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Guidance Law Development for Aeroassisted

Transfer Vehicles Using Matched Asymptotic Expansions

Anthony J. Calise* and Nahum Melamed**

Georgia Institute of Technology, Atlanta, GA 30332

Summary

This report addresses and clarifies a number of issues related to the Matched

Asymptotic Expansion (MAE) analysis of skip trajectories, or any class of problems that

give rise to inner layers that are not associated directly with satisfying boundary conditions.

The procedure for matching inner and outer solutions, and using the composite solution to

satisfy boundary conditions is developed and rigorously followed to obtain a set of

algebraic equations for the problem of inclination change with minimum energy loss.

A detailed evaluation of the zeroth order guidance algorithm for aeroassisted orbit

transfer is performed. It is shown that by exploiting the structure of the MAE solution

procedure, the original problem, which requires the solution of a set of 20 implicit algebraic

equations, can be reduced to a problem of 6 implicit equations in 6 unknowns. A solution :

that is near optimal, requires a minimum of computation, and thus can be implemented in

real time and on-board the vehicle, has been obtained. Guidance law implementation

entails treating the current state as a new initial state and repetitively solving the zeroth order

MAE problem to obtain the feedback controls.

Finally, a general procedure is developed for constructing a MAE solution up to

first order, of the Hamilton-Jacobi-Bellman equation based on the method of

characteristics. The development is valid for a class of perturbation problems whose

solution exhibits two-time-scale behavior. A regular expansion for problems of this type is

shown to be inappropriate since it is not valid over a narrow range of the independent

variable. That is, it is not uniformly valid. Of particular interest here is the manner in

which matching and boundary conditions are enforced when the expansion is carried out to

* Professor, School of Aerospace Engineering.

** Graduate Research Assistant.



V

ix

first order. Two cases are distinguished - one where the left boundary condition coincides

with, or lies to the right of, the singular region, and another one where the left boundary

condition lies to the left of the singular region. A simple example is used to iUusu'ate the

procedure where the obtained solution is uniformly valid to O(_2). The potential

application of this procedure to aeroassisted plane change is also described and partially

evaluated.



Section I

Introduction

1.1 Foreword

Aeroassisted transfer problems concern the optimal maneuver of a space vehicle

operating in vacuum around a planet with occasional passage through its atmosphere. As

a rule, aerodynamic force is a dissipative force which has the effect of decreasing the

vehicle's total energy. However, in terms of the fuel consumption, an aerodynamic

maneuver can be inserted to achieve a transfer of the vehicle from an initial orbit to a

destination orbit advantageously, compared to a purely propulsive exoatmospheric

maneuver. Typical examples are a plane rotation of a space vehicle orbiting about a planet,

and an aerobrake maneuver, in which the vehicle is to be transferred from a highly

energetic hyperbolic orbit to a low energy elliptical or circular orbit, thereby ensuring its

capture by the planet's gravitational field. Aeroassisted transfer problems are characterized

by a maneuver phase in which the motion is dominated by atmospheric forces, and entry

and exit phases where the motion is dominated by gravitational and inertial forces. In

general, propulsive force can be used in any of the phases although in the so called

aeroglide problem, it is not used in the aerodynamic part of the maneuver. The

optimization of problems such as the plane change maneuver consists of guiding the vehicle

using aerodynamic force, while minimizing the energy loss. Propulsive forces are used

only in the exoatmospheric parts to deorbit and to compensate for the energy loss at the end

of the plane change maneuver.

An objective in any guidance study related to aeroassisted orbit transfer vehicles is

the development of solutions that are implernentable in real time and on-board the vehicle.

Therefore, solutions that are both near optimal and that require a minimum of computation

are of primary interest. The ideal solution from a computational point of view, is the one

which reduces the solution of the governing differential equations to a set of algebraic

equations, thus eliminating the need for multiple shooting or quadrature. This solution

constitutes the basis for the optimal guidance algorithm.
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1.2 Relationship to Earlier Results

An extensive survey paper presented by Mease 1 gives the current status on the

optimization of aeroassisted orbit transfer trajectories. In view of low cost transportation

being a key to the utilization and exploration of space, important issues such as payload

mass delivery capability and aerodynamic heating considerations are discussed.

Aeroassisted transfer trajectories give rise to a difficult optimization problem from a

guidance point of view. In general, numerical methods axe required for an exact solution

although approximation methods can be employed to obtain analytic solutions, or to reduce

the solution to a quadrature.

1.2.1 Numerical Optimization

Examples of numerical solutions to optimal aeroassisted orbit transfer problems

may be found in Ref.'s. 2-6, and in earlier works cited in these references. In Ref.'s. 2-5

a family of problems were studied in the context of optimal aeroassisted orbit transfer,

including the minimization of the time integral of the flight path angle squared. The

solution to this latter problem results in nearly grazing trajectories that take place in an

altitude range where viscous effects are expected. It is shown that the nearly grazing

solution is a useful engineering compromise between energy requirements and aerodynamic

heating requirements. Optimization subject to a hard constraint on heating rate was

considered in Ref. 6, by reformulation as a parameter optimization problem.

1.2.2 Analytical Studies

Approximation methods can be employed to obtain analytic solutions, or to reduce

the solution to a quadrature. However. iris difficult to precisely satisfy terminal cons__nts

using these apl_roximate forrfis, _beCauSe-nature of aero-ass[sted transfers is that the

c_fiffbis (t_icaily rift and bank_ _gIe)are mosteffective @lille the vehi_l-eis well within the

atmosphere. Adjustments near the end of the maneuver to reduce terminal errors rapidly

lead to control saturation.
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Ref.'s.7-11typify thestudiesthat havebeenperformedon theproblemof optimal

aeroassisted orbit plane change, and that are directed towards obtaining analytical results.

The authors of Ref.'s. 7-9 are able to integrate the state and costate equations by assuming

that a quantity, known as Loh's term, M(h,V), is constant over the trajectory. M(h,V)

represents the sum of gravitational and inertial forces, and is nearly zero for the entry phase

of the maneuver, but unfortunately undergoes a rapid variation during the exit phase. In

Ref. l0 a regular perturbation method is used, in which the perturbation parameter is

identified as the ratio of the atmospheric scale height to the planet radius, and solutions are

presented up to the first order in the perturbation parameter. The solution approach

requires that quadratures be performed at each control update for the first order correction,

essential to account for variations in M near the end of the trajectory. The approach applied

in Ref. I 1 is similar to that given in Ref. l0 except for the use of an alternate independent

variable. Unfortunately, large control effort can be observed near the end of the trajectory

to satisfy terminal constraints. The interesting feature in Ref.'s. l0 and 11 is that the zeroth

order solution corresponds to the constant M approximation in Ref.'s. 7-9, for which

complete analytic results are available.

1.2.3 MAE Studies

In Ref.'s. 12 and 13, a MAE analysis is performed in which the perturbation

parameter is the same as that used in Ref. 10. In Ref. 12 the expressions for the matching

conditions are simplified over those obtained in earlier studies by using the inner solution

alone to satisfy initial conditions. In Ref. 13 the state equations are integrated under the

assumption of constant controls, and the expressions for the matching conditions are

simplified by using the outer solution to satisfy initial conditions. The matching procedure

taken in Ref. 12 is used to obtain an optimal lift control solution of an atmospheric entry

problem, and in Ref. 13 to approximate an atmospheric skip trajectory for fixed controls.

However, these approximate matching approaches are not recommended here for guidance

law development since they are valid only when the initial condition lies either far outside

or well inside the atmosphere.

Singular perturbation methods for re-entry and aeroassisted transfer trajectories

have, in more recent times, been explored in Ref.'s. 14-18. Ref.'s. 14-16 consider the re-

entry problem. In Ref. 14 a singular perturbation parameter is artificially introduced on the
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left handsidesof thealtitudeandflight pathangleequationsof motion. Severalanalytical

guidancealgorithmsarederivedfor re-entryandevaluatedby comparisonto numerically
obtainedoptimal solutions. While this approachappearsusefulfor re-entryproblems,it

does not yield a satisfactorysolution for aeroassistedtransferproblems,becausethe

boundarylayerdynamicsassociatedwith satisfyingtheterminalconstraints,is intractable.

A suboptimalguidancealgorithmis derivedandevaluatedin Ref. 15,whichcanbeusedin

conjunctionwith there-entrysolutionsin Ref. 14to satisfyterminalconstraintsassociated

with aeroassistedtransferproblems.In Ref. 16,aMAE analysisisperformedin whichthe

perturbation parameteris the sameas that usedin Ref. 10. The state equationsare

integratedundertheassumptionof constantcontrols,andtheexpressionsfor thematching

conditionsaresimplified overthoseobtainedin earlierstudiesby usingtheouter solution

alone to satisfy initial conditions. Again, this approachis not recommendedherefor

guidancelaw development,sinceit canonly beusedasanapproximationwhentheinitial
conditionliesfar outsidetheatmosphere.

Aeroassistedtransferproblemsarecharacterizedbyamaneuverphase,in whichthe

motionis dominatedby atmosphericforces,andentryandexit phases,wherethemotionis

dominated by gravitational and inertial forces. The method of Matched Asymptotic

Expansion(MAE) analysisis amathematicalrealizationof this intuitivedescription,andit
is fundamentallydifferentfrom re-entryproblemsin thattheboundaryconditionsaregiven

outsidetheregionof singularitywheretheinnerlayeroccurs.This typeof problemgives

rise to inner layers(regionswherestateandcontrolvariablescanexhibit rapidvariation)

that correspondto intervals wherethe maneuveris dominatedby aerodynamicforces.

Thustheinnersolutionis associatedwith theaeroassistedportionof themaneuver.

Theapplicationof MAE to aeroassistedtransfertrajectorieshasbeenaddressedin

Ref.'s.17and18. In Ref. 17,ageneraloptimizationproblemis considered,andanalytical

resultsfor thecostateequationsarepresented.Theproblemis reducedto asetof constants

of integrationwhich are to beusedto satisfytransversalityconditions. Unfortunately,
sincethe transversalityconditionsinvolve both statesand costates,and sincethe state

equationsarenot tractablein the innerlayer,amultiple shootingmethodwouldhaveto be

usedto determinetheseparameters.Ref. 18considersthedevelopmentof anatmospheric
guidancelaw for planarskiptrajectoriesin whichthecontrolsaretreatedasconstantsto be

updated at each guidance computation. This reference also identifies several

inconsistenciesthat were encounteredin the analysis,which area consequence of an
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incorrectapproach in the application of MAE present both in Ref.'s. 17 and 18, and in

earlier references _en from these papers. ....

1.2.4 MAE Analysis of the HJB Equation

In Ref. 11 a regular perturbation analysis was performed for the aeroassisted

inclination change problem and guided solutions were obtained in which the control

solution was corrected to first order by regular expansion of the Hamilton-Jacobi-BeUman

0"liB) equation. This work is similar to the results reported in Ref. 10, wherein the

procedure was originally developed. The expansion entails quadrature along a

characteristic curve, which is defined by the zeroth order Euler solution for the same

problem. The quadrature must be repeated at each update of the control solution. A

significant feature identified in this report is that the zeroth order solution from the regular

expansion in Ref. 11 corresponds the zeroth order inner solution of the MAE formulation

(but with modified boundary conditions), and that the zeroth order MAE comt)osite

solution represents a significant improvement over the zeroth order solution of Ref. 11.

This can beexpiained by the fact that-the effect of gravitational and inertial forces are

accounted for in the zeroth order MAE problem, whereas they are not in the zeroth order

regular expansion solution where Loh's term is modeled as zero. The variations in this

term are accounted for in the zeroth order outer problem of the MAE formulation. Of

particular interest _n_this report is the'manner inwhich matching and boundary conditions

are enforced when the expansion of the HYB equation is carried out to first order. This is

significantly more complex than for the case of regular expansion in Ref.'s. 10 and 11. In

this report a general procedure for constructing a matched asymptotic expansion of the HJB

equation, based onde me_od of'cl{ar_ctefisiJc-sl-iS devei0_ for the first time.

In Ref. 22, a uniformly valid power series solution to the HJB equation was

obtained for a class of nonlinear, singularly perturbed systems, in which a small parameter

appears on the left hand side of the equations of motion. The dynamics for this type of

singular perturbation formulation:is Composed of sl0w and fast state variables, and the

process of matching and forming a composition solution is considerably simplified by the

fact that the left and right boundary conditions occur within the regions of singularity. For

this class of singularly perturbed systems the slow and fast variables separately satisfy their

respective boundary conditions in ti_e" Zeroth-orcler problem. In contrast, the MAE
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formulationtreatedhereischaracterizedby thefact thatat any instant in the lrajectory, the

left boundary condition (which is the current state of the vehicle) may occur either to the

left, within, or to the right of the region of singularity. For the problem of aeroassisted

plane-change, this region reduces to a single point, corresponding to the lowest altitude

point, in the limit as the perturbation parameter approaches zero. Moreover, it is not

possible to identify separate slow and fast variables. For this class of systems, the problem

is singularly perturbed due to the explicit dependence that the dynamics has on both t and

t/e on the right hand side of the equations of motion, where t is the independent variable

and e is the perturbation parameter. In the aeroassisted plane-change problem this

parameter is closely approximated by the ratio of the atmospheric scale height to the radius

of the Earth.

1.3 Contributions

This report addresses and clarifies a number of issues related to MAE analysis of

atmospheric skip trajectories, or any class of problems that give rise to inner layers that are

not associated directly with satisfying boundary conditions. A key point that has been

overlooked in previous studies is that the inner solution is crucially involved in satisfying

the boundary conditions as well as the outer solution. Other key issues that are either

lacking, or improperly dealt with, in earlier studies are: (1) the need for left and right outer

solutions, (2) the role that the inner solution plays in joining the discontinuities that occur

between the outer solutions through the matching conditions, and (3) the need to properly

select the reference altitude used in defining the independent variable of integration in the

outer solution. The procedure for matching inner and outer solutions, and using the

composite solution to satisfy boundary conditions, is rigorously followed in developing for

the first time a complete algebraic solution to the problem of inclination change with

minimum energy loss, uniformly valid to O(e).

