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Abstract

Finite element Galerkin methods for periodic first order hyperbolic equations exhibit

superconvergence on uniform grids at the nodes, i. e., there is an error estimate O(h 2r)

instead of the expected approximation order O(hr). In this paper it will be shown that no

matter how the approximating subspace S h is chosen, the superconvergence property is

lost if there are characteristics leaving the domain. We shall also discuss the implications

of this result when constructing compact implicit difference schemes.





1 Introduction

Error estimates for finite element approximations based on Galerkin methods for

Ou
- Pu

Ot

are determined by the approximation property of the finite element space. If the approx-

imation order is r, the convergence rate is O(hr). However, for problems with periodic

solutions and uniform grids there is superconvergence at the grid points. Thom_e and

Wendroff [10] showed that if the differential operator P is of order m, then the error at

the grid points is O(M), u = 2r-m for m even u = 2r-m+ 1 for m odd. The question is

whether this superconvergence property remains in the presence of boundary conditions

for finite computational domains. In this paper it will be shown that the superconver-

gence property is lost, no matter how the approximating subspace S h is chosen, if there

are characteristics leaving the domain. We will illustrate the loss of superconvergence by

considering the simple model problem

ut = uz , 0<x<oc,0_<t,- (1)
u(z,O) = f(x)

and the case r = 2 (for simplicity we introduced only one boundary by considering the

interval [0, co)). The scalar product and the corresponding norm are defined by

(u,v) = u(x)v(x)dx, Ilull_ = (u,u), (2)

It is assumed that II/11< oo. We shall henceforth only consider real functions.

The problem (1) has a unique solution (without specifying any boundary condition at

x = 0) satisfying an energy estimate

d

_ll_,(', t)ll == -_(o, t)=,

_0 tII_(.,t)ll= ÷ _(O,,)=d, = Ilf(.)ll=.

or, equivalently,

(3)

(4)

Let S be the Sobolev space of functions u(x) with Ildu/dzll < _. The weak formulation

of (1) is

Find u(x, t) C S such that for every fixed t

(ut, v) = (u_,v) , _ _ s,
(5)

u(x,O) = f(x).

A grid is defined by xj = jh, j = 0, 1, .... Let Sh be the space of piecewise polynomials

of degree r - 1. The Galerkin method can be formulated as follows



Find uh(x, t) e Sh such that for every fixed t

It h V h(u_,_) ( x,_h), e &,

_h(x,0) = f_(x).
(6)

An attractive feature of the Galerkin method is that stability follows directly from the

well-posedness of the continuous problem. In fact, substituting v h = u h in (6) yields

dllu_ll_ = 2(_2,_h) = 2(_, uh) = -_(0,t) =.
dt

(7)

Consider the approximating space 5'h of piecewise linear functions. The superconver-

gence result states that the error is O(h 4) rather than O(h2). This is easily seen if we

consider the hat functions _i(x) as a basis of Sh, where

h(X- x_-i),

1

_,(_) = --£(x- x,+i),
O,

z_-i < z < xi,

xi _<x < xi+l,

otherwise,

i>1

(8)

1
_o(X) = -_(x

Xl)}

O,

O ___ X ___ X l,

otherwise.

Since ¢pi(zj) = 5ij and
co

_(x,t) = F_,_j(t)_,j(x),
j=O

the Galerkin method (6) can be viewed as a difference method for uj:

(9)

1 d uj+l - uj-1 j = 1,2,...
6dt(UJ+l +4uj +uj-1) = 2h '

(lo)

1 d(2u0+ul) - u,-uo (11)
3 dt h

The superconvergence result holds for problems with periodic solutions, where (11) is

replaced by the periodicity condition uj = Uj+N. In this case the Galerkin method (10) is

the well known fourth order compact difference approximation (proposed by Kreiss, see

[9]). However, equation (11), applied in the non-periodic case, is only first order accurate,

and thus, as will be shown in the next section, the global error estimate is second order

only.

In section 3 we shall prove that there is no way to modify the approximating space

near the boundary such that the fourth order accuracy is retained. In fact, the boundary



condition (11) is optimal in the sensethat any choiceof boundary functions leadsto only
secondorder accuracyat most.

