National Aeronautics and
Space Administration

198 R

WW 4 I;
(R
‘ :

S | George Meyer
and G. Allan Smith

(NASA-TP-3397) DYNAMIC FORMS. PART N94-13790
1: FUNCTIONS (NASA) 86 p

X

/déQ?

§6F

Dynamic Forms
Part I: Functions

[

I

Unclas

& G

H1/31 0186032

R

|



T




NASA
Technical
Paper
3397

1993

NANASA

National Aeronautics and
Space Administration

Ames Research Center

Dynamic Forms
Part I: Functions

George Meyer
and G. Allan Smith

Ames Research Center, Moffett Field, California

Moffett Field, California 94035-1000



-



CONTENTS

NOMENCLATURE
SUMMARY
1 INTRODUCTION

2 SCALAR FORMS
AIGEDIA . . o o i e
Powers and Polynomials . . . . . . ... ..o
Inverse, Division, Fractional Powers, Logarithms, and Exponentials . . . . ... ... ....
Trigonometric Functions . . . . . . . .. oL oo
Partial Derivatives . . v . o o i e e e e e e e e e e e e e e e e e e e e e e
Function INVEISE . . . v v v v v e i et e e e e e e e e e e e e e e e e e
Differential EQUations . . . . . . . . . . . o oo
Dynamic INVEISe . . . . . . . . oot oo e

Automatic Control . . . . . . o e e e e e e e e e e e e e e e e e e e e e e

3 VECTOR AND MATRIX FORMS
Algebra . . . . . e e
DErVALIVES . . v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e

EXAMPIES . . . o o v vt i e e e e e e e e e

4 ROTATIONAL FORMS
Algebra . . . ..
Euler Angle Form. . . .. ................ e
Euler Parameter FOIM . . . . . . o o o o o o e i e e e e e e

AtHtUde SeIVO .« o v o o e e e e e e e e e e e e e e e e e e e e e e e
5 CONCLUSION
APPENDIX A—NOE NUMERICAL EXAMPLE
APPENDIX B—AUTOMATIC CONTROL EXAMPLE

APPENDIX C—STABILITY AXES NUMERICAL EXAMPLE

PRECEDING PAGE BLANK NOT FILMED

11
13
17
18
20
23
26

28
29
31
31

34
35
38

48
52
53
59

66



APPENDIX D—ATTITUDE SERVO NUMERICAL EXAMPLE
REFERENCES

iv

69

78



-~

Wabe

SF™(z)
SF™(0)
SF™(1)
(z,a)
{SF™(x)}

VF™(vg)
VF™(0)
VE™(6;)
VE™(vg);

MF™(X)
MF™(0)
MF™(I)

NOMENCLATURE

right-handed orthonormal axis system a
axis operator; see equation (4-5)

o
3 x 3 right-handed direction cosine matrix, rotation matrix from b to a@
binomial coefficient, namely k!/[i!(k — )]

elementary (Euler) rotation about axis ¢ through angle «

partial derivative of f with respect to

polynomial of degree n with constant coefficients

polynomial of degree n with possibly variable coefficients

n-tuples of real numbers

cross-product operator; see equation (3-3)

saturation at a for |z| > a

transpose of matrix X

inverse of matrix X

time derivative of x

estimate of x

vector

mth time derivative of

. . - . —
column matrix of coordinates of £ with respect to a

—

Euler angles of axis @ relative to axis b

unit column matrix with 1 in location %
—

‘c-coordinates of angular velocity of @ relative to b

Scalar Forms
scalar form of z to order m, namely (x, T, x(z), . ,a:(m))

zero scalar form, (0,...,0)

unit scalar form, (1,0,...,0)
abbreviation for ( z,a,0,...,0)
value in the k* location, namely (k)

Vector Forms

vector form of ¥ in @ to order m, namely (va,ija, L ,v((zm))
zero vector form, namely (0,...,0)
unit vector form, namely (§;,0,...,0)

th

scalar form of the ¢*"* component, namely ('Uai, Daiy - - ,v(m))

ai
Matrix Forms
matrix form of X to order m, namely (X X, X (m))

zero matrix form, namely (0,...,0)
unit matrix form, namely (1,0,...,0)



MF}

RF}

RF?
AFc;n(aab)
PF%

*

Cy
fISF™(z)]
fSF™(z)]
Ty¢

-1

1f
tay[SF™(z), 7]
MF>RF
MF<RF
MF - AF,
MF<AF;
MF > PF
MF<PF
XY>CY
XY <CY
XY -SSP
XY <SP

vi

matrix form of rotation matrix Cj, namely (Cab’ Coabr--» C(S,n))

Rotational Forms

«—
rotational form of @ relative to b to order m, namely
( . (m-1) )
Caby Wabar Wabas - - - Waba
identity rotation form, namely (7,0,...,0)

— . hnd
Euler angle form with sequence q of a relative to b to order m

3
Euler parameter form of @ relative to b to order m

Functions of Dynamic Forms
product operator
control algorithm for pure feedback systems
scalar form of f(x), namely (f(:c), f(z),..., fm (:c))
scalar form of the inverse function f~!(z) of f(z)
algorithm computing the output of a dynamic system
algorithm computing the control of a dynamic system
first m + 1 terms of the Taylor series of z(t + 7)
transformation taking matrix forms to rotational forms
transformation taking rotational forms to matrix forms

transformation taking matrix forms to Euler angle forms in sequence ¢
transformation taking Euler angle forms in sequence ¢ to matrix forms

transformation taking matrix forms to Euler parameter forms
transformation taking Euler parameter forms to matrix forms
transformation from Cartesian to cylindrical coordinates
transformation from cylindrical to Cartesian coordinates
transformation from Cartesian to spherical coordinates
transformation from spherical to Cartesian coordinates




SUMMARY

The formalism of dynamic forms is developed as a means for organizing and systematizing the
design of control systems. The formalism allows the designer to easily compute derivatives to various
orders of large composite functions that occur in flight-control design. Such functions involve many
function-of-a-function calls that may be nested to many levels. The component functions may be
multiaxis, nonlinear, and they may include rotation transformations.

A dynamic form is defined as a variable together with its time derivatives up to some fixed but
arbitrary order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler
angles, or Euler parameters. Algorithms for standard elementary functions and operations of scalar
dynamic forms are developed first. Then vector and matrix operations and transformations between
parameterization of rotations are developed in the next level in the hierarchy. Commonly occurring
algorithms in control-system design, including inversion of pure feedback systems, are developed in the
third level.

A large-angle, three-axis attitude servo and other examples are included to illustrate the effectiveness
of the developed formalism. All algorithms have been implemented in FORTRAN code. Practical
experience shows that the proposed formalism may significantly improve the productivity of the design
and coding process.

1 INTRODUCTION

This report presents a new procedure and a collection of algorithms for the solution of several
problems associated with the design of automatic control systems. Our paradigm will be aircraft flight
control, but the methods apply in other domains such as spacecraft attitude control, robotics, and process
control. For flight-control design purposes, an aircraft may often be adequately modeled as a rigid body
with force and moment generation that depends on the state of the motion of the rigid body, the controls,
and wind. The design of the corresponding fully automatic flight-control system with large operating
envelopes may be difficult for several reasons:

For all but very restricted small-angle maneuvers, both the fact that nonlinearities are associated
with rigid rotation and the fact that the space of rotations is not flat become significant. Rigid body
attitude is typically represented by direction cosine matrices or Euler angles in some sequence, or, in
the case of spacecraft, Euler parameters (ref. 1). The link between the time derivatives of these attitude
variables and the angular velocity and its derivatives is nonlinear and may even become singular. Thus,
rotations introduce nonlinearities and singularity into the state equation. In order to avoid singularities
it may be desirable to change from one representation to another at points along a flight maneuver. For
example, the usual yaw-pitch-roll sequence becomes singular (gimbal lock) for 90 degrees of pitch, and
in the vicinity of this condition it may be desirable to change to the yaw-pitch-yaw sequence. Each
such change in representation entails a corresponding change in the state equations. The control system
must be designed to operate in the various state space representations (coordinatizations), and the switch
from one coordinate system to another must be made smoothly. Smooth patching of coordinates requires
various-order derivatives of the right-hand side of the state equation (system function).



In many cases the nonlinearity of the force and moment generators may not be ignored, especially
for powered-lift aircraft that have strong nonlinear and rather complex interaction between power and
aerodynamics. A typical algorithm for the computation of the total force and moment acting on the
aircraft may contain more than 4,000 lines of FORTRAN code (ref. 2). The input to the algorithm is at
least 19-dimensional, consisting of the state, which is at least 12-dimensional, plus the controls, which
are at least 4-dimensional, plus wind; the output is 6-dimensional, consisting of the 3-dimensional force
and moment vectors. Inside the algorithm, the input flows through many successive functions so that the
analytic form of the multivariable function represented by the algorithm is a deep nesting of elementary
functions and table interpolations. The depth of nesting (e.g., square of sine of square root of sum of
squares of ... etc.) easily exceeds dozens of levels. Consequently the analytic computation of such a
simple object as the overall 6 x 19 input—output Jacobian matrix may be a formidable task. But such
mathematical objects are needed if the designer is to improve system performance by taking advantage
of the information contained in the force and moment model.

The number of controls often exceeds the basic four. In addition to the three moment and one
throttle controls, there may be controls for directing thrust (such as a one- or two-degree-of-freedom
nozzle), direct lift (such as a spoiler), side force, and flaps. The set of all the controls may be redundant
in the sense that many combinations of controls produce the same total force and moment on the aircraft.
This redundancy may be resolved advantageously by partitioning the set into two sets: the nonredundant
set of active controls and the set of parametric controls. The active controls are manipulated by the
regulator; the parametric controls are manipulated by a configuration-management system so as to
maintain selected control margins for the active controls as well as to maintain certain functions of the
state (such as the angle of attack) within the assigned limits (ref. 3). Each such partition represents
a particular control mode. Typically there are several control modes, and there may also be several
tracking modes. Each such mode is associated with a particular functional dependence of the output on
the state. For example, near hover, the output may be the three Cartesian coordinates of the velocity
vector; at a higher speed, the output may be defined as cylindrical coordinates of the velocity, namely,
horizontal speed, heading, and vertical speed; at a still higher speed, the output selected for tracking
may be the spherical coordinates of the velocity, namely, airspeed, glide-path angle, and heading angle.
Each combination of control and tracking modes defines an operating mode. Thus, near hover, the
nozzle may be an active control, and the pitch angle may be programmed independently. At high
speed, the nozzle may be fixed, that is, programmed independently, and regulation is then achieved
indirectly through the pitch angle. Each operating mode is a separate control problem with its particular
control variables, output variables, and, possibly, state variables and state equation. The control-system
design must incorporate many such operating modes and provide smooth intermode transitions. Smooth
patching of modes requires various-order derivatives of the system function.

The flight-control system as considered in this report includes the functions of configuration man-
agement, in which operating modes and reconfiguration commands are computed; guidance, in which
flyable reference trajectories linking way points given by, say, air traffic control, are generated; and
regulation, which ensures tracking of reference trajectories in spite of unavoidable uncertainties and
approximations in system modeling. If the operating envelope is small enough relative to system non-
linearity, then linear design methods based on a single Jacobian matrix (perturbation model) of the
system function, evaluated at a single operating point (trim point), are adequate for the purposes of
regulator design. In such a case, the Jacobian matrix may be computed numerically by perturbing each



input variable (ref. 4). For larger envelopes, robust single-point linear designs (ref. 5) based on one
representative value of the Jacobian matrix may be adequate in spite of actual variations of the matrix.
Since the operating point is now a variable, feed-forward signals (particular solutions) may have to be
provided to reduce tracking error and unload the feedback (ref. 6). Nonlinear methods become essential
for the design of flight-control systems with large operating envelopes. Two situations arise: If the
inner-loop dynamics (attitude control) can be made sufficiently fast relative to the outer-loop dynamics
(trajectory control), then the nonlinearity of the force and moment function may be removed by means
of numeric inversion (refs. 7-13). The nonlinear control theory based on differential geometry (refs. 14
and 15) provides design techniques when such a separation is impossible. One fruitful technique is
based on a coordinate change of state and control in order to simplify the form of the state equation.
In certain practical cases, a coordinate change may suppress the nonlinearity to the extent that linear
design techniques become applicable in the new coordinates (ref. 16). Techniques are also available
for the generation of the nonlinear analogs of the particular solution (refs. 17 and 18). The practical
drawback of such techniques, for the case of flight control, is that they have a voracious appetite for
various-order derivatives of the force and moment functions.

Thus, the design of large-envelope flight-control systems is difficult because the state space is
not flat, the force and moment function is big and complicated, and many operating modes must be
considered. The difficulty can be further traced to the need for high-order differentiation of the system
function. There are three differentiation techniques: hand, symbolic, and automatic. Hand differentia-
tion and coding is very tedious and highly unreliable for the size of problems being considered. The
other two alternatives are much more appealing. The symbolic approach would be to machine translate
the, say, FORTRAN code for the system function into the appropriate language (such as MACSYMA,
MATHEMATICA, or MAPLE) within which differentiation is defined, and then proceed with the non-
linear design techniques employing the derivatives. Applications of this approach to relatively small
systems have been successful (ref. 19). However, for larger systems (4,000 lines of FORTRAN) involv-
ing deeply nested functions, symbolic methods may be slow and may often produce large, unmanageable
expressions (ref. 20).

