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NOMENCLATURE

a

axis(M)

cab
c2
Eq(a)

fx
pol y_n

polyn

R n

S(x)
sat(x, a)

X T

X-1

Jc

_c

z(m)

Xa

O_ab

5i

VJabc

SFm(x)

SFm(O)
SFm(1)

{SFm(x)}k

VFm(va)

YFm(O)
VFm(6i)

VFm(va)i

MFm(X)

MFm(O)

MFm(I)

right-handed orthonormal axis system a

axis operator; see equation (4-5)

3 x 3 right-handed direction cosine matrix, rotation matrix from b to "_

binomial coefficient, namely kl/[i!(k- i)!]

elementary (Euler) rotation about axis q through angle a

partial derivative of f with respect to x

polynomial of degree n with constant coefficients

polynomial of degree n with possibly variable coefficients

n-tuples of real numbers

cross-product operator; see equation (3-3)

saturation at a for Ix] > a

transpose of matrix X

inverse of matrix X

time derivative of x

estimate of x

vector x

rn th time derivative of x

column matrix of coordinates of £" with respect to a

Euler angles of axis _ relative to axis b

unit column matrix with 1 in location i
4....4.

c-coordinates of angular velocity of '--*a relative to b

Scalar Forms

scalar form of x to order m, namely (x, 5, x (2)

zero scalar form, ( 0,..., 0 )

unit scalar form, ( 1, 0,..., 0 )

abbreviation for ( x, a, 0, ..., 0 )

value in the k th location, namely x (k)

,..., x(m) )

Vector Forms

( °IMP)vector form of g in a to order m, namely Va, Va, • • •, _,a

zero vector form, namely (0,..., 0 )

unit vector form, namely ( 5i, 0,..., 0 )

scalar form of the i *h component, namely (Vai, iJai,..., v(om) )

Matrix Forms

matrix form of X to order m, namely ( X, X',..., X (m))

zero matrix form, namely (0,..., O)

unit matrix form, namely ( I, 0,..., 0 )

V



MF_ matrix form of rotation matrix Cab, namely ( Cab, Cab,..., C(r_ ) )

REm

PF_

It

cs
f[sFm( )]
f- [sFm(z)]

ta [SFm(x), r]
MF _.- RF

MF-._ RF

MF_AFq

MF-.<AFq
MF >.-PF

MF-< PF

XY >.-CY

XY -.<CY

XY >.-SP

XY -.<SP

Rotational Forms

rotational form of _' relative to b to order m, namely
,(m-l) '_

Cab, Waba, Waba, " • • , "aba /

identity rotation form, namely ( I, 0,..., 0 )

Euler angle form with sequence q of _ relative to b to order m

Euler parameter form of a relative to b to order m

Functions of Dynamic Forms

product operator

control algorithm for pure feedback systems

scalar form of f(x), namely (f(x),](x),...,f(m)(x))

scalar form of the inverse function f-l(x) of f(x)

algorithm computing the output of a dynamic system

algorithm computing the control of a dynamic system

first m + 1 terms of the Taylor series of x(t + T)

transformation taking matrix forms to rotational forms

transformation

transformation

transformation

transformation

transformation

transformation

transformation

transformation

transformation

taking

taking

taking

taking

rotational forms to matrix forms

matrix forms to Euler angle forms in sequence q

Euler angle forms in sequence q to matrix forms

matrix forms to Euler parameter forms

taking Euler parameter forms to matrix forms

from Cartesian to cylindrical coordinates

from cylindrical to Cartesian coordinates

from Cartesian to spherical coordinates

from spherical to Cartesian coordinates

vi



SUMMARY

The formalism of dynamic forms is developed as a means for organizing and systematizing the

design of control systems. The formalism allows the designer to easily compute derivatives to various

orders of large composite functions that occur in flight-control design. Such functions involve many

function-of-a-function calls that may be nested to many levels. The component functions may be

multiaxis, nonlinear, and they may include rotation transformations.

A dynamic form is defined as a variable together with its time derivatives up to some fixed but

arbitrary order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler

angles, or Euler parameters. Algorithms for standard elementary functions and operations of scalar

dynamic forms are developed first. Then vector and matrix operations and transformations between

parameterization of rotations are developed in the next level in the hierarchy. Commonly occurring

algorithms in control-system design, including inversion of pure feedback systems, are developed in the

third level.

A large-angle, three-axis attitude servo and other examples are included to illustrate the effectiveness

of the developed formalism. All algorithms have been implemented in FORTRAN code. Practical

experience shows that the proposed formalism may significantly improve the productivity of the design

and coding process.

1 INTRODUCTION

This report presents a new procedure and a collection of algorithms for the solution of several

problems associated with the design of automatic control systems. Our paradigm will be aircraft flight

control, but the methods apply in other domains such as spacecraft attitude control, robotics, and process

control. For flight-control design purposes, an aircraft may often be adequately modeled as a rigid body

with force and moment generation that depends on the state of the motion of the rigid body, the controls,

and wind. The design of the corresponding fully automatic flight-control system with large operating

envelopes may be difficult for several reasons:

For all but very restricted small-angle maneuvers, both the fact that nonlinearities are associated

with rigid rotation and the fact that the space of rotations is not flat become significant. Rigid body

attitude is typically represented by direction cosine matrices or Euler angles in some sequence, or, in

the case of spacecraft, Euler parameters (ref. 1). The link between the time derivatives of these attitude

variables and the angular velocity and its derivatives is nonlinear and may even become singular. Thus,

rotations introduce nonlinearities and singularity into the state equation. In order to avoid singularities

it may be desirable to change from one representation to another at points along a flight maneuver. For

example, the usual yaw-pitch-roll sequence becomes singular (gimbal lock) for 90 degrees of pitch, and

in the vicinity of this condition it may be desirable to change to the yaw-pitch-yaw sequence. Each

such change in representation entails a corresponding change in the state equations. The control system

must be designed to operate in the various state space representations (coordinatizations), and the switch

from one coordinate system to another must be made smoothly. Smooth patching of coordinates requires

various-order derivatives of the right-hand side of the state equation (system function).



In manycasesthe nonlinearityof theforce andmomentgeneratorsmaynot be ignored,especially
for powered-lift aircraft that havestrongnonlinearandrathercomplex interactionbetweenpowerand
aerodynamics.A typical algorithm for the computationof the total force and momentacting on the
aircraftmay containmorethan4,000linesof FORTRANcode(ref. 2). The input to thealgorithm is at
least19-dimensional,consistingof the state,which is at least12-dimensional,plus the controls,which
areat least4-dimensional,pluswind; theoutput is 6-dimensional,consistingof the3-dimensionalforce
andmomentvectors.Insidethealgorithm,the input flows throughmanysuccessivefunctionssothatthe
analytic form of themultivariablefunction representedby thealgorithmis a deepnestingof elementary
functionsand table interpolations.The depthof nesting(e.g., squareof sine of squareroot of sum of
squaresof... etc.) easilyexceedsdozensof levels. Consequentlythe analyticcomputationof sucha
simple objectasthe overall 6 × 19 input-output Jacobian matrix may be a formidable task. But such

mathematical objects are needed if the designer is to improve system performance by taking advantage
of the information contained in the force and moment model.

The number of controls often exceeds the basic four. In addition to the three moment and one

throttle controls, there may be controls for directing thrust (such as a one- or two-degree-of-freedom

nozzle), direct lift (such as a spoiler), side force, and flaps. The set of all the controls may be redundant

in the sense that many combinations of controls produce the same total force and moment on the aircraft.

This redundancy may be resolved advantageously by partitioning the set into two sets: the nonredundant

set of active controls and the set of parametric controls. The active controls are manipulated by the

regulator; the parametric controls are manipulated by a configuration-management system so as to

maintain selected control margins for the active controls as well as to maintain certain functions of the

state (such as the angle of attack) within the assigned limits (ref. 3). Each such partition represents

a particular control mode. Typically there are several control modes, and there may also be several

tracking modes. Each such mode is associated with a particular functional dependence of the output on

the state. For example, near hover, the output may be the three Cartesian coordinates of the velocity

vector; at a higher speed, the output may be defined as cylindrical coordinates of the velocity, namely,

horizontal speed, heading, and vertical speed; at a still higher speed, the output selected for tracking

may be the spherical coordinates of the velocity, namely, airspeed, glide-path angle, and heading angle.

Each combination of control and tracking modes defines an operating mode. Thus, near hover, the

nozzle may be an active control, and the pitch angle may be programmed independently. At high

speed, the nozzle may be fixed, that is, programmed independently, and regulation is then achieved

indirectly through the pitch angle. Each operating mode is a separate control problem with its particular

control variables, output variables, and, possibly, state variables and state equation. The control-system

design must incorporate many such operating modes and provide smooth intermode transitions. Smooth

patching of modes requires various-order derivatives of the system function.

The flight-control system as considered in this report includes the functions of configuration man-

agement, in which operating modes and reconfiguration commands are computed; guidance, in which

flyable reference trajectories linking way points given by, say, air traffic control, are generated; and

regulation, which ensures tracking of reference trajectories in spite of unavoidable uncertainties and

approximations in system modeling. If the operating envelope is small enough relative to system non-

linearity, then linear design methods based on a single Jacobian matrix (perturbation model) of the

system function, evaluated at a single operating point (trim point), are adequate for the purposes of

regulator design. In such a case, the Jacobian matrix may be computed numerically by perturbing each

2



input variable (ref. 4). For largerenvelopes,robust single-pointlinear designs(ref. 5) basedon one
representativevalueof the Jacobianmatrix maybeadequatein spiteof actualvariationsof the matrix.
Sincetheoperatingpoint is now a variable,feed-forwardsignals(particularsolutions)may haveto be
providedto reducetrackingerrorandunloadthefeedback(ref. 6). Nonlinearmethodsbecomeessential
for the designof flight-control systemswith large operatingenvelopes.Two situationsarise: If the
inner-loopdynamics(attitudecontrol) canbemadesufficiently fast relativeto the outer-loopdynamics
(trajectorycontrol), then thenonlinearityof theforce andmomentfunction maybe removedby means
of numericinversion(refs.7-13). Thenonlinearcontrol theorybasedondifferential geometry(refs. 14
and 15) providesdesign techniqueswhen sucha separationis impossible. One fruitful techniqueis
basedon a coordinatechangeof stateandcontrol in order to simplify the form of the stateequation.
In certainpracticalcases,a coordinatechangemay suppressthe nonlinearity to the extent that linear
designtechniquesbecomeapplicablein the new coordinates(ref. 16). Techniquesarealso available
for the generationof the nonlinearanalogsof the particular solution (refs. 17 and 18). The practical
drawbackof such techniques,for the caseof flight control, is that they havea voraciousappetitefor
various-orderderivativesof theforce and momentfunctions.

Thus, the designof large-envelopeflight-control systemsis difficult becausethe state spaceis
not flat, the force and momentfunction is big andcomplicated,and many operatingmodesmust be
considered.Thedifficulty canbe further tracedto the needfor high-orderdifferentiationof the system
function. Thereare threedifferentiationtechniques:hand,symbolic,and automatic.Handdifferentia-
tion andcoding is very tediousandhighly unreliablefor the sizeof problemsbeingconsidered.The
other two alternativesaremuchmoreappealing.The symbolicapproachwould be to machinetranslate
the, say,FORTRANcodefor the systemfunction into the appropriatelanguage(suchasMACSYMA,
MATHEMATICA, or MAPLE) within which differentiationis defined,andthenproceedwith thenon-
linear designtechniquesemployingthe derivatives. Applicationsof this approachto relatively small
systemshavebeensuccessful(ref. 19). However,for largersystems(4,000linesof FORTRAN) involv-
ing deeplynestedfunctions,symbolicmethodsmaybeslowandmayoftenproducelarge,unmanageable
expressions(ref. 20).

The remainingchoicefor the computationof derivatives, automatic differentiation, is based on the

fact (known since Leibnitz) that Taylor series, which carry derivatives as coefficients, can be propagated

through an arbitrary sequence of elementary functions without any truncation error. Thus, automatic

differentiation does not suffer from the rapid-chain-rule fanout of terms that plagues the symbolic dif-

ferentiation. Furthermore, machine translation into an automatic-differentiation language is as practical

as it is for symbolic languages (ref. 21).

The theory of dynamic forms (ref. 22) described in the present report may be considered to be a

particular example of automatic differentiation and a basis for a formal language for the computer-aided

design of automatic control systems.

A dynamic form is defined as a variable together with its time derivatives up to some fixed, but

arbitrary, order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler angles,

or Euler parameters. Most of the report is devoted to the translation of a set of elementary functions and

operations into corresponding functions and operations on dynamic forms. The set is rich enough so

that typical system functions occurring in flight control may be assembled from the members of this set.

Whereas many examples are provided to demonstrate the application of the methodology to automatic



control, the emphasisin the presentreport is on the formalismOf dynamicforms. The emphasisin
futurereportswill beon theapplicationof dynamicforms andon thereformulationof controlproblems
in termsof dynamicforms.

