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Summary

Mathematical formulations of vibrational relaxation are derived from first principles for
application to fluid dynamic computations of hypersonic flow fields. The highlights include
the following: (1) a demonstration that fast near-resonant vibrational-vibrational (V-V) energy-
transfer collisions support the assumption of a vibrational temperature, at least for a single-
species gas; (2) the identification of vibrational-translational (V-T) collisions as having sole
responsibility for the equilibration of vibration and translation after a strong initial jolt places a
gas in a highly nonequilibrium state; (3) the derivation of an improved vibrational relaxation time
for use in the vibrational temperature equation; (4) a demonstration that vibrational relaxation
times appropriate for temperature equations are very different from those appropriate for energy
equations when the difference between translational and vibrational temperatures is large; and
(5) a demonstration that linearized models are generally valid only in the energy representation
of vibrational relaxation.

Introduction

Computational fluid dynamics (CFD) of highly nonequilibrium real gases is an area of
primarily theoretical research that is) critically important to the design and performance of
hypersonic vehicles. Examples

'
include aerobraking of entry vehicles, aeroassisted orbital transfer

vehicles, and the National Aero-space Plane. Although work in this area began at least as early
as the 1960's, with many significant advances in subsequent years, comprehensive validated
models still do not exist.

Serious modeling difficulties, which appear at almost every turn, range from uncertainties
in the mathematical formulations of fundamental relaxation processes to uncertainties in such
CFD input data as transport coefficients, rate coefficients for chemical reactions, and relaxation
times. Questions also arise with regard to the use of different temperatures for the different
energy modes of the constituent species of a gas in order to reduce the number of quantum
states to a practical size that otherwise would have to be treated individually. Potential problems
with this practice, which is more or'less in the general spirit of the methods of nonequilibrium
thermodynamics (ref. 1), are especially acute in the usual restriction to just two temperatures
(refs. 2 and 3), one for the translational and rotational.modes of all molecules and the other for
free electrons and all vibrational and electronic excitation modes. Rapid and efficient coupling
mechanisms clearly must operate for such assumptions to be valid. A history, survey, and partial
resolution of some of the issues pertaining to this extremely complex problem area are given by
Park (ref. 2).

The purpose of the present, very limited study is to provide a more physically credible
mathematical representation of the equilibration of translational and vibrational motions of
diatomic molecules after a strong hypersonic compression deposits sufficient energy to raise the
translational or random temperature of the ambient, low-pressure (high-altitude) atmosphere to
tens of thousands of degrees Kelvin. Because conventional fluid mechanics, as described by the
Navier-Stokes and constitutive equations, is supported by Enskog's perturbation solution to the
Boltzmann equation only for small departures from equilibrium (ref. 4), an immediate concern
is how to describe the highly nonequilibrium initial situation encountered here.

As previously mentioned, a standard approach is to introduce a vibrational temperature (Tv)
and allow it to approach the translational temperature (T) as the gas proceeds downstream

` into the shock layer (refs. 2 and 3). This additional thermodynamic parameter Tv imposes
two requirements on theoretical models of the flow field: (1) demonstration in derivations
or applications of the models that mechanisms exist and operate to achieve instantaneous
Boltzmann distributions of the populations of the vibrational levels (otherwise, the Tv concept



is not justified); and (2) introduction of a differential equation for T„ to allow its temporal and
spatial evolution to be dictated by the laws of physics.

These two modeling requirements, neither of which is satisfied in a totally compelling manner
in the current literature (as will be shown), are the primary foci of the present paper. Their
importance to hypersonic aerothermodynamics cannot be overemphasized because what happens
within and immediately behind a shock wave sets the tone everywhere in the shock layer. For
example, the rates at which translation and vibration equilibrate and whether dissociation occurs
early in the flow may determine, to a significant extent, the nonequilibrium overshoot of the
radiation field produced downstream and the subsequent radiative heat load of the hypersonic
vehicle. Failures of current CFD codes to meet either or both of these modeling standards could
explain some of the major discrepancies found between predicted radiative heating and flight
data (ref. 5). We must emphasize, however, the danger of jumping to conclusions based on the
results of an analysis of just one aspect of such a complex problem.

Other features not considered here, like the rapid diffusion caused by the immense gradients
in hypersonic shock waves, may well mask the effects of moderate to fairly large changes
in relaxation times. Orders-of-magnitude reductions in the times generally used for the
equilibration of the vibrational and translational temperature may be required (and, in fact, we
show that they may occur) to make that process operative on the short time scale established
by diffusion for the existence of gas parcels within the peak-temperature region of a shock layer.

The approach used in this study includes the following steps: (1) detailed derivations from
first principles (meaning rate equations for populations of individual vibrational levels) of
vibrational relaxation times and combination rules; (2) identification of mechanisms for achieving
vibrational temperatures; (3) identification of the proper roles of vibrational-translational (V-T)
and resonant vibrational-vibrational (V-V) energy exchange collisions; and (4) comparisons with
existing formulations, especially the two-temperature CFD code of Gnoffo, Gupta, and Shinn
(ref. 3) and Park's diffusion model (ref. 2).