The equations (10),(11) can be viewedas a differenceapproximation to (1). Indeed,
this interpretation wasusedby Thom_eandWendroffwhenderiving the superconvergence
result. Such methods are often called implicit compact difference approximations or
Pad_approximations. Comparedto standard explicit approximationsof the sameorder,
they havea considerablysmallererror coefficient,making them competitive with explicit
schemes,despite the fact that they are implicit.

By leaving the Galerkin formulation, there is greater flexibility when modifying the
approximation near the boundary. Carpenter et. al. [1] constructed a stable and third
order accurateboundary modification for (11) that results in fourth order global accuracy.
However,the condition (7) is no longerfulfilled, and it is shownthat there is a growth in
time (independentof h since the scheme is stable).

The semi-discrete compact scheme can be written in the form

du 1 (12)

where _u is the vector of unknowns uj, P and Q are band matrices, P symmetric positive

definite (SPD). Asymptotic stability (also called time stability or strict stability) in the

norm (_u, Pu__)h follows from
1 2

Q_ )h= - u0.

where the discrete scalar product (., "}h and the corresponding norm II" lib are defined by

oo

j=0

This is the same condition as (7). It is convenient also for difference methods when applied

to systems, since it allows for stable implementations of physical boundary conditions in

a direct way, see for example [2] and IS].

It follows directly from the negative result for Galerkin methods that there is no way

of modifying P, Q near the boundary with our conditions above satisfied, as long as P has

to be SPD. The question then arises whether there is another norm {_u,/5_u)h such that

our conditions can be fulfilled with new P and Q in (12). We shall prove in section 4 that

this is impossible unless/5 is allowed to be different from P at interior points.

Recently, Carpenter et. al. [2] have shown that the conditions can be fulfilled if/5 is

modified also at inner points. In the case of the fourth order scheme with tridiagonal P

at inner points, the new matrix norm is pentadiagonal at inner points. For explicit high

order approximations it is possible to construct simpler norms and still obtain asymptotic

time stability, see the work by Kreiss and Scherer [4, 5] and by Olsson [6, 7, 8]. Wahlbin

[11] has discussed a different concept of superconvergence for elliptic problems, where the



error in the derivative is of the sameorder asthe function itself. It shouldbeemphasized
that the conceptof superconvergencethat wearediscussingrefersto the error estimates
of the function itself.

2 Necessary Conditions for the

Boundary

Accuracy Near the

In [3] it is proved that for certain classes of difference schemes it is possible to lower the

accuracy one order at the boundary without loosing the convergence rate defined by the

interior scheme. We shall prove in this section that the accuracy near the boundary cannot

be decreased any further, if we want to retain the interior convergence rate. Consider a

semi-discrete approximation of any linear first order system

duj 1
PJ--gi-= -£Qjuj, j = o, 1, .... (14)

where the difference operators Pj, Qj satisfy Pj T and Qj = Q for j >_ s. The error

e3(t) = uj(t) - u(xj,t) then obeys

PJde s _ 1QjejWgj, j--0,1, .... (15)
dt h

where the truncation error gj(t) is a smooth function of t that satisfies

(.9(hq), j=0,1,...,s-1Igj(t)l = O(hr), j >_ s

It is assumed that q < r. Suppose that the initial data are exact, i. e., ej(0) = 0, j >__0.

Define _uT = (u0...), v r = (u(O,t)...), 9_T = (go...), and _.e= u- v. Here v denotes
the vector whose elements consist of the analytic solution at the grid points xj. The error

equation (15) can then be expressed as

1
dt = -_Qe_.+ g_(t). (16)

where

g(t) - p dv_ 1Qv_. (17)
- dt h

Lemma 2.1 Suppose that lgj(t)l >_ KoM for some j, 0 < j <_ s- 1 and 0 < To < t < T1,

where Ko is independent of h, t. Then the solution e_(t) of equation (16) satisfies

max Ile__(t)Ilh >_ I(xh q+3/2 (18)
0_<t<rl

for h <_ 1, where II" lib is defined by eq. (I3).

4



Proof

Integrating equation (16) with respect to t gives (recall that __e(0)= 0)

 J0'P_(t) = Q __(_-)d:+__a(t), 0 < t < r_,

where

Hence

where we have used

_a(t) = fo_g(_-)d_- .