The remaining choice for the computation of derivatives, automatic differentiation, is based on the
fact (known since Leibnitz) that Taylor series, which carry derivatives as coefficients, can be propagated
through an arbitrary sequence of elementary functions without any truncation error. Thus, automatic
differentiation does not suffer from the rapid-chain-rule fanout of terms that plagues the symbolic dif-
ferentiation. Furthermore, machine translation into an automatic-differentiation language is as practical
as it is for symbolic languages (ref. 21).

The theory of dynamic forms (ref. 22) described in the present report may be considered to be a
particular example of automatic differentiation and a basis for a formal language for the computer-aided
design of automatic control systems.

A dynamic form is defined as a variable together with its time derivatives up to some fixed, but
arbitrary, order. The variable may be a scalar, a vector, a matrix, a direction cosine matrix, Euler angles,
or Euler parameters. Most of the report is devoted to the translation of a set of elementary functions and
operations into corresponding functions and operations on dynamic forms. The set is rich enough so
that typical system functions occurring in flight control may be assembled from the members of this set.
Whereas many examples are provided to demonstrate the application of the methodology to automatic



control, the emphasis in the present report is on the formalism of dynamic forms. The emphasis in
future reports will be on the application of dynamic forms and on the reformulation of control problems
in terms of dynamic forms.

2 SCALAR FORMS

Mathematical models of practical dynamic processes such as an aircraft frequently contain functions
of functions to many levels. A small example of a typical case is shown in figure 2.1. In the figure the
output y is related to the input z = (z1, z9,z3) by a function f, which is built up from the elementary
functions such as trig functions, powers, roots, exponentials, and, of course, addition, subtraction,
multiplication, and division. The function f so constructed then becomes a block in a higher level
function and so on until the final level, say w = F'(u), is reached. Implementation of such a function F’
as an algorithm on the computer is routine, even though in practice the algorithm may easily take
4,000 lines of FORTRAN. On the other hand, the symbolic expression of F' becomes unwieldy. Even
the simple example fragment f of the complete algorithm F' is beginning to look complicated.

y = f(z1,72,23) = fo{f3(x3) * falf1(z1) + fa(z2)]}/ f3(z3) (2-1)

The function is six levels deep in the sense that six function calls (/, f5, *, f4, +, f2) are needed to get
from zo to y. Now, whereas the analytic form is not needed for simulation, it is often used during
design and analysis for the computation of, for example, time derivatives, gradients, partial derivatives,
and Jacobian matrices. Suppose that we wish to compute the first five time dernivatives of the output y
in figure 2.1 given the input (z1,z9,x3) and its first five time derivatives. Repeated use of the chain
rule would produce rather long expressions. In general the length grows rapidly with the depth of the
nesting. The same considerations apply to partial and other derivatives since they can be expressed in
terms of time derivatives. Indeed, an effective procedure for computing time derivatives can be easily
adapted for computing other derivatives. This procedure will be discussed later in the report, so we
focus on the computation of time derivatives. The scalar dynamic forms discussed next greatly simplify
the computation of time derivatives.

Suppose that a scalar variable z is a function of time. Imagine an array with z in location 0, time
derivatives running to the right, and time integrals to the left:

(... 3, ffz, [2, 2, @ # 2@, ...) (2-2)
Ny 1)
Xo-+8 £, )1» f( )+?—> fo )—>$-->y
X319 fs() )

Figure 2.1. Typical nested fragment f.



The scalar form SF™(x) of order m is a glimpse at this array through a window at locations 0 through
m. That is,
SF™(z) = (z,%,...,2(™) 2-3)

where z € R! is a function of time and z(™) in location m denotes the mt" time derivative of z.
Location 0 contains z = z{%). Scalar forms will be denoted by the symbol SF to distinguish them from
other dynamic forms to be introduced later in the report.

A time derivative of a scalar form will be defined as a right shift of the window:
d/dtSF™z) = SF™(&) = (&,%, ...,z (2-4)

The integral of a scalar form is given by a left shift of the window:

/SFm(m)zSFm(fx)=(f:r:,a:,:i:,...,a:(m—l)) (2-5)
We use the following notation for extracting a time derivative from a form:
k) ifo <k<m
{SF™(2)}g = (2-6)
: 0 else

There is a close relation between a dynamic form SF™(z) and the first m + 1 terms of a Taylor series
expansion of z(t) at t. Thus,

1
m!

1
x(t+7')z:c+:i:7'+§fi'7'2+...+ g(m)ym

where the time derivatives z(¥) are contained in SF™(z). We use the notation

z(t + 7) =~ tay[SF"(z), 7] = i {SFm(:r:)}k'rk/k! (2-7)
k=0

Algorithms such as equation (2-1) may be considered to be of order zero. The primary objective of
this report is to develop a formalism for easy conversion of such zero-order algorithms into corresponding
algorithms of order m > 0. Thus the algorithm in (2-1) will translate into

SF™(y) = f5 (f3[SF™(x3)] * fa{ fi[SF™(x1)] + fo[SF™ (z2)]}) / f3[SF™(z3)]  (2-8)

where the input is given by the three scalar forms (variables and their time derivatives up to order m)
SF™(z1) = (a1, 41,...,25")
SF™(zg) = (z2,82,...,75")

SFm(.’L‘.3) = (333, i PR xz(gm))



the output is given by the scalar form (variable and its time derivatives up to order m)

SF™(y) = (3,3, ...,y™)

and the meaning of f; and the operators in equation (2-8) will be developed next. The formalism
will allow us automatically to translate large zero-order algorithms such as an aircraft total-force-and-
moment subroutine, which, as noted earlier, may contain 4,000 lines of FORTRAN, into an mth order
algorithm, That in turn may be used for the design of control algorithms such as the generation of
reference trajectories and model inversion. Examples of such designs will be given later in the report.

Let us now proceed with the development of the formalism. We shall first convert elementary
functions to the corresponding functions of scalar forms. Then, with these functions as basic building
blocks, we will assemble a hierarchy of composite functions that are particularly useful for the design
of control systems.

Algebra

Zero and unit scalar forms are defined, respectively, by

SF™0) =(0,...,0) (2-9)
SF™(1) =(1,0,...,0) (2-10)
The scalar form of time is
SF™(t)=(¢t, 1, 0,..., 0) (2-11)
To simplify notation, we assume padding with zeros:
(z,a) = (z,4q,0,...,0) (2-12)
Thus, we may write
SF™(0) = (0)
SF™1) = (1)

SF™(t) = (t,1)

It is possible to define sum, product, inverse, and division for scalar forms. If 2 = ax + by and a
and b are constant in time, then for 0 < k < m

20) = az®) 4 py(k) (2-13)

An outline of the algorithm for scalar-form sum is shown next, where scalar forms are treated as scalar
arrays.



ALGORITHM: SF™(z) = SF™(z) + SF™(y)

do k ==0,Tn
z(k) =@ * m(k) +bx* y(k)
end do

The effect of the algorithm will be denoted as
SF™(z) = aSF™(z) + bSF™(y) (2-14)
Note that
SF™(z) — SF™(z) = SF™(0)

If z = Ty, then the k*? derivative, 0 < k < m, of z is given by the Leibnitz product rule (convolution,
ref. 23):

k . . : '
A0 =3y Clk=1y(0) = 3 Clz(0)y(k=1) (2-15)
1=0 , =0
where the binomial coefficient CF = k!/[i!(k — i)!] may be computed by means of the Pascal triangle:
ck=ck=1 for k > 0
(2-16)
Ck=Ckl+CF! for2<kand1<i<k-1

An outline of the product algorithm is shown next, where as before scalar forms are treated as scalar
arrays.

ALGORITEM: SF™(2) = SF™(z)» SF™(y)
do k ==0,Tn
2k =0
do 1 =0,k
z(k) = z(k) + Clk * x(k"i) * y(z)
end do
end do

The effect of the algorithm will be denoted as
SF™(z) = SF™(z) » SF™(y) (2-17)
The scalar form product commutes since it commutes for real numbers:

SF™(z) x SF™(y) = SF™(y) x SF™(z)

It may be noted that the Leibnitz rule holds also for objects other than scalars. It matters only that
the product is defined for objects z and y so that its time derivative

(zy)D) = 2Wy 4+ 2y 2-18)

We will take advantage of this fact later when we consider vectors and matrices. For now, we return to
scalars.



Powers and Polynomials

The conversion of a zero-order algorithm to the corresponding algorithm of order m is illustrated
by the following very simple case.

If z = z™ for an integer n > 1, then an obvious algorithm for computing 2 is given by

ALGORITHM: 2z = "

z=1

do i=1,n
Z2=2z*I

end do

The rule for conversion to order m is simple: replace any variable of time by its scalar form. Thus, the
algorithm for computing

SF™(z) = [SF™(z)]" (2-19)

is given by

ALGORITHM: SF™(2) = [SF™(z)]"
SF™(z) = SF™(1)
doit=1,mn

SFM(z) = SF™(z) « SF™(z)

end do

where the algorithm (subroutine) for SF"(z) x SF™(xz) has been already constructed (see eq. (2-17)).
The algorithm works for any z but requires n scalar-form products. For z # 0 an algorithm requiring
essentially one product will be constructed when fractional powers are considered later in the report.

Polynomials occur frequently enough in practice to deserve consideration. Let poly),(a,z) denote
a polynomial of degree n in = with constant coefficients a = (ay, . .., an), that is,

poly,(a,x) =ag+ a1z +... +apz" =ag+ (a1 + ... + (an_1 + anz)...x) (2-20)

If z = poly),(a, z), then the following algorithm is a possible realization of poly},:

ALGORITHM: 2z = poly),(a,x)

zZ=anpc

do i = 1,n-— 1
z=(apn_;j+2)*zx

end do

z=ag+ =z

The order of the algorithm is raised from zero to m simply by replacing z and x by SF™(z) and
SF™(x), respectively:



il

ALGORITEM: SF™(z) = polyyla, SF™(z))]
SF™(2) = anSF™(z)
doi=1mn—-1

SF™(2) = [an—;SF™(1) + SF™(2)] x SF™(x)
end do
SFM(z) = agSF™(1) + SF™(2)

This algorithm will be denoted as

SF™(z) = poly;,[a, SF™(z)) (2-21)

Example 2.1. Suppose that we need to generate the fol]owiﬁg polynomial function of time:
z = polyy(a,t) =1+t —t2/2+t3/3! + t4/4!
and that we need derivatives to order six. Then we need to compute
SFS(z) = poly}a, SFO(t)]
Thus, for example, at ¢ = 1, the scalar form of time is
S$F8(t) = (1.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00)

and a call to the poly algorithm with degree= 4 and coefficients

111
a= (laly—'z'viaz!')

SFS(z) = polyh[a, SFO(¢)] = (1.71, 0.67, 0.50, 2.00, 1.00, 0.00, 0.00)

produces the scalar form of z,

This result may be checked by hand: z(1) = 1.708..., £(1) = (1 -t +t2/2+ t3/31)¢=1 = 0.666.. ., etc. Next
suppose that we must pass z through a nonlinear block represented by a polynomial of degree three in z:

z = polyj(b,z) = 1 — 0.50x — 0..50x2 +0.123
Then another call to the poly algorithm of degree three and coefficients
b=(1,-0.5,-0.5,0.1)
gives the scalar form of z,

SFS(z) = polyh[b, SF8(z)] = (-0.82, —0.89, —0.66, —2.46, —0.38, 7.17, 30.31)



Thus, for example, the sixth time derivative of the output of the nonlinear block z, namely z(6), has the value of
30.31 at ¢t = 1. The algorithm is shown as a block diagram in figure 2.2. Clearly the process could be continued
if there were additional polynomial nonlinearities in the sequence, so multiple nesting of polynomials is easily
handled by means of dynamic forms.

1T 1 1
a=(1 12 3 Iﬁ) b=(1 -05 -05 0.1)
: #| poly, »| poly, 6
SF°t)=(t 1 0 0 0 0) SF® (x) SF° (2)

Figure 2.2. Scalar forms for the example of nested polynomials.

In the algorithm poly/, the coefficients are fixed. We denote polynomials with time-variable coef-
ficients by poly,. Thus

z = polyp(a,z) = ag + a1z + ... + apz™ (2-22)

is a polynomial with possibly variable coefficients. The corresponding algorithm for dynamic forms is
obtained from the poly/,(a, z) algorithm in equation (2-20) by replacing not only z and z by their forms
but also a; by SF™(a;) fori=0,...,n:

ALGORITEM: SF™(2) = poly,[SF™(a), SF™(z)]
SF™(2) = SF™(ap) » SF™(x)
doi=1n-1

SF™(z) = [SF™(ayp_;) + SF™(2)] * SF™(z)
end do

SF™(z) = SF™(ag) + SF™(2)

Nonlinear functions of several variables are frequently given in practice in tabular form. Thus,
for example, the subroutine generating the aircraft total force and moment may contain a table and
interpolating routine representing the functional dependence of the moment coefficient on the angle of
attack and the Mach number, Cr, = f(a, Mach). Sometimes such tables may be represented by nested
polynomials, which for two variables may take the following form:

2= f(z,y) = (boo + .- - + bonty™) + (b10 + - - - + b1ny™)T + ... + (bgo + - .. + bgny™)z*

The algorithm for computing m time derivatives of f is easily constructed:

10



ALGORITEM: SF™(2) = f[SF™(z), SF™(y)]
do 1=0,k
SF™(a;) = polyn[b;, SF™(y)]
end do
SF™(2) = polyg[SF™(a), SF™(z)]

where bz' = (bio, .. °=bin )

Thus we are beginning to compute easily time derivatives of fairly complicated functions. In the
preceding example an algorithm was constructed from simpler algorithms that were built up from still
simpler functions. At the bottom of such a hierarchy are functions from a basic set that already includes
sum and product. Next, more functions are added to this set.

