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ABSTRACT

The effect of thermal processing on the mechanical properties of
superplastically formed structural components fabricated from three aluminum-
lithium alloys was evaluated. The starting materials consisted of 8090, 2090 and
X2095 (Weldalite™ 049), in the form of commercial-grade superplastic sheet.
The experimental test matrix was designed to assess the impact on mechanical
properties of eliminating solution heat treatment and/or cold water quenching
from post-forming thermal processing. The extensive hardness and tensile
property data compiled are presented as a function of aging temperature,
superplastic strain and temper/quench rate for each alloy. The tensile properties
of the materials following superplastic forming in two T5-type tempers are
compared with the baseline T6 temper. The implications for simplifying thermal
processing without degradation in properties are discussed on the basis of the
results.

* Dr. S.J. HALES, Research Scientist, was working in support of the National
Launch System Program in the Materials Division at NASA Langley Research
Center. Mr. H.E. LIPPARD, currently a graduate student, was in the Materials
Division as a Langley Aerospace Research Summer Scholar during 1990-92.



1. INTRODUCTION

The integration of superplastic forming (SPF) of aluminum-lithium (Al-Li) alloys with
built-up structure concepts is being evaluated for the fabrication of lightweight launch vehicles
[1,2]. The application of SPF technology has the potential to improve the structural efficiency
of both the cryogenic tank and dry bay assemblies. The exceptional formability permits the
manufacture of complex-shapes and the reproducibility allows for close tolerances [3]. The
benefit of Al-Li alloys centers around the improved specific properties compared to conventional
- Al alloys. The candidate materials in this activity are the commercial superplastic versions of
8090, 2090 and X2095 (formerly Weldalite™ 049), which offer advantages for both strength-
and stiffness-critical applications. By using Al-Li built-up structures, the structural weight
savings on future launch systems are expected to be appreciable.

The performance of superplastically formed material will be governed by both the SPF
parameters employed and the post-SPF thermal processing selected. Although not addressed
in detail in this study, the forming parameters are chosen on the basis of ensuring complete part
formation without localized thinning and, simultaneously, suppressing cavitation. Standard post-
forming practices for Al alloy SPF components include heat treatment to place the material in
a close to peak strength condition. This slightly underaged T6 temper is preferable because cold
stretching of complex-shaped components for a T8-type temper tends to be impractical [4]. As
outlined in Figure 1, post-SPF processing traditionally involves uncontrolled air cooling from
forming temperatures of 900-1000°F (480-540°C), solution heat treatment (SHT) at temperatures
the same as, or higher than, the SPF temperature (Tg), followed by cold water quenching
(CWQ). After correcting for any distortion due to the rapid cooling, a low-temperature aging
treatment is subsequently used to attain the T6 temper condition [4].

Streamlining of the post-SPF thermal processing procedures outlined is desirable from
the perspective of cost-effective manufacturing. First, application of SPF technology will be
most economical when the number of processing operations is minimized. More complicated
shapes can be produced compared to conventional fabrication practices, but forming cycles are
relatively long [3]. Second, less severe quenching will reduce the amount of costly re-work
required to retain dimensional conformance. Distortion caused by rapid cooling from elevated
temperatures tends to be amplified in thin-gage components and geometric reproducibility will
be a prerequisite for structural applications [3,6]. Third, decreasing the duration of exposure
to temperatures above 900°F (480°C) in air during thermal processing will minimize solute
depletion effects [7-9]. The presence of solute-lean surface regions can be detrimental to the
performance of Al-Li sheet materials [7].

The objective of this research was to assess the potential to simplify post-SPF thermal
processing through elimination of the SHT and/or CWQ stages characteristic of T6 processing
[5]. As illustrated in Figure 1, removal of SHT will result in a T5-type temper following
artificial aging. The T5 condition, which is a user-specified temper, is broadly defined as;
"material which has been cooled from an elevated-temperature shaping process and artificially
aged" [4]. The economic advantages mentioned will only be realized providing that it can be
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demonstrated that replacing T6 with TS thermal processing does not result in significant
degradation of mechanical properties [6]. The systematic approach adopted here for evaluating
the 8090, 2090 and X2095 alloy components was designed to permit a direct comparison of the
post-SPF tensile properties of bulk material as a function of temper selection.

2. EXPERIMENTAL APPROACH
2.1 VINTAGE OF THE SPF MATERIAL

The compositions of the commercial superplastic Al-Li alloys employed in this
investigation, in comparison to the specified ranges, are presented in Table I. The 2.3 mm thick
sheet product of the three alloys was designated 8090-SP, 2090-OE16 and X2095-RT72
produced by British Alcan, ALCOA and Reynolds Metals, respectively. The 8090 and 2090
materials were commercial-grade superplastic versions of the alloys received in the form of 2.5
x 1.25 m and 3.75 x 1.25 m sheets, respectively. X2095 is registered with the Aluminum
Association as the experimental alloy designation for Weldalite™049 variants containing 3.9-4.6
wt.pct. Cu. The target Cu content for the batch of material (#63522) used in this study was the
upper limit of the range specified for X2095.  Although the 1.0 x 0.5 m superplastic sheets
received were produced on a pilot plant scale from 180 kg ingots, the material was processed
using the thermomechanical treatment established for commercial-scale product. Therefore, the
material was considered near-commercial grade for the purposes of the investigation.

Table 1. Superplastic Al-Li Alloy Compositions (Wt.Pct.)

Comparison of existing post-SPF property data from different sources tends to be
complicated by a lack of documentation regarding the as-formed condition of the material. An
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example of one of the 0.3 x 0.2 m superplastically formed ’pans’ from which material was
extracted to perform thermal processing studies is shown in Figure 2. The forming parameters
used, which were optimized for apparatus with 500 psi maximum gas pressure capability, are
presented in Table II [2]. The temperature, strain rate and corresponding flow stress (g;) had
been established previously for the specific materials from extensive uniaxial and biaxial testing.

Details concerning derivation of the pressure-time profiles used for fabricating these structural
components at a constant biaxial forming rate have been described elsewhere [10, 11]. It was
considered critical to the success of this study that the mechanical property data were not
compromised by the presence of voids in the as-formed materials [6]. Cavitation was effectively
suppressed by superimposed back pressure (0.5-0.7¢;) during SPF and a post-forming pressure
~cycle mvolvmg a speaﬁed dwell time at 500 psi [1]

Table II Supelplastlc Formmg Parameters Employed

Temperature Flow Stress Back Pressure

°F °C s ksi MPa psi MPa
0.45 3.1 325 2.2
0.60 4.1 350 2.4
0.80 5.5 400 | 2.8

Figure 2 also identifies the various elements of the SPF structural component in
conjunction with the predominant level of SPF true thickness strain associated with each area.
Examples of the locations and orientation of tensile blanks extracted from the component are also
indicated. Definition and determination of SPF strain have been presented previously [11] and
the thickness, equivalent engineering strain and true thickness strain as a function of location are
listed in Table III for reference. The ranges shown reflect the thickness tapering which is
inherent to SPF components and the weighted averages indicate the predominant level of SPF
strain within the different regions of a typical pan. The table shows that material extracted from
the frame and sides of the SPF pan provided hardness coupons with the same overall range of

SPF strain as the actual component.
2.2 EXPERIMENTAL PROCEDURES

2.2.1 Design of the Experiment
A reproducible starting condition for all three materials was considered essential to the

design of an effective artificial aging experiment. First, microhardness testing was used to
determine the extent of solute depletion. It was deemed necessary to remove any soft surface
layers such that the macrohardness and tensile data acquired were truly representative of bulk
material. In the absence of direct measurement of Li concentrations, microhardness testing was
considered the most appropriate technique [12]. Microhardness profiles as a function of depth

P e o

TRy

"



were determined for the three materials in an approximate T6 temper. It was anticipated that
the =~ 3 hrs exposure to temperatures in excess of 900°F (480°C), resulting from both SPF and

SHT, would represent the worse case scenario with respect to solute depletion [7].