II_(¢)llh< IIPllh+TIIQllh max II_(t)llh,-- O<t<T1

which follows from Jensen's inequality and the homogeneity of [1. Ilb. For h __<1 we thus

obtain h

max II__(t)llh_> ZlllQiihllG(t)llh, 0 < t < r,.IIPIIhO<t<T1 +

In particular, the inequality is true for t = T1. Thus

max 11_4t)llh>_ h _0T1o<,<r, IIPII_+ T, IIQIIhI gj(.r)d.rlh 1/2

For convenience it will be assumed that the smooth component gj be positive for To _<

t <__T1. Furthermore, ej(0) = 0 implies that gj(0) = 0. Thus, we can assume without

restriction that gj(t) >_ 0 for 0 < t < T1. Consequently,

Thus,

f0 /0I gj(T)dTI = gy(T)d, >_Z,Koh°

max ll-4t)llh> KoT1 hq+3/=
o<*<r, -- llPIIh+ TIlIQIIh

The lemma is proved. []

Remark: The lemma allows for the possibility of decreasing the accuracy near the bound-

ary by order 1.5. In reality; however, the order of accuracy must be an integer. Thus, the

accuracy can be decreased one order near the boundary but not more. Furthermore, the

extra factor of h 1/2 is an effect of the L2-norm, and would not be present in the maximum

norm.

3 Modified Elements Near the Boundary

We shall prove that there is no modification of the piecewise linear space Sh near the

boundary such that global fourth order accuracy is retained.



Theorem 3.1 There is no local modification near the boundary such that the supercon-

vergence property is retained with the GaIerkin method. Indeed, with piecewise linear

elements at inner points, the maximum convergence rate is (.9(h2).

Proof

We first make the assumption that the basis functions of Sh satisfy _dxj) = 5ij.

_,(x)

1 - z_ t
2 z 1 _ _+1 Xi+2

Furthermore, in the interior it will always be assumed that the _i's are given by (8). Let

u be the vector with components uj. The Galerkin method (6) can then be expressed as

du 1

P-_ = _Qu. (19)

Here P and Q are well defined at inner points by (10), and we partition them as

0 ... )
(Pll Ply) p12= 1 :P= pT P22 ' 6 0

1 0 ...

(41 )1 1 4 1
P22=

1 1 "'.

- ,°

(20)

(Qll Q12)Q= _Q1_2Q2_ ,

1 -1 0 1

Q22=_ -1 0 "'. "

°°.

O ... )

1 •

QI: = _ 0

1 0 ...
(21)

The submatrices Pn, Qll are (s x s)-matrices resulting from the modified basis functions

near the boundary. The elements of P and Q have been normalized to be of order one,

6



i. e,,

qij = (c2i,d j/dx).

Whatever space Sh we are using the relation

luh(.,t)ll = (22)

holds. Introducing u h = _ ILj_j we get

--_(u_,dPu_)h = -u2o, (23)

where the discrete scalar product (., ")h is defined by eq. (13). Combining eqs. (19) and

(23) yields

(u_, h(Q T + Q)u__ih = -ug, (24)

that is, Q is almost antisymmetric. Summing up, the assumption that _i(xj) = (_ij implies

that the Galerkin method can be written as a difference method (19) where P is SPD and

where Q is almost antisymmetric. Consequently,

pij = pj_ , i, j >_ O,

q_j = -qji, i + j > 0, (25)

q00 = -1/2.

It is enough to consider polynomials when investigating the accuracy, and we choose

f(x) = (x-(s- 1)h/2) _, r = 0,1, .... Without restriction we can assume h = 1. At inner

points xi, i >_ s, the elements pij, qij are known. For 0 < i < s - 2 the rows in P have

the non-zero elements pio,..., pi,s-1 and correspondingly for Q. In row s - 1 there is an

extra element ps-l,s = 1/6 and qs-l,s = 1/2, respectively. Thus, the accuracy check has

the form (where we let n = s - 1 for simplicity)

r _-_pij j- + _inr +1
j=0

1 1) T ,: _qij(j-2)"+-_$_,_ (2 +
j=O

For r = 0 we have by taking (25) into account

qij = -_qji - (_i0 = -_ in,
j=O j=O

and for r = 1

i=0,..., n; r-- 0,1,...

i _ 0_...,r$,

(26)

___pj_ = _2__p_j = _-_qq(j_2)_l_g_,_ +_(2_t_1 1)_m
j=o j=o j=o

(27)

, i = 0,..., n. (28)



