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Abstract. The effects of laterally homogeneous mantle electrical conductivity have been included in

steady, frozen-flux core surface flow estimation along with refinements in method and weighting. The
refined method allows simultaneous solution for both the initial radial geomagnetic field component at the

core-mantle boundary (CMB) and the sub-adjacent fluid motion; it also features Gauss' method for solving

the non-linear inverse problem associated with steady motional induction. The tradeoff between spatial

complexity of the derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models

(DGRFs) is studied for various mantle conductivity profiles. For simple flow and a fixed initial

geomagnetic condition, a fairly high deep-mantle conductivity performs better than either insulating or
weakly conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs
almost as well. Simultaneous solution for both initial geomagnetic field and fluid flow reduces the misfit

per degree of freedom even more than does changing the mantle conductivity profile. Moreover, when both
core field and flow are estimated, the performance of the solutions and the derived flows become

insensitive to the conductivity profile.

Introduction

Perhaps the simplest magnetic Earth model is the source-free mantle/frozen-flux core model,

wherein an effectively rigid, impenetrable, electrically insulating mantle of uniform magnetic permeability

surrounds an effectively spherical, inviscid, perfectly conducting liquid outer core in anelastic flow. This

basic Earth model indicates vacuum extrapolation of broad-scale potential geomagnetic field models to the

CMB and attributes geomagnetic secular variation (SV) to advection of the footpoints of geomagnetic force

field lines by the fluid motion at the top of the core. This process is described in terms of the radial

component of the frozen-flux induction equation at the top of the core:

3tB r + Vs*Brv = 0
(1)

where Br is the radial component of the magnetic flux density vector, v is the fluid velocity vector, and Vs*
is the surface divergence operator [see, e.g., Roberts & Scott, 1965; Backus, 1968; Voorhies, 1986a, 1991].

This magnetic Earth model has been widely tested and has proven to be quite useful. For example,

the CMB was located geomagnetically [Hide & Malin, 1981; Voorhies & Benton, 1982] and contour maps

of the broad-scale radial geomagnetic field component near the CMB were constructed and analyzed over a

decade ago using this model [Booker, 1969; Benton et al., 1979; Voorhies, 1984; Bloxham & Jackson,

1992]. Steady fluid flows near the top of the core have been estimated geomagnetically-both with and

without the surfici,ally geostrophic flow constraint-using this model (see, e.g., Voorhies & Backus [1985];
Backus & LeMouel [1986]; reviews by Voorhies [1987] and Bloxham & Jackson [1991]; and more recent

work by Bloxham [1992]; Davis & Whaler [1993]; Voorhies [1991, 1993]; and Whaler [1991]). Contour

plots of millibar pressure perturbations at the core surface have been derived from steady, tangentially

geostrophic core flow estimates [Voorhies, 1991]. Steady and piecewise steady flow estimation procedures



havebeenimprovedduringthepastdecade-inpart because Earth rotation data suggest that fluctuations in

near-surface core flow are small (about 1 km/yr) [Voorhies, 1993; but also see Benton & Celaya, 1991 and

Jackson et al., 1993].

Motivation

The source-free mantle/frozen-flux core model previously used to locate the core and estimate its

near-surface flow is a seemingly sound first approximation. The significance of evidence suggesting

magnetic flux diffusion at the CMB may be debated despite the finite electrical conductivty of liquid iron

alloys [see, e.g., Booker, 1969; Voorhies, 1984, 1986a; Bloxham & Gubbins, 1986; Benton & Voorhies.

1987; Bloxham & Jackson, 1992; Constable et al., 1993]. Nevertheless, this simple Earth model is but an

idealization which is not sustained by mineral physics data. Elimination of the frozen-flux core

approximation in favor of steady magnetic flux diffusion led to steady diffusive flows which provide a

closer fit to the weighted DGRFs [IAGA, 1988] than do steady frozen-flux flows; moreover, the negative

correlation found between advective and diffusive contributions to core SV substantiates the core

geodynamo hypothesis [Voorhies, 1993]. It was also found that laterally heterogeneous steady flux

diffusion need not appreciably alter steady surficial core flow estimates; therefore, geomagnetic effects of

lateral heterogeneity in deep-mantle conductivity are arguably small.