Table III. SPF Strain as a Function of Location in Formed Parts

Location:

Thickness (mm)

Frame

Side

Cap

Web

Flange

2.3

1.8-1.1

1.9-1.7

1.7-0.7

1.5-0.7

Equiv.

0

30 - 100

20 - 40

40 - 220

50 - 220

Range

Strain
(%)

True
Strain

Second, macrohardness testing was used to determine the natural aging behavior of the
materials following cooling from the SPF die. It was considered imperative that the initial
material was in a stable condition, such that any effect due to varying amounts of natural aging
was avoided. The T1 temper was selected, which is defined as; "material which has been cooled
from an elevated shaping process and naturally aged to a substantially stable condition" [4].
Natural aging studies were conducted on freshly formed components, cooled by CWQ or AAC,
and sectioned to permit hardness evaluation of the material mid-plane. The time at room
temperature required to achieve a stable hardness governed the lead time between SPF and post-
SPF heat treatment activities. In the baseline T6 thermal processing schedule the materials were
allowed a minimum of 72 hrs at room temperature between SHT and artificial aging. This
interval was chosen to duplicate the common practice in industry [5].

An extensive review of current literature concerning post-SPF property data was used as
the basis for designing a manageable experiment [e.g. 13-18]. The matrix was formulated to
establish optimum aging treatments for maximum strength with adequate ductility (5% min.)
using practical aging times (8-40 hrs). The variables included in the experiment for all three
alloys are outlined in Table IV. The three levels of SPF strain selected were dictated by the
geometry of the biaxially-formed SPF components and the limited amount of flat material
available for extracting tensile blanks. Two modifications to the baseline T6 temper were
considered; (a), eliminating the SHT to produce a TS/CWQ temper, and (b), eliminating the
SHT stage and replacing the CWQ with accelerated air cooling (AAC), to produce a TS/AAC
temper. It should be noted that the T6/AAC permutation was not included in the investigation.

The term ’accelerated’ air cooling refers to the use of a fan to create air movement over
the hot component, which is distinct from ’still’ air cooling (SAC), involving stationary air, or
*forced’ air cooling (FAC), involving directed (compressed) air flow. AAC produces a cooling
rate intermediate between the two latter categories, such that the quench media selected bracket



the cooling rates following either SPF or SHT in common practice. In selecting the range of
aging treatments, the intent was to limit the experimental matrix to a realistic number of
temperature/time combinations. Temperatures of 325, 350 and 375°F (163, 177 and 191°C)
were selected and times ranging from 1 to 100 hrs were chosen for identifying a peak-aging
treatment of practlcal duratlon

SPF Strain Aging Treatment

Equiv. True Temperature Time

% ' °F °C

0

2.2.2 FEvaluation of Mico- and Macro-Hardness

The material used for microhardness evaluation was extracted from the mid-point of the
web section of a formed pan (Fig. 2), which corresponded to the median strain of 0.5 for the
SPF components (Table III). Placing the materials in the vicinity of peak hardness, as
determined from existing literature [e.g. 13-18], allowed the trends in microhardness to be
readily discerned. Microhardness testing was conducted using the Knoop scale (with 2g load)
following standard metallographic surface preparation techniques. Testing procedures conformed
with ASTM E384 specifications for through-thickness measurements [19]. Data were compiled
at 25 um intervals in the through-thickness direction from both surfaces and each datapoint
represented an average of =10 tests. Profiles of microhardness as a function of depth were
constructed to determine the amount of surface material needed to be removed prior to
mechanical testing. The surface layers were removed using a standard caustic etch/de-smut
technique owing to the large number of coupons required for macrohardness evaluation. It was
established that the final gage of the thinnest coupons (0.6 SPF strain material) was above the
minimum thickness specified for the acquisition of valid data on the hardness scales employed

[20].

The relative ease of macrohardness data collection allowed the full matrix of variables
listed in Table IV to be assessed. One of the initial concerns was the choice of an appropriate
hardness test. The Rockwell superficial hardness scales were selected for the acquisition of valid
data from the thin-gage material that is inherent to SPF parts. Hardness testing was performed
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in accordance with ASTM E18 specifications [20]. As a consequence of the reduced penetration
depths associated with superficial-type tests, there tends to be an increase in variability compared
to more conventional hardness tests. Therefore, each datapoint represented the mean of a
minimum of 9 hardness tests. The number of repetitions was increased to improve statistical
accuracy in instances where the data scatter was considered unacceptable. A high level of
confidence in the hardness data was a prerequisite to the design of a reduced tensile test matrix
capable of identifying the trends in strengthening behavior.

2,2.3 Evaluation of Tensile Properties

The sequence for specimen preparation was considered very important from the
perspective of the thickness tapering inherent to post-SPF material, the potential for solute
depleted zones in Al-Li alloys and quench distortion in sheet-gage materials. It was necessary
to eliminate any detrimental effect on tensile properties associated with varying thickness, soft
surface layers or warped specimens for the results to be representative of bulk properties. For
tensile specimen preparation, the post-SPF materials were in the T1 condition for heat treatment
to the T5-type tempers, and the T4 condition for aging to the T6 temper. In the latter instance,
material was solution treated prior to any machining to circumvent exposure of the finished
tensile specimens to temperatures above 900°F (480°C). Specimen distortion as result of rapid
cooling was averted by conducting CWQ operations prior to sectioning of the self-reinforcing
SPF pans. Quench distortion will be more problematic for full-scale components in which the
formed area will be much larger than the undeformed perimeter.

The machining sequence adopted involved extracting the blanks and grinding each blank
to a uniform gage. The final thickness was such that any solute depleted layers in the areas
corresponding to the gage sections were removed. Subsequent operations involved final
machining of the flat blanks to dimensions which conformed with ASTM B3557 specifications
[21]. The tensile specimens were then exposed to low-temperature artificial aging treatments
to place the materials in the various conditions specified by the test matrix. The tensile testing
was performed under cross-head displacement control with a strain rate at yield of =~ 10*s™ as
the target. The load- at yield was determined from the standard 0.2% offset method and the
stresses were calculated using three thickness and width measurements taken along the length
of the reduced section prior to testing. Elastic modulus was estimated from the slope of the
stress-strain curves and elongations were measured with back-to-back, 25 mm gage
extensometers.

The limited availability of standard sub-size rectangular test specimens from the SPF pans
dictated that only a partial tensile test matrix could be performed with adequate repetitions. The
extensive macrohardness data compiled was used as a screen to select appropriate aging times
for establishing the overall strengthening response from a much smaller test matrix. Results
from the hardness testing also indicated a negligible effect of SPF strain on properties in the
range of 0 to 0.6. Therefore, the tensile data were compiled primarily for 0.6 strain material
and the 0 and 0.3 strain specimens (Fig.2) were retained for any follow-up tests required to
clarify inconsistencies in the initial data.