The motivation in the research reported here is that, by its nature, the aeroassisted

transfer problem is better suited to analysis by singular perturbations rather than by regular

perturbation analysis. In fact, it is shown that the regular perturbation problem in Ref.'s.

l0 and l I is actually the inner part of a two time scale analysis based on singular

perturbation theory. The interesting feature here is that Loh's term variatjon_s ar_e now

accounted for in the zeroth order outer solution (where the motion is Keplerian), for which
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ananalyticsolutioncanbeobtained.The zeroth order inner solution corresponds to the

solution presented in Ref. 9, but with important differences that pertain to the treatment of

boundary conditions in a MAE approach. Moreover, it is shown that this approach is more

accurate in satisfying terminal constraints than the regular perturbation approach in Ref.'s.

10and 11.

The consequence of the above results is that the problem has been reduced to a set

of algebraic equations, whose solution forms the basis for a feedback guidance algorithm.

We have developed a zeroth order guidance algorithm, which is based on the MAE method,

and is used to perform a detailed evaluation for the aeroassisted inclination change problem.

Repeated solution of the algebraic equations resulting from the MAE analysis along the

trajectory, treating each current state as an initial state, constitutes a feedback guidance

algorithm.

Finally, a general procedure is developed for constructing a MAE of the HIB

equation based on the method of characteristics. Of particular interest here is the manner in

which matching and boundary conditions are enforced when the expansion is carried out to

first order, and how the characteristic curves are to be determined. It is shown that the

MAE solution to the Euler system of equations associated with the zeroth order MAE

problem provides the characteristic curves for the first order expansion of the HJB

equation. Two cases are distinguished - one where the left boundary condition coincides

with, or lies to the right of, the singular region and another one where the left boundary

condition lies to the left of the singular region. A simple example is used to illustrate the

procedure, where the obtained solution is uniformly valid to O(e2). The procedure's

potential application to aeroassisted plane change is also described and partially evaluated.

Ref.'s. 34-40 are all the publications that have resulted from this research.

1.4 Outline of the Report

Section 2 gives a general description of our approach in applying MAE to

aeroassisted transfer trajectory analysis, and establishes some notation to be followed

throughout the report. Section 3 uses the approach outlined in Section 2 in analyzing the

orbit transfer problem of inclination change with minimum energy loss in the atmosphere.

The analysis makes use of the problem formulation and analytic results in Ref. 14 for the

outer solution. Then a transformation of variables is made to solve the inner problem,
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using the analytical results presented in Ref. 9. This is followed by a description of the

zeroth order MAE solution procedure, which makes use of a unique approach for solving

the resulting algebraic equations. Numerical results are given to evaluate the resulting

solution, which indicate a need for a ftrst order correction. Section 4 gives the procedure

for constructing a matched asymptotic expansion of the HJB equation to f'trst order, based

on the method of characteristics. It is also shown in Section 4 how to determine the

characteristic curves of the expansion for two distinct cases, using a simple example to

illustrate the procedure. This is followed by a detailed description of the procedure's

potential application to aeroassisted plane change. Appendices A-C give details pertaining

to intermediate derivations.
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Nomenclature

a

c

C

E

g

h

H

J

k

m

M

P

r

s

t

u

v,v

V

w

X

Integration Constant

Integration Constant

Aerodynamic Coefficient

Lift to Drag Ratio

Gravitational Acceleration

Normalized Altitude - Outer Independent Variable

Hamiltonian

Performance Index

Inner Integration Constants

Mass

Loh's Term

Return Function

Radius from Earth's Center

Reference Area

Independent Variable, Time

Transformed Velocity - Outer Variable

Transformed Velocity - Inner Variable

Velocity

Transformed Altitude - Inner Variable

Dependent Variable

Greek Letters

E

0

Inverse Scale Height

Vertical Control Component

A Small Parameter

Cross Range Angle

Down Range Angle

Stretched Normalized Altitude
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Nomenclature

¥

7

P

ff

tcont.)

Heading

Flight Path Angle

Normalized Lift Coefficient

Bank Angle

Atmospheric Density

Horizontal Control Component

Independent Variable, Stretched Time

Subscripts

D

f

i

L

s

u

7

Drag

Final Value

Initial Value

Lift

Radius and Acceleration at Reference Altitude

Partial Derivative with Respect to u

Partial Derivative with Respect to ),

Partial Derivative with Respect to

Superscripts

c Composite Variable

i Inner Variable

L Left Side

o Outer Variable

R Right Side

* Corresponds to Maximum Lift to Drag Ratio

'! ....
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Section II

Matched Asymptotic Expansion
Analysis Procedure

This Section clarifies a number of issues related to the MAE analysis of skip

trajectories, or any class of problems that give rise to inner layers that are not associated

directly with satisfying boundary conditions. In addition, a simple example is presented to

illuslrate the procedure.

2.1 Conceptual Layout

In any aeroassisted transfer problem, the vehicle passes through two distinct

regions, in terms of the dominating forces (Fig's. 2.1 and 2.2).

Initial Orbit

............. Transfer Trajectory

Atmosphere Final orb_i }
t

Figure 2.1. Aeroassisted Orbit Transfer
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Transfer

Trajectory

Aerodynamic Forces
Dominate

Gravitational Forces Dominate

Central Body

Figure 2.2. Typical Skip Trajectory

In the high altitude (outer) region, gravitational and inertial forces dominate, and the

motion can be approximated as Keplerian, with the atmospheric effect considered as a

perturbation. The low altitude (inner) region is dominated by aerodynamic forces, with the

gravitational and the inertial effects considered as perturbations. It is crucial to note that the

initial (approaching) and final (retreating) parts of the transfer trajectory are distinctly

different in their trajectory parameters (when approximated as Keplerian arcs) as a

consequence of what occurs in the aerodynamically dominated region.

The method of MAE can be used as a mathematical realization of the above intuitive

description 2627. It decomposes the total problem into two simpler subproblems (known as

the inner and outer problems), which are appropriate for the separate regions of the total

trajectory. The process of matching the solutions of these subproblems, and forming a

composite solution, accounts for the perturbing effects as well, in a mathematically precise

manner. For purposes of guidance law development, the objective is to obtain approximate

analytical solutions in the outer and inner regions separately, and then to combine them to

form a composite solution which is uniformly valid for the entire maneuver.

To elaborate on this idea, consider the system of equations

dx/dt - f(x, t, t/e, ¢) (2.1)

The function f is assumed analytic with respect to its arguments in the region of interest,

and in addition it is assumed to have the property that lim f(x, t, t / e, e) exists for t _ O.
£--*0
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The problem is singular in that the limit is not defined at t = O. Conceptually, optimal

Control problem formulations may ap_ar-in this form after eliminating the control using the

optimality condition, so that only state and costate variables appear in the equations of

motion. This results in a two point boundary value problem, with left and right boundary

conditions of the form _PL(xi, ti) - 0 and _PR(Xf, tf) - 0. Of particular interest here is the

situation where ti < 0 < tf.

The solution of Eq. (2.1) is sought in the form of an asymptotic series in e

x°(t;e) = Xo(t) + ex?(t) + e_x_(t) + ... (2.2)

which is referred to as the "outer" expansion. The leading term in (2.2) is obtained as the

solution of (2.1) for e=0. However, due to the singularity in f at t = 0, it is not a uniformly

valid O(e) approximation of x(t, e). Note that for the situation ti < 0 < tf, two outer

expansions are required, one for t < 0, and one for t > 0.

Only zeroth order solutions are used in the analysis that follows in Chapters 2 and

3, and to distinguish between the left and right zeroth order outer solutions, they are

denoted by LXo(t ) and "xo(t ), where the superscript o denotes outer, the subscript 0

denotes zeroth order, and the superscripts L and R distinguish the left and right solutions.

These solution segments are illustrated in Fig. 2.3, where it is important to note that in

general there is a discontinuity at t=0.

X

[ LX° (t)

X/_ _ " "

RXO(t ) I

0 t I t

Figure 2.3. Illustration of Outer, Inner and Composite Solutions
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To examine the solution in the neighborhood of t = 0, Eq. (2.1) is expressed in

terms of a stretched independent variable _" = t / e

dr / d'r = ef(x, el', 'r, e) (2.3)

The solution of Eq. (2.3) is sought in the form of an asymptotic series in e

xi(r,e) = x_('r) + axi('t') + e_x_(_ ") + ... (2.4)

which is referred to as the "inner" expansion. Again, only the leading term in Eq. (2.4) is

considered in this Chapter and in Chapter 3.

Matching the inner solution to the outer solution is performed separately for the left

and right parts of the outer solution. To zeroth order in e, this is accomplished by

enforcing the following relationships:

X'o(-**) xo(O), xo(**) ' °=L o = Xo(O) (2.5)

• L 0 i

where Xo(-**), x 0 (0), x0(**) and "Xo(0) are obtained by taking appropriate limits in their

respective arguments x and t. The consequence of Eq. (2.5) on the limit behavior of x'0(r)

is illustrated in Fig. 2.3, where the solution is shown superimposed with xo(t) in terms of

the original independent variable, t. The limit values in Eq. (2.5) also define the common

parts of the inner and outer zeroth order solutions.

At this stage a uniformly valid composite approximation can be constructed by the

method of additive composition. The additive composition is obtained by taking the sum of

the outer and inner solutions and subtracting the common part. In the left part of the

trajectory, the composite solution is given by:

"Xo(t;e) = "Xo(t) + x_(t [ e) - txo(O), t < 0 (2.6)

and in the right part:
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" ° • Xo(t/e) x0(0), t>0xo(t,e ) =_xo(t ) + _, c (2.7)

From Eq's. (2.6) and (2.7) it is seen that at _ the composite solution takes the form:

%(o;e) = "xo(O;e) = X'o(O) (2.8)

Thus the composite solution is continuous at t=0.

From the above discussion it is apparent that the inner solution (and the subsequent

matching and forming of the composite solution) can be viewed as a process whereby the

discontinuity between "Xo(t) and "Xo(t) at t---0 is taken into account. In a skip trajectory,

this discontinuity is caused by the change that occurs in the trajectory parameters during the

osculating atmospheric portion of the maneuver. This point was not realized for example in

Ref. 17 where a single outer solution was defined. The resulting composite solution is

illustrated by the continuous bold line in Fig. 2.3.

From Fig. 2.3 it is also apparent that the composite solution must be used to satisfy

the boundary conditions. In Ref.'s. 16-18 only the outer solution was used to satisfy the

boundary conditions at t-ti. In general, the contribution that x_(t/e.) makes to the

boundary conditions depends on ti and tf. When the boundary conditions are far away

from the region of influence of the inner solution, this contribution may be small.

However, in an optimization problem it is well known that solutions exhibit large

sensitivity to the boundary values of the costate variables. Also, in the context of

developing a guidance algorithm, the initial condition should always be viewed as

occurring anywhere along the trajectory. In Ref. 18 use of the outer solution alone to

satisfy initial conditions led to discrepancies in the matching conditions which could not be

completely resolved.

In the analysis that follows, the convention of using

t = h = (r- r,)/r s (2.9)

is adopted, where rs is a reference radius. While h is not monotonic, it is apparent from

Fig. 2.3 that this presents no conceptual difficulty in the outer solution, since separate

constants of integration are defined for entry and exit. It is however important to transform
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to a monotonic independent variable when integrating the inner dynamics. For this reason

the transformation used in Ref. 9 is employed. The left and right composite solutions in

Eq's. (2.6) and (2.7) are then distinguished by the sign of the flight path angle.

Note that it is immediately obvious from Fig. 2.3 that t-h--0 corresponds to rs --

rmin, where rmin is the minimum radius over the trajectory. Thus it is essential to use the

condition

ro(O,e) = to(o) o (2.10)

to determine rs, in contrast to the arbitrary selections made in Ref.'s. 17 and 18.

The approach followed in the next chapter is first to express the inner and outer

solutions in terms of constants of integration. The constants of integration for the left outer

solution will be viewed as the variables used to ultimately satisfy the left and right

boundary conditions. The constants of integration for the inner solution will be viewed as

unknowns to be determined in terms of the left outer solution constants, using the left

matching condition in Eq. (2.5). The constants of integration for the right outer solution

are in turn evaluated in terms of the inner solution constants, using the right matching

condition in Eq. (2.5). Finally, the following relationship, which holds when the jth

component of x is constant in the outer solution, is to be noted

¢ . i -

Xo;(t,e) = Xoi(t / e) (2.11)

and the following relationship which holds when the jth component of x is constant in the

inner solution

° • ° (t)Xoj(t,e) = Xo_ (2.12)

which follows directly from Eq's. (2.6) and (2.7).

times in the analysis that follows.

These relationships are used several



17

2.2 A Simple Example

2.2.1 Problem Formulation

The exact dynamic is given by the following equation

Jc = x + ue -"_ / e, x(t,) given, t z = 1, lul$1 (2.13)

where x is a scalar state variable and u is the control. Find a control u to maximize the

performance index J=xf. Using the maximum principle to evaluate the optimal control

yields uOpt=l and the exact solutions of the state and costate are:

x(t;x(t,),t i) = [(l+e)x(t,)e'-"+ e '-'-'t_ - e-'/']/(l+e) (2.14)

&(t;x(ti),t,) = e I-,

2.2.2 Outer Solution

(2.15)

The zeroth order outer dynamic is obtained by taking the limit e --) 0 in Eq. (2.12)

dxo/ dt = Xo (2.16)

It is clear that this limit is not defined when t--O(e). This is precisely what makes this

problem singularly perturbed and it should not be expected that the zeroth order outer

solution alone will be a zeroth order uniformly valid approximation in t in the entire domain

of interest. Specifically, it is not valid in the sub-region where t=O(e). We will elaborate

on this more in Section 4.

The zeroth order outer Hamihonian is defined as

Ho = ,,],oXo (2.17)

and the zeroth order outer costate equation is given by
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d_°oldt = -0H o/0x o = -X o (2.18)

Eq's. (2.16) and (2.18) can be integrated to obtain the zeroth order outer solution:

x_(t) = ae' (2.19)

Mo(t) = be-' (2.20)

where a and b are integration constants.