Much as Earth's core is not a perfect conductor, Earth's mantle is not a perfect resistor; therefore,

one should correct core surface field and flow estimates for the effects of mantle conductivity. These

corrections are not easily made because there is little agreement as to the value of mantle conductivity-even

as a spherically averaged function of radius alone, Cm(r ). Figure 1 portrays six mantle conductivity

profiles; the logarithmic ordinate highlights the relatively poor agreement among authors. It seems that

more recent experiments measuring the conductivity of ferro-magnesian silicates at high pressure do not

settle the mantle conductivity problem due to the uncertain composition and temperature of the deep mantle

[Li & Jeanloz, 1987; Peyronneau & Poirier, 1989]. In this situation, one can but try various profiles and see

which, if any, are more consistent with the data and models underlying core field and flow estimation.

Effects of Mantle Conductivity

The qualitative geomagnetic effects of a laterally homogeneous mantle conductivity can be deduced

by examining solutions to the classic problem of magnetic diffusion through a sphere of radially varying

conductivity [Lahiri & Price, 1939; McDonald, 1957; Benton & Whaler, 1982; Backus, 1982, 1983]. For

magnetic flux density vector B, electrical conductivity o m, and uniform magnetic permeability It, the laws
of Faraday, Ohm, and Ampere yield

0t B = (POm)-l[V2B + V(lnom)XVxB] (2)

For laterally homogneous Om(r ) in spherical polar coordinates (r,0,¢), the radial diffusion equation is just

0tBr = (l.tOmr)- 1V2rB r (3)

Alternatively, one may consider the Mie representation of the solenoidal geomagnetic flux density, B =

Vx[rxVP] + rxVQ, where P and Q are, respectively, the poloidal and toroidal scalars which average to

zero on spheres and B r = -rVs2P for surface Laplacian Vs2 [Backus, 1986]; then P and Q decouple in

equation (2) and the diffusion equation for the poloidal scalar is _gtP = [/.tOm]-1V2p.

Because the deep mantle is of primary concern, we consider a single power-law profile, o m =
Oo(r/c)'k with core radius c = 3480 km. Then equation (3) has solutions separable into spherical
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Fig. 1. Electrical conductivity of the mantle, Om' in S/m as a function of normalized Earth radius, r/a,

according to various authors: profile M-McDonald [1957], B-Banks [ 1969]. C-Eckhardt et al. [1963],

R-Ritdtake [1973], A-Alldredge [1977], S-Stacey [1977], L-Li & Jeanlo- [1987] uppe_r limit. Also shown
are the conductivity of seawater and a plausible core conductivity (dashed line at 3x105 S/m).



harmonics, Fourier series in time, and Bessel functions of imaginary argument and irrational order in radius

[McDonald, 1957]. In particular, we introduce the compact spherical harmonic expansions for Br near
Earth's surface (r = a = 6371.2 km) and near the CMB (r = c):

Br(a,0,_;t) = Yi )'i(t)Si(0,_) (4a)

Br(C,0,_;t) = Yi ri(t)Si(0,_) (4b)

The Si notation is that of Voorhies [1986b]: let Pn m represent the Schmidt normalized associated Legendre
polynomial of degree n and order m; then for i = n2 and m = 0, Si = Pn0(COS0), and for i = n2 + 2m - 1 and

m ;_0, Si = Pnm(cos0)cosm_ and Si+ 1 = Pnm(cos0)sinm_. If each spherical harmonic coefficient at the
CMB is expressed as the sum of a baseline linear temporal trend and real temporal oscillations,