Summing(26) over i gives

r_-'_ j- _po +-_ +1 = _ j- _qlj +-_ +1 ,
j=0 i=O j=O i=O

and by (27), (28)

For r = 2 we have

j=0 i=0

1 1 1) 2:
1 1)

(29)

By (25)
n n

E E qiJji = o,
j=0 i=0

n n

E E qJ,(J + i) = o,
j=0 i=0

n n l

E E qJ,= -_.
j=O i=0

Thus, with m = n/2, we get from (29)

1 rn 2 1
--m 2 m m2 m 1 --m 2 + 2 m2 -t- _ -}- m -1---5-+ +m+-5-+ 5 =

which has no solution. Accordingly, the accuracy near the boundary can be at most first

order, and the theorem follows by lemma (2.1).

Thus far the theorem has been proved for basis functions satisfying _i(xj) = gij. This

assumption will now be removed.

2

i-2 i-I _ Xi+l Xi+2



We write a function u h E Sh as

O0

u_(x,_) = _2"J(t)_'J(x), (30)
j=O

and in general uh(xj,t) ¢ aj(t) near the boundary. If we let a be the vector with

components aj the Galerkin method gives us

p_ = 1- (31)dt _Q_-'

which formally is of the same type as eq. (19). Again,/5 is SPD with the same structure

as P in (20). Combining eqs. (22), (30) and (31) gives

(_,{-(_)_+ c))__),_= -uh(o,t); = -ug. (32)

Thus, Q is not almost antisymmetric in the sense of eq. (24). Therefore, the first part of

the proof cannot be directly applied to (31). Since the _j's constitute a basis in Sh, there

is a transformation from _u to __ given by

_a_a= T_u, (33)

where T has the form

r

X " °" X

X ''- X

1

1

i. e., it is the identity in the interior, and with the upper corner block having a size

corresponding to the support and number of modified basis functions. The approximation

u then satisfies

/sT dU_ 1 -
dt= -_QTu_. (34)

If w denotes the grid values of the true solution of the continuous problem, i. e., w t = w___,

then

1 - (35)
/sTw_w___= -_QTw__ + g,

where g is the truncation error. Assume that basis functions are found such that gj =

O(h 3) in a fixed number of points adjacent to the boundary, and gj = O(h 4) in the

interior. Multiplying (35) by T T from the left we get

TT/STw___ = 1TT(_Tw + TT g, (36)



where it follows that TTg_ is of the same order as g_ because of the assumption that T T be

bounded. Using (33) in (32) gives

h(rT0 r + rT0r)_ )h =--u0 ,

that is to say, TTQT is almost antisymmetric. Thus, eq. (36) is third order accurate at

the boundary, P = TTpT is SPD, and Q = TTC2T is almost antisymmetric. But this is

impossible according to the first part of this proof, and we have arrived at a contradiction.

This proves the theorem. []

4 Generalized Norms

We shall next discuss how the results of the previous section can be generalized. To make

the presentation more concise we introduce the concept of (p, q)-approximation of O/Oz.

Definition 4.1 A difference approximation D is called a (p,q)-approximation of O/Ox

if D is at least p th order accurate at the grid points Xo,...,x_-l, and at least q th

order accurate at xs,...; s is a fixed number independent of the uniform grid spacing

h = xj+l-xj.

It has been demonstrated that there exist no matrices P and Q, P tridiagonal in the inte-

rior and SPD, Q almost antisymmetric, such that p-1Q is a (3, 4)-approximation of O/Ox.

In particular, there exists no Galerkin method that results in a (3, 4)-approximation. In-

terpreting D = p-1Q as a finite difference operator, however, one can try to construct

a different scalar product in which it is possible to establish the summation-by-parts

property, which will be pursued in the following paragraphs•

1 -1
Let D = -_P Q be a (p, q)-approximation of O/O:c, where it is no longer assumed that

P be SPD, nor that Q be almost antisymmetric. This allows us to consider more general

operators than those of section 3, since P was SPD. The operators P and Q are given by

(/911 ]912) ( Qll QI_ ) (37)P= pT P2_ ' Q= -QT2 Q22 '

where Pll and Qll are arbitrary (s × s)-matrices; Pli must of course be non-singular in

order for D to exist. The structure of the remaining blocks is

0

0

Prl

Pl ''" pr 1 0 , • •

12912

I Po Pl

Pl Po

t922 = : "..