3. RESULTS AND DISCUSSION
3.1 MTIAL"”MAT’ERIAL CONDITION

3.1.1_Surface Solute Depletion S

Microhardness testing allowed the extent of the solute depleted layers in the three alloys
to be assessed. The depth profiles shown in Figure 3 reveal that solute loss has a considerable
effect on surface hardness as a result of T6 processmg The softened surface layer is = 200
pm in both 8090 and 2090 and = 150 um in X2095. It is apparent that the depth of the
depleted layer increases in proportion to the Li content of the particular alloy, as shown in Table
1. The depths represent = 30 percent of the cross-sectional area of the 0.6 strain material used
for most of the tensile property evaluation (= 1.3 mm thick). Solute depletion can be reduced
by conducting the SHT step in an inert atmosphere, but performmg the subsequent CWQ step
on multiple components becomes problematic. Therefore, in order to eliminate solute depletion
effects, it was necessary to remove a minimum of 200 ym of material from both sides of the

materials prior to testing. As outlined earlier, this was subsequently achieved by chemical
milling of the hardness coupons and mechanical grinding of the tensile specimens.

The effect of solute depletion on tensile properties would be expected to be greatest in
the peak-aged condition when the differential between surface and bulk properties will be at a
maximum. For this reason, it will be necessary to account for any effect of solute depletion in
engineering applications of Al-Li alloys. However, recent attempts to correlate degradation in
properties with Li-depletion have encountered difficulties [22]. Thermal processing using inert
(pressurized) atmospheres and salt baths, in addition to coatings and Al-cladding, are currently
being evaluated [e.g. 14,23]. The primary aim of determining the extent of Li depletion was
to determine the quantity of surface material to be removed to provide for a direct comparison
between the bulk properties of superplastic Al-Li alloys. The benefits of developing a standard
practice for specimen preparation were that the influence of thermal processing on tensile
properties could be assessed. The experimental approach permitted the effect of processing
variables on aging response to be isolated for the individual alloys and also allowed a

comparison between alloys.

3.1.2 Natural Aging Response
The aim of the natural aging studies was to identify the dwell time required to achieve

a T1 temper condition in each of the alloys following SPF. Data collection was extended to over
8000 hrs at ambient temperature in order to fully characterize the natural aging response. The
results presented in Figure 4 are by way of illustration for 0.6 strain material following both
CWQ and AAC from the SPF die. It is clear that 8090 exhibits the strongest natural aging
response with an increase in hardness from 21 to 57 HR30T over the aging times evaluated.
The hardening response is sigmoidal in behavior using either CWQ or AAC from Tgpe. For
CWQ material, the rate of hardening increases after = 10 hrs, maintains a constant high rate
and then gradually decreases after = 100 hrs. Maximum hardness is achieved following = 500
hrs natural aging with no change thereafter. For the AAC material, the final hardness attained
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is the same, the response only differing in that the delay preceding rapid hardening is extended
to ~ 24 hrs and a plateau in hardness is reached following =~ 1000 hrs of natural aging.

The curves for X2095 also show a strong natural aging response; CWQ material
increasing from 42 to 70, and AAC material from 44 to 67 HR30T. The behavior differs from
that observed for 8090 in that the rate of hardening gradually decreases as natural aging time
increases. The maximum hardness achieved following AAC is marginally lower than that
achieved following CWQ. Of improtance is the fact that in both cases the rate of hardening
becomes negligible after =~ 1000 hrs at ambient temperature. In contrast, 2090 exhibits a much
weaker natural aging response, with the hardness only increasing from 30 to 42 HR30T for
CWQ material, and to 37 HR30T for AAC material in 8000 hrs. The curves are similar to the
initial 8090 behavior in that the onset of hardening is delayed. The rate of hardening gradually
increases with aging time after ~ 100 hrs following either quench rate from Tgpe. The
differential in final hardness level is similar to the X2095 case, although a plateau in hardness
is not evident after extensive natural aging of 2090.

Rationalization of the data reveals that the extent of natural aging appears to be inversely
related to the differential between the SHT temperature (Tgyr) and Tgpe, as noted in Table V.
For example, the increase in hardness for material following CWQ from Ty are 12, 28 and 36
for 2090, X2095 and 8090, respectively. Therefore, the differences in natural aging behavior
probably reflect the degree of solute saturation, with only post-SPF 8090 material being in a
fully solution treated condition. In contrast, X2095 and 2090 exhibit a decreased hardening
response as a consequence of being in a partially solution treated condition at the conclusion of
forming. It is noteworthy that there does not seem to be a correlation between the natural aging
behavior and the Cu, Li or total solute content of the alloys (8090; 4.3 wt%, 2090; 4.7 wt% and
X2095; 6.0 wt%).

Table V. Difference between SPF and SHT Temperatures

Alloy °F B °C °F + °C
8090 985 530 985 530
2090 950 510 1000 538

X2095 925 496 940 504

The natural aging behavior documented indicates that the 72 hr lead time commonly used
in industry for a material to be considered in a T1 temper is inappropriate. The materials were
not in a "substantially stable” condition until 1000 hrs at ambient temperature on the basis of the
8090 and X2095 data and the relatively weak response observed for 2090. Therefore, following
SPF material was held for 1000 hrs prior to both solution treatment and aging for T6 processing,
and before aging only for TS processing. Although this does not represent a practical lead time,



data comparability was considered an important issue during inception of the experiment It is
not impliéd that this amount of natural aging is necessary or will be required in the application

of these alloys
3.2 AGE HARDENING BEHAVIOR

As a consequence of the broad scope of the experimental matrix, only results which best
reveal the trends are presented in the text. All of the data compiled are presented in the
appendix for reference. The influence of thermal processing on post-SPF properties is addressed
by dividing the effects of the experimental variables listed in Table IV into three distinct
categories. Consequently, the data are presented as a function of Aging Temperature, SPF
Strain and Temper/Quench Rate. Assessment of the first category allowed the most appropriate
aging temperature to be selected. Subsequently, data concerning the effect of SPF strain and
temper/quench rate on aging response at that temperature only are presented. The hardness data
was conducted using the HR30T scale for 8090 and 2090 material. The HR45T scale was used
for X2095 material, since preliminary measurements revealed that the hardnesses were above

the specified range for the HR30T scale.

3.2.1 As a Function of Aging Temperature

Figure 5 demonstrates the difference in age hardening behavior of superplastically formed
8090, 2090 and X2095 as a function of aging temperature. Material had been deformed to 0.6
strain, CWQ from T and naturally aged for 1000 hrs. The data presented are for artificial
aging at 325, 350 and 375°F (163, 177 and 191°C), each datapoint representing the average of
at least 9 hardness measurements. The figure shows that the location of the peak moves to
shorter times and the height of the peak decreases with increasing aging temperature. This
general trend is consistent with the common observation in superplastic Al-Li alloys that the
maximum attainable hardness increases with decreasing aging temperature in the range of 250-
375°F (120-190°C) [e.g. 13-18]. In addition, natural aging followed by low-temperature
underaging tends to produce desirable strength-toughness combinations in these alloys [24].
Therefore, the lowest aging temperature, while maintaining a practical aging time (i.e. <40

hrs), will potentially yield the best tensile properties.