1

Fk(t) = Fk0 + Fkl[t" to] + 2 Y_l[Fkleit°l(t - to) + r'kl*e-i_(t- to)] (5)

then the spherical harmonic coefficient near Earth's surface is the geometric upward continuation of the
delayed baseline and the phase-lagged, physically attenuated oscillations:

c nk+2 _°oC2 c _.-2

Vk(t) = (-) Irk0 + Fkl[t- to- (1- (-) ) ] +

a (__2)(_.+2nk_l) a

1

2ZI [Fkl

where

_' (i)J
fkl(r) = I? -- [---

j=O j!

fkl(a)*fkl(c) + l,fkl(c)*fkl(a)
ekOl(t - to) Fk _ e-i_(t- to)]}

fkl(c)*fkl(c) fkl(c)*fkl(C)

_°lla°oC2 (r)2-_" l J /
(__2)2 c

(6a)

r(v k + j+l) (6b)

F(v k +j+l) is the gamma function, v k = (2nk +1)/(_.-2), and nk is the spherical harmonic degree of the kth

coefficient. More generally, we can introduce temporal basis functions Tl(t), the temporal coefficients Fkm

of Fk(t), and the upward continuation operator "rpklm •

yp(t) -- El Xk Em Tl(t)'fpklmFk m (7)

By Lenz's law, a change in the core field induces electric currents in the mantle which oppose the

change. So SV must fight its way through the mantle. The greater the mantle conductivity, the longer the

fight and the greater the losses. Fourier analysis of the diffusion equation for the spherical harmonic

coefficients of the radial geomagnetic field component reveals that the mantle filter is dispersive: at each

harmonic degree, different frequencies diffuse across the mantle with different time lags. This implies a

loss of the simultaneity enjoyed by source-flee mantle treatments of the core field. Moreover, the physical

attenuation of a signal diffusing through the mantle suggests that more vigorous SV at the CMB will be

needed to match the observed SV than is needed in the insulating mantle case. More vigorous SV at the

CMB suggests more vigorous core surface flow, so one expects a more vigorous core flow estimate when
mantle conductivity is included.
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Method

Our numerical method for estimating the core field and flow just beneath a conducting mantle is

designed for a damped weighted least-squares fit to the DGRFs [IAGA, 1988] for the 35-year interval

between 1945 and 1980. The cost function minimized is the sum of the square-weighted residual relative to

the eight DGRFs spanning this interval at 5-year epochs plus the damped mean square swirl and mean
the pth DGRF radial field

square confluence of the fluid flow at the top of the core. Denote by gp(t s) A 2 = Ar2coefficient (p _< 120) at time ts = 1940 + 5s (I < s _<8); then this cost function is + _,dAd 2 or

A 2 =
8 120 120

5", g - _,p(ts)]Wpq(ts)[gq(ts)- _/q(ts)]
s=l p=l q=l [gp(ts)

_'d 2rt n 2
+--_ I [_r + (Oru)2]sin0d0d_

4_ 0 0

(8)

A

where Wpq(ts) is the weight malrix for epoch ts, _'d is the damping parameter, and mr - r*Vxv is the radial
vorticity (swirl) and Oru = -Vs.v is the surface convergence (confluence) of the surficial fluid velocity.

Following Voorhies [1986b], steady v(c,0,q)) = v0 + w_ is expressed in terms of the spherical

harmonic expansions for its streamfunction and velocity potential: v = _xVs(Z j ajSj) + Vs(E j I_jSj). Then

with (4b), (1) becomes

_tFk(t) = gig j Fi(t)[XijkCtj + Yijkl3j]

= Y.j [Pkj(t)aj + Qkj(t)_j]

= Ei ZkiFi (t)

(9a)

(9b)

(9c)

where, after integration by parts over the CMB,

2nk+l 2_ rt

Pkj = -- J'0 "[0Br[igq)Sj30Sk - ig0Sj_q_Sk]d0d¢
4rcc 2

(10a)

