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Abstract. The evolution of three-dimensional disturbances in an incompressible three-

dimensional stagnation-point flow in an inviscid fluid is investigated. Since it is not possible to

apply classical normal mode analysis to the disturbance equations for the fully three-dimensional

stagnation-point flow to obtain solutions, an initial-value problem is solved instead. The evolution

of the disturbances provide the necessary information to determine stability and indeed the com-

plete transient as well. It is found that when considering the disturbance energy, the planar

stagnation-point flow, which is independent of one of the transverse coordinates, represents a neu-

trally stable flow whereas the fully three-dimensional flow is either stable or unstable, depending

on whether the flow is away from or towards the stagnation point in the transverse direction that is

neglected in the plaaaar stagnation point.
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1. Introduction.

Previous analytical work investigating the stability of planar stagnation-point flows has con-

centrated on the mathematical simplification provided by classical mode analysis of streamwise dis-

turbances. Wilson and Gladwell (1978) have shown that incompressible planar stagnation flow is

always stable to three-dimensional normal mode self-similar disturbances that decay exponentially

outside of the viscous boundary layer. Lyell and Huerre (1985) re-examined the planar stagnation

flow problem by using the same class of disturbances and verified the results of Wilson and

Gladwell as well as characterized the other stable eigenvalue branches by showing that, after the

initial branch found by Wilson and Gladwell, the other branches come in pairs. In addition, by a

nonlinear analysis using a Galerkin method, these authors indicated that this same flow is unstable

for disturbances of sufficiently high amplitude. On the other hand, a numerical study by Spalart

(1989) found no such instability suggesting that this was not the case. Brattkus and Davis (1991)

showed that the normal mode self-similar disturbances were the least stable of the class of distur-

bances that have a power like behaviour in the downstream coordinate.

Lasseigne and Jackson (1992) allowed for density variations induced by a temperature

difference between the freestream and the plate and determined that the stagnation flow remained

stable to small streamwise disturbances regardless of the plate temperature. The effect of cooling

the plate was to decrease the decay rate (less stable) of the small wavelength disturbances while

increasing the decay rate (more stable) of the moderate wavelengths. Again, only three-dimensional

normal mode self-similar disturbances that decay exponentially outside of the viscous boundary

layer were considered. Studies dealing with the swept attachment line also concentrated on stream-

wise normal mode linear disturbances. Hall, Malik and Poll (1984) determined that a region of

instability (in frequency-wave number space) associated with increasing crossflow exists. In

independent investigations Kazakov (1991) and Lasseigne, Jackson and Hu (1992) determined the

effects of surface temperature variations on this region of instability; the latter investigation also

allowed for the effects of suction or blowing at the surface.

It is not possible to analyze the stability of the fully three-dimensional stagnation-point flow

using normal mode streamwise disturbances since the disturbance equations do not admit this class

of disturbances as an eigenvalue problem. Therefore, the approach taken in this investigation is

different than that of previous investigations. A more general initial value problem is solved using

the methodology developed in Criminale and Drazin (1990) and has its origins from the work of

Kelvin (1887) and Orr (1907a,b). The disturbances are taken to be initially bounded in all direc-

tions and the evolution of initial conditions is determined analytically and in closed form. By con-

centrating on the mean flow subject to disturbances in an inviscid fluid, the fully three-dimensional

stagnation-point flow can be solved with the planar stagnation-point flow as a special case.

The method of analysis utilizes a moving coordinate transformation that allows for easy

integration (in time) of the individual vorticity components. Then, the double Fourier transform in

the new transverse coordinates is used to reduce the mathematical problem to the solution of ordi-

nary differential equations in which time appears strictly as a parameter. Thus, a completely analyt-

ical solution is found to the initial value problem describing the evolution of three-dimensional dis-

turbances in three-dimensional stagnation-point flow in an inviscid fluid. The time evolution of a
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singleFouriermodein whichthedisturbanceis periodicin thetransversedirectionsis investigated
in detailaswell astheevolutionof aninitially localizeddisturbance.In bothcases,theevolution
of thetotalenergyof thedisturbanceis usedto illustratethe importanceof thetransient.Kelvin
(1887)andOrr (1907a,b)haveshownfor differentflowconfigurationsthattherecanbegrowthin
the perturbationenergyevenwhenthe classicalmodeanalysisshowsthat theflow is stablefor
longtimes.