Inverse, Division, Fractional Powers, Logarithms, and Exponentials

Many standard functions may be converted to functions of scalar forms by means of the Leibnitz
product rule. In this section we derive the algorithms for =L, z/y, 7%/, ¢, and Inz. Trigonometric
functions cos z, sinz, and arctan(y, z) will be derived in the next section. For convenience, we shall
denote, say, SF*[f(z,y,...)] by f [SF¥(z), SF¥(y),...]. Thus, for example,

InSF™(z) = SF™(Inz) a (ln z,(Inz)),. .., (In w)(m)) (2-23)
The notation will allow such easy visual and machine translation as, for example,
s =00 4 g F™(2) = e a[SF™(2)]2-b[SF™ (y))?

In the following discussion it is understood that for any z, f[SF™(z)] is defined only if f (z) is defined.

If 2 =2x/y and y # 0, then, since £ = zy, the time derivatives 2(%) are given iteratively by the
following algorithm:

o _ (2-24)
20) = (20 — k| Ok k@) y=1 if o<k <m
This division algorithm will be denoted as
SF™(z) = SF™(z)/SF™(y) (2-25)
It may be noted that the cancellation law holds for forms:
[SF™(w)  SF™(z)]/[SF™(w) » SF™(y)] = SF™(z)/SF™(y) (2-26)
In particular, if z = y 1, then, since z = 1/y, the division algorithm produces the inverse.
z(o) = y—l
(2-27)

20) = — (£h; Cklb=Dy(D) g~ if0 <k <m

11



The effect of this algorithm will be denoted as
SF™(2) = [SF™(z)] ! (2-28)
and referred to as the scalar form inverse. Note that

SF™(z) x [SF™(z)]™! = [SF™(z)]~! x SF™(z) = SF™(1)

If z = z%/° for constant integers a, b with b > 0 and z # 0, then bzZ = azd; hence, on application of
the Leibnitz rule to both sides,
k . I3 k . »
Y Chba®) (k=0 = 5™ Ckq (1) (k=) (2-29)
1=0 i=0

But since 3(5=%) = »(k—i+1) and similarly for z,

k k
Z C’,kba:(i)z(k_i"'l) = Z Czkaz(i)a:(k_i“) (2-30)
=0 =0

Or, peeling off the first ( = 0) term, for 1 < k,

k k
brzk+1) 4 Z C’fb:z:(i)z(k—”l) = az(0zk+1) 4 Z Cfaz(i)x(k_iﬂ) (2-31)

i=1 i=1

Consequently, we obtain the following basic algorithm
2(0) = za/b
(1) = (bz)lazz(V) (2-32)
2D = (bz)~1{az(Ogk+1) 4 vF | CHaz(Mglk—i+1) _ pp(d)(k—i+1)]} for 1 < k
The effect of this algorithm will be denoted as
SF™(z) = [SF™(z)]*/® (2-33)

We note that
[SF™(2)]9/% % [SF™(2)]/4 = [SF™(x)](a/0)+(c/d) (2-34)

If z=2z", with z # 0 and n > 0, then

SF™(2) = [SF™(z)]™/1 (2-35)
which will be simplified to

SF™(z) = [SF™(z)]" (2-36)

12



It may be noted that this algorithm involves only one Leibnitz convolution instead of 7 as in the simple
algorithm discused previously.

If z = |z| then, of course,
SF™(z) ifz>0
|SF™ (z)| = (2-37)
-SF™(z) ifz<0

If z = €%, then 2 = 2% and so, for 0 < k < m — 1, the Leibnitz product rule gives

k
z(k-l—l) — Z Cikz(k_i)x(iﬂ) (2-38)
i=0
We denote this algorithm as
SF™(z) = 57 () (2-39)

Conversely, if 2z = Inz for z > 0, then 200 = Inz and since zz = &, 2(1) = z~1z(1) and for
1 < k < m — 1 the product formula leads to

Z(k+1) — ( k+1) Z Ck (l) (k ’L+1)) (2_40)
i=1
This algorithm will be denoted as
| SF™(2) =InSF™(z) (2-41)
It may be noted that
JSF™ ()] - g F™(z) (2-42)

Other functions may now be built up. For example, the scalar form of a Gaussian, z = be“mz, is
computed easily by first calling the dynamic-form squarer, then the sign change, and then the exponential:

SF™(z) = be~ISF™ @) (2-43)

Note how the notation keeps track of the calling sequence. In effect the result of each call has an

independent existence. On the other hand, the algorithm SF™(z) = SFm(be—x ), while true overall,
is not parsed as a calling sequence of independent subroutines.

Trigonometric Functions

To obtain trigonometric functions, it is convenient to group cos and sin as follows:

21 cosT
z= = (2-44)
22 sinx

13



Then, since
2 =12Qz

where

the derivatives of cos z and sinz are given by
k . .
Sk+1) > Chak=i+1)Q,()
i=0

The algorithm (2-47) for the scalar form of the cos and sin functions will be denoted as
SF™(21) cos SF™(z)
SF™(z5) sin SF™(z)

Conversely, suppose that z is redefined as

with 7 > 0 so that
x = arctan(29, z1)

(2-45)

(2-46)

(2-47)

(2-48)

(2-49)

(2-50)

Then the derivatives of x may be computed without assuming that the norm of z is 1, as follows: From
equation (2-49), 72 = 2Tz and, upon differentiating equation (2-49), z = 7r~lz + £Qz. Premultiplying

the last equation by zTQ and noting that zTQz =0 and QQ = —I, we obtain

izlz = :ZTQz
Let
{ u=2Tz= 2121 + 2929
 Tr. — = .
w=2z2'Qz=—21729 + 2321
Then

T=w/u
Now we raise the order,
SF™(u) = SF™(z1) * SF™(21) + SF™(22) * SF™(22)
{ SFM=1(p) = —SF™~1(3)) % SF™1(25) + SF™ 1(39) x SF™~1(z)
and

SF™1(3) = SF™ Y(w)/SF™ 1 (u)

14

(2-51)

(2-52)

(2-53)

(2-54)

(2-55)



Equations (2-50, 2-54, and 2-55) define the arctangent algorithm, which will be denoted as
SF™(z) = arctan[SF™(23), SF™ (1)) ' (2-56)

Of course, if it is known that » = 1 identically, that is SF™(u) = (1,0), then

{ 20 = arctan(29, 1)

gk+1) = (k) 0<k<m-1
If a nonlinearity is modeled by a few terms of its Fourier series (here k is the fundamental wav~ number),

n
z = fouriern(k,a,b,z) = ag + Y a;cos(ikz) + b; sin(ikz) (2-57)

i=1

then SF™(z) is given by

n
fourierplk,a,b, SF™(z)] = agSF™(1) + Y _ a; cos[ikSF™(x)] + b; sin[ikSF™(z)] (2-58)

=1

Functions of several variables can be treated similarly. Multivariable polynomials find use in
modeling aircraft force and moment generators (ref. 24). Multidimensional Fourier series and other
functions may be used for describing winds, terrain, or other fields that influence the aircraft. For
example, if the generating function is a polynomial in p variables each of maximum degree n,

n ' . .
z= Y a(ig,...,ip)zd...xf (2-59)

il,...,ip
then SF™(z) may be evaluated (assuming all z; > 0) by the following algorithm:
do i=1,p
SF™(y;) = In SF™(z;)
end do A
SF™2) =23 iy a(il,.-.,ip)eziﬂla (¥3)

The following example illustrates the application of dynamic forms.

15



Example 2.2. As an example of the application of scalar forms, consider a nap-of-the-Earth (NOE) problem
(ref. 25). A simple version of this problem may be stated as follows: Suppose that a plan view of the trajectory to
be flown by the helicopter is given. The altitude must be maintained at a fixed, usually minimal, distance above
the terrain. The problem is to determine whether the resulting trajectory is within the helicopter performance
limits. The intermediate problem is to determine altitude and its time derivatives. Suppose that the horizontal
velocity of a helicopter is given in polar coordinates by horizontal speed 5(t) and heading 1(t). Then the plan

view of the path evolves according to
( I ) ( scosy )
Y ssiny

(a:) (z(o) + fg:'c)

y y(0) + Jg ¥

where the initial condition z(0), y(0) is also given. Suppose, in addition, that there are some irregular vertical
obstructions that are collectively covered by a Gaussian cap:

and

h = hpage—@/o2)? = (w/ay)?

where h is the altitude. The helicopter is required to stay on that cap while flying the given horizontal trajectory.
The problem is to determine the vertical speed and the next four of its derivatives. It is easily done; simply
replace the variables by their forms, as follows:

( SF4(z) ) ( SF4(35) » cos SF4(1) )

SF4(z) SF4(3) x sin SF4(x)

(SFs(x)) { (:v(O) + J3 SFO(:'c)) (SF‘*(a‘:) )]
sPw))  L\w©+ i sFow) /) \sFi)
SF5(h) = hmage™ SF° @)/02)?=(SF(W)/y)?

The scalar form SF3(h) contains the altitude h and five of its time derivatives. These higher derivatives of
h are needed for testing constraint satisfaction, such as acceleration h, which affects pitch angle and power
requirements, £(4), which has a direct bearing on moment requirements, and h(3), which affects the usually
limited control rates. Details of the force and moment model would be needed to compute the actual values of
controls. Of course it is possible to compute other functions of scalar forms. For example, the total translational
kinetic and potential energy divided by weight is
22 ,’l2
= §° + +h
29

where g is the acceleration of gravity. The algorithm for computing translational power and power rate is obtained
by simply replacing variables by their forms:

[SF4(3)]% + [SFA(R)?

29

SF(e) = + SF4(h)

A numerical example is given in appendix A.

16



Partial Derivatives

We have developed in the preceding sections several functions of dynamic forms. With these
functions as building blocks many other practically useful functions can be assembled. For example,
suppose that there is an algorithm for computing

z= f(z,u) (2-60)
for scalar 2, z,u, and that this zero-order algorithm has been converted to order m:
SF™(z) = fI[SF™(z), SF™(u)] (2-61)

as shown in figure 2.3. The input consists of the scalar forms SF™(z) and SF™(u), and the output
is the scalar form SF™(z) = f[SF™(z), SF™(u)]. Now we proceed to compute, using only this
algorithm, several useful objects associated with f.

Consider the partial derivatives of f. Since z = f(z,u),
where f, denotes the partial derivative of f with respect to x. Choose an input to be

SF™(z) = (z,1)
(2-63)
SF™(u) = (u,0)

where zero padding is assumed: (z,1) = (z,1,0,...,0) and (u,0) = (,,0,...,0). Then the value
of the z-partial derivative of f at z is given by 2, that is, by the content in the number one location of
SF™(z),
fr(z,u) = 2 = {SF"(2)h = {fl(=,1), (u, 0)lh (2-64)

where we use the notation

y®) if0<k<m

{SF™y)}x = {

0 else
The purpose of equation (2-64) is not to replace a familiar and convenient notation by one that is obscure
and awkward; the purpose is to show that the useful object, the z-partial derivative of f at (z,u), may
be computed by means of scalar forms as the value in location one of the output of the scalar form
algorithm f whose input is (z,1) and (u,0).

X —p SF™(x) —»»|
f |—» z = t —% SF"(2
u — SF™ (U)—>

Figure 2.3. Algorithm for a composite function f.