2_

2nk+l J0 _0 Br[OOSj80Sk+ 8_Sj8_Sk/sin20]sin0d0d_
Qkj = 4rtc---_-

and

2nk+ 1 j.2rcj, rc
Zki =_ [S i _r u - 80Si v - _Siw/sin0]SkSin0d0d _

4r_c 2 0 0

( 10b)

(lOc)

Note that the solution of (9c) is of propagator form

F(t) = {exp[(t- to)Z] }F(t o) = _o(t)F(t o) (11)

where F is the vector of elements F k, Z is the matrix of elements Zki, and _o is the propagator matrix.

Truncation of Z to an NxN square matrix and eigen-decomposition thereof yields the complex eigenvalues



whicharethegrowth/decayratesandfrequenciesof oscillationof elementalmagneticmodes;
unfortunately,thenumberandmagnitudeoftheseeigenvaluesdependsuponthechosenvalueofN.

To implement the Gauss method for solving the nonlinear geophysical inverse problem posed by the

minimization of (8) with respect to the model parameters ((x, _, F(to) ), one needs the coefficients of the
normal equations matrix A at each iteration. To linearize and iterate, set

Oyp(t) Oyp(t) 0Tp(t)

8yp(t) = Y:q [-- 8r'q(to) + -- 8C_q + --

o-)Fq(to) _(Zq 013q

813q] = Y.j Apj(t)8_j (12)

recall the temporal basis functions Tn(t), and introduce the orthonormalization matrix L = M -1 where

t +

M nm= J Tn(t)Tm(t) dt

t-

and (t-, t+) are the limits of integration: t- _<to _<t+. Then

t +

Tp(t) = Z 1E k Z m E n Tl(t)YpklmLmn[I Fk(t)Tn(t) dt]
t-

(13)

and the partial derivatives in (12) are just the reassembled upward continuation of the transformed

0Fk(t)/OFq(to), 0Fk(t)/Oc( q, and 0Fk(t)/Ol_ q. Clearly

OFk(t)

Orq(t o)

(t - to)Z (t- to)2

-- = {e }kq = Ikq+Zkq(t-to)+ YaZkaZaq +
2

(14a)

while, after some manipulation involving the inverse of the propagator [Sabaka et al., 1992], it can be

shown that

0Fk(t) t (t-"0Z

-- = _ Zv [{e ]kvPvq(X)dx

OCtq to

(14b)

0Fk(t) t (t- "[)Z

= I Xv [{e ]kvQvq(%)d'c

Ol3q to

(14c)

Substitution of (14) into the partial derivatives of (13) with respect to the model parameters gives the

elements of the normal equations matrix Apj appearing in (12).

Application

In practice, the calculations have three phases: (a) initial A matrix element generation; (b) first flow

and second A matrix element generation; and (c) iteration. In phase (a), a baseline trend and a Fourier sine

series are fitted exactly through the sequence of input DGRF radial field coefficients [Alldredge, 1987].
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Thesecoefficientsaredownwardly continued to the CMB, noting that the baseline field leads at the CMB

and the Fourier series enjoys the usual phase lead and physical amplification at the CMB (see 6a). Initial

Pkj and Qkj are computed at 5-year intervals by numerical integration of (10a-b) and used to evaluate (14)
numerically with Z = 0. The upward continuation indicated by the partial derivatives of (13) is achieved

via discrete Fourier cosine transform (DFCT) over the doubled time interval [t. = 1930, t+ = 2000]; then the

A matrix elements are reassembled at the 8 DGRF epochs using the attenuated, phase-shifted cosinusoids.

In phase (b), the weighted information matrix (ATWA) is assembled and damped. The first flow

estimate (complete through degree and order 13) is obtained by the usual damped weighted least-squares

estimator. This flow field is used to solve the forward steady motional induction problem (1) numerically.

