
N94-14634

A Neural-Network Approach to Robotic Control

D P W Graham and G M T D'Eleuterio

Institute for Aerospace Studies

University of Toronto

Abstract

An artificial neural-network paradigm for the control of robotic systems is
presented. The approach is based on the Cerebellar Model Articulation Con-
troller created by James Albus and incorporates several extensions. First, rec-
ognizing the essential structure of multibody equations of motion, two parallel
modules are used that directly reflect the dynamical characteristics of multibody

systems. Second, the architecture of the proposed network is imbued with a
self-organizational capability which improves efficiency and accuracy. Also, the
networks can be arranged in hierarchical fashion with each subsequent network

providing finer and finer resolution.

1. Introduction

The brain possesses a remarkable ability to learn and perform motor control functions

without the apparent need to write out elaborate differential equations. Researchers have long

been intrigued by this cerebral calculus and have made various attempts at replicating it. In an

age of robotics, not only has this goal been pursued with more vigor than ever before, but the
issue has also become of decidedly greater practical import.

After having had initially lost popularity, the concept of artificial neural networks has

experienced a renaissance and the field is now flourishing. Although many of the proposed archi-
tectures bear little resemblance to the biological structures that motivated them, they have been

successfully implemented in myriad applications from pattern recognition to real-time control.

In the field of robotics, one must deal with highly nonlinear systems which are in general not

easily amenable to analysis. While the basic dynamics of a system can be had with a modicum of

effort, accurate modeling of motor dynamics, joint friction, link damping and structural flexibility

is, at the very least, an arduous task. Yet model-based control relies on a model and when that

model is suspect one must rely on the robusmess of the controller.

Artificial neural networks offer another approach to control, a nonmodel-based approach.
Neural nets in particular have been demonstrated to be quite a viable strategy for robotic control.

One of the main attractive features of neural nets is that they can "learn." In the present context,
this means the ability to infer, through training, the dynamics of a robotic system including

nonlinear characteristics that may be difficult to model by even modern techniques. Neural nets

are furthermore inherently parallel, robust, fault tolerant and less susceptible to noise. Surveys of

I:=RECED_NE; PAGE BLANK NOT FILMED
221

neural-networkarchitecturesfor roboticapplicationshavebeenpresentedby KungandHwang
(1989),FreemanandKosko(1990)andLeeandBekey(1991).

In debatingmodel-basedcontrolvs. nonmodel-based control, it is important to observe that

the choice is far from binary. Rather, these two broadly described approaches can be considered

opposite ends of the same spectrum, a 'control' spectrum which is virtually continuous. Even

many control approaches traditionally considered model-based depend on system identification,

for example, which itself introduces an element of learning. Indeed, in many ways a neural-

network approach may be regarded ultimately as an extensive form of system identification. But
here too, there is much to gain by making a few simple and yet general observations about the
'model.'

This paper presents a new artificial neurai-network (ANN) paradigm for robotic control.

The architecture of the proposed network is founded on the work of Albus (1975, 1981) and it

attempts to encode very basic knowledge about the dynamics of robotic manipulators. Several
extensions to Albus's work are made including the development of a modular architecture of

cooperative networks specifically tailored for mechanical systems. Our network is moreover

given a self-organizing structure using the technique of Kohonen (1989). Finally, a hierarchy

of these networks can be established to provide progressively more accurate representations of
the system at hand. The theoretical development is complemented by simulation results showing

improvements in the control of robotic systems over existing comparable methods.

2. Foundations

Our aim in the present work is to develop an ANN schema for the modeling of the inverse

dynamics of a (rigid) multibody system that can be used in a computed-torque control procedure.

In essence, we seek an ANN representation of motion equations of the form

.Ad(q)_ + r/(q, (1) = fc (1)

where q represents the system degrees of freedom and fc is the column of (joint) control forces

and/or torques. The mass matrix .Ad(q) is configuration-dependent and r/(q, q) accounts for

nonlinear inertial forces such as Coriolis and centrifugal forces. Gravity effects and friction are

also assumed to be contained in r/.