2 SCALAR FORMS

Mathematical models of practical dynamic processes such as an aircraft frequently contain functions

of functions to many levels. A small example of a typical case is shown in figure 2.1. In the figure the

output y is related to the input x = (Xl,X2,X3) by a function f, which is built up from the elementary

functions such as trig functions, powers, roots, exponentials, and, of course, addition, subtraction,

multiplication, and division. The function f so constructed then becomes a block in a higher level

function and so on until the final level, say w = F(u), is reached. Implementation of such a function F

as an algorithm on the computer is routine, even though in practice the algorithm may easily take

4,000 lines of FORTRAN. On the other hand, the symbolic expression of F becomes unwieldy. Even

the simple example fragment f of the complete algorithm F is beginning to look complicated.

y = f(Xl,X2, X3) --- f5{f3(x3) * f4[fl(Xl) q- f2(x2)]}/f3(x3) (2-1)

The function is six levels deep in the sense that six function calls (/, f5, *, f4, +, f2) are needed to get

from x2 to y. Now, whereas the analytic form is not needed for simulation, it is often used during

design and analysis for the computation of, for example, time derivatives, gradients, partial derivatives,

and Jacobian matrices. Suppose that we wish to compute the first five time derivatives of the output y

in figure 2.1 given the input (xl, x2,x3) and its first five time derivatives. Repeated use of the chain

rule would produce rather long expressions. In general the length grows rapidly with the depth of the

nesting. The same considerations apply to partial and other derivatives since they can be expressed in

terms of time derivatives. Indeed, an effective procedure for computing time derivatives can be easily

adapted for computing other derivatives. This procedure will be discussed later in the report, so we

focus on the computation of time derivatives. The scalar dynamic forms discussed next greatly simplify

the computation of time derivatives.

Suppose that a scalar variable x is a function of time. Imagine an array with x in location 0, time

derivatives running to the right, and time integrals to the left:

(..., x(-3), f fx, fx, x, :b, _, x(3), ...) (2-2)

x y

Figure 2.1. Typical nested fragment f.
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The scalarform SF m (z) of order m is a glimpse at this array through a window at locations 0 through

m. That is,

SFm( )= (2-3)
where z 6 R 1 is a function of time and x (m) in location m denotes the mth time derivative of z.

Location 0 contains x = x (°). Scalar forms will be denoted by the symbol SF to distinguish them from

other dynamic forms to be introduced later in the report.

A time derivative of a scalar form will be defined as a right shift of the window:

d/dtSFm(x) = SFm(dc) = (d:,:_,... ,x (m+l)) (2-4)

The integral of a scalar form is given by a left shift of the window:

/ SFm(x) = SFm(fx) "- (f x,x,_,...,x (m-a)) (2-5)

We use the following notation for extracting a time derivative from a form:

=l x(k) ifO<k<m{SFm(x)}k
t 0 else

(2-6)

There is a close relation between a dynamic form SF m (x) and the first m + 1 terms of a Taylor series

expansion of x(t) at t. Thus,

1
x(t + "1-)_ x + _- + :__2 +... + --x,m,_.r-

2 m!

where the time derivatives x (k) are contained in SFm(x). We use the notation

m

x(t + r) _ tay[SFm(x),T] = _ {SFm(x)}kTk/k[
k=0

(2-7)

Algorithms such as equation (2-1) may be considered to be of order zero. The primary objective of

this report is to develop a formalism for easy conversion of such zero-order algorithms into corresponding

algorithms of order m > 0. Thus the algorithm in (2-1) will translate into

SFm(y) = f5 (f3[SFm(x3)] * f4{fl[SFm(xl)] + f2[sFm(x2)]}) /f3[SFm(x3)] (2-8)

where the input is given by the three scalar forms (variables and their time derivatives up to order m)

SFm(xl) -- (Xl,_l,...,x_ m))

,-qFm(x2)-- (X2, x2,...,x_ m))

sFm(z3) = (x3, m))



the output is given by the scalar form (variable and its time derivatives up to order m)

SFm(y) = (Y,Y,...,Y(m))

and the meaning of fi and the operators in equation (2-8) will be developed next. The formalism

will allow us automatically to translate large zero-order algorithms such as an aircraft total-force-and-

moment subroutine, which, as noted earlier, may contain 4,000 lines of FORTRAN, into an mth order

algorithm. That in turn may be used for the design of control algorithms such as the generation of

reference trajectories and model inversion. Examples of such designs will be given later in the report.

Let us now proceed with the development of the formalism. We shall first convert elementary

functions to the corresponding functions of scalar forms. Then, with these functions as basic building

blocks, we will assemble a hierarchy of composite functions that are particularly useful for the design

of control systems.

Algebra

Zero and unit scalar forms are defined, respectively, by

SFm(O)=(O,...,O)

SFm(1)=(l,O,...,O)

(2-9)

(2-10)

The scalar form of time is

SFm(t) = ( t, 1,

To simplify notation, we assume padding with zeros:

Thus, we may write

09o. •

(x, a) = (z, a, 0,..., O)

SFm(O)=(O)

SFm(1)=(1)

SFm(t) = (t, 1)

O) (2-11)

(2-12)

It is possible to define sum, product, inverse, and division for scalar forms. If z = ax + by and a

and b are constant in time, then for 0 < k < m

z (k) = ax (k) + by (k) (2-13)

An outline of the algorithm for scalar-form sum is shown next, where scalar forms are treated as scalar

arrays.
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ALGORXTHM:SFm(z) = SFm(x) + SFm(y)

do ]g = O_ m

z (k) = a • x (k) + b • y(k)

end do

The effect of the algorithm will be denoted as

SFm(z) = aSFm(x) + bSFm(y) (2-14)

Note that

SFm(x) - SFm(x) = SFm(O)

If z = xy, then the k th derivative, 0 < k < m, of z is given by the Leibnitz product rule (convolution,

ref. 23):
k k

z (k) = _ Ckx(k-i)y(i) = y]_ Ckx(i)y(k-i) (2-15)
i=O i=O

where the binomial coefficient C/k = k!/[i!(k - i)!] may be computed by means of the Pascal triangle:

Co
= C k - 1 for k_> 0

(2-16)

C k Cki--l+cki-1 for2<kandl<i<k-1

An outline of the product algorithm is shown next, where as before scalar forms are treated as scalar

arrays.

Ar,GORITHM: SFm(z) = SFm(z) * SFm(y)

do k=0, m
z(k) = 0

do i = O, k

z(k) = z(k) q_ C k , x(k-i) , y(i)

end do

end do

The effect of the algorithm will be denoted as

SFm(z) = SFm(x) * SFm(y)

The scalar form product commutes since it commutes for real numbers:

(2-17)

SFm(x) * SFm(y) = SFm(y) * SFm(x)

It may be noted that the Leibnitz rule holds also for objects other than scalars. It matters only that

the product is defined for objects x and y so that its time derivative

(xy)(1) = x(1)y + xy(1) (2-18)

We will take advantage of this fact later when we consider vectors and matrices. For now, we return to

scalars.



Powers and Polynomials

The conversion of a zero-order algorithm to the corresponding algorithm of order m is illustrated

by the following very simple case.

If z = x n for an integer n > 1, then an obvious algorithm for computing z is given by

ALGORITHM: Z : 2 n

Z:I

do i=l,n

Z_Z*X

end do

The rule for conversion to order m is simple: replace any variable of time by its scalar form. Thus, the

algorithm for computing

SFm(z) = [SFm(x)] n (2-19)

is given by

ALGORITHM: SFm(z) = [SFm(x)] n

SFm(z) = SFm(1)

do i:l,n

SFm(z) = SFm(z) . SFm(x)

end do

where the algorithm (subroutine) for SFm(z) * SFm(x) has been already constructed (see eq. (2-17)).

The algorithm works for any x but requires n scalar-form products. For x # 0 an algorithm requiring

essentially one product will be constructed when fractional powers are considered later in the report.

Polynomials occur frequently enough in practice to deserve consideration, lS_t polY_n(a, x) denote

a polynomial of degree n in x with constant coefficients a = (a0,..., an), that is,

polYln(a,x) = ao + alx +... + anx n = ao + (al +... + (an-1 + anX) . . .x) (2-20)

If z = polY_n(a, x), then the following algorithm is a possible realization of poly_n:

ALGORITHM: z = polYln(a,x)

z = anx

do i=l,n-1

Z = (an_ i + z) * x

end do

z=a0+z

The order of the algorithm is raised from zero to m simply by replacing z and x by SFm(z) and

SFm(x), respectively:



ALCORZT,S: SFm(z) = polyp[a, SFm(x)]

SFm(z) -- anSFm(x)

do i=l,n--i

sfm(z) = [an_iSfm(1) + SEre(z)]* spm(x)
end do

SFm(z) = aOSFm(1) + SFm(z)

This algorithm will be denoted as

SFm(z) = polyln[a, SFm(x)] (2-21)

Example 2.1. Suppose that we need to generate the following polynomial function of time:

x = poly'4(a, t) = 1 + t - t2/2 + t3/3! + t4/4!

and that we need derivatives to order six. Then we need to compute

SF6(x) = polyt4[a, SF6(t)]

Thus, for example, at t = 1, the scalar form of time is

SF6(t)=(1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00)

and a call to the poly algorithm with degree= 4 and coefficients

a= 1,1, 2'3!'4!

produces the scalar form of x,

SF6(x)=poly'4[a, SF6(t)]=(1.71, 0.67, 0.50, 2.00, 1.00, 0.00, 0.00)

This result may be checked by hand: x(1) = 1.708 .... a_(1) = (1 - t + t2/2 + t3/3!)t=l = 0.666 .... etc. Next

suppose that we must pass x through a nonlinear block represented by a polynomial of degree three in x:

z = poly_(b,x) = 1 - 0.50x - 0.50x 2 + 0.1x 3

Then another call to the poly algorithm of degree three and coefficients

b = (1, -0.5, -0.5, 0.1)

gives the scalar form of z,

SF6(z) =poly'3[b ,SF6(x)] = (-0.82, -0.89, -0.66, -2.46, -0.38, 7.17, 30.31)



Thus, for example, the sixth time derivative of the output of the nonlinear block z, namely z (6), has the value of

30.31 at t = 1. The algorithm is shown as a block diagram in figure 2.2. Clearly the process could be continued

if there were additional polynomial nonlinearities in the sequence, so multiple nesting of polynomials is easily

handled by means of dynamic forms.

a= 1 _ _! _,! b : (1-0.5 -0.5 )

! __,0o! ,
SF 6(t)=(t 1 0 0 0 O) IP'I p 'l SF'(x) SF 6(z)

Figure 2.2. Scalar forms for the example of nested polynomials.

In the algorithm poly" the coefficients are fixed. We denote polynomials with time-variable coef-

ficients by polyn. Thus

z = polyn(a, x) = ao + alx +... + anZ n (2-22)

is a polynomial with possibly variable coefficients. The corresponding algorithm for dynamic forms is

obtained from the polY'n(a , x) algorithm in equation (2-20) by replacing not only z and x by their forms

but also a i by SFm(ai) for i = 0,..., n:

ALGORTTHM: SFm(z) = polyn[SFm(a),SFm(z)]

SFm(z) = sFm(an) * SFm(x)

do i=l,n--1

SFm(z) = [SEre(an_i) + SFm(z)] * SFm(x)

end do

SFm(z) = SFm(ao) + SFm(z)

Nonlinear functions of several variables are frequently given in practice in tabular form. Thus,

for example, the subroutine generating the aircraft total force and moment may contain a table and

interpolating routine representing the functional dependence of the moment coefficient on the angle of

attack and the Mach number, Cm = f(a, Mach). Sometimes such tables may be represented by nested

polynomials, which for two variables may take the following form:

z = f(x,y) = (boo +... + bOnY n) + (blo +... + blnyn)x +... + (bko +... + bknyn)x k

The algorithm for computing m time derivatives of f is easily constructed:
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ALGORITHM:SFm(z) = f[SFm(x), SFm(y)]

do i = O, k

SFm(ai) = poiyn[bi,SEre(y)]
end do

SFm(z) - polYk[SFm(a),SFm(x)]

where bi - ( bio, . . . , bin ).

Thus we are beginning to compute easily time derivatives of fairly complicated functions. In the

preceding example an algorithm was constructed from simpler algorithms that were built up from still

simpler functions. At the bottom of such a hierarchy are functions from a basic set that already includes

sum and product. Next, more functions are added to this set.

Inverse, Division, Fractional Powers, Logarithms, and Exponentials

Many standard functions may be converted to functions of scalar forms by means of the Leibnitz

product rule. In this section we derive the algorithms for x -1, x/y, x a/b, e x, and In x. Trigonometric

functions cos x, sin x, and arctan(y, x) will be derived in the next section. For convenience, we shall

denote, say, SFk[f(z,y, ...)] by f[SFk(z),SFk(y),...]. Thus, for example,

lnSFm(x) = SFm(lnx) A= (lnx, (lnx)(1),..., (lnx) (m))

The notation will allow such easy visual and machine translation as, for example,

z = e -ax2-by2 _ SFm(z) = e -a[sFm(x)12-b[sFm(y)12

(2-23)

In the following discussion it is understood that for any x, f[SFm(x)] is defined only if f(x) is defined.