Prl

• • . pr 1

(38)

10



Q12 =

( 0

0

qr2

i, ql • • • qT't

, Q22

0 ql "''

-ql 0 "".

-- q_

qr2

If D is to be almost antisymmetric with respect to some scalar product (.,.) it is

necessary that

1_ (39)(u_,Du_) = (u_, PP-'Qu_}h = -_u0,

where/5 is the SPD-matrix representing^the scalar product. It is then natural to try a

scalar product (re_v) = {_u, b__v/h, where P is obtained by modifying P at the boundary.

Hence, P may be written as

t5=( /5'lPT P22P12) , (40)

where/511 E R sxs. It is no restriction to assume identical block size of Pll and/511, since

it is possible to extend the size of Pn so as to match that of/511; s must of course be

independent of the mesh size h.

Define H =/5p-1, i. e.,/5 = HP, where H is blocked as

Hn H12 ) (41)H = H21 H22 "

From eq. (39) it follows that HQ must be almost antisymmetrie;/5 = HP requires that

HP be SPD with the same interior structure as P. Hence, given a (p, q)-approximation
1

D = __p-1Q, we must find a matrix H such that

P22 = H21Pl_ + H22 P22

P12 = Hn P12 + H12 P22

PIT2 = H2,P11-{- H22P_

0 = H2,Q12 + H22Q_ + (H21Q12 + H=Q=) T

= -- H22Q12)0 HIIQ12 + H12Q22 + (H21Qn T T

(42)

which follows from the symmetry of/5 = HP, the antisymmetry of HQ, and the structure

assumption (40). The equations above will be used to derive constraints on H.

The submatrix P2_ defines a difference stencil, which in the interior points yields the

characteristic equation

pr 1X2`rl -If- .- • -t- pox _ + • "" + pq = 0 (43)

11



with u distinct roots Xk, k = 0,..., u - 1, each with multiplicity #k. The general solution

of the corresponding difference equation may then be written as

u-1

E ak(j)x_,
k=O

where ak(j) is a polynomial in j

#k --1

ak(j) = _ aktj'.
l=O

Furthermore, with each root xk, k = 0,..., u- 1, we associate the upper triangular matrix

• . . O,/_k--I

uk ul ) . u(k)
= il l'o' k-1 , (44)

, (k)
t_ktk-- 1,/_k-- 1

where

_,_l°(k) = -qT_(-r2)t-mx-[ _2 - ... - ql(-1)t-mx; 1 + qlxk + ... + q_2r2 _k ) m

with 0 _< rn, l _< #k - 1. The binomial coefficients are defined to be zero whenever rn > I.

Thus, all matrix elements of Uk are defined by eq. (45).

Assumption 4.1 For each root xk,k = O,...,u - 1, of the characteristic equation (43),

the associated upper triangular matrix Uk (44) is non-singular.

Lemma 4.1 Let the matrices P and Q be defined by eqs. (37), (38), and suppose that

assumption (4.1) holds. If there exists a matrix H such that Q = HQ is almost antisym-

metric and P = HP symmetric, P given by eq. (40), then

H=( HuO O)l ' Hu=

hoo ... ho,s-r- 1

hs-r-l,0 • • • hs-r-l,s-r-1

hs-l,0 • • • hs-l,s-r-1

O • . • 0

1

° • • 1;

where r = max(r1, r2).

12



Proof

From the first equation of eqs. (42) one obtains the inhomogeneous difference equation

pr, hij + ... + pohi,j+r_ + • .. -4-pra hi,j+2rl -- p_, 6i,j+2_l + .- • + Po_i,j+r_ + • .. + Pr_ _ij , (46)

where 6ij is the Kronecker delta and i >__s, j >__s - rl. To begin with we consider j > i,

which implies eq. (43). Hence

v--1

hij = _ ak(j)x_, j > i
k=O

where
]_k--I

ak(j) = _ aktj'
/=0

Next we solve for hi_ by setting j = i in eq. (46). Using the general solution for j > i

yields

v-1 #k-1

- "-'+_' (i + 2rl)txik+2r' ]P_l hii - E E ak, [p_,i'x'k + ... + po(i + "1] a" k "+''" "31-Prl
k=O I=0

b,-1

k=O

where the expression between the square brackets vanishes, since xk is a root with multi-

plicity #k. This implies
v--1

hii = _ ak(i)x_ + 1.
k=O

In a similar vein hi,i-a is determined as

v-1

hi,i-, = __, ak(i- 1)x_ -1 .
k=O

An induction argument shows that

v--I

hij = _ ak(j)x_,
k=O

s-rl <_j<i-1.