Symbols

a	 = exp(—O/T)

a	 = exp(—O/Tv)

as	 = exp(—Os/T) for molecular species s

as	 = exp(—q5g/Tv) for molecular species s

av = eXP[ — (Ev+l — Ev)/kT]
av/ = exp[—(Evi+1 — Ev')/kT]

CV, v (TV ) vibrational heat capacity per molecule at constant volume averaged over all
molecular species, J/K

Cv,v (TV ) vibrational heat capacity per molecule at constant volume for molecular
species s, J/K

(Cv v) vibrational heat capacity per molecule of species s at constant volume
averaged over temperature range from Tv to T, J/K

Ev energy of vibrational level v, J

Eve energy of vibrational level v^, J

evs(T or Tv) average vibrational energy per unit mass of molecular species s evaluated
at T or Tv, J/kg
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G	 supply term for vibrational energy (including effects of diffusion, thermal
conduction, and recombination or dissociation events), J/m3-sec

h	 Planck's constant, 6.626 x 10 -34 J-sec

K	 rate coefficient K(10, 00), m3/sec

K(v, v^)	 effective rate coefficient for v	 v/ vibrational transition, m3/sec

K(vv", v'v...	 detailed rate coefficient for v	 v/ vibrational transition of molecule
in question upon colliding with like molecule that undergoes v/1 —+ v//I vi-
brational transition, m3/sec

Ksa	 rate coefficient for 1 --> 0 vibrational transition of molecule of species s upon
colliding with atom of species a, m3/sec

Ksj	 rate coefficient for 1 -+ 0 vibrational transition of molecule of species s upon
colliding with particle of species j; equals Ksa if j = a and equals Ksj (10, 00)
if j is a molecule of species j, m3/sec

k	 Boltzmann constant, 1.380622 x 10 -23 J/K

ms	 mass of molecule of species s, kg

n	 total number density of molecules in single-species gas, m-3

nj	 number density of particles of species j, m-3

nm	 total number density of all molecules in gas mixture, m-3

ns	 total number density of molecules of species s, m-3

nsv	 number density of s-species molecules in vibrational level v, m-3

nv
.

number density of molecules (single-species gas) in vibrational level v, m-3

nv equilibrium number' density of molecules (single-species gas) in vibrational
level v and evaluated at T, m-3

Qv(T) vibrational partition function for single species

Qv(TV ) vibrational partition function per s-species molecule

T translational and rotational temperature, K

Tv vibrational temperature, K

t time, sec

U flow velocity vector, m/sec

v, v^, v	 v vibrational quantum number

XS defined in equation (B1)

a ratio K(20, 11)1K of rate coefficients for resonant vibrational-vibrational and
nonresonant vibrational-translational energy-transfer collisions

y nondimensional time (y = Knt)
V oscillator frequency of low-lying vibrational levels of diatomic molecules in

single-species gas, sec-1

VS oscillator frequency of low-lying vibrational levels of s-species diatomic
molecules, sec-1
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dummy variable

Pm	 total molecular mass density, kg/m3

Ps	 mass density of s-species molecules, kg/m3

PV	 = nvnv

PV/	 = nvi /nvi

T	 average vibrational relaxation time (also called Tt ), sec

T^	 Landau-Teller vibrational relaxation time for single-species gas of diatomic
molecules, sec

Te	 energy version of average vibrational relaxation time (measures translational-
vibrational energy equilibration rate), sec

TS	combination vibrational relaxation time for s-species molecules resulting
from collisions with all particles (also called T' if gas is single species), sec

Tsj	 vibrational relaxation time for s-species molecules resulting from collisions
with particles of species j, sec

Tsv	 vibrational relaxation time defined by equation (35), sec

Tt	 temperature version of average vibrational relaxation time (measures
translational-vibrational temperature equilibration rate), sec

Tv	 vibrational relaxation time defined by equation (61) in reference 3

characteristic temperature (hv/k) of diatomic molecules in single-species gas,
K

^S	 characteristic temperature (hvs /k) of diatomic molecules of species s, K

operator

Subscript:

r	 only relaxation effects included

Abbreviations:

CFD	 computational fluid dynamics

V-T	 vibrational-translational

V-V	 vibrational-vibrational

Vibra-.?.ona1 Energy Equation

Conventional two-temperature models (ref. 3) of hypersonic flow fields assume that a single
vibrational temperature (Tv) describes the vibrational population distributions for all molecular
species in the gas. In particular, mechanisms are assumed to operate that instantaneously
establish not only Boltzmann distributions for each species but somehow also couple the species
to each other in this sense. The current study addresses the first of these requirements in a
subsequent section, but not the second which may occur only after the production by ionization
processes of sufficient electrons to act as effective coupling agents. Park (ref. 2) qualitatively
discusses this and other roles of free electrons.

j1
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The differential equation for the temporal and spatial evolution of Tv can be written (ref. 4,
p. 505; also ref. 3) as

nm Cv,v (Tv) Dv = nm 
Cv1,v 

(Tv) (T — Tv) + G	 (1)

where D/Dt is the substantial derivative (a/at) + u • V, u is the flow velocity, nm is the number
density of all molecules, T is the translational temperature describing random motion, -r is an
average vibrational relaxation time to be determined, G is a supply term for vibrational energy
(including the effects of diffusion, thermal conduction, and recombination or dissociation events),
and C,,,z,(T,) is an average vibrational heat capacity per molecule at constant volume satisfying

	

nm Cv,v(TV) _	 n  Cv,I(TV)	 (2)
s=mot.

in terms of quantities pertaining to molecular species s.

An important feature of equation (1) is the assumption that the rate of change of Tv caused by
vibrational-translational (V-T) energy-transfer collisions satisfies the Landau-Teller relaxation
form (ref. 6)

	

I1/ 
9Tv 1

1
	 T — Tv	

(3)

	

\ at / r	 T

The subscript r stands exclusively for this relaxation process.

As straightforward and simple as equations (1)—(3) may appear, they nevertheless are loaded
with uncertainties about mathematical form and what to substitute for the various parameters.
Not the least of the difficulties is the proper choice of -r, which is ordinarily regarded as a function
of T (and specifically not Tv) on the basis that collision frequency and relative collision velocity
are the controlling factors for energy exchange between modes. However, this argument is
predicated on equation (3) being correct in the sense that it displays T in just the right relation to
everything else; otherwise, -r will not have the physical interpretation necessary for the argument
to hold. One need only recall the circumstances of Landau and Teller's derivation of equation (3)
to appreciate the dangers involved here. They treated the propagation and absorption of small-
signal sound waves, not the properties of hypersonic shock layers. Because there is no reason to
expect a linear dependence on temperature difference in highly nonequilibrium situations, the r
in equation (3) may have to be a function of both T and Tv to compensate for a physically poor
mathematical formulation of vibrational relaxation.

