3.4 Right hand side evaluation 

So far the cost of assembling the right hand side of equation (4) has been ignored. Whereas 
the computing cost of that assembly depends only weakly on the decomposition chosen, 
the communication cost is proportional to the surface area of each block. The surface 
area is smallest for the static and largest for the dynamic block-Cartesian decomposition. 
In the latter case the surface area does not scale with the number of processors; the 
communication overhead of evaluating the right hand side appears to grow indefinitely. 
But in all three cases the right hand side can be computed for points interior to the 
blocks or cells owned by each processor while boundary information is being sent to other 
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processors. Experiments with the AIMS performance monitoring system [6] show that 
this communication does not lead to processor idle time for any grids of reasonable size. 

4 Implementation issues 

All cases are programmed in C. This language provides the flexibility and convenience 
of mixed-type data structures that keep parameter lists short and clean. It also has 
the advantage that functions are built in for computing the length of system- or user-
defined data types (important for sending messages), that dynamic memory allocation 
is supported, and that interfaces with Fortran subroutines are possible. Tests on the 
iPSC/860 show that Fortran77 and C have the same computational efficiency. What 
seems to be a drawback of C is that it does not allow multi-dimensional arrays of variable 
size in parameter lists, which forces the programmer to map them into one-dimensional 
arrays with explicit computation of indices. But this can be done easily and efficiently, 
with no performance degradation. In fact, having explicit control over array lay-out 
obviates the need for the auxiliary arrays reported in [4]. 

4.1 Static block-Cartesian 

In the static block-Cartesian approach each grid block has dimensions augmented by 
one in all directions to account for block interface information. The blocks themselves 
are arranged in a three-dimensional array such that communication between neighboring 
blocks is also between neighboring processors (Hamming distance of 1). This can be 
achieved using binary reflected gray codes (see e.g. [10]). The processor number p of a 
block with indices (i,j, k) in the three-dimensional array of size ('size, Jsize, Ksize) is given 
by p = gray(i) + 'size * (gray(j) + * gray(k)). Experiments using gray codes show a 
performance improvement of about 5% over the canonical numbering p = i + 'size * (j + 
Jsize * k) for medium-sized grids (60 x 60 x 30 to 80 x 80 x 40 grid points) on a 32-processor 
hypercube. 

As was mentioned earlier, the computation of the right hand side vector for points 
interior to the grid block can concur with the exchange of boundary face information 
between neighboring grid blocks. This requires the use of asynchronous message passing. 
Extra speed-up is obtained by using so-called forced messages, which bypass system wait 
buffers and get copied immediately into the application space of the receiving processor. 
Once the boundary data has been received, the right hand side for points on the edge of 
the grid block can be evaluated. This strategy offers a significant increase in efficiency, 
although there is a hidden cost; since the computation of the right hand side is split 
in two (interior and boundary points), the vector length for each of these steps—most 
notably for the boundary points—is reduced, which leads to a loss of performance on the 
iPSC/860 vector processors.



The left hand side matrices for the simple Cartesian-grid case are constant, so they 
need not be constructed explicitly. Consequently, there is no computational work that 
can be done when transferring information between neighboring cells during the line-solve 
phases of the algorithm, and simple synchronous message passing is used. 

4.2 Dynamic block-Cartesian 

In the linear dynamic block-Cartesian approach each processor owns a slice of the whole 
grid, whose orientation depends on the phase of the solution process. Each processor 
contains a number of slice variables—one for each physical variable defined on its part 
of the grid—that hold the data in an array of function values. That array is distributed 
over a number of pile data structures, each of which contains a block of data that can 
be transferred monolithically to other processors during the change of decomposition 
direction (Figures 1 and 2). A pile stretches across the grid in the x 30 -direction (see 
section 3.2). No rearrangement of the values within a pile is necessary after transfer. 

During the redecomposition phase, each processor needs to send a (different) pile of 
data to every other processor in the allocated hypercube. These cannot all be nearest 
neighbors, so there is a danger of edge contention [7]; two messages cannot normally share 
the same data path—edge—between two processors in the hypercube, so if communication 
requires the paths of several messages to overlap (partially), then they will have to wait 
for each other until the contended edge is freed. 