17



The value of the kt* partial of f at z with respect to z is given by

frz={fl(z,1),®,0)}, 1<k<m (2-65)
Similarly,
fu.u= {f[(ZL‘, 0): (u, 1)”1@', I1<k<m (2-66)
Furthermore, since
F = foodd + fof + 2foudt + fuii + funtit (2-67)
and
frz = {fl(z,1), (u,0)]}2
(2-68)
fuu = {f[(xa O)’ (u7 1)]}2
it follows that 1 :
Jou = —{f[(l', 1)1 (u) 1)] - f[(x: 1)’ (uv 0)] - f{(.’l), 0)’ (u’ 1)]}2 (2-69)

2

Function Inverse

The algorithm for computing the dynamic form of the inverse of a function is often of practical
interest. Suppose that an algorithm is given for computing a possibly time-varying function

? = f(z,u,t) (2-70)
for scalar z,z,u and time ¢; that this zero-order algorithm has been raised to order m:
SF™(z) = f[SF™(z), SF™(u), SF™(t)] (2-71)
and that we have the (partial) inverse f~! of f
u=f"Yz,z,1) (2-72)

so that for all z,u, 2,¢t
flz, f Nz, 2,1), 8] = 2 (2-73)

Often in practice f~! is obtained numerically by an algorithm such as Newton-Raphson. The extension
of f‘l(m,z,t) to
SF™(u) = fYSF™(z), SF™(z), SF™(t)] (2-74)

producing not only u but also m of its time derivatives, may be computed as follows: The time derivative
of equation (2-70) is
2=f:ci'+fu'&+ft (2-75)

But, according to equation (2-71),

z= {f[(xa i)a (U, ’l:t), (t’ 1)]}1 = {f[(z,x), ('U,, 0)1 (t1 1)]}1 + fu’d (2'76)

18



Hence it follows that

i = (f) (6 - {f(= ), (,0), (&, D]}) @-77)

where the inverse of the partial derivative f is

(fu) ™t = {fl(z,0), (u, 1), &, O]}7 " (2-78)
Similarly,
i = {fl(=z, %, &), (u,%,0),(t1,0)]}2 + fuil (2-79)
so that
i = (fu)"' G = {fl(e, & &), (u,%,0), (¢,1,0)]}2) (2-80)
and for higher derivatives,
u® = (£)7 ) — {f[(z,...,s®), @u,..., 7D, 0), ¢, 1)]}x) (2-81)

Thus, in addition to the base point u = f~!(z, z), only derivatives of f are needed for the construction
of derivatives of f~1. Hence the algorithm:

aLGorITEM: SF™(u) = f~YSF™(z), SF™(z))
SF™(u) = (f~ Yz, 2,1),0,...,0)
(fu) ™ = {f1(=,0), (v, 1), (£, O)]}7

do k= l,m
u®) = (£)71 (=) - {FISFH(e), SF* ), SFE O] }e)
end do

That is, first SF™(u) is loaded with the base point v = f~!(z,2,t) and zero derivatives; then the
inverse of f, is computed as in equation (2-78); finally, equation (2-81) is iterated from 1 to m. The
combined action of f~1 and f is shown in figure 2.4. The input is SF™(z), the desired evolution is
SF™(z), and the required control is SF™(u). So far we have been considering static systems. Next
we consider dynamic systems such as differential equations.

SF™(x)

SF'(z) ——»{ " f——» f |—— SF"(2)
SF™(u)

Figure 2.4. Useful factors of identity.

19



Differential Equations

Suppose that we are given a possibly time-varying, first-order scalar system
z = f(z,u,t) (2-82)

where z is the state and u the control, and we wish to compute derivatives of z up to order m given
the derivatives of u. First, as described previously, we convert the zero-order algorithm

z = f(z,u,t)

to order m:
SF™(z) = f[SF™(z), SF™(u), (t,1)] (2-83)

where, as before, SF™(t) = (t,1,0,...,0) is abbreviated as (t,1). Then
zM*) = {f1SF*(2), SF¥(w), (¢, )] (2-84)

Consequently the time derivatives of = can be computed iteratively from the initial condition z and the
control SF™(u):

ALGORITEM: [SF™(z)] = T¢[z, SF™ (u)]
SF™(z) = (z,0,...,0)

do k=0,m
z(+1) = {FISF*(z), SF*(u), (¢, 1)]}x
end do

That is, first SF™(z) is loaded with the base point z and zero derivatives; then the derivatives z(F) are
obtained iteratively by means of equation (2-84). The effect of the algorithm will be denoted as

[SF™(z)] = T¢[z, SF™(u)] (2-85)
where the subscript in T is a reminder that the function f raised to order m must be provided.

Now that we have SF™(x), we can approximate the solution ¢(z,t + 7) of equation (2-82) by the
first m + 1 terms of its Taylor series:

¢(z,t + 1) = tay[SF™(z), 7] = Y 2Bk k) (2-86)
k=0

The T algorithm may be easily generalized to scalar differential equations of higher order. Thus,
suppose that in equation (2-82) z € R", u € R, and that we have zero-order algorithms

2 =fi(-'l7]_,...,.’13n,u,t) (2-87)
for 1 < i < n and these algorithms have been converted as discussed previously to

SF™(z) = filSF™(z1),...,SF™(zn), SF™(u), (¢, 1)] (2-88)

20



Then, since :cgkﬂ) = zz(k) for i = 1,...,n, the time derivatives of the n-dimensional state z may be

constructed from the base point z and the control SF™(u) as follows:

ALGORITEM: [SF™(z)] = T¥[z, SF™=1(y)]
do 1= l,n
SF™(z;) = (x:,0,...,0)
end do
do k =:0,n1
do i =1,nm
o) = (FISF™(2y), ..., SF™(zn), SF™(u), (¢, D]}k
end do
end do

The input is the state z and the evolution of control SF™(u); the output is the evolution of the
n state coordinates SF™(z;). In the algorithm the base point x with zero derivatives is loaded into
SF™(x); then the derivatives are computed by columns using f;. It may be noted that, in general, the
control u must be available to order m — 1 for the computation of z; to order m. An important special

case occurs for pure feedback systems for which the function f above has the following triangular
structure:

fi(z1,.. ., Zn,u,t) = fi(z1,...,Tit1,t), 1 <i<n (2-89)
so that the state equation has the following form:
(21) [ fiz1,22,0) \
2 fa(@1, 72, 3, t)
£3 | = | f3(z1,22,%3,74,1) (2-90)

\mn) \fn($1a$2,---,$n,%t)}

For such systems u to order m—n is sufficient to compute x; to order m+1—i. In particular, derivatives
of u are not used for the computation of z; to order n, and u itself is not used in the computation of
1 to order n — 1. The computations in Ty for n = m = 4 may be represented as follows:

R mgO) xgl) mg2) :1:&3) $g4) -’Egs) Igﬁ)
] e * * * * o )
T9 @ * * * ) o o
T3 @ * * ) o o o
g4 @ * o ) o ) o
U ) o o ) o o o

where e denotes the initial data, and * and o denote significant and insignificant new entries, repectively.
The computation flows from left to right starting with the supplied first column. The algorithm T’y

21



specialized to the case in which the output of the system is z; will be denoted as T, that is,

SF™(z1) = Tyf{(z, SF™ 7" (u)] (2-91)

where, if m < n, then the entries in the scalar form of u are not used by the algorithm. The block
diagram of T7, which we will refer to as the forward solution since u(t) is the input and the Taylor
series of z1(t) is the output, is shown in figure 2.5. The input consists of the base point = and the scalar
form SF™~"(u) of control u. The output is the scalar form SF™(z;) of the lowest state coordinate
z1. Only the first m — n derivatives of u are used by the algorithm. If m < n, then u is not needed at
all in the computation of z(™). This condition, in which no entries of a scalar form SF™(z) are used
by the algorithm, will be denoted in diagrams by SF™(z) = 0.

X —
T, —® SF"(x,)
SF™™ (u) —»|

Figure 2.5. Forward solution.

Example 2.3. Suppose that n = 4, the state equation is

(n\ (= \
T2 asin(bzry)zz + [2 + cos(ct)]z3
= (2-92)
z3 T4
e, \ u /
and a, b, ¢ are constants. The first step is to raise f; to order m as follows.
f1=SF™(z2)
f2 = asin[bSF™(z1)] * SF™(z2) + {2 + cos[cSF™(t)]} x SF™(x3)
(2-93)
f3=SF™(z4)
fa=SF™()

Then the forward algorithm Tj y is constructed.

22



ALGORITHM: SF™(z) = T flz, SF™4(u)]

do t=1,4

SFm(.Ti) = (.’L‘,;,O. ..,0)
end do
do k=0,m—-1

2t = (SF™ (e}
(k+ ) = = {asin[bSF™(z1)] x SF™(x2) + {2 + cos[cSF™(t)]} * SF™(z3)} &
é’““’ {SF™(za)}k
23 = (SFm(w)y
end do

This very simple example, for which even hand computation of derivatives is relatively easy, is
intended only to illustrate the technique.

Dynamic Inverse

Consider again the first-order, scalar, dynamical system in equation (2-82). It is useful to be able
to compute what the control signal must be so that the system output will track a given function of time.
The evolution of control » that will produce the desired evolution of the output 2 may be obtained as
follows: Construct the inverse u = f~1(z, 2,t) of z = f(z,u,t) so that

f[l‘, f—l(wa Z,t),t] ==z
and raise its order to m by means of the function inverse algorithm as described previously.
SF™u) = fHSF™(z), SF™(z), (¢, 1)] (2-94)

Then the control evolution SF™ (u) that will produce the desired output SF™(z) is obtained by imposing
the constraint z = & as given by the following algorithm:

ALGORITEM: [z, SF™ " (u)] = Tiy L[SF™(z)]
SEF™— l(z) = SFm— 1( )
SF™l(u) = f=HSF™1(z), SF™~1(2), (t,1)]
z = {SF™(z)}o
That is, first SF™(x) is shifted to the right and loaded into SF™~1(z) to get
(z,...,2m D) = (1), . ,z(™)
Then a call to the =1 algorithm produces SF™1(u), and the state z is just the zero term of SF™(z).

This algorithm may be generalized to higher order differential equations, provided that they are of
the pure feedback form as in equation (2-89), and that, for 1 < i < n, each f; 1s mvemble with respect
to z;41 and fy is invertible with respect to u (we denote these inverses by f

Tiy1 = f; l(xl,...,zi,t) for1<i<n
(2-95)

u:fi_l(mla"-vzi+1,t) fori=n

23



Wk

Thus,

ALGORITEM: [z, SF™ (u)] = Tl’f1 [SF™(z1)]
do k=1,n-1 :
SF™F(z) = SF™ ¥ (¢y)
SF™F(zpy) = fi USF™H(z1), ..., SF™ F(zy), SF™F(2y), (t,1)]
end do
SF™(2,11) = SF™(i,)
SFM="(y) = f7 SF™ ™(x1),...,SF™ ™(zn), SF™ ™ (zn41), (¢, 1)]

dot=1,n
z; = {SF™(z;)}o
end do

Thus, the inversion is accomplished downward by rows until all n coordinates of x have been
computed; then a call to f; 1 produces the control and its derivatives; finally the base point z is
assembled from the zero-order terms. The state must be at this value of x in order for the evolution
SF™(z) to be possible. The flow in algorithm Tl_fl for n = m = 4 may be represented as follows:

l mgo) azgl) xgz) :c§3) a:§4) mgs) ng)
I] o [ J o L4 L J o (o)
Ty K * * * o

T3 * * * o o o o
T4 * * o o o o o
U * o o o (e} © [}

The computation proceeds downward from the initially supplied first row. In the usual application of
linearization techniques to the control of pure feedback systems, m = n so that only the control u is
obtained. Cases with m > n are of interest when derivatives of u are needed for path planning. The
block diagram of this algorithm, which we will call the inverse solution since the input is z1(t) and
the output is u(t), is shown in figure 2.6. The input is the scalar form SF™(x;) of the lowest state
coordinate z;. The output consists of the complete state base point z = (z1,z2,... ,:cn)T and the
scalar form SF™~™ of the control variable u.

——p X
SF"(x) —& T
L SF™ " (u)

Figure 2.6. Inverse solution.

(L.

If m < n, then neither u nor any of its derivatives are computed.

24



Example 2.4. The inverse f; Lot fi in example 2.3 is easily computed:
fit=SF™(2)

~1 = {SF™(23) — asin[bSF™(z1)] * SF™(z2)}/{2 + cos[cSF™(t)]}
(2-96)

f3t = SF™(23)
7l = SFm(zy)

Equation (2-96) defines the inverse algorithm Tl_flz

ALGORITHM: [r,SF™ 4(u)] = 1[SFm(a:I)]

SFM=1(z1) = SF™~1(¢1)

SF™L(z9) = SF™ (z1)

SF™2(29) = SF™~1(d5)

SF™=2(g3) = {SF™2(29) — asin[bSF™~2(z)] * SF™~2(z4)}/{2 + cos[cSF™~2(t)]}
SF™~1(z3) = SF™ ™ (d3)

SF™=3(z4) = SF™3(23)

SF™=1(z4) = SF™ (i)

SFM—4(y) = SF™~4(zy)

do i=1,4
z; = {SF™(zi)}o
end do

The example illustrates how easy it is by means of dynamic forms to propagate the derivatives
backwards through the system.

It may be noted that Tl_f1 is the inverse of T ; in the following sense. For any evolution SF™(z1)

of the output variable 1,
Ty (T [SF™(21)]} = SF™ (1) (2-97)

This significant relation is shown as a block diagram in figure 2 7 An application of this relation to
automatic control is obtained by inserting the plant between T1 J; and Ty as discussed next.

SF™x,) —| T T, —» SF™(x,)

SF™ (u)

Figure 2.7. Useful factors of identity.