Vibrational Rate Equations

Further insight into the character of T can be gained by considering rate equations for the
populations of individual vibrational levels. To the extent that diatomic molecules can be
regarded as linear harmonic oscillators, the first term on the right-hand side of equation (1)
becomes

nm Cv (Tv) (T — Tv) _	 Oskv 
(arty /	

4

	

s=mot. v	 r	 ( )

T 

where k is Boltzmann's constant, nsv is the number density of s-species molecules in vibrational
level v, 0s is the characteristic temperature hvs/k of s molecules (0s = 3352 K for N2), and
the partial derivatives satisfy conventional rate equations. We have ignored the vibrational
zero-point energy by12 because only energy differences and derivatives of energy are physically
meaningful.
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For initial purposes, to be generalized later, the gas is considered to be a single species. The
first step in writing rate equations for nv is the introduction of the effective rate coefficients

n K (v, v') =

	

	
i n

v/t K (vv", vv")	 (5)
v" v/"

1
for molecules making vibrational transitions from v to v' as a result of collisions with other
molecules. Each K(v, v') is a weighted sum over the more detailed rate coefficients K(vv", v'v'")
showing the specific v'-to-v"'transitions of the collision partner. The prime on the summation
sign indicates that terms like K(v, v + j; v + j, v) are to be ignored because they leave the
vibrational states of the colliding molecules unchanged overall and thus cannot contribute to
equations specifying the rates of change of the populations of individual levels.

Several relations can be imposed to reduce the number of detailed rate ,coefficients, and they
are listed as follows: (1) K(vv", vv") = K(v0, v0) on the assumption that the vibrational state
of the collision partner is irrelevant if it does not change; (2) no quantum jump exceeding one level
per molecule per collision (exact dipole selection rule for linear harmonic oscillators and perhaps
not too bad for anharmonic oscillators, except for very large v); (3) no change in combined vibra-
tional quantum number exceeding unity per collision because transition probabilities decrease
rapidly with increasing inelasticity of collisions; and (4) K(v0; v + 1, 0) = av K(v + 1, 0; v0)
from detailed balancing, where

av _= exp	 (Ev+l — Ev)	 (6)
U

and Ev is the energy of level v. A detailed discussion of the rationale for applying detailed
balancing to nonequilibrium gases is given in appendix A.

For illustrative purposes and to set the stage fora later special application, we apply
equation (5) and the relations between detailed rate coefficients to a gas of four-level molecules.
The results are given as

K(0,1) = ap K(10, 00) + n2 K(02,11) + n K(03,12)	 (7)

K(1, 0) = K(10, 00) + nl K(11, 02) + n K(12, 03) 	 (8)

K(1, 2) = al K(20,10) + nl K(11, 20) + n K(13, 22)	 (9)

K(2,1) = K(20,10) + no K(20,11) + !L2  K(22,13)	 (10)

K(2,3) = a2 K(30,20) + nl K(21, 30) + n K(22,31) 	 (11)

K(3,2) = K(30, 20) + n K(30, 21) + nl K(31,22) 	 (12)

all of which can be generalized (no restriction on the number of levels) to

K(v, v + 1) = av K(v + 1, 0; v0) + 1
	

/nvi K(vv ; v + 1, v' — 1)	 (13)
V/

K(v + 1, v) = K(v + 1, 0; v0) + n J:' nvi  K(v + 1, v' — 1; vv)	 (14)
V/
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Primes on the summation signs have the same meaning as before. Note the two kinds of energy-
exchange processes in equations (13) and (14). Even though the first term in each expression
represents a V-T collision, those summed over are near-resonant V-V with minimal change in
the translational energy of a colliding pair.

Rate equations are formulated from the K(v, v) coefficient according to

n (2t ) r = E [K (v', v) nvi — K (v, v') nv]
V/

= K(v — 1, v) nv- 1 — K(v, v — 1) nv + K(v + 1, v) nv+1 — K(v, v + 1) nv

= nv-1 1 av-1 — nv ) K(vO; v — 1, 0) — nv ^av — nv+1) K(v + 1, 0; v0)
\	 nv-1	 nv

+ 1 ^ 1 nv^ 
Inv-1 (a,—Inv/+, .

nv ) K(vv; v — 1, v'+ 1)
n	 L 	 a in r	 nv-i

v	
v

—nv
 ( aann+l — nn 1. ) K(v + 1, v ; v, v + 1)

J
	(15)

v v	 v

Detailed balancing (see appendix A) is used on the near-resonant V-V rate coefficients in
equation (13) to obtain this form.

An interesting first application is given to the aforementioned four-level molecules regarded
as linear harmonic oscillators so that the relations (ref. 7)

K (vv'; v — 1, v') = v K (lv , Ov")	 (16)

and

K (v — 1, v; vv") = v K (Ov, Iv")	 (17)

are satisfied. These expressions yield

K(20,11) = 2K(10, 01)

K(12,03) = 3K(10, 01)

and

K(31, 22) = 2K(30, 21) = 6K(10, O1)

for V-V collisions, whereupon
K(12,03) = 1.5K(20, 11)

and

K(31, 22) = 3K(20,11)

Equation (15) then becomes

y	 Kn 
( !^

at
n j 

)T - ano - (1 + 2a) n1 + 2n2 +
2n
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[4 I npn2 - n2) + 3 (npn3 - n1n2) - 6 nln3 - n2)] 
(18)

Kn ( n2) - 
2an1-(2 + 3a) n2 +3n3— 2n [2 I npn2 - n2) - 3 (npng - nln2) - 12 1 nln3 - n2)

J (19)
at r
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and

Kn ( at ) T 
= 3 (an2 — n3) — 2n L(nOn3 — n1n2) + 2 (n ln3 — n2),	 (20)

if K = K(10, 00), a = K(20, 11)1K, and a. 1 = a = exp(—O/T) for all values of v.

