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Guidance Law Development for Aeroassisted

Transfer Vehicles Using Matched Asymptotic Expansions

Anthony J. Calise* and Nahum Melamed**
Georgia Institute of Technology, Atlanta, GA 30332

Summary

This report addresses and clarifies a number of issues related to the Matched
Asymptotic Expansion (MAE) analysis of skip trajectories, or any class of problems that
give rise to inner layers that are not associated directly with satisfying boundary conditions.
The procedure for matching inner and outer solutions, and using the composite solution to
satisfy boundary conditions is developed and rigorously followed to obtain a set of
algebraic equations for the problem of inclination change with minimum energy loss.

A detailed evaluation of the zeroth order guidance algorithm for aeroassisted orbit
transfer is performed. It is shown that by exploiting the structure of the MAE solution
procedure, the original problem, which requires the solution of a set of 20 implicit algebraic
equations, can be reduced to a problem of 6 implicit equations in 6 unknowns. A solution
that is near optimal, requires a minimum of computation, and thus can be implemented in
real time and on-board the vehicle, has been obtained. Guidance law implementation
entails treating the current state as a new initial state and repetitively solving the zeroth order
MAE problem to obtain the feedback controls.

Finally, a general procedure is developed for constructing a MAE solution up to
first order, of the Hamilton-Jacobi-Bellman equation based on the method of
characteristics. The development is valid for a class of perturbation problems whose
solution exhibits two-time-scale behavior. A regular expansion for problems of this type is
shown to be inappropriate since it is not valid over a narrow range of the independent
variable. That is, it is not uniformly valid. Of particular interest here is the manner in
which matching and boundary conditions are enforced when the expansion is carried out to

* Professor, School of Aerospace Engineering.
** Graduate Research Assistant.



first order. Two cases are distinguished - one where the left boundary condition coincides
with, or lies to the right of, the singular region, and another one where the left boundary
condition lies to the left of the singular region. A simple example is used to illustrate the
procedure where the obtained solution is uniformly valid to O(g2). The potential
application of this procedure to aeroassisted plane change is also described and partially
evaluated.
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Section 1

Introduction

1.1 Foreword

Acroassisted transfer problems concern the optimal maneuver of a space vehicle
operating in vacuum around a planet with occasional passage through its atmosphere. As
a rule, aerodynamic force is a dissipative force which has the effect of decreasing the
vehicle's total energy. However, in terms of the fuel consumption, an aerodynamic
maneuver can be inserted to achieve a transfer of the vehicle from an initial orbit to a
destination orbit advantageously, compared to a purely propulsive exoatmospheric
maneuver. Typical examples are a plane rotation of a space vehicle orbiting about a planet,
and an aerobrake maneuver, in which the vehicle is to be transferred from a highly
energetic hyperbolic orbit to a low energy elliptical or circular orbit, thereby ensuring its
capture by the planet's gravitational field. Aeroassisted transfer problems are characterized
by a maneuver phase in which the motion is dominated by atmospheric forces, and entry
and exit phases where the motion is dominated by gravitational and inertial forces. In
general, propulsive force can be used in any of the phases although in the so called
aeroglide problem, it is not used in the aerodynamic part of the maneuver. The
optimization of problems such as the plane change maneuver consists of guiding the vehicle
using aerodynamic force, while minimizing the energy loss. Propulsive forces are used
only in the exoatmospheric parts to deorbit and to compensate for the energy loss at the end
of the plane change maneuver.

An objective in any guidance study related to aeroassisted orbit transfer vehicles is
the development of solutions that are implementable in real time and on-board the vehicle.
Therefore, solutions that are both near optimal and that require a minimum of computation
are of primary interest. The ideal solution from a computational point of view, is the one
which reduces the solution of the governing differential equations to a set of algebraic
equations, thus eliminating the need for multiple shooting or quadrature. This solution
constitutes the basis for the optimal guidance algorithm.



1.2 Relationship to Earlier Results

An extensive survey paper presented by Mease! gives the current status on the
optimization of aeroassisted orbit transfer trajectories. In view of low cost transportation
being a key to the utilization and exploration of space, important issues such as payload
mass delivery capability and | acrodynamic heating considerations are discussed.
Acroassisted transfer trajectories give rise to a difficult optimization problem from a
guidance point of view. In general, numerical methods are required for an exact solution
although approximation methods can be employed to obtain analytic solutions, or to reduce
the solution to a quadrature.

1.2.1 Numerical Optimization

Examples of numerical solutions to optimal aeroassisted orbit transfer problems
may be found in Ref.'s. 2-6, and in earlier works cited in these references. In Ref.’s. 2-5
a family of problems were studied in the context of optimal aeroassisted orbit transfer,
including the minimization of the time integral of the flight path angle squared. The
solution to this latter problem results in nearly grazing trajectories that take place in an
altitude range where viscous effects are expected. It is shown that the nearly grazing
solution is a useful engineering compromise between energy requirements and aerodynamic
heating requirements. Optimization subject to a hard constraint on heating rate was

considered in Ref. 6, by reformulation as a parameter optimization problem.
1.2.2 Analytical Studies
Approximation methods can be employed to obtain analytic solutions, or to reduce

the solution toa quadrature Howcver it is difficult to precisely satisfy terminal constraints
ansfers is that the
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Ref.'s. 7-11 typify the studies that have been performed on the problem of optimal
aeroassisted orbit plane change, and that are directed towards obtaining analytical results.
The authors of Ref.'s. 7-9 are able to integrate the state and costate equations by assuming
that a quantity, known as Loh's term, M(h,V), is constant over the trajectory. M(h,V)
represents the sum of gravitational and inertial forces, and is nearly zero for the entry phase
of the maneuver, but unfortunately dndérgoes a rapid variation during the exit phase. In
Ref. 10 a regular perturbation method is used, in which the perturbation parameter is
identified as the ratio of the atmospheric scale height to the planet radius, and solutions are
presented up to the first order in the perturbation parameter. The solution approach
requires that quadratures be performed at each control update for the first order correction,
essential to account for variations in M near the end of the trajectory. The approach applied
in Ref. 11 is similar to that given in Ref. 10 except for the use of an alternate independent
variable. Unfortunately, large control effort can be observed near the end of the trajectory
to satisfy terminal constraints. The interesting feature in Ref.'s. 10 and 11 is that the zeroth
order solution corresponds to the constant M approximation in Ref.'s. 7-9, for which
complete analytic results are available.

1.2.3 MAE Studies

In Ref.'s. 12 and 13, a MAE analysis is performed in which the perturbation
parameter is the same as that used in Ref. 10. In Ref. 12 the expressions for the matching
conditions are simplified over those obtained in earlier studies by using the inner solution
alone to satisfy initial conditions. In Ref. 13 the state equations are integrated under the
assumption of constant controls, and the expressions for the matching conditions are
simplified by using the outer solution to satisfy initial conditions. The matching procedure
taken in Ref. 12 is used to obtain an optimal lift control solution of an atmospheric entry
problem, and in Ref. 13 to approximate an atmospheric skip trajectory for fixed controls.
However, these approximate matching approaches are not recommended here for guidance
law development since they are valid only when the initial condition lies either far outside
or well inside the atmosphere.

Singular perturbation methods for re-entry and aeroassisted transfer trajectories
have, in more recent times, been explored in Ref.'s. 14-18. Ref.'s. 14-16 consider the re-
entry problem. In Ref. 14 a singular perturbation parameter is artificially introduced on the



left hand sides of the altitude and flight path angle equations of motion. Several analytical
guidance algorithms are derived for re-entry and evaluated by comparison to numerically
obtained optimal solutions. While this approach appears useful for re-entry problems, it
does not yield a satisfactory solution for aeroassisted transfer problems, because the
boundary layer dynamics associated with satisfying the terminal constraints, is intractable.
A suboptimal guidance algorithm is derived and evaluated in Ref. 15, which can be used in
conjunction with the re-entry solutions in Ref. 14 to satisfy terminal constraints associated
with aeroassisted transfer problems. In Ref. 16, a MAE analysis is performed in which the
perturbation parameter is the same as that used in Ref. 10. The state equations are
integrated under the assumption of constant controls, and the expressions for the matching
conditions are simplified over those obtained in earlier studies by using the outer solution
alone to satisfy initial conditions. Again, this approach is not recommended here for
guidance law development, since it can only be used as an approximation when the initial
condition lies far outside the atmosphere.

Aeroassisted transfer problems are characterized by a maneuver phase, in which the
motion is dominated by atmospheric forces, and entry and exit phases, where the motion is
dominated by gravitational and inertial forces. The method of Matched Asymptotic
Expansion (MAE) analysis is a mathematical realization of this intuitive description, and it
is fundamentally different from re-entry problems in that the boundary conditions are given
outside the region of singularity where the inner layer occurs. This type of problem gives
rise to inner layers (regions where state and control variables can exhibit rapid variation)
that correspond to intervals where the maneuver is dominated by aerodynamic forces.
Thus the inner solution is associated with the aeroassisted portion of the maneuver.

The application of MAE to aeroassisted transfer trajectories has been addressed in
Ref.'s. 17 and 18. In Ref. 17, a general optimization problem is considered, and analytical
results for the costate equations are presented. The problem is reduced to a set of constants
of integration which are to be used to satisfy wansversality conditions. Unfortunately,
since the transversality conditions involve both states and costates, and since the state
equations are not tractable in the inner layer, a multiple shooting method would have to be
used to determine these parameters. Ref. 18 considers the development of an atmospheric
guidance law for planar skip trajectories in which the controls are treated as constants to be
updated at each guidance computation. This reference also identifies several
inconsistencies that were encountered in the analysis, which are a consequence of an
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incorrect approach in the application of MAE present both in Rcf S. 17 and 18, and in

earlier references taken from these papers.

1.24 MAE Analysis of the HJB Equation

In Ref. 11 a regular perturbation analysis was performed for the aeroassisted
inclination change problem and guided solutions were obtained in which the control
solution was corrected to first order by regular expansion of the Hamilton-Jacobi-Bellman
(HJB) equation. This work is similar to the results reported in Ref. 10, wherein the
procedure was originally developed. The expansion entails quadrature along a
characteristic curve, which is defined by the zeroth order Euler solution for the same
problem. The quadrature must be repeated at each update of the control solution. A
significant feature identified in this report is that the zeroth order solution from the regular
expansion in Ref. 11 corresponds the zeroth order jnner solution of the MAE formulation
(but with modified boundary conditions), and that the zeroth order MAE composite
solution represents a significant improvement over the zeroth order solution of Ref. 11.
This can be explained by the fact that the effect of gravitational and inertial forces are
accounted for in the zeroth order MAE problem, whereas they are not in the zeroth order
regular expansion solution where Loh's term is modeled as zero. The variations in this
term are accounted for in the zeroth order guter problem of the MAE formulation. Of
particular interest in this report is the manner in which matching and boundary conditions
are enforced when the expansion of the HJB equation is carried out to first order. This is
significantly more complex than for the case of regular expansion in Ref.'s. 10 and 11. In
this report a general procedure for constructing a matched asymptonc expansion of the HIB
equation, based on the method of characteristics, is dcve]opcd for the first time.

In Ref. 22, a uniformly valid power series solution to the HIB equation was
obtained for a class of nonlinear, singularly perturbed systems, in which a small parameter
appears on the left hand side of the equations of motion. The dynamics for this type of
singular perturbation formulation is composed of slow and fast state variables, and the
process of matching and forming a composition solution is considerably simplified by the
fact that the left and right boundary conditions occur within the regions of singularity. For
this class of singularly perturbed systems the slow and fast variables separately satisfy their
respective boundary conditions in the zeroth order problem. In contrast, the MAE



formulation treated here is characterized by the fact that at any instant in the trajectory, the
left boundary condition (which is the current state of the vehicle) may occur either to the
left, within, or to the right of the region of singularity. For the problem of aeroassisted
plane-change, this region reduces to a single point, corresponding to the lowest altitude
point, in the limit as the perturbation parameter approaches zero. Moreover, it is not
possible to identify separate slow and fast variables. For this class of systems, the problem
is singularly perturbed due to the explicit dependence that the dynamics has on both t and
t/e on the right hand side of the equations of motion, where t is the independent variable
and € is the perturbation parameter. In the aeroassisted plane-change problem this
parameter is closely approximated by the ratio of the atmospheric scale height to the radius
of the Earth.

1.3 Contributions

This report addresses and clarifies a number of issues related to MAE analysis of
atmospheric skip trajectories, or any class of problems that give rise to inner layers that are
not associated directly with satisfying boundary conditions. A key point that has been
overlooked in previous studies is that the inner solution is crucially involved in satisfying
the boundary conditions as well as the outer solution. Other key issues that are either
lacking, or improperly dealt with, in earlier studies are: (1) the need for left and right outer
solutions, (2) the role that the inner solution plays in joining the discontinuities that occur
between the outer solutions through the matching conditions, and (3) the need to properly
select the reference altitude used in defining the independent variable of integration in the
outer solution. The procedure for matching inner and outer solutions, and using the
composite solution to satisfy boundary conditions, is rigorously followed in developing for
the first time a complete algebraic solution to the problem of inclination change with
minimum energy loss, uniformly valid to O(g). ,

The motivation in the research reported here is that, by its nature, the aeroassisted
transfer problem is better suited to analysis by singular perturbations rather than by regular
perturbation analysis. In fact, it is shown that the regidlia;fﬁﬁéﬁrtfdrrﬁation problem in Ref.'s.
10 and 11 is actually the inner part of a two time scale analysis based on singular
perturbation theory. The interesting feature here is that Loh's term variations are now

accounted for in the zeroth order outer solution (where the motion is Keplerian), for which
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an analytic solution can be obtained. The zeroth order inner solution corresponds to the
solution presented in Ref. 9, but with important differences that pertain to the treatment of
boundary conditions in a MAE approach. Moreover, it is shown that this approach is more
accurate in satisfying terminal constraints than the regular perturbation approach in Ref.'s.
10 and 11.