2.2.3 Inner Solution

In the inner problem a new stretched independent variable is defined as

r = t/e (2.21)

and the inner exact dynamics is obtained by using Eq. (2.21) in Eq. (2.13)

dx _/dr = ex_+ e -_ (2.22)

The zeroth order inner dynamics is obtained by taking the limit e---)0 in Eq. (2.22)

dx_ldr = e -_ (2.23)

It is clear that Eq. (2.23) is not a zeroth order uniformly valid approximation in "cto the

exact dynamics in Eq. (2.22), because the exact dynamics is unstable, whereas the zeroth

order dynamics is stable. Hence, for large _, the zeroth order inner solution is not a valid

approximation to the exact solution.

The zeroth order inner Hamiltonian is defined as

H_ = Aoe -_ (2.24)



19

andthezerothorderinnercostateequationis givenby

d_ o / dt = -_H_ / 3x_ = 0 (2.25)

Eq's. (2.23) and (2.25) can be integrated to give the zeroth order inner solution:

x_(_:) = -e -¢ + c (2.26)

3.o(_:) = d (2.27)

where c and d are integration constants.

2.2.4 Zeroth Order Matching Condition

The f'u'st step to remove the non uniformity from the zeroth order solution is to

carry out the process of the matching the outer and inner solutions. To zeroth order the

matching conditions entails equating the outer solution evaluated at small t (t---O) with the

inner solution evaluated at large 'c ( r _ o.):

a = xo(O) = X'o(*o)= c

b = _(0) = _(_) = d

(2.28)

(2.29)

2.2.5 Zeroth Order Composite Solution

The composite solution is conslructed by the method of additive composition by

taking the sum of the outer and inner solutions and subtracting the common part.

Xo(t) = xo(t) + Xo(t/e)- xo(O) (2.30)

_,o(t) = 7_°o(t)+ &o(t/e)- 40(0) (2.31)
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Making use of Eq's. (2.19),(2.20) and (2.26- 2.29) in Eq's. (2.30) and (2.31) results in:

xo(t) = ae'- e -':_ (2.32)

;to(t) = be-' (2.33)

2.2.6 Boundary Conditions

The composite solution is uniformly valid to zeroth order, hence it is used to

enforce the boundary conditions. The initial condition on the state x is given in Eq. (2.13).

Using it in Eq. (2.32) evaluated at ti and solving for a yields

a = e-"[x(ti)+ e -''/_] (2.34)

Using this in Eq. (3.32) the zeroth order composite solution for the state variable becomes

Xo(t;x(t,),t _) = e-"[x(t,) + e-"t']e '- e -'I_ (2.35)

The boundary condition on the costate is found from the definition of the performance

index, defined as J=xf, as

be -_ = ;to(l) = _gJ/Ox s = 1 (2.36)

Solving for b and using it in Eq. (2.33), the zeroth order composite solution for Z, becomes

;to(t;x(t,),ti) = e I-' (2.37)

Note that since the zeroth order inner costate solution is constant, the composite solution is

equal to the outer solution, and in this example it also equals the exact solution in Eq.

(2.15).

The individual zeroth order outer and inner solutions are:
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Xo(t;x(t,),t _) = [x(t_)+ e-"/']e '-' (2.38)

&o(t;x(t,),t_) = e'-' (2.39)

= -e + + e-"]e-" (2.4o)

/],o(r;,x(t_),t_) -- e _ (2.41)

Note that neither the inner or the outer zeroth order solutions for x, nor the inner zeroth

order solution for _., are uniformly valid zeroth order approximations to the exact solution.

For the costate this is obvious since the outer solution in Eq. (2.39), which is also the

composite solution, is equal to the exact solution in Eq. (2.15). The inner solution for _ in

Eq. (2.41) is a zeroth order approximation to the exact solution only for the sub-region

t=O(e). To show that the composite solution for x is a zeroth order uniformly valid

approximation to the exact solution in Eq. (2.14), e is set to zero in Eq. (2.14) to get the

zeroth order term in the expansion of the exact solution

limo[x(t;x(t_),t_)] = e-',[x(tl) + e-',/']e ' - e-,t, (2.42)

which is precisely the zeroth order composite solution for x given in Eq. (2.35).

2.2.7 Location of the Initial Condition

The singularity in this example is located at t=O. Fig 2.4 gives the solution for the

state x in the case e=0.1, ti---0 and x(ti)--0 that is, the initial condition is given at the

singularity. Eq. (2.30) indicates that at t=0 the composite solution equals the inner

solution. Hence the inner solution and the composite solution, but not the outer solution,

satisfy the initial-condition as is apparent in Fig. 2.4. it is also apparent that only the

composite solution is a uniformly valid approximation to the exact solution and that the

matching condition is satisfied.

In realistic situations the initial conditions, or the boundary conditions, do not in

general occur at the singularity (see the discussion after Eq. (2.8)). Fig 2.5 gives the
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solution for the state x in the case e---0. I, ti=0.2 and x(ti)--0.5, that is the initial condition

and the singularity do not coincide. It is evident that neither the inner solution nor the outer

solution satisfy the initial condition. The composite solution does satisfy the initial

condition and it is the only solution that uniformly approximates the exact solution, as

before. Also note that the region of singularity is best approximated by the inner solution

alone, as before. This situation basically represents either the left or the right side in Fig.

2.3 for aeroassisted maneuvers. It clarifies why two sets of matching condition are needed

in aeroassisted maneuvers, and the role that the inner solution plays in joining the

discontinuity of the outer solution to give a continuos composite solution at the singularity.

I t I I I I I1- 

1.5 - outer _ i _ ! _ , -
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Solutions for initial Condition x(0.2)M).5
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Section III

Inclination Change With Minimum Energy Loss

In this Section the procedure for matching inner and outer solutions, and using the

zero order composite solution to satisfy boundary conditions is rigorously followed in

developing a complete algebraic solution to the problem of inclination change with

minimum energy loss. Repeated solution of these algebraic equations along the a'ajectory,

gearing each current state as an initial state, constitutes a zero order feedback guidance

algorithm.

3.1 Problem Formulation

The three dimensional point mass equations of motion for a lifting vehicle over a

spherical non-rotating planet are given by:

dr�dr = Vsin7 (3.1)

dO / dt = Vcosycosgt / rcostk (3.2)

dtk / dt = Vcosysin llt / r (3.3)

dV/dt =-psCoV2/2m- gsin7

VdT/dt = psCLV:costl/2rn- (g- V2/r)cos7

Vd_/ I dt = psCL V2 Sinll / 2mcos 7 - V2 cos ycos ll/tan ¢ / r

(3.4)

(3.5)

(3.6)
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where the coordinates system is defined in Fig. 3.1 W

Trajectory

Figure 3.1. Coordinate Systems

A Newtonian gravitational field has the form

g(r) = g,r:, / r 2 (3.7)

where the subscript s denotes a reference radius, defined to be the minimum trajectory

radius. An exponential atmosphere model is used:

p(r) = p,e -#c'-'), fl = 1 / H, (3.8)

where Hs is the scale height. The lift and drag coefficients are assumed to be of the form
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V

C/. = C'2 (3.9)

cD = coo + (3.1o)

where the constants C_ and C_ are the lift and drag coefficients corresponding to the

maximum lift to drag ratio, and _ is the normalized lift coefficient.

Defining the following dimensionless quantities:

h = (r- r,)/r, (3.11)

u = V 2 / g.r_ (3.12)

B = Ct.p,s / 2mfi (3.13)

E* = C*/C* (3.14)

e = 1�fir, = H,/r, (3.15)

and using h instead of t as the independent variable, the state equations can be written as

follows:

dO/dh = cosgtcoty/(1 + h)cos¢ (3.16)

d#/dh = sinip'coty/(1 + h) (3.17)

duldh = -Bu(1 + 22 )e -hltleE*sinT- 2/(1 + h) 2 (3.18)

dy/dh = BAcoslze-h/'/esiny+ [1/(1 + h)- l/u(1 + h)2]coty (3.19)

d_//dh = B/q, sinlze-h/t /esin?'cosy- cosgttan¢cotT'/(l + h) (3.20)
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Theobjectiveis to achieve an inclination change with minimum fuel consumption.

In Ref. 7 it is shown that for short duration maneuvers, the change in the cross range angle

is small, and the change in inclination is closely approximated by the change in the

heading. Moreover, fuel consumption is nearly minimized by minimizing the energy loss

in the atmospheric phase of the maneuver. Furthermore, in Ref. 19 it is shown that

although the actual inclination change depends on the initial inclination, the starting point of

the maneuver can be timed so as to obtain the maximum inclination change that is achieved

when the initial inclination is zero. A consequence of this result is that the initial plane can

be taken as the plane of reference, which will be refered to as the equatorial plane. Under

these assumptions, 0(0) and 0(0) can be set to zero without loss of generality, and the

heading angle _ is used to approximate the change in the inclination angle. Thus 0 and ¢?

become ignorable coordinates, and the equations of motion reduce to:

du/dh --Bu(1 + ,_2)e-hl_/eE*sinT,'- 2/(1 + h) 2 (3.21)

dy/dh = B,;_cos#e-hl_/esin)'+ [1/(1 + h)- l/u(1 + h)2]coty (3.22)

d_ / dh = B2sin#e-hl= / esin )'cos)" (3.23)

W

The parameter e is the ratio of the atmospheric scale height to the minimum trajectory

radius. In general, rs is nearly equal to the planet's radius, and, for the purpose of

calculating e to form the composite solution, it will be treated as such. For Earth, the value

of e is of order l0 -3. The cona-ols are the normalized lift coefficient _ and the bank angle

Using the definition of u given in Eq. (3.12), the objective of minimizing energy

loss can be equivalently expressed as:

max{J}, J -- uf (3.24)

The Hamiltonian function associated with the state Eq's. (3.21-3.23) has the form:

H = [-Bu(1 + ,Z:)e-hl=leE*sin?'- 2/(1 + h)2]P,
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+ {Bft cosge -h/_ / esin y + [1 / (1 +

+ [B_, singe -h/_ / esin ycos y]P_

h) - 1 / u(1 + h):]cot y}Pv

(3.25)

where Pu, P_ and PV are the associated costate variables. Assuming the controls k and/a

are not beyond their limits, their optimal values are obtained as a function of the state and

costate variables by solving the optimality conditions Hx=O and H_--O. The resulting

expressions are:

;t = E (PrCOSp + P,,sinl.t/cosy)/2uP. (3.26)

tanla = P), / PrcoSy (3.27)

3.2 Zero Order Outer Solution 17

The zero order equations for the outer problem can be obtained by simply taking the

limit as E approaches zero on the right hand side of Eq's. (3.21-3.23):

du o/dh = -2/(1 + h) 2 (3.28)

d_o/dh = [1/(1 + h)- 1/uo(l + h)2]cot?o (3.29)

dVo/dh = 0 (3.30)

The general solution for the outer system to zero order in 8 is given by:

u_(h) = 2[q + 1/(1 + h)] (3.31)

cOSYo(h) = c: /(1 + h),f'_(h) (3.32)

g_(h) = cs (3.33)
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where c 1, c2 and c3 are constants of integration. The adjoint equations are given by:

dP_ / dh = - H, (3.34)

where x is any of the state variables. In the outer region these equations to zero order in E

ale:

dP_,°o/ dh - - P_o cot 70 / [u_(1 + h)] 2 (3.35)

dPro/dh = Pr0[l/(l + h)- 1/Uo(1 + h)2]/sin2y o (3.36)

o

dP_,o/dh = 0 (3.37)

The solution to this system using Eq's. (3.31-3.33) is:

P_o(h) = -a 2/2u_ + aj (3.38)

Pro(h) = a 2tan 70 (3.39)

o

Pwo(h) = a3 (3.40)

where a], a2, and a3 are constants of integration. Eq's. (3.31-3.33) provide the exact

solution in the outer region and are the integrals of Keplerian motion that express

conservation of energy and conservation of angular momentum.

3.3 Zero Order Inner Solution 9

In the inner region, where the aerodynamic force is dominant, a new stretched

altitude is defined as:
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- h/e (3.41)

However, in order to integrate the inner layer equations the transformations used in Ref. 9

are also adopted. These have the additional feature of transforming the independent

variable from r I to a monotonic independent variable, W. Analytic solution also requires a

small flight path angle approximation.

cos 7' = 1, sin y - y (3.42)

The following transformations are defined20:

w = Be -_ (3.43)

g _
v = In(l / gsrsu) (3.44)

The conlrols are also Iransformed to vertical and horizontal components:

6 = A, cosp (3.45)

,7 = 2 sinp (3.46)

Invoking the above transformations, Eq's. (3.21-3.23) become:

dT"] dq/ = [6 + eM(e)] / o (3.47)

dwldq/ =-7'/o" (3.48)

dv/dlg = [1 + 62 + o_ + e':G(e)]/o" (3.49)
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where cM(e) is Loh's term which accounts for the gravitational and inertial effects on the

motion.

II

and

M(e) = {1- e"e'g,r,/[1 + eln(B/w)]}/w[l + eln(B/w)] (3.50)

G(e) = e_le'g,r,E*sin2y/w[1 + eln(B/w)] 2 (3.51)

The approximations used in Ref. 9 to integrate the state and costate equations were

that eM(e) is constant over the trajectory, and that the term eG(¢) is negligible. We note

here that setting e = 0 in Eq's. (3.47) and (3.49), to obtain the zero order inner solution,

corresponds to the approximations in Ref. 9 with _(e) = 0. Actually, eM is nearly zero

during entry but undergoes a sharp variation during the exit phase. This is the main

shortcoming to the approximation in Ref. 9. The interesting feature in this analysis is that

the zero order inner solution corresponds to the M = 0 solution in Ref. 9, but that M

variations are accounted for in the outer solution. It should also be pointed out that while

the integrated solution bears a close resemblance to that in Ref. 9, it is totally different in

the method of evaluating the constants of integration.