Let us, however, begin by considering the more generic mapping f : :r H y where

x = col{x1,..., xN}. A relatively crude representation of f can be had by creating a 'look-up

table,' directly reminiscent of 'trig' and 'log' tables. Michie and Chambers (1968) used essentially

such a technique in their scheme, called BOXES, to control a broom-carriage system (an inverted

pendulum on a cart). The value in each 'box,' i.e., table element, was learned from the response

of the system to various force stimuli. The direct table look-up method, however, possesses

several problems. First, the number of table elements grows exponentially as the number of

input states increases. Second, information is not shared; that is, similar inputs should produce
similar responses, but with BOXES and other table look-up s_ategies the response for each set

of inputs must be learned separately.

222

Albus's CMAC

James Albus sought to remedy these shortcomings by developing his CMAC--Cerebellar
Model Articulation Controller. This architecture was motivated by the biological motor control

functions of the human cerebellum (Albus 1975, 1981). The basic concept can be best represented

diagrammatically for a two-dimensional problem (with inputs xt and x_), as in Figure 1. Instead
of using one layer of finely divided cells, essentially the s_ucture of BOXES, the CMAC employs

several overlapping layers of coarser cells with each layer progressively shifted relative to the

previous one. The example shown in Figure 1 displays four layers of coarse cells. To evaluate

the function f(xl, x2) in this case requires 'activating' four cells and summing their 'encoded
values.' This quantization process is an example of what are generally called coarse-coding

techniques (Rumelhart and McClelland 1988).

I.... i..... T

,!

i i I
___ I I-

• i I
.... i

&
-- "-'7----- I

!

m -t
• __L_

(

! t 1
' ,

...... i.............. : I •

.................... I

L

i
i

I

'1
I
i

i

Figure 1: Two-dimensional example of CMAC discretization. Shaded areas

represent the activated coarse cells for a point in the small black square.

As can be seen from Figure 1, the resolution attainable in this procedure is substantially

better (depending on the number of coarse-cell layers used) than the actual size of the coarse

ceils. Indeed, with four layers, the CMAC can achieve the same resolution as BOXES but with

only about one-third of the total number of cells. For larger problems, the savings factor could

be orders of magnitude with, of course, a comparable saving in required memory space.

Aibus moreover recognized that the entire input space is typically not necessary for ap-

plications to robotics. Hence, the coarse cells can be 'hashed' (randomlY assigned) to a smaller

223

numberof units,called'granule'cells.Thesparsenessof theactiveinputspacewill ensure(in
probabilisticterms)thatthe numberof collisionsin hashingwill benegligible.Thishashing
proceduremakesmoreefficientuseof theinputspaceandfurtherreducesmemoryrequirements.

In addition,the overlappinglayersin theCMACpermitthesharingof information.Re-
turningbrieflyto theexampleof Figure1,thevalueof f at any point must be reconsuucted by

the information (encoded value) contained in four coarse cells. However, evaluating f at a new

point in a neighboring fine cell will activate three of the previous four coarse cells. Thus, some
knowledge at the new point is already known from the learning done at the previous point. This

process is called 'generalization' and enables one to acquire knowledge over large regions of the

input domain by learning at only a relatively few points.

Although not done by Albus, the CMAC can be cast in the familiar ANN-like architecture

as shown in Figure 2. Each coordinate is finely discretized into "input units' and then coarsely
discretized, according to the shifted layers or grids of coarse cells, into 'receptive units.' The

receptive units activate a single coarse cell ('coarse cell unit') in each grid, which in turn can
be hashed to a reduced set of 'granule cell units.' Outputs from these units are weighted and

summed by the 'output unit' to yield the final output value. A complete description of this
architecture can be found in Graham and D'Eleuterio (1991a).