In Figure 2 the data transfer needed for changing the decomposition direction between 
the x-line solves and the y-line solves is depicted, assuming the pile is aligned with the 
z-axis. The hatched piles sitting on processor 1 during the x-line solves have to be 
distributed among processors 0, 2, 3, 4, 5 for use during the y-line solves. Note that pile 
1 (open box) need not be communicated, since it stays on processor 1. This is generally 
true for pile i on processor i. Conversely, processor 1 also receives piles (shaded) from 
processors 0, 2, 3, 4, 5 for use during the y-line solves. It obviously does not receive 
information from itself. 

It is found in [7} and [8] that this type of communication, called complete exchange, 
suffers from significant edge contention if programmed in a naive way, i.e.: 

for pile = 0, np-i do: if pile 54 mynumber then send-pile-to-processor(pile) 

Communication conflicts are avoided by using Bokhari's linear algorithm [7]: 

for pile = 1, np-i do: send-pile-to-processor((pile+mynumber) mod np) 

This is the strategy employed in this study. It is on a par with the stable method and 
the pairwise-synchronized method with forced messages also described in [7], while outper-
forming all other algorithms for the global exchange of medium to large-size messages on 
medium-size hypercubes. Again, asynchronous communication and forced message types 
are used, which has the advantage that no delay is caused by placing sizeable messages 
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associated with each pile on the network. 
In order to compute the right hand side vector, each processor needs to have access 

to temperature values on adjacent slices; these are stored in buffer zones. Buffer zones 
are not included in the slices themselves—as was the case with the static block-Cartesian 
decomposition—since this would necessitate a certain repacking of pile data during the 
complete exchange. Instead, interface data is stored in two buffer arrays on each node, 
one for either side of a slice. The thickness of each buffer is one, because a seven-point-
star stencil is used for computing the right hand side. Buffers are shipped to neighboring 
processors as single messages. In order to keep these communications as efficient as 
possible, they are overlapped with the computation of the right hand side vector for 
points interior to the slices. In addition, the slices are numbered using gray codes such 
that neighboring slices are on neighboring processors, i.e. p = gray(slice). 

4.3 Bruno-Cappello multi-cell 

In the Bruno-Cappello approach each cell has dimensions augmented by one in all direc-
tions to account for cell interface information. Many lay-outs are conceivable that satisfy 
the requirement that each coordinate plane cutting across the whole grid intersect with 
exactly one cell of each processor. In addition, we demand that for a given communi-
cation direction all cells belonging to a certain processor send information to only one 
other processor. For example, suppose a cell on processor 0 has neighbors on processors 
as indicated in Figure 3, then all the other cells owned by processor 0 exhibit the same 
configuration. 

Such a lay-out of cells can be constructed as follows; starting with a certain assignment 
of cells in the 'ground' plane (k = 0), every subsequent plane has the same relative 
assignment of cells to processors—save boundary effects—and is shifted in both the i- and 
j-directions. In order to preserve the neighbor relation in the z-direction, the (periodic) 
shift for plane k should be of the form (a * k, b* k). Bruno and Cappello show [5] that it is 
not possible to construct a hypercube mapping of cells to processors that results in nearest-
neighbor communication only, but that it is possible to have a maximum communication 
distance of 2 in one coordinate direction while preserving nearest-neighbor relations in 
the other two directions. This mapping is constructed easily using gray-code mappings 
for the assignment of cells to processors in the ground plane, and by applying either the 
(k ) —k) or the (—k, k) shift to subsequent z-planes. In the latter case, cell (i,j, k) lies on 
node number p = gray ((i + k) mod /i) + iJñ*gray ((i - k) mod This mapping 
requires only one message per processor in each of the six coordinate directions (east, west, 
north, south, top, bottom) when exchanging boundary information with neighboring cells, 
regardless how many cells there are per node. Again, we can overlap this copying action 
with computation of the new right hand side vector for interior points of all cells. 

An additional advantage of the Bruno-Cappello decomposition is that all processors 
have exactly one cell face on each of the six faces of the global grid. That means that



boundary effects are the same for all processors, yielding a perfect load balance automat-
ically. In the static and dynamic block-Cartesian cases, processors owning interior grid 
blocks have a different work load than those that face a grid boundary. 