The transformed zero order state equations in the inner region will be obtained by
i

letting e=0 in Eq's. (3.47) and (3.49). The zero order state equations for y_ and vo

become:

d_ / d_ = t5 / cr (3.52)

dv_/d_ = [1 + 6: + _]/ty (3.53)

Using Eq. (3.44), the performance index Eq. (3.24),

variables, takes the form:

expressed in the transformed

maxlJ}, j = e-',/E"/gsr, (3.54)
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Note that uf in Eq. (3.24) and vf in Eq. (3.54) represent the composite solution of the

transformed f'mal velocity to zero order, and not the inner or outer solutions alone. The

zero order Hamiltonian function in the inner region is given by:

i i i _2Ho = PotS� a- PowZ /o + P0,(1 + + 0"2)/0 " (3.55)

and is constant since it does not depend on the independent variable V_.

functions are obtained from the optimality conditions Hi06 = 0 and Hoo =

given by:

The control

0. They are

(3.56)

- pi i i2 i i°a = (- o,Y - Por / 4Pov) / Po_ + 1 (3.57)

The corresponding _'ansformed zero order costate equations in the inner region are obtained

using Eq. (3.34):

V

ae , / a ,'o = / a (3.58)

d'P_o,_Id_/o = 0 (3.59)

dP_,ldv/io = 0 (3.60)

In Appendix A it is shown that H_ = 2o'P_o, and a consequence of this result and Eq.

(3.60) is that o is constant too.

At this stage the state Eq's. (3.48,3.52,3.53) and the costate Eq's. (3.58-3.60) can

be integrated with respect to _ to result in:

' i2 i

_'_(_o) = -/q_o /2 + ks_0 + ks (3.61)
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• 13
WofV4)= [k,V/o/6- _V/o_/2- &v,6+k,]/_ (3.62)

i i
v0(gro) = (o" + I/cr)v _ + cff(v/_k_-k.2)3]/3kl + ks (3.63)

_ffld-

i i i "
P0r(V0) = (e0,, / cr)_o + c (3.64)

Pow = constant (3.65)

m
W

P_v - constant (3.66)

where k3, k4, k5 and c, P_,,, Po, are the constants of integration of the state and costate

equations respectively. The constants kl and k2 are defined in terms of these constants as:

W

/q = / 2,e 'ov, k 2 = -c/2crP_ (3.67)

3.4 Matching Conditions

The method of additive composition (as described in Section 2), is used to combine

the zero order inner and outer solutions into a single, uniformly valid approximation. The

additive composition is obtained by taking the sum of the solutions in the different regions

and subtracting the common part. Matching implies agreement between the outer solution

for small values of h (h--h0), and the inner solution for large values of r/ (1"/---) **). Since

the inner solution lies between two discontinuous outer solutions, matching is done

separately in the left and right parts of the transfer trajectory, and two sets of matching

conditions result. Each set of conditions involves matching of both the state and costate

variables.

W

w

W

U
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3.4.1 State Matching Conditions

The solution for the states in the outer region is given by Eq's. (3.31-3.33).

Taking the limit h--._O yields:

"u_(O)= 2(c_ + l) (3.68)

cos[_yo(O)] = c_/[2(c_ + DI m (3.69)

L

_o(0) = c3 (3.70)

where superscript L denotes the constants of integration for the left outer solution.

The solutions for the transformed inner variables are expressed with _o as the

independent variable. Conceptually, it is possible to perform an inverse transformation to

express the inner solution in the original variables with r/ as the independent variable.

However, the inverse transformation can be bypassed by f'trst recognizing from Eq's.

(3.43, 3.44) that

"Wio(_.) = 0 (3.71)

Lv_(**) E" ln[l / " '= gsrs Uo(**)] = E'ln[1/2gj,(c_ + I)] (3.72)

where the second relationship in Eq. (3.72) follows from Eq. (3.68) and enforcement of

the matching condition Lug(0) -- _u_(**). Applying the matching condition to Yi0 and V_0

gives:

"7'o(**)=L_(o) = cos-'{c_/[2(c_ + 1)]'_:1 (3.73)

_o(_0) =_o(0) -- c_ (3.74)

Using Eq's. (3.71-3.74) to evaluate Eq's. (3.61-3.63) at r/ = ** yields:
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cos-' {c2/ [2(c_ + 1)]_/21= -/qc_ 2/ 2 + k2c_ + k3

0 = /_c_'/6- _c_ 2/2- k3c_+ k,

(3.75)

(3.76)

E'ln[l/2g, r,(c_ + 1)] = (tr + 1/tr)c_ + cr[(c_/q-k2)3]/3/q + k5 (3.77)

Eq's. (3.75-3.77) can be used to evaluate k3, k4 and k5 in terms of the constants of

integration for the state variables in the left side outer solution. Recall that k_ and k2 have

been defined in Eq. (3.67).

An exactly symmetric set of equations results from the matching conditions for the

state variables on the right side:

cos-'{c_/[2(c_ 4- 1)l m} = -/qc_ 2/2 + k2c _ + k 3 (3.78)

0 = klc;3/6- k:c32/2- k3c _ + k 4 (3.79)

E'ln[1/2g, r,(c_ + 1)] = (tr + l/tr)c_ + o[(c_iq-k2)3]/3k_ + k5 (3.80)

Eq's. (3.78-3.80) relate c_, c_ and c_ to the constants of integration for the state variables

in the inner solution.

3.4.2 Costate Matching Conditions

The left and right matching conditions for the costate variables are def'med below.

The inner solution for the costate variables, corresponding to the transformed state

variables, is given in Eq's. (3.64-3.66) in terms of the constants of integration c, P_ and0w

P_,. To perform the matching with the outer costate solutions given in Eq's. (3.38-3.40),

it is necessary to first find the corresponding expressions for Po, and P_, for the inner

solution. In effect, this amounts to transforming the inner solution back to the original

problem variables.
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The value of any costate variable at time t can be interpreted as the sensitivity of J to

perturbations in the corresponding state variable at time t (Ref. 17). Thus it can be written:

P,, = OJ/_u; Pv = OJ/Ov (3.81)

From Eq. (3.44) it follows that:

19v/ i_u = - E* / u (3.82)

Combining Eq's. (3.81) and (3.82) it becomes apparent that

p;. /au)ro * '= =-e eo,/g (3.83)

To determine P_,, it is noted that g_ is the independent variable in the transformed

inner problem. Therefore, making use of the Hamilton-Jacobi-Bellman equation 17 results

in:

V

P0v, = _J / _1//_ = - n_

In Appendix A it is shown that H_0 = 2crP_, and thus:

(3.84)

_'_, = -2Creo, (3.85)

Using Eq's. (3.83) and (3.85), the costate matching process is ready to be carried

out. Taking the limit h---_0 in Eq's. (3.38-3.40) and using Eq's. (3.68-3.70) the left side

matching conditions results:

i. i
Lpo,,(O)o = -a:L/4(c_ + 1)+ a_ -Po,,(**) (3.86)

"Pot (0) = a_ tanlcos" {c_ / [2(c_ + 1)1'/2 }} = "P_r (**) (3.87)



36

L 0
Po,(O) = = (3.88)

Taking the limit r/_ ** in Eq's. (3.64, 3.83, 3.85) and making use of Eq's. (3.68, 3.70,

3.74) and of the state matching condition LUo(0) = Lu_(**) leads to:

•pio,,,¢**,_,= - E'Po, / 2(c[ + I) (3.89)

L i i

Pot(**) = (Po., / cr)c_ + c (3.90)

L i

Po_,(**) = - 2crPov (3.91)

Substituting Eq's. (3.89-3.91) in Eq's. (3.86-3.88) yields:

-a_/4(c_ + 1)+ a_ =-E'P_v/2(c _ ÷ 1) (3.92)

a_tan{cos-_{c_/[2(c_ + I)]'/21} = (P_,_ / o')c_ + c (3.93)

a_ = -2crP_v (3.94)

Finally, in Appendix A it is shown that t_ can be written as:

or = I/(I + k_ + 2klk3)'/2 (3.95)

Eq's. (3.92-3.94) relate c, P_w, and Pov to the constants of integration for the left outer

costate solution.

A precisely symmetrical set of equations results from the matching conditions for

the costate variables on the right side:

V

-a_ /4(c_ ÷ 1)+ a_ =-E'Po_/2(c _ ÷ 1) (3.96)

W
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= p_a_ tan{cos-l{c2/[2(cl _ ._ 1)]1/2}1 ( Ow/ Cr)C_ + C (3.97)

a_ = - 2o'P_v (3.98)

Eq's. (3.96-3.98) relate aa', a_, and a_ to the constants of integration for the inner costate

solution.

3.5 Zeroth Order Composite Solution

The composite solution is constructed by the method of additive composition as

outlined in Section 2. The form of the composite solution for the state and the costate

variables is:

xS(h,e) = xS(h)+ x_(h/e)- xS(O ) (3.99)

where now e = Hsffs, _s is the planet radius (see the comment following Eq. (3.23)) and x

is any of the state or costate variables. The solution for the outer state variables is given in

Eq's. (3.31-3.33) and for the inner state variables in Eq's. (3.61-3.63). The outer left

solution, evaluated at h=0, is given in Eq's. (3.68-3.70). Using Eq. (3.44), the left zeroth

order state composite solution is given by:

Lu_(h, tr) = 2/(1 + h)+ e -v'°m`)/r"/&r,- 2 (3.100)

_0(h,_:) = cos-'{c_/(l + h)[2(c_ + 1/(1 + h))] I/_}

+ {-Iq[u/o(h/e)]2/2 + _o(h/e) + Iq}

- cos-l{c_/[2(c_ + 1)]t/2} (3.101)

"v/_(h,e) = _o(h/ e,) (3.102)

Note that the composite solution for ¥ is simply the inner solution since the outer solution

is constant (see the general comment at the end of Section 2). Since no outer constants of
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integrationappear explicitly in the left composite solutions of u and of _, the left and right

composite solutions are identical. The right zeroth order composite solution for _ is given

by:

"r'o(h,e) -- cos-'lc_/(1 + h)[2(c_ + 1/(1 + h))]"2l

+ {-ka[_(h/e)]:/2 + k:v/o(h/e) + k3}

- cos-Ilc_/[2(c_ + 1)]'/51 (3.103)

By Eq. (3.43), wt0 as a function of h/e is given as: W

w_ (h / e) = Be -hI` (3.104)

and Eq. (3.62) is used to solve for lg0(h / e) in terms of the altitude h and the constants of

integration. Eq. (3.63) is then used to evaluate vo(h/e ). Thus Eq's. (3.100-3.103)

together with Eq's. (3.62, 3.63, 3.104), provide the composite solution for the state

variables as a function of h.

The form of the zeroth order composite solution of the costate variables is given in

Eq. (3.99) and it is constructed the same way the composite solution for the states was

obtained. The solution for the outer costate variables is given in Eq's. (3.38-3.40) and for

the inner costate variables in Eq's. (3.64-3.66). The outer left solution evaluated at h=0 is

given in Eq's. (3.86-3.88). Using Eq's. (3.44) and (3.83, 3.85), the left composite

solution is given by:

L C L

Po,(h,e) = -a2/4[c _ + l/(1 + h)]

- Po,E" / [e -';(ht')/E" / g,r,] + a_ / 4(c_ + 1)

"Por(h,e) = a_tanlcos-]{c_/(l + h)21/2[c_+

+ (t'_. / O)o/_(h/ e) + c

- a_tan{cos-_{c_/2m[c_ + 1]m}}

1/(1 + h)]]nl}

(3.105)

(3.106)

L c L

Pow(h,e) = as (3.107)
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The values of v_(h/e) and _(h/e) are found from Eq's. (3.62, 3.63) and (3.104).

Eq's. (3.40) and (3.85) for ,to,, show that it is constant in the outer and inner regions.

Hence the composite solution for P0,, is also constant and is simply the outer costate

constant of integration. On the right side, the composite solution takes the form:

"Po:(h,e) =-a_/4[c_ + 1/(1 + h)l

- P_,E" /[e -''*<h/_)/E"/g,r,] + a_ / 4(c_ + 1) (3.108)

"P_r(h,e) = a_tan{cos-l{c_/(1 + h)2_/_[c_+

+ (P_./a)_,_(h/e) + c

- a_tan{cos-I{c_/21t_[c_ + 1]J/2}}

1/(1 + h)]1/2}1

(3.109)

"Pg,,(h,e) = a_ (3.110)

From Eq's. (3.94) and (3.98) it is seen that a_ = a_, thus the zeroth order composite

solution for P0w is constant all along the transfer trajectory. Eq's. (3.105-3.110) provide

the zeroth order composite solution for the costate variables as a function of h.

The reference radius, rs, is also treated as an unknown parameter in the problem.

As discussed in Section 2, it is=the_dismnce_:!o the !0westpo_tof the _ansfer trajectory at

which h=0. Using the fact that at this point the composite solution for T is zero, provides

the relationship needed to evaluate rs. The composite solution for T is given in Eq's.

(3.101) and (3.103). At h=0 it becomes the inner solution evaluated at h--0,

"_o(0,e) ='ro(0,e) = r_(0) = 0 (3.111)

The solution for ?_0 is given in Eq. (3.61). Equating it to 0 gives a relationship for the

value of _ corresponding to h=0,

0 = -/q_,_(O)2/2 + k_(O) + k3 (3.112)
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and the solution for gt_ (0) is:

_o(0) = /q//q[l + (I + 2/fik_/k2)''2]

This value of _(0) is used in Eq. (3.62) to evaluate w_ at h=0

(3.113)

wo(O) = [/q_¢o(0)3/6- /qVo(O):/2 - k3gto(O)+ k,l/ty

Finally, use of Eq's. (3.114) and (3.13) in Eq. (3.104) for h=0 yields:

(3.114)

w_(O) = C_od /2m _ (3.115)

from which Ps (and thus rs) can be found in terms of the constants of integration of the

problem.

3.6 Enforcing Boundary Conditions

To complete the solution of the problem, the initial conditions and transversality

conditions at the end point must be satisfied. As discussed in Section 2, this is performed

by using the composite solution, and can be thought of as the process by which the

constants of integration for the left outer solution are evaluated.

Assume that the initial conditions ui, Yi and Vi are given, along with the initial

radius ri. For the purpose of exposition, assume that yf, Vf and the final radius rf are given.