The consequence of the above results is that the problem has been reduced to a set
of algebraic equations, whose solution forms the basis for a feedback guidance algorithm.
We have developed a zeroth order guidance algorithm, which is based on the MAE method,
and is used to perform a detailed evaluation for the aeroassisted inclination change problem.
Repeated solution of the algebraic equations resulting from the MAE analysis along the
trajectory, treating each current state as an initial state, constitutes a feedback guidance
algorithm.

Finally, a general procedure is developed for constructing a MAE of the HIB
equation based on the method of characteristics. Of particular interest here is the manner in
which matching and boundary conditions are enforced when the expansion is carried out to
first order, and how the characteristic curves are to be determined. It is shown that the
MAE solution to the Euler system of equations associated with the zeroth order MAE
problem provides the characteristic curves for the first order expansion of the HIB
equation. Two cases are distinguished - one where the left boundary condition coincides
with, or lies to the right of, the singular region and another one where the left boundary
condition lies to the left of the singular region. A simple example is used to illustrate the
procedure, where the obtained solution is uniformly valid to O(e2). The procedure's
potential application to aeroassisted plane change is also described and partially evaluated.

Ref.'s. 34-40 are all the publications that have resulted from this research.

1.4 Qutline of the Report

Section 2 gives a general description of our approach in applying MAE to
aeroassisted transfer trajectory analysis, and establishes some notation to be followed
throughout the report. Section 3 uses the approach outlined in Section 2 in analyzing the
orbit transfer problem of inclination change with minimum energy loss in the atmosphere.
The analysis makes use of the problem formulation and analytic results in Ref. 14 for the
outer solution. Then a transformation of variables is made to solve the inner problem,



using the analytical results presented in Ref. 9. This is followed by a description of the
zeroth order MAE solution procedure, which makes use of a unique approach for solving
the resulting algebraic equations. Numerical results are given to evaluate the resulting
solution, which indicate a need for a first order correction. Section 4 gives the procedure
for constructing a matched asymptotic expansion of the HJB equation to first order, based
on the method of characteristics. It is also shown in Section 4 how to determine the
characteristic curves of the expansion for two distinct cases, using a simple example to
illustrate the procedure. This is followed by a detailed description of the procedure's
potential application to aeroassisted plane change. Appendices A-C give details pertaining
to intermediate derivations. 4
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Nomenclature

Integration Constant

Integration Constant

Aerodynamic Coefficient

Lift to Drag Ratio

Gravitational Acceleration

Normalized Altitude - Quter Independent Variable
Hamiltonian

Performance Index

Inner Integration Constants

Mass

Loh's Term

Return Function

Radius from Earth’s Center

Reference Area

Independent Variable, Time
Transformed Velocity - Outer Vanable
Transformed Velocity - Inner Variable
Velocity

Transformed Altitude - Inner Variable
Dependent Variable

Greek Letters

3 ©66 0 O™

Inverse Scale Height

Vertical Control Component
A Small Parameter

Cross Range Angle

Down Range Angle

Stretched Normalized Alttude
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Nomenclature (cont.)

A Q®FE ¥R £

Heading

Flight Path Angle

Normalized Lift Coefficient

Bank Angle

Atmospheric Density

Horizontal Control Component
Independent Variable, Stretched Time

Subscripts

™ O

€ R e n = -

Drag
Final Value

Initial Value

Lift

Radius and Acceleration at Reference Altitude
Partia] Derivative with Respect to u

Partial Derivative with Respect to y

Partial Derivative with Respect to y

Superscripts

o

* o M -

Composite Variable

Inner Variable

Left Side

Outer Variable

Right Side

Corresponds to Maximum Lift to Drag Ratio
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Section 11

Matched Asymptoti’c Expansion
Analysis Procedure

This Section clarifies a number of issues related to the MAE analysis of skip
trajectories, or any class of problems that give rise to inner layers that are not associated
directly with satisfying boundary conditions. In addition, a simple example is presented to
illustrate the procedure.

2.1 Conceptual Layout

In any aeroassisted transfer problem, the vehicle passes through two distinct
regions, in terms of the dominating forces (Fig's. 2.1 and 2.2).

* Transfer ij ectory

Initial Orbit

Atmosphere

Final Orbit

Figure 2.1. Aeroassisted Orbit Transfer
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Gravitational Forces Dominate

Transfer
Traj ec tor/'

Aerodynamic Forces
Dominate

Figure 2.2. Typical Skip Trajectory

In the high altitude (outer) region, gravitational and inertial forces dominate, and the
motion can be approximated as Keplerian, with the atmospheric effect considered as a
perturbation. The low altitude (inner) region is dominated by aerodynamic forces, with the
gravitational and the inertial effects considered as perturbations. It is crucial to note that the
initial (approaching) and final (retreating) parts of the transfer trajectory are distinctly
different in their trajectory parameters (when approximated as Keplerian arcs) as a
consequence of what occurs in the aerodynamically dominated region.

The method of MAE can be used as a mathematical realization of the above intuitive
description26-27, It decomposes the total problem into two simpler subproblems (known as
the inner and outer problé}ns); which are appropriate for the ;c;é.ratc regions of the total
trajectory. The process of matching the solutions of these subproblems, and forming a
composite solution, accounts for the perturbing effects as well, in a mathematically precise

‘manner. For purposes of guidance law development, the objective is to obtain approximate
analytical solutions in the outer and inner regions separately, and then to combine them to
form a composite solution which is uniformly valid for the entire maneuver.

To elaborate on this idea, consider the system of equations

de/dt = f(x, t, t/e, €) 2.1

The function f is assumed analytic with respect to its arguments in the region of interest,
and in addition it is assumed to have the property that ling f(x, t, t/ e, €) exists fort 0.
2
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The problem is singular in that the limit is not defined at t = 0. Conceptually, optimal

~ control problem formulations may appear in this form after eliminating the control using the

optimality condition, so that only state and costate variables appear in the equations of
motion. This results in a two point boundary value problem, with left and right boundary
conditions of the form W[ (x;, tj) = 0 and Wr(x, tf) = 0. Of particular interest here is the
situation where t; <0 < ty.

The solution of Eq. (2.1) is sought in the form of an asymptotic series in €

(L) = x;(1) + ex(r) + €x3() + - (2.2)

which is referred to as the "outer" expansion. The leading term in (2.2) is obtained as the
solution of (2.1) for e=0. However, due to the singularity in f at t = 0, it is not a uniformly
valid O(e) approximation of x(t, €). Note that for the situation t; < 0 < tf, two outer
expansions are required, one for t < 0, and one for t > 0.

Only zeroth order solutions are used in the analysis that follows in Chapters 2 and
3, and to distinguish between the left and right zeroth order outer solutions, they are
denoted by “x;(¢) and "x;(t), where the superscript o denotes outer, the subscript 0
denotes zeroth order, and the superscripts L and R distinguish the left and right solutions.
These solution segments are illustrated in Fig. 2.3, where it is important to note that in
general there is a discontinuity at t=0.

Figure 2.3. Dlustration of Outer, Inner and Composite Solutions
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To examine the solution in the neighborhood of t = 0, Eq. (2.1) is expressed in
terms of a stretched independent variable T = t/¢

de/dt = &f(x, €1, T, €) 2.3)
The solution of Eq. (2.3) is sought in the form of an asymptotic series in €
x(1.e) = xi/(T) + &x)(1T) + (1) + - (2.4)

which is referred to as the "inner” expansion. Again, only the leading term in Eq. (2.4) is
considered in this Chapter and in Chapter 3.

Matching the inner solution to the outer solution is performed separately for the left
and right parts of the outer solution. To zeroth order in g, this is accomplished by

enforcing the following relationships:
Xo(=2) ='x5(0),  Xo() ="x5(0) | 2.5)

where x}(~e°), 'x3(0), x;(e) and *x;(0) are obtained by taking appropriate limits in their
respective arguments T and t. The consequence of Eq. (2.5) on the limit behavior of x;(7)
is illustrated in Fig. 2.3, where the solution is shown superimposed with x;(¢) in terms of
the original independent variable, t. The limit values in Eq. (2.5) also define the common
parts of the inner and outer zeroth order solutions.

At this stage a uniformly valid composite approximation can be constructed by the
method of-gaauigv;;m;bsiﬁdg. “The 'adaiii_\}e%é;m;)‘osition is obtained byiaEng the sum of
the outer and inner solutions and subtracting the common part. In the left part of the
trajectory, the composite solution is given by:

‘xS(hE) ="x5(t) + x(t/€) —"x5(0), t<0 (2.6)

and in the right part:
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"xi(ne) =) + xi(t/e) —"x5(0), t>0 Q.7
From Eq's. (2.6) and (2.7) it is seen that at t=0 the composite solution takes the form:
'x5(0;) ="x(0;€) = x(0) (2.8)

Thus the composite solution is continuous at t=0.

From the above discussion it is apparent that the inner solution (and the subsequent
matching and forming of the composite solution) can be viewed as a process whereby the
discontinuity between “x;(¢) and "x;(¢) at t=0 is taken into account. In a skip trajectory,
this discontinuity is caused by the change that occurs in the trajectory parameters during the
osculating atmospheric portion of the maneuver. This point was not realized for example in
Ref. 17 where a single outer solution was defined. The resulting composite solution is
illustrated by the continuous bold line in Fig. 2.3.

From Fig. 2.3 it is also apparent that the composite solution must be used to satisfy
the boundary conditions. In Ref.’s. 16-18 only the outer solution was used to satisfy the
boundary conditions at t=tj. In general, the contribution that x,(¢z/€) makes to the
boundary conditions depends on t; and tr. When the boundary conditions are far away
from the region of influence of the inner solution, this contribution may be small.
However, in an optimization problem it is well known that solutions exhibit large
sensitivity to the boundary values of the costate variables. Also, in the context of
developing a guidance algorithm, the initial condition should always be viewed as
occurring anywhere along the trajectory. In Ref. 18 use of the outer solution alone to
satisfy initial conditions led to discrepancies in the matching conditions which could not be
completely resolved.

In the analysis that follows, the convention of using

t=h=(-=-r)r (2.9)

is adopted, where 15 is a reference radius. While h is not monotonic, it is apparent from
Fig. 2.3 that this presents no conceptual difficulty in the outer solution, since separate
constants of integration are defined for entry and exit. It is however important to transform
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to a monotonic independent variable when integrating the inner dynamics. For this reason
the transformation used in Ref. 9 is employed. The left and right composite solutions in
Eq's. (2.6) and (2.7) are then distinguished by the sign of the flight path angle.

Note that it is immediately obvious from Fig. 2.3 that t=h=0 corresponds to rg =
T'min, Where I'npjp is the minimum radius over the trajectory. Thus it is essential to use the
condition

7,(0;€) = 7,(0) = 0 (2.10)

to determine rg, in contrast to the arbitrary selections made in Ref.’s. 17 and 18.

The approach followed in the next chapter is first to express the inner and outer
solutions in terms of constants of integration. The constants of integration for the left outer
solution will be viewed as the variables used to ultimately satisfy the left and right
boundary conditions. The constants of integration for the inner solution will be viewed as
unknowns to be determined in terms of the left outer solution constants, using the left
matching condition in Eq. (2.5). The constants of integration for the right outer solution
are in turn evaluated in terms of the inner solution constants, using the right matching
condition in Eq. (2.5). Finally, the following relationship, which holds when the jth
component of x is constant in the outer solution, is to be noted

X5, (t:€) = xo,(t]€) ' (2.1

and the following relationship which holds when the jth component of x is constant in the
inner solution

x,(he) = x3,@) (2.12)

which follows directly from Eq's. (2.6) and (2.7). These relationships are used several
times in the analysis that follows.



(

C

4

17
2.2 A Simple Example
2.2.1 Problem Formulation
The exact dynamic is given by the following equation
X =x+ u'"/¢g, x(t,) given, t, =1, lulsl (2.13)

where X is a scalar state variable and u is the control. Find a control u to maximize the
performance index J=xs. Using the maximum principle to evaluate the optimal control
yields u%Pl=1 and the exact solutions of the state and costate are:

x(tx(e),) = [(1+e)x(t)e™ + &7 = <}/ (1+¢€) 2.14)

Alx@)t) = & (2.15)

2.2.2 Outer Solution

The zeroth order outer dynamic is obtained by taking the limit € — 0 in Eq. (2.12)
dl/dt = x (2.16)

It is clear that this limit is not defined when t=0(e). This is precisely what makes this
problem singularly perturbed and it should not be expected that the zeroth order outer
solution alone will be a zeroth order uniformly valid approximation in t in the entire domain
of interest. Specifically, it is not valid in the sub-region where t=0(¢). We will elaborate
on this more in Section 4.

The zeroth order outer Hamiltonian is defined as

HS = Agxg 2.17)

and the zeroth order outer costate equation is given by
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A /dt = —9H /xS = — A | 2.18)

Eq's. (2.16) and (2.18) can be integrated to obtain the zeroth order outer solution:

) = ae | | 2.19)

A2(6) = be™ (2.20)

where a and b are integration constants.