We start at epoch to = 1965, advect forward to 2000, and then restart at 1965 and advect back to 1930. F,
P, and Q are evaluated annually with a high-accuracy numerical quartrature on a l°x2 ° mesh (the pole

corrections actually yield fifth order-accuracy or better). We use a DFCT of F over the doubled, 70-year

interval (Nyquist period of 2 years). This procedure is in accord with changing the sign of the fluid

velocity every 70 years; it generates a purely periodic prediction for B r and rolls back edge effects away

from the target interval 1945-1980. We then upwardly continue the coefficients of the predicted field at the

CMB through the conducting mantle, evaluate _p(ts), and calculate the residuals relative to the DGRFs.
The flow is used to evaluate Z (truncated to 224x224); the truncated propagator in (14) is represented by

the cubic polynomial-a fair approximation for the slow flows over short intervals studied. We then

compute the DFCT of the propagated P and Q matrices (without recourse to the matrix convolution

theorem). The DFCTs of propagated P and Q are then upwardly continued and used to evaluate second A

matrix elements at the DGRF epochs.

In phase (c), the new information matrix is assembled, damped, and used to estimate the second

flow. This in turn allows calculation of the second prediction; F; residuals (gp(ts) - "/p(ts)); P, Q, and Z;
the propagator _o (t); and a third set of A matrix elements. Iteration is continued until the velocity field

changes by less than 1%. Note that it is only on the second and higher iterations that we have the estimate

of ct and 13needed to evaluate Z-and thus meaningfully estimate the initial condition. F(to). When this

option is exercised, the Fk(t o) are estimated through degree and order I0.

The weights employed differ somewhat from those used by Voorhies [1993]. The improved

covariance matrix for the 1980 DGRF is from Langel et al. [1989]. Because this parameter covariance was

derived using an approximate correlated data weight matrix, it overestimates parameter uncertainty. The

results shown in Table 10 of Langel et al. [1989] were thus used to reduce this 1980 covariance

matrix-thereby increasing the weight matrix elements. The resulting weight matrix still appeared too light

compared with weight matrices derived for epochs 1965, 1970, and 1975 from the DGRF candidate

models. To acheive a satisfactory temporal distribution of weights, the 1965-1975 weight matrices were

multiplied by 2/3 and the 1980 weight matrix was multiplied by 2.40--the exact factor being chosen to

preserve the cumulative weighted variance in the DGRF models relative to 1965.

Results

We chose four mantle conductivity profiles to study in some detail. Profile A is just the insulating

mantle case (_m = 0). For profile C the conductivty at the base of the mantle is 300 S/m; for profile E it is

3,000 S/m. Both profiles C and E have a conductivity of 1 S/m at 0.9a; therefore, profile C is a m =

300(c/r)l 1.42 and profile E is a m = 3,000(c/r) 16-03. For profile G the conductivity is 105 S/m at the base

of the mantle and falls off to I S/m 200 km above the CMB; therefore, profile G is a m = 105(c/r) 123"6.

For the deep mantle, conductivity profile C is similar to the profiles favored by Achache et al. [1981].

Profile E represents a fairly high deep-mantle conductivity. Profile G corresponds !o a thin, highly

conducting layer just above the core-such as m,,ight result from the combined effects of wustite overplating

of the core and deep-mantle convection (wustite being metallic at high pressures and temperatures

according to Knittle et al. [1986]).
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Fixed Initial Conditions

For each of the four mantle conductivity profiles studied, we solved the steady surficial core flow

estimation problem at various kd so as to develop a trade-off curve of "flow complexity" as a function of
"misfit". The flow complexity is the square root of the mean square swirl plus the mean square confluence

of the flow, A d. The misfit is the square root of the square weighted residual per degree of freedom,

(Ar2/DOF)I/2. The number of degrees of freedom of the solution (DOF) is taken to be 840 minus the trace

of the resolution matrix: the number of yp(t s) fitted minus the 120 coefficients of the fixed initial
geomagnetic condition equals 840; the trace of the resolution matrix was less than 90.21 in all cases

studied. The latter shows that damping, rather than truncation of the streamfunction and velocity potential

expansions to degree 13, dominates the regularization. The weight matrices for the DGRFs are uncertain;

however, the measure of misfit is thought to be within a factor of 2 of the square root of chi-squared per

degree of freedom-with our misfit likely exceeding (z2/DOF)I/2.