The corresponding transvcrsality condition is:

P2(h/) = I (3.116)

where
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-. (r i - r,)/r,, hi -- (rf - r,)/r, (3.117)

Using ui, Yi, ¥i, Yf, Yf and Eq. (3.116), the following equations result from enforcing the

boundary conditions:

ui = 2/(I + hi) + e -'_th't_)le"/g,r,- 2 (3.118)

= cos-'{c_/(1 + hi)[2(c _" + 11(1 + hi))] 't2}

+1-/,i[ 'lY0(h i / e)] 2 / 2 + k2 I/t_(h i / e) + k 3}

- cos -llc_ / [2(c_ + 1)] I/2} (3.119)

(3.120)

(3.121)

1 =-a_14[c_ + 1/(1 + hi)]

-P_E" [[e -'_(htlc)lE" / g, rs] + a_ / 4(c_ + 1) (3.122)

rt = cos-'{c_l(I+ hl)[2(c_ + I/(l+ hl))]_12}

+ {-ka[_(h//e)]212 + k2_t_(hfIf,)+ k3}

-cos-'lc_ I[2(c_' + 1)1''_} (3.123)

where hi and hf are defined in Eq. (3.117). To summarize, Eq's. (3.75-3.80, 3.92-3.98,

3.115, 3.118-3.123) constitute a set of 20 equations for the 18 unknown constants of

integration c_, c;, c;, /q, k,, k s, c_, c;, c;, aq_, a_, a_, c, V_w, Vo_, a_, a_, a;, and

for the parameters ff and rs.
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3.7 Zeroth Order MAE Numerical Solution

3.7.1 Solution Procedure

In this section, by exploiting the su'ucture of the MAE solution procedure, it is

shown how to simplify the original problem by further reducing it to a set of 6 implicit

equations in 6 unknowns. The unknowns are the common parts of the inner and outer

solution (which axe equal to one another).

The iteration procedure involves repeated solution of the inner and outer problems

using the common parts as artificial boundary conditions. The common parts are adjusted

in the iteration process until the actual boundary conditions are satisfied by the composite

solution. The matching conditions are enforced at each iteration by simply equating the

inner and outer common parts. We also exploit the fact that heading is constant in the outer

solution, which permits enforcement of the actual boundary conditions on heading using

the inner solution alone. This allows enforcement of two of the six boundary conditions at

each iteration, and further reduces the problem to four equations in four unknowns, for

which a Newton method is used to obtain a solution. Representative zeroth order MAE

approximate solutions were calculated to exhibit the resulting inner, outer and composite

solutions.

The vehicle used in this study is the Maneuverable Research Re-entry Vehicle

(MRRV). Its aerodynamic and mass characteristics are presented in Ref. 24. The

maximum lift to drag ratio is 2.362, the lift coefficient corresponding to (L/D)max is

CL=.1512, the reference area is s=l 1.69 m2 and the mass is m--4898.7 kg. The constants

needed for the exponential atmospheric density function are obtained by fitting to the

standard atmosphere densities at 30 and 60 kin. The resulting value of the scale height is

Hs=1/[3=7625.4 rn.

A Newton method was first tried to solve for the 20 unknowns. This approach was

not successful due to the complexity of the relationships. An alternative approach was then

derived wherein the number of coupled equations was reduced to 6 by defining the

unknowns to be the common parts of the separate inner and outer solutions. The equations

that determine these unknowns arethe original boundary conditions enforced on the

composite solutions. The basic idea is to first use the common parts as artificial boundary

conditions to evaluate the constants of integration in Eq's. (3.31-3.33, 3.38-3.40) and

(3.61-3.66), starting with an initial guess. Then a Newton method is used to iterate on the
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common parts until the original boundary conditions are satisfied by the composite

solution.

This procedure was sfightly modified to capitalize on the structure of the MAE

solution for this problem. Since I/to is constant in the outer solution, it follows from Eq.

(3.102) and the matching conditions that go (the zeroth order composite solution for _) is

simply the zeroth order inner solution (_t_). This allows the boundary conditions on _ to

be enforced using only the inner solution at each stage of the iteration process. Nested

Newton iteration algorithms where implemented to determine the 6 unknowns using the

boundary conditions for the composite solution. The inner iteration procedure corresponds

to solving the inner problem with the boundary conditions on _enforced. The outer

iteration process is used to enforce the four remaining boundary conditions on the

composite solution.

The first step in the procedure is to calculate the 6 inner solution integration

constants k3, k4, ks, c, P_w, and P_ in Eq's (3.61-3.66) using a guess for the common
i

part values of _,_, v0 on the left and for the common part values of ?'_, P_v on the fight

(the constants kl and k2 are given in terms of the other constants in Eq. (3.67)). Note that

an initial guess for the common parts of w 0 is not needed since the common part

corresponds to r/_ **. Hence it follows from Eq. (3.43) that the common part values for
i

w 0 are zero on both the left and fight sides. This particular arrangement concerning which

of the common part values are treated as unknowns was chosen to agree with the actual

boundary conditions for the original problem, which greatly simplifies the problem of

forming an initial guess. The procedure of forming an initial guess and the equations for

evaluating the constants of integration are given in Appendix B.

Next, an _ Newton search is performed on the left and fight common part

values of go (using only the inner solution) so that the boundary conditions go(W_) = g_

and ¢0(%,) = g/ are satisfied, where wi and wfcorrespond to r - ri and r = rf in Eq's.

(3.43) and (3.117). This is done by solving the cubic equation in Eq. (3.62) while taking

into account that Wo(g) for the range of _g of interest must be positive for the solution to

have physical meaning. The inner solution procedure also determines rs and o (see

Appendix B).

Fig. 4.1 presents an example of a converged solution of this equation for xgi--0 o,

¥f=20o. The resulting left and fight common parts of g_ are -1.10 ° and 20.75 o

i atxg=respectively, which correspond to w_ = 0 ( 7"/_ **) in this figure. The values of w 0

0 ° and _g = 20 ° map to zi = zf = 60 km altitude above sea level via Eq. (3.43). These
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altitudeswherespecifiedas part of the boundary conditions. Thus the boundary conditions

gi(ri) = 0 ° and _/(r I) = 20 ° have been met.
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Figure 3.2. Example of Converged Inner Newton Iteration

Process for w as a Function of _g

The left and right outer solution integration constants in Eq's. (3.31-3.33) and

(3.38-3.40) are obtained by enforcing the matching conditions in Eq's. (3.75-3.80) and

(3.92-3.94, 3.96-3.98). This amounts to equating the common parts for the outer solution

(Eq's. (3.31-3.33, 3.38-3.40) evaluated at h--0) with the common parts from the inner

solution (Eq's. (3.61-3.66) evaluated at the left and right common part values of _o

corresponding to w_---0 in Fig. 3.2). Since some of the outer solution variables are

different from the inner solution variables, it is necessary to employ the transformations

in Eq's. (3.43, 3.44) and (3.83). Note that c3 and a3 are not needed since the outer

solutions for I/¢_ and P_,, are constant. Hence the zeroth order composite solution for

these variables is the inner solution alone. The zeroth order composite solution is then

evaluated to determine ff the boundary conditions are satisfied:



"" 45

u_(h,)- u, = O, 7o(h,)- 7, = o,

PL(h_)- l - o, _o(h/)- _'_ = o (3.124)

The error in these equations is used in an outer loop Newton iteration to iterate on the

remaining four unknown common parts. These are the left common part values for u and

y, and the fight common part values for Pu and _,. A summary of this procedure is given in

Fig 3.3

Initial Guess of Common Pan Values

Evaluation of Inner Integration Constants

Newton Iterations for the left and

fight Common Parts of

Evaluation of Outer Integration Constants

Enforcing Boundary Conditions Using Composite Solution

Update Estimate of
Common Pan Values

Exit When Accuracy Requirement is Met

Figure 3.3. Summary of the Numerical Solution Procedure
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3.7.2 Open Loop Numerical Results m
W

Fig's. 3.4-3.7 present the zeroth order MAE converged solution for the boundary

conditions: zi = zf = 60 km (initial and final altitudes above sea level), Vi=7851 m/sec, _/i=-

1.35 o, 7f=l.0O and A_ = 20 o. The corresponding control time histories are given in Fig's.

3.8 and 3.9 and the altitude history in Fig. 3.10. The value of the expansion parameter

used here is e _ l/_rs = 11.87e-4. In Fig's. 3.4-3.7 the inner solution is shown for the

complete range of v/between its left and right common part values, which correspond to

r/---) _o (Wo=0 in Fig. 3.2). This was done to illustrate the fact that the matching

conditions in Eq's. (3.75-3.80) and (3.92-3.94, 3.96-3.98) are satisfied on the left and

right portions of the solution (see also Fig. 2.3)

These results clearly indicate that the composite solutions for Y and p7 are

significantly different from the inner solution. In particular, the major variation in Ft is due

to the outer solution, which in effect amounts to a correction for the large variation in Loh's

term during the exit phase. We note that the outer solution plays an important role in

forming a uniformly valid zeroth order approximation to the exact solution. The

normalized lift control _. is always near 1.0, corresponding to flight at near maximum lift to

drag ratio. The bank angle _ is always near 90 ° indicating that most of the aerodynamic

force is utilized in performing the turn.

W

W
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Figure 3.10. Zero Order MAE Altitude History

3.8 Zeroth Order Guided Solution

3.8.1 Solution Procedure

Zeroth order closed loop guided solutions are obtained by using the optimal control

expressions given in Eq's (3.26) and (3.27). These expressions involve both the states

and the costates, thus knowledge of both states and costates is needed to evaluate the

controls. Assuming that the states are available for feedback, only estimates of the costates

are required at each control computation along the trajectory. Feedback implementation

entails treating the current state (from the simulation) at each control update as a new initial

state, and calculating the costate values corresponding to the _me time instant. The

estimate for these costates (to zeroth order) are obtained by repetitively solving the zero

order MAE problem.

In the first step, an initial guess and boundary conditions are supplied to initiate the

procedure of obtaining a zero order MAE converged solution (Appendix B). Next, the

costate expressions in Eq's. (3.38-3.40) and (3.64-3.66) can be evaluated as a function of
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thecorrespondingindependentvariablesandusedin Eq's.(3.105-3.107)to consmact the

composite costate expressions. These are in turn used in Eq's (3.26) and (3.27) to

compute the controls. When a predetermined time increment has been reached, the current

states are used as initial conditions for the next MAE calculation. It follows that the initial

guess is available in every step of the zero order MAE calculation after the first.

For control computation between MAE solution updates, the integration constants

from the last update are used. The transformations defined in Eq's. (3.11, 3.12, 3.43) and

(3.44) are used to transform the simulated dimensional variables into the inner and outer

dependent and independent variables. The transformed altitude h is used in Eq's. (3.31,

3.32, 3.38) and (3.39) to compute the left and right outer costates. The heading _ is used

in Eq. (3.64) to evaluate P_v, and Eq's. (3.105-107) are used to calculate the composite

costates. The composite costates and the current _, and u (from Eq. (3.12)) are used in

Eq's. (3.26) and (3.27) to evaluate the optimal controls between the time instants where the

MAE solution is updated.

During the exit phase, the left outer solution is discarded, and matching is required

only between the right outer solution and the inner solution. In this case, the constants of

integration for the inner solution are viewed as free parameters used to satisfy the boundary

conditions.

3.8.2 Numerical Results

Fig's 3.11 through 3.14 present a comparison between the optimal solution

(obtained using a multiple shooting method 25) and the zero order guided solution for

A_=20 °. The corresponding control time histories are given in Fig's. 3.15 and 3.16.

Loh's term (corresponding to the optimal solution) is given in Fig. 3.17 and the altitude in

Fig. 3.18. The time increment between guided solution updates is 5 seconds, with the

control updated at every integration step following the procedure described above. These

results indicate that the guided solutions and the optimal solutions are in a very good

agreement throughout the trajectory. The error that does exist in some of the guided

solution variables, for example the ¥ and the altitude (z) solutions, indicate the need for a

first order correction. A general procedure for MAE expansion of the HIB equation to first

order is developed in Section 4, along with a description of its potential application to aero-

assisted orbit transfer.
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Fig's 3.13 and 3.15 clearly indicate how the variation in Loh's term near the end of

the trajectory is partially accounted for in the zero order guided solution. Specifically, the

normalized lift coefficient k given in Fig. 3.15 does not saturate in the exit phase, but

reduces to near zero. This is due to the fact that the correction in lay from the outer solution

is too large (see also Fig. 3.6). Fig. 3.19 compares the velocity histories near the end of

the trajectory. The optimal and guided solution values for terminal velocities are 6751

m/sec and 6736 m/sec respectively. The difference of the guided value from the optimal one

in 15 m/sec.
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Section IV

Matched Asymptotic Expansion
of the Hamilton-Jacobi-Bellman Equation

In this Section a general procedure for constructing a matched asymptotic expansion

of the Hamilton-Jacobi-Bellman equation, based on the method of characteristics, is

developed. The development is valid for a class of perturbation problems whose solution

exhibits two-time-scale behavior. A regular expansion for problems of this type is shown

to be inappropriate since it is not valid over a narrow range of the independent variable.

That is, it is not uniformly valid. Of particular interest here is the manner in which

matching and boundary conditions are enforced when the expansion is carried out to first

order. Two cases are distinguished - one where the left boundary condition coincides with

or lies to the right of the singular region and another one where the left boundary condition

lies to the left of the singular region.

4.1 Singularly Perturbed Hamilton-Jacobi-Bellman Equation

Ref.'s. 10 and 11 have formulated _e aeroassisted plane change maneuver as a

regular perturbation problem and employed a regular expansion of the optimal return

function (P) to first order to obtain an approximate guidance law for that problem.