If z = x/y and y _- O, then, since x = zy, the time derivatives z(k) are given iteratively by the

z 0) = xy -1= -

following algorithm:

This division algorithm will be denoted as

SFm(z) = SFm(x)/SFm(y)

ifO<k<m

(2-24)

(2-25)

It may be noted that the cancellation law holds for forms:

[SFm(w) * SFm(x)]/[SFm(w) * SFm(y)] = SFm(x)/SFm(y)

In particular, if z = y-l, then, since z = 1/y, the division algorithm produces the inverse.

z(0) = y-1= E kz(k) -- ( i=1C_ z(k-i)y(i)) y-1 if 0 < k < m

(2-26)

(2-27)

ll



The effectof this algorithmwill be denotedas

SFm(z)=[SFm(x)] -1

and referred to as the scalar form inverse. Note that

SFm(x) * [SFm(x)] -1 -- [SFm(x)] -1

(2-28)

*SFm(x)=SFm(1)

If z = x a/b for constant integers a, b with b > 0 and x _ 0, then bz_ = az_c; hence, on application of

the Leibnitz rule to both sides,

k k

Ckbx(i)_ (k-i) = _ Cik az(i)]c (k-i)
i=0 i=0

But since _(k-i) = z(k-i+l), and similarly for z,

k k

Ckbx(i)z (k-i+l) = _ Ckaz(i)x (k-i+l)
i=0 i=0

Or, peeling off the first (i = 0) term, for 1 _< k,

k k

bxz (k+l) + _ Ckbx(i)z (k-i+l) = az(O)x (k+l) + _ Cikaz(i)x (k-i+l)
i=1 i=1

Consequently, we obtain the following basic algorithm

Z 0) = xa/b

z (1) = (bx)-lazx (1)

z (k+l) = (bx)-l{az(°)x (k+l) + _/k=l Ck[az(i)x (k-i+l) - bx(i)z(k-i+l)]} for 1 < k

The effect of this algorithm will be denoted as

SFm(z) = [SFm(x)]a/b

[SFm(x)] a/b . [SFm(x)] c/d = [SFm(x)](a/b)+(c/d)

SFm(z) = [SFm(x)ln/1

SFm(z) = [SFm(x)] n

We note that

(2-29)

(2-30)

(2-31)

(2-32)

(2-33)

(2-34)

(2-35)

(2-36)

If z = x n, with x -_ 0 and n > 0, then

which will be simplified to

12



It maybenotedthat this algorithminvolvesonly oneLeibnitz convolution insteadof n as in the simple

algorithm discused previously.

If z = Izl then, of course,

SFm(x) if x > 0ISFm(x)l = -SFm(x) if x < 0
(2-37)

If z = e z, then _ = zS: and so, for 0 < k < m - I, the Leibnitz product rule gives

k

Z (k+l) = _ Cikz(k-i)x (i+1) (2-38)
i=0

We denote this algorithm as

SFm(z) = eSFm(x) (2-39)

Conversely, if z = Inx for x > 0, then z (0) = lnx and since x_ = 5:, Z (1) = x-lx (1) and for

1 < k < m - 1 the product formula leads to

( k )z(k+l) = x-1 x(k+l) -- Z Ckx(i)z(k-i+l)
i=1

(2-40)

This algorithm will be denoted as

SFm(z)=lnSFm(x) (2-41)

It may be noted that

eln[SF m (x)] = SFm (x) (2-42)

Other functions may now be built up. For example, the scalar form of a Gaussian, z = be -z2, is

computed easily by first calling the dynamic-form squarer, then the sign change, and then the exponential:

SFm(z) = be-[SFm(z)] 2 (2-43)

Note how the notation keeps track of the calling sequence. In effect the result of each call has an

independent existence. On the other hand, the algorithm SFm(z) = SFm(be-XZ), while true overall,

is not parsed as a calling sequence of independent subroutines.

Trigonometric Functions

To obtain trigonometric functions, it is convenient to group cos and sin as follows:

z:(zl):ccosx/
z2 \ sin x /

(2-44)

13



Then,since
_,= JcQz (2-45)

where

o:(011)0
the derivatives of cos x and sin x are given by

z (k+l) = _ C?x(k-i+l)Qz (i)
i=0

The algorithm (2-47) for the scalar form of the cos and sin functions will be denoted as

(SFm(zl) = (c°sSFm(x)SFm(z2) ) , sinSFm(x) )

(2-46)

(2-47)

(2-48)

Conversely, suppose that z is redefined as

COS X )
z = r (2-49)

\ sin x

with r > 0 so that

x = arctan(z2, Z 1) (2-50)

Then the derivatives of x may be computed without assuming that the norm of z is 1, as follows: From

equation (2-49), r 2 = zTz and, upon differentiating equation (2-49), _ = ÷r-lz + icQz. Premultiplying

the last equation by zTQ and noting that zTQz = 0 and QQ = -I, we obtain

_czT z = _,TQz (2-51)

Let

Then

Now we raise the order,

u = zTz = ZlZ 1 + z2z 2
w = _'TQz = -ZlZ2 + Z2Zl

(2-52)

= w/u (2-53)

SFm(u) = SFm(zl) * SFm(zl) + SFm(z2) * SFm(z2)
SFm-I(w) = -sFrn-l(]q) . SFm-l(z2) + SFm-I(]_2) • SFm-l(zl)

(2-54)

and

SFm-l(]c) = SFm-I(w)/SFm-I(u) (2-55)

14



Equations (2-50, 2-54, and 2-55) define the arctangent algorithm, which will be denoted as

SFm(z) = arctan[SFm(zz),SFm(zl)]

Of course, if it is known that r = 1 identically, that is SFm(u) = (1, 0), then

z 0) = arctan(z2, za)
x (k+l) ---- W (k), 0 < k < rn - 1

(2-56)

If a nonlinearity is modeled by a few terms of its Fourier series (here k is the fundamental wav'- number),

n

z = fouriern(k, a, b, x) = ao + Y_ ai cos(ikx) + bi sin(ikx)
i=1

(2-57)

then SFm(z) is given by

rt

f ouriern[k, a, b, SFm(x)] = aOSFm(1) + _ a i cos[ikSFm(x)] + b i sin[ikSFm(x)]
i=l

(2-58)

Functions of several variables can be treated similarly. Multivariable polynomials find use in

modeling aircraft force and moment generators (ref. 24). Multidimensional Fourier series and other

functions may be used for describing winds, terrain, or other fields that influence the aircraft. For

example, if the generating function is a polynomial in p variables each of maximum degree n,

n

z _ a(il • il ip---- ,..., Zp)X 1 ... Xp (2-59)

il,...,ip

then SFm(z) may be evaluated (assuming all xi > 0) by the following algorithm:

do i=l,p

SFm(yi) = InSFm(xi)

end do

SEre(z) = Enl,...,ip a(il, . . . , ip)e E_=I ijSF'n(YJ)

The following example illustrates the application of dynamic forms.
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Example 2.2. As an example of the application of scalar forms, consider a nap-of-the-Earth (NOE) problem

(ref. 25). A simple version of this problem may be stated as follows: Suppose that a plan view of the trajectory to

be flown by the helicopter is given. The altitude must be maintained at a fixed, usually minimal, distance above

the terrain. The problem is to determine whether the resulting trajectory is within the helicopter performance

limits. The intermediate problem is to determine altitude and its time derivatives. Suppose that the horizontal

velocity of a helicopter is given in polar coordinates by horizontal speed ._(t) and heading ¢(t). Then the plan

view of the path evolves according to

/
and

\y(0) + y;y]
where the initial condition x(0), y(0) is also given. Suppose, in addition, that there are some irregular vertical

obstructions that are collectively covered by a Gaussian cap:

h = hmaxe- (x/az)2- (y/au)2

where h is the altitude. The helicopter is required to stay on that cap while flying the given horizontal trajectory.

The problem is to determine the vertical speed and the next four of its derivatives. It is easily done; simply

replace the variables by their forms, as follows:

SF (]c) SF 4 (_). cos SF 4 (¢) /
SFa(y))=(SFa(_).sinSFa(_p)]

SF5(h) = hmaxe-(SFS(z)/ax) 2-(SFS(y)/au) 2

The scalar form SFS(h) contains the altitude h and five of its time derivatives. These higher derivatives of

h are needed for testing constraint satisfaction, such as acceleration h, which affects pitch angle and power

requirements, h (4), which has a direct bearing on moment requirements, and h (5), which affects the usually

limited control rates. Details of the force and moment model would be needed to compute the actual values of

controls. Of course it is possible to compute other functions of scalar forms. For example, the total translational

kinetic and potential energy divided by weight is

,_2 _}_h2
e= +h

2g

where g is the acceleration of gravity. The algorithm for computing translational power and power rate is obtained

by simply replacing variables by their forms:

SFa(e) = [SF4(-s)] 2 + [SF4(h)] 2
2g + SEa(h)

A numerical example is given in appendix A.
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Partial Derivatives

We have developed in the preceding sections several functions of dynamic forms. With these

functions as building blocks many other practically useful functions can be assembled. For example,

suppose that there is an algorithm for computing

z = f(x, u) (2-60)

for scalar z, x, u, and that this zero-order algorithm has been converted to order m:

SFm(z) = f[SFm(x),SFm(u)] (2-61)

as shown in figure 2.3. The input consists of the scalar forms SFm(x) and SFm(u), and the output

is the scalar form SFm(z) = f[SFm(x), SFm(u)]. Now we proceed to compute, using only this

algorithm, several useful objects associated with f.

Consider the partial derivatives of f. Since z = f(x, u),

_"= .fz_ + fuiz (2-62)

where fz denotes the partial derivative of f with respect to x. Choose an input to be

{ SFm(x) = (x, 1)SFm(u) (u,O)
(2-63)

where zero padding is assumed: (x, 1 ) = ( x, 1, 0,..., 0 ) and ( u, 0 ) = ( u,, 0,..., 0 ). Then the value

of the x-partial derivative of f at x is given by _, that is, by the content in the number one location of

sFrn(z),

yx(X,U) = _= {sfm(z)}l = {f[(x, 1),(u,O)]}l (2-64)

where we use the notation

lY(k) if0<k<m{SFm(u)}k
[ 0 else

The purpose of equation (2-64) is not to replace a familiar and convenient notation by one that is obscure

and awkward; the purpose is to show that the useful object, the x-partial derivative of f at (x, u), may

be computed by means of scalar forms as the value in location one of the output of the scalar form

algorithm f whose input is (x, 1) and (u, 0).

x

tl

f _ z

.._----q

SFm(x)----_ f _-I_ SF_(z)

SFm (U) .-_1_

Figure 2.3. Algorithm for a composite function f.
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The valueof the k th partial of f at x with respect to x is given by

fz...x = {f[(z, 1),(u,O)]}k, 1 < k < m

Similarly,

fu...u = {f[(x,O),(u, 1)]}k, 1 <_ k < m

(2-65)

(2-66)

Furthermore, since

and

it follows that

fzz = {f[(x, 1),(u,O)]}2

fuu = {/[(x, 0), (u, 1)]}2

fzu = 1{ f[(x, 1), (u, 1)] - f[(x, 1), (u, 0)] - f[(x, 0), (u, 1)]}2

(2-67)

(2-68)

(2-69)

Function Inverse

The algorithm for computing the dynamic form of the inverse of a function is often of practical

interest. Suppose that an algorithm is given for computing a possibly time-varying function

z = f(x,u,t) (2-70)

for scalar z, x, u and time t; that this zero-order algorithm has been raised to order m:

SFm(z) =/[SFm(x),SFm(u),SFm(t)]

and that we have the (partial) inverse f-1 of f

(2-71)

u = f-l(x,z,t) (2-72)

so that for all x, u, z, t

f[z,f-l(z,z,t),t] = z (2-73)

Often in practice f-1 is obtained numerically by an algorithm such as Newton-Raphson. The extension

of f-1 (x, z, t) to

SFm(u) = f-l[sFm(x),SFm(z),SFm(t)] (2-74)

producing not only u but also m of its time derivatives, may be computed as follows: The time derivative

of equation (2-70) is

_. = fx_c + fuiZ + ft (2-75)

But, according to equation (2-71),

_= {f[(x, Jc),(u, iz),(t, 1)]}l = {f[(x,_c),(u,O),(t, 1)]}l + fuiZ (2-76)
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Henceit follows that
= (fu)-I (_ -- {f[(x, _), (U, 0), (t, 1)]}1 ) (2-77)

where the inverse of the partial derivative fu is

(fu)-I = {f[(z,O),(u, 1),(t,O)]}? 1 (2-78)

Similarly,

_i= {f[(x,_c,_),(u, iz, O),(t,l,O)]}2 + f_ii

so that

iz= (A)-1 (_- {f[(x,_:,_), (u,,i, 0), (t, 1,0)]}z)

and for higher derivatives,

(2-79)

(2-80)

u (k) = (fu) -1 (z (k) - {f[(x,... ,x(k)), (u,..., u (k-l), 0), (t, 1)]}k ) (2-81)

Thus, in addition to the base point u = f-1 (x, z), only derivatives of f are needed for the construction

of derivatives of f-1. Hence the algorithm:

ALGORITHM: SFm(u)- f-l[SFm(x),S;Fm(z)]

SFm(u) = (f-l(x,z,t),O,...,O)

(yu)-x = {f[(z,O),(u, 1),(t,O)]}{ 1
do k= l,m

u(k) = (fu) -1 (z(k) - {f[SFk(z),SFk(u),SFk(t)]}k)
end do

That is, first SFm(u) is loaded with the base point u = f-l(x, z,t) and zero derivatives; then the

inverse of fu is computed as in equation (2-78); finally, equation (2-81) is iterated from 1 to m. The

combined action of f-1 and f is shown in figure 2.4. The input is SFm(x), the desired evolution is

SFm(z), and the required control is SFm(u). So far we have been considering static systems. Next

we consider dynamic systems such as differential equations.