2.2.3 Inner Solution

In the inner problem a new stretched independent variable is defined as

T =1t/¢e (2.21)
and the inner exact dynamics is obtained by using Eq. (2.21) in Eq. (2.13)

di'/dt = ex' + &7 (2.22)
The zeroth order inner dynamics is obtained by taking the limit € -0 in Eq. (2.22)

dx)/dt = €F (2.23)
It is clear that Eq. (2.23) is not a zeroth order uniformly valid approximation in 7 to the
exact dynamics in Eq. (2.22), because the exact dynamics is unstable, whereas the zeroth
order dynamics is stable. Hence, for large 1, the zeroth order inner solution is not a valid

approximation to the exact solution.
The zeroth order inner Hamiltonian is defined as

H = Ale™™ | (2.24)
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~ and the zeroth order inner costate equation is given by
dA,/dt = -90H;/ox) = 0 (2.25)
Eq's. (2.23) and (2.25) can be integrated to give the zeroth order inner solution:
x(1) = -e"+ ¢ (2.26)
Ay(t) = d (2.27)

where c and d are integration constants.

2.2.4 Zeroth Order Matching Condition

The first step to remove the non uniformity from the zeroth order solution is to
carry out the process of the matching the outer and inner solutions. To zeroth order the
matching conditions entails equating the outer solution evaluated at small t (t=0) with the
inner solution evaluated at large T (T — oo):

Xo(e0) = ¢ (2.28)

Q
l

x,(0)

b = A30) = Aj() = d (2.29)

2.2.5 Zeroth Order Composite Solution

The composite solution is constructed by the method of additive composition by
taking the sum of the outer and inner solutions and subtracting the common part.

xS = x50 + x2(t/€) — x2(0) (2.30)

A5 = A50) + A3/ €) - A(0) 2.31)
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Making use of Eq's. (2.19),( 2.20) and (2.26- 2.29) in Eq's. (2.30) and (2.31) results in:

x;(t) = ae' - €7'"* (2.32)

Ag(t) = be™ (2.33)

2.2.6 Boundary Conditions

The composite solution is uniformly valid to zeroth order, hence it is used to
enforce the boundary conditions. The initial condition on the state x is given in Eq. (2.13).
Using it in Eq. (2.32) evaluated at t; and solving for a yields

a = e"[x(t) + "] (2.34)

Using this in Eq. (3.32) the zeroth order composite solution for the state variable becomes

xg(r;x('t,),t,j) = ¢ "[x(r) + e";';j;" - ' (2.35)

The boundary condition on the costate is found from the definition of the performance
index, defined as J=xp, as

be' = A5(1) = aJ/3x, = | (2.36)

Solving for b and using it in Eq. (2.33), the zeroth order composite solution for A becomes
Astx(e)t) = € 2.37)

Note that since the zeroth order inner costate solution is constant, the composite solution is

equal to the outer solution, and in this example it also equals the exact solution in Eq.
(2.15).

The individual zeroth order outer and inner solutions are:
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Xo(Ex@)t) = [x(t) + e/ (2.38)
2(t:x(t)e) = & (2.39)
X (Tx(t)t) = —¢ + [x(t,) + e ") (2.40)
A(Tx(t)t) = e (2.41)

Note that neither the inner or the outer zeroth order solutions for x, nor the inner zeroth
order solution for A, are uniformly valid zeroth order approximations to the exact solution.
For the costate this is obvious since the outer solution in Eq. (2.39), which is also the
composite solution, is equal to the exact solution in Eq. (2.15). The inner solution for A in
Eq. (2.41) is a zeroth order approximation to the exact solution only for the sub-region
t=0(¢). To show that the composite solution for x is a zeroth order uniformly valid
approximation to the exact solution in Eq. (2.14), € is set to zero in Eq. (2.14) to get the

zeroth order term in the expansion of the exact solution

imlx(x( )] = e x() + e’ — e (2.42)

which is precisely the zeroth order composite solution for x given in Eq. (2.35).

2.2.7 Location of the Initial Condition

The singularity in this example is located at t=0. Fig 2.4 gives the solution for the
state x in the case £=0.1, t;=0 and x(t;)=0 that is, the initial condition is given at the
singularity. Eq. (2.30) indicates that at t=0 the composite solution equals the inner
solution. Hence the inner solution and the composite solution, but not the outer solution,
satisfy the initial condition as is apparent in Fig. 2.4. It is also apparent that only the
composite solution is a uniformly valid approximation to the exact solution and that the
matching condition is satisfied.

In realistic situations the initial conditions, or the boundary conditions, do not in
general occur at the singularity (see the discussion after Eq. (2.8)). Fig 2.5 gives the
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solution for the state x in the case £=0.1, t;=0.2 and x(t;)=0.5, that is the initial condition
and the singularity do not coincide. Itis evident that neither the inner solution nor the outer
solution satisfy the initial condition. The composite solution does satisfy the initial
condition and it is the only solution that uniformly approximates the exact solution, as
before. Also note that the region of singularity is best approximated by the inner solution
alone, as before. This situation basically represents either the left or the right side in Fig.
2.3 for aeroassisted maneuvers. It clarifies why two sets of matching condition are needed
in aeroassisted maneuvers, and the role that the inner solution plays in joining the
discontinuity of the outer solution to give a continuos composite solution at the singularity.

2 — :
o Composite /'

1.5 _: Quter \ P q 3

A X p

- / A -

1 s ’%// Exact
N 7\ 5
0.5-f O S, 3

C Inner n

ot N
-0.5-f ]

-0.1 o) 0.1 0.2 03 04 0.5 0.6
t

Figure 2.4 Exact, Composite, Outer and Inner State Solutions
for initial Condition x(0.0)=0.0

e
9

1
1.5 ul 1 -y
. Outer 3
1 - H o
s — ]

0.5

x  Exact .
o 9 \ e
s \ -
o ! Inner :
-0.5 n Composite .

-1 =

)
e
ot
e
~!

0 0.1 02 03 04 05 0.6
1

Figure 2.5 Exact, Composite, Outer and Inner State - .
Solutions for initial Condition x(0.2)=0.5



¢

¢

¢

¢

23

Section III

Inclination Change With Minimum Energy Loss

In this Section the procedure for matching inner and outer solutions, and using the
zero order composite solution to satisfy boundary conditions is rigorously followed in
developing a complete algebraic solution to the problem of inclination change with
minimum energy loss. Repeated solution of these algebraic equations along the trajectory,
treating each current state as an initial state, constitutes a zero order feedback guidance
algorithm.

3.1 Problem Formulation

The three dimensional point mass equations of motion for a lifting vehicle over a
spherical non-rotating planet are given by: :

dr/dt = Vsiny (3.1)
d@/dt = Vcosycosy/rcos¢ (3.2)
d¢/dt = Vcosysiny/r 3.3)
dv/dt = —psC,V*/2m — gsiny (3.4)
Vdy/dt = psC Vicosp/2m — (g — V*/r)cosy (3.5)
Vdy/dt = psCvasinuIchosy - V2cosycosl//tan¢/r (3.6)
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where the coordinates system is defined in Fig. 3.1

Figure 3.1. Coordinate Systems

A Newtonian gravitational field has the form

gr) = gri/r (3.7)

where the subscript s denotes a reference radius, defined to be the minimum trajectory
radius. An exponential atmosphere model is used:

pir) = pe?™, B =1/H, (3.8)

where H is the scale height. The lift and drag coefficients are assumed to be of the form

(

q
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*

c, = C'a (3.9)

C, = Co(l + A%)/2 (3.10)

- where the constants C{ and Cp, are the lift and drag coefficients corresponding to the
maximum lift to drag ratio, and A is the normalized lift coefficient.

Defining the following dimensionless quantities:

h=(-r)lr, G.11) -
u=Vigr (3.12)
B = C.ps/2mB (3.13)
E'=cl/cC, (3.14)

€ =1/fr, = H/r

(3.15)

and using h instead of t as the independent variable, the state equations can be written as

follows:
d@/dh = cosycoty/(l + h)cos¢ (3.16)
d¢/dh = sinycoty/(l + h) (3.17)
du/dh = -Bu(l + A’)e'”‘/eE*siny- 2/(0 + h)? (3.18)
dy/dh = BAcosue™* /esiny + [1/(1 + h) = 1/u(l + h)*Jcoty (3.19)

dy/dh = BAsinue "¢ [gsinycosy — cosytangcoty/(1 + k) (3.20)
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The objective is to achieve an inclination change with minimum fuel consumption.
In Ref. 7 it is shown that for short duration maneuvers, the change in the cross range angle
¢ is small, and the change in inclination is closely approximated by the change in the
heading. Moreover, fuel consumption is nearly minimized by minimizing the energy loss
in the atmospheric phase of the maneuver. Furthermore, in Ref. 19 it is shown that
although the actual inclination change depends on the initial inclination, the starting point of
the maneuver can be timed so as to obtain the maximum inclination change that is achieved
when the initial inclination is zero. A consequence of this result is that the initial plane can
be taken as the plane of reference, which will be refered to as the equatorial plane. Under
these assumptions, 8(0) and ¢(0) can be set to zero without loss of generality, and the
heading angle vy is used to approximate the change in the inclination angle. Thus© and ¢

become ignorable coordinates, and the equations of motion reduce to:

dufdh = —Bu(l + A%)e™ JeE siny — 2/(1 + k) (3.21)
dy/dh = BAcosue™® [esiny + [1/(1 + h) = 1/u(l + h)’lcoty (3.22)
dy/dh = BAsinpe™* [esinycosy (3.23)

The parameter € is the ratio of the atmospheric scale height to the minimum trajectory
radius. In general, rg is nearly equal to the planet's radius, and, for the purpose of
calculating € to form the composite solution, it will be treated as such. For Earth, the value
of € is of order 10-3. The controls are the normalized lift coefficient A and the bank angle
H.

Using the definition of u given in Eq. (3.12), the objective of minimizing energy

Toss can be equivalently cX;iressed as:

max{J}, J =y (3.24)
The Hamiltonian function associated with the state Eq's. (3.21-3.23) has the form:

H= [-Bu(l + A)e™/€E siny -~ 2/(1 + h%IP,

4
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+{BAcosue™* [esiny + [1/(1 + k) — 1/u(l + h)*Jcoty}P,
+ [BAsinpe™ [ esin ycos 1P, (3.25)

where py, py and py are the associated costate variables. Assuming the controls A and p

are not beyond their limits, their optimal values are obtained as a function of the state and
costate variables by solving the optimality conditions Hy=0 and H,=0. The resulting

expressions are:

A = E'(P,cosp + P,siny/cosy)/2uP, (3.26)

tanpy = P, /P, cosy (3.27)

3.2 Zero Order Quter Solutionl7

The zero order equations for the outer problem can be obtained by simply taking the
limit as € approaches zero on the right hand side of Eq's. (3.21-3.23):

dul/dh = =2/(1 + hy (3.28)
dy:/dh = [1/(1 + k) = 1/ul(l + h)*lcoty (3.29)
dy:/dh = 0 (3.30)

The general solution for the outer system to zero order in € is given by:

U (h) = 2[c, + 1/(1 + h)) 3.31)
cosy,(h) = ¢, /(1 + h)JuS(h) (3.32)
Vo(h) = ¢, (3.33)
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where ¢y, €2 and c3 are constants of integration. The adjoint equations are given by:

dP,/dh = —H, (3.34)

where x is any of the state variables. In the outer region these equations to zero order in €
are:

dP,, /dh = - P} cotys /[u;(1 + R)P (3.35)
dPy,/dh = Py[1/(1 + k) = 1/u3(1 + h)’1/sin’y; (3.36)
dPy, /dh = 0 ' (3.37)

The solution to this system using Eq's. (3.31-3.33) is:

Po(h) = —a, /265 + g, (3.38)
P5y(h) = a,tany; (3.39)
Poo(h) = a, (3.40)

where a; ay and a3 are constants of integration. Eq's. (3.31-3.33) provide the exact
solution in the outer region and are the integrals of Keplerian motion that express
conservation of energy and conservation of angular momentum.

3.3 Zero Order Inner Solution?

In the inner region, where the aerodynamic force is dominant, a new stretched
altitude is defined as:

4
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n = h/¢e (3.41)

However, in order to integrate the inner layer equations the transformations used in Ref. 9
are also adopted. These have the additional feature of transforming the independent
variable from 1 to a monotonic independent variable, y. Analytic solution also requires a
small flight path angle approximation.

cosy =1, siny=y (3.42)
The following transformations are defined20:

w = Be" (3.43)

v = E In(l/ gru) (3.44)

The controls are also transformed to vertical and horizontal components:

™
]

Acosu (3.45)

o = Asiny (3.46)

Invoking the above transformations, Eq's. (3.21-3.23) become:

dy/dy = [6 + eM(¢)]/ o (3.47)
aw/dy = -y/o (3.48)
av/idy =[1+ 6 + o + eG(e))/ o (3.49)
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where eM(€) is Loh's term which accounts for the gravitational and inertial effects on the

motion.
M) = {1 - e“’E'g,r‘/[I + eln(B/w)}/ W[l + €ln(B/w)] (3.50)

and

G(e) = ¢EgrE sin2y/wll + £ln(B/w)f G.51)

The approximations used in Ref. 9 to integrate the state and costate equations were
that eM(€) is constant over the trajectory, and that the term €G(g) is negligible. We note
here that setting € = 0 in Eq's. (3.47) and (3.49), to obtain the zero order inner solution,
corresponds to the approximations in Ref. 9 with éM(g) = 0. Actually, €M is nearly zero
during entry but undergoes a sharp variation during the exit phase. This is the main
shortcoming to the approximation in Ref. 9. The interesting feature in this analysis is that
the zero order inner solution corresponds to the M = 0 solution in Ref. 9, but that M
variations are accounted for in the outer solution. It should also be pointed out that while
the integrated solution bears a close resemblance to that in Ref. 9, it is totally different in
the method of evaluating the constants of integration.