However, as shown in Section 3, the optimal aeroassisted plane change maneuver is

actually a singularly perturbed problem. For the solution of such a problem to be

uniformly valid, inner and outer expansions of P and a matching procedure have to be

performed so that a uniformly valid composite solution for the optimal return function can

be consu'ucted. This Section u'eats the expansion to first order for a class of singularly

perturbed problems that are characterized by the presence of t and t/e in the right hand sides

of the differential equations.
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We assumethatthedynamicsystemin Eq.(2.1)has the following form

dx/dt = f(x,u,t) + g(x,u,t/e)/e, x(ti) given (4.1)

where x _ R" is the state vector, u e R" is the con_'ol vector, e is a small parameter and t is

the independent variable. The functions f and g are assumed analytic with respect to their

arguments in the region of interest and, in addition, g is assumed to have the property that

lira g(x,u,t/e)/e' = O, t_O, i--I .... (4.2)
£--+0

The singular characteristic of this type of problem arises at t=0, where the above property is

not satisfied. To investigate the behavior in the region of singularity near t=0, a stretched

independent variable 'c is defined as 'c---t/e and Eq. (4.1) in terms ofx is given by

dx / dz = _(x,u, ez) + g(x,u, z), x(z_) given (4.3)

where the function f is assumed to have the property that

lim ef(x,u, er) = 0 (4.4)
£..-+0

Note that both systems in Eq's. (4.1) and (4.3) represent the exact dynamics. Eq. (4.1) is

called the outer system and all the variables associated with it will be denoted by the

superscript o. Eq. (4.3) is called the inner system, and all the variables associated with it

will be denoted by the superscript i.

The assumption in Eq. (4.2) regarding the form of g was chosen because the

aeroassisted plane change problem satisfies this property. It is typically satisfied when g in

Eq. (4.1) has the form g = e-a'h(x,u). Also, the division by E in Eq. (4.1) insures that

the zeroth order inner dynamics in Eq. (4.3) are not zero. As will become evident, this

specialization is not essential to the development in this section, and the main results are not

restricted to it. Generalizations (and specializations) to other assumed forms for both f and
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g are straightforward extensions of the main ideas to be presented below. The only

requirement is that the zeroth order subproblems remain well defined.

Note that when the transformation to Eq. (4.3) is performed, it appears to result in a

regular perturbation problem, when in fact the original dynamics in Eq. (4.1) are singular.

This is precisely what was done in Ref.'s. 10 and 11. It will be shown later, in the

application section, that transformation of our equations that begin in the form of Eq (4.1)

to the variables used in Ref. 11 results in a set of equations in the form of Eq. (4.3). This

means that the inner expansion alone was used in these earlier studies to satisfy the

boundary conditions, and that the expansions are valid only within the region of

singularity. In an MAE expansion, the solution is dominated by the inner expansion within

this region, because the outer expansion nearly cancels with the common part of the

solution. Therefore, the differences will be most apparent outside this region, and for

problems involving skipping trajectories through the atmosphere this will be most evident

where Loh's term undergoes as large variation. That is, whenever the orbital forces

dominate. These forces are ignored in the zeroth order regular expansion solution, and are

accounted for in the zeroth order MAE solution. This point was illustrated in the numerical

results in Section 3.

The optimization problem is to fmd u(x,t) that minimizes J = ¢(xf), subject to

the dynamic constraints in Eq. (4.1) and the terminal constraint _(x/) = 0, where

x/ = x(t/) and tf is the final time. The outer I-IJB equation is

P° =-minH = _po(fop, + g,,t/e.) (4.5)t u_U

where U is a class of continuous bounded controls, fop, ,. f(x,uO_,t),

gOp, _ g(x,t/e,u°pt(x,t)), and u°P'(x,P_,t) is given by the optimality condition H, = 0,

assuming that H, is positive definite. P°(x°(t_),t_) is the optimal return function def'med

as the optimal value of the performance index for an optimal path starting at x(t,) and ti

and satisfying the terminal constraint. In terms of the stretched independent variable x the

inner HJB equation is given by

pig _._ --_H -_ __p_(_f_t _ gopt) (4.6)
NU
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where P_(xi(r_), _,) is the same optimal return function as defined for Eq. (4.5), but

expressed in terms of the inner variables. It is important to note that in both formulations

the exact solutions for the return functions are identical and depend on the same initial

condition x°(t_) -- x_(r_) =-x(t_), where xi--ti/e. This is not true for the corresponding inner

and outer expansions of the solution, since the boundary conditions is satisfied with the

composite solution. Therefore, only the composite solution should be compared with the

exact solution. However, the inner and outer expansion solution terms may be viewed as

being dependent on x(ti) and ti through the matching conditions and the boundary

conditions enforced on the composite solution. This dependence will be made explicit in

the following development.

Consider a power series expansion in e of the return functions for both the outer or

inner formulations:

m

P°(x(t,),t,,e) = _ P_(x(t_),t,)e j (4.7)
jlO

P'(x(t,).t,.e) = (4.8)
jmO

By substituting these expansions into the outer and inner expressions of the optimal control

(derived from the optimality condition) and expanding in a power series in e, the outer and

inner expansions of the optimal control in a feedback form are obtained as:

m

u*m(x(t_),P°,ti) = _,u_(x(ti),ti)e i= u°°Z(x(ti),tl,e) (4.9)
j=O

i typt i £u (x(t,),Px,t _) = u_(x(t,),t_)e _ = u_'(x(t,),t,,e)
j,_O

(4.10)

The details regarding this expansion for a regular perturbation problem are given in ReL

11, and they apply directly for the separate expansions in Eq's. (4.9) and (4.10). The
o i

zeroth order tmrns u 0 and Uo are the optimal controls for the zeroth order outer and inner

problems that are obtained by setting e=0 in Eq's. (4.1) and (4.3). If analytic solutions are
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availablefor the zeroth order problem, then the higher order solutions are determined by the

expansions of the outer and inner HYB equations:

j-0 j-o j=0

j-o j-o j,.o j,,o

(4.11)

(4.12)

where the expansions for f and g come from substituting the series in Eq's (4.9) and (4.10)

for u in Eq's. (4.1) and (4.3). The reader is again refered to Ref. ll for the details, while

noting the exception that the dependence of f in Eq. (4.3) on I_ enters both through u and

e'c. Equating like powers ofe in Eq's. (4.11) and (4.12) leads to outer and inner first order

linear partial differential equations for P7 and Pj

0 0 0

pjo + P;,/o = Rj(x(t,),t,,Pj_, ..... Vo), j=l,... (4.13)

i i i i i

Pj, + ?jxgo = Rj(x(t,),t,,Pj_, .... ,Po), j=l,... (4.14)

where the forcing terms R0j and R I are functions of the lower terms in the solution. This

procedure was carried out in Ref. 11 for a regular expansion, and is identical in form for

the inner and outer expansions defined here with obvious accounting for differences in

notation, and the exception noted above regarding the dependence of f on ex in the inner

expansion. In particular, the j=l expressions are:

R,°= O, R: - - 'oJo(x,O) ' (4.15)

after taking into account the optimality condition for the zeroth order problem. Note that

R_ is zero as a consequence of the assumption in Eq. (4.2), which also accounts for the

fact that an expansion of g is not required in Eq. (4.11). In the sequel it is not assumed that

R_ = 0 so as to allow for more general assumptions regarding the form for g.
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Singular perturbation expansions differ from regular expansions in that solutions to

any order of the outer and inner problems are not uniformly valid approximations of the

exact solution. Uniformly valid approximations are constructed from the outer and inner

solutions by the MAE method. This process involves matching of the inner and outer

solutions and enforcing the boundary conditions on an additive composite solution made up

of the outer solution plus the inner solution minus the common part. See Sections 2 and 3

for details.

The partial differential equations in Eq's. (4.13) and (4.14) may be solved by the

method of characteristics (Ref. 18). The characteristic curves for any order term of

po and pi are defined by the zeroth order differential equations:

• O 0 0 0

x o = f (Xo,Uo,t)

& /dr , i= g (x0,r,u )

(4.16).

(4.17)

whose solutions are denoted by Xo(t;x(t,),t,) and xo(z';,x(t_),t_) respectively. It is shown

in Appendix C that the boundary conditions for Eq's. (4.16) and (4.17) are also defined by

the MAE method. Therefore the characteristic curves for the inner and outer expansions are

the inner and outer solution components of a zeroth order MAE solution. Note that to any

order, the boundary conditions are satisfied by the composite solution and not individually

by the inner and outer solution components. The same is true for the characteristic curves

which satisfy Eq's. (4.16) and (4.17). However, both the inner and outer characteristic

curves depend on x(ti) and ti through the matching conditions and the boundary conditions.

See Sections 2 and 3 for details. Note that the expansions P_ and P_ in Eq's. (4.13) and

(4.14) are useful only at the initial time to -- ez"0, because the characteristic curves are

computed for a specified x(ti) and ti.

4.1.1 First Order Solution for the Case ti>O

In order to express the matching condition, it is necessary to express the outer

solution of Eq. (4.13) for the interval 0 < t a tr, and the inner solution of Eq. (4.14) for the

interval 0 < _< **. We also assume in this section that the initial time satisfies ti > O, and
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will subsequently generalize the result for arbitrary ti.

expressed as:

The solutions for P? and el are

!

R ° . poP_(t;,x(ti),t_) - J L(t,x(ti),t_)dt + j (O;x(ti),t_) (4.18)
0

T.

= R:(r;,x(t,),t,)drpiP_(_x(ti),t,) f + j(O;x(ta),ta) (4.19)
o

A necessary condition in MAE analysis is that the zeroth order solution at t=0 serves as a

stable equilibrium point for the zeroth order inner solution. This means that the

characteristic curve for the inner expansion must approach a well defined limit as x_**.

Hence it is assumed thatR_(r;x(t_),t_) reaches a well defined limit as x_** which will be

denoted by R]'(x(t_),ti). Thus, in order to express PI for large values of ¢, it is necessary

to rewrite Eq. (4.19) in the following form:

P_(r,x(t,),t,) = f[R:(r,,x(t_),t_)-R(']dr + _R_" + P_(O;x(t_),t_) (4.20)

We are now ready to perform the matching procedure between the outer and the inner

solutions of the return function by enforcing the following rule:

P°(small t) = P_(large _'_,.,/_ (4.21)

where the dependency on x(t_), t, is omitted to save notation. Retaining terms to first order

in t and e yields

t'o(o) + t'o,(O)t+ ee?(o)= t';(**)+ e[P:(o)+ Ite:(,)-R:-]ar + e_-r]
0

(4.22)
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whereEq. (4.20) is used to express pi for large x. Equating like powers in t and ¢, the

following matching conditions are obtained:

e°: Po(O) = Po (°°) (4.23)

e,': P_(O) = P_(O)+ _[/R_(_:)- R_'/d'c (4.24)
o

t': R_" &,(o) o o= = - Po,Y(o) (4.25)

Next the boundary conditions are applied to the composite solution expressed to

first order. The composite solution is constructed byadding the outer and inner solutions

(expressed to _st order) and Subtracting their common part. The common part is the left

hand side of Eq (4.22). Evaluation of the resulting first order composite solution at the

final time yields the following boundary condition

i O

P:(t:) = Po(t/) + e[PT(t/)+ PI(I'/)]- [po,(O)t/ + epj°(O)]= 0(x/)(4.26)

where the zeroth order composite return function is given by

Po(t/) = Po(tz)+ P_('c/)- Po(O) (4.27)

From Eq's. (4.18) and (4.20) the first order terms evaluated at tf and xf are related to their

respective values at t = x = 0 by:

t/

P_(t/) = fRT(t)dt + PT(O) (4.28)
0

,g. - ÷:

,"_(,:) = i[R:(,)- R:-]ar + R:'z/ + P:(O) (4.29)
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Using Eq's. (4.25) and (4.27-4.29) in Eq. (4.26), and recalling that zI = tl / e yields:

e°: Po(t/) = ¢_(x/) (4.30)

el: P_(0) = - IR?(t)dt - l[R_(z-) - R_'ldt (4.31)
0 0

Eq's. (4.31) and (4.24) are used to evaluate the constants P? (O ) and P](O) in Eq's. (4.18)

and (4.20). Finally, using these results in Eq. (4.26) evaluated for an arbitrary initial time

ti such that 0 < ti < tf results in

P_ (x(t i),t,, e) =
t!

C 0 .

Po(x(ti),ti) + e{-SR I (t,x(t,),t,)dt
I i

TI

-f[R:(r,x(t,l,t,)- Ri"ldr I
Ti

(4.32)

Partial differentiation of this expression with respect to x(ti) provides an approximation for

the costate variables to first order, which, when used in the optimality condition, results in

an approximation for the feedback control to first order. 11

e t/ o

(x(t,),t,,e) = Po,,,(x(t,),t,) + e{-IRl,,,
I i

o.+ R l (tt,x(t,),t_)_t I IOx(t,) - _[R,._,, (r,x(t,),t,) - R]2,ldr
ri

+ [R_(_:/;x(t_),t,) - R_"]_)_//_)x(t,)} (4.33)

4.1.2 A Simple Example

Here, the simple example that was presented in Section 2.2 is followed up. The

problem formulation is
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= x + ue -'1_ / e, x(t_) given, tf = 1, lul< 1 (4.34)

where x is a scalar state variable and u is the control. Find a control u to maximize the

performance index J=xf. To repeat the main results, the exact solutions of the state and

costate arc:

x(t;x(t_),ti) = [(1 +e)x(t_)e'-" + e '-'-'I_

2(t;x(t_),t,) = e'-'

- e-'/']/(1 + e) (4.35)

(4.36)

and the zeroth order outer and inner solutions are:

o . = (4.37)Xo(t,x(t_),t _) [x(t_) + e-"ZE]e '-'

&o(t;x(t_),t,) = e'-' (4.38)

x_(r;x(t,),t_) = -e -_ + [x(t,) + e-_']e -' (4.39)

&io(_x(t,),t _) = e' (4.40)

In this case the zeroth order composite solution for _, equals the outer solution since the

inner solution is constant. Comparison of Eq's. (4.36) and (4.38) shows that it also

equals to the exact solution. Hence, no correction terms for _, to first and higher orders are
=

expected.