25



Automatic Control

Consider the problem of tracking a given reference input in the presence of disturbances. Let the
plant be described as follows: The state zp € R", the control up € R, the output y = z1,, and the state
equation is possibly nonlinear and time-varying but of maximal relative degree (pure feedback form):

[ f1(z1p, T2p, 1) \

f2($1p’ L2p, L3p» t)

\fn(xlpa zzp’ e axnp, up’ t)}

The structure of a possible control-system design (ref. 26) is shown in figure 2.8. There are
three subsystems in addition to the plant, namely transformer, regulator, and command generator. The
command generator provides at every ¢ not only the required value of the commanded output z1, but
also at least n of its derivatives, i.e., SF"(z1c). The plant state zp is passed through T to obtain
SF""I(zlp). Note that this step does not involve any differentiation of signals that are corrupted by
noise. Furthermore, no element of SF(u) is needed in this step. Next the error form is computed to
order n — 1 in the regulator by comparing the output form with the input form:

SF"1(e) = SF" L(z1p) — SF™ (1) (2-99)
T R e U
SF™'(x,0) | T < : a
1¢ ISF" (Xw) |
| Ti | X
SF™(e) | T2 |

|
| |
l |
' |
| | | [
| | ' | |
GEN : o™ =k[SF""(e)]: : ;
| ' ! |
l SF"(e) | | | f(x, .U, . 1) a—
: A =
- |
n | | N |l> T;tl |
SF™ (%) | | SF (x",)| -
| | ‘ I SF (u,) Y
| L g e e
GENERATOR REGULATOR TRANSFORM PLANT

 Figure 2.8. A structure for asymptotic trackers with pure feedback plant dynamics.

26



Then the order of the error form is raised by one by the regulator law k, and the error form is added to
the reference, thereby raising the order by one of the desired output form:

SF™(z1p) = SF™(z1c) + SF™(e) (2-100)

Finally, the desired evolution of the output is passed through the inverter Tl‘fl, whose output SFO(u)
drives the control up.

It may be noted that the transformations Tl_f1 and T7 y make the plant look like an (invariant) string
of integrators, n integrators long. Thus, the plant has been transformed into a Brunowsky canonical

form (ref. 14) with the Kronecker index equal to n, where (z1p,... ,:cgz_l)) is the transformed state

(n)

and z7,’ is the transformed control. Consequently, the system may be regulated by means of a simple
linear law

e = -3 k;eld) (2-101)
i=
despite changes in the perturbation model of f. In effect, the transformations T7¢ and Tl_fl provide
automatically the necessary gain scheduling and therefore the system output z1,, will track asymptotically
any input z1. that is differentiable n times. The derivatives of the input must be available, and the
plant dynamics must be of the pure feedback type. It should be noted, however, that only the state is
needed and none of its derivatives. Noise is not an issue. The control algorithm denoted as C'y may be
summarized as follows: It is assumed that C'y is called at the implementation sampling rate, which is
sufficiently fast relative to the dynamics of the plant.

ALGORITEM: up = Cylzp, SF"(z1)]
SFn_l(.’Elp) = Tlf(.’L‘p, @)

SF=1(e) = SF"L(z1,) - SF™1(ay,)
el = k[SFn—1(e)]

SF™(z1p) = SF™(x1c) + SF™(e)
[SFO(up), zp] = Ty} [SF™(z1p)]

up = {SF%(up)}o

The input to the algorithm consists of the (estimated) plant state xp and the generator command
SF™(z1.). The output is the plant control uy. In the algorithm the symbol @ indicates that the content
of SF™~1(u) does not matter for this call of the subroutine T} 7- The output zp (next to last line in the
algorithm) is the plant state.

It may be noted that C'y is a general algorithm in the sense that it applies to any plant defined by
f such that 1) f is of the pure feedback type and 2) f is a composite of the functions that have been
elevated to order m. In such a case the zero-order function f can be automatically raised to order m, at
which point all the steps in Cy become fixed. A numerical example illustrating the operation of control
systems with the structure shown in figure 2.8 is given in appendix B.

In summary, we have shown that scalar forms may be used to organize effectively the design of
automatic control systems for the class of plants having pure feedback dynamics f. The key step is to

27



raise the order of f from zero to n, but that step is made routine by the formalism of dynamic forms
in which elementary functions and operations have been translated into their dynamic-form equivalents.
In the remainder of the report we translate additional functions frequently occurring in the design of
control systems. Further discussion of control algorithms, including plant dynamics with transmission
zeros, will be presented in a future report.

3 VECTOR AND MATRIX FORMS

We are concerned mainly with three-dimensional vectors. Vectors and dot and cross products will
be denoted as usual. Thus, £ and § are vectors, and Z - if and & X § are their dot and cross products.
Right-handed orthonormal axis systems will be denoted by a double arrow. Thus @ is an axis system
(@) dp as) where, fori,j=1,2,3,d,- d; = 6;j and @3 = @ X d3. The a-coordinates of T will be
denoted by the column matrix z,. Thus,

3
T=Y x45d; (3-1)
j=1

—

the dot product 7§ = rz Ya. and the cross product Z=Z X i
za = —5(za)Ya (3-2)
where, for any z € R3, the skew symmetric matrix
0 T3 —T2
S(zy=|-z3 O T (3-3)
g —-z1 O
The transpose is denoted by (-) and 6; denotes a column with 1 in row 7 and zeros elsewhere.

Next, consider vector forms. Let @ be an axis system. The vector form of a vector 7@ in @ is
defined by

VF™va) = (v, g, ..., 0™ ) (3-4)
where vq € R™. The zero and unit forms will be denoted by
VE™0)=(0 ... 0) (3-5)
and
CVE™E)=(& ... 0) (36)

wherc 6 is a column of zeros except in row i, which contains 1. We denote the scalar form of the t*
component of a vector form V F™(v,) with a subscript as follows:

SF™(vas) = VF™a)i = (vgs, v, ..., v ) G-7)

at

28



Next consider matrices. A matrix form of order m is defined as a matrix and m of its time

derivatives,
MF™(A) = (AA4,...,4™)

with A € R™ x R™. Zero and identity are given by
MF™0)=(0 0 ... 0)
MF™I)=(I 0 ... 0)

and the transpose
MF™ ()T = MF™(Z7)
The scalar form corresponding to the z;; element of Z will be denoted as

SFm(zij) = MFm(Z)ij

Algebra

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

Several useful functions of vector forms and matrix forms follow easily either from already-defined

functions of scalar forms or from the Leibnitz rule.

If 24 = azq + by, for either scalars or matrices a, b constant in time, then, of course,

VE™(24) = aVEF™(z4) + bV F™(ya) = VEF™(azq) + VF™ (bya)

If z4 = azq and a is a scalar function of time, then the derivatives of 2, are given by

k .
zc(,k) = Z Cika(k"i):c((lz)
i—0

We denote the resulting algorithm as

VE™(25) = SF™(a) x VF™(z4)

k . .
k) — 3 C{C(xc(;k—z))Ty,(f)
1=0
which will be denoted as
SF™(2) = VF™(zq) - VF™(Ya)

If Z=Z x ¥, then

o

k ) .
> Cks(at ™t

1=0

(3-13)

(3-14)

(3-15)

(3-16)

3-17)

(3-18)

29



which will be denoted as
VF™(24) = VF™(zq) x VF™(ya) (3-19)

If Z = aX for time varying scalar a and matrix X, then by the Leibnitz rule

k
Z%) = 5™ ckak-i) x ) (3-20)
i=0
So we have an algorithm for multiplication of a matrix form by a scalar form,
MF™(Z) = SF™(a) x MF™(X) (3-21)

If 25 = Xy, with matrix X and vector y,, both time-varying, then

k s
25 = 3 cFxk=y (D (3-22)
1=0
which is an algorithm for time-varying transformations to be denoted as
VF™(z) = MF™(X) x VF™(y,) (3-23)

If Z = XY with time-dependent matrices X and Y, then, again by the Leibnitz rule,

k
zH®) = 3~ ckxk-iy () (3-24)
1=0
This algorithm will be denoted as
MF™Z)=MF™(X)x MF™(Y) (3-25)

If X is invertible, then in direct analogy to scalar forms the derivatives of X1 are given by
z(0) = X" and for 1 <k<m

k N
AL (Z C{“Z(k")X(’)) Z (3-26)
i=1
So we give meaning to
MF™(Z) = [MF™(X)]™! (3-27)

It is now possible to construct higher level functions of dynamic forms. For example, if z = |vg| =
[vTv4]1/2, then the evolution of the magnitude of v, is given by the algorithm

SF™(z) = [VF™(vg)| = [VF™(va) - VF™(v,)]/? (3-28)

where the operations on the right side are all defined.

The unit vector form corresponding to % parallel to ¥ in a is given by

VFE™(ug) = VF™(vy)/|VF™(vg)| (3-29)

30

KT

"

)



Derivatives

Suppose that z,2 € R™ and z = f(z) and that we have raised the order of the vector function f
from zero to m,

VF™(z) = f[VF™(z)] (3-30)

Consider constant vectors z and y such that yTy = 1. Let
z= f(z +ty)
Then the derivative of f at z in the direction of y at t =0 is
2= fo(z)y

So by choosing
VFm(‘T) = (xayaoa""o) = (‘T’y)

we obtain the Taylor series expansion of f at z in direction y:
m
flz+sy)=>_ 2B)ysk k!
k=0

The n columns of the Jacobian matrix of f, Jf/0z, are given by

o — (/I 601, 71z, 80T H) (331

where we are again using the shorthand, for any vectors z, 2
(z,2) =(z,2,0,...,0)

and 6; is a unit column along coordinate z;. Thus n first-order calls of the vector-function algorithm
produces its Jacobian matrix.

Examples

Scalar- and vector-form functions are useful as building blocks of higher level algorithms.

Example 3.1. Spherical and Cylindrical Coordinates. Consider the back and forth transformation between
Cartesian coordinates and cylindrical coordinates and their m time derivatives. From the standard relations among
coordinates,
T COoS Y
Ty = | Tsiny (3-32)

z

31



and conversely,
r Vi +a2,
¥ | = | arctan(z,9, 1) (3-33)

z Tr3

It follows that for cylindrical coordinates the dynamic forms transform according to the algorithm XY <CY:

SF™(r) x cos SF™ (1))
VF™(z,.) = | SF™(r) «sin SF™(y)) (3-34)
SF™(z)
and conversely XY > CY:
SF™(r) [VF™(z,)} + VF™(2,)3]1/2
SF™(y) | = | arctan[VF™(zr)2, VF™(zr)1] (3-35)
SF™(z) VF™(zr)3

The conversion to spherical coordinates is similarly established. From the standard relations between coordinates,
where v, are the latitude and longitude angles, respectively,

P COSYCOSY
Ty = | pcos~ysiny (3-36)
—psin~y
and, conversely,
P |zr|
v|= arctan(zy2, 7r1) (3-37)
0} arctan(—z,3,cos YT,y + sinyYzr,g)

It follows that for spherical coordinates the dynamic forms transform according to the algorithm X P < SP:

SF™(p) + cos SF™(y) x cos SF™ ()
VF™(z,) = | SF™(p)*cos SF™(v) xsin SF™ () (3-38)

—SF™(p) * sin SF™ ()

32



and, conversely, X P > SP:

SF™(p) |SF™(z,)|
SF™(y) | = arctan[V F™(zy)2, VF™(zr)1] (3-39)
SF™(7) arctan[—V F™(z,)3,cos SF™ () * VF™(zr)1 + sin SF™(¢) * VFE™(zy)2]

Thus we have the following bidirectional link between the Cartesian (XY), spherical (SP) and
cylindrical (CY) coordinates.
SP < XY < (Y

Of course, now it is possible to concatenate: the algorithm

CY > SP = XY »SP(XY <CY) (3-40)

transforms cylindrical to spherical coordinates and their m derivatives by calling first the algorithm
XY <CY and then algorithm XY > SP.

Example 3.2. Air Velocity. Suppose that the cylindrical coordinates of the wind field depend only on altitude,
that is, the zy-magnitude, the zy-direction, and the vertical components are given by

,Uw

¥ | =w(h)

,ww

Then the Cartesian coordinates of the wind evolve according to
VF™(w,) = XY < CY{w[SF™(h)]}

If an aircraft flies along a trajectory VFm'*'l(xr), then its altitude evolves according to (for aircraft, by conven-
tion, the z-axis points down)
SF™(h) = ~VF™(zr)3

and its air velocity
VF™(v?) = VF™(z,) — VF ™ (wy)
Its airspeed v, glidepath angle v*, and heading angle 1%, as well as their time derivatives up to order m, are
given by '
SF™(v%)
SF™(y%) | = XY > SP[VF™(vy)]

SF™(v%)

Next, we consider rotations.

33



4 ROTATIONAL FORMS

Rotational forms are useful for describing the attitude of a rigid body, its angular velocity, and its
derivatives. '

Let @ and b be two érbitrary (right-handed orthonormal) axis systems. The a coordinates of b
will be denoted by the matrix Cj,. Thus, for i = 1,2, 3,

3
bi = ) Cha(i,5)@; @-1)
j=1

Consequently, the coordinates of a vector & transform as follows:

Tp = CpaZa 4-2)

- —
Since Cp,(i,5) = b; - d@;, Cp, is a direction cosine matrix of b relative to @. The jth column of

Cpa gives the b-coordinates of d;; the ith row, the a-coordinates of 5,-. A direction cosine matrix is
orthogonal so that its inverse is given by its transpose

cil=cl =cCy (4-3)
Since @ and b are both right handed, the determinant

detCp, = +1 4-4)

So, Cy, always has an eigenvalue of +1. The corresponding eigenvector is given by axis(Cy,) (provided
azis(Cy,) # 0) where, for any 3 x 3 matrix C, the axis function

€23 — €32
1
azis(C) = 5| c—es 4-5)
C12 —C21
It may be noted that for any three-dimensional z,
azis[S(z)] =z (4-6)
and for any 3 x 3 matrix C,
Slazis(C)] = 1/2(C - ¢T) (4-7)

We shall denote the set of all rotations as well as all 3 x 3 direction cosine matrices by SO(3).