Fully Connected, Fixed Weights

............................Randomly Connected, Fixed Weights

.... Fulls/ Connected, Variable Weights

Output Value

t
Output Unit o

I
Granule Cell Units o o o o ...o

Coarse Cell Units oo...o oo...o ... oo...o
Grid 1 Grid 2 Grid k

Receptive Units OO...O OO-..O o,, OO...O ""
Grid 1 Grid 2 Grid k

-InputUnits o o ...o o o ...o

State 1 Value State 2 Value

oo...o oo...o ,,, oo...o
Grid I Grid 2 Grid k

0 0...0

State n Value

Figure 2: Architecture of the CMAC cast in the form of an ANN.

224

It is importantto notethatit is only thelast layerwhichcontainsvariableweights(i.e.,
theencodedvalues)thatmustbelearned.Therestof thenetworkcanbesaidto be'hard-wired'
or moreprecisely'hard-coded.'Learningis thereforequitefast,typicallyordersof magnitude
fasterthancomparablebackpropagationnetworks.

Mathematical Formulation

The CMAC concept can in general be represented mathematically as follows:

f(,_) = _ wo,/,.(,,,) (2)

where w_ are variable weights (encoded values) and g,t_(x) may be viewed as basis functions

or 'receptive fields.' Also, the notation f recognizes that the expansion (2) is in general only

an approximation to f. In a CMAC, _/,o(x) may be described as 'hyperbox' functions, i.e., they
would delineate the coarse cells:

a___ l, xo <x <x,.,,,(_) (3)¢,_(x)
(0, otherwise

where xo < x < X,ext(,) is to be read as xl,o < xl < Xl,ncxt(c_) "" " 3rN,o_ < XN < XN,ncxt(_).

Note that we must write x.,xt(_) instead of x,_+t, say, since we cannot index cellular divisions

consecutively in N-space; however, a functional relation, 'next(a),' can be defined. Another

example of possible basis functions are the Gaussian fields used by Moody and Darken (1989).

The learning rule, the well known Delta Rule, for wo can be expressed, for general _/,_(x),

as

where

Awo=
2_._ _'_t x)

_ f(_,) _ f(x) - E w,_g,,_(_,)

is the error in the mapping. For the basis functions defined by (3), the denominator

(4)

k -__ _(_,) (s)
fl

is the number of 'activated' cells and is furthermore constant; in fact, k is the number of coarse-

cell layers. Thus, we can define the 'learning rate' or "learning coefficient' as

A7
,, = - (6)

k

Note that in the CMAC architecture, the error is distributed uniformly among layers.

225

Application to Robotics

The CMAC was designed with manipulator control specifically in mind. An implementation

of the CMAC scheme in the control of a two-link planar manipulator has been performed by Miller

et al. (i987). The input.variables in this application were the joint angles, rates and accelerations
(19 = co1{01, 02}, 0, O). Two CMAC networks are used, each requiring all six inputs. The

outputs from networks are the two joint control torques.

The CMAC controller measures the state of the system (0 and 8) and a trajectory planner

determines the required acceleration (8) to drive the actual trajectory towards the desired trajectory

in a prescribed number of time steps. A position-error controller is superimposed onto the CMAC

controller to deal with any residual error as may arise from the CMAC discretization. The

position-error controller also provides nominal control during the initial learning phase. The
control system is displayed in Figure 3.

Neural Network Module

Learning

Torque

>

Processing

Trajectory

Planner 0.,=._ i_ Position-ErrorController

<
f

__"- RobotSimulation

Figure 3: Robotic control system that includes a single CMAC module.

_J

226

TheCMAC is taught by presenting data on input torques and the corresponding measured

state (plus joint accelerations) of the system. The CMAC is thus able to learn the inverse dynamics

of the manipulator without direct supervised learning. Miller et al. show that the CMAC can

learn to follow a path when presented with it only a few times. It was also found that the
CMAC architecture was able to handle multiple paths, noise, different cell sizes and learning

rates and it was able to adapt readily to changes in the manipulator's mass properties. Miller et

al. (1990) have also successfully implemented the CMAC controller on a five degree-of-freedom

manipulator.