Using Eq. (4.15) it is found that

R_(t) = 0 (4.41)

= _ Po_(r)Xo(Z) = _e l[_e -_ +

Evaluating R](z) in Eq. (4.42) at _---)** yields

e-" (x(t,) + e-"/*)] (4.42)
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R_" = -el[e-"(x(ti) + e-"lt)] (4.43)

Note from Eq's. (4.37,4.38) and (4.43) that the matching condition in Eq. (4.25) is

automatically satisfied. This will always be the case when the outer and inner zeroth order

MAE solutions are used to define the characteristic curves (see Appendix C). Using Eq's.

(4.41-4.43) in Eq. (4.32) gives

lit

P:(x(til, ti,e) = Po(ti)-?. I'[R_(z')-R:"]dz"
t,It

lit

= Pg(ti) -ee I ie-rd1: = Po(ti) + eet[e-Z/t _ e-,,t t]
t_lt

(4.44)

Note that the first order term in Eq. (4.44) does not depend on x(t,), hence there is no

correction to first order for the costate function as expected. The exact return function is

the final value of x from Eq. (4.35), with t replaced by tf -- 1.

P(x(ti),t,,e) = [(1 + e)x(t_)e _-', + e _-'-''/_ - e-UEl / (1 + e) (4.45)

To show that Eq. (4.44) is a uniformly valid approximation to O(e), the exact

solution in Eq. (4.45) is expanded to first order

P(x(ti),ti,e) = Po(x(ti),ti)+ e[e -uE- e I-'-'/c] (4.46)

The difference between the first order terms in Eq's. (4.44) and (4.46) is

A(&ti) = eel(l-e-t')e-"/t + ee-l/t(l-el) "- eE(e,t i) (4.47)

The range of interest for ti is 0 < ti <1. The region of singularity corresponds to ti--O(e), or

to the range 0 _ ti < ke, where k is some constant. Outside this region ti=O(1). We now

investigate the size of E(e,t_) both inside and outside the region of singularity:
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forti--O(e): limE(e,t_) / e = ke _-k <** (4.48)
E.--_0

forti---O(1): limE(e,t,)le = 0 (4.49)
E---_0

Thus, E(e,t_)=O(e) when ti is O(e) close to zero and o(e) when ti is O(1). Hence, A(_,ti)

in Eq. (4.47) is O(e 2) uniformly in ti. It follows that the solution in Eq. (4.44) is a

uniformly valid first order approximation to the exact solution in Eq. (4.46). When the

regular expansion of Ref. 11 is applied to this problem with x = t/e as the independent

variable (this transforms the dynamics to the form of Eq. (4.3)), then the fh'st order

solution is not valid in the region outside the neighborhood of t=0.

4.1.3 First Order Solution for the Case ti_<0

In this case the region of singularity near t--0 occurs between the initial time ti<0

and the final time tf>O. As detailed in Sections 2 and 3, two outer expansions are required

for this situation, one for the interval t < 0 and the other corresponding to t > 0. The outer

expansions are in general discontinuous at t = 0, but the composite solution is always

continuous 11. The inner expansion must be considered for -00 < 'r < -0 in order that

matching may be performed on both sides. This is illustrated in Fig. 4.1.

I

0

Figure 4.1. Inner and Outer Expansions of P in the Left and Right Regions



69

The equivalent expressions to Eq's. (4.18) and (4.20) on the left side for t<0 are:

° JR o . o .PI (O;x(t_),t_) = l (t,x(t_),t_)dt + P_ (t,x(t_),t_) (4.50)

o

P_(O;x(t,),t,)= l[tC:fr,x(t,),t,)-._R:-ldr_ :R_'+ P:fv,x(t,).t,) (4.51)

Note that, in general, the inner forcing function R]" has different limit values on the left

and fight sides as denoted by the L and R superscripts. Matching on the left side is done in

a fashion similar to that on the fight side and the equivalent expression to Eq. (4.21) is

P°(small negative t) = P_ (large negative r_,.,/, (4.52)

Retaining terms to first order in t and E gives

"P;(O) L o

+ P_,(O)t + e"P?(O) =

?o(-'0) + e[?i(o) -
o

[.[R_ ( r)--'R]']dr + LR_'r] (4.53)

Equating like powers in t and e yields:

e°: _pg(o) = &(-**) (4.54)

£]:

tt:

"e,°(o)= v_(o)- _tR_(r)- LR_-]dr

L 0 L o L 0_R;- = t,_,(o) =- pL(o): (o)

(4.55)

(4.56)

Since the inner characteristic curve is continuous at t--0, so is P:(0), and therefore it

satisfies the right side expression in Eq. (4.31). Using Eq. (4.31) in Eq's. (4.51) and
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(4.55),and then Eq. (4.55) in Eq. (4.50) gives the inner and outer solutions of the return

function on the left side. The composite solution on the left side is constructed the same

way Eq. (4.26) was constructed and, after some manipulation, it takes the form

0 0

P_(t i) = Po(t_)+ el-IR_(t)dt + P_(O)- J[R_(v)-'R_']dr} (4.57)

Finally, using Eq. (4.31) in Eq. (4.57) yields

P_(x(t,),t,)

I!

t,_( f._( t,)dto= x(t_),t_) + e{- t;x(t,),

li

o rt

[.tRi(r,x(t_),t,) - _RI'je_ - [.tR_(_;x(t,),t,) - "R;-1e_I (4.58)

where RR]** satisfies the right side matching condition in Eq. (4.25). Differentiating Eq.

(4.58) with respect to x(t,) yields

P_..,(x(t_).t_)=
I i

o

- R_(tl;x(t,),t,)Ot f/c)x(t,) - I[R;
r,

- I[R_ (_x(t,),t,) -'R_" let

t!

PC%,,(x(ti),t,) + e{-I R_,, (t;x(t,),ti)dt

i °- [Ri(rt,x(t,),t,)-"R:'lOr:/bx(t,))

(r;x(tl),t i) - LR_" ]dr

(4.59)

which, when used in the optimality condition, results in an approximation for the feedback

conlrol to first order.

As noted earlier, the first order corrections in Eq's. (4.33) and (4.59) are only

useful at to, and therefore the quadratures must be repeated at each conlrol update.
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4.2 Application to Aeroassisted Plane-Change

In Section 3 analytic zeroth order solutions were obtained for the aeroassisted

plane-change problem. In this problem, the singularity occurs at the lowest altitude point,

hence the result in Eq. (4.59) must be used for initial conditions when they correspond to

the entry phase of the maneuver. As shown in Section 3, the reduced three dimensional

point mass equations of motion (3.21-3.23) for a lifting vehicle over a spherical non-

rotating planet have been written in the form of Eq. (4.1). Note that these equations satisfy

the condition in Eq. (4.2) and that h plays the role of the independent variable, which is

identified as t in Eq. (4.1). It is a monotonic decreasing variable to the left of the

singularity (entry phase of the trajectory) and a monotonic increasing variable to the right of

the singularity (exit phase of the trajectory). Therefore z in Eq. (4.3) is h/E, which is

denoted by _ =h/_ in Eq. (3.41).

The control expressions in Eq's. (3.26) and (3.27) depend on PW, P_, and Pu.

These can be obtained to first order using Eq. (4.59). From the first of Eq. (4.15) R_ = 0,

hence only the inner quadrature is needed. From the second of Eq. (4.15) and Eq's.

(3.21)-(3.23)

(4.60)

R_*° in Eq. (4.59) can be obtained by using the matching conditions

P_u(**) = P°u(O), P_r(**) = P_'r(0), u_(**)=u_(0) and the expressions in Eq's. (3.31),

(3.38) and (3.39). The result is simply

RR:**(**)=2Ra1-Ra_, LR:_(_) =2t_-L_ (4.61)

Since tan _ appears in the denominator of Eq. (4.60) and ?'_(0)= 0 [see Eq.

(3.111)], a singularity occurs in the integrand of Eq. (4.59) for this problem at 11=0.

However, the singularity is removable by s_ply transforming the variable of integration

(rl) to the independent variable for the inner problem (W). Using Eq's. (3.23), (3.41) and

(3.43) it follows that

dr/= sin ?'cos )t/I///ow (4.62)
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which removes the singularity in Eq. (4.59) when the variable of integration is changed

from 11 to W.

Let Vs denote _0(r/= 0). This quantity is known from the zeroth order solution.

Then, the specialization of Eq. (4.59) to the AOTV problem becomes:

_'tB_ ..ti

P_,,('i) = P_w,(ti) + e{- I [ _'_°i [R/(I//) -LR_**]]vidlv
0 °wo

I]I i . i

- _[ ?"_°i [RI(v) " "RV]]v/idv -[_---9-1"°i[Ri(v) - RRI']]Iw /9w/_Vi} (4.63)
_, °Wo owo

c (ti) c e{- I [ S-_°i [R_(I//) L°i°°dPit i = P_,i(ti) + - rq jll.idl V
0 °Wo

v// i . _1 JJd_'i dill i . .
-- I [ Y'-_Oi[R/(IJ/) RDioo _[J__._[R/(IV ) _RRlOO]]]itlf_tjlf/Ori }

_s °w° aw0
(4.64)

= [ei(,y)-  RI=]]odV
0

-- '-'1]' av,fRl I- St'--r0,tRl(v,) 'RI'j].. ,
- dlj/-[Owo[Rl(ll/)- /aui}

(4.65)

where a small flight path angle approximation y = sin ?cos 7' is employed for simplicity of

notation.

The zeroth order composite terms in Eq's. (4.63-4.65) are known from the zeroth

order solution as developed in Section 3. The expression forR](gt) follows from Eq.

i and P_u to P_v, and Eq's. (3.61),(4.60), Eq's. (3.44) and (3.83) that relate u_ to v0

(3.63), (3.64) and (3.67) that relate _(V), v_(v), P_r(v/) and P_v to V and the

constants of integration. R_(_v) is evaluated along the inner characteristic curve, which

corresponds to the zeroth order _nersolution in Section 3. Hence, differentiation or R_

with respe_ to x(ti) implies that t_xi0 / o3x(ti) must be computed. The dependency of the

zeroth order inner solution on the initial conditions is expressed in Section 3 through a set

of 20 equations for 20 unknown parameters that define the inner and outer zeroth order

solutions. The procedure to obtain the required derivatives involves use of the chain rule,
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where first the partials of R_(_) with respect to the 20 parameters is taken, and then

multiplied by the partials of the parameters with respect to the initial conditions. The details

are omitted, but the procedure is similar to that developed for a regular expansion in Ref.
11.

4.3 First Order Guided Solution

Closed loop guided solutions are obtained by using the optimal control expressions

given in Eq's (3.26) and (3.27). Feedback implementation entails treating the current state

(from the simulation) at each con_ol update as a new initial state, and calculating the costate

values corresponding to the same time instant. The estimate for these costates to first order

is obtained by repetitively following two steps. First the zeroth order MAE problem is

solved, providing the zeroth order Euler solution which defines the characteristic curves for

the fu'st order expansion of the HJB equation. The procedure for this step has been

detailed in Section 3. Next the quadratures in Eq's. (4.63-4.65) are performed to correct

the costates to Fu'st order. When a specified time increment has been reached, the current

states are used as initial conditions for the next MAE calculation followed by the first order

correction step. During the exit phase, the left outer solution is discarded. This situation

represents the case where to_.0 in the analysis of Section 4.1.

Figure 4.2 compares the exact solution, the zeroth order guided solution and the

first order calculation for the left side (the heading in the entry phase of the maneuver is

between 0 and 11.5o). The exact solution is computed at heading increments of 0.25 °

where the initial conditions are determined by the values of the zeroth order guided

simulation at the end of the last control update segment_ The first order correction is

calculated but not included in the guided solution. It is Clear that initially the fu'st order

calculation overcorrects the zeroth order solution. Closeto and in the inner region though,

the first order calculation does provide an excellent correction to the zeroth order solution.

These partial results indicate the need for further investigation of this behavior. The cause

may be a numerical ill conditioning in the evaluation of the quadratures in Eq's. (4.63-

4.65), and perhaps further development of the theory may be required.
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Section V

Conclusions and Recommendations

5.1 Conclusions

In this report it has been demonstrated that the dynamics associated with skip

trajectories are singularly perturbed, with the perturbation parameter defined as the ratio of

the atmospheric scale height to a reference radius close to the planet radius. Earlier studies

have either employed regular perturbation analysis of the inner dynamics, or have

incorrectly attempted a matched asymptotic expansion (MAE) analysis. We have clearly

demonstrated that the transformations employed in the earlier regular expansion studiesin

effect transformed the original problem to the inner dynamics, and therefore only have the

appearance of being the type that occur in regularly perturbed problems. The resulting

solutions are therefore not uniformly valid. For skip trajectories, this results in a poor

approximation of the optimal solution near the end of the trajectory, where there is little

con_'ol authority available.

With regard to MAE analysis, all of the issues improperly dealt with in earlier

analyses of this type that have been attempted in the past for skip trajectories, have been

corrected. The first issue deals with the fact that both the inner and outer expansions are

crucially involved in satisfying the boundary conditions. The use of the outer expansion

alone to satisfy initial conditions leads to discrepancies in the matching conditions. A

second issue is the need for separate left and right outer expansions, and the role that the

inner expansion plays in joining the discontinuities that occur between the outer expansions

through the matching conditions. The true optimal solution is, by its nature, continuous;

therefore, in order for the composite solution to serve as a uniformly valid approximation to

the exact solution, it also must be continuous. In a skip trajectory, a discontinuity between

the left and right zeroth order outer solutions is caused by the change that occurs in the

trajectory parameters during the osculating atmospheric maneuver. We have demonstrated
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that the zeroth order inner solution can be viewed as a process whereby the discontinuity

between the left and right zeroth order outer solutions is taken into account.

A third issue concerns the proper selection of the reference altitude, used in defining

the independent variable of integration in the outer solution, which has significant

implications on the solution process. An arbitrary choice of this altitude leads to a situation

where the outer solution for the flight path angle cannot be evaluated, thereby preventing a

zeroth order composite solution from being formed. A systematic approach to obtain a

relationship to determine the correct reference altitude is to use the condition that the

composite zeroth order flight path angle solution is zero at the lowest point of the Irajectory.