In Figure 5(a), the curves reveal that the peak aging times for 8090 are > 100, 60 and
24 hrs for aging at 325, 350 and 375°F, respectively. Upon consideration of a practical peak
aging time, 375°F would appear to be the aging temperature of choice. However, Al-Li alloys
are usually used in a slightly underaged condition which produces a desirable balance of
mechanical properties. From this perspective, selecting 350°F as the aging temperature will
provide greater flexibility in specifying an underaging time of 8-40 hrs. It is noteworthy in
Figure S(a) that the level of hardness following underaging at 350°F for 40 hrs is the same as
the peak hardness for aging at 375°F. The data in Figure 5(b) reveal that 2090 behaves in a
very similar manner to 8090. The peak aging time is > 100 hrs at 325°F, 50 hrs at 350°F and
30 hrs at 375°F, accompanied by a small decrease in peak height. An aging temperature of
350°F appears to be the best candidate for defining a practical underaging heat treatment time.

10
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Again, the hardness following aging for = 30 hrs at 350°F is the same as the peak hardness for
aging at 375°F.

In Figure 5(c), the peak hardness is achieved at > 100, 40 and 16 hrs for aging of X2095
at the three respective temperatures. Upon consideration of the hardness scale and range
employed on the ordinate axis, the hardness increase is large during artificial aging of this alloy.
It is clear that 350°F is the temperature which produced a peak within the range of practical
aging times. The difference in the aging behavior at the three temperatures is more pronounced
with X2095 than with 8090 and 2090. The hardness of the material following 1 hr of artificial
aging is markedly below the T1 hardness.of the material for all three temperatures. This is in
contrast to the behavior of 8090 and 2090 in which the hardness after 1 hr of artificial aging was
close to the level observed at the conclusion of natural aging. A strong aging response at room
temperature and a reversion in hardness following short-time artificial aging of fully naturally
aged material have been noted previously for Weldalite™ alloys [26-28]. The X2095 data
presented are consistent with other post-SPF data which suggest that the extent to which the
hardness is depressed during the reversion is a function of aging temperature [18].

3.2.2 As a Function of SPF Strain
Figure 6 shows the age hardening behavior of 8090, 2090 and X2095 as a function of

SPF strain for material starting in a T1 condition following CWQ from Tgp. The data presented
are for material which has been superplastically formed to strains of 0, 0.3 and 0.6 followed by
artificial aging at 350°F. The 8090 data in Figure 6(a) show that the peak location and height
is unaffected by superplastic deformation in the range of 0-0.6 SPF true strain. The curves
pertaining to the 0 and 0.3 strain material are the same within experimental limits [20], but the
hardness following 1 hr aging at 350°F for 0.6 strain material is lower. This results in a
marginal increase in the rate of hardening up to the peak, but no change in peak height or
location.

The 2090 data shown in Figure 6(b) bear a close resemblance to the 8090 data. The
difference between the peak hardnesses of 2 points can be considered negligible based on the
quoted accuracy of +1 point for the HR30T scale [20]. The behavior of the 0 and 0.3 material
is the same over the range of aging times, but the hardness after 1 hr aging is lower for the 0.6
material. Again, the rate of hardening is higher for the latter material, such that the peak
location is unaffected by the initial difference. The data for X2095 presented in Figure 6(c)
reveal the same trend. It is important to note the different hardness scale and range on the
ordinate axis of this plot. The curves show that the variation in SPF strain between 0 and 0.3
has a negligible effect, but the 0.6 strain material has an initial hardness 5 points lower. Again,
the peak hardness and peak aging time is not affected by differences in strain. The rate of
hardening between 1 and 10 hrs is much higher than for 8090 and 2090 regardless of strain level
as a result of the reversion phenomenon alluded to earlier [18].

23 A nction of Temper/Quench R

The aging behavior of 8090, 2090 and X2095 at 350°F for the T6, TS/CWQ and
TS/AAC tempers is presented in Figure 7. In all cases the material had been deformed to 0.6
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strain and naturally aged to a T1 condition (1000 hrs) following SPF for TS5 processing and a
T4 condition (72 hrs) following SHT for T6 processing. The effect of eliminating SHT can be
“evaluated by comparrsmg the aging behavior for a T3-type temper with that for a T6 temper.
Of equal concern is the influence on the T5 hardemng response of replacing CWQ with AAC
on removal of SPF components from the die. It is important to consider the temperature
difference between Tgyr and Tgpe When evaluating the relative quench sensitivity of the alloys
during TS processing. Therefore, the temperature dlfferentlal assoc1ated with each alloy is

presented in Table V for reference

The post SPF age hardemng response of 8090 as a functlon of temper/quench rate is
illustrated in Figure 7(a). The curves show that the aging behavior is relatively unaffected by
the starting condition of the material, with respect to peak location. The peak aging time is 60
hrs, regardless of which temper is selected. The peak heights for all three tempers are very
similar, but the peak hardness for the TS/AAC temper is slightly higher. It is also interesting
to note that the T6 peak hardness appears to be intermediate between the TS/AAC and the
T5/CWQ hardness levels. The lack of appreciable differences can be attributed to forming at
T and to the lack of quench sensitivity documented for this alloy [31]. This has been cited
as major benefit associated with the processing of 8090-SP material [32].

In Figure 7(b), the aging response of 2090 as a function of temper/quench rate is
presented. The data reveal the degradation in properties typically associated with eliminating
SHT and employing slower cooling rates for a quench sensitive alloy [30]. The drop in peak
hardness from T6 to T5/CWQ reflects the large differential between the SHT and Tgpe. As
noted in Table V, the temperature difference of 50°F is significant compared to the other two
alloys. The peak aging time of 60 hrs is the same for the two tempers, even though material
for the TS/CWQ temper was initially in a partially solution treated condition. The drop in peak
hardness from T5/CWQ to T5/AAC reflects the quench sensitivity of the alloy from Tgpe. It has
been shown that slower cooling of 2090 results in fewer, coarser strengthening precipitates
during subsequent artificial aging [33,34]. This explains the lower peak hardness for the
T5/AAC condition and may also account for the reduction in the peak aging time to 24-40 hrs.

The data pertaining to the effect of temper/quench rate on the aging response of X2093
are presented in Figure 7(c). Again, attention should be drawn to the different hardness scale
and range employed to construct the plot. Comparing the curves for the TS/CWQ temper with
the T6 temper reveals that eliminating SHT has a negligible effect on aging behavior. The lack
of appreciable differences between peak aging time and hardness for the two tempers could be
related to the small (15°F) temperature differential between Tgyr and Tgpe. In contrast, replacing
CWQ with AAC in the T5 temper leads to a considerable reduction in the maximum attainable
hardness for X2095. The peak location is still at 40 hrs aging time, but the peak hardness has
decreased considerably from the TS/CWQ to the TS/AAC temper condition. This implies that
the alloy is quench sensitive during cooling from Tgppe, Which is consistent with other X2095
post-SPF data for a different Tgpe, but with the same nominal Cu content [17]. The degree of
quench sensitivity has been linked with Cu content in both 8090 [9] and 2090 [33] and X2095

contains approximately twice the Cu concentration of these alloys.
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3.3 STRENGTHENING BEHAVIOR

As a consequence of the volume of data generated, the tensile results which best illustrate
the trends in the data are presented. A compilation of all of the tensile data is presented in the
appendix for reference. The influence of thermal processing on the post-SPF strengthening
behavior of 8090, 2090 and X2095 is shown in Figures 8, 9 and 10, respectively. The data
pertain to material deformed to 0.6 SPF true strain material, naturally aged to a stable condition
and artificial aging at a temperature of 350°F. The effects of replacing T6 with T5 processing
and replacing CWQ with AAC for a TS-type temper are addressed for each alloy sequentially.
Ultimate tensile strength (s,), 0.2% offset yield strength (g,) and elongation (El.) data are
presented as a function of aging time. Each datapoint represents the average of three tensile
tests and includes range bars. The ductility data may have been compromised by the tendency
of the tensile specimens to break within the reduced section, but outside the specified gage
length. Consequently, although determination of strength was unaffected, the values for total
elongation provided by the extensometers may be considered conservative.