It should be noted that the Bruno-Cappello method described here is a special case of 
the more general class of multi-partition methods described in detail in [9]; it is tailored 
towards a scalable implementation on a binary hypercube topology. 

4.4 Resources summary 

In Table 1 we summarize the number of messages and the amount of communication (8-
byte words) needed during one time step of each of the three implementations, as well as 
the amount of storage (8-byte words) per grid variable. All numbers are for one processor. 
The grid contains n x n x n points, and the total number of processors is np. 

It should be stressed that one third of the communication cost in the dynamic and 
Bruno-Cappello decompositions is hidden by computations, whereas the static decom-
position offers hardly any savings in this regard. That is because most messages in the 
latter case are sent during the line solve stage, when no overlap of computation and com-
munication is possible. The amount of storage required is just for one variable. What 
makes the dynamic algorithm memory-inefficient is the fact that certain variables have to 
be stored multiple times because of the different decompositions. This is especially true 
when generalized coordinates or nonuniform material properties are used, in which case 
multiple versions of properties and metrics data need to be stored. 

5 Comparison 

Three sets of computations were done in order to assess the impact of the different domain 
decompositions on the parallel performance 0, the results of which are presented in Tables 
2-4. 0, also called the efficiency, relates the time to execute a certain problem on np 
processors (time(np)) to the time it takes to solve the same problem on just 1 processor, 
i.e.

(	 .	 time(l)	 / fl)

	

	 .	 14 np tzme(np) 

It should be noted that time(1) is the true serial execution time on one processor, stripped 
of all the parallel overhead. 

For each case are also listed the computing speed Mflops (millions of double precision 
floating point operations per second). Mflops were computed by multiplying the total 
number of grid points by the number of floating point operations per point (41 in this 
case), and dividing the result by the total elapsed time during one time step. The elapsed 
time is wall-clock time averaged over 50 time steps. Only the smallest grid will fit on a 
single processor, so speed-ups for larger grids are computed by comparing with the Mflops 
for that smallest grid.
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The numerical problem solved is the same for each case; the time integration is fully 
implicit (9 = 1), and the initial values are T(x, y, z, 0) sin(7rx) sin(7ry) sin(7rz) on the 
unit cube. If the boundary values are kept at zero (Dirichlet boundary conditions), the 
analytical solution is easily found through separation of variables, i.e. T(x, y, z, t) = 
exp(—ir 2t)T(x, y, z ) 0). 

From the three sets of computations (Tables 2-4) it is concluded that the parallel 
performance of the algorithms generally improves—as expected—when the total grid size 
increases. It is also clear that the dynamic block-Cartesian decomposition is almost twice 
as efficient as the static one. The Bruno-Cappello multi-cell decomposition, in turn, is 
significantly faster than the dynamic block-Cartesian approach, even when only half the 
number of available nodes is utilized (Bruno-Cappello requires the number of nodes to be 
a square). Moreover, the grids chosen favor the dynamic block-Cartesian decomposition, 
which is most efficient for grids that have some small aspect ratio, whereas Bruno-Cappello 
performs best on a cubic grid. We therefore conclude that the last method is best suited 
for AD I-type applications. 

6 Curvilinear algorithm 

Now that the optimal algorithm has been selected for the high-communication ADI-
algorithm on a simple rectangular grid, we also apply the Bruno-Cappello decomposition 
to the solution of the heat equation on a curvilinear grid. It is a straightforward ex-
ercise to rewrite equation (2) using the general coordinate transformation (x, y, z) = 
(x(, ij, , y(, ), z(, 77, ()). The resulting equation is subsequently discretized again, 
using central differences for all derivatives. In order to enable approximate factorization, 
mixed second derivatives are all moved to the right hand side, leading to the following 
(factored) difference scheme: 