Hence
v--1

h,j= __,ak(j)xJk +3ij, i >_s, j >_s--ra. (47)
k=O

Next, we make use of the fourth equation of eqs. (42), which implies that the diagonal

elements of H21Qi2 + H22Q22 are zero, i. e.,

-q_2hi,i-r2 - ... - qlhi,i-1 + qlhi,i+l + ... + q_2hi,i+_ = O.

13



Inserting eq. (47) gives

u-1 _k-1

0=ZE =
k=0 /=0

_qr2akt( i _ xt_i-r2 _-.2j "_k ... - qlakt(i- 1)lx_ -1

+qaakl(i + 1)Ix/ff ' +... +q_akl(i + r2)tx_ +_2 •

The binomial theorem yields

v-1 uk-1 I

aklUml_ X k __ ,

k=O I=0 ra=O

where we have used eq. (45). Let/_ = maxk(#k), and extend the coefficients akt by defining

akt = 0 whenever #k _< l _< # -- 1. Similarly, let _r_t"(k) = 0 for l < rn _< # -- 1, whence

v-1 _-1 #-1

EZ E- (k)m, o, i>,t_klUmlZ Z k _ __ •

k=0 I=0 m=0

Rearranging the sum one obtains

-kl- t xk=0, i>__.,.
k=0 m=0

The vectors (i_x_), i _> s, are linearly independent for all k and rn. Thus

_-(k)=0, O<k<u-1, 0<m<bt--1t_klt_mI .... •

/=0

Since akt = 0 for #k _< l _< # - 1, it suffices to sum from I = 0 to l = #k - 1. Furthermore,

when #k < m </_ - 1 it follows that l < m for 0 < l < #k - 1, which according to the

extension of u_ implies that the sum vanishes identically. Consequently, no conditions

are imposed for #k _< m _< /_ -- 1, and we are left with

_k --1

E ak, u_=O, O<_k<_u-i,
l=O

O_<m<#k-1.

Defining ak = (ak0... ak,uk-l)T gives the following system

ULak = 0 , 0_<k_<u-1,

which only has the trivial solution ak = 0, since Uk is assumed to be non-singular. From

eq. (47) it follows that

hij = _Sij, i 2 8, j >__s - rl . (48)

In particular, H22 = I. By means of the third equation (42), H22 = I leads to H21 = 0,

since Pll is non-singular.
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To determine Hn and H12 we begin by examining the second equation of eqs. (42),

which implies

p_ hij + • .. + pohi,j+rl + ... + Prl hi,j+2rl = RHS, 0 < i < s - 1 j >_ s - rl,

where the right hand side (RHS) is defined by

RHS={ 0 0<i<s-rl-1P_l-n+16i,J+_-l+."+P_iJ i=s-rl- l +n, 1 <_n <_rl.

Arguing exactly as before one obtains

v--1

hij = __, ak(j)x_ + 6O, O < i < s-1, j >_ s- rl .
k=0

Finally, we use the last of eqs. (42), which simplifies to

HllQI: + H12Q= = Q12.

Using the equations for the diagonal elements we recover

-q_hi,_-_ - ... - qlhi,_-i + qihi,i+l + ... + q_h,,i+_: = O,

which again yields

hij = ,50, O < i < s -1, j_>s-ri. (49)

Hence, H12 = 0. Furthermore, eq. (49) also shows that

Hi1 --

]ZOO • • • hO,s-r1-1

:

]zs--r I --1,0 • • • ]zS--rl--l,S--rl--1

° ° ° 0

1

° , °
°

]zs-1 ,0 ... hs-l,s-rl-1 0 ...

This proves the lemma if rl >_ r2. Suppose that r2 > rl. Then

( H11Qn HnQ12 )HQ = _QTI2 Q22 .

Since HQ is almost antisymmetric, it follows that

Partition

HnQ12 = Q12.