The impact of processing modifications on peak aged properties is addressed initially
followed by assessment of underaged properties. Al-Li alloys are usually used in the slightly
underaged condition as a consequence of the materials exhibiting more balanced properties
[24,35]. The primary goals of this investigation were to define processing practices readily
adaptable to industry and to establish material conditions appropriate to structural application.
The recommended aging practice and typical tensile properties for post-SPF 8090, 2090 and
X2095 materials are summarized in Table VI for the, (a), peak aged and, (b), slightly underaged
condition. Selection of a suitable underaging treatment was based on three criteria;

(i) an aging time of practical duration for commercial application (8-40 hrs)
(i) adequate ductility for an engineering material (El.= 5 %)
(ili)) minimal decrease in yield strength compared to the peak value.

3.3.1 Alloy 8090-SP

Figure 8 shows the effect of temper/quench rate selection on the post-SPF tensile
properties of 8090. The data associated with achieving the baseline T6 temper, presented in
Figure 8(a), show that strength reaches a maximum and ductility a minimum following 40 hrs
aging at 350°F. The peak-aged properties consist of g,= 73 ksi, g,= 59 ksi and El.= 4 %.
In Figure 8(b), for the TS/CWQ temper, the peak is located at 60 hrs with g,= 73 ksi, o,= 59
ksi and El.= 6 %. Thus, there is no change in peak strengths and a 50 percent improvement
in ductility associated with TS processing including rapid cooling. Similarly, for the TS/AAC
temper in Figure 8(c), the peak aging time agian is 60 hrs, but there has been a drop in strength
as a result of the slower cooling rate from Tge. The tensile properties following peak aging
consist of g,= 70 ksi, o,= 56 ksi and El.= 6 %. In comparison to the T6 temper, there has
been a 4 percent decrease in ultimate strength, a 5 percent decrease in yield strength
accompanied by an increase in ductility. A value for the elastic modulus of 8090 was estimated
tobe 11.8 + 0.25 Msi (= 81.4 GPa). This value represents an average of the data compiled
for material in an approximately peak-aged condition for all three tempers (19 tests total).

13



Table VI. Typical Post-SPF Tensile Properties of Al-Li Alloys

Temp/Time

350/ 40

350/24° 70 57 -15
350/ 16
350/ 24
350/ 24

350 /7 60 73 59 0 6
350 / 60 70 56 -5 6
350 / 60 72 66 -~ 3
350 /24" 69 56 -15 6
6
4

350/ 24

, 5
TS/ICWQ | 350 / 40 70 56 0 6
T5/AAC | 350/ 40 69 55 6
,,,,,,, T6 | 350/40 7 62 - 5
T5/CWQ || 350 / 16 66 53 15 6
| 1siaac | 350716 69 55 10 6
. 1350710 92 87 i 4
oo [350/3) [77] [60] [15]
TSICWQ ?35;)0;31]0“ [35] [22] =0 [1411]
TS/AAC | 350 / 16 83 71 ~ -20 5

Change 1n o, resulting from replacing T6 with T5-type processing.

**  Selection Criteria : Aging time < 40 hrs; Ductility = 5%; Minimum decrease in .
+  Meet criteria; underaged for other properties.

++ 350°F/8hrs; o, = 90ksi; o, = 80ksi; ElL. = 5 % (Interpolated from Figure 10).
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The full effect of temper selection on 8090 post-SPF properties can be discerned by
comparing the hardening data in Figure 7(a) with the strengthening behavior in Figure 8. First,
the data are consistent with regards to an aging time of 60 hrs for peak hardness and peak
strength regardless of temper. Second, the trends in hardness and strength with increasing aging
time are in agreement for each temper. Both ultimate and yield strength follow the hardness
data within the limits of experimental accuracy and this correlation has been observed previously
during aging of Al-Li alloys [38]. Third, comparing Fig. 7(a) with Fig. 8(b) shows that the
lowest hardness and strength values were observed at times of <24 hrs while aging to the
T5/CWQ temper. The higher properties for the TS/AAC condition can be explained in terms
of the decreased cooling rate and nucleation effects. The discrepancy between the T6 and
T5/CWQ data for these aging times is also probably related to microstructural differences.

Examination of the strengthening behavior for the three tempers, Figure 8, reveals that
underaging of 8090 results in little improvement in ductility. Aging for 24 hrs at 350°F seems
to be appropriate from the perspective of more balanced properties during T6 processing. The
peak-aged ductility following TS processing is already adequate, but the aging time may be
considered too long. Reducing the duration to 40 hrs at 350°F does not result in a decrease in
strength and the underaged properties for the TS/CWQ and T5/AAC conditions compare
favorably with the T6 baseline.

The insignificant changes resulting from eliminating the SHT and CWQ steps from
processing can be attributed to Tgpr being the same as Ty and a lack of quench sensitivity. The
results imply that the alloy is in a fully solution-treated condition at the conclusion of forming
and does not require rapid cooling to retain properties. The typical tensile properties and
insensitivity to quench rate documented compare very favorably with the available data on
commercial material [9,36]. The net result of these factors is that a TS-type temper can be
utilized in place of the T6 temper without significant degradation in tensile properties.

The loss in strength is relatively small if a <5 percent reduction is selected as the
maximum allowable degradation in properties resulting from processing modifications. The data
reveal that yield strength is affected more than ultimate strength by using a TS-type temper.
Consistent with other studies, it is suggested that this is connected with the increase in ductility
observed [37]. The results indicate that replacing CWQ with AAC in T5 processing causes a
decrease in yield strength which is beyond the prescribed margin. It is surmised that a cooling
rate intermediate between CWQ and AAC from Tgy, such as FAC, will maintain the yield
strength within S percent of the value for the T6 temper.

2 _Alloy 2090-OFE
The effect of thermal processing on post-SPF 2090 tensile properties is outlined in Figure
9. Data for the baseline T6 temper are presented in Figure 9(a) and the strengthening behavior
is similar to the 8090 data. Peak strength is achieved following 60 hrs aging at 350°F and the
post-SPF T6 properties consist of g,= 72 ksi, o,= 66 ksi and El.= 3 %. The ductility
decreases with increasing aging time to a minimum at the peak-aged condition. In Figure 9(b)
for the TS/CWQ temper, the peak is located at 24 hrs, with o,= 69 ksi, g,= 56 ksi and El.=
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6 %. The drop in strength compared to the baseline condition is 15 percent for the yield
strength and 4 percent for the ultimate strength, The more pronounced decrease in yield strength
is accompanied by an increase in ductility. The data for the TS/AAC temper in Figure 9(c)
reveal that the peak aging time has been unaffected by the slower quench rate. There has also
been no change in the peak-aged properties compared to the TS/CWQ condition. Following 24
hrs of aging, the properties consist of g,= 70 ksi, o,= 57 ksi and El.= 6 % and represent the
same drop relative to T6 properties. The elastic modulus of 2090 averaged over 16 tests was

estimated to be 11.7 + 0.25 Msi (= 81 GPa).