These four trade-off curves are plotted in Figure 2. The minimum misfit achieved was 6.53, was for

a flow complexity of 1.04x 10 -2 yr "1, and was at the modest RMS flow speed of 8.98 km/yr. The curves

differ but slightly despite the large changes in the mantle conductivity adopted; moreover, inspection of

vector plots of solutions around the knees of the tradeoff curves shows these flow fields to be visually

indistinguishable. Above the knees of the trade-off curves, there is evidence conf'Lrrning that more vigorous

flow is needed to achieve a given misfit when the effects of mantle conductivity are included in steady

surficial core flow estimation. At and below the knee of the Irade-off curves, conductivity profile E clearly

out-performs the other profiles studied: in this region, prof'de E gives lower misfit at fixed flow complexity

than do the other profiles. Still, profile G performs only slightly worse than profile E. The inference that

profile E is more compatible with the attribution of definitive secular change to steady surficial frozen-flux

core flow is, however, unwarranted: further work shows such an inference to be an artifact of holding the

initial geomagnetic condition fixed.

Simultaneous Solutions for Core Field and Flow

Figure 3 shows the trade-off curves of flow complexity as a function of misfit in the case of an

insulating mantle from the fixed initial condition flows (solid curve) and from simultaneous solutions for

both the initial core field and the steady core surface flow (dot-dashed curve). The misfit is still

(Ar2/DOF) 1/2, but DOF is now 960 minus the trace of the resolution matrix. Simultaneous estimation of

both core field and flow clearly out-performs estimation of the flow alone: at any level of flow complexity

studied, the simultaneous solutions offer substantially reduced square-weighted residuals per degree of

freedom when compared with the solutions for the flow alone. The minimum misfit achieved was 5.20,

was for a flow complexity of 8.11 x 10 .3 yr" 1, was at an RMS flow speed of 8.44 km/yr, and was for 193.1

effectively free parameters (120 being for the initial core field). Again, the misfit is thought to overestimate

(_2/DoF)l/2 by a factor of up to 2.

The difference between the two curves plotted in Figure 3 confirms the importance of initial

conditions in determing the quality of the solution. As evidenced by equation (I I), the difference between

fields predicted by the action of a steady flow on slightly different initial magnetic conditions can grow

exponentially in time [Voorhies, 1992].

Simultaneous solutions for core field and flow at various _'d were also derived for mantle

conductivity profiles E and G. These tradeoff curves are visually indistinguishable from the insulating

mantle (dot-dashed) curve in Figure 3. The effects of laterally homogeneous mantle conductivity on the

performance of steady surficial core flow solutions are thus negligible provided both the initial radial

geomagnetic component and the core flow at the CMB are estimated. It follows that all conductivity

profiles in the range studied are equally compatible (or equally incompatible) with the attribution of

definitive secular geomagnetic change to steady surficial frozen-flux core flow. Moreover, vector plots of

the flows derived for different profiles (but at the same _d ) are visually indistinguishable. This implies that
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steady surficial core flow estimates are themselves insensitive to mantle conductivity-again provided both

the initial core field and the steady core surface flow are solved for. Contour maps of the initial core field

at epoch 1965, including null-flux contour topology, proved but weakly sensitive to conductivity profile

and flow damping.