Figure 2.4. Useful factors of identity.
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Differential Equations

Suppose that we are given a possibly time-varying, first-order scalar system

_c = f(x, u,t) (2-82)

where x is the state and u the control, and we wish to compute derivatives of x up to order m given

the derivatives of u. First, as described previously, we convert the zero-order algorithm

z=/(z,u,t)

to order m:

SFm(z) = f[SFm(x),SFm(u), (t, 1)]

where, as before, SFm(t) = (t, 1, 0,..., O) is abbreviated as (t, 1). Then

(2-83)

X(k+l) = {f[sFk(x),SFk(u),(t, 1)]}k (2-84)

Consequently the time derivatives of x can be computed iteratively from the initial condition x and the

control SF m (u):

ALGORITHM: [SFm(x)] = Tf[x, SFm(u)]
SFm( ) = 0,..., O)
do k = O,m

z(k+ 1) = {f[sFk(z),SFk(u),(t, 1)]}k

end do

That is, first SFm(x) is loaded with the base point x and zero derivatives; then the derivatives x (k) are

obtained iteratively by means of equation (2-84). The effect of the algorithm will be denoted as

[SFm(x)] = Tf[x, SFm(u)]

where the subscriptin Tf is a reminder thatthe functionf raisedto order m must be provided.

(2-85)

Now that we have SFm(x), we can approximate the solution ¢(x, t +'r) of equation (2-82) by the

first m + 1 terms of its Taylor series:

m

¢(x,t + _) _ tay[SFm(x), r] = y_ x(k)Tk/k!
k=O

(2-86)

The TI algorithm may be easily generalized to scalar differential equations of higher order. Thus,

suppose that in equation (2-82) x E R n, u 6 R, and that we have zero-order algorithms

zi = f/(xl,..., Xn, u, t) (2-87)

for 1 < i < n and these algorithms have been converted as discussed previously to

SFm(zi) = J_[SFm(xl),... ,SFm(xn),SFm(u), (t, 1)] (2-88)
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Ak+l)Then, since _i = z. for i = 1,..., n, the time derivatives of the n-dimensional state x may be

constructed from the base point x and the control SFm(u) as follows:

ALGORITHM: [SFm(x)] = Tf[x, SFm-l(u)]

do i=l,n

SFm(xi) = (xi, O, . . . , O)

end do

do k = O,m

do i=l,n
x(k+l)
i =

end do

end do

The input is the state z and the evolution of control SFm(u); the output is the evolution of the

n state coordinates SFm(zi). In the algorithm the base point z with zero derivatives is loaded into

SFm(z); then the derivatives are computed by columns using fi. It may be noted that, in general, the

control u must be available to order m - 1 for the computation of z i to order m. An important special

case occurs for pure feedback systems for which the function f above has the following triangular

structure:

f/(Xl,... ,Xn, U,t) = f/(xl,... ,zi+x,t), 1 < i < n (2-89)

so that the state equation has the following form:

' 571

x2

X 3 =

k Xn

A( l,x2,t)

/2 (zl, x2, xs, t)

f3(zl, z2, z3, z4, t)

In(z1, z2,...,zn, u,t)

(2-90)

For such systems u to order m-n is sufficient to compute xi to order m-t-1 -i. In particular, derivatives

of u are not used for the computation of xl to order n, and u itself is not used in the computation of

xl to order n - 1. The computations in Tf for n --- m = 4 may be represented as follows:

X 1 • , , , , o o

X 2 • , • • o o o

x 3 • • • o o o o

X4 • * o o o o o

U • 0 0 0 0 0 0

where • denotes the initial data, and * and o denote significant and insignificant new entries, repectively.

The computation flows from left to right starting with the supplied first column. The algorithm T/
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specialized to the case in which the output of the system is Xl will be denoted as Tlf, that is,

SFm(xl) = Tly[(x, SFm-n(u)l (2-91)

where, if m < n, then the entries in the scalar form of u are not used by the algorithm. The block

diagram of Tly, which we will refer to as the forward solution since u(t) is the input and the Taylor

series of Xl (t) is the output, is shown in figure 2.5. The input consists of the base point x and the scalar

form SFm-n(u) of control u. The output is the scalar form SFm(xl) of the lowest state coordinate

Xl. Only the first m - n derivatives of u are used by the algorithm. If m < n, then u is not needed at

all in the computation of x (m). This condition, in which no entries of a scalar form SFm(x) are used

by the algorithm, will be denoted in diagrams by SFm(x) = 0.

SFm(xl)

Figure 2.5. Forward solution.

Example 2.3. Suppose that n -- 4, the state equation is

/ Xl '_ x2

]c2 a sin(bxl)x2 + [2 + cos(ct)]x3

x3 x4

\5; 4 / u

and a, b, c are constants. The first step is to raise fi to order m as follows.

fl = SF m(z2)

h = asin[bSFm(xl)] * SFm(x2) + {2 + cos[cSFrn(t)]} * SFm(x3)

f3 = SFm (x4)

h = SFm(u)

Then the forward algorithm T1/is constructed.

(2-92)

(2-93)
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ALGORITHM: sFrn(x) -_ TII[X , SFrn-4(u)]

do i=I,4

SPm(zd = o...,o)
end do

do k = 0, m - 1

@+1)= {sFm( 2)}k

x (k+l) = {asin[bSFm(xl)] * SEre(x2) + {2 + cos[cSFm(t)]}, SFm(x3)}k

x(k+l)---- {SFm(x4)Ik

x(k+l) = {SFm(u)}k

end do

This very simple example, for which even hand computation of derivatives is relatively easy, is

intended only to illustrate the technique.

Dynamic Inverse

Consider again the first-order, scalar, dynamical system in equation (2-82). It is useful to be able

to compute what the control signal must be so that the system output will track a given function of time.

The evolution of control u that will produce the desired evolution of the output x may be obtained as

follows: Construct the inverse u = f-1 (x, z, t) of z - f(x, u, t) so that

f[z,f-l(x,z,t),t]=z

and raise its order to m by means of the function inverse algorithm as described previously.

SFm(u) = f-l[SFm(x),SFm(z), (t, 1)] (2-94)

Then the control evolution SFm(u) that will produce the desired output SFm(x) is obtained by imposing

the constraint z = 5: as given by the following algorithm:

ALGORITHM: [X, SFm-n(u)] = T_I[SFm(x)]

SFm-l(z) = SFm-l(_c)

SFm-i(u) = f-l[SFm-l(x),SFrn-l(z),(t, 1)]

x = {SFm(x)}o

That is, first SFm(x) is shifted to the right and loaded into SFm-l(z) to get

(z,...,z (m-l)) = (z(1),...,x (m))

Then a call to the f-1 algorithm produces SF m-1 (u), and the state x is just the zero term of SFm(x).

This algorithm may be generalized to higher order differential equations, provided that they are of

the pure feedback form as in equation (2-89), and that, for 1 < i < n, each fi is invertible with respect

to xi+l and fn is invertible with respect to u (we denote these inverses by f/-1),

Xi+l = f/'l(xl,... ,zi, t) for 1 _< i < n
(2-95)

f-l'x , . t) for i nU= i _ 1 "" ,Zi+l, =
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Thus,

ALGORITHM: [x, SFm-n(u)] - Tlfl[SFm(xl)]

do k=l,n-1

SF m-k(zk) = sFrn-k(&k)

SFm-k(xk+l) = fkl[SFm-k(xl), .. . ,SFm-k(zk),SFm-k(zk), (t, 1)]

end do

SFm-n(zn+l) =- SFm-n(jcn)

SFm-n(u) = fnt[SFm-n(xl), . .. ,SFm-n(xn),SFm-n(zn+l), (t, 1)]

do i=l,n

xi = {sfm(xi)}o

end do

Thus, the inversion is accomplished downward by rows until all n coordinates of x have been

computed; then a call to fn 1 produces the control and its derivatives; finally the base point x is
assembled from the zero-order terms. The state must be at this value of x in order for the evolution

SFm(xl) to be possible. The flow in algorithm T_ 1 for n = m = 4 may be represented as follows:

Xl • • • • • o o

X2 * * * * o o o

x3 , , , o o o o

X 4 , , o o o o o

_% * 0 0 0 0 0 0

The computation proceeds downward from the initially supplied first row. In the usual application of

linearization techniques to the control of pure feedback systems, m -- n so that only the control u is

obtained. Cases with m > n are of interest when derivatives of u are needed for path planning. The

block diagram of this algorithm, which we will call the inverse solution since the input is xl(t) and

the output is u(t), is shown in figure 2.6. The input is the scalar form SFm(xl) of the lowest state

coordinate xl. The output consists of the complete state base point x = (Xl,X2,... ,Xn) T and the

scalar form SF m-n of the control variable u.

X

SF'-" (U)

Figure 2.6. Inverse solution.

If m < n, then neither u nor any of its derivatives are computed.
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Example 2.4. The inverse f/--1 of fi in example 2.3 is easily computed:

ff l = SFm(zl)

f21 = {SFm(z2) - asin[bSFm(xl)] . SFm(x2)} / {2 + cos[cSFm(t)]}

= SFm(z3)

f4 1 = SFm(z4)

Equation (2-96) defines the inverse algorithm T_I:

ALGORITHM: [x, SFm-4(u)] = T_fl[sFm(xl)]

SFm-I(zl) = sFrn-l(_cl)

SF m- 1(z2) = SF m- 1 (z 1)

SF m- 2 (z2) = SF m- 1 (:/:2)

SFm-2(x3) = {SFm-2(z2) - asin[bSFrn-2(xl)] . SFm-2(x2)}/{2 + cos[cSFm-2(t)]}

SF m- 1(z3) = SF m- 1(x3)

SFm-3(x4) = SFm-3(z3)

SF m- 1(z4) = SF m- 1(_:4)

SF m-4 (u) = SF m-4 (z4)

do i= 1,4

X i = {SFm(xi)}O

end do

(2-96)

The example illustrates how easy it is by means of dynamic forms to propagate the derivatives

backwards through the system.

It may be noted that T1) 1 is the inverse of Tlf in the following sense. For any evolution SFm(xl)

of the output variable Xl,

Tlf{T_I[sFm(xl)]} = SFm(xl) (2-97)

This significant relation is shown as a block diagram in figure 2.7 An application of this relation to

automatic control is obtained by inserting the plant between TI_ 1 and Tlf as discussed next.

SFm(x,) _ T_;" I

SFm-. (u) "-1

Figure 2.7. Useful factors of identity.
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Automatic Control

Consider the problem of tracking a given reference input in the presence of disturbances. Let the

plant be described as follows: The state zp E R n, the control up E R, the output y = Zlp, and the state

equation is possibly nonlinear and time-varying but of maximal relative degree (pure feedback form):

_cp = f(Xp, Up, t):

' fl(xlp, x2p,t)

Y2(xlp,z2p,z3p, t)

, fn(Xlp, X2p,..., Xnp, up, t)

(2-98)

The structure of a possible control-system design (ref. 26) is shown in figure 2.8. There are

three subsystems in addition to the plant, namely transformer, regulator, and command generator. The

command generator provides at every t not only the required value of the commanded output Xlc but

also at least n of its derivatives, i,e., SFn(xlc). The plant state Zp is passed through Tlf to obtain

SFn-l(xlp ). Note that this step does not involve any differentiation of signals that are corrupted by

noise. Furthermore, no element of S,¢F(u) is needed in this step. Next the error form is computed to

order n - 1 in the regulator by comparing the output form with the input form:

_qF n-1 (e) = SF n-1 (Xlp) - SF n-1 (Xlc) (2-99)

SFn-'(X,¢)

GEN

SF" (x_c)

-i I
I I
I nl I
ISF - (x,P)l

!o,o,__kES o-' o jll

_s I

I
Fn(e) I

I
i
I SFn (x,p)

1

_,_ Xp
0

"--'-" I
I
I
I
I

__111 I Xp

L. .J

Up

f(Xp

x_

,ip t,,J
T

GENERATOR REGULATOR TRANSFORM PLANT

Figure 2.8. A structure for asymptotic trackers with pure feedback plant dynamics.

26



Then theorder of the error form is raised by one by the regulator law k, and the error form is added to

the reference, thereby raising the order by one of the desired output form:

sFn(xlp) = sFn(xlc) + SFn(e) (2-100)

Finally, the desired evolution of the output is passed through the inverter T1) 1, whose output SF°(zz)

drives the control Up.

It may be noted that the transformations TQ 1 and Tlf make the plant look like an (invariant) string

of integrators, n integrators long. Thus, the plant has been transformed into a Brunowsky canonical

form (ref. 14) with the Kronecker index equal to n, where (Zip,... ,Z_p -1)) is the transformed state

and z_n_) is the transformed control. Consequently, the system may be regulated by means of a simple
linear (aw

n-1

e (n) = -- _ ki e(i) (2-101)
i=0

despite changes in the perturbation model of f. In effect, the transformations Tlf and T_ 1 provide

automatically the necessary gain scheduling and therefore the system output Xlp will track asymptotically

any input Xlc that is differentiable n times. The derivatives of the input must be available, and the

plant dynamics must be of the pure feedback type. It should be noted, however, that only the state is

needed and none of its derivatives. Noise is not an issue. The control algorithm denoted as Cf may be

summarized as follows: It is assumed that Cf is called at the implementation sampling rate, which is

sufficiently fast relative to the dynamics of the plant.

ALGOR T,.:Up= CS[Xp,SFn(xlc)]
SFn-t(Xlp ) = Tlf(Xp, O)

SFn-I(e) = SFn-l(zlp ) - SFn-l(xlc)

e(n) = k[SFn-l(e)]

SFn(xlp) = SFn(xlc) + SEn(e)

[SFO(up),Xp] = T_-fl[sFn(xlp)]

Up = {SF°(up)}O

The input to the algorithm consists of the (estimated) plant state xp and the generator command

SFn(Xlc). The output is the plant control Up. In the algorithm the symbol q) indicates that the content

of SFn-l(u) does not matter for this call of the subroutine Tlf. The output Xp (next to last line in the

algorithm) is the plant state.