Farrell (1989) applied this approachto two-dimensionaldisturbanceswithin a two-
dimensionalcounterflowasa goodapproximationto the local flow in regionsof confluenceand
diffluence.It wasdeterminedthaiplanewavedisturbanceswithdependencein thetransversecoor-
dinateandindependentof theothercoordinatehaveenergythatgrowsexponentiallyin time.Plane
wavedisturbanceswith dependencein bothcoordinatesexperiencean initial exponentialgrowth,
buteventuallydecayastimeprogresses.Disturbanceswith finitewavetrainsthatwerenotspatially
symmetricwere shownto be stablebut thesedisturbancesalsoexperiencedan initial transient
growthin energywith theenergyasymptoticallyapproachinga constantamplitude.Symmetric
finitewavetraindisturbanceswereshownto notexperiencetheinitial transientgrowthandto have
energyconstantin time.Thiswasseento occurin bothregionsof confluenceanddiffluence.

Thegoverningequationsfor thethree-dimensionalstagnation-pointflow, themovingcoordi-
natetransformationandthe lineardisturbanceequationsarepresentedwith thedisturbanceequa-
tionssolvedby theuseof Fouriertransformsin thetransversecoordinates.Selectedresultsfor the
evolutionof a singleFouriermodearegivenin Section3 and,in Section4, resultspertainingto
thetimeevolutionof a finitewavetraindescribedby aninitiallyGaussianprofilearepresented.In
Section5, a constantpressureboundaryconditionisconsideredasanaltemativeto thezeronormal
velocitycondition.Section6 containsa discussionon theeffectsof backgroundrotationandparti-
clepaths.Conclusionsaregivenin Section7.

2.ProblemStatementand BasicEquations.

The problemunder investigationis that of linearizeddisturbancesin a three-dimensional
stagnation-pointflow.Thebasicflow is givennondimensionallyby

U =x, V =-(l+_,)y, W =_,z, (1)

where X is a measure of three-dimensionality. For k = 0 the flow is a two-dimensional stagnation-

point flow; for _ = 1 the flow is axisymmetric; for -0.4294 < L < 0 the flow corresponds to two

symmetrically displaced protuberances (Davey, 1961) displayed in Figure I. For X < 0, it is

important to observe that the flow is toward the stagnation point in the z-direction and away from

the stagnation point in the x-direction. In addition, Davey has shown that separation occurs at

X=-0.4294, reversed flow exists for-1 < X <-0.4294, and no solutions are possible for

_,<-1.

The nondimensional linearized equations for small disturbances are written as

ux + Vy + w_ =0 (2a)
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ut + X Ux - (l +L) Y Uy + LZ Uz + u =-px (2b)

vt + x vx - (l+_,)y vy + _,z vz - (l+_,)v =-py (2c)

wt +x wx - (l+L)y wy +)_z Wz + kw =-Pz (2d)

where u, v ,w and p are the velocity and pressure perturbations, respectively. The appropriate

boundary conditions require that all disturbance quantities vanish as y --4 ,,o and the normal velo-

city v is zero on the wall. In addition, initial conditions consistent with the boundary conditions

must be supplied.

The above equations can be recast in terms of the vorticity components to_, toy, toz in the

x,y, z directions and are

D toy D toz
Dtox =tox _ =-(l+_)toy, -- =)_toz, (3)

Dt ' Dt Dt

where D/Dt is the material derivative defined by

D() = ()t + x ()x - (l+L)y ()y + Lz ()z •
Dt

(4)

In general, only two vorticity components can be specified at time t = 0; the third component is

found by appealing to the equation of conservation of vorticity, given by

_tox _toy _toz

+ + = o. (5)

In this study, the initial profiles for the vorticity components to_, and toz are specified, and the

above equation is used to determine toy. Once the vorticity has been determined from (3), the v

velocity component is found from the following relationship

E)to_ 3to_
V 2 v - (6)

/)x 0z

where V 2 is the three-dimensional Laplace operator. The other velocity components are determined

by appealing to the vorticity relations together with the continuity equation, yielding:

V22 u = 0to--z-y- - _2--L-v (7)
Oz 0x by

V 2 W ---- OtoY C)2V (8)