Equations (18)—(20) were solved numerically for the problem of a static low-temperature N2
gas (nl = n2 = n3 = 0 initially; n = no + nl + n2 + n3 = Constant) that is suddenly jolted to
a fixed translational temperature T of 33 520 K. The resulting density ratios n2 /nl and n8/n2
are plotted against nl /no in figures 1 and 2 for a four-level diatomic gas and as a function of
the ratio a of rate coefficients for resonant V-V and nonresonant V-T energy-transfer collisions.
Here, dimensionless time (y = Knt) increases diagonally upward and to the right from the
origin and eventually reaches the point at which translation and vibration are fully equilibrated
according to the second law of thermodynamics. A straight line of slope unity in each case
represents instantaneous realization at every point of a Boltzmann distribution of populations
of vibrational levels, which is seen to occur only for sufficiently large values of a. Otherwise, the
upper levels are relatively overpopulated by the jolt that generates the highly nonequilibrium
initial conditions. Because a is expected to be large on the basis that resonant V-V collisional
energy transfers (no change in the total translational energy of a colliding pair) are generally
much easier than nonresonant ones (see, for example, ref. 2, p. 61), this analysis seems to justify
the concept of a vibrational temperature (T, J ) being established on a very short time scale
compared with that of intermodal equilibration.

Figure 1. Ratio of populations of second vibrational
level to first excited vibrational level plotted against
ratio of populat ;gins of first excited vibrational level
to ground-stag: vibrational level.

Figure 2. Ratio of populations of third vibrational level
to second excited vibrational level plotted against
ratio of populations of first excited vibrational level
to ground-state vibrational level.

Relative Roles of V-V and V-T Energy-Transfer Processes

Having identified near-resonant V-V collisions as the agents for establishing and maintaining
vibrational temperatures, we now return to equations (1), (4), and (15) to see what other roles
they may play and to continue the development of a mathematical formulation of vibrational
relaxation. As can be deduced most easily by adding the products of equations (18), (19),
and (20) with equations (1), (2), and (3), respectively, the V-V terms precisely cancel in
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the summation over v in equation (4) to yield the following version of equation (15) for a
single-species gas of linear harmonic oscillators:

En (8t /r=K(a—a)T(v+l)n„	 (21)

where
K(v + 1, 0; v0) = (v + 1) K(10, 00) = (v + 1) K

and a' = exp(—O/Tv) is introduced to go with a = exp(-0/T). The cancellation of the V-V terms
is independent of the relations between the V-V rate coefficients mentioned immediately prior
to equations (18)—(20). This result should not be strongly affected by whether the oscillators
are linear harmonic or anharmonic.

In addition to providing an enormous simplification to the modeling of vibrational relaxation,
equation (21) states that V-T collisions alone are responsible for vibrational-translational
equilibration. They are the rate-determining processes of current interest. The role of V-V
collisions was described completely in the preceding section as underlying the concept of
vibrational temperature. Although such a distinction of roles makes ultimate physical sense,
the following brief digression shows that some existing CFD codes are not so simply interpreted.

Diffusion Model

The diffusion model, as presented by Park (ref. 2), is so named because it describes the
adjustment of a jolted gas as an upward population diffusion through a continuum of vibrational
levels. Its derivation begins with the following approximation to equation (15):

K(v' v) pv, — K(v, v') 
pv] ti 

1:K (v, v') (pv1 — Pv)	 (22)nnv ( et r
[ !v—' nv

v	 v

where nv and nv, are equilibrium number densities evaluated at T, pv = nv/nv, and
p,,, = nv^/nv,. However, the critical step in equation (22) is the assumption

K (v', v) = K (v, v') exp [- (Ev — Ev')
kT

which is an incorrect application of detailed balancing to the effective rate coefficients K(v, v')
instead of the detailed K(vv", v'v"'). A potentially significant error is thus introduced, as can
be assessed by considering relations like

K(v, v + 1) — av K(v + 1, v) = n E ' nv, 61—VI— 1 K(v + 1, v'; v, v' + 1)	 (23)
V/	 v

obtained by subtracting equation (14) from equation (13) after applying detailed balancing to the
V-V rate coefficients in the second expression and assuming the existence of Tv. (See appendix A
for details.)

Equation (23) supports equation (22) only if the energy difference between adjacent vibra-
tional levels is so small compared with kT and kTv that the exponentials represented by a and a'
can be set to unity. Although this condition is certainly approached at the higher quantum num-
bers, it is not actually achieved short of dissociation, and thus this condition is a very dangerous
assumption. For example, it significantly changes the true relation between T and Tv that is so
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apparent in equation (21) and that will be so important in the subsequent development. It also
negates the critical cancellation of near-resonant V-V collisions that should occur in descriptions
of vibrational-translational equilibration, which means that the roles of V-V and V-T energy-
transfer processes become confused or lost in Park 's application of the diffusion model. Finally,
we should note that the K(v + 1, v1 ; v, v1 + 1) terms on the right-hand side of equation (23) are
the largest detailed rate coefficients appearing in the problem. 	 J

Our conclusion is that neither the diffusion model nor Park 's use of it to derive a bridging
formula (ref. 2) for including anharmonic effects in the Landau-Teller theory is physically
acceptable. On the other hand, the apparent success (ref. 8) of the bridging formula in matching
radiation data from shock tube and flight experiments cannot be ignored. This success may
be explained by the introduction of additional parameters that were empirically adjusted to fit
certain data, but which also served to conceal improper physics. We prefer the foundation and
interpretation of equation (21) and will proceed from there.