3. Modular Architecture

The CMAC approach as developed by Albus and as implemented by Miller et al. does

not assume anything about a robotic system apart from the selection of the input variables. A

significant enhancement, however, can be achieved by making the merest note of the motion

equations. Rewriting (1) slightly, we have

/.t(q,/_) + v/(q, q)= fc (7)

(The purpose of doing this is to emphasize the fact that the structure of the first term is unimportant

in the following.) It should be underscored that (7) still represents the most general form of motion

equations for multibody systems.

Written as (7), it is clear that the equation of motion can be parsed into two distinct parts:

One being a function of only position and acceleration, and another of only position and rate. This
structure suggests a modular architecture consisting of two CMAC subnetworks, each defined on

a different subset of the augmented state (q, tl,/t) and, hence, each smaller than a single CMAC.
Unlike other modular networks (e.g., Jacobs et al. 1991), each subnetwork here operates coop-

eratively and on a different set of inputs. In addition to reducing the total memory requirements

when compared to a single-CMAC implementation, this 'divide and conquer' approach possesses

the very attractive feature that it captures the dynamical structure of a multibody system without

explicitly encoding the motion equations. In fact, setting 7/ = 0 would yield the linearized

equations of motion.

Learning Procedure

The problem in this architecture arises in learning. In application to a real robotic system,
we cannot assume the separate parts of the motion equation are available to us to enable the

modules to learn separately. Rather we would only have the total error produced by the network

(Graham and D'Eleuterio 1991b). Thus, a technique to distribute the error between the two
modules is needed.

In general, we can represent a modular architecture of cooperating CMACs as

= E E (s)
K

227

whereh"is themodularindexandx,, C span x. For the problem at hand, there are only two
modules which can be identified by t,: = /_ for the first (rate-linear) module and i< - r/ for the

second (rate-nonlinear) one. The proposed learning rule may be expressed as

Aw_,_ = vp_(x)_/,,_,o(z,_)Af(_) (9)

where A f(x) is the error given by the mapping (8) relative to the desired value and the 'gating

coefficients' pc > 0 satisfy

K

which assures that all the error is distributed although u can be adjusted to set the learning rate

separately.

For robotic systems, we propose the following heuristic for determining the gating coeffi-
cients:

P" -- oll#ll+ r011011' P"= ollOll+ r011011 (10)

where r_. and r 4 are fixed weighting constant. The ratio of these parameters is set here as the ratio
of the expected input limits of the joint rates and accelerations. An algorithm to determine the

gating coefficients using reinforcement learning is under development (McGuire and D'Eleuterio
1992).

4. Self-Organized Hierarchical Architecture

Thus far, we have implied that the size and spacing of the coarse cells as well as the number

of coarse-cell layers are fixed and moreover regular. However, there is ample reason to investigate

the choice of these parameters and indeed the manner in which they may be changed. A trade-off
exists, for example in the selection of the size of cells: Smaller cells may increase resolution at a

cost of generalization; larger cells may overgeneralize and reduce resolution. A delicate balance

must be struck. Miller et al. (1990) suggest that a broad range for these parameters exists that

permits successful learning. In the spirit of artificial neural networks, it would make for an

effective approach if, for example, the cell size and position could be automatically organized

according to the input training data.

Several self-organizing neural networks have attempted to capture and exploit the spatial

distribution of input data. The 'locally tuned network' by Moody and Darken (1989) and the

'self-organizing network' by Kohonen (1989) are two such approaches. Both are statistically
based and organizes the neurons only: learning is a separate step.

One technique that uses differently sized cells is offer by Moody (1989). In this approach,
levels of progressively finer CMACs are employed. The first CMAC uses coarse grids and is

allowed to learn over the entire input space. Once this learning has achieved a precision within
a prescribed tolerance level, the weights of this CMAC are fixed. A second CMAC with a finer

grid is then added and learning continues, adjusting only the weights of the second CMAC. This

procedure is repeated as required until the resulting hierarchy provides the desired resolution.