It may be noted that Cf is a general algorithm in the sense that it applies to any plant defined by

f such that 1) f is of the pure feedback type and 2) f is a composite of the functions that have been

elevated to order m. In such a case the zero-order function f can be automatically raised to order m, at

which point all the steps in CI become fixed. A numerical example illustrating the operation of control

systems with the structure shown in figure 2.8 is given in appendix B.

In summary, we have shown that scalar forms may be used to organize effectively the design of

automatic control systems for the class of plants having pure feedback dynamics f. The key step is to
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raisethe order of f from zero to n, but that step is made routine by the formalism of dynamic forms

in which elementary functions and operations have been translated into their dynamic-form equivalents.

In the remainder of the report we translate additional functions frequently occurring in the design of

control systems. Further discussion of control algorithms, including plant dynamics with transmission

zeros, will be presented in a future report.

3 VECTOR AND MATRIX FORMS

We are concerned mainly with three-dimensional vectors. Vectors and dot and cross products will

be denoted as usual. Thus, _ and ff are vectors, and 2". ff and _" x ff are their dot and cross products.

Right-handed orthonormal axis systems will be denoted by a double arrow. Thus '_ is an axis system

(al a2 a3) where, for i,j = 1,2,3, di._ j :tSij and63 ----al ×a2. The a-coordinates of :_ will be
denoted by the column matrix Xa. Thus,

3

j=l

(3-1)

X T_ ,the dot product :_. ff = a ya and the cross product _" = :_ x ff

Za=--S(Xa)Ya

where, for any x E R 3, the skew symmetric matrix

(3-2)

(0 1/
--X 2

S'(z) = -xa 0

x 2 --x 1

(3-3)

The transpose is denoted by (.)T and 5i denotes a column with 1 in row i and zeros elsewhere.

Next, consider vector forms. Let _' be an axis system. The vector form of a vector _ in "_ is

defined by

VFm(va) = ( Va, i_a, . . . , V(am) ) (3-4)

where Va C R n. The zero and unit forms will be denoted by

VFm(O)=(O ... 0) (3-5)

and

VFm(ri) = (5i ... O) (3-6)

where 5i is a column of Zeros except in row i, which contains 1. We denote the scalar form of the i th

component of a vector fo_ VFm(va) with a subscript as follows:

SFm(vai) = VFm(va)i = (Vai , bai,... , v (m) ) (3-7)
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Next considermatrices.
derivatives,

MFm(A) = ( A, -'21.,... ,A(TM) )

A matrix form of order m is defined as a matrix and m of its time

(3-8)

0 ... 0) (3-9)

0 ... 0) (3-10)

with A E R n x R n. Zero and identity are given by

MFm(O)=(O

MEre(I) = ( I

and the transpose

[MFm(z)]T= MFm(Z T) (3-11)

The scalar form corresponding to the zij element of Z will be denoted as

SFm(zij) = MFm(Z)ij (3-12)

Algebra

Several useful functions of vector forms and matrix forms follow easily either from already-defined

functions of scalar forms or from the Leibnitz rule.

If za = aXa + bya for either scalars or matrices a, b constant in time, then, of course,

VFm(za) = aVFm(xa) + bVFm(ya) = VFm(axa) + VFm(bya) (3-13)

If Za = aXa and a is a scalar function of time, then the derivatives of za are given by

k
= r,k,,(k-i) _(i)k)

i=0

We denote the resulting algorithm as

VFm(za) = SFm(a) , VFm(xa)

(3-14)

(3-15)

If z = £" if, then

which will be denoted as

If _"= _ x if, then

k
.-,k,x(k-i),T (i)z (k) = __ ( a ) Ya

i=0

SFm(z) = VFm(xa). VFm(ya)

k
..,k,.,,z(k-i ), (i)

i=0

(3-16)

(3-17)

(3-18)
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which will be denoted as

VF_(za) = VF_(z_) x VFm(y_)

If Z = aX for time varying scalar a and matrix X, then by the Leibnitz rule

k

z(k) = F_,c_ a(k-i)s(i)
i=0

So we have an algorithm for multiplication of a matrix form by a scalar form,

MFm(Z) = SFm(a) . MFm(X)

(3-19)

(3-20)

(3-21)

If Za --- Xya with matrix X and vector Ya, both time-varying, then

k
= (Tky(k-i).o(i)Z(ak) Z vi.. _a

i=O

which is an algorithm for time-varying transformations to be denoted as

vFm(za) = MFm(X)* VFm(ya)

(3-22)

(3-23)

If Z = XY with time-dependent matrices X and Y, then, again by the Leibnitz rule,

k

z(k) = _ c_x(k-_)Y (_)
i=0

This algorithm will be denoted as

MFm(Z) = MFm(x) * MFm(y)

(3 -24)

(3-25)

If X is invertible, then in direct analogy to scalar forms the derivatives of X -1 are given by

Z (°) = X -1, and for 1 < k < m

So we give meaning to

MFm(Z) = [MFm(X)] -1

(3 -26)

(3-27)

It is now possible to construct higher level functions of dynamic forms. For example, if x = Iva[ =

[vTva] 1/2, then the evolution of the magnitude of Va is given by the algorithm

SFm(z) = IVFm(va)l = [VFm(va) . VFm(va)] 1/2 (3-28)

where the operations on the right side are all defined.

The unit vector form corresponding to 'ff parallel to g in '_ is given by

VFrn(u_) = VFrn(va)/IVFm(v_)l (3-29)

£

t

1
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Derivatives

Suppose that x, z E R n and z = f(x) and that we have raised the order of the vector function f

from zero to m,

VFm(z) = f[VFm(x)] (3-30)

Consider constant vectors x and y such that yTy = 1. Let

z = f(x + ty)

Then the derivative of f at x in the direction of y at t = 0 is

_, = fx(x)v

So by choosing

vFm(x)=(x,u,o,...,o)=(x,y)

we obtain the Taylor series expansion of f at x in direction y:

m

f(x + sy) = _ z(k)ysk/k[
k=O

The n columns of the Jacobian matrix of f, Of/cgx, are given by

Of = ({/[(X,_51)]}l,... {Y[(X,_n)]}l) (3-31)
Ox

where we are again using the shorthand, for any vectors x, z

and _5i is a unit column along coordinate xi. Thus n first-order calls of the vector-function algorithm

produces its Jacobian matrix.

Examples

Scalar- and vector-form functions are useful as building blocks of higher level algorithms.

Example 3.1. Spherical and Cylindrical Coordinates. Consider the back and forth transformation between

Cartesian coordinates and cylindrical coordinates and their m time derivatives. From the standard relations among

coordinates,

(rc°s_' /
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and conversely,

= arctan(xr2, Xrl )

Xr3

(3-33)

It follows that for cylindrical coordinates the dynamic forms transform according to the algorithm XY-< CY:

SFm(r) * cos sFrn(_b) I
VFm(xr) = sFrn(r) * sin SFm(¢) /

I
SFm(z) ]

and conversely XY _- CY:

(3-34)

SEre(r) I ( [VFm(xr) 2+ VFm(xr)2]l/2 I

SFm(¢) l = l arctan[VFm(xr)2, VFm(xr)l] I

SFm(z) / \ VFm(xr)3 /

(3-35)

The conversion to spherical coordinates is similarly established. From the standard relations between coordinates,

where 7, ¢ are the latitude and longitude angles, respectively,

(pcos_'cos¢ /

Xr= [pcosTsin¢_ (3-36)

k -psin7 /

and, conversely,

xr )= arctan(xr2, Xrl )

arctan(-Xr3, cos Cxrl + sin CXr2)

(3-37)

It follows that for spherical coordinates the dynamic forms transform according to the algorithm XP-< SP:

SFm(p) * cos SFm(7) * cos SFm( ¢)

I

YF m (Xr) = SF re(p) * cos SF m (7) * sin SF re(C) /
/

-SFm(p) * sin SFm(_) /

(3-38)

=2
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and,conversely,XP _ SP:

Sfm(_) I = arctan[VFm(xr)2' VFm(xr)l]
!

SF_(.y) / _ctan[-UFm(_)3, cosSF_(¢) * UFm(_)_ + sinSEre(C) * UF_(_)21

(3-39)

Thus we have the following bidirectional link between the Cartesian (XY), spherical (SP) and

cylindrical (CY) coordinates.
S P _ XY ¢=_ CY

Of course, now it is possible to concatenate: the algorithm

CY _ SP = XY _ SP(XY--< CY) (3-40)

transforms cylindrical to spherical coordinates and their m derivatives by calling first the algorithm

XY -.<CY and then algorithm XY _ SP.

Example 3.2. Air Velocity. Suppose that the cylindrical coordinates of the wind field depend only on altitude,

that is, the xy-magnitude, the xy-direction, and the vertical components are given by

/vw)Cw = w(h)

W w

Then the Cartesian coordinates of the wind evolve according to

VFm(wr) = XY -< CY{w[SFm(h)]}

If an aircraft flies along a trajectory VFm+l(xr), then its altitude evolves according to (for aircraft, by conven-

tion, the z-axis points down)
SFm(h) = -VFm(zr)3

and its air velocity
VFm(var) = VFm(_cr)- VFm(wr)

Its airspeed v a, glidepath angle 7 a, and heading angle ca, as well as their time derivatives up to order m, are

given by

SFm(va) i

sfm(oa) I = XY >.-SP[VF m (vra)]
I

SF"(7 _) ]

Next, we consider rotations.
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4 ROTATIONAL FORMS

Rotational forms are useful for describing the attitude of a rigid body, its angular velocity, and its
derivatives.

4-.-4

Let a and b be two arbitrary (right-handed orthonormal) axis systems. The a coordinates of b

will be denoted by the matrix Cba. Thus, for i = 1, 2, 3,

3

bi = E Cba(i,j)Ej
j=l

(4-1)

Consequently, the coordinates of a vector _" transform as follows:

Xb = CbaXa (4-2)

Since Cba(i,j) = bi "Ej, Cba is a direction cosine matrix of b relative to a. The jth column of

Cba gives the b-coordinates of ffj; the i th row, the a-coordinates of b'i. A direction cosine matrix is

orthogonal so that its inverse is given by its transpose

Cba I : CT = Cab

Since a and b are both right handed, the determinant

(4-3)

det Cba = +1 (4-4)

So, Cba always has an eigenvalue of +1. The corresponding eigenvector is given by axis(Cba) (provided

axis(Cba ) _ 0) where, for any 3 x 3 matrix C, the axis function

axis(C)--

\c12 c21 /

It may be noted that for any three-dimensional x,

(4-5)

axis[S(x)] = x (4-6)

and for any 3 x 3 matrix C,

S[axis(C)] = 1/2(C - C T)

We shall denote the set of all rotations as well as all 3 x 3 direction cosine matrices by S0(3).

(4-7)

Suppose that Cba is a function of time. Then, since Cba CT = I, it follows that CbaC_+

CbaC_a -- O' Therefore, C'baC_a is skew symmetric, so let

(4-8)
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Consequently,

and

(4-9)

Cb,,= S(_b,,b)Cb. (4-10)

The 3 x 1 column matrix ¢Obab gives the b coordinates of the angular velocity of b relative to a. The

last subscript in C%ab denotes the coordinate system. Thus, CUbaa = CabWbab gives the _' coordinates of

the same velocity. On the other hand, COaba = --CObaa are the '_ coordinates of the angular velocity of

_' relative to b. Also from equation (4-2)

_b= dbaZa+ c_ = S(_b)CbJ_ + Cb_ = S(_bab)Zb+ Cb_

Thus, we obtain the Coriolis derivative, which computes the derivatives of the b -coordinates of :_ from
• 4---4

the derivatives of the a-coordinates of :g and the angular velocity of b relative to a"

JOb= S(_b_b)Zb+ Cb_C_ (4-11)

4--4"

The matrix form corresponding to the direction cosine matrix Cba locating b relative to a will be

defined by MF_, that is,

MFb m = ( Cba, Cba, " " , C_ m) ) (4-12)

Often angular velocity and its time derivatives are of interest. Hence, we introduce another type of

dynamic forms, namely, rotational forms. The rotational form of order m for attitude Cba will be

defined as the direction cosine matrix and angular velocity together with its time derivatives:

c_

m=0

m>0

(4-13)

where attitude Cba E SO(3) and Wba b E R 3 gives the b-coordinates of the angular velocity of b

relative to a.

Algebra

The identity is given by

RFa m = ( I, 0 ) (4-14)

Consider the transformation MF -_ RF constructing the matrix form that corresponds to a given

rotational form. Since C'ba = S(Wbab)Cba, MFm(Cba) is given iteratively by

k
Cb(k+l) ok,-,, (k-i),,.-,(i)

a = _ (4-15)L,i _lWba b )_ba
i=0

Conversely, it follows from

_bab = axis(Cba CT )

35



that the function MF _- RF making the rotational form corresponding to a matrix form is given

iteratively by
k

z(k+l) .-,k . ,.-,(k-i+l).-,(i),
bab = Z bi axzs(t_a bab ) (4-16)

i=0

Note that Cab is the transpose of Cba. Thus, we have the pair,

{ RF_ m = MF_ RF(MF_)
MF_ m = MF-<RF(RF_)

(4-17)

Multiplication of rotational forms may be defined by

RF_ * RF[, m = MF_- RF[MF -<RF(RF_) . MF-.<RF(RF_)] (4-18)

and inversion by

(RF/_m) -1 = RFa_ = MF _- RF{[MF _RF(RF_)] T} (4-19)

where the transpose acts on a matrix form and so it is already defined. Consider a sequence of rotations.
4"-4

Suppose that there are three coordinate systems, a, b, and c. The rotation of _ relative to a is given
4"'4 _ _ t"-'b

in terms of rotations c relative to b and b relative to a by the product of forms,

=RFg . m (4-20)

It may be noted that the rotation and matrix forms behave algebraically just as their generating direction
cosine matrix.