Application of these ideas to the problem of inclination change with minimum

energy loss has resulted in a zero order solution in the form of a set of 20 algebraic

equations. By exploiting the structure inherent in the matching procedure it is possible to

reduce the problem to 6 equations in 6 unknowns. A further simplification was employed

which permits satisfaction of two of the boundary conditions by partially separating two of

the equations from the remaining four equations. Numerical experience shows that the

zeroth order solution is close to the optimal solution, and that the outer solution plays a

critical role in accounting for the variations in Loh's term near the exit phase of the

maneuver. This feature is what differentiates a MAE analysis from a regular perturbation

analysis of skip trajectories. However, the deficiency that remains in several of the critical

variables indicates the need for a first order correction.

i_xpan--sio---n-0t'-the solution to-_st order required further development of the MAE

expansion procedure, .......We have devei0p_ a general procedure for constructing a matched

asymptotic expansion of the Harnilton-Jac0bi-Beliman (HJB) equation, based on the

method of characteristics. Of particular interest here is the manner in which matching and

b°und_c°nditi°ns are enforcedwhen th_expansion "_iscarri'extoUt t ° first order. We have

recognized the need to distinguish between two cases pertaining to the location of the

singular region with respect to the boundary conditions. The first is where the left

boundary condition coincides with, or lies to the right of, the singular region, and the

second is where the singular region lies between the boundary conditions. It is shown that

the boundary conditions for the characteristic curves of the HJB equations are also def'med

by the MAE method. The characteristic curves for the inner and outer expansions of the

HJB equation are the inner and outer solution components of the zeroth order MAE

solution. Another consequence of the analysis is that whenever the outer and inner zeroth

order MAE solutions are used to define the characteristic curves, the first order matching
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conditions are automatically satisfied. A simple exampl_ is used to illuslrate the procedure,

where the obtained solution is uniformly valid to O(e2). The procedure's potential

application to aeroassisted plane change was also evaluated.

5.2 Recommendations

Based on the results developed in this report, the following recommendations are

made for further research in this area.

5.2.1 Completion of the First Order Correction Analysis of the

Aeroassisted Plane Change Problem

V

In Section 3 the zeroth order guided solution was obtained and compared with the

exact solution. The error that exists in some of the zeroth order guided solution variables

with respect to the exact solution indicated the need for a first order correction. Section 4

developed a general procedure to obtain a first order correction to the zeroth order problem

and its potential application to the aeroassisted plane change problem. The numerical

results indicate the need for further evaluation of the approach, and perhaps further

development of the theory. Simple examples of increasing complexity proved useful in

understanding and developing the theory. It is recommended that the first order correction

for the aeroassisted plane change problem be further analyzed to determine if it is

numerically ill conditioned, or if an alternative approach or further development of the

theory is needed. One alternative approach for first order analysis is to expand the Euler

system equations. 28

5.2.2 Aerodynamic Heating Requirements

Aerodynamic heating is an important aspect of the aeroassisted maneuver that was

not considered in this report. To make the guidance law useful in realistic applications, it is

necessary to include aerodynamic heating requirements in the problem formulation in a

form such that the zeroth order problem remains u'actable. Minimization of the time

integral of the flight path angle squared may have desirable features, as the numerical work
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in Ref. 2 indicates. The numerical solution to this problem results in nearly grazing

trajectories that are considered an useful engineering compromise between energy

requirements and aerodynamic heating requirements. Hence, a choice of performance

index that includes a flight path angle squared term is recommended.

A second approach for formulations that render the zeroth order problem intractable

(such as enforcing a hard constraint on the heating rate or the heating load) would be to

investigate combining an analytically tractable portion of the solution with a numerical

method, such as collocation, to develop a numerically efficient zeroth order solution. The

approach was developed and illustrated for a launch vehicle application in Ref. 28.

5.2.3 Atmospheric and Parametric Uncertainties

The aerodynamic force used to modify the vehicle's trajectory during the

aeroassisted maneuver is uncertain due to uncertainties associated with estimates of the

vehicle state vector, atmospheric density and the vehicle's aerodynamic coefficients. The

effect of these uncertainties along with uncertainties in the entry conditions may result in

significant trajectory deviations from the nominal trajectory and in large errors in the final

conditions. 29 An important determinate of the guidance system performance during

maneuvers, such as aerocapture or landing on the surface of Mars, is the accuracy of the

information on which the guidance law is based. 30 A further study to improve onboard

estimation and parameter identification for aeroassisted applications is recommended.

A second viewpoint is to design the guidance law so that performance is maintained

in the presence of uncertainty (robust performance). Such a design can be achieved by

treating the uncertainty as an opponent in a differential game formulation31. In the case of

linear quadratic games, such a formulation is intimately connected to the design of a

controller that minimizes the infinity norm of the transfer function from disturbances to

perform_ce outputs. It man also _ beneficial to investiga_e use of thrust _ the

atmosphere, such as an Aerocruise maneuver to achieve plane change. It has been shown

in Ref.32 that Aerocmise is less_nsifive to atmospheric unce_fieS than aeroglide.
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5.2.4 Expansion of the Euler Equations

An alternative approach to obtaining higher order corrections is to consider an

expansion of the Euler system of equations. The higher order equations for the states and

costates are coupled, linear and inhomogeneous, and the contributions of higher order outer

terms to the composite solution are not zero (as they are in the RIB expansion). The

solution of these equations requires calculation of a state transition man'ix, which can be

derived analytically using the analytical zeroth order solution, and performing a quadrature

on both state and costate equations. It has been shown that in the case of a regular

perturbation, the first order correction obtained by expansion of the HYB equation is equal

to the correction obtained by expanding the Euler system of equations to f'trst order. 33

However, this method has an important potential advantage over the HYB expansion in that

it may be possible to fix the zeroth order solution, and precompute and store the

quadratures along the zeroth order solution as a function of a monotonic variable (such as

total energy). Then, at each control update, the state perturbations from the zeroth order

solution are accounted for in the ftrst order correction by treating them as initial conditions

for the first order solution. 28 This is not possible in an HJB expansion, since the first

order correction is valid only for the current values of the state and the independent

variable, and the quadrature must be repeated at each control update.

5.2.5 Other Problem Formulations

Extensions of the existing problem formulation would include accounting for the

effects of the planet's rotation and cross range angle, which are ignored in the present

analysis. It is easy to show that these effects are not present in the zeroth order dynamics,

which means that they appear only in the first order corrections that are computed by

quadrature. Therefore, conceptually it should be rather straightforward to include these

effects in the analysis. Also, there are a range of other problems that are of practical

interest, such as the aerocapture problem and reentry problems. In the aerocapture problem

the total energy of a vehicle on a hyperbolic trajectory is to be reduced so that it is captured

by the gravitational field of a planet. Aerodynamic heating limits are an important

consideration in this problem formulation as well.
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5.2.6 Parametric StUdie_s

In the context of parametric studies it is necessary to determine the range of problem

parameters for which approximate solutions are obtainable, and to conduct a comparison

with purefy-ex0atm6sp_heric in_fi-e-ffveis _ in termrs.of energy c0fiSii/nptibn. T_q_ical

parameters to be considered are the initial and final orbital parameters, and the maximum lift

to drag ratio. Therefore, it is of interest to conduct evaluations of a more extensive range of

parameter values than in the limited study conducted here.
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Appendix A

Relationship for the Zeroth Order Control

Expressed in the transformed variables in the inner region, the Hamiltonian function

has the form given in Eq. (3.55)

H_ i p: _ i i 82= Pot 8�or - ow_" �or + P0_(1 + + o_)/c r (AI)

The

H_.
ale:

control functions are obtained from the optimality conditions H_o_ = 0 and

= 0. For the above expression of H_ these conditions, after some manipulation,

H'o,: (Po,+ 2p_,_)/_ - o (A2)

Hoo-- e_ - (-P0,/ 4e_ - e' -' '0.70 + Yo,)l_ = 0 (A3)

and the control functions are obtained as:

8 "- -P_r/2P_ (A4)

Oa - pi i i2= (- o,,Yo- Pgr/4P_v)/P_ + I (A5)

Substituting these functions back into the Hamiltonian in Eq. (A I), after some manipulation
it takes the form:
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Ho ' "= °')[(-Po,;Yo - Gr / 4P_,) / P_ + 1] = 2crP_. (A6)

where the expression in the brackets is recognized to be a 2. Since H0 and P_, are

constant in this problem, so is a. Thus it should be possible to express a in term of

constant parameters only, which is not immediately recognized in Eq. (A5) since it contains

the functions Pot and ?'_. To show this, use of Eq. (3.64) in Eq. (A5) yields

°a = {-[(Pow/Cr)V_ + c]/2P_,} 2- P_.,Y_/P_ + 1 (A7)

From Eq. (3.67) P_, and c can be written as:

e_ = 2o_e_k, (AS)

c = - 2crP_k 2 (A9)

Using these equations and Eq. (3.61) in Eq. (A7), _ becomes:

tr = 1/(1 + k_ + 2klk3) 1/2 (A10)
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Appendix B

Initial Guess and Evaluation
of the Inner Integration Constants

B.I Initial Guess Procedure

To calculate the 6 inner integration constants k3, k4, ks,. c, P_0w, and Po_ in Eq's.

(3.61-3.66), 6 boundary values must be supplied. These are the left common part values

of y, v and _ and the right common part values of y, P_ and V which will be denoted by

the subscripts "L" and "R" respectively. At the very first step of the procedurel the actual

left boundary values of 3', v and _ and the right boundary values of 3' and V"are used as an

initial guess for Yt, vt, _r, YR and gR respectively. The value of P_, is estimated using

the boundary condition in Eq. (3.116) that cPo,,(hf)=l.O. Since hf is far from the region

R O
of singularity (h--0), this is closely approximated by the outer solution, so Po,,(hf) = 1.0.

Since h << 1, the value of Ru_(h) does not change substantially in Eq. (3.31), so

RU°o(O)=Ruo°(hf) and from Eq. (3.38) R_° R OP],(0)= P_,,(hf )--1.0. These properties can be

verified by examining the converged solution for pO(g) in Fig. 3.7. Next the

U'ansformation in Eq. (3.83) is used to relate RP° (0) to RP°_(0), where RUo°(O)=Ru_(h f)

and from Eq. (3.44)

_uO(h/)= e- _,,_(h;)m" / g_r, (Bl)

NOW R_Oo(hf)=V_(_f)_.]JCo(_f ) and v_(q/f) is calculated by approximating the

dynamics in Eq. (3.49) using dv_ / dq/= 2.0. All of the above properties may be verified

i
from Fig. 3.5. Finally, the matching condition in Eq. (3.86)P°_(O) = Po_(o_)= PvR is used

to provide an estimate for PvR.
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B.2 Inner Integration Constants

Using Eq's. (3.61) and (3.62) at the left and fight common part boundary

conditions, kl, k2 and k3 become:

k1 = -12trAw/Aig 3- 6(y R + yL)/Agr 2 (B2)

k,z = A_'/AIp' + k,(1/t R + IIIL)I2 033)

/q = --/qqt,_tL/2 + (YL_R - 7'R_'L)/A_' (B4)

where A(.) = (')R - (')L and a is found as a function of the boundary conditions by

using Eq's. (B2-B4) in Eq. (A10). The expression for a becomes

o-= _,ae 2/[,a_ 2+ 3(r. + _,)2 +.at2] (B5)

From Eq. (3.43) at r/--_ 0,, the common part values of w are zero, thus

wt. = wR=0 when the initial conditions are in the left side (entry phase). In this case Aw--0

in Eq. (B.2). When the initial conditions are given in the fight side (exit Phase), the left

matching condition is dropped and wL is equal to the current w. Use of Eq's. (B2) and

(B3) and the estimate of P_ in Eq. (3.67) provides the values of the constants P_, and c.

Next, k4 and k5 can be found using Eq's. (3.62) and (3.63) at the left boundary

conditions:

k4 = owl- /qV_/6 + k2V_L 12 + /qVL (B6)

/q = vt. - (o" + I/tr)_L -- O[(vLk_ - k_)3]/3/q (B7)

At this stage all the inner states and costates can be evaluated at any _ between WL

and WI_ as a function of the boundary conditions using Eq's. (3.61-3.66). In parti£ular, the

initial and final inner solutions are needed to construct the composite solution, which is
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V

v

used to enforce the boundary conditions. Also, at the lowest point in the trajectory (h=0,

r--rs) the composite solution is equal to the inner solution and the flight path angle _0 (0, e)

is zero. Thus, the value of _s that corresponds to this point can be found from Eq. (3.61)

by equating it with zero, and then using the result in Eq. (3.62) to calculate the

corresponding value of ws. This point is illustrated in Fig. 3.2. Finally, Ps and hence, the

reference radius rs, can be obtained by using ws and the relationships defined in Eq.

(3.43).

V
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Appendix C

Relationship Between the Zeroth
and the First Order Matching Conditions

V

The quantity R; (r) needed for the quadratures in Eq. (4.59) is given by Eq. (4.15)

R_ = - eo,(r)fo(X(r),0)_' (C1)

where x('c) satisfies Eq. (4.17). Therefore

R_" "-" i i i- eo_(O.)fo(Xo(**),O) (C2)

where Xo(r) and P_(r) are the state and costate solutions along the inner characteristic

curve. The right side matching condition in Eq. (4.25) imposes a constraint that must be

satisfied by the inner and outer characteristic curves. That is
B

' _ = So,(O)fo(xo(O),O)P_(**)fo(Xo(**),o) , o o, o (C3)

where the superscript R is used in Eq. (C3) in recognition of the fact that the outer

characteristic curves are discontinuous at t=0. Noting that f_ and 1o are the same

functions and use of Eq. (C3) together with the matching conditions in Eq. (4.23) imply

that:

Jl OP_,(**)= t'o_(O), Xo(**)=" oXo(o) (c4)
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A similar consideration of the left side matching conditions in Eq's. (4.54) and (4.56) leads

to the conditions:

=

V

Po,(-_) = 'Po,(O), x_(-**) = %(o) (c5)

It can be seen that the inner and outer characteristic curves must also satisfy the MAE

matching conditions of Eq. (2.5). Thus it follows that the Euler solutions from a zeroth

order MAE analysis, as outlined in Section 2, serve as the characteristic curves along which

the quadratures in Eq. (4.59) are performed.
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