3x 3y Oz

where V 2 is the two-dimensional Laplace operator in the x -z plane.
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By followingCriminaleand Drazin(1990),an analyticalsolutionis readilyobtainedif a
changefrom anEulerianto amovingcoordinatesystemis made.Themovingcoordinatetransfor-
mation

= x e -t, rl = y e (l+_')t, _ = z e -_t, T = t (9)

is chosen so that the system of equations (3) have coefficients that are functions of time only and

the material derivative (4) becomes

D() _ 3() (I0)
Dt 3T "

The notable feature of this transformation is that the partial differential equations for the individual

vorticity components (3) can then be immediately integrated in time and the solutions are

tox = to°er , toy = oOe-(l+J_)T , toz = toz°e_'r , (1 1)

where the superscript 0 denotes the specified values at T = 0. Once the initial values to° and too

have been made, the initial value of too is determined from the conservation of vorticity (equation

(5)). The equation for the v velocity component in the moving coordinates is

Av = e -°-x)r 3to° e °-_)r 3to° (12)

where A is the Laplace operator in the moving coordinates, namely

A = e- 2 T 32 32 32+ e2(l+k) T _ + e -2_,T

•
(13)

It is noted that the time dependence in equation (12) appears as a parameter only and hence finding

a solution to (12) is essentially a spatial problem. The equations for the other two velocity com-

ponents in the moving coordinate system are

A2U = e -(I+2x)T 3toO -- exr 32V (14)

'

A2w =-e -(2+;_)T _)too _ e T 3211

3;oq '
(15)

where

A2 e- 2 T 32 32= -- + e -2xT _ (16)
3_ 2 3_ 2

is the two-dimensional Laplace operator in the moving system.

It is now assumed that Fourier transforms may be taken in the _ and _ directions, which

implies that the disturbances are bounded in these directions. The double Fourier transform is

defined by
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a(a,-q,y, T) = II u(_'rl'_'T)ei(_+_';)d_d_'

etc. for _, _,/_, 6) with the inversion given by

1 _ (_ +

u(_,rl, _,T) = (2-)2:Sa(ot, rI,y,T)e-i r;)dotd7.

The transforms of the relevant equations are

e 2(l+_)r 02_ _20 =-i _6)Oe-(i-k)T
0rl 2

with

(17)

06)° iot6)o + iy6)Oz,
On

(18)

+ i 76)°e(l-z)r, (19)

t2 = -_ i_16)°y e-(l+2_OT - i _-_ ,

(2O)

v_ = --_- -i - i y-_-- ,

_2 = _2e-2T + _2e-2_.T .

(21)

(22)

The initial value for the last vorticity component is found by transforming equation (19) and

integrating in the q-direction:

6)° = ( i Ot_x + i _f_z ) _(_ - oq_)_( y - Yo)[ H(1"1- yo)-I ] (26)

since (x, y, z) = (_, 11,_) at T = O. In Fourier space,

(6)0,6) °) = (a x ,az ) 8((X-_o) _i(T-_to) _(rl-Yo) • (25)

The evolution of a single Fourier mode can be studied by choosing the initial conditions for

the vorticity components o_° and m° to be

o ¢oo) (_2x ,_z )e-/(%[+_'°O_i(rl Yo) (24)(fO x , _--

The equation for _ is a second order ordinary differential equation in 1"1with time dependent

coefficients, and since _2 is just the Fourier transform of A2, the velocity components _ and • are

determined directly from the algebraic relations provided by transforming equations (14) and (15).

(23)
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whereH(rl) is the step function. The constant of integration hag been chosen so that all of the

velocity components vanish as rl -_ oo.