The transformed zero order state equations in the inner region will be obtained by
letting €=0 in Eq's. (3.47) and (3.49). The zero order state equations for y, and v,

become:

dy./dy, = &/¢ (3.52)

& /dyl =1+ 8 + d’}/o (3.53)

Using Eq. (3.44), the performance index Eq. (3.24), expressed in the transformed
variables, takes the form:

max{J}, )} = e Jgr, (3.54)
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Note that uf in Eq. (3.24) and vf in Eq. (3.54) represent the ;:o»mpositc solution of the
transformed final velocity to zero order, and not the inner or outer solutions alone. The
zero order Hamiltonian function in the inner region is given by:

H, = P, 6/0c- P Y /o+ P,(1+ & + o))/o (3.55)

and is constant since it does not depend on the independent variable y;. The control
functions are obtained from the optimality conditions Hy; = 0 and Hj, = 0. They are

given by:
& = —P /2P, (3.56)
0 = (=Piy' =P [4P})/ P}, + 1 (3.57)

The corresponding transformed zero order costate equations in the inner region are obtained
using Eq. (3.34):

dpP, /dy, = P, /o (3.58)
dp,, /dy, = 0 (3.59)
dP,, /dy, = 0 (3.60)

In Appendix A it is shown that H, = 20P!,, and a consequence of this result and Eq.
(3.60) is that G is constant too.

At this stage the state Eq's. (3.48,3.52,3.53) and the costate Eq's. (3.58-3.60) can
be integrated with respect to y/; to result in:

ve(wi) = ki 12+ kvl + k 3.61)
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wa(Ws) = Ty, /6 = kWl /2 - kyb+ kl/o (3.62)
v(Wy) = (0 + 1/ o)y, + ol(yik~k)1/3k + k (3.63)

and:

Po,(wy) = (P, /Oy + ¢ (3.64)
P}, = constant (3.65)
P;, = constant (3.66)

where k3, k4, ks and c, P,,, P}, are the constants of integration of the state and costate
equations respectively. The constants k; and k, are defined in terms of these constants as;

k = P, /20°P;, k, = —c/20P;, (3.67)

3.4 Matching Conditions

The method of additive composition (as described in Section 2), is used to combine
the zero order inner and outer solutions into a single, uniformly valid approximation. The
additive composition is obtained by taking the sum of the solutions in the different regions
and subtracting the common part. Matching implies agreement between the outer solution
for small values of h (h—0), and the inner solution for large values of 1 (17 = ). Since
the inner solution lies between two discontinuous outer solutions, matching is done

separately in the left and right parts of the transfer trajectory, and two sets of matching
conditions result. Each set of conditions involves matching of both the state and costate
variables.
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3.4.1 State Matching Conditions

The solution for the states in the outer region is given by Eq's. (3.31-3.33).
Taking the limit h—( yields:

w2 (0) = 2(ct + 1) (3.68)
cos[*y2(0)] = ct/[2(c + DI (3.69)
‘Yo(0) = G.70)

where superscript L denotes the constants of integration for the left outer solution.
The solutions for the transformed inner variables are expressed with v, as the

independent variable. Conceptually, it is possible to perform an inverse transformation to
express the inner solution in the original variables with 7 as the independent variable.

However, the inverse transformation can be bypassed by first recognizing from Eq's.
(3.43, 3.44) that

Yi(eo) = E'In[l1/gr,'ui(=)] = E'In[l1/2gr.(c} + 1)] (3.72)

where the second relationship in Eq. (3.72) follows from Eq. (3.68) and enforcement of
the matching condition 'S (0) = ‘“u(ec). Applying the matching condition to ¥; and v/,

gives:
yi(ee) ='¥5(0) = cos”'(c} /[2(c} + 1)]'?) (3.73)

W) ="¥5(0) = ¢ (3.74)

Using Eq's. (3.71-3.74) to evaluate Eq's. (3.61-3.63) at 7 = eo yields:
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cos™{c; /[2(c; + DI} = —kci? /2 + kb + &, (3.75)
0 = kc’/6 — kct? /2 — ket + &k, (3.76)

E'In[1/2gr,(c} + D] = (0 + 1/0)ct + olck—k))/3% + k,  (3.77)

Eq's. (3.75-3.77) can be used to evaluate k;, k, and ks in terms of the constants of
integration for the state variables in the left side outer solution. Recall that k, and k, have
been defined in Eq. (3.67).

An exactly symmetric set of equations results from the matching conditions for the
state variables on the right side:

cos™{c; /[2(c] + DI’} = —keP2 /2 + kb + &, (3.78)
0 = kel’/6 — A /2 = ket + k, (3.79)

E'In[1/2gr,(c} + D] = (0 + 1/0)ct + ol(ck~k,)*1/3k + k,  (3.80)

Eq's. (3.78-3.80) relate ¢/, c; and c; to the constants of integration for the state variables

in the inner solution.

3.4.2 Costate Matching Conditions

The left and right matching conditions for the costate variables are defined below.
The inner solution for the costate variables, corresponding to the transformed state
variables, is given in Eq's. (3.64-3.66) in terms of the constants of integration c, P;,, and
P,,. To perform the matching with the outer costate solutions given in Eq's. (3.38-3.40),
it is necessary to first find the corresponding expressions for P;, and P, for the inner

solution. In effect, this amounts to transforming the inner solution back to the original
problem variables.

4
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The value of any costate variable at time t can be interpreted as the sensitivity of J to
perturbations in the corresponding state variable at time t (Ref. 17). Thus it can be written:

P, = 3J/ou ; P, = 0J/ov (3.81)
From Eq. (3.44) it follows that:

/du = -E"u (3.82)
Combining Eq's. (3.81) and (3.82) it becomes apparent that

P, = Pi@v/ow|, = -E'Pi /4 (3.83)

To determine P;,,

inner problem. Therefore, making use of the Hamilton-Jacobi-Bellman equation!7 results

it is noted that y, is the independent variable in the transformed
in:

P, = dl/dy, = —-H, (3.84)
In Appendix A it is shown that H, = 20P;,, and thus:

Pi, = —20P), (3.85)

Using Eq's. (3.83) and (3.85), the costate matching process is ready to be carried
out. Taking the limit h—( in Eq's. (3.38-3.40) and using Eq's. (3.68-3.70) the left side
matching conditions results:

Po(0) = —a/Hci + 1) + a ="Py, (=) (3.86)

‘P;,(0) = ajtan{cos™ {c; /[2(c] + D)) ="Py, (o) (3.87)
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‘P, 0) = @& ='P}, (=) (3.88)

Taking the limit 77 —> * in Eq's. (3.64, 3.83, 3.85) and making use of Eq's. (3.68, 3.70,
3.74) and of the state matching condition ‘u(0) = Luf)'(oo) leads to:

‘P () = —E'Pi [2(ct + 1) (3.89)
Py, (=) = (P, /0O)c; + ¢ (3.90)
‘P, () = -20P,, (3.91)

Substituting Eq's. (3.89-3.91) in Eq's. (3.86-3.88) yields:

-a; /4(ct + 1)+ af = —EPi /12(cs + 1) (3.92)
a; tan{cos™ {c; /[2(c; + DI'"*)) = (P}, /0)c: + ¢ (3.93)
& = -20P;, (3.94)

Finally, in Appendix A it is shown that o can be written as:
o=1/0+ k + 2kk,)"? (3.95)

Eq's. (3.92-3.94) relate ¢, P;,, and P,, to the constants of integration for the left outer
costate solution.

A precisely symmetrical set of equations results from the matching conditions for
the costate variables on the right side:

~@ /4 + 1)+ @ = —EPiI2(c + 1) (3.96)

|
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a; tan{cos™ {c; /[2(c} + DI*)) = (P}, /o) + ¢ (3.97)
@ = -20P), (3.98)

Eq’s. (3.96-3.98) relate a7, a;, and a} to the constants of integration for the inner costate
solution.

3.5 Zeroth Order Composite Solution

The composite solution is constructed by the method of additive composition as

outlined in Section 2. The form of the composite solution for the state and the costate
variables is:

xG(he) = x§(h) + xbh(h/e) - x§(0) (3.99)

where now € = Hg /T, T is the planet radius (see the comment foUowiﬁé éq. (3.23)) and x
is any of the state or costate variables. The solution for the outer state variables is given in
Eq's. (3.31-3.33) and for the inner state variables in Eq's. (3.61-3.63). The outer left

solution, evaluated at h=0, is glvcn in Eq s. (3.68-3.70). Using Eq. (3.44), the left zeroth
order state composite solution is glvcn by

Us(h,€) = 2/(1 + h) + e™WVE [op _ (3.100)
“Y:(h,€) = cos™{c; /(1 + W2(cs + 1/(1 + )]

+ {=klyo(h/ ) 12 + kyi(h/€) + k)

— cos™{c; /[2(ct + DI'?) (3.101)
‘Wo(he) = yo(h/E€) (3.102)

Note that the composite solution for y is simply the inner solution since the outer solution
is constant (see the general comment at the end of Section 2). Since no outer constants of
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integration appear explicitly in the left composite solutions of u and of , the left and right
composite solutions are identical. The right zeroth order composite solution for yis given
by:

‘y;(h.e) = COS"{C;/(I + h)[Z(Cl' + 1/ + h))]m)
+ {~k[y,(h/ /12 + kyy(h/€) + k)
- cos™{c} /12(c} + D)) (3.103)

By Eq. (3.43), w, as a function of h/e is given as:
wi(h/€) = Be™ (3.104)

and Eq. (3.62) is used to solve for y(/ €) in terms of the altitude h and the constants of
integration. Eq. (3.63) is then used to evaluate v)(h/€). Thus Eq's. (3.100-3.103)
together with Eq's. (3.62, 3.63, 3.104), provide the composite solution for the state
variables as a function of h. o o o

The form of the zeroth order composite solution of the costate variables is given in
Eq. (3.99) and it is constructed the same way the composite solution for the states was
obtained. The solution for the outer costate variables is given in Eq's. (3.38-3.40) and for
the inner costate variables in Eq's. (3.64-3.66). The outer left solution evaluated at h=0 is
given in Eq's. (3.86-3.88). Using Eq's. (3.44) and (3.83, 3.85), the left composite
solution is given by:

‘P, (h€) = ~a;/[dc + 1/ + h)]
—PLE [[e™ME Jor]+ ab/4(ct + 1) (3.105)

‘Pg,(h,e) = az‘tan{cos"{c;/(l + h)2”2[c,L + 1/ + B
+ (P, /o)Wi(h/€) + ¢
- a;tan{cos™{c; /2'*[c] + 11'*}) (3.106)

Py, (h€) = da (3.107)
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The values of vi(h/€) and yi(h/é€) are found from Eq's. (3.62, 3.63) and (3.104).
Eq's. (3.40) and (3.85) for P,, show that it is constant in the outer and inner regions.
Hence the composite solution for P, is also constant and is simply the outer costate

constant of integration. On the right side, the composite solution takes the form:

P (hE) = ~a [4ct + 1/(1 + h)]
—PLE [[eMOE fer]+ @ /4 + 1) (3.108)

"P;,(h,€) = ajtan{cos™{c; /(1 + m)2'*[c} + 1/ + h)]'"*}
+ (P, /o)Wi(h/E) + ¢
— ajtan{cos™ {c} /2"*[c} + 1]7*}) (3.109)

lpgv(h,e) - a; (3110)

From Eq's. (3.94) and (3.98) it is seen that a; = aj, thus the zeroth order composite
solution for P, is constant all along the transfer trajectory. Eq's. (3.105-3.110) provide

the zeroth order composite solution for the costate variables as a function of h.

The reference radius, rg, is also treated as an unknown parameter in the problem.
As discussed in Section 2, it is the dlstancc to the lowest pomt of the transfcr trajectory at
which h=0. Usmg the fact that at this pomt the composxte solution for v is zero, provides
the relationship needed to evaluate rs. The composite solution for 7y is given in Eq's.
(3.101) and (3.103). At h=0 it becomes the inner solution evaluated at h=0,

i(0.6) =*7:(0,6) = 75(0) = 0 G.111)

The solution for 7, is given in Eq. (3.61). Equating it to O gives a relationship for the
value of y; corresponding to h=0,

0 = =k (0)’ /2 + kyi(0) + &, (3.112)



and the solution for ;(0) is:

vo0) = k/k[1 £ (1 + 2k, /k;)"] (3.113)
This value of W)(0) is used in Eq. (3.62) to evaluate w} at h=0

wo(0) = [hyo(0Y /6 — kwo(0) /2 - kyi(0) + k1/ o (3.114)
Finally, use of Eq's. (3.114) and (3.13) in Eq. (3.104) for h=0 yields:

wi(0) = C/p,s/2mp (3.115)

from which pg (and thus rg) can be found in terms of the constants of integration of the

problem.

3.6 Enforcing Boundary Conditions

To complete the solution of the problem, the initial conditions and transversality
conditions at the end point must be satisfied. As discussed in Section 2, this is performed
by using the composite solution, and can be thought of as the process by which the
constants of integration for the left outer solution are evaluated.