Relaxation Times
Equation (21) is easily generalized to a mixture of species and then combined with

equation (4) to give

nm cv 'v (Tv) (T — Tv) = L. J: J (v + . 1) 0skKsj nsvnj (as — as)	 (24)T
s=mo1. j v

where the j summation is over all heavy-particle species, Ksj is given as Ksj (10, 00) for
molecule-molecule collisions and as Ksa (1, 0) for molecule-atom collisions, and as and as satisfy

as = exp Ts I	 as = exp	 s	 (25)
 ( TV

Two potential problems may occur in applications of equation (24). One problem is
the previously mentioned assumption of a common vibrational temperature for all molecular
species with no apparent mechanism to couple them, especially within and immediately behind
hypersonic shock waves where free-electron coupling agents are not produced. Another problem
is the restriction to linear harmonic oscillators, which is alleviated somewhat by the use of
empirical expressions and other considerations to be discussed. An anharmonic generalization
of equation (24) can be derived in a similar manner and written as

nm %̂v,v (Tv)	 r
T	

(T —Tv) = L^	 njnsv (E9,v+1 — Esv)
s=mot. j	 v

I ( exp [— (Es,v 
kT 

E.) 1 — e,p — 
(E,, , ,,+ , T Esv) } Ksj (v + 1, 0; v0) (26)

	

I
	

J	 v	 J

where Es denotes the vibrational energy of molecular species s. However, the disadvantage to
practical CFD applications of long strings of unknown rate coefficients is obvious.

As shown in full detail in appendix B, equation (24) can be transformed by straightforward
mathematical manipulations into the expression

nm Cv,v (Tv)	 OskKsjnsnj	 i	 i —2

T	
(T — Tv) —	

Qv (7'v) 
(as — as ) (1 — as (27)

s=mot. j
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where Qv(Tv) is the vibrational partition function per s molecule satisfying

Qv (7'v) = E (as)' = (1 — as) -1 	(28)
i

Appropriate derivatives of Qv(Tv) give the average vibrational energy per unit mass of molecular
species s as	

/	 1evs (Tv) = ' d 
In Qv (Tv) _ ^s exp I ^S — 1

J 
— 1	

(29)
MS dTv	 ms L \Tv

and the vibrational heat capacity per s molecule at constant volume as

d	
l 

2	 2
Cv,v (Tv) = ms d7'v evs (Tv) 

= CZ'v 

[exp \

	 — 1 J 
exp I TV(30)

Two convenient definitions of characteristic times are suggested by equation (27). They are

Tsj Qv (T)

1 _ Ksjnj	
(31)

for vibrational-translational equilibration caused by collisions between s molecules and particles
of species j and the, combination relaxation time

1 
=

1	 (32)

Ts E Tsj
j

for collisions between s molecules and all heavy particles, including other s molecules. Three
features are worth noting: (1) Tsj and Ts are determined by collision frequencies and relative
collision velocities (and thus are independent of Tv), as should be required of relaxation times;
(2) reciprocals of relaxation times are added in equation (32), which is typical of lifetimes
appearing in rate equations; and (3) equation (32) contrasts sharply with equation (55) of
reference 3, where Gnoffo, Gupta, and Shinn add relaxation times instead of their reciprocals.

Existing CFD codes for hypersonic flow fields all use empirical expressions for relaxation
times, examples of which are the mathematical formulations and sets of adjustable parameters
deduced by Millikan and White (ref. 9) from shock tube data. Their relaxation times are directly
identified as the Tsj term of equation (31).

Perhaps the most important change proposed in this paper to the CFD code of reference 3,
and certainly the most dramatic one, is the use in equation (1) of

1 __	 ns CIS,, (T11)
7'vns Cv,v (Tv) f 1 — exp (-0, IT,)

T	
s=mot.	 s—mol. 

(T — Tv) 0sTs L 1 — exp (—Os1T)

X S exp ^^s 7,v T J — 1}
	

(33)

which is obtained from equation (27) by substituting equations (2), (28), (30), (31), and (32)_
The more general result for anharmonic oscillators is similarly obtained from equation (26) to
be

11



-1	 s

T —
	 ns Cv,v (TV)	 ^ ^ (T v Qv)T) (Es 	 — Esv)

s=mot.	 s=mot. v

x ex _ (Es,v+l — Esv _ ex p _ (Es,v+l — Esv)	
34p	 kT	 kTv	 ( )

where Qv (T) and Cv v (Tv) must be corrected for anharmonicity and Tsv (T) is defined by

	

1	 nj
1 = 1 Qs (

T 
) Ks j (v + 1, 0; v0)

	

Tsv	
j	

v 

in analogy with equation (31).

Several general features of equation (33) should be noted before making qualitative compar-
isons with existing codes. The restriction of equation (31) to linear harmonic oscillators is alle-
viated to some extent by Ts being a combination of empirical Millikan-White functions presently
spanning (ref. 10) a temperature range from 300 K to 9000 K. The cancellation of Qv(T) factors
between equations (31) and (33) also helps because it is the translational temperature (T) that
achieves the very high values in hypersonic shock waves. However, nothing can really compen-
sate for using the expression within the braces in equation (33) instead of the more physical
expression within the braces in equation (34). This is an error that must be accepted if the
simpler algorithm is retained.

Another interesting feature of equations (33) and (34) is their approach to

—1	 s

T =	 ns Cv,v (T) ns CT v (T)	 (36)
s=mot.	 s=mot.

and

1 	 ns Cv v 
(7,)	 Qsv (T)	 ` nsv (

Es v+1 — 
Esv)2 exp 	 (E,,,,,+, — Esv)	 (37)

L= [
T	

s=mot.	 s=mot.

	

kT 	 v Tsv	 kT

respectively, when the two temperatures T and Tv are not very different. Although equation (36)
is merely an extension of the simple Landau-Teller result to a multiple-species gas of linear
harmonic oscillators, equation (37) provides the proper correction for anharmonic oscillators.
For example, the T given by equation (37) can be used to generalize the Landau-Teller theory
for the absorption of small-signal sound waves to arbitrarily high gas temperatures if all the
Ksj (v + 1, 0; v0) coefficients in equation (35) are known from quantum mechanics.