(1 -	 - "'[8,,J_ '9'7 7 6,7 1)( 1  -	 [5J_1gCCS})T = 
PC	 Pc 

hk (5J_195eT + 8,7 J 1g'"6T + 8J 1g6T+ Vc 

5(Jl[g?76,7T + g eC 6T]) + 8,(J 1 [g'7 8T + g77 8T]) + 6(J 1 [g8T + g'"ö,,T])) , (15)

where g is the metric tensor and J the determinant of the Jacobian of the transformation.
This scheme involves 150 floating point operations per grid point per iteration, pro-



vided g and J are stored for every grid point. The algorithm for doing one time step has 
to be modified slightly to account for the fact that the difference stencil is no longer a 
seven-point star on a non-orthogonal grid, but a 3 x 3 x 3-cube with the eight corners 
excluded. Thus, in order to evaluate a new right hand side, points on the corner of a 
cell need information from six other processors, instead of just three in the Cartesian-grid 
case. In order to exchange all necessary boundary data a communication scheme similar 
to the one outlined in [11] is used, whereby the face data transfer is broken up into three 
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pairs (east-west, north-south, top-bottom). After the third transfer, all boundary data 
of the augmented cells has been updated. While each pair is being sent, one third of the 
right hand side for interior points is computed. This strategy is not as efficient as the one 
in the Cartesian grid case, where all face data was sent at the same time and the whole 
right hand side for interior points was computed in one loop, but it still takes advantage 
of the overlap of communication and computation. 

The left hand side matrices for the different approximate factors are recomputed each 
time step in order to save memory. Here the Bruno-Cappello decomposition offers yet 
another advantage; during the forward elimination phases the communication of end-of-
line data to the next cell can be overlapped with the computation of the next left hand side 
matrix. This cannot be done in the static block-Cartesian approach, because the messages 
to be sent are many and small. So in the Bruno-Cappello case the only communication 
that is not overlapped with computation is that of the solution as it is passed on during 
the back-substitution phases. This involves only one data item per point of each cell face, 
as opposed to three during the forward elimination phases. 

An additional computational gain is obtained by writing the line solve routines such 
that the inner loops always run over the first array index of the (intermediate) solution; 
since all partial line solves within a cell are completely independent, it does not matter if 
we first finish one line segment and then proceed to the next, or if we do one computation 
at a time for each line segment within a cell in the direction of increasing first index 
while keeping the others fixed. This again is not possible using the static block-Cartesian 
approach, because Gaussian-elimination pipe-lines have to be filled one line segment at a 
time. 

The results of computations done with the thus generalized scheme are presented in 
Table 5. The program was modified such that some processors were allowed to idle within 
a hypercube, so that the program could be run on any square number of processors 
smaller than 128. Speed-up figures refer to the actual number of active processors. If 
the number of processors is not a power of 2, no useful cell-to-processor mapping can 
be constructed using gray codes. Consequently, some performance degradation occurs, 
although this effect is minimized through the overlap of communication and computation. 
The cases run are selected such that they constitute the biggest grid possible on some 
number of processors (e.g. a 56x56x56 grid on 4 processors). Interestingly, the increase 
of the problem size on a fixed number of processors does not always yield a monotonically 
increasing performance. This may be due to a degeneration of the cache utilization and 
the increase of memory strides as the problem size grows. 

Table 5 shows that the parallel performance of the Bruno-Cappello decomposition 
degrades relatively slowly for increasing numbers of processors, and that an efficiency of 
about 75% is feasible on any number of processors, provided the grid is large enough. A 
maximum performance of 526 Mflops is attained for a 170 grid on 121 processors, at an 
efficiency of 74%.
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7 Discussion, summary, and conclusions 

Three methods have been investigated for solving ADI-type problems on a MIMD dis-
tributed memory parallel computer. The most efficient uses the Bruno-Cappello multi-
cell decomposition, which automatically ensures a near-perfect load balance and is easily 
amenable to overlap of computations and communications —the most important source 
of reduction of parallel overhead. It also sends the smallest number of messages per 
iteration, which minimizes communication cost due to high latency, and allows high com-
putational efficiency on individual processors. Solution of the three-dimensional unsteady 
heat equation in curvilinear coordinates shows good scalability, and performance figures 
of up to 526 Mflops (double precision) on 121 processors of the Intel iPSC/860 for a large 
enough grid, even though only 150 floating point operations per grid point are carried 
out per iteration. The current implementation in C has been extended to include more 
complex boundary conditions (e.g. adiabatic wall, prescribed time-varying wall tempera-
ture or heat flux, wrap-around C-grid, etc.), and it was found that the use of high-level 
data structures kept the programming complexity as low as that of the static or dynamic 
block-Cartesian decompositions. 