Assume that the initial conditions u;, y; and y; are given, along with the initial
radius 1;. For the purpose of exposition, assume that ¥;, yr and the final radius r; are given.
The corresponding transversality condition is:

Pi(h) =1 ' (3.116)

where
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h.' = (ri - r:)/r;’ hf = (rf - r‘)/r'

4]

(3.117)

Using u;, ¥i, Vi, Vs, ¥r and Eq. (3.116), the following equations result from enforcing the

boundary conditions:

W= 2/(1+ k) + e NE Jor — 2

Y, = cos{c; /(1 + B2t + 1/ + AN
+ {(=klwvih /Y /2 + kyi(h/€) + k)
- cos”{c; /[2(cr + D]'?)

v. = vyih/e)

v, = vyh/¢€)

1 = =a/4c + 1/ + k)]
—PLE' /e ™ 1]+ a4 + 1)

cos{c; /(1 + h)2(cf + 1/(1 + BT
(~klyo(h /O /2 + kywi(hy [ €) + ki)
cosM (¢} /T2(c} + 1)]'?)

Y

+

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

where h; and hr are defined in Eq. (3.117). To summarize, Eq's. (3.75-3.80, 3.92-3.98,

3.115, 3.118-3.123) constitute a set of 20 equations for the 18 unknown constants of
integration ¢, ¢}, ¢, ks, k. kg, ¢, &3, ¢}, af, &, a;, ¢, Py, Py, a, a;, a;, and

for the parameters G and 1.
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3.7 Zeroth Order MAE Numerical Solution
3.7.1 Solution Procedure

In this section, by exploiting the structure of the MAE solution procedure, it is
shown how to simplify the original problem by further reducing it to a set of 6 implicit
equations in 6 unknowns. The unknowns are the common parts of the inner and outer
solution (which are equal to one another).

The iteration procedure involves repeated solution of the inner and outer problems
using the common parts as artificial boundary conditions. The common parts are adjusted
in the iteration process until the actual boundary conditions are satisfied by the composite
solution. The matching conditions are enforced at each iteration by simply equating the
inner and outer common parts. We also exploit the fact that heading is constant in the outer
solution, which permits enforcement of the actual boundary conditions on heading using
the inner solution alone. This allows enforcement of two of the six boundary conditions at
each iteration, and further reduces the problem to four equations in four unknowns, for
which a Newton method is used to obtain a solution. Representative zeroth order MAE
approximate solutions were calculated to exhibit the resulting inner, outer and composite
solutions.

The vehicle used in this study is the Maneuverable Research Re-entry Vehicle
(MRRYV). Its aerodynamic and mass characteristics are presented in Ref. 24. The
maximum lift to drag ratio is 2.362, the lift coefficient corresponding to (L/D)max is
Cr=.1512, the reference area is s=11.69 m2 and the mass is m=4898.7 kg. The constants
needed for the exponential atmospheric density function are obtained by fitting to the
standard atmosphere densities at 30 and 60 km. The resultmg value of the scale height is
HS-IIB—7625 4dm.

A Newton method was first tried to solve for the 20 unknowns. This approach was
not successful due to the complexity of the relationships. An alternative approach was then
derived wherein the number of coupled equations was reduced to 6 by defining the
unknowns to be the common parts of the separate inner and outer solutions. The equations
that determine these unknowns are the original boundary conditions enforced on the
composite solutions. The basic idea is to first use the common parts as artificial boundary
conditions to evaluate the constants of integration in Eq's. (3.31-3.33, 3.38-3.40) and
(3.61-3.66), starting with an initial guess. Then a Newton method is used to iterate on the
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common parts until the original boundary conditions are satisfied by the composite
solution.

This procedure was slightly modified to capitalize on the structure of the MAE
solution for this problem. Since y; is constant in the outer solution, it follows from Eq.

(3.102) and the matching conditions that y (the zeroth order composite solution for y) is
simply the zeroth order inner solution (). This allows the boundary conditions on y to
be enforced using only the inner solution at each stage of the iteration process. Nested
Newton iteration algorithms where implemented to determine the 6 unknowns using the
boundary conditions for the composite solution. The inner iteration procedure corresponds
to solving the inner problem with the boundary conditions on  enforced. The outer
iteration process is used to enforce the four remaining boundary conditions on the
composite solution.

The first step in the procedure is to calculate the 6 inner solution integration
constants k3, k4, ks, c, P, ,and Py, in Eq's (3.61-3.66) using a guess for the common
part values of 7;, v, on the left and for the common part values of ¥,, P,, on the right
(the constants kj and kp are given in terms of the other constants in Eq. (3.67)). Note that
an initial guess for the common parts of w; is not needed since the common part
corresponds to 17 — e, Hence it follows from Eq. (3.43) that the common part values for
w, are zero on both the left and right sides. This particular arrangement concerning which
of the common part values are treated as unknowns was chosen to agree with the actual
boundary conditions for the original problem, which greatly simplifies the problem of
forming an initial guess. The procedure of forming an initial guess and the equations for
evaluating the constants of integration are given in Appendix B.

Next, an jnner loop Newton search is performed on the left and right common part
values of y, (using only the inner solution) so that the boundary conditions y,(w;) = v,
and wﬁ,(w,) =y, are satisfied, where w; and w{cdrrespond tor =r;and r =17 in Eq's.
(3.43) and (3.117). 'This is done by solving the cubic equation in Eq. (3.62) while taking
into account that w,(y) for the range of y of interest must be positive for the solution to
have physical meaning. The inner solution procedure also determines rs and G (see
Appendix B). S o

Fig. 4.1 presents an example of a converged solution of this equation for y;=0°,
y¢=20°. The resulting left and right common parts of y; are -1.10° and 20.75°
respectively, which correspond to w} = 0 (7] = o) in this figure. The values of w} aty =
00 and y = 20° map to z; = zf = 60 km altitude above sea level via Eq. (3.43). These



altitudes where specified as part of the boundary conditions. Thus the boundary conditions
v,(r,)=0° and y,(r,) =20° have been met.

0.004 4 .

L —_— wi E
0.003 0 < W,
0.002 -f // \\ ]
0.001 .
W, = w, - - :
-0.001 -f \ ]

- v ]
-0.002

-5 0 5 10 15 20 25

V¥ (deg)

Figure 3.2. Example of Converged Inner Newton Iteration
Process for w as a Function of y

The left and right outer solution integration constants in Eq's. (3.31-3.33) and
(3.38-3.40) are obtained by enforcing the matching conditions in Eq's. (3.75-3.80) and
(3.92-3.94, 3.96-3.98). This amounts to equating the common parts for the outer solution

(Eq's. (3.31-3.33, 3.38-3.40) evaluated at h=0) with the common parts from the inner
solution (Eq's. (3.61-3.66) evaluated at the left and right common part values of v,

corresponding to w;=0 in Fig. 3.2). Since some of the outer solution variables are

different from the inner solution variables, it is necessary to employ the transformations

in Eq's. (3.43, 3.44) and (3.83). Note that c3 and a3 are not needed since the outer
solutions for v, and Pg,, are constant. Hence the zeroth order composite solution for

these variables is the inner solution alone. The zeroth order composite solution is then
evaluated to determine if the boundary conditions are satisfied:

<
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u;(h.‘) -u =0, Ys(h) = v, = 0,

Pih)-1=0, 7yih)-17, =0 (3.124)

The error in these equations is used in an outer loop Newton iteration to iterate on the
remaining four unknown common parts. These are the left common part values for u and

Y, and the right common part values for Py and y. A summary of this procedure is given in

Fig 3.3

Initial Guess of Common Part Values

'

Evaluation of Inner Integration Constants €

'

Newton Iterations for the left and
right Common Parts of ¥

Evaluation of Outer Integration Constants

Enforcing Boundary Conditions Using Composite Solution

> Update Estimate of  __|
Common Part Values

Exit When Accuracy Requirement is Met

Figure 3.3. Summary of the Numerical Solution Procedure



3.7.2 Open Loop Numerical Results

Fig's. 3.4-3.7 present the zeroth order MAE converged solution for the boundary
conditions: z; = z¢ = 60 km (initial and final altitudes above sea level), V;=7851 m/sec, ¥;=-
1.359, ¥=1.0° and Ay = 200. The cormresponding control time histories are given in Fig's.
3.8 and 3.9 and the altitude history in Fig. 3.10. The value of the expansion parameter
used here is € = 1/Brg = 11.87e-4. In Fig's. 3.4-3.7 the inner solution is shown for the
complete range of y between its left and right common part values, which correspond to
n— e (w,=0 in Fig. 3.2). This was done to illustrate the fact that the matching
conditions in Eq's. (3.75-3.80) and (3.92-3.94, 3.96-3.98) are satisfied on the left and
right portions of the solution (see also Fig. 2.3)

These results clearly indicate that the composite solutions for ¥ and py are
significantly different from the inner solution. In particular, the major variation in pyis due
to the outer solution, which in effect amounts to a correction for the large variation in Loh's
term during the exit phase. We note that the outer solution plays an important role in
forming a uniformly valid zeroth order approximation to the exact solution. The
normalized lift control A is always near 1.0, corresponding to flight at near maximum lift to
drag ratio. The bank angle [ is always near 900 indicating that most of the aerodynamic
force is utilized in performing the turn.

¢
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3.8 Zeroth Order Guided Solution
3.8.1 Solution Procedure

Zeroth order closed loop guided solutions are obtained by using the optimal control
expressions given in Eq's (3.26) and (3.27). These expressions involve both the states
and the costates, thus knowledge of both states and costates is needed to evaluate the
controls. Assuming that the states are available for feedback, only estimates of the costates
are required at each control computation along the trajectory. Feedback implementation
entails treating the current state (from the simulation) at each control update as a new initial
state, and calculating the costate values corresponding to the same time instant. The
estimate for these costates (to zeroth order) are obtained by repetitively solving the zero
order MAE problem.

In the first step, an initial guess and boundary conditions are supplied to initiate the
procedure of obtaining a zero order MAE converged solution (Appendix B). Next, the
costate expressions in Eq's. (3.38-3.40) and (3.64-3.66) can be evaluated as a function of
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the corresponding independent variables and used in Eq's. (3.105-3.107) to construct the
composite costate expressions. These are in turn used in Eq's (3.26) and (3.27) to
compute the controls. When a predetermined time increment has been reached, the current
states are used as initial conditions for the next MAE calculation. It follows that the initial
guess is available in every step of the zero order MAE calculation after the first.

For control computation between MAE solution updates, the integration constants
from the last update are used. The transformations defined in Eqg's. (3.11, 3.12, 3.43) and
(3.44) are used to transform the simulated dimensional variables into the inner and outer
dependent and independent variables. The transformed altitude h is used in Eq's. (3.31,
3.32, 3.38) and (3.39) to compute the left and right outer costates. The heading v is used
in Eq. (3.64) to evaluate P, , and Eq's. (3.105-107) are used to calculate the composite
costates. The composite costates and the current ¥ and u (from Eq. (3.12)) are used in
Eq's. (3.26) and (3.27) to evaluate the optimal controls between the time instants where the
MAE solution is updated.

During the exit phase, the left outer solution is discarded, and matching is required
only between the right outer solution and the inner solution. In this case, the constants of
integration for the inner solution are viewed as free parameters used to satisfy the boundary
conditions.

3.8.2 Numerical Results

Fig's 3.11 through 3.14 present a comparison between the optimal solution
(obtained using a multiple shooting method25) and the zero order guided solution for
Ay=20°. The corresponding control time histories are given in Fig's. 3.15 and 3.16.
Loh's term (corresponding to the optimal solution) is given in Fig. 3.17 and the altitude in
Fig. 3.18. The time increment between guided solution updates is 5 seconds, with the
control updated at every integration step following the procedure described above. These
results indicate that the guided solutions and the optimal solutions are in a very good
agreement throughout the trajectory. The error that does exist in some of the guided
solution variables, for example the y and the altitude (z) solutions, indicate the need for a
first order correction. A general procedure for MAE expansion of the HJB equation to first
order is developed in Section 4, along with a description of its potential application to aero-
assisted orbit transfer.
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Fig's 3.13 and 3.15 clearly indicate how the variation in Loh's term near the end of
the trajectory is partially accounted for in the zero order guided solution. Specifically, the
normalized lift coefficient A given in Fig. 3.15 does not saturate in the exit phase, but
reduces to near zero. This is due to the fact that the correction in Py from the outer solution
is too large (see also Fig. 3.6). Fig. 3.19 compares the velocity histories near the end of
the trajectory. The optimal and guided solution values for terminal velocities are 6751
my/sec and 6736 m/sec respectively. The difference of the guided value from the optimal one
in 15 m/sec.
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Section IV

Matched Asymptotic Expansion
of the Hamilton-Jacobi-Bellman Equation

In this Section a general procedure for constructing a matched asymptotic expansion
of the Hamilton-Jacobi-Bellman equation, based on the method of characteristics, is
developed. The development is valid for a class of perturbation problems whose solution
exhibits two-time-scale behavior. A regular expansion for problems of this type is shown
to be inappropriate since it is not valid over a narrow range of the independent variable.
That is, it is not uniformly valid. Of particular interest here is the manner in which
matching and boundary conditions are enforced when the expansion is carried out to first
order. Two cases are distinguished - one where the left boundary condition coincides with
or lies to the right of the singular region and another one where the left boundary condition
lies to the left of the singular region.