A final, but ektremely important, feature of equations (33) and (34) is that they both give
T = T(T, Tv) for highly nonecuilibrium gases, which means that T is different from a relaxation
time in the conventional sense. The time T has to correct for the fact that the linear forms
assumed in equations (3) and (4) do not explicitly reveal the true dependence on temperature
difference. This possibility was anticipated in a previous section.

Qualitative Comparisons With CFD Codes

Because of the linearization assumption, that is,

evs (T) — evs (Tv) ,:z^ Cv,v (Tv) (T — Tv)

(35)
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in equation (59) of reference 3 and in subsequent definitions, comparisons of relaxation times
are most easily made for a single-species gas of diatomic molecules. The T of equation (33) is
then supposed to represent the same quantity and be used in the same context as the Tv defined
by equation (61) of reference 3. Equation (33) reduces to

v	 _1	 Tv2 	 1 —exp (—^/T) 
ex	 1 — 1 — 1	 38

T (T — Tv) Or' 1 — exp (—OIT)	 p	 Tv T	 ( )

where we have primed the Landau-Teller relaxation time to distinguish it from the T in question.
According to equations (31) and (32), it satisfies

1 _ Kn
71	 Qv (T)

and thus is independent of Tv.

Because r' is also the Tv of reference 3 under the same circumstances, equation (38) relates
the present relaxation time to that of reference 3 in this special case. Figure 3 shows how the
ratio r'(T)/-r(T, Tv) varies with Tv, as computed from equation (39) for N 2 with T held fixed
at 40000 K. The huge values at small Tv are caused by the factor exp(O/Tv) = exp(3352/Tv). In
a hypersonic shock layer, of course, the large T generated by the deposition of energy into random
motion during compression does not remain constant, but rather it decreases as translational
energy is transformed into vibration, dissociation, and other modes. Nevertheless, the much
smaller T of equation (33), perhaps by as much as seven orders of magnitude near the temperature
peak of the shock wave, may make translational-vibrational equilibration highly competitive with
the fast diffusion caused by large gradients. If so, this equilibration could give a very different
description of how processes begin and thereby set a different tone for what happens in the shock
layer.

Figure 3. Ratio of Landau-Teller vibrational relaxation time (7-) to vibrational relaxation time of this paper (r) as
a function of vibrational temperature (Tv) of an NZ gas at translational temperature of 40000 K.

A possible scenario based on the use of equation (33) instead of Tv in CFD codes would be a
sharper decline of the translational temperature inward toward the hypersonic vehicle from its
peak value (also possibly lower), a more rapid rise of the vibrational temperature in the same
region, a correspondingly faster equilibration of the two temperatures at a lower value of T, a
lower nonequilibrium contribution (radiation overshoot) to the radiation field produced farther

(39)
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inward, and thus lower radiative heating of the vehicle. This trend, which could well lead to
substantially different numerical results, is clearly in the right direction to correct the generally
large overpredictions, compared with flight data, of the radiative heat load of reentry vehicles
(ref. 5). In any event, equation (33) has been derived more or less from first principles and
should replace Tv on physical grounds alone.

Energy Relaxation Times Versus Temperature Relaxation Times

The T(T, Tv) term given by equations (33) or (34) was derived specifically to fit equations (3)
and (4). Accordingly, it can be called the temperature version of the relaxation time because
it measures how fast the translational and vibrational temperatures equilibrate. We label it rt.

A similar T can be derived to measure how fast the translational and vibrational energies
equilibrate. We call this T the energy version and label it Te. Although the current literature
rarely distinguishes between the two, as is evidenced by Tt and "re being used interchangeably
throughout Park's book (ref. 2), we show in this section that they are generally different:

A convenient derivation of re starts with the following definition of the average vibrational
heat capacity per s molecule at constant volume:

	

1	 T_ kOs	 OsITv	 2

T

	

(C'S")) — T —	 Cv,v (T) dT T--— - f T 
J Cep — 1) d

v Tv	 sI

_ T2 C's
"
 Tv 1 — ex	 T	 ex1 — 1 

A
	 (40)

	

T,2 
	 ( )	 P (_O11 TV) l	 108 (	 11

(T — Tv) Os [ 1 — exp (—OsIT') 1 	 p 	 \ Tv ^'/ 1 

Equation (30) for linear harmonic oscillators was used in this evaluation. As expected,
(Cv,v) ^ Cv,v(Tv) for Tv when not very different from T; also, equation (40) bears a striking
resemblance to a large portion of the right-hand side of equation (33) for the reciprocal T (now Tt).
Because the average vibrational energy per unit mass of molecular species s, as defined by
equation (29), satisfies

MS [evs (T') — evs (Tv )] = f T Cv v (T) dT — f
o

T v Cv v (T) dT
0 
T

Cv v (T) dT
Tv

_ (T - Tv) (Cvs,v)
	

(41)

substitution of this expression and equation (40) into equations (1), (2), (3), and (33) yields

Pm (qev)
  = nm Cv,v (Tv) ( aT

v )
r	 r

= nm Cv,v (Tv) (T — Tv) .
Tt

ns (T — Tv) (Cv v)
,rss=mot.

EP-- [evs (T) — evs (Tv)]
s=mot.

= Pm [ev (T) — ev (Tv)]
	

(42)

l
jo
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where ps =_ nsms and

	

Pm =	 Ps	 (43)
s=mo1.

are mass densities.