With the vorticity components tmown, the differential equation for f is integrated, and

¢=-- ia__ze -°÷x)r-iYf_.e -°÷_x)r 8(_-%)8(y-%)
2_

[ -t_e-('+x_rln-yot -_e a+x'r(n+Vo) ]x e -e " (27)

where _ is as defined earlier. The solution decays as rl --+ _ and is zero at the wall. Once the

Iransform is inverted, the velocity component is given by

1 i ao_2_ e -2r - i_,0_2, e -2xr e
v (_,n. _, r) - 2 (2_)2%

X Ie-%e a+x'rlq-Y°l -e -%e-l''_'_r(rl+y°)] (28)

where

i_ = o_e -2T + y2 e-2_T. (29)

The u and w components are determined directly from the earlier equations and, upon inverting

the transforms these components are found to be

[ + o°z]u(g,q,g,T)- (2_)2 _

Oto I e-3T e-(I+2X)T} e-i(%_+YoO2 (210 2 (_t(_ OtO_z - ]/0 f_x

× [sign(Tl_Yo)e -%e-'l÷_'rlrl-y°l _e-%e-a+x'r(n+Yo)]

,j

(30)

and

w({,n, _, T) =
%

"o{ }2 (2_)20q_ °_° f_z e-( 2+x)T _ 'yof_x e -3xT e-i(_[+'toO

x [sign(rl_Yo)e-%e-°+_'rln-YO'_e-%e-"+_'rtn+yo'] . (31)

3. Single Mode: Infinite Wave Train.

In this section we present selected results for the single mode solutions given above for u, v,

and w. We first note that the solutions are a linear combination of f_,, and _z. Therefore, there
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existstwomodes,definedasfollows:

Mode I : f_x = 0, fiz=l

Mode II : f_x = 1, f2z = 0

The results for Mode I are shown in Figure 2 for three values of the wavenumber in the z-

direction (_'0 = 0, 70 = 0. I, and 70 = 1.0) and a single value of the wavenumber in the x-direction

(oro = 1.0). Plotted in this figure is the maximum amplitude of the velocity components l u l max,

I v Imax, and Iw [ max as a function of time. The maximum in the u and w velocities are at the

wall, while the maximum in the v velocity is in the interior for all times since it is required that v

vanish at the wall. In each sub-figure, four values of the three-dimensionality constant were

chosen: a) axisymmetric flow, Z. = 1 (shown in the figures as a small-dashed curve), b) L = 0.5, c)

planar stagnation-point flow, )_ = 0 (shown in the figures as a large-dashed curve), and d)

_. = -0.2.

Included in these figures are the results for the special cases of two-dimensional disturbances

in a two-dimensional flow 0'o = 0, _. = 0), two-dimensional disturbances in a three-dimensional

flow (70 = 0, L, 0), and three-dimensional disturbances in a two-dimensional flow (70 * 0, Z. = 0).

As seen from the figures, all three components of the flow exhibit exponential decay in the

long time solution for the response of this mode. The results for the u velocity show that the decay

rate is independent of the variable L and of the wave number in the z direction. Since the analytic

solution for the velocities is known, this information can be found by determining the behaviour of

equation (30) as T --4 ,,_ and is

u (_, O, _, T) = 1 e_r e-i (Cto[+'to;) (32)
(2 _)2

wlaere the first term of (30) is dominant when _. < 1, and there is a balance between the first and

second terms for the axisymmetric case L = 1 that does not, however, change the limit. For the

long time behaviour of the v component of the velocity the maximum must be determined. The

maximum is found to always occurs at 1"1= Yo so that

i o_o y 0 e- (3+_.)T ev (_, Y0, _, T) - -i (_ +'to;) (33)
(2_) 2

with the axisymmetric case again being a special limit that does affect the amplitude in the above

equation but not the decay rate. The asymptotic behaviour for the w component of the velocity is

also determined analytically. From equation (3 l) it is found that

w(_,0,_,T) = ct°_'°Y° e-C3__)Te -iC%_+'/°_) (34)
(2 r0 2 IYol

The dependence of the decay rate of the v and w components on the three-dimensionality parame-

ter _. is clearly seen in Figure 2.



-8-

Althoughtheaboveanalyticformsappearto be relativelysimple,theuseof thetransformed
variables4, _ andrl tendto hidesomerathersignificantchangesin thespatialstructureof thedis-
turbances.For %> 0 thereis a stretchingof theinitialFouriermodeform in boththex-direction

and the z-direction. For the axisymmetric case, this stretching occurs at an equal rate in both direc-

tions. For the planar stagnation-point flow % = 0 there is no stretching of the disturbance in the z

direction, and for % < 0 where the mean flow is towards the stagnation point in the z-direction,

there is an actual contraction of the initial Fourier mode form in the z-direction. In the y direction,

it is noted that although the maximum in v velocity is at a fixed value of 1"1,this implies that this

maximum approaches the wall exponentially fast when the problem is convened to the physical

spatial variables, that is the inverse of (9).