228

A disadvantageof thetechnique,however,is thatsubsequentgridsmustspantheentireinput
space.As aconsequence,thenumberof coarsecell unitsneededgrowsexponentiallywhichin
turn increasesthenumberof granulecellunitstopreventinterferencethatmayoccurbecauseof
hashing.Also,thecell sizesof subsequentlayersmustbespecifieda priori.

Cell Organization Based on Kohonen's Network

Motivated by these efforts, we now present a concept for a self-organized hierarchical

architecture compatible with the modular architecture described earlier and based on the CMAC

network and Kohonen's self-organizing network (Graham and D'Eleuterio 1991c). Kohonen's

network is well-suited to this application because of its simplicity and its nonoverlapping cell
structure.

For explanatory purposes, let us consider a one-dimensional case. The Kohonen cells are

precisely the fine cells which result from the overlapping coarse cells. Each cell, designated On,
has associated with it a real-valued weight v_, which is the position of the cell as measured from

some reference point to the center of the cell. Without loss in generality, the weights can be

ordered such that v,_ < Vn+l. Our objective is to change gradually the position of the cells to

reflect the probabilistic distribution of the input variable and thereby render the structure of the

CMAC more efficient, providing greater accuracy in regions of the input space which is likely to

display more activity.

Now consider a sample input value x. The cell that is 'activated' Op is, in general, the

one whose weight most closely matches to the input value. In this case, it is the cell which is

closest in distance to x. This 'winner take all' activation can be represented by

tx- Vpl = min Ix- v,_ I (11)

where vp is the weight of the activated cell. A neighborhood of cells ._cp, centered on Op, that
is,

Alp= {Or_r,..., Op,..., Op+,.} (12)

where the index r is a 'radius of activation,' is selected for weight adjustment. This adjustment

is accomplished as follows:

Av,_ = 0, otherwise

where the learning rate _ is chosen between 0 and 1. Both the learning rate and the radius of

activation are gradually decreased to zero which allows the Kohonen network to converge to a
stable, ordered distribution of cells.

As desired, the effect of (13) is to redistribute the cells incrementally with each input datum.

Each new input value essentially acts as a magnet drawing the cells in a given neighborhood

slightly towards itself. Repeated over a set of input data, the resulting distribution will bear the

statistical signature of the input space.

229

An exampleof theresultof Kohonenself-organizationis givenin Figure4. This is a

cross-section of the fine (joint angle) discretization used for a two-link robotic arm. The training
data was distributed normally.

Multiresolution

Following Moody (1989), a further enhancement that can be made to the present technique

is to stack subsequent CMAC modules with progressively finer grids. With each additional CMAC,

the weights of the previous one would after sufficient learning be fixed. But instead of having

to span the entire input space with these subsequent CMACs, the self-organizing results afforded

by Kohonen's network permit us to identify those regions of greatest activity in the input space

and thereby restrict subsequent CMACs to selected areas. Of course, Kohonen self-organization

can be implemented with each CMAC.

¢...

_o.

r_ --_

"1

tO O

m.

f_

v

&
.A

--<

I
.... I I t I I ' g'TI I I

-3 -2 -1 0 1 2 3 4

Joint 1 Angle (radians)

Figure 4: Cross-section of redistributed (fine) cells for a two-link manipulator

after training on 1,000 normally distributed random samples

(Mean: 0, Standard Deviation: _ of input range).

230

5. Simulation Results

We refer to the architecture resulting from these enhancements to the CMAC architecture

as MOVE--Manipulator Operation using Value Encoding. We now present computer simulation

results demonstrating the performance of MOVE and comparing it to the CMAC. The strawman

system investigated here is the two-link manipulator used by Miller et al. (1987).

Modular Architecture. We begin by comparing MOVE, consisting only of the modular-

architecture enhancement, with a single CMAC. Each variable is evenly discretized into 100 units

and, to promote a reasonable amount of generalization, 30 layers (grids) of coarse cells are used.