A generalization of the Coriolis derivative (4-11) may be obtained as follows. Let VFm(xr) be the

vector form describing the motion of vector :g to order m with respect to _. It and its time derivatives
6---I,

up to order m with respect to another set of axes, b, which is rotating according to R/7_, are given by

VFm(xb) = RF_r * VFm(xr) = MF'<RF(RF_r ) * VFm(xr) (4-21)

Example 4.1. Angular Acceleration of Aircraft Stability Axes. As an application of the algorithms just

developed, consider the following problem, which may occur in the synthesis of reference trajectories for an

aircraft. Suppose that the velocity of the aircraft relative to the runway _ (assumed to be inertially fixed) is

given as a function of time, Vr(t). Consider an axis system '_ aligned so that _71 is parallel to the velocity # and

the total nongravitational force is in the ffl-_3 plane with negative projection on _73. Find the direction cosine
matrix Cvr, locating v relative to _ as well as the angular velocity Wvrv, and its two time derivatives and the

force fv (in g's) and its derivatives. We translate the problem in the usual way as follows (g is the acceleration

of gravity).

= ,VI 'I

f= 9-1 _
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_3 =_i x _2

Cvr = vTr

Now, in order to get (Wvrv,_dvrv,(_vrv), three time derivatives of these expressions must be taken. Without

dynamic forms this task is difficult, but with dynamic forms it is easy. We simply replace any implicit or explicit

variable of time in the above set of equations with the corresponding forms in r •

VF3(vlr) = VFa(v_)/lVFa(v_)l

VF3(fr) = g-lvF3(iJr) - VF3(53)

VF3(v2r) = VF3(Vlr) x VF3(/_)/lVF3(vlr) x VF3(fr)l

VF3(v3_) = VF3(vlr) x VF3(v2r)

VF3(vlr)T I

MF3vr= IVF3(v2r)T I

\ yF3(v3_) T ]

RF3r = RF -_MF(MF3r)

The coding is done! The direction cosine matrix, the angular velocity and its two derivatives can now be read

off RF3vr (see appendix C).

The example shows how dynamic forms may be used easily to obtain time derivatives to arbitrary

order from complicated expressions involving functions of scalars, vectors, and matrices. The dynamic

forms keep track of many variables and many detailed computations. In the next two sections, we

consider Euler angle forms and Euler parameter forms and derive the appropriate transformations.

Euler angles and parameters are discussed in reference 1.
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Euler Angle Form

In this section we develop the direct and inverse functions relating Euler angles and rn of their

time derivatives to the corresponding (direction cosine) matrix form. Suppose that Cba is a function of

time and that Wba b = u, a constant unit vector. Then equation (4-10) becomes

Cba = S(u)Cba (4-22)

Consider this to be a differential equation with Cba(0) = I. It is linear with constant coefficients, so

the solution at t = ¢ is

Cba(¢) = e S(u)¢ (4-23)

But

eS(u)¢ = I+ S(u)¢+ $2(u)¢2/2 +...

which becomes, on repeated application of the identity S3(u) = -S(u),

(4-24)

e S(u)¢ = I + sin ¢S(u) + (1 - cos ¢)S 2 (u) = cos ¢I + sin CS(u) + (1 - cos ¢)uu T (4-25)

Note that, since S(u)u = O,

that u is the Euler axis of Cba, that

eS(U)¢u = u (4-26)

axis(e 8(u)¢) = sin Cu

tr(e S(u)¢) = 1 + 2 cos ¢

(4-27)

and that the trace

(4-28)

According to the Euler theorem on rotations, any attitude Cbr may be achieved (parameterized) by a

single rotation from I about an axis u through an angle ¢.

An elementary Euler rotation about axis 6q for q = 1, 2, 3 through angle a is given by

or explicitly:

(4-29)

(4-30)

(4-31)

Eq(o 0 = eS(_Sq)a = cos aI + sin aS(6q) + (1 - cos a)_q_ r

(ioo)E 1 (a) = eS(61)a = cos a sin a

-- sin a cos c_

(cos 0E2(a) = eS('52)a = 0 1 0

sin a 0 cos a
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cosc_ sin& 0
E3(_)=e s(*3)_= -sinc_ cos& 0

0 0 1

The nine possible columns are given by

rj ifj=qEq(_)rj = cos_Sj + sin&S(Sq)Sj else

(4-32)

(4-33)

The following index functions for the index set {1, 2, 3} will be used to simplify notation.

For i -¢ j

and

Then, for example,

u(i,j)=6-i-j

#(i,j) = i - (j mod 3)

(4-34)

(4-35)

h(i,j) = { I_(i,j)-1

if #(i,j) ¢ 2

if #(i, j) = 2

(4-36)

S(6i)rj = h(i, j)6v(i,j) (4-37)

The function u(i, j) returns the integer that is different from either i or j. The function h(i, j) returns

the sign of the projection of S(ri)5 j on 6v(i,j). It may be noted that

h(j, i) = -h(i, j) (4-38)

With the aid of these index functions equation (4-33) may be changed to the following more convenient
form

6j if j=q
Eq(o06 j = (4-39)

cos o_6j + h(q, j) sin o_6u(q,j) . else

Therefore, if C = Eq(o O, the elements of C are given by

Cij = { 6ij if j = q
cos a6ij + h(q, j) sin a6iu(q,j ) else

(4-40)

where axes subscripts on the direction cosine matrix C have been dropped temporarily to simplify

notation. It is easy to raise this algorithm to order m:
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ALGORITHM: MFm(C)= Eq[SFm(o_)]

do i=1,3

do j = 1,3

MFm(C)ij = { SFm('siJ)
cos SF m (o_),Sij + h(q, j) sin SF(a)riu(q,j )

end do

end do

if j = q

else

Next consider sequences of elementary rotations. Let C be a composite of three elementary

rotations, with ql ¢ q2 ¢ q3, that is, an Euler sequence

c = (4-41)

Note the usual reverse order. The first rotation in the sequence is Eq3(OL3): it is about axis q3 through

angle c_3. If ql = q3, we will refer to the Euler sequence as repeating; if ql _ q3, nonrepeating. The

elements of C may be computed by the indicated matrix product in equation (4-41). See page 20 of

reference 1 for an expanded view of equation (4-41) for the twelve possible sequences.

Example 4.2. Normally in flight control the attitude of the aircraft body axes b relative to the runway axes r

may be represented by the (1, 2, 3) Euler sequence;

Cbr = EI(¢)E2(O)E3(¢) (4-42)

Alternatively, aircraft attitude may be represented by a redundant sequence:

Cbr = E2(a)ET(_)E1 (a)E1 (¢v)E2(Tv)Ea(Ov) (4-43)

The first two rotations ('Yv,¢v) define the wind axes _, in which u71 is along the relative-velocity vector

ffa = if- vT, where _ is the aircraft velocity, u7 is the wind velocity, and u72 is horizontal, that is, _72- _'3 = 0. The

roll through angle Cv defines the aircraft stability axes _-'. The body axes are reached by an additional corrective

roll a, sideslip/3, and angle of attack a. The aerodynamic forces and moments are typically given as functions

of airspeed [Va[, a, fl, and other variables.

Consider again equation (4-41). Since the algorithms for Eq[SFm(a)] and * have already been

constructed, the zero-order algorithm (4-41) may be raised to order m:

MFm(C) = Eql[SFm(al)] * Eq2[SFm(a2)] * Eq3[SFm(a3)] (4-44)

This algorithm will be denoted as

MFm(C) = MF-<AF[AF_n(a)] (4-45)

where the Euler angle form

(4-46)

lit
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where the three angles are represented by a column,

( O_1 )

OL = _2

_3

and where the rotation sequence is represented by a row,

q= (ql,q2,q3)

(4-47)

(4-48)

Conversely, consider the inverse problem of computing the Euler angles from the direction cosine

matrix. Consider first the middle angle a2. From the defining equation (4-41) it follows that

Eq2(°f2) --/_ql (-°t1)C_/_q3(-°/3) (4-49)

and, since 6ql and 6q3 are eigenvectors of Eqx and Eq3, respectively, that

6qT Eq2 (a2)6q3 = 6_T [cos a26q3 + h(q2, q3) sin a26v(q2,q3) ] = 6T C6q3 (4-50)

T
If ql = q3, then, since 6q16q3 = 1 and 6T6v(q2,q3)_, = 0, let

(4-51)

T
If ql ¢ q3, then, since 6T6q3 = 0 and 6ql6r, tq2,q3_,, = 1, let

(4-52)

Then, in either case,

The range of a2 is given by

or2 = arctan(y2, x2) (4-53)

= /{0<a2<Tr}' ifql =q3R2

t {-7r/2 < a2 < 7r/2}, if ql # q3

(4-54)

The solution corresponding to the negative square root is

t --c_2 -Jr 7r

if ql = q3

if ql # q3

(4-55)
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Therangea_ is given by

(-Tr < o_ < 0}, if ql = q3R_= {Tr/2<__<Tr}U{-Tr<a_ <-7r/2}, ifql _q3

(4-56)

Conditions on the boundary separating regions R2 and R_ are known in practice as gimbal lock.

Next consider angle al. From the defining equation (4-41) it follows that

Eq2(OL2)Eq3(Ot3) = E T (al)C (4-57)

so that
T T

_qTEq2 (O_2)Eq3 (O_3)6q3 = 0 = _q2E_l (Oq)C(_q3 (4-58)

Equation (4-39) may be used to simplify the premultiplier of the last term:

T T
0 = _q2E_tl (oq)C6q3 -- cos aly 1 - sin alXl (4-59)

where

and

x I = -o-(q)h(ql, q2)Cu(ql,q2)q3
Yl -- a(q)Cq2q3

1 if ql = q3a(q) = -6 T S(6q2)6q3 if ql ¢ q3

It may be noted that, for ql # q3,

(4-60)

(4-61)

a(q) = h(ql, q3) = -h(q2, q3) = -h(ql, q2) (4-62)

If IXll -q- lyll = 0, then we have a singular case (gimbal lock) where the middle rotation makes the outer

rotations equivalent: only the sum a 1 + a3 can be computed from C. As noted previously, gimbal

lock occurs at c_2 = -l-7r/2 for a nonrepeating sequence, and at a2 = 0, 7r for a repeating sequence.

Away from gimbal lock, there are two solutions depending on the choice of sign for components in

equation (4-59). One solution is given by

a 1 ---- arctan(yl, Zl) (4-63)

and the other solution is given by

c_ = arctan(-yl,--Xl) = _1 q- 71" (4-64)

The first choice corresponds to a2, whose range is R2. Thus, if ql :_ q3 and a = 0 so that C = I, then

x -- h2(ql, q2)Cqaq3 -- 1
Yl a(q)Cq2q3 = 0
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so al = 0 and not 7r. On the other hand, if ql = q3 and a = (0, 7r/2, 0) so that C = Eq2 (rr/2), then
(using eq. (4-62))

Xl ---- -h(ql, q2)6v(ql,q2)Eq2 (Tr/2)_q3 = h(ql, q2) 2 = 1
Yl = Cq2,q3 = 0

Therefore, in either case we get back al and not a_, which corresponds to a_. Similarly, for a3:

Let

Then

T CEq3 (_o_3)6q 2 = 0 = Y3 cos a3 - z3 sin a36ql

x = -cr(q)h(q2,q3)Cqlq ,(q2,q3)
Y3= "(q)Cqlq2

c_3 = arctan(y3, x3)

The other choice of sign leads to

(4-65)

(4-66)

(4-67)

c_ = arctan(-y3,-x3) = c_3 + 7r (4-68)

The companion to a2 is a 3, and the companion to a_ is a_. Thus we have the following algorithm

(ref. 27) for extracting Euler angles from direction cosine matrices:

  GORIr M: (C, q)>-(a)
if ql = q3, then

X2 -- Cqlql

else

Y2 = h(q2, q3)Cqlq3

end if

x I = -o'(q)h(ql, q2)Ct,(ql,q2)q 3

Yl = tr(q)Cq2q3

x 3 = -tr(q)h(q2, q3)Cql qv(q2,q3)

Y3 = or(q)Cqxq2

oil = arctan(yl, xl)

ct 2 = arctan(y2, x2)

(_3 = arctan(y3, x3)

Example 4.3. Let q = (1, 2, 3). (All twelve cases are given in table 2.1 in ref. 1.) Then

C = E1 (oq)E2 (ot2)E3 (or3) =

i c2c3 c283 _82 I

--ClS3 -4- 8182c 3 ClC 3 -4- 818283 81C2

SlS 3 + ClS2C 3 --SlC 3 +ClS2S3 clc2
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where we abbreviate cosal = Cl, etc. Following the algorithm, h(2,3) = -1; so Y2 ---- -C13 = s2 and

x2= vfi-- s 2.

Next, a(q) = +1, h(1, 2) = -1, and v(1, 2) = 3; so Z 1 = C33 = CLC2, and Yl = C23 = sic2.

Finally, v(2, 3) = 1; so x3 = -Cll = c2c3 and Y3 -- C12 = c2s3.

Thus

If one begins with/3 so that

(_1 = arctan(slc2, ClC2 )

a2 = arctan(s2, Ic21)

a 3 = arctan(c2s3, c2c3)

-rr </31 <rr
-7r/2 </32 < z/2

-r </33 <-

then the combined computation

will produce an c_ =/3. For f12 in the other sector R_, the combined computation will produce an c_ =/3*, so

that the alternate solution a* =/3.