Comparison of the strengthening behavior, in Figure 9, with the hardening behavior, in
Figure 7(b), for 2090 reveals good agreement. The peak location for the T6 and T5/CWQ
conditions (60 hrs) and the decrease in peak aging time for the TS/AAC condition (24-40 hrs)
is common to both sets of data. It is observed that there is a progressive decrease in peak
properties from the T6 to the TS/CWQ to the TS/AAC temper. The drop in maximum strength
follows the decrease in peak hardness as a function of temper and the difference between the
hardness and tensile data in the highly underaged condition is similar. The aging behavior
documented is consistent with previous reports regarding the effect of thermal processing
variables on properties of alloy 2090 [30,33,34].

As was the case for 8090, underaging will not result in a significant improvement in
ductility, but 40 hrs at 350°F for T6 processing allows the ductility criterion to be satisfied.
The peak aged conditions for both T5-type tempers already meet the criteria established for
defining an underaging treatment, namely ductility and aging time. However, 2090 material is
most frequently used in a slightly underaged condition as a result of better fracture toughness
and corrosion behavior [8,25]. Therefore, from Figure 9, underaging for 16 hrs at 350°F
appears appropriate for both the TS/CWQ and T5/AAC conditions. The post-SPF property data
summarized for 2090 in Table VI reveals that eliminating SHT has a larger impact than removal
of CWQ during post-SPF thermal processing. The yield strength is degraded more than the
ultimate strength and similar to 8090 can be correlated with large increases in ductility [37].

The data suggest that elimination of SHT was primarily responsible for the degradation
~in properties observed. As noted in Table V, the temperature differential of S0°F between Tgpp
and Tgr is the greatest of the three alloys considered. As a result of this difference, this
material is likely to be in a partially solution treated condition after forming. The significant
drop in strength between the T6 and TS/CWQ tempers reflects a decrease in available solute and
a reduction in the strengthening response during subsequent artificial aging [39]. Comparing the
T5/AAC with the T6 temper data reveals a further decrease in strength and also a reduction in
the peak aging time. It has been shown that slower cooling result in the formation of nucleation
sites for intragranular precipitation [33,34]. Such an effect would account for the differences
observed during the thermal processing studies conducted on the 2090 material.

The implication of the 2090 data presented is that the SHT step cannot be removed

without degradation in post-SPF properties. ~ However, it is noteworthy that the post-SPF
properties compare favorably with the data for 8090. In a similar manner, increasing the
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forming temperature, such that Tgpp = Tgyur, would result in a fully solution treated condition
at the conclusion of forming. Uniaxial superplastic elongations in excess of 500% have been
attained in 2090-OE16 in the temperature range of 985-1015°F (530-546°C) without back
pressure [10,15,40]. It is anticipated that T5S/CWQ properties much closer to T6 properties
would result assuming adequate superplastic formability at the higher temperature. The absence
of an appreciable change between the T5/CWQ and T5/AAC properties for the lower
temperature suggests that it may also be possible to implement slower cooling.

Alloy X2095-RT7

The influence of temper/quench rate selection on the post-SPF strengthening behavior of
X2095 during artificial aging at 350°F is presented in Figure 10. In contrast to the behavior
observed in 8090 and 2090, there is evidence of a reversion in strengthening response after
short-time artificial aging. In all three temper conditions, ductility is in the range of 15-20%
in the highly underaged condition and decreases to 3-4 % for peak strength. The peak is located
at an aging time of 16-24 hrs and the difference in strength relative to the 1 hr aging data is
substantially larger than that observed for either 8090 or 2090. Consequently, the strengthening
response is much more rapid for this alloy and the associated drop in ductility is much larger.
On comparing the strengthening behavior, in Figure 10, with the hardening behavior, in Figure
7(c), for X2095, the data are in close agreement. The strong response to artificial aging
between 1 hr and peak is evident in both sets of data and is consistent with behavior noted
elsewhere for superplastically formed X2095 material of similar vintage [17]. However, the
exclusion of 0-1 hr aging data in this study precludes any reliable estimate of the extent of the
reversion,

Figure 10(a) reveals that aging for maximum strength occurs following 16 hrs at 350°F
for T6 processing and the peak properties consist of g,= 94 ksi, g,= 90 ksi and El.= 4 %.
The data show that the peak aging time lengthens to 24 hrs at 350°F during processing for a T5-
type temper. In Figure 10(b), for the T5/CWQ condition, the post-SPF properties at peak
consist of g,= 97 ksi, g,= 95 ksi and El.= 3 %. These data actually represent an increase in
strength with a decrease in ductility compared to the baseline condition. The reason for this
anomalous behavior relative to the general trends in the data presented for post-SPF 8090 and
2090 materials is uncertain. The data for the TS/AAC temper in Figure 10(c), do conform to
the property/ processing trends established. In contrast to the TS/CWQ condition, the peak
values of o,= 82 ksi, g,= 71 ksi and El.= 4 % reveal a degradation in properties. These
results represent a 13 percent drop in ultimate strength, a 20 percent decrease in yield strength,
but no change in ductility compared to the T6 condition.

The value for the elastic modulus of X2095 was estimated to be 11.6 + 0.25 Msi (=
80 GPa) from 19 sets of tensile data. Although the data suggest that X2095 is somewhat quench
sensitive, the alloy attains higher absolute strength in the T5/AAC condition than the other two
alloys in the baseline T6 condition. The exceptional ductilities associated with the highly
underaged condition indicate that X2095 has a decided advantage over 8090 and 2090 with
respect to obtaining balanced properties. The trends in elongation data suggest that satisfactory
improvements relative to the low, peak-aged ductility can be achieved for all three tempers.
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However, the rapid decrease in ductility was not anticipatéd during the inception of the
expenmental matrix.

The absence of data between 3 and 10 hrs of agmg at 350°F makes deﬁmtlon of a
suitable underaging treatment difficult for the T6 and T5/CWQ conditions. The results show
that an aging time of 3 hrs produces the desired ducnhty, but with too great a sacrifice in
strength compared to the peak-aged values. In contrast, aging for 10 hrs does not result in a
large decrease in strength, but the ductility is less than the prescribed minimum. The trends in
the data suggest that the best balance between strength and ductility can be achieved by
specifying an underaging time of 8 hrs. Underaged properties of o,~ 90 ksi, g, =~ 80 ksi and
for the T6 and TS/CWQ tempers were interpolated from the data presented for El.= 5%.
Acceptable ductility has been obtained by specifying an equivalent underaged condition in non-
SPF processed materla.l of 51m11ar composmon [17 41]

Typrcal post-SPF tensile propertles of the X2095 matenal included in this study are
shown in Table VI. Comparing the T6 and TS/CWQ data reveals that the change in properties
resulting from removal of the SHT step is negligible. As for 8090, this is probably a reflection
of the small (15°F) temperature differential between Tgp and Ty for X2095. Examination of
the TS/AAC data shows that the drop in strengths is quite severe compared to the T6 baseline.