The single CMAC possesses 18,000 granule cells for each joint while each module in MOVE

has 9,000 granule cells. Thus, the total memory requirements for each system are the same. A

learning factor of 3' = 0.6 was used.

For the first test, 100,000 uniformly distributed random sets of input data (/9,/_, 0 and

corresponding .fc). served as training data. For every set of 100 input samples, the networks

were permitted to learn at only that sample which produced the worst error in the joint torques.

Thus, actual learning was done on only 1,000 input samples. The average RMS error in the

torques, however, was computed on each set of 100 samples. The results are plotted in Figure
5. As can be seen, not only does 'modular' MOVE learn significantly faster but it yields a lower
final error.

3OO0

250O

2000
C7"

_, 1500
uJ
u3
:_ 1000
at"

5OO

""x

I-O," CMAC
........... I 0,- CMAC

I-0," Modules

-- 0,- Modules

...... •....... ""--- - i .
" • "" ",-"'v

200 4oo 6o_ aoo looo

Iteration

Figure 5: Comparison of learning trends of the CMAC and
the modular version of MOVE.

The second test compares the CMAC and modular MOVE in a simulated control environ-

ment. For MOVE, the neural-network module in the control system of Figure 3 is replaced by the

231

modulararchitectureof MOVErepresenteddiagrammaticallyinFigure6. Representativecontrol
results,basedontherandom-samplelearningexplainedabove,areshowninFigure7. TheRMS
error,ascomputedoverthe lengthof thetrajectory,were0.32radfor theCMACand0.10rad
for modularMOVE.

NeuralNetworkController

Learning

Rate-Linear
Torque

No_line..arTerr_

TO_lue

f

Processing

Figure 6: Neural-network module using modular MOVE

CMAC (0.32)
2

..........i_J'=,'..............I
J _-.-..'....'..I

1.5

1

E- 05 'Tr i............. i"/- T'"_'i'""" .""O

Ill '_ _' i : I i :"oI--............
.s i .i'.i........i r "

I d_ i r_ _ _N i I

I-7
-2 ..:i............._:..........2

-2.5;.............i..............-'............._...---'----.,÷............
i _ i ! i

0 1 2 3 4 5 6

Time (secondo]

_" 0.5

x3 0
I
.._e 43.5

o -1.s

Cooperating Modules (0.10)

2 i _

il-- deairoCl I1.5 -_1--,,-_'o,,o,-,,,,,,:,

1 _'.............1........................... ':............. '

_ I.....i;,.i,.. i...................e_.....i;
i

.! I,_'_ : / ! ,

......._! _"! "/'"""iT.... _-qT...........i............. T!............
...... "........... ; "I _............. _

•.M.........:_O........../-\i.............I...........

-2 7[......................................., , ..: !"'"2
-2.5 " ;............."............. "_'"-'"_'"'_ = '_ ':

i ! i i i

._ =,,=1 I I I

0 1 2 3 4 5 6

Time (seconds)

Figure 7: Comparison of control for CMAC and
the modular version of MOVE

232

Self-Organized, MulUresoluUon Hierarchical Architecture. The hierarchical architec-

ture of MOVE for self-organization and multiresolution was demonstrated and evaluated inde-

pendently of the modularity enhancement. The neural-network module in the control system of

Figure 3 in now replaced by the module in Figure 8. Two levels of CMACs are used in this

example. The first level is trained on 1,000 normally distributed input samples (with zero mean

and standard deviation of one-sixth of the input range). The weights of this level are then fixed
and the second level is trained on a further set of 1,000 input samples.

Figure 9 shows the control results for a representative trajectory. The single CMAC, whose

results are shown for comparison, was trained on all 2,000 input samples. The plots show the
absolute errors in tracking for the two joints separately. The RMS error over the entire trajectory

for both joints was 0.016 rad for the single CMAC and 0.011 rad for 'multiresolution" MOVE.