The general algorithm C >--c_ may be raised to order m as follows:

ALGORITHM: AF_n(a) = MF>'- AFq[MFm(C)]
if ql = q3, then

SFm(x2) = MFm(C)qlql

SFm(y2) = _/(1) -[SFm(x2)] 2
else

SFm(y2) -- h(q2, q3)-_lFm(C)q,q3

SFm(x2) = _/(1)- [SFm(y2)] 2

end i f

sFrn(xl) = -o'(q)h(ql, q2)MFm(C)v(ql,q2)q3

SFm(yl) = o'(q)MFm(C)q2q3

SFm(x3) = -o'(q)h(q2, q3)MFm(C)qlqv(q2,q3)

SFm(y3) = or(q)iFm(C)qlq2

SFm(oq) = arctan[SFm(yl), SFm(xl)]

SFm(o_2) = arctan[SFm(y2), sfm(x2)]

SEre(a3) = arctan[SFm(y3), SFm(z3)]

We have just developed an algorithm for extracting EUler angles and their m time derivatives from

the direction cosine matrix and its m time derivatives for any Euler sequence. In fact we have also

Ii
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linked the Rulerangleforms (AF) to the rotationalforms (RE):

AFq ¢_ MF ¢=_ RF

So, for example, the algorithm RF >- AFq extracting the Ruler angle form from a rotation form may

be executed by first transforming the rotational form RF_r into the matrix form MRm(Cbr); then the

matrix form is transformed into the Euler angle form AF_n(abr), namely,

AF_n(abr) = MR>- AFq[MF-_RR(RF_r )] (4-69)

and, conversely, the algorithm for computing the rotational form from the Ruler angle form is

RF_r = ME>- RE{MR _AFq[AF_n(abr)]} (4-70)

As a reminder, we note that angular velocity, angular acceleration, and higher time derivatives, which

are of particular interest in practice, are contained in the rotational form

RF_r = ( Cbr, VFm-l(Wbrb) ) (4-71)

so that, if we have computed REar, then we have also computed Wbrb and m - 1 of its time derivatives.

i

i

Example 4.4. Consider again example 4.1, where the aircraft trajectory represented by the vector form VF4(vr)

was transformed into the rotational form RF3vr, which describes the rotation of the stability axes _" relative to

the runway axes "_. Suppose that, following convention, we represent the attitude of the stability axes relative

to the runway as

Cvr = E1 (¢v)E2 (Tv)E3 (¢v)

Then the roll, flight path, heading angles

and their time derivatives up to order 3 are given by

7v

ev

AF_l,2,3) (avr) = MF_- AF(1,2,3)[M F-_ RF( RF3r)]

Furthermore, if the body attitude Cbr = CbvCvr and, following convention,

Cb. = E2(a)E3(-Z)E1 (p)

then, for the already computed body rotation RE3 r, the evolution of the angle of attack, the (negative) sideslip

angle, and the relative roll angle p
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andtheirtimederivativesaregivensimplyby

ZF_2,3,1) (Otbv) = MF>- AF(2,3,I)[MF -<RF( RF_r * RF3rv)]

where all operations have been already defined. A numerical example is given in appendix C.

Example 4.5. Suppose that a sequence q and Euler angles O_brare given and that the Jacobian Jq(Otbr ) relating

angular velocity Wbr b tO the Euler angle rates _br is desired so that

Wbr b = Jq(Olbr)_br b (4-72)

Then the three columns of Jq are given by three calls to RF-< AFq:

Jq(c%r) = ( {RF-_AFq[(_br,61)]}4, {RF-<AFq[(Obr, 62)]}4, {RF _AFq[(C_br,63)]}4 ) (4-73)

where, as before, (x, y) = (x, y, 0,..., 0).

Example 4.6. Suppose a satellite is required to move so that the Euler angles for a sequence q are a given

function of time, O_br = f(t). In order to check whether the maneuver is executable, we wish to check the

required angular acceleration and acceleration rate. Let

VF3(abr) = [f(t), ](t), }'(t), f(3)(t) ]

The required angular acceleration and acceleration rate are given by the third and fourth items in

RF3r = ( Cbr,Wbrb,&brb,&brb, . .. ) = MF_- RF{MF-<AFq[AF3q (abr)]}

Note that the Jacobian is not needed for this computation.

Example 4.7. Still another example is provided by patching two Euler angle parameterizations. Let one set of

Euler angles abr be given in the nonrepeating sequence q = (1, 2, 3) and another set/_br be given in the repeating

sequence p = (3, 2, 3). Both represent the same motion of the body RFg TM. The two coordinate systems (angles

and ra time derivatives) are related by the back-and-forth maps,

AF_n(_br) = MF>- AFp{MF-<AFq[AF_n(abr)]}

and, conversely,

AF_n(abr) = MF>- AFq{MF-<AFp[AF_n(flbr)]}

Such changes in coordinates are useful when the trajectory passes near gimbal lock in one set of coordinates.

m

Euler Parameter Form

Often in attitude control it is desirable to express attitude error in terms of Euler parameters,

_ = sin(¢/2)u (4-74),7 cos(¢/2)

where the unit column u is the Euler axis of rotation and ¢ is the angle. The direction cosine matrix is

given in terms of Euler parameters by

C = I + 2_S(e) + 2S2(e) (4-75)

:1
II

i

=
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and, conversely,

The constraint is e2 -t- r/2

{ _7 = ½[tr(C) q- 1] 1/2
e = ½axis(C)/rl

(4-76)

= 1. A singularity exists at ¢ = 7r since there are two solutions +u. The

Euler parameter form is defined by the Euler parameters and their m time derivatives,

VFm(e) IPF m = (4-77)

\ SFm(_) ]

The relation between MF_r and PFg m is obtained simply by rewriting the defining equations in

terms of dynamic forms. That is, the algorithm for

MF_r = MF _PF(PF_r )

is obtained simply by converting equation (4-75) to dynamic forms:

MEre(C) = UFm(I) + 2SFm(_) * S[VFm(c)] + 2S[VFm(e)] * S[VFm(c)]

and, conversely, the inverse algorithm

PF_ -- MF_- PF(MF_r )

is the translation of equation (4-76):

SFm(rl) = ½{tr[MFm(C)] + SFm(1)} 1/2
VFm(e) = ½axis[MFm(C)]/SFm07 )

(4-78)

(4-79)

(4-80)

(4-81)

The angle forms (AFq), rotational forms (RF), and parameter forms (PF) are now linked to the

(direction cosine) matrix forms (MF) as follows:

AFq ¢_ M F ¢_ RF

PF

In other words, the algorithm for converting Euler angle form to Euler parameters form is given by

PF_ = MF_- PF{MF -.<AFq[AF_n(O_br)]}

and similarly for any two representations of rotational motion shown in the diagram.

(4-82)
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Attitude Servo

Consider a simplified attitude control problem. Suppose that the object to be controlled (the plant)

is spherically symmetric and that it is described by the following set of equations:

(4-83)

where Cbr and _brb are, respectively, attitude and angular velocity of the body b relative to a reference

'_. There is an intervening integral between the angular acceleration _brb and the control u. In addition,

there is a disturbance u. A block diagram of this plant is shown in figure 4.1. Note that the plant is

of the pure feedback type. The objective is to devise a control scheme for tracking time-varying servo

input Ccr(t). The servo design shown in figure 2.8 may be specialized to attitude control as follows:

Step 1. Command. First consider the command. Construct the corresponding third-order matrix

form MF 3 from the known function of time for the servo input Ccr(t) for t > 0. For example, suppose

that the command generator produces Euler angles and derivatives up to order three, AF3(acr). Then

MF3cr = MF-< AFq[AF3q (_cr)]

Alternatively, MF 3 may have been computed from a translational trajectory as in example 1 where the

dynamic form of the stability axes was computed.

Step 2. Output. Next, from the plant state estimate (assumed to be available at all times t >__0),

3c = &brb (4-84)

^

and an estimate of the disturbance and its rate V_h-'1 (_) with dJbrb = _. + t), construct the plant output

as follows: First compute an estimate of the plant rotation form,

_ = ( Cbr, &brb, Wbrb ) (4-85)

i

|
i

t

V

Figure 4.1. Plant block diagram.

i
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Then transform it into matrix form,

(4-86)

Step 3. Error. Now define the tracking error by the relative transformation, as in reference 28,

MF_c = M'F2br * MF2c (4-87)

The goal is to drive the error close to (I, 0, 0) and keep it there by manipulating the last element of

RF_ra),': namely 5)bcb, which is directly accessible for control. The control law for the error may be

based on various parameterizations, such as Euler angles and Euler parameters. Following reference 29,

we choose the Euler parameters (see eq. (4-81)),

PF_c = = MF_ PF(MF2c) (4-88)

r/(0), @1), @2)

and view the vector part VF 2 (e) as the error state equation, where ue is written in place of e(3) to

emphasize that e (3) is a control variable

(e (0) (e (1)

d/dtle(1) =[e(2) (4-89)

\ e(2) \ u_

The equation is a set of three strings each three integrators long (i.e., a Brunowsky form with Kronecker

indices (3, 3, 3)), as shown in figure 4.2, where each e(i) is three dimensional. The control ue is as yet

undefined. We design an asymptotically stable regulator law g in the usual way (additional dynamics

such as integral feedback could be added to the control law if desired),

ue = g(e (0) , e (1), e (2)) (4-90)

Step 4. Plant Control. In order to implement this control law, u_ must be transformed back into

the plant input u. Thanks to the regulator law, at this point we have raised the order m of VFm(e)

from two to three:

VF3(e) = [VF2(e),u,] (4-91)

and we impose the Euler parameter constraint,

SF3(r/) = [SF3(1) - VF3(e). VF3(e)] 1/2 (4-92)

" oD"'
Figure 4.2. Bmnowsky form for error dynamics.
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thereby raising the order of PFgr_ to three. Then we compute the new

=MF-<PF(P )
Am

and change coordinates to MFbr:

M'_F_r = MF_e * MF_

Finally, we compute the expanded rotation form,

(4-93)

(4-94)

R'F_r = RF -< M F( M-F_r ) (4-95)

The last column of R-'P_r is _bbrb. Hence, the new value of the plant input is given by

u = _Vbrb - u (4-96)

Thus, we have designed a control law for the attitude servo, which will track the variable input attitude

Cbc(t) provided that the total error angle ¢ < rr (eq. (4-74)) and that the control constraints are not
violated.

The block diagram of the resulting servo is shown in figure 4.3.

The input may be given in terms of Euler angles with a fixed sequence, and the sequence may

also be switched. In addition, Euler parameters and direction cosines may be used in any combination

during operation. In all cases the input is transformed into the matrix form MF3er .

f-

AF_(ao,)

,l

GENERATOR

I

MF_, I
I
I
L..

I MF _ _'_ i
I I

I_r I'
I

I ...... I

PF_
_T

[ REGULATOR ILAW ]

PF_=

MF_

I

MF_. __11

1
MF_, I __ I

I I
I ]

REG ULATOR TRANSFORM

STATE

&

DISTURBANCE

ESTIMATOR

?
--V

A v

RFbr (01_=,

Figure 4.3. Attitude servo block diagram.
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If the moment-of-inertia matrix Jb of the plant is not spherically symmetric, the gyroscopic terms

may be viewed as a disturbance,

and, as before,

. (k+l) _ _(k) + _(k)
"'brb --

so vFk(fJ) can be easily computed by the techniques already described.

The servo control algorithm is summarized in table 4-1, where nz is the number of integrators

between u and _brb, which is in this case one. The algorithm is easily generalized to cases with nz > 1

by making the order a variable, that is, by taking the highest order to be not 3 but 2 + nz. A numerical

example of a scanning, spinning satellite is given in appendix D.

Table 4-1. Servo control algorithm nz = 1

Purpose Algorithm

Given input at t = tn

Change input to matrix form

Estimated plant state at t = tn

Estimated disturbance at t ----tn

Estimated plant rotation form

Change output to matrix form

Change coordinates

Change to Euler parameters

Error state

Raise order with regulator law

Error state and control

Enforce constraint

Change error to matrix form

Change coordinates

Change to rotation form

Control at t = tn+l

AFq3(- )
MF 3 = MF-_AFq[AF3(acr)]

VFl(g,) = (£', _)

M"-F_r = M F -'<RF( R'F2br )
2 _2 2

MFf_ c = MFbr * MF¢. c

PF_c = MR>- PF(MF_c )

(_, _, _')=VF 2(E)
_(3)= g ( c, _, _)
VF3(e)=(e, _, _, .e (3))

SF3(rl) = [SF3(1)- VF3(e). VF3(e)]I/2

MF3b.c. = MF -.<PF(pF3c)

M--F_r = MF3c * MF3cr

R"F3br = MF_- RF(M"-F 3)

_-p3u = (R _)3 - _'
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5 CONCLUSION

The formalism of dynamic forms has been presented. The formalism may be used to translate

effectively and systematically zero-order algorithms into m-order algorithms. In this way, for example,

a large subroutine that computes the total force and moment acting on an aircraft for a given input, such

as aircraft state, controls, and wind, may be routinely converted into the corresponding subroutine that

computes the forces, moments, and time derivatives up to any order for given input and time derivatives

to that order. Similarly, derivatives can easily be passed through elaborate coordinate changes. It was

shown how this capability may be used to organize and simplify the design of control systems. Whereas

many examples were provided to illustrate the application to automatic control, the emphasis was on

the formalism of dynamic forms. Current research is concerned with specific aircraft applications and

with the interpretation of control problems, in general, in terms of dynamic forms.