The multi-cell method is expected to offer an even larger relative benefit on the new 
generation of ring-, mesh- and torus-connected MIMD computers, since their connectivity 
is less than that of a hypercube, which means that communication distances will increase. 
Contention-free implementation of the dynamic block-Cartesian decomposition is virtually 
impossible on these machines, and the static block-Cartesian decomposition will suffer due 
to increased lengths of message paths of non-overlapped communications. 
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Figure 1: Storage of slice variable in terms of piles of data 
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Figure 2: Exchanging piles of data during change of decomposition 

Figure 3: Neighbors of a cell on processor 0
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I	 np2 iFp 
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np,storage	 +2)
	

n	 + 2)	 y'i	 + 2)

Table 1: Storage and communication for all three decompositions 

Number of processors 
Grid 1	 2	 4	 8	 16 32 64 128 
48x48x24 1.00	 0.53	 0.50	 0.28	 0.20 0.15 .091 .066 

2.94	 3.12	 5.75	 6.55	 9.22 14.8 17.2 24.7 Mflops 
96x96x48 0.24 0.25 0.17 0.13 

11.4 23.4 31.3 49.0 Mflops 
192x192x96 0.22 0.19 

41.5 71.8 
I 

Mflops 

Table 2: Parallel performance of static block-Cartesian decomposition 

Number of processors 
Grid 1	 2	 4	 8	 16	 32 64 128  
48x48x24 1.00	 0.83	 0.72	 0.58	 0.44	 0.27 

2.94	 4.87	 8.43	 13.7	 20.8	 25.2 Mflops 
96x96x48 0.69	 0.60	 0.49 0.29 

16.3	 28.1	 46.0 55.3 Mflops 
192x192x96 0.47 0.28 

89.0 104.	 Mflops 

Table 3: Parallel performance of dynamic block-Cartesian decomposition
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Number of processors 
Grid 1	 4	 16	 64  
48x48x24 1.00	 0.94	 0.60	 0.23 

2.94	 11.0	 28.0	 42.9 MIlops 
96x96x48 0.85	 0.54 

40.2	 101. Mflops 
192x192x96 0.77 

144. Mflops 

Table 4: Parallel performance of Bruno-Cappello decomposition 

Number of processors 
Grid 1	 4 9 16 25 36 49 64 81 100 121 
36 3 1.00	 0.88 0.76 0.67 0.53 0.43 0.34 0.30 0.23 0.18 0.16 

__ 5.91	 20.7 40.3 63.2 77.6 92.3 99.3 112. 109. 109. 114. Mflops 
56 0.89 0.83 0.74 0.70 0.63 0.56 0.52 0.44 0.37 0.32 

_ 21.1 44.3 70.4 103. 135. 162.195.209.217.232.Mflops 
743 0.86 0.82 0.76 0.72 0.66 0.63 0.57 0.50 0.45 

___ 45.6 77.6 112. 153. 191. 240. 271. 294. 325. Mflops 
89T_ 0.80 0.76 0.72 0.68 0.64 0.59 0.55 

_ 78.2 118. 161. 208. 258. 307. 350. 390. Mflops 
102 0.80 0.78 0.73 0.72 0.66 0.63 0.55 

_ 118. 165. 211. 273. 318. 375. 394. Mflops 
113,T- 0.76 0.72 0.71 0.65 0.64 

_____ 166. 221. 272. 339. 382. 455. Mflops 
124 0.67 0.75 0.71 0.69 0.66 

196. 282. 339. 410. 474. Mflops 
138 0.75 0.74 0.70 0.69 

_____ 282. 354. 415. 494. Mflops 
149 0.72 0.71 0.70 

_ 347. 421. 500. Mflops 
160 0.74 0.71 

______ 438. 508. Mflops 
170 0.74 

526. Mflops

Table 5: Parallel performance of Bruno-Cappello decomposition for curvilinear case 
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