Hll : ]_21 l ' 021 022 '

15

(50)



where/_11, Qll _ R(S-rl)x(s-rl)

eq. (50) yields

The explicit structure of 011 is

, and/:/2,, 021 C R n×(*-n)

/?,, ) 01, = ( Q0") •

Combining this partition with

(51)

11 _--

( 0

0

qr_

qrl+l ... q_2 0

o_

0

0

where column r2 - rl - 1 is the last non-zero column• Equating columns r2 - rl - 1 results

ho,s-T1-1 ( 0

) :
• q 2 *

hs-l,s-_,-1 \ 0 j

hoo

in

hs-l,o

The element qT2 is located on row s - rl - 1 in both column vectors, i. e.,

hj,s-rl-1 -= 5j,s--r,--1, 0 _ j < s - 1.

If r2 = rl + 1 we are done. Otherwise, assume the induction hypothesis hit = @ for

0_<j_< s- l, k < l < s-rl-l, where k satisfies s-r2 < k_< s-r1-1. Equating

columns k + r2 - 1 - s and using the induction hypothesis one obtains

hi,k-1 = 5j,k-1, 0 < j < s - 1.

Since the result is true for k = s - rl - 1, it follows by the axiom of induction that

Nil

hoo .. • ho,s-r2 --1

hs-r2-1,o • • • hs-ra-l,s-r2-1

hs-l,O • • • hs-l,s-r2 -1

• • . 0

1

0 ... 1

which concludes the lemma. []
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Corollary 4.1 The conclusion of Iemma (4.1) holds if the characteristic polynomials of

P22 and Q22 are relatively prime.

Proof

The matrices Uk are non-singular iff the diagonal elements are non-zero. But

ul_)= _(-q_x-_ _ -...- q,x-_' + q, xk +... + q_x_] ,.., 0 < I < ,k - 1,

where xk is a root of the characteristic polynomial of P22. Thus, u}) ) # 0 iff xk is not a

root of the characteristic polynomial of Q22, i. e., iff the characteristic polynomials of P=

and Q22 are relatively prime. []

Since D =_P1 -aQisa (p,q)-approximation of O/Ox it follows that

1

(Pv),=_(Ou),+O(h _) i=O,...,s-1

and
1

(Pv_)i=-_(Qu_)i+O(hq) i=s,s+ l,...

where v = (ux(xo) ux(xl) ... )T. The interior order of accuracy q is assumed to exceed

that of the boundary. It may of course happen that one gets the interior order of accuracy

at some of the boundary points, if the interior operator extends into the boundary operator

Pn, Qn. From lemma (4.1) it follows immediately that

( ) ( 11QllHP= HI_PH P12 HQ= . (52)
pT P2_ ' _QT Q=2

Hence,
1

(HP_v)i=-_(HQu)i+O(h p) i=O,...,s-1

and
1

(HPv_),=-_(HQu__),+O(h q) i=s,s+ l,...

1/3-a0 is a (p, q)-approximation of 0/0x, where /3 is SPD, and Q is almosti.e., D= g

antisymmetric.

We now return to the case where P and Q, defined by eqs. (20)-(21), are tridiagonal

in the interior.

1p-_Q of O/Ox, P and (2 de-Theorem 4.1 There exists no (3,4)-approximation D = -_

fined by eqs. f20)-(21), that is almost antisymmetric with respect to a tridiagonal norm
/3 such that P_2 = P22.

17



Proof

1p-lQ and a norm /5 such that (_u, Du)Suppose there were a (3, 4)-approximation D =

= (u__,/sDu_)h = --1/2ug. The characteristic polynomials of P2_ and Q22 are given by

p(x) = x 2 + 4x + 1 and q(x) = x 2 - 1. Clearly, they are relatively prime. Thus

/Sp__=H=(HH O)0 I '

where

hoo ... ho,_-2 0 '_

)mll : " " "

hs-l,0 ... hs-l,_-2 1

1 ^ -18,according to corollary (4.1). From the assumptions on D we conclude that D = gP

/5 = HP, Q = HQ given by eq. (52), is a (3,4)-approximation of O/Ox, where/5 is SPD,

and Q is almost antisymmetric. But this contradicts theorem (3.1). 12

It should be pointed out that it is not a priori clear that no such norm can exist.

If/5 is defined by eq. (40), with P12 and P22 given by eqs. (20)-(21), one cannot apply

theorem (3.1) directly to P = HP (symmetric) and = HQ (antisymmetric), because

= HQ need not be tridiagonal in the interior, which is needed in order to apply the

basic theorem (3.1).
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