Neural Network Module

Learning

• "!total

Procesdng

Figure 8: Neural-network module using self-organized, multiresolution
hierarchical architecture of MOVE

6. Concluding Remarks

The basic concepts introduced by Albus in his CMAC provide a sound foundation for an

artificial neural-network approach to the control of robotic systems. The enhancements incor-

porated in MOVE significantly improve on the performance of a CMAC robotic controller. The

modular architecture of MOVE anticipates the form of the dynamical equations. By recognizing

that all mechanical systems share this simple yet basic form, an appropriate structure can be

233

imposedonMOVEwithoutcompromisingits applicabilityto robotics.This 'divideandconquer'
techniqueresultsin fasterlearningandmoreefficientuseof memoryspace.

Thegeneralizationpropertyintrinsicto theCMAChasbeenenhancedby implementinga
self-organizationschemebasedontheKohonennetwork.Thisself-organizationenablesthecells
in a CMACto arrangethemselvesaccordingto thestatisticaldistributionof thetrainingdata.
Furthermore,by creatinga hierarchyof self-organized,multiresolutionCMACs,onecanalso
improveaccuracy.Thishierarchicalarchitecturehasbeensuccessfullyemployedin themodeling
of chaoticsystemsaswell.

a) Desired Trajeclory

2

1.5

"_ 1
E

.__

0.5

_ o

_ 43.5

-1

-1.5

t ,,..........._........;._.F...,..<.....,.............t.............",............

: I ; _ ! **............ ".,i "L...O.....;
[_' i i ".i. 2 i

t" "r "+ ! ? ' "

i •
,, , ! } : •

! | ! _ :

............ i i'-

: !

0 1 2 3 4 5 6

Time (seconds)

b) JoinlI Errors c) Joint 2 Errors

0.016

._ 0.014

0.012

0.01

0.006

0.004
o

< O.OOz

i . ou,,,.os]t
..........................-.......................[- .CMAC

............................'..............................i.....l_t...n....

i '_ i i,,_J_ ia ".............]........................i'r Id ji,
i , i ",_,i q HI_I_I

A
........ Iz_,-..-.4 _....... lid;

• t_[........................... ._............

_) _ :

......,;i..............i......,I:'

0 1 2 3 4 5 6

Time (seconds)

0.035

0.03

. 0.025
0.02

0.015
I-

. 0.01

0.005

I'

• i

0

_[--Multil_esl
I..._.......-[.............._.-..-.,-'1-.CMAC I1

i _ , I.________ I

.tr---"÷........._4. ""'t_........t""i.............
, ,,"i'_, : ,' J 1

It II i III t|l , " I...................I

' -................. i...........F"_ -

i i I '_
........ i........ _"....

2 3 4

Time (seconds)

5 6

Figure 9: Comparison of a single CMAC and the self-organized, multiresolution

hierarchical version of MOVE for a given trajectory.

234

It is evidentthat theconceptof artificialneuralnetworksholdsconsiderablepromise
in the field of robotics.Neuralnetworksallowusto dispense,at to leastsomeextent,with
carefullyconstructedsystemmodels.Theymoreoverpossessa characteristichighlydesirable
in theindustrialworkplace,thatof beingableto adaptto graduallydeterioratingsystems.For
example,the dynamicsof a newroboticmanipulatorwill notbethesameasthedynamicsof
thatsamemanipulatorwhenit is older.Butneuralnetworkscontinuallylearn,continuallyadapt.

There-emergenceof artificialneuralnetworksalsoresonateswithanothercurrenttrend--
thatof parallelprocessingincomputertechnology.Likethebrain,neuralnetworksareinherently
parallelwhich is of coursea very desirablefeature,particularlywhenconsideringreal-time
implementation.A hardwareversionof the the CMACarchitectureis alreadycommercially
availableandDiNardoandGraham(1992)haveinvestigatedtheperformanceof MOVEon a
paralleltransputerplatform.

The MOVEartificialneural-networkarchitecturealsoexhibitsconsiderablepotentialin
otherroboticapplicationareassuchvision,patternrecognitionandanalysis,sensorfusion,and
flexiblemanipulatorsaswell asa multitudeof nonroboticapplications.