4.1 Singularly Perturbed Hamilton-Jacobi-Bellman Equation

Ref.'s. 10 and 11 have formulated the aeroassisted plane change maneuver as a
regular perturbation problem and employed a regular expansion of the optimal return
function (P) to first order to obtain an approximate guidance law for that problem.
However, as shown in Section 3, the optimal aeroassisted plane change maneuver is
actually a singularly perturbed problem. For the solution of such a problem to be
uniformly valid, inner and outer expansions of P and a matching procedure have to be
performed so that a uniformly valid composite solution for the optimal return function can
be constructed. This Section treats the expansion to first order for a class of singularly
perturbed problems that are characterized by the presence of t and t/e in the right hand sides
of the differential equations.
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We assume that the dynamic system in Eq. (2.1) has the following form
dx/dt = f(x,u,t) + gx,ut/€)/e, x(t,) given 4.1

where x € R" is the state vector, u € R" is the control vector, € is a small parameter and t is
the independent variable. The functions f and g are assumed analytic with respect to their
arguments in the region of interest and, in addition, g is assumed to have the property that

lti_rgg(x,u,tle)/e‘ =0, t#0, i=1l,.. (4.2)

The singular characteristic of this type of problem arises at t=0, where the above property is
not satisfied. To investigate the behavior in the region of singularity near t=0, a stretched
independent variable 1 is defined as T=t/e and Eq. (4.1) in terms of T is given by

dx/dt = & (x,u,eT) + g(x,u4,1), x(t;) given (4.3)

where the function f is assumed to have the property that

li_r'rg g(xuet) =0 4.4)

Note that both systems in Eq's. (4.1) and (4.3) represent the exact dynamics. Eq. (4.1) is
called the outer system and all the variables associated with it will be denoted by the
superscript 0. Eq. (4.3) is called the inner system, and all the variables associated with it
will be denoted by the superscript i.

The assumption in Eq. (4.2) regarding the form of g was chosen because the
acroassisted plane change problem satisfies this property. Itis typically satisfied when g in
Eq. (4.1) has the form g = e "/*h(x,u). Also, the division by € in Eq. (4.1) insures that
the zeroth order inner dynamics in Eq. (4.3) are not zero. As will become evident, this
specialization is not essential to the development in this section, and the main results are not
restricted to it. Generalizations (and specializations) to other assumed forms for both f and

4
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g are straightforward extensions of the main ideas to be presented below. The only
requirement is that the zeroth order subproblems remain well defined.

Note that when the transformation to Eq. (4.3) is performed, it appears to result in a
regular perturbation problem, when in fact the original dynamics in Eq. (4.1) are singular.
This is precisely what was done in Ref.’s. 10 and 11. It will be shown later, in the
application section, that transformation of our equations that begin in the form of Eq (4.1)
to the variables used in Ref. 11 results in a set of equations in the form of Eq. (4.3). This
means that the inner expansion alone was used in these earlier studies to satisfy the
boundary conditions, and that the expansions are valid only within the region of
singularity. In an MAE expansion, the solution is dominated by the inner expansion within
this region, because the outer expansion nearly cancels with the common part of the
solution. Therefore, the differences will be most apparent outside this region, and for
problems involving skipping trajectories through the atmosphere this will be most evident
where Loh's term undergoes as large variation. That is, whenever the orbital forces
dominate. These forces are ignored in the zeroth order regular expansion solution, and are
accounted for in the zeroth order MAE solution. This point was illustrated in the numerical

results in Section 3.
The optimization problem is to find u(x,t) that minimizes J = ¢(xs), subject to

the dynamic constraints in Eq. (4.1) and the terminal constraint v(x,) = 0, where
x, = x(t,) and tf is the final time. The outer HJB equation is

P’ = —minH = —P°(f™ + g*/¢) (4.5)

t

where U is a class of continuous bounded controls, o= f(xu™),
g™ =g(x,t/ &,u™(x,1)), and u*™(x,P,,t) is given by the optimality condition H, =0,
assuming that H,, is positive definite. P°(x°(z,),t;) is the optimal return function defined
as the optimal value of the performance index for an optimal path starting at x(s,) and ¢,
and satisfying the terminal constraint. In terms of the stretched independent variable 1 the
inner HJB equation is given by

P. = -minH = -Pi(f" + g*) (4.6)
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where P (x*(t,.),r,.) is the same optimal return function as defined for Eq. (4.5), but

expressed in terms of the inner variables. It is important to note that in both formulations
the exact solutions for the return functions are identical and depend on the same initial
condition x°(#,) = x'(7,) = x(1,), where t;=tj/e. This is not true for the corresponding inner
and outer expansions of the solution, since the boundary conditions is satisfied with the
composite solution. Therefore, only the composite solution should be compared with the
exact solution. However, the inner and outer expansion solution terms may be viewed as
being dependent on x(t;) and t; through the matching conditions and the boundary
conditions enforced on the composite solution. This dependence will be made explicit in

the following development.
Consider a power series expansion in € of the return functions for both the outer or

inner formulations:
Pox(t).8) = 3 POx(t) e @.7)
j=0
Pi(x(t),1,€) = ipj(x(r,.),z,,)ef (4.8)

j=0

By substituting these expansions into the outer and inner expressions of the optimal control
(derived from the optimality condition) and expanding in a power series in &, the outer and

inner expansions of the optimal control in a feedback form are obtained as:

u T (x(@),P;.t) = iu;’(x(t,-),ti)e" = u P (x(t).1,€) 4.9)
j=0

u' ™ (x(r,),PLt) = 2u;‘(x(t.-),t.-)8" = uP(x(t)1,€) (4.10)
j=0

The details regarding this expansion for a regular perturbation problem are given in Ref.

11, and they apply directly for the separate expansions in Eq's. (4.9) and (4.10). The
zeroth order terms ug and u; are the optimal controls for the zeroth order outer and inner

problems that are obtained by setting €=0 in Eq's. (4.1) and (4.3). If analytic solutions are
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available for the zeroth order problem, then the higher order solutions are determined by the
expansions of the outer and inner HJB equations:

P = .io”}’ﬁ’ = -(E)Pf,s")(}'fnf,‘?(x,t)ef) 4.11)
= J= Jj=

P, = SPLel = —(SPLeNe S filx.enel + Tgi(x, )e’) 4.12)
i=0 j=0 j=0 j=0

where the expansions for f and g come from substituting the series in Eq's (4.9) and (4.10)
for u in Eq's. (4.1) and (4.3). The reader is again refered to Ref. 11 for the details, while
noting the exception that the dependence of f in Eq. (4.3) on € enters both through u and
€T. Equating like powers of € in Eq's. (4.11) and (4.12) leads to outer and inner first order
linear partial differential equations for P; and P}

Py + Pifo = Ri(x(1).t,P},...F;), i=1,... (4.13)
P, + P.g, = R(x().t,P,....P), j=1,... (4.14)

where the forcing terms R and R} are functions of the lower terms in the solution. This

procedure was carried out in Ref. 11 for a regular expansion, and is identical in form for
the inner and outer expansions defined here with obvious accounting for differences in
notation, and the exception noted above regarding the dependence of f on €7 in the inner

expansion. In particular, the j=1 expressions are:

R® = 0, R = -P, fi(x,0) 4.15)

after taking into account the optimality condition for the zeroth order problem. Note that
R/ is zero as a consequence of the assumption in Eq. (4.2), which also accounts for the
fact that an expansion of g is not required in Eq. (4.11). In the sequel it is not assumed that
R/ =0 so as to allow for more general assumptions regarding the form for g.
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Singular perturbation expansions differ from regular expansions in that solutions to
any order of the outer and inner problems are not uniformly valid approximations of the
exact solution. Uniformly valid approximations are constructed from the outer and inner
solutions by the MAE method. This process involves matching of the inner and outer
solutions and enforcing the boundary conditions on an additive composite solution made up
of the outer solution plus the inner solution minus the common part. See Sections 2 and 3
for details.

The partial differential equations in Eq's. (4.13) and (4.14) may be solved by the
method of characteristics (Ref. 18). The characteristic curves for any order term of
P° and P’ are defined by the zeroth order differential equations:

= O (4.16).

dxy /dt = g'(x}, t.u}) (4.17)

whose solutions are denoted by x;(£;x(2,),t,) and x;(T;x(z,),t,) respectively. It is shown
in Appendix C that the boundary conditions for Eq's. (4.16) and (4.17) are also defined by
the MAE method. Therefore the characteristic curves for the inner and outer expansions are
the inner and outer solution components of a zeroth order MAE solution. Note that to any
order, the boundary conditions are satisfied by the composite solution and not individually
by the inner and outer solution components. The same is true for the characteristic curves
which satisfy Eq's. (4.16) and (4.17). However, both the inner and outer characteristic
curves depend on x(t;) and t; through the matching conditions and the boundary conditions.
See Sections 2 and 3 for details. Note that the expansions P} and P/ in Eq's. (4.13) and
(4.14) are useful only at the initial time ¢, = £7,, because the characteristic curves are

computed for a specified x(t;) and ;.

4.1.1 First Order Solution for the Case t;>0

In order to express the matching condition, it is necessary to express the outer

solution of Eq. (4.13) for the interval 0 S t< tr, and the inner solution of Eq. (4.14) for the
interval 0 < T< e, We also assume in this section that the initial time satisfies ¢, > 0, and
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will subsequently generalize the result for arbitrary t;. The solutions for P} and P are
expressed as:

PP(tx()e) = [RO@x().0)dr + PPO;x(r).8) (4.18)
0

P(Tx(t)t) = [RUTx(t).1)dT + Pi(0x(t),1) 4.19)
0 .

A necessary condition in MAE analysis is that the zeroth order solution at t=0 serves as a
stable equilibrium point for the zeroth order inner solution. This means that the
characteristic curve for the inner expansion must approach a well defined limit as T—»oo.
Hence it is assumed that R,i( 7;x(t,),¢;) reaches a well defined limit as T— o> which will be
denoted by R (x(t,).t,). Thus, in order to express P! for large values of , it is necessary
to rewrite Eq. (4.19) in the following form:

Pl(T:x(t),t) = I[Rf(‘r;x(t,.),t,.)—Rf“]dT + "+ Pl(0;x(2),t) (4.20)
0

We are now ready to perform the matching procedure between the outer and the inner
solutions of the return function by enforcing the following rule:

Pe(smallt) = P'(large 7)|, (4.21)

=1/€

where the dependency on x(z,),7, is omitted to save notation. Retainin g terms to first order
in t and € yields

P3(0) + PL(0) + €PL(0) = Pi(es) + £[PI(0) + ;f[R:(t)—Rf']dr + R"1]

4.22)



where Eq. (4.20) is used to express P for large 1. Equating like powers in t and €, the
following matching conditions are obtained:

€ P0) = Pi(e) o (4.23)

g': P(0) = Pl(0)+ [[Ri(t) - R"]dt (4.24)
0

1 R™ = P(0) = ~P.f0) | (4.25)

Next the boundary conditions are applied to the composite solution expressed to
first order. The composite solution is constructed by adding the outer and inner solutions
(expressed to first order) and subtractmg their common part. The common part is the left
hand side of Eq (4.22). Evaluation of the resulting first order composite solution at the
final time yields the following boundary condition

Pi@t) = Pit,) + E[P (1) + P,‘(T,)] - [P;,(0), + eP}(0)}= ¢(x,)(4.26)
where the zeroth order composite return function is given by
Pi(t)) = P3(t;) + Py(z,) — P3(0) 4.27)

From Eq's. (4.18) and (4.20) the first order terms evaluated at tr and tr are related to their
respective values att = T= 0 by:

P () = [Reydr + PR (0) @28
¢

Pi(1)) = f [Ri(t) - RI"ldt + R, + Pi(0) (4.29)
0
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Using Eq's. (4.25) and (4.27-4.29) in Eq. (4.26), and recalling that T, = /€ yields:

e P, = ¢(x) (4.30)
I R firi(®) - R™1de 4.31)
0 0

Eq's. (4.31) and (4.24) are used to evaluate the constants P’(0) and P;(0) in Eq's. (4.18)

and (4.20). Finally, using these results in Eq. (4.26) evaluated for an arbitrary initial time
t; such that 0 <t; < tsresults in

PE(x(t),€) = PL(x(t)e) + el=[RO(5x(2),,)dr
‘l', v ' . .
- [IR}(mx@).t) - Rld7) 4.32)
Partial differentiation of this expression with respect to x(t;) provides an approximation for

the costate variables to first order, which, when used in the optimality condition, results in
an approximation for the feedback control to first order.!!

P, (x@)t.€) = Py (x(t)1) + s{—rfwa (& x(t,),t,)dr

+ RP(1,5x(t,).1,)0t, [ ox(t,) - f (R, (Bx().1) - R dt

+ [Ri(t3x(),8) = R™197T, /0x(1)) (4.33)

4.1.2 A Simple Example

Here, the simple example that was presented in Section 2.2 is followed up. The
problem formulation is



66

X = x+ ue''" /e, x(t;) given, t =1, lul<l (4.34)

where x is a scalar state variable and u is the control. Find a control u to maximize the
performance index J=x;. To repeat the main results, the exact solutions of the state and
costate are:

x(tx().t) = [(A+e)x()e™ + 77 — e 1/(1+¢) (4.35)
Atx@)t) = 7 (4.36)

and the zeroth order outer and inner solutions are:

x2(nx(),t) = [x(2) + e/l (4.37)
AEx)t) = (4.38)
x(Tx@)t) = —e "+ [x@t) + el 4.39)
Ao(Tx(t)t) = ¢ (4.40)

In this case the zeroth order composite solution for A equals the outer solution since the

inner solution is constant. Comparison of Eq's. (4.36) and (4.38) shows that it also
equals to the exact solution. Hence, no correction terms for A to first and higher orders are

expected. e
Using Eq. (4.15) it is found that

R (1)

0 (4.41)

Ri(t) = =P (Dx(1) = —€'[-¢" + e (x(t) + ') (4.42)

Evaluating R}(7) in Eq. (4.42) at T — e yields S

4

4
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R™ = —é'le™(x(t) + /%)) (4.43)

Note from Eq's. (4.37,4.38) and (4.43) that the matching condition in Eq. (4.25) is
autornatically satisfied. This will always be the case when the outer and inner zeroth order
MAE solutions are used to define the characteristic curves (see Appendix C). Using Eq's.
(4.41-4.43) in Eq. (4.32) gives

Ve ,
Pi(x(t)t,€) = Py(t,) —¢ [[R (1) — R"Mrt
nle
1/e

= P5(t) —ee' [eTdr = Pi(r) + eelle™V — €] (4.44)

nle
Note that the first order term in Eq. (4.44) does not depend on x(t,), hence there is no

correction to first order for the costate function as expected. The exact return function is
the final value of x from Eq. (4.35), with t replaced by t; =1.