Suppose that Cj, is a function of time. Then, since CbaC'g; = I, it follows that C'bacg;+
CbaC£'= 0. Therefore, C’ba0£ is skew symmetric, so let

CpaCL = S(wpap) (4-8)

34

U

A



i

Consequently,
whah = azis(CpoCL) (4-9)
and
Cpa = S(Wpab)Cha (4-10)

> >
The 3 x 1 column matrix wp,y, gives the b coordinates of the angular velocity of b relative to @. The
last subscript in wy,p denotes the coordinate system. Thus, wp, = Copwpay gives the @ coordinates of
the same velocuy On the other hand, wgyp, = —wpq, are the @ coordinates of the angular velocity of

@ relative to b Also from equation (4-2)

&y, = CpaZa + Chafa = S(Wpap)CraTa + Chafa = S(Wpab)Tp + Chata

>

Thus, we obtain the Coriolis derivative, which computes the derivatives of the b -coordinates of ¥ from
the derivatives of the ‘@-coordinates of Z and the angular velocity of b relative to a:

Tp = S(Whab)Tp + CpaTa 4-11)

The matrix form corresponding to the direction cosine matrix Cp, locating b relative to @ will be
defined by M Fb’g, that is,

m __ . m
MFfg = (Che, Cpay -, O ) (4-12)
Often angular velocity and its time derivatives are of interest. Hence, we introduce another type of
dynamic forms, namely, rotational forms. The rotational form of order m for attitude Cp, will be
defined as the direction cosine matrix and angular velocity together with its time derivatives:
Cba m=20

RF[} = (4-13)
(Car VFIm D (wpgp)) m >0

where attitude Cp, € SO(3) and wpyy € R3 gives the b-coordinates of the angular velocity of b
relative to a.

Algebra

The identity is given by
RF}; = (1,0) (4-14)

Consider the transformation M F < RF' constructing the matrix form that corresponds to a given
rotational form. Since Cp, = S(wpgp)Cha» MF™(Ch,) is given iteratively by

(k+1) ZC’“S glgbz) ISZ) (4-15)

Conversely, it follows from ' T
Whah = axis(CpaCiy)

35



that the function MF > RF making the rotational form corrésbonding to a matrix form is given
iteratively by

k .
whey ) =3 Chazis(cly ek} (4-16)

Note that C,j, is the transpose of Cp,. Thus, we have the pair,

RF" = MF» RF(MF)

4-17)
MF? = MF<RF(RF]})
Multiplication of rotational forms may be defined by
RF}} « RFy; = MF>RF[MF<RF(RF})+ MF<RF(RF})] (4-18)
and inversion by
(RF)~! = RF} = MF » RF{{MF <RF(RF)|T} 4-19)

where the transpose acts on a matrix form and so it is already defined. Consider a sequence of rotations.
Suppose that there are three coordmatc systems a, b and c. The rotation of ¢ relative to @ is given
in terms of rotations ¢ relative to b and b relative to @ by the product of forms,

RFT = RFT x RF[ (4-20)

It may be noted that the rotation and matrix forms behave algebraically just as their generating direction
cosine matrix.

A generalization of the Coriolis derivative (4-11) may be obtained as follows. Let VF™(z;) be the
vector form describing the motion of vector ¥ to order m with respect to 7. It and its time derivatives

>
up to order m with respect to another set of axes, b, which is rotating according to RF}", are given by

VF™(zy) = RE® x VF™(z,) = MF < RF(RFJ®) x VF™(z;) (4-21)

Example 4.1. Angular Acceleration of Aircraft Stability Axes. As an application of the algorithms just
developed, consider the following problem, which may occur in the synthesxs of reference trajectories for an
aircraft. Suppose that the velocity of the aircraft relative to, the runway 7 (assumed to be inertially fixed) is
given as a function of time, v,(t). Consider an axis system v aligned so that 7 is parallel to the velocity ¥ and
the total nongravitational force is in the ¥1—03 plane with negative projection on #3. Find the direction cosine
matrix Cyr, locating ‘v relative to ‘v as well as the angular velocity wyry, and its two time derivatives and the
force fy (in g’s) and its derivatives. We translate the problem in the usual way as follows (g is the acceleration

of gravity).
= /|71

36

Al

ml‘



Cor = vgr
T
U3
Now, in order to get (wyry, Wyrv, Dyry ), three time derivatives of these expressions must be taken. Without

dynamic forms this task is difficult, but with dynamic forms it is easy. We simply replace any implicit or explicit
variable of time in the above set of equations with the corresponding forms in T

VF3(v1r) = VF3(ur)/|VF3(vy)]

VF3(fr) = g~ WWF3(i,) - VF3(63)

VF3(vgr) = VF3(u1,) x VF3(f7)/[VF3(v1r) x VF3(f7)|

VF3(v3,) = VF3(v1,) x VF3(var)

VFS('UIT)T
MFgr = VFS(v2r)T

VF3(vs)T

RF3. = RF<MF(MF3)

The coding is done! The direction cosine matrix, the angular velocity and its two derivatives can now be read
off RF3_ (see appendix C).

The example shows how dynamic forms may be used easily to obtain time derivatives to arbitrary
order from complicated expressions involving functions of scalars, vectors, and matrices. The dynamic
forms keep track of many variables and many detailed computations. In the next two sections, we
consider Euler angle forms and Euler parameter forms and derive the appropriate transformations.
Euler angles and parameters are discussed in reference 1.

37



Euler Angle Form

In this section we develop the direct and inverse functions relating Euler angles and m of their
time derivatives to the corresponding (direction cosine) matrix form. Suppose that Cy,, is a function of
time and that wy,; = u, a constant unit vector. Then equation (4-10) becomes

Cha = S(1)Chy 4-22)

Consider this to be a differential equation with Cy,(0) = I. Tt is linear with constant coefficients, so
the solution at ¢t = ¢ is

Cha(9) = 5W)® (4-23)

But
eSWP = I + S(u)¢ + S2(w)p2/2 +. .. (4-24)

which becomes, on repeated application of the identity s3 (u) = —S(u),
eSW® = I 4 sin ¢S (u) + (1 — cos ¢)S?(u) = cos ¢I + sin ¢S(u) + (1 — cos p)uul (4-25)

Note that, since S(u)u = 0,

SWhy = 4 (4-26)
that u is the Euler axis of C},, that
azis(e5W?%) = sin gu 4-27)
and that the trace
tr(e5W%) =1 4 2cos ¢ (4-28)

According to the Euler theorem on rotations, any attitude Cp, may be achieved (parameterized) by a
single rotation from I about an axis u through an angle ¢.

An elementary Euler rotation about axis 4 for ¢ = 1,2, 3 through angle a is given by

Ey(a) = 56 — osal + sinaS(6g) + (1 — cos a)6q631 (4-29)
or explicitly:
/1 0 0
Ej(a)=e®a=10 cosa sina (4-30)

\O —sina cosa)

(cosa 0 —sina\

Bya)=eS®a=| o 1 o @-31)

\sina 0 cosa/

38



4

Bl

cosa sina 0

E3(a) =5 = | _sina cosa 0 (4-32)
0 0 1
The nine possible columns are given by
é; ifj=g¢q
Ey(e)b; = (4-33)
cosad; + sinaS(6g)6; else

The following index functions for the index set {1, 2,3} will be used to simplify notation.

Fori # j
v(i,j) =6—i—j (4-34)
(i, j) =i — (j mod 3) (4-35)
and '
(i, 3) if p(i,5) # 2
h(i, ) = (4-36)
-1 if uli,5) =2
Then, for example,
S(6:)8; = h(3, 56, 5) (4-37)

The function v(i, j) returns the integer that is different from either ¢ or j. The function h(z, j) returns
the sign of the projection of S(6;)6; on by(i,j)- 1t may be noted that

With the aid of these index functions equation (4-33) may be changed to the following more convenient
form e
64 ifj=gq
Eq(c)é; = (4-39)
cosad; + h(q, j) sinady (g ;) . else

Therefore, if C = E4(a), the elements of C' are given by
bij ifj=q
Cij = (4-40)
cosad;j + h(g, j)sinab,, g ;y else

where axes subscripts on the direction cosine matrix C' have been dropped temporarily to simplify
notation. It is easy to raise this algorithm to order m:

39



ALGORITEM: MF(C) = E¢[SF™ ()]

dot=1,3
do j=1,3
SF™(6;5) if j=gq
MF™(C);; =
cos SFm(a)éij + h(gq,j)sin SF(a)éiu(q,j) else
end do
end do

Next consider sequences of elementary rotations. Let C' be a composite of three elementary
rotations, with g7 # g2 # g3, that is, an Euler sequence

C = Eq,(a1)Egy(02)Egs(3) (4-41)

Note the usual reverse order. The first rotation in the sequence is Eg;(a3): it is about axis g3 through
angle ag. If ¢g1 = g3, we will refer to the Euler sequence as repeating; if g; # g3, nonrepeating. The
elements of C' may be computed by the indicated matrix product in equation (4-41). See page 20 of
reference 1 for an expanded view of equation (4-41) for the twelve possible sequences.

Example 4.2. Normally in flight control the attitude of the aircraft body axes b relative to the runway axes T
may be represented by the (1,2, 3) Euler sequence:

Cor = E1(¢)E2(0) E3(v) (4-42)

Alternatively, aircraft attitude may be represented by a redundant sequence:

Chr = E2(c)E (B)E1(0)E1(w) E2(v0) E3(w0) (4-43)

The first two rotations (7yy,¥y) define the wind axes w, in which @, is along the relative-velocity vector
g = U'— w0, where ¥ is the aircraft velocity, <7 is the wind velocity, and o is horizontal, that is, wa-73 = 0. The
roll through angle ¢, defines the aircraft stability axes v. The body axes are reached by an additional corrective
roll o, sideslip 3, and angle of attack «. The aerodynamic forces and moments are typically given as functions
of airspeed |vq], a, B, and other variables.

Consider again equation (4-41). Since the algorithms for E,[SF™(a)] and * have already been
constructed, the zero-order algorithm (4-41) may be raised to order m:

MF™(C) = Eq,[SF™(01)] * Egy[SF™ (a2)] % Egs[SF™(a3)] (4-44)

This algorithm will be denoted as

MF™(C) = MF<AF[AF5”(a)] (4-45)
where the Euler angle form
VE™(a)
AF"(a) = (4-46)
q

40

w

| w



where the three angles are represented by a column,
431
a=| ag 4-47)

ag

and where the rotation sequence is represented by a row,

9=(q1,92,93) (4-48)

Conversely, consider the inverse problem of computing the Euler angles from the direction cosine
matrix. Consider first the middle angle a;. From the defining equation (4-41) it follows that

Eg(a) = Eg (-1)CEg;(—a3) (4-49)
and, since 41 and 644 are eigenvectors of Ey, and Eg,, respectively, that
6,}’; Egy(a2)bgy = 6:‘;1 [cos agdy; + h(g2, g3) sin 0‘25V(q2,qa)] = 5:}’; Cégs (4-50)

If ¢; = ¢q3, then, since 631 0g3 = 1 and 63;6 =0, let

(g2,93)

T2 = Cq1qy
4-51)
y2 = /1 -z}
If ¢1 # q3, then, since 63;5(13 =0 and 6316,,(‘12,,13) =1, let
y2 = h(g2,43)Cqq3
(4-52)
zy = /1 -y}
Then, in either case,
o = arctan(yg, z2) (4-53)
The range of a9 is given by
{0 < ag < 7}, if g1 = g3
Ry = (4-54)
{-7/2<ay<n/2}, if 1 #q3
The solution corresponding to the negative square root is
—03 if g1 =q3
a3y = (4-55)
—ag+7 if g1 #¢3

41



The range a3 is given by
{-m < a3 <0}, if g1 = g3
R = 4-56)
{r/2< a3 <m}U{-7<aj<—7/2}, ifq #q3

Conditions on the boundary separating regions Ry and R3 are known in practice as gimbal lock.