Also, as documented for 8090 and 2090, the yield strength is apparently affected more than the
ultimate strength by thermal processing modification. Removal of CWQ results in a larger
degradation in properties than eliminating SHT in 0.6 SPF strain material. The data imply that
the T5/CWQ condition would be the most appropriate temper for simplified post-SPF thermal
processing of X2095.

At the forming temperature employed, SHT can be eliminated, but replacing CWQ with
AAC appears to result in excessive degradation of properties. However, it may be possible to
dispense with CWQ by using a cooling rate intermediate between CWQ and AAC. Ttis
suggested that a slightly slower cooling rate than CWQ may suffice, such as the use of an
aqueous glycol quenchant (GWQ). This is common industrial practice for reducing cooling rates
while still achieving a satisfactory TS5-type temper condition in Al alloys [42]. Further, a 25
vol. % GWQ would be appropriate for the sheet thicknesses characteristic of these particular SPF
components. Another solution, similar to the case of 2090, may be to increase Tgpr SO that
slower cooling rates can be employed. The material will be in a fully solution treated condition
at the conclusion of forming if Tgr = Tgyr is plausible based on formability. It has been
demonstrated that uniaxial elongations of >600% while forming at 935-950°F (504-516°C), in
the absence of back pressure, are attainable in X2095 [10,17,18].
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4. CONCLUDING REMARKS

A direct comparison of the post-SPF mechanical properties of commercial superplastic
Al-Li alloys was made possible by the systematic approach adopted. The data compiled reveal
the extent to which post-SPF procedures can be simplified without sacrificing properties relative
to T6 thermal processing. The TS/CWQ data show that SHT can be eliminated for processing
of 8090 and X2095. The T5/AAC data for these two alloys shows that a cooling rate from the
SPF die intermediate between CWQ and AAC is required. It is suggested that, for 8090, FAC
to produce cooling marginally faster than AAC and for X2095, GWQ to produce cooling
marginally slower than CWQ can be employed. In the case of 2090, the data reveal that SHT
cannot be eliminated and also that the alloy is quench sensitive. However, comparison of the
T5/CWQ with the T5/AAC data suggests that CWQ following SHT may not be necessary.
Eliminating SHT for 8090 and X2095 will reduce the number of processing steps, whereas
eliminating CWQ will improve component tolerances and reduce re-working requirements.
These factors have the potential to add up to considerable cost savings compared to conventional
manufacturing practices.

An important conclusion which may be drawn from the results concerns selection of
appropriate SPF temperatures for Al-Li alloys. The data presented suggest that the optimum
SPF temperature may not be the temperature at which maximum formability is attained per se,
but the highest temperature at which the formability is still adequate. The higher forming
temperature may permit the combination of SPF and post-SPF thermal processing to better
substitute for formal solution heat treatment. It is clear that selecting Tgpr = Tgyr will be
beneficial to TS5 processing from the perspective of retaining T6 properties while eliminating
SHT and using AAC for all three alloys. Current information indicates that there is considerable
flexibility with regards to the temperature range within which Al-Li components can be
superplastically formed. Although the specific temperature will be dependent on the SPF strain
required for complete formation of a specified component, higher SPF temperatures for 2090
and X2095 create the potential for further simplification of post-SPF procedures. The data
presented suggest that, even though these two alloys are more quench sensitive than 8090, the
degradation in properties can be restricted to acceptable margins.

It is important to note that any recommendations concerning the use of T5-type tempers
for superplastically formed components must consider the SPF temperature employed. The
results of this investigation reflect the use of forming temperatures which produced the optimum
superplastic response for the individual alloys. Of the aging temperatures considered, 350°F
was the best for all three Al-Li alloys from the perspective of achieving peak-aged properties
using aging times of < 40 hrs. It is not inferred that this is the optimum aging temperature,
but the slightly underaged tensile properties documented meet, or exceed, data reported from
other sources. It should be stressed that one objective of this study was that the data compiled
be representative of bulk material. Any comparison with these data must consider that higher
levels of SPF strain or the presence of solute-depleted surfaces may influence material
performance.
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In this 1nvest1gatlon defining a uniform starting condition for the materials was aimed
at facilitating comparison of the data with other sources. In general, alloy composition and
thermomechanical treatment to superplastic sheet will determine the as-received condition of the
material. Subsequently, the SPF parameters used, such as temperature, strain rate, back
pressure (cavitation suppression) and the level of deformation required to produce a particular
component geometry will control the as-formed condition. Differences in grain size and texture

resulting from differing SPF strain will tend to have an 1mpa¢t on both aging response and

mechanical properties. It is anticipated that the attention to detail concerning data compilation
may prove beneficial for establishing a post-SPF mechanical property database in the future.
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Figure 3. Profile of microhardness as a function of depth from the surface for sheet
material biaxially deformed to a superplastic strain of 65% (0.5) and thermally processed
to an approximate T6 temper condition.
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Figure 4. Natural aging behavior of material deformed to a superplastic strain of 80% (0.6)

followed by Cold Water Quenching (——) or Accelerated Air Cooling (--—---) from the SPF
temperature.
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Table Al. Natural aging response following SPF for material deformed to 0.6 strain.

ated Air Cooled

U M W hem o m m o

---- ~ Cold Water Quenched ___Acceler
Time | Hardness (HR30T) Tlme ‘Hardness (HR30T)
(Hrs) ﬂgh Low | Avg, (Hrs) | High | Low Avg, |
1] 23.8 20.9 22.4 1] 243 16.4 | 20.8
- - - -- 81 26.0 18.4 22.9
181 340 | 322 329 1811 28.3 18.3 24.3
- - - - 281 294 | 21.5 26.1
411 438 42.7 43.3 48 | 32.4 28.1 30.3
1651 54,2 53.6 | 53.9 100 | 44.9 41.2 | 42.5
264 1 55.9 55.1 S55.5 185 | 48.3 44.6 | 46.5
3281 56.4 55.1 55.8 280 | 52.6 499 | 51.4
28 | 56.7 55.1 | 56.0 528 | 56.5 549 | 55.8
1000 | S58.1 57.0 57, 1000 | 57.4 56.0 | 56.5
8904 | 57.1 562 1 566 | 8884 | 57.5 S56.2 56.7
11 30.0 28.4 29.2 1| 30.0 29.3 29.7
31 31.1 29.1 30.3 31 304 28.1 29.5
51 31.6 283 29.7 -- -- — -
221 32.0 29.1 31.0 221 306 29.8 | 30.0
461 32.3 28.6 311 46 | 30.8 206 | 30.1
1001 32,7 30.9 31.9 -- - - —
172 1 33.4 29.9 31, 1861 32.6 2900 | 31.1
309 ] 36.2 32.3 34.4 - - - -
5301 36,9 33.0 35.0 - - - -
1000 | 38.6 35.0 37.5 15001 35.2 33,1 34.3
85721 423 | 415 | 419 || 8s68] 376 | 356 | 365
1| 419 | 385 | 40.0 1| 49.0 | 38.5 | 447
31 57.2 54,7 55.9 31 52.5 46.6 | 504
181 62.8 61.4 62.2 18 ] 60.1 583 | 59,
29 ] 64.7 63.3 63.9 521 60.5 59.2 59.9
701 65.8 63.9 64.9 971 62.4 61.7 | 620
118 | 66,6 | 65,0 65.8 1851 64.0 63.0 | 633
311 ] 68.0 67.2 67.5 280 | 65.2 63.5 64.4
528 1 69.3 68.8 69.2 530 ] 66.0 647 | 65.4
10001 707 69.8 70.1 1000 | 66.9 65.0 | 65.9
8760 | 70.8 69.2 70.0 8765 | 67.5 66.1 66;7____