Although the long time behaviour of the disturbances is of course very _mportant, equally

important is the transient evolution since it is possible for there to be significant initial growth (or

perhaps a long time persistence) of the disturbance quantities before the inevitable exponential

decay. By examining the results of Figure 2, it is seen that the initial response to a Mode I distur-

bance is typically a linear decay in time. The initial linear decay rate depends on the value of the

three-dimensionatity parameter % with % < 0 decaying at the slowest rate. The % dependence of this

initial decay rate is strongest for smaller wave numbers in the z-direction.

The results for the single mode response to a Mode II disturbance are shown in Figure 3. A

significant difference from the Mode I results is immediately noticeable. Analytically the long-time

limits are given by

u(_,O,_,T) - °t°)'°Y° e -2(1+_')T e -i(%_+7°g), (35)
(2 _)21 yo I

i Y0Yo e_(l+3%)T e-i (Cto_,+7og) (36)
v(_,yo,_,T) = (2r0 2

and

w(_,O,_,T) = 1 e -xr e -I(_+_'°;), (37)
(2 rO2

as T --> ,,_. It is seen from Figure 3 that the u and v components of velocity decay exponentially

for all % while the w component of velocity only decays when the three-dimensionality parameter

% is greater than zero. This value of % corresponds to a stretching of the original disturbance in the

z direction. However, for the planar stagnation-point flow where % = 0 the w component

approaches a constant independent of the initial wave number in the x and z directions. For the

case where there is mean flow towards the stagnation point along the z-direction (% < 0), the w

component grows exponentially. It is seen that the initial behaviour of the u and v components

also reflect this differing behaviour for the planar stagnation-point flow and the % < 0 case. It is

also true that there is initially linear growth of these components. As in the Mode I case, the

dependence of the behaviour for early time on the three-dimension_ity paranmter is strongest at

smaller wave numbers in the z-direction
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The results presented in Figures 2 and 3 give the maximum values of the velocities, but con-

sidering the severe contraction of the disturbances in the y-direction as evidenced by the movement

of the maximum in the v velocity toward the wall at an exponentially fast rate, it is perhaps more

useful to look at the growth or decay of the energy of the disturbances. For the single Fourier

mode results presented in this section, it is necessary to consider the energy per period in the _ and

directions, or equivalently the energy per period in the x and z directions. Because of the

stretching in the x-direction and the stretching or contraction (depending on the sign of )_) in the

z-direction, these results do not readily lend themselves to direct physical interpretation; however,

they do help point out the effect that the contraction has in the vertical direction y. Shown in Fig-

ure 4 is the quantity E as a function of time defined by

E(t)= 7 +lw dy

where u, v, and w are given by (28), (30), and (31). Each graph was normalized by the value at

time t = 0. The amplitudes f2._ and _z are equal in the mixed mode results. In each sub-figure,

four values of the three-dimensionality constant were chosen: a) axisymmetric flow, _. = I (shown

in the figures as a small-dashed curve), b) planar stagnation-point flow, _. = 0, c) _. =-1/3

(shown:in the figures as a large-dashed curve), and d) _. =-0.4. From these figures, Mode II is

seen to represent disturbances that may grow in energy as it also represented disturbances with

growth in the maximum values of the velocities. However, it is noted that although the maximum

in the velocities can grow for any X < 0, the energy per period grows only for _. < - 1 / 3. This

phenomenon is directly related to the contraction in the y direction. Very little dependence on the

wave number in the z direction can be detected which is consistent with the restilts of Figures 2

and 3. The energy of Mode I is dominated by the u and v velocities which show little depen-

dence on To, and the Mode II energy is dominated by the w velocity which also shows little depen-

dence onto.

4. Finite Wave Packet.

In the previous section, the results for an initial disturbance that consisted of a single Fourier

mode ','ere presented. This disturbance has an infinite spatial profile in the x -z plane. Considering

the distortions in the x and z directions introduced by the transformed variables, there is consider-

able doubt as to the proper interpretation of the single mode results. To resolve this difficulty in

the analysis, an initial disturbance that is localized in space is chosen?The initial vorticity profile is

taken as a Gaussian. This disturbance is initially symmetric in the x -z plane and, since the invis-

cid problem is being investigated, a Gaussian profile in the y direction is also chosen and all boun-

dary conditions can still be satisfied.