Next consider angle o;. From the defining equation (4-41) it follows that

Egy(a2)Egs(as) = EX (e1)C (4-57)
so that
6£EQ2 (ag)Eqs(a3)byy =0 = 5£E£ (01)Cqgq (4-58)

Equation (4-39) may be used to simplify the premultiplier of the last term:

0= 63;5’31 (a1)05q3 = cosajy; — sinajz) (4-59)
where
{xl = @M @)% a0
(4-60)
y1 = 0(¢)Caaqs
and
1 if g1 =¢3
o(q) = { - (4-61)
—64,5(6g2)b¢5  1f q1 # 43

It may be noted that, for ¢; # g3,

o(q) = h(q1,93) = —h(g2,q3) = —h(q1,92) (4-62)

If |x1| + |y1] = 0, then we have a singular case (gimbal lock) where the middle rotation makes the outer
rotations equivalent: only the sum a; + a3 can be computed from C. As noted previously, gimbal
lock occurs at ag = +7/2 for a nonrepeating sequence, and at ag = 0,7 for a repeating sequence.
Away from gimbal lock, there are two solutions depending on the choice of sign for components in
equation (4-59). One solution is given by

o1 = arctan(y;, T1) (4-63)

and the other solution is given by
aj = arctan(—yy,—z1) =01 + 7 (4-64)
The first choice corresponds to ap, whose range is Ry. Thus, if g; # g3 and o = 0 so that C' = [, then

{311 = h2(q1,92)Coaqs = 1

Y1 = U(Q)qu% =0

42

‘\-1”1

mon reey

It



so a1 = 0 and not 7. On the other hand, if q; = ¢3 and o = (0,7/2,0) so that C' = Eg,(m/2), then

(using eq. (4-62))
. 21 = —h(41,92)8, (g, ,40) Eaz (7/2)6g5 = (a1, 42)* = 1

Y1 =Cp,q3 =0
Therefore, in either case we get back a; and not o, which corresponds to o3. Similarly, for a3:

5£CE¢13(—03)5q2 =0 = y3cosag — r3sinoag (4-65)
- (9)h(q2,93)C
z3 = —0(q)h(q2,93)Cq10,(4, 40)
e (4-66)
y3 = 0(9)Cqyq,
Then
a3 = arctan(y3, z3) (4-67)
The other choice of sign leads to
o3 = arctan(—y3, —z3) = a3 + 7 (4-68)

The companion to ag is a3, and the companion to o3 is oj. Thus we have the following algorithm

(ref. 27) for extracting Euler angles from direction cosine matrices:

aLGORITEM: (C,q)> (o)
if @1 =43, then

r2 = Cqq
Yo = /1— m%
else

y2 = h(g2,43)Caq143
2 =\1-93
end if
1 = —o(q9)h(q1, 2)Cu (g, 92)es
y1 = 0(q)Coaqs
23 = —0(9)h(92,83)Ca10, 4y 45)
Y3 = U(Q)quqz
o = arctan(y;, 1)
g = arctan(yg, z2)
a3 = arctan(ys, z3)

Example 4.3. Let ¢ = (1,2, 3). (All twelve cases are given in table 2.1 in ref. 1.) Then
c2¢3 €283 —52
C = E1(e1)E2(a2)E3(a3) = | —c183 +s152c3  cic3 +515253  s1€2

8183 + c182¢c3 —51¢3 + €15283 ci1C2

43



where we abbreviate cosaj = ¢, etc. Following the algorithm, h(2,3) = —1; so yo = —Cj13 = s2 and
T9 =4/1— s%.

Next, o(q) = +1, h(1,2) = —1, and »(1,2) = 3; so 1 = C33 = c1c2, and y; = Ca23 = s1C2.

Finally, v(2,3) = 1; so 3 = —C}1 = cac3 and y3 = C12 = c253.

Thus
ay = arctan(slcz, clcg)

ag = arctan(sz, |ca])
a3 = arctan(c2s3, ¢2¢3)
If one begins with 3 so that
-r<B <

/2 < fBo <m/[2

-m<fB3<nmw
then the combined computation
B>Cra

will produce an a = 3. For (33 in the other sector R, the combined computation will produce an o = 8%, so
that the alternate solution a* = £.

The general algorithm C >« may be raised to order m as follows:

ALGORITEM: AFJY (o) = MF = AFg[MF™(C)]
if g1 = ¢q3, then
SF™(z9) = MF™(C)g1q

SF™(y3) = /(1) — [SF™(x2)]?
else

SF™(ya) = h(g2, Q3)MFm(C)41Q3
SF™z) = /(1) - [SF™(y2)]?

end if

SF™(xy) = _o'(q)h(‘haQZ)MFm(C)V(ql,qg)qg
SF™(y1) = o ()M F™(C)gyqs

SFm(.’II3) = _G(Q)h(q21 Q3)MFm(C)QIQU(q2,q3)
SF™(ys) = 0 () MF™(Clgya,

SF™(ap) = arctan[SF™(y1), SF™(z1)]
SF™(ap) = arctan[SF™(y9), SF™(z2)]
SF™(ag) = arctan[SF™(y3), SF™(z3))

We have jﬁst “developed an algorithm for extracting Euler angles and their m time derivatives from
the direction cosine matrix and its m time derivatives for any Euler sequence. In fact we have also

44



linked the Euler angle forms (AF’) to the rotational forms (RF’):
AFy & MF <& RF

So, for example, the algorithm RF > AFy extracting the Euler angle form from a rotation form may
be executed by first transforming the rotational form RF} into the matrix form M F™(Cy,); then the
matrix form is transformed into the Euler angle form AF7"(cy,), namely,

AF,;”(abr) = MF > AFy(MF <RF(RF.)] (4-69)
and, conversely, the algorithm for computing the rotational form from the Euler angle form is

RF} = MF = RF{MF < AFg[AFT(oy,)]} 4-70)

As a reminder, we note that angular velocity, angular acceleration, and higher time derivatives, which
are of particular interest in practice, are contained in the rotational form

RF} = (Cy, VF™ Hwprp)) 4-71)

so that, if we have computed RF}", then we have also computed wy,, and m — 1 of its time derivatives.

Example 4.4. Consider again example 4.1, where the aircraft trajectory represented by the vector form V F 4(vy)
was transformed into the rotational form RFJ,, which describes the rotation of the stability axes v relative to
the runway axes . Suppose that, following convention, we represent the attitude of the stability axes relative

to the runway as
Cur = E1(¢v)E2(1v) E3(¥v)

Then the roll, flight path, heading angles
by

Qur = | Yv

Yy

and their time derivatives up to order 3 are given by
AF() 9 3)(awr) = MF > AF(y 5 3) [MF<RF(RF3.)]
Furthermore, if the body attitude Cp,. = C},,Cvr and, following convention,
Chy = E2(a)E3(-8)E1(p)
then, for the already computed body rotation RFET, the evolution of the angle of attack, the (negative) sideslip

angle, and the relative roll angle p
o

apy = | —B

P

45



and their time derivatives are given simply by
AF( 3 1y(apy) = MF > AF(3 3 1) |MF < RF(RF},.  RFY,)]

where all operations have been already defined. A numerical example is given in appendix C.

Example 4.5. Suppose that a sequence g and Euler angles oy, are given and that the Jacobian Jg(ay,.) relating
angular velocity wy,.p, to the Euler angle rates ¢, is desired so that

Whrp = Jq(@pr)apry (4-72)
Then the three columns of J, are given by three calls to RF' < AFy:
Jolapr) = ({RF < AFg[(apr, 61)]}4, {RF<AFg[(apr,62)]}a, {RF <AFg[(apr,63)]}s)  (4-73)

where, as before, (z,y) = (z,¥,0,...,0).

Example 4.6. Suppose a satellite is required to move so that the Euler angles for a sequence ¢ are a given
function of time, ap,. = f(¢). In order to check whether the maneuver is executable, we wish to check the
required angular acceleration and acceleration rate. Let

VF(apy) = [£(), (1), F(). fB (®)]
The required angular acceleration and acceleration rate are given by the third and fourth items in
RE}. = (Cyr, Wrbs Worbs Gprbs - --) = MF = RE{MF < AF4[AF ()]}

Note that the Jacobian is not needed for this computation.

Example 4.7. Still another example is provided by patching two Euler angle parameterizations. Let one set of
Euler angles oy, be given in the nonrepeating sequence ¢ = (1, 2, 3) and another set 33, be given in the repeating
sequence p = (3, 2,3). Both represent the same motion of the body RFy. The two coordinate systems (angles
and m time derivatives) are related by the back-and-forth maps,

AFT(Byr) = MF » AFp{MF < AFg[AFT(ap,)]}

and, conversely,
AF(;” (apr) = MF > AFg{MF < AFp[AF;" (Ber)]}

Such changes in coordinates are useful when the trajectory passes near gimbal lock in one set of coordinates.

Euler Parameter Form

Often in attitude control it is desirable to express attitude error in terms of Euler parameters,
€ = sin(¢/2)u
n = cos(¢/2)

where the unit column u is the Euler axis of rotation and ¢ is the angle. The direction cosine matrix is
given in terms of Euler parameters by

C = I +2nS(e) + 25%(¢) (4-75)

(4-74)

46

ol



and, conversely,

= Ltr(C) + 1]1/2
' (4-76)

€= %aa:is(C)/n

The constraint is €2 + 7% = 1. A singularity exists at ¢ = 7 since there are two solutions +u. The
Euler parameter form is defined by the Euler parameters and their m time derivatives,

(VF"‘(E))
PF™ = 4-77)
SF™(n)

The relation between M FJ" and PF]" is obtained simply by rewriting the defining equations in
terms of dynamic forms. That is, the algorithm for
MF[} = MF <PF(PF;) (4-78)
is obtained simply by converting equation (4-75) to dynamic forms:
MF™(C)= MF™(I) + 25F™(n) » S[VF™(¢)] + 2S[VF™(e)] » S[VF™(e)] (4-79)
and, conversely, the inverse algorithm
PF' = MF>-PF(MF}}) (4-80)
is the translation of equation (4-76):
SF™(n) = ${tr[MF™(C)] + SF™(1)}!/2
(4-81)
VE™(e) = Yazis[MF™(C)]/SF™(n)

- The angle forms (AFy), rotational forms (RF’), and parameter forms (P F) are now linked to the
(direction cosine) matrix forms (M F) as follows:

AF, & MF & RF
g

i} PF
In other words, the algorithm for converting Euler angle form to Euler parameters form is given by

PF* = MF » PF{MF < AFg[AF™(c4,)]} (4-82)

and similarly for any two representations of rotational motion shown in the diagram.

47



Attitude Servo

Consider a simplified attitude control problem. Suppose that the object to be controlled (the plant)
is spherically symmetric and that it is described by the following set of equations:

Chr S(wprp) Cor
d/dt | wpp | = z+v (4-83)
Z u

—

where Cj, and wy,;, are, respectively, attitude and angular velocity of the body b relative to a reference
7. There is an intervening integral between the angular acceleration wy,;, and the control u. In addition,
there is a disturbance v. A block diagram of this plant is shown in figure 4.1. Note that the plant is
of the pure feedback type. The objective is to devise a control scheme for tracking time-varying servo
input Ccr(t). The servo design shown in figure 2.8 may be specialized to attitude control as follows:

Step 1. Command. First consider the command. Construct the corresponding third-order matrix
form M Fé}r from the known function of time for the servo input Cer(t) for ¢ > 0. For example, suppose
that the command generator produces Euler angles and derivatives up to order three, AF(?(ac,-). Then

MF3 = MF < AFg[AF; (cer)]

Alternatively, M Fgr may have been computed from a translational trajectory as in example 1 where the
dynamic form of the stability axes was computed.

Step 2. Output. Next, from the plant state estimate (assumed to be available at all times ¢ > 0),

Cor

8
H
&

brb (4-84)
z

and an estimate of the disturbance and its rate V F1() with . = 2 + &, construct the plant output
as follows: First compute an estimate of the plant rotation form,

A2 ~ " -
REy. = (Chry  @prbr Worbd ) (4-85)
u Zz (b (V) C T C r
— J’ > bm. J‘ bro > S(mbrb) __b> J' b

5

Figure 4.1. Plant block diagram.

48

| !
i 3y

!‘.‘h‘l L]

C i 4 ih muummiw [ (LT L T



Then transform it into matrix form,

——~ 9 ~ 4 o =2
MFy =Gy, Cor, Cor) = MF<RF(RF,,) (4-86)

Step 3. Error. Now define the tracking error by the relative transformation, as in reference 28,
2 _ il 2
MFy, = MFy. x MF, 4-87)

The goal is to drive the error close to (1,0,0) and keep it there by manipulating the last element of
RF(3), namely @p.p, Which is directly accessible for control. The control law for the error may be
based on various parameterizations, such as Euler angles and Euler parameters. Following reference 29,
we choose the Euler parameters (see eq. (4-81)),

€0 1) 2
PFZ = ( ) = MF > PF(MFZ) (4-88)

()R CVJNC)

and view the vector part VF2(e) as the error state equation, where . is written in place of €3 to
emphasize that €3 is a control variable

0) (1)
dfdt | ) | = | 2 (4-89)
(2) Ue

The equation is a set of three strings each three integrators long (i.e., a Brunowsky form with Kronecker
indices (3, 3, 3)), as shown in figure 4.2, where each ¢(?) is three dimensional. The control Ue is as yet
undefined. We design an asymptotically stable regulator law ¢ in the usual way (additional dynamics
such as integral feedback could be added to the control law if desired),

ue = g(e®, ) 6(2)) (4-90)
Step 4. Plant Control. In order to implement this control law, u must be transformed back into

the plant input u. Thanks to the regulator law, at this point we have raised the order m of VF™(e)
from two to three:

VF3(e) = [VF2(e), ue) (4-91)
and we impose the Euler parameter constraint,
SF3(n) = [SF3(1) — VF3(e) - VF3(¢)]1/2 (4-92)
u, e ) £l
— | > | > | >

Figure 4.2. Brunowsky form for error dynamics.