Equation (42) gives the proper relation between the two relaxation times for linear harmonic
oscillators, which becomes

T — 
T, T \Cv,v) _ TtT2	 f 1 — ex	 Tv I 

ex	 — 	 1 = Tv 44
e — = t Cv,v (Tv) (T — Tv) 0 L 1 — e P (-01)  ^ p ^^ \T, T J

	( )

for a single-species gas. This result, which reintroduces the T' defined by equation (39) to
distinguish the Landau-Teller parameter or the Millikan-White parameter, summarizes some
of the principal conclusions of the current study at the simplest level. Highlights include the
following points: (1) -re = Te(T) = T' = T'(T), whereas Tt = rt (T, Tv) for temperature differences
corresponding to departures from equilibrium larger than first order; (2) identification of
the relaxation time Tv of reference 3 with both Tf and the correct energy version of T;

and (3) recognition that Tv is an acceptable temperature version only if the vibrational heat
capacity at Tv can be replaced with its average value over the range from Tv to T, which is
obviously not justified within hypersonic shock waves.

The bottom line is that a price must be paid for replacing the vibrational energy equation with
a vibrational temperature equation, as was done in reference 3 in order to reduce the number
of species-dependent parameters that must be evaluated and carried along in the computations.
Linearized models involving simple differences between translational and vibrational parameters
are generally not valid in the latter description because both T and Tv are introduced into the
theory in exponential terms, the first by detailed balancing and the second by instantaneous
Boltzmann population distributions generated and maintained by near-resonant V-V collisional
energy transfers. In fact, the linear energy expression in equation (42) is itself remarkable for
highly nonequilibrium gases, as was noted by Vincenti and Kruger (ref. 11) in their discussion
of a similar result obtained for the much simpler problem of a . relatively few diatomic molecules
imbedded in a heat bath of many inert gas atoms.

Practical Difficulties

Although the proposed changes in the mathematical formulation of vibrational relaxation
are more solidly based on fundamental physical principles than those occurring in existing
CFD codes, accurate assessments of their impact will be difficult because of other uncertainties.
The problems have to do mostly with the multitude of scarcely known parameters that plague
applications and will continue to do so until a more reliable input data base is available. For
example, Hartung, Mitcheltree, and Gnoffo (ref. 5) have demonstrated a high sensitivity -of
radiative heating to three such parameters, all of which appear within the rather narrow confines
of the vibrational energy or temperature equations. They are the cross sections introduced by
Park (ref. 2) to correct the Millikan-White (ref. 9) relaxation times at high temperatures, the
rate-controlling temperature in the Arrhenius rate coefficient for molecular dissociation, and the
vibrational energy removed or added in each dissociation or recombination event.

The point being made is that inadequate physical models are easily masked, and good physical
models are not made worth the additional effort by merely adjusting these parameters to fit
available data. On the other hand, Hartung, et al. do show that radiative heating is not
predicted satisfactorily when the parameters are constrained within what is considered to be
reasonable physical limits, which means that some degree of assessment of the proposed changes
is possible and definitely should be attempted. In any event, because of the overall complexity
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of hypersonic flow fields, numerous possible explanations will exist for whatever gap between
theory and experiment may remain after implementation of the changes.

Concluding Remarks

Mathematical formulations of vibrational relaxation are derived from first principles for
application to fluid dynamic computations of hypersonic flow fields. The highlights include
the following: (1) a demonstration that fast near-resonant vibrational-vibrational (V-V) energy-
transfer collisions support the assumption of a vibrational temperature, at least for a single-
species gas; (2) the identification of vibrational-translational (V-T) collisions as having sole
responsibility for the equilibration of vibration and translation after a strong initial jolt places
a gas in a highly nonequilibrium state; (3) the derivation of an improved vibrational relaxation
time for use in the vibrational temperature equation; (4) a demonstration that vibrational
relaxation times appropriate for temperature equations are very different from those appropriate
for energy equations when the difference between translational and vibrational temperatures is
large; and (5) a demonstration that linearized models are generally valid only in the energy
representation of vibrational relaxation.

Modifications are suggested to improve the physical content of an existing computational
fluid dynamics (CFD) code and perhaps its agreement with flight data on the radiative heat
load of hypersonic vehicles. In particular, the proposed temperature version of the vibrational
relaxation time may be orders of magnitude smaller within a shock wave than the one currently
used; consequently, translational-vibrational equilibration can be highly competitive with the
rapid diffusion there and result in a substantially reduced and more realistic nonequilibrium
radiation field within the shock layer. The modifications are presented in two forms: one form
for linear harmonic oscillators (partially corrected for anharmonicity) that is easily implemented
with no additional parameters to evaluate, and the other form for anharmonic oscillators that
is more formal and requires additional rate coefficients. Both are applicable to multicomponent
gas mixtures typical of Earth and planetary atmospheres.

NASA Langley Research Center
Hampton, VA 23681-0001
July 8, 1993
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Appendix A

Detailed Balancing in Highly Nonequilibrium Gases
The principle of detailed balancing states that the forward and backward rates of any chemical

reaction are precisely equal if the gas in question is in total equilibrium. This principle is
a powerful tool for relating rate coefficients to each other and thus significantly reducing the
number of independent parameters required for CFD codes. It is used in just this manner in
several places in the present paper, despite the fact that it is strictly an equilibrium concept and
that hypersonic flow fields represent highly nonequilibrium conditions. The rationale for such
applications needs to be thoroughly understood.

We first recognize that the detailed rate coefficients K(vv", v'v ... ) introduced in equation (5)
depend on the translational temperature (T), but never on the vibrational temperature (Tv).
This statement is rigorously true for anharmonic as well as linear harmonic oscillators because
these K coefficients deal at the microscopic level with the specific vibrational transitions that
are possible when molecules in given states collide, and not with the number of molecules in
these given states. Only the latter concept can introduce Tv. Accordingly, only parameters
affecting quantum mechanical transition probabilities are relevant—for example, translational
temperature insofar as it determines relative collision velocities.