L

L
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APPENDIX A

NOE NUMERICAL EXAMPLE

A specific numerical case of the nap-of-the-Earth (NOE) maneuver discussed in example 2.2 is

given in this appendix. Let the height h and width o" in feet of the Gaussian cap

h = hm_e-(X/_)2-(u/_)2

above a flat terrain be

(hmax (50)_x | = 50

Oy J 100

and let the horizontal path be as shown in figure A-1. The peak is at 50 ft; the level curves are I0 ft

apart. The helicopter slides along the cap from the third quadrant, scoots around the peak, and leaves

¥:

_g

x (ft) o

15

-160 -80 0 80

y (ft)

Figure A-I. Plan view of the flightpath and the Gaussian cap.

160

53



the area. The maneuver consists of four control points linked by polynomial segments each lasting

4 sec.

The scalar form of arc length SFS(s) is evolving according to figure A-2. The arc length s shown

in the first panel grows from 0 to about 400 ft. The speed _ shown as the solid line in the second panel

is initially 50 ft/sec. During the first 4 sec it is reduced to 20 ft/sec, where it is held during the turn.

Finally the helicopter accelerates at a constant 10 ft/sec 2. The acceleration g is shown dotted in the

second panel. The first s (3) and second s (4) derivatives of acceleration are shown in the third panel, and

the fifth time derivative of the arc length s (5) is shown in the bottom panel of the figure. The higher

derivatives may be of interest for the verification that neither the pitch control nor the pitch-control

rate exceeds its limit. Thus, if the approximation is made that longitudinal acceleration is controlled by

the pitch angle, say 0, namely g = -90, then _ = -s(4)/9 determines the pitch-control requirement,

whereas 0 (3) = -s(5)/9 determines the pitch-control rate.

The scalar form of the heading angle SF3(_b) is shown in figure A-3. Initially the heading _, is

-30 deg, and it is held constant for the first 4 sec. Then follow two successive 90-deg turns to the

right. Finally, the helicopter exits at 150 deg. The angular rate is bounded by 1 rad/sec, and angular

acceleration, by 1 rad/sec 2. The time rate of angular acceleration _(3) is shown in the last panel. This

derivative is useful for the verification that the yaw-control rate is not excessive during the maneuver.

The shape of the Gaussian cap and the evolution of the arc length and the heading angle are

considered in this example to be independent inputs. The helicopter is constrained to stay on the

Gaussian cap while executing the maneuver. Consequently the altitude becomes a dependent variable,

whose evolution SFS(h) is shown in figure A-4. The vertical acceleration, which is bounded by

16 ft/sec 2, has a major influence on the required thrust. The higher derivatives indicate the dynamic

requirement from the thrust generator.

Figure A-5 shows the (scaled) energy flow SF2(e). The total kinetic and potential energy e, the

power _, and the time rate of power _ are all shown.

This example illustrates the ease with which a variety of time derivatives of transformed functions

of tittle can be computed by means of dynamic forms. It should be noted that, since we are discussing

command-trajectory generation, the differentiation of noisy data is not an issue.

i
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APPENDIX B

AUTOMATIC CONTROL EXAMPLE

"%

This appendix contains an application of the control structure shown in figure 2.8 and the corre-

sponding control algorithm C f, which is repeated below for convenience.

A ,GORIrH :Up= CS[Zp,SFn(zlc)]
sFn-l(xlp) -- Tlf(xp, O)

SFn-l(e) --_ SFn-l(xlp) - SFn-l(xlc)

e (n) = k[SFn-l(e)]

sF-( lp) = +
[SFO(up), Xp] = Tlfl [sFn(xlp)]

Up = [SF°(up)]o

Suppose that the plant is described by a four-dimensional state and that the state equation is as
follows:

X2p

JCp --

sin(O.2Xlp)X2p + (2 + cos t)X3p

X4p

up )

This system is the same one used in example 2.3, where the algorithm 7"11 was constructed, and in

example 2.4, where the algorithm T1) 1 was constructed. The only item remaining to be specified is the

regulator. We choose a simple linear, constant-gain regulator:

e (4) = -kle - k2 e(1) - k3 e(2) - k4 e(3)

and place one critically damped pole pair at 0.5 rad/sec and the other at 1 rad/sec. Of course limiters

and additional dynamics such as integrators could have been used, Now Cf is completely specified.

Next consider the inputs. Suppose that the input to be tracked consists of four segments, each

lasting 4 sec and taking the system from Xlc = 0 at the beginning of the maneuver to

/64_

0

=
0

at the end. The time history of the input SF4(xlc) is shown as solid lines in figure B-1. The system is
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commande toreachsteadyacceleration--2atthe waypointate=4, toreach ----0
at the second waypoint at t = 8, where the speed .,.(1) = 8; the boundary condition at the third waypoint

'_lc

is a steady ..(2) _ -2; finally, the boundary condition at the fourth waypoint at t = 16 is the desired"_1C --

steady position Xlc = 64. The response of the plant SF4(:rlp) with initial condition Xp = 0 is shown

in the figure by dotted lines. The higher plant state coordinates (2:3p , X4p ) and the control Up are shown

in figure B-2. Also shown in the figure are the "damping" term ql = a sin(bxlp)Z2p as a solid line and

the "effectiveness" of Z3p, namely q2 = [2 + cos(ct)], as a dotted line. The regulator error SF4(e) is

shown in figure B-3. It may be noted that tracking is good despite considerable activity in ql and q2.

The region near t ----9 is especially disruptive because ql is maximum while the effectiveness of Z3p,

namely q2, is near minimum.

The response to initial offset,
/i0_

0

Xp(0)=
0

_0j

is shown next for the same input. Figure B-4, as figure B-1, shows both the reference and the response.

The plant tracks the input asymptotically. In addition, as shown in figure B-5, the error behaves as an

autonomous response of constant linear dynamics with the assigned poles. The sampling rate was 100,

and the integration step size, 0.01.

This simple example illustrates the application of dynamic forms to control. It should be clear that

the same control algorithm Cf can be easily extended to practical cases in which, as noted previously,

the implementation of the zero-order function f requires more than 4,000 lines of FORTRAN. An

application of Cf to attitude control is given in appendix D.
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APPENDIX C

STABILITY AXES NUMERICAL EXAMPLE

For a specific numerical case of example 4.1, we consider the Euler angles of the stability-axes

system. Let

(c°s_c°s_/Vr = VUr = v I cos 3"sin ¢

\ - sin 3'

and let the speed v, the heading angle _, and the glidepath angle 3' evolve according to

8F4(¢) = ¢,¢,..,¢(4) = 1.0 0.3 0.4 -0.5 -0.6

SF4(3') \ 3,,_,..,3,( 4 ) ] 0.3 0.1 -0.2 -0.1 0

These conditions may be at time t along the reference trajectory, which meets some given boundary

conditions at the next waypoint. Then the evolution of the corresponding sines and cosines is given by

'cos SF4(¢) "_

sin SF 4 (¢)

cos SF 4 (3")

sin SF 4 (3")

'COS ¢, (COS¢)(1),..., (COS¢)(4)

sin ¢, (sin ¢)(1)

cos 7, (cos 3')(1)

sin% (sin3')(1),..., (sin 3') (4)

'0.54

O.84

0.96

0.30

-0.25 -0.9 0.25 0.76

0.16 0.14 -0.59 -0.33

-0.03 0.05 0.09 -0.08

0.10 -0.19 -0.08 -0.01)

Consequently, the path tangent vector Ur evolves according to

,cossr4 cossF4 //052026033028045/VF4(ur) = [ cos SF4(7) * sin SF4(¢) = 0.80 0.13 0.17 -0.45 -0.22

- sinSF4(3') -0.30 -0.10 0.19 0.08 0.01

the runway coordinates of the velocity and their four derivatives are

VF4(vr) = SF4(v)* VF4(ur) =

51 -20 -45 40 67

80 21 7 -32 -41

-30 -12 22 12 -22

'It
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andthe runwaycoordinatesof the total generated force and its three derivatives are (in g's)

-0.64 -1.41 1.25 2.09 )

VF3(fr) = g-lVF3(i_r) - VF3(63) = 0.65 0.22 -1.01 -1.28

-1.39 0.68 0.38 -0.69/

For the unit vector along Vr

0.52 -0.26 -0.33 0.28 )
VF3(Vlr) = VF3(vr)/[VF3(vr)l =- 0.80 0.13 0.17 -0.48

-0.30-0.10 0.19 0.08

It may be noted that (happily), VF3(Vlr) = VF3(Ur), as expected. The normalized cross product,

'-0.60 0.40 -0.17 -1.65

VF3(V2r) = VF3(Vlr) × VF3(fr)/IVF3(Vlr) × yF3(fr)l = 0.59 -0.23 -0.30 1.53

0.55 0.68 -1.10 0.66

and, for third-axis vector,

VF3(v3r) = VF3(Vlr) x VF3(v2r)=

0.61 0.61 -0.86 0.64

-0.11 -0.27 0.95 0.04

0.78 -0.51 -0.09 2.31

The matrix form, MF3r = ( Cvr, Cvr, Cvr, C(v3) ), is just a rearrangement of the vector form VF3(vir):

0.520.80_0.30 ,(_0.260.13_0.10/]-0.60 0.59 0.55 / ' 0.40 -0.23 0.68 ,...

0.61 -0.11 0.78 / 0.61 -0.27 -0.51/

The v-coordinates of velocity "Y and its derivatives are given by the Coriolis product,

VF3(vv) = MF3vr * VF3(vr) = iloooolooO15oo2i)
67



Thus, asexpected,the activity is only in the top row, which is equalto SF3(v). The v-coordinates of

the force f and its derivatives are given by

VF3(fv) = ._IF3v. VF3(fr) =
0061 -0.37 0.42 0008)

0 0

\-1.55 -0.21 -0.06 3.90/

It may be noted that there is no lateral component: fv moves only in the 61 - 63 plane, as required.

Next, consider the angular velocity of _' relative to '_ and its derivatives. We transform the matrix

form MF3r into the rotational form RF3r by means of the function MF >--RF to obtain:

RF3r = [ Cvr, VF2(wvrv) ] =

(0.80 -0.98 -0.20)

Cot, 0.25 0.21 0.04

0.18 0.20 -0.37/

The direction cosine matrix Cvr is the first matrix in MFar, above, and

v F2( vrv) = ( vrv,  vrv,  v,-v)

contains the angular velocity and its two time derivatives. The two derivatives of angular velocity are

used to determine whether moment controls and control rates are within their limits.

Finally, we obtain the Euler angles and their time derivatives for the sequence q = (1, 2, 3).

!

m

i

.=

!

AF3q = RF >- AFq(RF3r) =

0.61 0.89 -0.83 -0.33

0.30 0.10 -0.20 -0.10

1.00 0.30 0.40 -0.50

0 1 2 3

The first row corresponds to the evolution of the roll angle SF3(¢). The next two rows give SF3(7)

and SF3(_b), respectively, which are the same (as of course they should be) as the spherical coordinates

given at the beginning of this numerical example.

it
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APPENDIX D

ATTITUDE SERVO NUMERICAL EXAMPLE

B

A specific numerical case of the attitude servo system developed in section 4 is presented in

this appendix. The control algorithm for one intervening integrator is summarized in table 4-1. The

regulator-control law chosen for this example is a simple, spherically symmetric (scalar gains) linear

law with limited position feedback, namely

ue = -sat(20.Oe (0), 1) - 18.14c (1) - 7.83e (2) (D-l)

The feedback gains place the three poles at (s = -5, ( = 0.707, a;n = 2). The position feedback

saturates at 1/sec 3 for each axis. Thus, saturation occurs for [ei[ = sin(¢/2)lui[ = 0.05, which, for

u i = 1, is approximately 6 deg. The overall block diagram of the servo system is shown in figure 4.3.

Now consider the input, given by the command generator as an Euler angle form AFff(acr). Let

the Euler sequence q = (1, 2, 3), so that

Ccr = El(acrl)E2(oLcr2)E3(acr3)

The maneuver consists of four segments, each lasting 4 sec, as shown in figures D-1 and D-2.

Figure D-1 shows the commanded motion in the yaw-pitch plane. Initially all three commanded angles

are zero. The initial segment takes pitch act2 and yaw act3 to 50 and -90 deg, respectively, and, as

shown in figure D-2, brings the roll rate &crl to 1 rad/sec. In the second segment the pitch and roll

rates are held constant while the yaw scans from -90 to 90 deg. During segments 3 and 4 the command

remains at &crl = 1 rad/sec, act2 -- 50 deg, and acr3 = 90 deg, while the second component of the

disturbance u is raised from 0 to 0.1 rad/sec 2, as shown in the bottom panel in figure D-3. The other

components ul = u3 = 0. This figure also shows the command in terms of the angular velocity and
two of its derivatives.

The state estimate is assumed to be exact; the disturbance is estimated erroneously by g, - 0. The

plant, which is initially offset from the origin by abr = (15, 15, -15 ) deg, responds as shown in

figure D-4 in terms of Euler angles and in figure D-5 in terms of the angular velocity and its derivatives.

The regulator error and_--ontrol SF 3 (e) are shown in figure D-6. It may be noted that the position

feedback saturates, thereby reducing the error at constant rate, as shown in the second panel in the

figure. The initial-condition transient is essentially over during the first segment. The final steady

offset in e2 counteracts the disturbance in the usual way. Figure D-7 shows the error in a phase plane,

where constant-speed sections are clearly visible. Note also that the changes in the input AFff(acr) are

practically decoupled from the error. Finally, figure D-8 shows the tracking in the yaw-pitch plane with

initial offset and disturbance. The hangoff in terms of Euler angle error is not steady (see fig. D-4).
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