The analysis proceeds by replacing (24) with

(coO, coo) = (_,, 'I2z ) e 40" e 413 (39)
(:2rt c 213)TM
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Ill Fourier space,

(&[ 6)o)= 4=o(.O, ,_: ) e_O(_2+.d) e 4_ (40)
(2=3a' 13)ij4

where the constanl is chosen such that the integral of file square of tile vorticity over the domain is

a constant for each choice of o and 13.

The above initial conditions can be substituted directly inlo equations (19) and (20) which

can then be solved for f and all)° or £ileprevious results for a delta function initial condition in the

y direction can be integrated over the dummy variable Yo. Either way, the transform of the vorti-

city ¢o)° and the v component of velocity are given by

_y = -(i o_.O, + i 7f2_) (2 rtao213)l/4 e- L 2 lsj

(42)

The transforms of the u and w components are found directly from equations (21) and (22) and all

transforms cas-t be inverted using the formula (18). The long time behaviour of _8, at the wall for

Mode II is given by

'd, (0, T) = 4_a'_t-_"_ e-O(°_2+'P)e-_'r (43)
(2 rcso213)1_4

as T --) _ which shows that the transform grows exponentially for _, negative consistent with the

results of the single mode.

In order to examine the true behaviour of the evoluiion to this initially localized disturbance,

the energy as a function of time is computed. The energy in terms of the unslretched variables is

'fSS ,E(T) = _ [u2+v we]dr dz dy . (44)

which can "also be given in terms of integrals over the Fourier transform quantities in the stretched

variables as

E(T)- e(1+x)r
871:2 I --SSQ2(12eT"_eXT'Y e('+x)r'r)a_a_aY" (45)
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where

Q2(ot, y, rl, T) = ff2+_2+ v_:2. (46)

The normalized energy of the response to a Mode II gaussian profile with I3 = 1.0 and o = 0.5 is

shown in Figure 5 for eight values of the three-dimensionality parameter _. ranging from X. = ! (the

axisymmetric case) to )v = -.4 (near separation). A number of interesting features are noticeable.

First, for the planar stagnation-point flow (k = 0), the energy approaches a constant value approxi-

mately three times the initial value. This is in agreement with the results tracking the maximum in

the velocities. The mean flowproduces a Conir:aciJon of the disturbance in the y-direction, initially

increasing the magnitude of the w velocity at the wall and initially increasing the energy of the

disturbance. However, a balance develops between the continued contraction in the 3'-direction and

the relief provided to the flow in the x-direction thereby leading to the situation ',,,here the energy

approaches a constant. This behaviour of the disturbance energy for the two-dimensional planar

counter-flow was also seen by Fan'ell (1989). The purpose of this study is to determine the effects

of the three-dimensionality of the mean flow. When these three-dimensional effects are considered

(_ * 0), it is seen thal the planar stagnation point flow represents a special case. For _. slightly

positive, there is again an initial transient growth in energy. The extra relief provided to the flow

in the z-direction means thai the balance that developed for the planar stagnation-point flow does

not develop and the energy of the disturbance eventually decays to zero. For _. sufficiently large

and positive there is no initial transient growth implying that the relief provided to the flow in the

z-direction is sufficient to prevent the the initial increase in disturbance energy. From Figure 5, il

is seen that for the special case of axisymmetric flow (X = 1), the energy undergoes an immediate

exponential decay. For )V less than zero, an unstable situation develops, and the energy of the dis-

turbance continually increases at an exponential rate owing to the contraction in both the y and z

directions which is not balanced by the relief in the x direction.