P(x(t).t;,8) = [A+&)x(t)e' ™ + €757 — ]/ (1 + €) (4.45)

To show that Eq. (4.44) is a uniformly valid approximation to O(g), the exact
solution in Eq. (4.45) is expanded to first order

P(x(t).1,€) = Po(x(t).t) + ele™" — &"7/7] (4.46)

The difference between the first order terms in Eq's. (4.44) and (4.46) is
A(gt) = ge'(1-e)e™* + ge*(1-¢') = eE(e,t) (4.47)

The range of interest for tjis 0 < t; <1. The region of singularity corresponds to t;=0(¢), or
to the range 0 < t; < ke, where k is some constant. Outside this region t;=0(1). We now
investigate the size of E(&,,) both inside and outside the region of singularity:
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for;=0(): LmE(e,1)/ € = ke'™ <o (4.48)

it
(=

for ;=0(1): lti_r’rgE(E,t.-)/E (4.49)

Thus, E(&,t,)=0(¢) when t; is O(g) close to zero and o(g) when t; is O(1). Hence, A(e,t;)
in Eq. (4.47) is O(e2) uniformly in tj. It follows that the solution in Eq. (4.44) is a
uniformly valid first order approximation to the exact solution in Eq. (4.46). When the
regular expansion of Ref. 11 is applied to this problem with T = t/e as the independent
variable (this transforms the dynamics to the form of Eq. (4.3)), then the first order
solution is not valid in the region outside the neighborhood of t=0.

4.1.3 First Order Solution for the Case t;<0

In this case the region of singularity near t=0 occurs between the initial time t;<0
and the final time tf>0 As detailed in Sections 2 and 3, two outer expansions are required
for this situation, one for the interval t <0 and the other corresponding to t > 0. The outer
expansions are in general discontinuous at t = 0, but the composite solution is always
continuous!l, The inner expansion must be considered for -ec < T < o in order that
matching may be performed on both sides. This is illustrated in Fig. 4.1.

Figure 4.1. Inner and Outer Expansions of P in the Left and Right Regions
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Thc equivalent ckpreésioné to Eq's.r (4.18) and (4.20) on the left side for t<0 are:
0
PO:x()) = [RIx@)e)dr + P60 (4.50)
. 0 . . :
PiO;x(t),t) = [[R/(Tx(t),t,)-R")dT - TR™ + P{(T;x(1).1,) 4.51)

Note that, in general, the inner forcing function R™ has different limit values on the left

and right sides as denoted by the L and R superscripts. Matching on the left side is done in
a fashion similar to that on the right side and the equivalent expression to Eq. (4.21)is

P°(small negative t) = P'(large negative r)L

e (4.52)
Retaining terms to first order in t and € gives
‘P3(0) + Py, (0) + €P(0) =
- : 0 . . .
Py(—=) + £[P/(0) — [[R/(t)-'R"1dt +'R"1) (4.53)
Equating like powers in t and € yields:
e’ 'Py(0) = Pi(=oo) 4.54)
. 0 + -
e ‘PP(0) = P(0) - I [Ri(7) -="R")dt (4.55)
t ‘R™ ='P(0) = ~'P; . (0)'f°(0) (4.56)

Since the inner characteristic curve is continuous at t=0, so is P,i (0), and therefore it
satisfies the right side expression in Eq. (4.31). Using Eq. (4.31) in Eq's. (4.51) and
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(4.55), and then Eq. (4.55) in Eq. (4.50) gives the inner and outer solutions of the return
function on the left side. The composite solution on the left side is constructed the same
way Eq. (4.26) was constructed and, after some manipulation, it takes the form

0 _ o ,
Pi(t) = P;(t) + €l-[R’()dt + P)(0) — [[R/(T) -'R")d7) 4.57)
Finally, using Eq. (4.31) in Eq. (4.57) yields

Pi(x(t)t) = P5(x(t)t) + el=[RY(5x(t),t)dr

] T
- IR (mxt)t) - R YT - [IR(T:x(6).) - "R1dT)  (4.58)
T; 0

where RR}“ satisfies the right side matching condition in Eq. (4.25). Differentiating Eq.
(4.58) with respect to x(¢,) yields N

P, (X)) = Py (x(t)t) + ef-] Re, (5X(1).1)de

0
= RYGpx()e)at, /9x(t) = [IR (mx(t)t) =R Jdr

i
- JIR (mx@)) 'R M
0 ;) &

— [Ri(t;x(t).t,) = "RI"P7, [ 0x(1,)) (4.59)

which, when used in the optimality condition, results in an approximation for the feedback
control to first order.

As noted earlier, the first order corrections in Eq's. (4.33) and (4.59) are only
useful at to, and therefore the quadratures must be repeated at each control update.
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4.2 Application to Aeroassisted Plane-Change

In Section 3 analytic zeroth order solutions were obtained for the aeroassisted
plane-change problem. In this problem, the singularity occurs at the lowest altitude point,
hence the result in Eq. (4.59) must be used for initial conditions when they correspond to
the entry phase of the maneuver. As shown in Section 3, the reduced three dimensional
point mass equations of motion (3.21-3.23) for a lifting vehicle over a spherical non-
rotating planet have been written in the form of Eq. (4.1). Note that these equations satisfy
the condition in Eq. (4.2) and that h plays the role of the independent variable, which is
identified as t in Eq. (4.1). It is a monotonic decreasing variable to the left of the
singularity (entry phase of the trajectory) and a monotonic increasing variable to the right of
the singularity (exit phase of the trajectory). Therefore 7 in Eq. (4.3) is h/e, which is
denoted by n=h/e in Eq. (3.41).

The control expressions in Eq's. (3.26) and (3.27) depend on Py, Py and Py,
These can be obtained to first order using Eq. (4.59). From the first of Eq. (4.15) Rf’ =0,
hence only the inner quadrature is needed. From the second of Eq. (4.15) and Eq's.
(3.21)-(3.23)

R = Piy(-2)+ PLI(1-1/4) /tan 7] (4.60)

R,i"" in Eq. (4.59) can be obtained by using the matching conditions
Pl () = P3,(0), Pf,,(oo)= Poy(0), up(==)=ug(0) and the expressions in Eq's. (3.31),
(3.38) and (3.39). The result is simply

"R () =2%a,~"a,, "RI() =2'a-a, @.61)

Since tan 7(', appears in the denominator of Eq. (4.60) and 73(0)=0 [see Eq.
(3.111)], a singularity occurs in the integrand of Eq. (4.59) for this problem at n=0.

However, the singularity is removable by Sifﬁply transforming the variable of integration
(n) to the independent variable for the inner problem (). Using Eqg's. (3.23), (3.41) and
(3.43) it follows that

dn=sinycospy/ow (4.62)
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which removes the singularity in Eq. (4.59) when the variable of integration is changed
from 1 to .

Let y, denote V(i)(n =0). This quantity is known from the zeroth order solution.
Then, the specialization of Eq. (4.59) to the AOTV problem becomes:

L, &) = PG, (t) +el- J[ [Rx(w)- i1y, av
/ [ofj [Ri(w) - *RI™1],,. dw—[ [Rl('lf) 1]| awf/aw,} (4.63)
Vs 0
P, () = PG, (1) +el- J[ [RI(w 1], dy
(1w - “Ty v {15 [Rl(w) "R~ dys/ov) (464
y, Mo vy
Pfu,.(r» P§,,(5) +el- J[ [R;(w) R™ 1]y, dy
—J[ [Rl(w— =1, v {2 [Rl(w) ﬂlw vy /) (4.65)
I

where a small ﬂJght path angle approx1mat:on Y =sinycosy is cmp]oyed for sunphc:ty of
notation.

The zeroth order composite terms in Eq's. (4.63-4.65) are known from the zeroth
order solution as developed in Section 3. The expression forR,i(l,t/) follows from Eq.
(4.60), Eq's. (3.44) and (3.83) that relate u! to v} and Pl, to Pi . and Egs. (3.61),
(3.63), (3.64) and (3.67) that relate yi(y), vi(y), Pl (y) and Pl to y and the
constants of mtegranon R'(u/) is cvaluatcd along the inner characteristic curve, which
corresponds to the zeroth order inner solution in Section 3. Hence, differentiation or R
with respect to x(t;) implies that oxh/ Jx(t;) must be computed. The dependency of the
zeroth order inner solution on the initial conditions is expressed in Section 3 through a set
of 20 equations for 20 unknown parameters that define the inner and outer zeroth order
solutions. The procedure to obtain the required derivatives involves use of the chain rule,
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where first the partials of Rli( V) with respect to the 20 parameters is taken, and then
multiplied by the partials of the parameters with respect to the initial conditions. The details

are omitted, but the procedure is similar to that developed for a regular expansion in Ref.
11.

4.3 First Order Guided Solution

Closed loop guided solutions are obtained by using the optimal control expressions
given in Eq's (3.26) and (3.27). Feedback implementation entails treating the current state
(from the simulation) at each control update as a new initial state, and calculating the costate
values corresponding to the same time instant. The estimate for these costates to first order
is obtained by repetitively following two steps. First the zeroth order MAE problem is
solved, providing the zeroth order Euler solution which defines the characteristic curves for
the first order expansion of the HIB equation. The procedure for this step has been
detailed in Section 3. Next the quadratures in Eq's. (4.63-4.65) are performed to correct
the costates to first order. When a specified time increment has been reached, the current
states are used as initial conditions for the next MAE calculation followed by the first order
correction step. During the exit phase, the left outer solution is discarded. This situation
represents the case where >0 in the analysis of Section 4.1.

Figure 4.2 compares the exact solution, the zeroth order guided solution and the
first order calculation for the left side (the heading in the entry phase of the maneuver is
between 0 and 11.59). The exact solution is computed at heading increments of (.25
where the initial conditions are determined by the values of the zeroth order guided
simulation at the end of the last control update segment. The first order correction is
calculated but not included in the guided solution. It is clear that initially the first order
calculation overcorrects the zeroth order solution. Close to and in the inner region though,
the first order calculation does provide an excellent correction to the zeroth order solution.
These partial results indicate the need for further investigation of this behavior. The cause
may be a numerical ill conditioning in the evaluation of the quadratures in Eq's. (4.63-
4.65), and perhaps further development of the theory may be required.
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Section V

Conclusions and Recommendations

5.1 Conclusions

In this report it has been demonstrated that the dynamics associated with skip
trajectories are singularly perturbed, with the perturbation parameter defined as the ratio of
the atmospheric scale height to a reference radius close to the planet radius. Earlier studies
have either employed regular perturbation analysis of the inner dynamics, or have
incorrectly attempted a matched asymptotic expansion (MAE) analysis. We have clearly
demonstrated that the transformations employed in the earlier regular expansion studies in
effect transformed the original problem to the inner dynamics, and therefore only have the
appearance of being the type that occur in regularly perturbed problems. The resulting
solutions are therefore not uniformly valid. For skip trajectories, this results in a poor
approximation of the optimal solution near the end of the trajectory, where there is little
control authority available. '

With regard to MAE analysis, all of the issues improperly dealt with in earlier
analyses of this type that have been attempted in the past for skip trajectories, have been
corrected . The first issue deals with the fact that both the inner and outer expansions are
crucially involved in satisfying the boundary conditions. The use of the outer expansion
alone to satisfy initial conditions leads to discrepancies in the matching conditions. A
second issue is the need for separate left and right outer expansions, and the role that the
inner expansion plays in joining the discontinuities that occur between the outer expansions
through the matching conditions. The true optimal solution is, by its nature, continuous;
therefore, in order for the composite solution to serve as a uniformly valid approximation to
the exact solution, it also must be continuous. In a skip trajectory, a discontinuity between
the left and right zeroth order outer solutions is caused by the change that occurs in the
trajectory parameters during the osculating atmospheric maneuver. We have demonstrated
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that the zeroth order inner solution can be viewed as a process whereby the discontinuity
between the left and right zeroth order outer solutions is taken i into account.

A third issue concerns the proper selection of the reference altitude, used in defining
the independent variable of integration in the outer solution, which has significant
implications on the solution process. An arbitrary choice of this altitude leads to a situation
where the outer solution for the fhght path angle cannot be evaluated, thereby preventing a
zeroth order composite solution from being formed. A systematic approach to obtain a
relationship to determine the correct reference altitude is to use the condition that the
composite zeroth order flight path angle solution is zero at the lowest point of the trajectory.