Acknowledgements

This research was supported by the Natural Science and Engineering Research Council

of Canada, the Institute for Robotics and Intelligent Systems, and the Institute for Space and
Terrestrial Science.

References

ALBUS J.S., "A New Approach to Manipulator Control: Cerebellar Model Artictdation Controller
(CMAC)," ASME J. Dynamic Systems, Measurement, and Control, September 1975, pp. 220-
233.

ALBIJS J .S., Brains, Behavior, and Robotics, BYTE Publications, 1981.

DINARDO G.D.M. & GRA,AM D.P.W., "The Efficiency of the MOVE Artificial Neural Network
Architecture on a Multi-Transputer Platform," Seventh CASI Conference on Astronautics, Ottawa,
ON, 4-6 November 1992.

FREEMAN W. _: KOSKO B., "CHAIRs," 1990 International Joint Conference on Neural Networks, San
Diego, CA, June 1990.

GRAHAM D.P.W. & D'ELEUTERIO G.M.T., "MOVE--A Neural-Network Paradigm for Robotic
Control," Canadian Aeronautics and Space Journal, Vol. 37, No. 1, March 1991a, pp. 17-26.

GRAHAM D.P.W. & D'ELEUTERIO G.M.T., "Robotic Control Using a Modular Architecture of Co-

operative Artificial Neural Networks," 1991 International Conference on Artificial Neural Networks,
Helsinki, Finland, 22-26 June 1991b.

235

(3 RAHA M D.P.W. & D'ELEUTERIO (3. M.T., "A Hierarchy of Self-Organized Multiresolution Artifi-
cial Neural Networks for Robotic Control," 1991 International Joint Conference on Neural Networks,

Seattle, WA, 8-12 July 1991c.

JACOBS R.A., JORDAN M.I., NOWLAN S.J. (_ HINTON (3.E., "Adaptive Mixtures of Local Experts,"

Nettral Computation, Vol. 3, No. l, 1991.

KOIIONEN T., Self-Organization and Associative Memory, 3rd Edition, Springer-Verlag, 1989.

KUNG S-Y. AND HWANC J-N., "Neural Network Architectures for Robotic Applications," IEEE

Transactions on Robon'cs and Automation, Vol. 5, No. 5, October 1989, pp. 641-657.

LEE S. & BEKEY G.A., "Applications of Neural Networks to Robotics," Control and Dynamic

Systems (C.T. Leondes, ed), Volume 39: Advances in Robotic Systems, Academic Press, 1991.

McGUIRE P.F. & D'ELEUTERIO G.M.T., "Active Control of Interference in CMAC/MOVE Neural

Networks for Robotic Applications," Seventh CASI Conference on Astronautics, Ottawa, ON, 4-6
November 1992.

MlcHm D. & Cr_AMBERS R.A., "BOXES: An Experiment in Adaptive Control," Machine Intelli-

gence 2, (Dale E. & Michie D., eds), Oliver and Boyd, Edinburgh, 1968, pp. 137-152.

MILLER III W.T., GLANZ F.H. & KRAFT III L.G., "Application of a General Learning Algorithm

to the Control of Robotic Manipulators," International J. Robotics Research, Vol. 6, No. 2,

1987, pp. 84-98.

MILLER III W.T., HEWES R.P., GLANZ F.H. & KRAFT III L.G., "Real-Time Dynamic Control

of an Industrial Manipulator Using a Neural-Network-Based Learning Controller," IEEE Transac-

tions on Robotics and Automation, Vol. 6, No. 1, February 1990.

MooDY J., "Fast teaming in Multi-Resolution Hierarchies," Research Report YALEU/DCS/RR-691,

February 1989.

MooDY J. & DARKEN C., "Fast l.e,aming Networks of Locally-Tuned Processing Units," Research

Report YALEU/DCS/RR-654, March 1989.

RUMMmLttART D.E. _ MCCELLANO J.L., Parallel Distributing Processing, MIT Press, 1988.

236