It is also interesting to examine the behaviour of the vorticity components which are given by

equation (11) in the transformed coordinates. In the physical coordinate._, the vorticity field is

undergoing a contraction in the y-direction, an expansion in the x-direction and an expansion (for

)V> 0) or a contraction (for 7v< 0) in the z-direction. The exponential time factors in equation (11)

indicate that for a Mode II disturbance vorlicity is transferred from the 3'-component to the x-

component while the transfer of vorticity between the y and z components for a Mode I distur-

bance depends on the sign of _.. By considering the response of a Mode II initial disturbance, it is

seen that in the neutrally stable case (k = 0) the decay rate of the y-vorticity component is equal to

the growth rate of the x-vorlicity component. For the stable case ()v > 0), the decay' rate bf the y-

vonicity component is greater than the growah rate of the x-vorticity component; whereas, for the

unstable case (_. < 0), the decay rate of the y-vorticity component is less than the gro_th rate of

the x-vorticity component. For the Mode I disturbance, either both components are decaying

(X < 0), or the decay, rate of the 3'-voaicity component is always greater than the growth rate of

the 2-vorticity component. Perhaps this is an indication of why it is the Mode II disturbances that

experience unstable energy growth rather than those of Mode I.
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5. Constant Pressure Boundary Condition.

One problem of interest in geophysical fluid dynamics is the case where there is a constant

pressure surface in lieu of a condition on the velocity. Such a problem has been examined by Eady

(1949), for example, where plane Couette flow is mathematically equivalent when the constant

pressure surface is used. Consider p = 0 at y = 0 rather than the v velocity. Of course the surface

y = 0 can no longer be _thought of as a solid wall. To derive an equation which governs the time

evolution of the pressure, the momentum equations (2b) and (2c) can be combined with the con-

tinuity equation (2a) in the ((, rl'-_, T) coordinate system to get

_gu e_;X r c3 (eO+3z_r 3v) (47)A2P = 2(X-1)e-T-aT +
b-ft Onog

where it is immediately seen that the axisymmetric case k = 1 is a special case. In keeping with

the previous analysis, the pressure equation is first transformed into Fourier space and then a is

eliminated by using (21), yielding

_ 27_____ Oe-2(l+Z)T 2_ 2 O-_,)r 3f
= a2 (x- 1) + 7 1)e- an

_ e_2Zr 3 (e(l+3_.)r a_'r (48)or

If the initial conditions are considered to be given by equation (24) for this problem so that only a

single Fourier mode is investigated, then fi3:_° is given by (26), while (19) can be integrated to find

f, yielding

f = A _(T)e- _-_*_')r I n-yol + A 2(T) e- _e-_ _.jr(n-yo) (49)

where

At(T) eO+_dT { }
- i _f_ e -°÷x_r - i "lf2_ e -__')r 6(o_- %)c5(¥- _o).

2_
(50)

The determination of A I(T) satisfies all of the conditions at rl = Yo and it is left to impose the con-

dition on the pressure at rl = 0 in order to determine the remaining unknown function A2(T).

Equation (48) provides the necessary information in determining A2, but it is convenient to work

with an alternate dependent variable defined by

B(T) - e (I+3"_')TOrI_----_-_(0, T) = O.e 2_.T [ A1 e -rty°e-C_'_''r - m2e _v°e-a*'r3" . (5I)

The equation for B (T) is then

dB

dT
2 ot2 (_._ 1) e -2r B = - _ (_.- 1) D e -2r
&2 _2

(52)

where
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= (i c_ x + i Y_z )8(o_- %)8('t- ?o). (53)

It is helpful to find the long time solution in order to determine the effects of the three-

dimensionality parameter )_. Since Mode II (_x = 1, _z = 0) is the more interesting initial condi-

tion, the rest of the analysis is restricted to this case with )_< 1. The long time solution for B is

determined directly from (52) or

B = Boo_ - _ (?- o_B,_)_e -20 -X)T , (54)

-f

as T ---) _ where the the proportionality to _ is explicitly given and the constant B= can be found

numerically. The behaviour of A i is determined directly from equation (50), and A 2 from equation

(51). These limits are

A i(r) - - 2 I e -xr 8(a - %)8(7 - 7o), (55)

A2(T) - I?1 ( - o_B**)e -zr 8(a - %)8(7- 70), (56)

as T _ ,,_. The long time behaviour of the velocities a, ,7, _ is found through equations (24),

(49) and (22) indicating

a (0, T) = _ (y - orBs) e -T 5(or - %) 8(7 - 7o), (57)
?-

_ (0,T) = I_1 (? - c_B**) e-_'r _t - °t°) 8(T - 7°) ' (58)

(0, T) = - _ B ,_ e-x T 8(0_ -- _,0) 8(7 -- 70),
7

(59)

as T --_ ,,_. It is seen that, for the boundary condition p = 0 on the surface y = 0, the velocity

components f and _ of Mode II are exponentially growing when the three-dimensionality parame-

ter L is negative.