Application of these ideas to the problem of inclination change with minimum
energy loss has resulted in a zero order solution in the form of a set of 20 algebraic
equations. By exploiting the structure inherent in the matching procedure it is possible to
reduce the problem to 6 equations in 6 unknowns. A further simplification was employed
which permits satisfaction of two of the boundary conditions by partially separating two of
the equations from the remaining four equations. Numerical experience shows that the
zeroth order solution is close to the optimal solution, and that the outer solution plays a
critical role in accounting for the variations in Loh's term near the exit phase of the
maneuver, This feature is what differentiates a MAE analysis from a regular perturbation
analysis of skip trajectories. However, the deficiency that remains in several of the critical
vanablcs indicates the need for a ﬁrst order correction.

Expansion of the solution to first order requlrcd furthcr dcvelopment of the MAE
expansion procedure. We have developcd a general procedure for constructing a matched
asymptotic expansion of the Hamilton-Jacobi-Bellman (HJB) equation, based on the
method of characteristics. Of particular interest here is the manner in which matching and
boundary conditions are enforced when the expansion is carried out to first order. We have
rccogmzed the need to dxsnngulshﬂt;;ecn two cases pertaining to the location of the
singular region with respect to the boundary conditions. The first is where the left
boundary condition coincides with, or lies to the right of, the singular region, and the
second is where the singular region lies between the boundary conditions. It is shown that
the boundary conditions for the characteristic curves of the HJB equations are also defined
by the MAE method. The characteristic curves for the inner and outer expansions of the
HJB equation are the inner and outer solution components of the zeroth order MAE
solution. Another consequence of the analysis is that whenever the outer and inner zeroth
order MAE solutions are used to define the characteristic curves, the first order matching
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~ conditions are automatically satisfied. A simple example is used to illustrate the procedure,

where the obtained solution is uniformly valid to O(e2). The procedure's potential
application to aeroassisted plane change was also evaluated. '

5.2 Recommendations

Based on the results developed in this report, the following recommendations are
made for further research in this area.

5.2.1 Completion of the First Order Correction Analysis of the
Aeroassisted Plane Change Problem

In Section 3 the zeroth order guided solution was obtained and compared with the
exact solution. The error that exists in some of the zeroth order guided solution variables
with respect to the exact solution indicated the need for a first order correction. Section 4
developed a general procedure to obtain a first order correction to the zeroth order problem
and its potential application to the aeroassisted plane change problem. The numerical
results indicate the need for further evaluation of the approach, and perhaps further
development of the theory. Simple examples of increasing complexity proved useful in
understanding and developing the theory. It is recommended that the first order correction
for the aeroassisted plane change problem be further analyzed to determine if it is
numerically ill conditioned, or if an alternative approach or further development of the
theory is needed. One alternative approach for first order analysis is to expand the Euler
system equations.28

5.2.2 Aerodynamic Heating Requirements

Aerodynamic heating is an important aspect of the aeroassisted maneuver that was
not considered in this report. To make the guidance law useful in realistic applications, it is
necessary to include aerodynamic heating requirements in the problem formulation in a
form such that the zeroth order problem remains tractable. Minimization of the time
integral of the flight path angle squared may have desirable features, as the numerical work
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in Ref. 2 indicates. The numerical solution to this problem results in nearly grazing
trajectories that are considered an useful engineering compromise between energy
requirements and aerodynamic heating requirements. Hence, a choice of performance
index that includes a flight path angle squared term is recommended.

A second approach for formulations that render the zeroth order problem intractable
(such as enforcing a hard constraint on the heating rate or the heating load) would be to
investigate combining an analytically tractable portion of the solution with a numerical
method, such as collocation, to develop a numerically efficient zeroth order solution. The
approach was developed and illustrated for a launch vehicle application in Ref. 28.

5.2.3 Atmospheric and Parametric Uncertainties

The aerodynamic force used to modify the vehicle's trajectory during the
aeroassisted maneuver is uncertain due to uncertainties associated with estimates of the
vehicle state vector, atmospheric density and the vehicle's aerodynamic coefficients. The
effect of these uncertainties along with uncertamucs in the entry conditions may result in
sngmﬁcant trajectory deviations from the nominal trajectory and in large errors in the final
maneuvers, such as aerocapture or landmg on thc surface of Mars, is the accuracy of the
information on which the guidance law is based.30 A further study to improve onboard
estimation and parameter identification for aeroassisted applications is recommended.

A second viewpoint is to design the guidance law so that performance is maintained
in the presence of uncertainty (robust performance). Such a design can be achieved by
treating the uncertainty as an opponent in a differential game formulation3!. In the case of
linear quadratic games, such a formulation is intimately connected to the design of a
controller that minimizes the infinity norm of the transfer function from disturbances to
performance outputs. It may also be beneficial to investigate the use of thrust within the
atmosphere, such as an Aerocruise maneuver to achieve plane change It has been shown
in Ref. 32 that Aerocruise is less sensitive to atmospheric uncertainties than acroghde

4
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5.2.4 Expansion of the Euler Equations

An alternative approach to obtaining higher order corrections is to consider an
expansion of the Euler system of equations. The higher order equations for the states and
costates are coupled, linear and inhomogeneous, and the contributions of higher order outer
terms to the composite solution are not zero (as they are in the HIB expansion). The
solution of these equations requires calculation of a state transition matrix, which can be
derived analytically using the analytical zeroth order solution, and performing a quadrature
on both state and costate equations. It has been shown that in the case of a regular
perturbation, the first order correction obtained by expansion of the HJB equation is equal
to the correction obtained by expanding the Euler system of equations to first order.33
However, this method has an important potential advantage over the HJB expansion in that
it may be possible to fix the zeroth order solution, and precompute and store the
quadratures along the zeroth order solution as a function of a monotonic variable (such as
total energy). Then, at each control update, the state perturbations from the zeroth order
solution are accounted for in the first order correction by treating them as initial conditions
for the first order solution.28 This is not possible in an HIB expansion, since the first
order correction is valid only for the current values of the state and the independent
variable, and the quadrature must be repeated at each control update.

5.2.5 Other Problem Formulations

Extensions of the existing problem formulation would include accounting for the
effects of the planet’s rotation and cross range angle, which are ignored in the present
analysis. It is easy to show that these effects are not present in the zeroth order dynamics,
which means that they appear only in the first order corrections that are computed by
quadrature. Therefore, conceptually it should be rather straightforward to include these
effects in the analysis. Also, there are a range of other problems that are of practical
interest, such as the aerocapture problem and reentry problems. In the aerocapture problem
the total energy of a vehicle on a hyperbolic trajectory is to be reduced so that it is captured
by the gravitational field of a planet. Aerodynamic heating limits are an important
consideration in this problem formulation as well.
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5.2.6 Parametric Studies

In the context of parametric studies it is necessary to determine the range of problem
parameters for which approximate solutions are obtainable, and to conduct a comparison

with purely exoatmospheric maneuvers in terms of energy consumption. Typical
parameters to be considered are the initial and final orbital parameters, and the maximum lift
to drag ratio. Therefore, it is of interest to conduct evaluations of a more extensive range of
parameter values than in the limited study conducted here.

|
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Appendix A

(AD)

Relationship for the Zeroth Order Control ¢
Expressed in the transformed variables in the inner region, the Hamiltonian function

has the form given in Eq. (3.55)
P,0/0c - Py /oc+ P.(1+ 8 + o?)/o

The control functions are obtained from the optimality conditions H,; = 0 and
H,, = 0. For the above expression of Hj these conditions, after some manipulation,
(A2)

H =
are:
HLJ = (Pj,7 + 2P, 8)/o =0
Hy, = Pi, = (=P, /4P, = Piy, + Pi)/ 6" = 0 (A3)
and the control functions are obtained as:
N
& =-P /2P, (Ad)
e o = (—P(;W'Y:) - P(i)‘zy/4P(‘;v)/ng + 1 (A5)
Substituting these functions back into the Hamiltonian in Eq. (A1), after some manipulation
it takes the form:
A~
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Hy = QP /ON(=PiYi — Pi/4P.)/ P, + 1] = 20P), (A6)

where the expression in the brackets is recognized to be 62. Since H) and Pi are
constant in this problem, so is 6. Thus it should be possible to express ¢ in term of

constant parameters only, which is not immediately recognized in Eq. (A5) since it contains
the functions P;, and y;. To show this, use of Eq. (3.64) in Eq. (A5) yields

0’ = (P, /Oy, + 2P} — Pyl Py, + 1 (A7)
From Eq. (3.67) P, and c can be written as:

P = 20°Pik, (A8)

c = -20P) k, (A9)
Using these equations and Eq. (3.61) in Eq. (A7), ¢ becomes:

o= 1/(0+ kj + 2kky)'"? (A10)
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Appendix B

Initial Guess and Evaluation
of the Inner Integration Constants

B.1 Initial Guess Procedure

To calculate the 6 inner integration constants k3, kq, ks, ¢, Pi_, and P,, in Eq's.

(3.61-3.66), 6 boundary values must be supplied. These are the left common part values
of ¥, v and y and the right common part values of Y, P, and y which will be denoted by

the subscripts "L" and "R" respectively. At the very first step of the procedure, the actual
left boundary values of ¥, v and y and the right boundary values of yand v are used as an
initial guess for ¥,, v, ¥,, ¥ and y, respectively. The value of P, is estimated using

the boundary condition in Eq. (3.116) that Poc,‘(hf)=1.0. Since hf is far from the region
of singularity (£=0), this is closely approximated by the outer solution, so "PO (h ) =1.0.
Since h<<1, the value of "u(h) does not change substantially in Eq. (3.31), so
Rug(0)=ku(?(hf) and from Eq. (3.38) "}53(0)=“Pg’“(hf )=1.0. These properties can be
verified by examining the converged solution for Po(y) in Fig. 3.7. Next the
transformation in Eq. (3.83) is used to relate *P2,(0) to P2 (0), where Fug (0)=Ful (hy)
and from Eq. (3.44)

_Roo .
RuQ(he)=e WEVE o B1)

Now "{(hs)= vg(wf) =v;(y¥y) and v(';(v/f) is calculated by approximating the
dynamics in Eq. (3.49) using dvg /dy =2.0. All of the above properties may be verified

from Fig. 3.5. Finally, the matching condition in Eq. (3.86) P2 (0) = ng (e0) = P, is used
to provide an estimate for P,,.
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B.2 Inner Integration Constants

Using Eq's. (3.61) and (3.62) at the left and right common part boundary
conditions, kj, k2 and k3 become:

k= -120Aw/Ay> - 6(7g + 7.)/Ay? (B2)
k, = Ay/Ay + k(yi + y,)/2 (B3)
ky = =k, /2 + (VW = YRV /Ay (B4)

where A() = () — (), and © is found as a function of the boundary conditions by
using Eq’s. (B2-B4) in Eq. (A10). The expression for ¢ becomes

o=\AY? /(AW +3(y, +7,)° + A% (BS)

From Eq. (3.43) at 1 - o, the common part values of w are zero, thus
w, = wy=0 when the initial conditions are in the left side (entry phase). In this case Aw=0
in Eq. (B.2). When the initial conditions are given in the right side (exit Phase), the left
matching condition is dropped and w, is equal to the current w. Use of Eq's. (B2) and
(B3) and the estimate of P! in Eq. (3.67) provides the values of the constants P, and c.

Next, k4 and ks can be found using Eq's. (3.62) and (3.63) at the left boundary
conditions:

ke = ow, — kw16 + kyi /2 + ky, (B6)

ks = v, - (0 + 1/0)y, - ol(yik - k)’1/3k (B7)

At this stage all the inner states and costates can be evaluated at any y between y
and W as a function of the boundary conditions using Eq's. (3.61-3.66). In particular, the
initial and final inner solutions are needed to construct the composite solution, which is

L
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used to enforce the boundary conditions. Also, at the lowest point in the trajectory (h=0,
r=rs) the composite solution is equal to the inner solution and the flight path angle 7:(0,¢)

is zero. Thus, the value of g that corresponds to this point can be found from Eq. (3.61)
by equating it with zero, and then using the result in Eq. (3.62) to calculate the
corresponding value of ws. This point is illustrated in Fig. 3.2. Finally, ps and hence, the
reference radius rs, can be obtained by using wg and the relationships defined in Eq.
(3.43).
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Appendix C

Relationship Between the Zeroth
and the First Order Matching Conditions

The quantity R} (7) needed for the quadratures in Eq. (4.59) is given by Eq. (4.15)

R = =P, (D)fo(x(1),0) (o)
where x(7) satisfies Eq. (4.17). Therefore

R™ = =P, (=)fs(x(=),0) (C2)

where x}(7) and P (1) are the state and costate solutions along the inner characteristic

curve. The right side matching condition in Eq. (4.25) imposes a constraint that must be
satisfied by the inner and outer characteristic curves. That is

P} () fi(x3(),0) ="P;,(0)f5("x$(0),0) (C3)

where the superscript R is used in Eq. (C3) in recognition of the fact that the outer
characteristic curves are discontinuous at t=0. Noting that f; and f; are the same

functions and use of Eq. (C3) together with the matching conditions in Eq. (4.23) imply
that:

Py (=) ="P;,(0), Xy(e0) = "x3(0) (C4)
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A similar consideration of the left side matching conditions in Eq's. (4.54) and (4.56) leads
to the conditions:

P (—=) ="'P;.(0), x3(=e=) =x3(0) (CS5)

It can be seen that the inner and outer characteristic curves must also satisfy the MAE
matching conditions of Eq. (2.5). Thus it follows that the Euler solutions from a zeroth
order MAE analysis, as outlined in Section 2, serve as the characteristic curves along which
the quadratures in Eq. (4.59) are performed.
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