Such being the character of the detailed rate coefficients, we can certainly say that whatever
relation exists between K(vv", v'v"') and K(v'v"', vv") for one gas condition must be true for
all gas conditions (total equilibrium or not) having the same translational temperature (T). We
choose total equilibrium and write the detailed-balancing relation as

K(v^v^", vv") = 
rt* n*" K(vv", vw") = exp (—Ev/kT) exp (—Ev"/kT)

K(vv", vw"f) (Al)
n*,n*	 exp (—E IlkT) exp ( — Evm/kT) .

with supreme confidence that it holds for vibrational-translational nonequilibrium at the same
value of T. The temperature T is introduced into the rate equations through the starred number
densities, which denote total equilibrium and- thus Boltzmann distributions.

Although risking redundancy, we cannot state too strongly that detailed balancing is
applicable only at the level of the detailed K coefficients in equation (Al). It does not apply to
the average K(v, v') defined by equation (5), which is the source of our contention with Park's
formulation of the diffusion model (ref. 2) to incorporate the effects of anharmonic oscillators.
The key expression in that discussion is equation (23), which we derive here to illustrate a typical
application of equation (Al) and other points.

The appropriate form of equation (Al) for this particular application is

K(v, v'+ 1; v + 1, v') = exp [— (Ev+1 — Ev) /kT] K(v + 1, v'; v, v'+ 1)
exp [— (Ev'+1 — Ev') lkT]

= av K (v + 1, v'; v, v, + 1)
avi

where av and av, are shorthand notations for the exponentials. Equation (13) of the text becomes

(A2)
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K(v, v + 1) = av K(v + 1, 0; v0) + n E ' nv, K (vv'; v + 1, v — 1)
V/

= av K(v + 1, 0; v0) + 1/ nvi+1 K(v, v + 1; v + 1, v')
V/

= av K(v + 1, 0; v0) + av 
I

:, 
nv ^ 

1 K(v + 1, v'; v, v'+ 1)
VI 	 v

i

= av K(v + 1, 0; v0) + n	
aanv^

K (v + 1, v'; v, v' + 1)	 (A3)
V/ 	 v

upon changing the summation index after the second equality, using equation (A2) after the
third equality, and assuming that Tv exists after the fourth equality so that

	

nv +1 = exp — 
(Evl +l — 

Evi) 
= a 	 (A4)

V Tv 	 v

Equation (14) can be rewritten in similar fashion as

	

av K(v + 1, v) = av K(v + 1, 0; v0) + 
n E I nvt K(v + 1, v'; v, v' + 1)	 (A5)

V/

Subtraction of equation (A5) from equation (A3) then yields equation (23) in the form

av	 i	 exp [— (Evi+1 — Ev, ) I kTv ] —	 r

	

K(v, v + 1) — av K(v + 1, v) = n E 	 exnv^
	[— (E,,,+ , E ,) /kT]	

1 K(v + 1,v;   v, v + 1)	 (A6)
v P 	 - v

the right-hand side of which does not vanish. This result clearly shows the error in ap-
plying detailed balancing at the average K(v, v') level for : a gas of diatomic molecules in
vibrational-translational nonequilibrium (i.e., Tv different from T). As noted in the text, the
K(v + 1, v'; v, v' + 1) terms on the right-hand side of equation (A6) refer to near-resonant V-V
collisions and thus are the largest detailed rate coefficients appearing in the problem.

One exception to our conclusion is the special problem of a relatively few diatomic molecules
mixed in a heat bath of many inert-gas atoms regarded as having no excitable internal energy
modes. Because collisions of molecules with atoms will totally dominate collisions with other
molecules, the contributions of the molecule-molecule K(v + 1, v'; v, v'+ 1) can be ignored in
this ^ase, and then equation (A6) reduces to the detailed-balancing form

	

K(v, v + 1) = av K(v + 1, v)	 (A7)

assumed by Park for the diffusion model. Unfortunately, what is true for a heat bath is not true
for hypersonic aerothermodynamics, even though much of the simpler methodology discussed
by Vincenti and Kruger (ref. 11) for the first problem seems to have been applied to the second
problem all too often in the literature.
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Appendix B

Derivation of Temperature Form of Vibrational Energy Equation

Because equation (27) of the text is a key expression for subsequently determining the
vibrational relaxation times appropriate for the temperature version of the vibrational energy
equation, in this appendix we give the details of its derivation from equation (24). We begin by
looking specifically at the v summation

Xs=E(v+1)nsv	 (B1)
V

in the form of equation (24):

nm Cv v (Tv)
T	

(T — Tv) _	 OsKsjnj (as — as) Xs	 (BZ)
s=mol. j

Expansion of equation (B1) with the use of ns = nso + ns1 + ns2 + ... yields

1 Xs = 1 (nso + 2nsl + 3ns2 + ...)
ns	 ns

n	 (nso1 + sl + ns2 + ns3 	+ 2 	 + 1 + ns2 + ns3 + l —1
C	 nso nso nso	 nsl	 nsl nsl

—1+ 3 ( nso + ns' 
+ 1 + ns3 +	 + ...	 (93)

ns2 ns2	 ns2	 J

Because the density ratios satisfy

	

nsv, = eXp — (v i
— v)	

= (as)vl —v
	

(B4)
nsv	 U,

for Boltzmann distributions of populations of the vibrational levels of linear harmonic oscillators
at the vibrational temperature Tv, we have

—1	 —1

1 Xs = 1+aIs+ (a 2s)+ (aW+...^ +2 [(a')—1+1+as+ (as)2+ns 	 L

1

+3 [(a's ) -2 + (as) -1+1+a/ +...]	 +...1

_ [1 + as + a/ )2 + (as) 3 + ...]	 [1 + 2as + 3 (a/)2+...

(1 — as
)-2

Qv (Tv)	 (B5)

upon using equation (28) for the vibrational partition function per s molecule.
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Substitution of equation (B5) into equation (B2) finally gives

nm CVT	 QV 
(TV) (T — Tv) _

	

	 OsK 
(TV)

(as — as) (1 — as ) -2	 (B6)
s=mot. 7	

v Tv)

which is equation (27).
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