6. Effects of Background Rotation; Particle Paths.

The expression used for the basic velocity and given by (1) can be modified to include effects

due to background rotation (strain). Specifically, if _o is the constant dimensional rate of rotation,

then

U =x +_oZ, V=-(l+?0y, W =_,Z-_oX, (60)

becomes the new non-dimensional representation. The process of shifting to a moving coordinate

system and solving for the perturbations as previously done can likewise be accomplished here but

with a noticeable increase in complexity. For example, the fundamental vorticity equations (3) used
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for solvingtheinitial-valueproblemareno longeruncoupledandtheneteffectis a higherorder
differentialsystem.Thus,the dynamicsis alteredto somedegree.In particular,temporaloscilla-
tionsbecomepossiblebut theoverallstabilityconclusionsremain.Thesepointscanbe illustrated
beexaminingthepathsof thematerialparticlesin thebasicflow.

TheCartesiancomponentsfor anyparticlein aLagrangianframecanbewrittenusing(60)as

dx =U =x +f_oz, (61a)
dT

dy = V =-(1 + _)y, (61b)
dT

d---Lz= w = _,z - _o x . (61c)
dT

By assuming x = Xo, Y = Yo and z = Zo at time T = 0, the solutions for (61a,b,c) are

x = xo e _T , (62a)

Y = Yo e-O +x)r , (62b)

Z =Zo exr _°x° I ear-eXr I (62c)ck

with

II 11211+_ 1+ 1-4 _'+_°2
- 2 (1 + _,)2 "

(63)

1 (1 - _.). In general, particles will move arbitrarily far
Oscillatory solutions are possible if f_o > _-

from any initial position.

Two interesting limits of (62a,b,c) are when f_o = 0 or _. = 1; _, can never be very negative

and therefore a change in the system behaviour using this parameter is not possible. In the first

instance, f_o = 0, then

x = Xo eT , Y = Yo e-O+x)r, z = zo exT. (65)

The novel feature of (65) is that these results are identical to those of (11) for the vorticity where

x,y,z are replaced by cox, COy, toz. In short, this is a unique situation where, for a three-

dimensional flow, the particle paths are synonymous with vortex lines. Extending this argument to

the f_o _ 0 case can be made by conjecture since the vorticity has not been determined under these

circumstances. There is little likelihood that the unstable aspects of the flow, however, can be

changed by a finite _2o . When _. = 1, the basic flow is axisymmetric and o = I + i _o indicating
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thatbackgroundrotationhascausedthesystemto haveinertiaandthereforeoscillationsin time.

7. Conclusions.

We have investigated the evolution of three-dimensional disturbances in a fully three-

dimensional stagnation-point flow in an inviscid fluid. It has been shown that the planar

stagnation-point flow is a special case in which the disturbance energy approaches a constant for

long time. If the flow in the second transverse coordinate is away from the stagnation point then

the flow is provided enough relief such that the disturbance energy decays after an initial trartsient

growth. As the limiting case of axisymmetric flow is approached, the disturbance energy is found

to decay without an initial transient growth. For flow towards the stagnation point in the second

transverse direction, it is found that the disturbance energy may grow exponentially thus indicating

an unstable flow configuration. These results were found by determining a closed form solution to

the initial value problem even though a classical mode analysis was not possible for the fully

three-dimensional flow.

Because of the inviscid assumption, the results for the planar stagnation-point flow cannot be

compared directly with previous work but the method used here can be extended (with consider-

ably more mathematical complexity) to the study of the inviscid mean flow subject to viscous

linear disturbances. These results can be compared with some of the previous work. However, any

results for this problem can only be suggestive in view of the fact that the basic flow is derived

from an inviscid basis.

Background rotation or strain of the field can only alter the dynamics by forcing the system

to have temporal oscillations rather than prevent instabilities. Finally, more comprehensive material

particle path information could be obtained if one allows for the velocity field to include the pertur-

bations as well as the basic flow. Pursuit of this information will involve three-dimensional coupled

nonlinear, non-autonomous differential equations.
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Figure 1. Schematic three-dimensional stagnation point flow.
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