49



thereby raising the order of PF to three. Then we compute the new
MFJ = MF<PF(PF}) (4-93)

and change coordinates to M F'y,.
MF, = MF3 « MF3 (4-94)
br be cr

Finally, we compute the expanded rotation form,
RFy. = RE<MF(MF}) (4-95)
The last column of RF ‘;’r is wpyp. Hence, the new value of the plant input is given by
U= Gy — U (4-96)

Thus, we have designed a control law for the attitude servo, which will track the variable input attitude
Cy(t) provided that the total error angle ¢ < m (eq. (4-74)) and that the control constraints are not
violated.

The block diagram of the resulting servo is shown in figure 4.3.

The input may be given in terms of Euler angles with a fixed sequence, and the sequence may
also be switched. In addition, Euler parameters and direction cosines may be used in any combination
during operation. In all cases the input is transformed into the matrix form M F3.

—————— 1T rm—————— _—_————— -
: I r : I I
I 2 l ]____—1 2 l l A
MFcr T l MF R 2
: : ; : (e Il T = } {MF<RF|<-—|————' X
| | RAC | |
b AR ay) | ] L N | '
] q\%er | : : MF >~ PF | | I ]
! I | ! | I STATE
| [ i | ] | &
| N | O
| | |
[ ] REGULATOR| | | |
| [MF<AFH : LAW : ] |
] ] ] ]
A L
|
| | it b | |
I I [ bl I ]
| | | | |[MF=<PF| | | | l
| | || [ | I
| ] | | MFL I | |
! I P! : : ! I 0
l ; G L8| MF > RF
| MR T2 P MR [ - RF I AR, — &
l l , : | |
L ___1I e —___ |
GENERATOR REGULATOR TRANSFORM

Figure 4.3. Attitude servo block diagram.

50

) M

[}
13

"



¥

’

If the moment-of-inertia matrix J}, of the plant is not spherically symmetric, the gyroscopic terms
may be viewed as a disturbance,
v = Jy S (whrb) Jswprp

and, as before,
SFHD = 5(8) 4 (k)
so VF¥(9) can be easily computed by the techniques already described.

The servo control algorithm is summarized in table 4-1, where n, is the number of integrators
between u and wy,.;, which is in this case one. The algorithm is easily generalized to cases with n, > 1
by making the order a variable, that is, by taking the highest order to be not 3 but 2+ n,. A numerical
example of a scanning, spinning satellite is given in appendix D.

Table 4-1. Servo control algorithm n, =1

Purpose Algorithm
Given input at t = ¢, AF(}3 (aer)
Change input to matrix form M. F3 =M F<AFq[AF5’(aC,~)]
Estimated plant state at ¢t = ¢, (Cor, @prp)

Estimated disturbance at t = ¢,
Estimated plant rotation form
Change output to matrix form

Change coordinates
Change to Euler parameters

Error state
Raise order with regulator law
Error state and control

Enforce constraint

Change error to matrix form
Change coordinates
Change to rotation form

Control at t = ¢, 11

VFY(5) = (,0)

RFy = (Chy Gy 2+9)
MF: = MF<RF(RF})
ME}, = MF: « MF2,

PF: = MF»>PF(MFZ)

(e, & €)=VFZ%e)

() =g(e, ¢ §€)

VF3(e) = (e, €, E, Ae(3))

SF3(n) = [SF3(1) = VF3(e) - VF3(e))1/2

MF3 = MF<PF(PFJ)
MFy, = MF} « MF3.
REy. = MF > RF(MFy)
u=(RFy)3 - b

51



5 CONCLUSION

The formalism of dynamic forms has been presented. The formalism may be used to translate
effectively and systematically zero-order algorithms into m-order algorithms. In this way, for example,
a large subroutine that computes the total force and moment acting on an aircraft for a given input, such
as aircraft state, controls, and wind, may be routinely converted into the corresponding subroutine that
computes the forces, moments, and time derivatives up to any order for given input and time derivatives
to that order. Similarly, derivatives can easily be passed through elaborate coordinate changes. It was
shown how this capability may be used to organize and simplify the design of control systems. Whereas
many examples were provided to illustrate the application to automatic control, the emphasis was on
the formalism of dynamic forms. Current research is concerned with specific aircraft applications and
with the interpretation of control problems, in general, in terms of dynamic forms.

52

. -



APPENDIX A
NOE NUMERICAL EXAMPLE

A specific numerical case of the nap-of-the-Earth (NOE) maneuver discussed in example 2.2 is
given in this appendix. Let the height h and width o in feet of the Gaussian cap

h = hpage—®/02)’—(W/oy)?

above a flat terrain be

hmaz 50
Ox = 50

and let the horizontal path be as shown in figure A-1. The peak is at 50 ft; the level curves are 10 ft
apart. The helicopter slides along the cap from the third quadrant, scoots around the peak, and leaves

8
8 -l
x(f) o
g -
g . .
‘ -160 -80 0 80 160
y (ft)

Figure A-1. Plan view of the flightpath and the Gaussian cap.

33



the area. The maneuver consists of four control points linked by polynomial segments each lasting
4 sec.

The scalar form of arc length SF®(s) is evolving according to figure A-2. The arc length s shown
in the first panel grows from O to about 400 ft. The speed s shown as the solid line in the second panel
is initially 50 ft/sec. During the first 4 sec it is reduced to 20 ft/sec, where it is held during the turn.
Finally the helicopter accelerates at a constant 10 ft/sec?. The acceleration § is shown dotted in the
second panel. The first s(®) and second s(¥) derivatives of acceleration are shown in the third panel, and
the fifth time derivative of the arc length s is shown in the bottom panel of the figure. The higher
derivatives may be of interest for the verification that neither the pitch control nor the pitch-control
rate exceeds its limit. Thus, if the approximation is made that longitudinal acceleration is controlled by
the pitch angle, say 6, namely § = —g#, then § = —s4) /g determines the pitch-control requirement,

whereas §3) = —s(5) /g determines the pitch-control rate.

The scalar form of the heading angle SF3(%) is shown in figure A-3. Initially the heading % is
-30 deg, and it is held constant for the first 4 sec. Then follow two successive 90-deg turns to the
right. Finally, the helicopter exits at 150 deg. The angular rate is bounded by 1 rad/sec, and angular
acceleration, by 1 rad/sec?. The time rate of angular acceleration ¢(3) is shown in the last panel. This
derivative is useful for the verification that the yaw-control rate is not excessive during the maneuver.

The shape of the Gaussian cap and the evolution of the arc length and the heading angle are
considered in this example to be independent inputs. The helicopter is constrained to stay on the
Gaussian cap while executing the maneuver. Consequently the altitude becomes a dependent variable,
whose evolution SF9(h) is shown in figure A-4. The vertical acceleration, which is bounded by
16 ft/sec, has a major influence on the required thrust. The higher derivatives indicate the dynamic
requirement from the thrust generator.

Figure A-5 shows the (scaled) energy flow SF?2(e). The total kinetic and potential energy e, the
power é, and the time rate of power € are all shown.

This example illustrates the ease with which a variety of time derivatives of transformed functions
of time can be computed by means of dynamic forms. It should be noted that, since we are discussing
command-trajectory generation, the differentiation of noisy data is not an issue.

54

N



250

25

=25

100

=100

/ /
///
S
4 8 12 16
time (sec)
.s\
3
4 8 12 16
time (sec)
: s® v
4 8 12 16
time (sec)
s® A
1
4 8 12 16
time (sec)

Figure A-2. Evolution of the arc-length scalar form SF3(s).

55



56

180

-180

-1

-2

__/

L 4
__/
8 12 16
time (sec)
i /\ /\
8 12 16
time (sec)
8 12 16
time (sec)
AN
8 12 16
time (sec)

Figure A-3. Evolution of the heading-angle scalar form SF°(4)).

-

Y



n
N
h
o
0 4 8 12 16
Time (sec)
&
o
§
0 4 8 12 16
Time (sec)
23
12 16

Time (sec)

* 2
= (5)

o\ " /\ I"\ /\ /\ ™\ /N /\
i \/ \VABRY NNZE ¥ =

§ 0 4 8 12 16

Time (sec)

Figure A-4. Evolution of the resulting altitude scalar form SF5(h).

57



58

\_// \ ————
e
4 8 12 16
time (sec)

~.

/N

\_\

-

time

8 12

(sec)

16

YA

/CT

e

=Y

Figure A-5. Evolution of the resulting energy scalar form SF2(e).

time

8 12

(sec)

16

R



rd

APPENDIX B
AUTOMATIC CONTROL EXAMPLE

This appendix contains an application of the control structure shown in figure 2.8 and the corre-
sponding control algorithm C'y, which is repeated below for convenience.

ALGORITEM: up = Cylzp, SF"(z1c)]
SF"Y(z1p) = Ty f(xp,0)

SF*1(e) = SF"1(z1,) — SF" Y zq,)
el) = k[SF"—1(e))]

SFn(xlp) = SF"(z1c) + SF"(e)
[SFO(up), zp] = Tj7 [SF™(z1)]

up = [SFO(up)lo

Suppose that the plant is described by a four-dimensional state and that the state equation is as
follows:
/ T2p ] \

sin(0.2x1p)T2p + (2 + cost)xsy
ip -

T4p
\ up }
This system is the same one used in example 2.3, where the algorithm Ty was constructed, and in

example 2.4, where the algorithm Tl—fl was constructed. The only item remaining to be specified is the
regulator. We choose a simple linear, constant-gain regulator:

e = ke — kye® — kye® _ kye®

and place one critically damped pole pair at 0.5 rad/sec and the other at 1 rad/sec. Of course limiters
and additional dynamics such as integrators could have been used. Now Cf is completely specified.

Next consider the inputs. Suppose that the input to be tracked consists of four segments, each
lasting 4 sec and taking the system from x1. = O at the beginning of the maneuver to

(64\
0

z1c(16) =
0

\ 0/

at the end. The time history of the input SF4(zy.) is shown as solid lines in figure B-1. The system is

59



32

2

60

"
x1c x1 p
_/
4 8 12 16
time (sec)
(1) 1))
1c x1 p
4 8 12 16
time (sec)
) @
x1c x1 p
4 8 12 16
time (sec)

A

time (sec)

12

16

Figure B-1. Evolution of input SF4(z.) and response SF4(x1p).



ik

N

"

commanded to reach steady acceleration xgzc) = 2 at the first waypoint at { = 4, then to reach a:gzc) =(

at the second waypoint at ¢ = 8, where the speed zglc) = 8; the boundary condition at the third waypoint

is a steady xﬁ) = —2; finally, the boundary condition at the fourth waypoint at £ = 16 is the desired
steady position 1, = 64. The response of the plant SF4(x1p) with initial condition x, = 0 is shown
in the figure by dotted lines. The higher plant state coordinates (3, T4p) and the control u;, are shown
in figure B-2. Also shown in the figure are the damping” term gq; = asin(bx1,)x2p as a solid line and
the “effectiveness” of z3,, namely g = [2 + cos(ct)], as a dotted line. The regulator error SF4(e) is
shown in figure B-3. It may be noted that tracking is good despite considerable activity in ¢; and g¢o.
The region near ¢ = 9 is especially disruptive because g; is maximum while the effectiveness of 3y,

namely go, is near minimum.

The response to initial offset,

/10

0

zp(0) =
0

\ 0/

is shown next for the same input. Figure B-4, as figure B-1, shows both the reference and the response.
The plant tracks the input asymptotically. In addition, as shown in figure B-5, the error behaves as an
autonomous response of constant linear dynamics with the assigned poles. The sampling rate was 100,
and the integration step size, 0.01.

This simple example illustrates the application of dynamic forms to control. It should be clear that
the same control algorithm C can be easily extended to practical cases in which, as noted previously,
the implementation of the zero-order function f requires more than 4,000 lines of FORTRAN. An
application of C to attitude control is given in appendix D.

61



10

-10

10

-10

-25

8 12 16
time (sec)
___fip——\ /\
8 12 16
time (sec)
T T —
0 4 8 12 16

time (sec)

10

-10

. VR

] 4 8 12 16
time (sec)

Figure B-2. System response in terms of natural coordinates.

Ll



ey

"

wl

vy

10

-10

-2

2

e
4 8 12 16
time (sec)
el 2
4 8 12 16
time (sec)
e®
4 8 12 16
time (sec)
4
R N~———
4 8 12 16
time (sec)

Figure B-3. Error response SF4(e) for z,(0) = 0.

63



32

-2

==
....... 1p.__ x1c
/
4 8 12 16
time (sec)

4]

1c .
4 8 12 16

time (sec)

4 8 12 16

time (sec)

A

12

time (sec)

16

Figure B-4. Evolution of input SF4(z1.) and response SF4($1I,) for £1,(0) = 10.

T
O

Y

ki
i

L.

L]

"



W

" ”I

.~ =

10

-10

e \
S
4 8 12 16
time (sec)

time (sec)
e®
—

4 8 12 16

time (sec)
e®
/_\ N
4 8 12 16

time (sec)

Figure B-5. Error response SF(e) for r1,(0) = 10.

65



APPENDIX C
STABILITY AXES NUMERICAL EXAMPLE

For a specific numerical case of example 4.1, we consider the Euler angles of the stability-axes

system. Let
COS 7Y COS Y

Ur =VUpr =0 | COS7ySINY

—sin7y

and let the speed v, the heading angle ¢, and the glidepath angle v evolve acco