Figure 4 shows a sample of our simultaneous solutions for core field and steady frozen-flux flow

beneath an electrically conducting mantle. The estimate portrayed corresponds to the top of the dot-dashed

trade-off curve in Figure 3, but it is for conductivity profile E. The upper panel is a contour map of the

radial magnetic flux density at the CMB at epoch 1965 (contour interval is 1 gauss); the features mapped

are quite similar to those appearing on other maps of the recent radial field at the CMB (see, e.g., Benton et

al. [1979], Voorhies [1984], and Benton & Kohl [1986]). The lower panel shows the accompanying steady

surficial core flow; it is similar to the flow shown in Fig. 3 of Voorhies [1993]. Although this solution is

for conductivity profile E, similar maps could be shown for other conductivity profiles (as well as for the

finite effective magnetic Reynolds number characterizing fluid flow near the top of a finite conductivity

core).

Taken together, the field and flow shown in Figure 4 account for 98.72% of _2 in (8) with 7p(ts)

taken as gp(1965); they thus account for about 98.72% of the square-weighted secular change signal in the
DGRFs. The misfit achieved is 5.17, so we suggest that (x2/DOF) 1/2 may well exceed 2.5-as expected for

so simple an Earth model. The solution is characterized by 193 effectively free parameters: 120 for the

initial field and 73 for the core flow. The RMS residual in Br relative to the 1980 DGRF is 61 nT (about

one year worth of SV). At epoch 1965, the RMS value for B r at the CMB (through degree and order 10) is

3.02 gauss, while the RMS value of predicted _tBr at the CMB is 3.04x 103 nT/yr. The flow complexity is

8.11 x 10 -3 yr" 1; the RMS flow speed is 8.41 km/yr; the RMS downwelling is 5.76× 10-3 yr- 1: and the bulk

westward drift underlying the flow is 0.121 °/yr;

Summary

The effects of laterally homogeneous mantle electrical conductivity have been included in steady,

frozen-flux core surface flow estimation along with some refinements in method and weighting. The

refined method allows simultaneous solution for both the initial radial geomagnetic field component at the

core-mantle boundary (CMB) and the sub-adjacent fluid motion; it also features Gauss' method for solving

the nonlinear inverse steady motional induction problem. The tradeoff between spatial complexity of the

derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models (DGRFs) has

been studied for several mantle conductivity profiles. For simple flow and a fixed initial geomagnetic

condition, a fairly high deep-mantle conductivity performs better than either insulating or weakly

conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs almost

as well. Simultaneous solution for both initial geomagnetic field and fluid flow reduces the square-

weighted residuals per degree of freedom even more than does changing the mantle conductivity profile.

Indeed, when both core field and flow are estimated, the performance of the solutions become insensitive to

the conductivity proftle-as do vector plots of the fluid flow.

Explication of definitive secular change in terms of steady frozen-flux flow beneath a conducting

mantle yields no clearly preferred mantle conductivity prof'de when both core field and flow are estimated;

therefore, the results of this study in no way conflict with the finding by McLeod [1992] that observatory

annual means are consistent with a nearly insulating mantle surrounding a highly conducting core.

Furthermore, our results neither support nor discount the possibility of a thin, very high conductivity layer

at the base of the mantle. Indeed, we find that our estimates of steady core surface flow are insensitive to

the effects of such a hypothetical layer. Whether such a layer strongly influences estimates of time-

dependent core surface flow remains to be seen.
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Neither the effects of mantle conductivity nor the simultaneous solution for core field and flow

reduced our square-weighted residuals per degree of freedom to unity. Clearly such residuals could easily

be explained in terms of time-dependent magnetic flux diffusion near the top of Earth's core. Moreover,

there is some chance that additional allowances for the effects of steady magnetic flux diffusion (studied

separately by Voorhies [1993]) and of core asphericity could yield a tolerable fit. Nevertheless, our

preferred interpretation of the modest misfit to the DGRFs found in this study (and in the study by Voorhies

[ 1993]) is that it provides some evidence for time-dependent core surface flow.
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