36

o

[N T TR R T T TR T )



609 765 99 T 9 9 (9 € 99 619 T 09 2% 001
2% AL TH a0 TT9 T09 T7Y 9 T 09
Ty T99 gy TT9 TT9 09 T79 5o 0F
TTY T99 59 9 599 T9 T XS 7
TE9 79 T TTY T 59 g7y 2SI R SLE
TT0 T'T9 2% 719 7Y 759 5 50T
TS TH TT9 T09 779 79 TS T[T
T3S TTS 9 2 579 TBT TIT T[T
AL B TS 50 2] 79 559 TI9 5 00T
rags TI9 99 U9 599 Iy 9 599109
g g9 A gH9 U9 sy 59 099 0%
) 759 09 09 99 gz TTY IS I I 7
9 Ity Y 579 799 79 T TS ol 0s¢
TH% 59 979 09 It9 £79 T09 22 ]
TS BT 09 ULS 579 g9 yATAS eI T
TS &'TT g3 T Y T8T IS T6s T
T30 599 790 359 599 <3 TH9 G99 | 00T
T 59 208 TTY 9 59 759 T |09
29 59 36720 TE9 TTY 97 g9 799 [ 0F
19 ) )67 T9 59 9 TT9 SR I 7
AT 719 TT9 019 gy 20 19 TT 9T STE
g3 TS ) 79 I't9 19 009 g9 0T
THT 20 TS TTS 779 TET 3T I
T TS T3 A9 A ATAS 09% I
USTH || 5AV Y 4siH I | W)
Quny | ‘duly,

"(31p9s L) ssaupavpy o101faadng jlomyo0y :snup) Jadway GJ v s0f Sutusiof Suimojpof
Daypuan() 431o0p pjo) puawuL 10f (3) umw.is JJs puv aingpsaduidy fo uonounf v sv (608 Jo 101avyaq Suruapivy 38y

neoy

TV 21901

37



E B T R ] :_,

v

TIT 5% YRS S0 XS 519 TS S 785 001
I't9 59 TH T T A 19 79 T 09
7Y T <9 99 ALY <09 T'E9 ag It 0¥
99 99 TIo TI9 T 2 %Y TTY A 74 .
799 T TT9 U9 U9 TT9 799 79 590 |97 SLE.
tTY ' 99 TT9 519 %Y TT9 T%9 g 0T
T 1Y 379 TT9 U9 &0 9 79 T T
06S IS TE 19 VY g9 TTO A o R
799 T99 TI9 519 <10 750 TI0 90 50— | 00T
T9 A 89 759 759 89 g9 19 39|09
99 69 09 99 §99 5789 99 9 59 0F
7Y g9 59 599 99 9 99 <Y WA 74
i 6t9 Y gl 99 09 LS Uy AR 0st
Y §79 Y 7o 282 %9 e %9 S5y 0T
09 6% 719 It9 9 759 579 €79 A I Y
98T SIS A 079 TT9 379 T BT T T
510 719 T%0 759 7% T50 ) 719 CI0 [ 001
T99 <Y 599 %99 T99 TI9 TI9 699 51909
059 g2 T 99 379 U9 799 99 599 | 0F
T 79 T 8 T 659 799 <Y LR I 7 |
79 579 TTI 59 9870 T59 9CY 09 T99 | 9T STt
19 319 779 Y 7T9 Y T % S )
78T 28 &8 719 TT9 19 779 719 T T
TOT gTT AR T00 A zT9 30 A3 e | T
"BAY RUT qoTH “OAY RU] U3TH "GAY ROT TSTH | (sap)
5o ="7 CO =7 =7 ey,

*(3jvas [O€) Ssaupaply porfiadng jjaomya0y :spup) “sadwady Gf v sof Sutuuof Suimojjof
 Pajooy) 11y Pajnaa]addy [uuaoul 1of (3) uinals JJS puv ammiadway fo uonounfv sv 9608 Jo 1014v1aq Sutuapivy a3y

€V 21901

38



DIDP SSIUPIDY ANOY ()f o

- - - - - - - - - - 9 679 | 6S9 | 00T
Sv | TS 0°6S $'8¢ v'68 YL | 6°1L | O€EL | 8Y9 | #E9 | .8S9 | 09
9°¢ 'S £6S 1°8S $09 LTL | vl | OEL L'v9 6'€9 | T99 | oF
¢e | 9¢ 896 (2% 9°8¢ 869 €L | L'1L 9'¥9 I'v9 | 0°S9 | ¥¢
L'y | ¢S 9°s¢ 8vS 0°LS 8°L9 $99 | 889 9°¢9 6’19 | 69 ,Wwﬂw
6t 1’9 8¢S | 008 23S 6'S9 6't9 | £°L9 (XL $09 | 6'¢9 | oI
L9 01 | 6LV 9y S6v 879 6’19 | 9°¢9 865 | 98¢ | 0719 | €
S| 0L €'9Y S'hy 1°8¥ 919 | 965 | 9'¢9 VLS §9S | 078§ ~_

MO | YSIH | *BAV | o | ySiH | SaV | mo7 | yStH || Bav | moy | ySig
» L)) s (LOSYH)
uonjegduopy YJ3uaajS PRI MIBULAIS "SI NN SsQup.ael

(*s4noy g1 pasv &jpanwu puv pay>uanb 121om plod Pajoal] JOIF] UOTHT[OS ‘Pajo0d 41D “UIDAIS S 9°0 O pauLiofap
SoM (oUW SUIUDIS L) 42dwdy 9] © 40f J,0S€ W SuSv fo uondounf v sv g608 fo asuodsas SuraySuasg

PV 901

39



[l

L R TR [T

‘ il Tl

- - - - - - - - -- == 6'vS Pes §9S | 001
- - - - - -- - - - -- €09 ¥'8¢ | 0°19 ce
[4 €9 Y v'L £ vs ['¥S 9°'vS 69 ¢Sy | T99 879 €79 | 9'¢9 ,cv |
[4 (Y 6V 12 8¢S (2% A% 1°89 ¢99 | L69 ¢S9 $v9 6'S9 | ¥C
[4 Y Sy 99 LSS Les L8S 8°89 99 vIL 1'99 €S9 | 0°L9 |91
[4 87 LT 6T §'9¢ | 1°SS 0°8S v°89 $°S9 1L 1°69 £'¥9 299 | 01 o
[4 9 09 €9 L'Ly LY [4:3% €9 | 0'¢9 | ¥'e9 0’19 68 679 || ¢ =
I ¥9 0 o+ | TLY 20 | ¢0+ (x4 0 | TO0+ ¢'8¢ §'9¢ L'6S {1
51591 ay | moq | uydig | Sav | moq | udhy | Sav | mop | uH | Bav | moq yBig Aﬂa
Jo # (%) ) s - (LocAn) iy
: uoneduory y3uans PPRIA EUBAS "SI, N SSoup.JeH R
(sanoy g1 paSv &ypangvu puv payousnb 12jpm pjod ‘Pajvai] JOIF] UOTT]OS ‘Pa]o0d 410 ‘Umais Jds 9°0 01 pauuofop
som (ouatow Suwupis ayy) “4adway 9] v 10f 4. SLE 0 udp fo uondunf v sv 608 Jo asuodsas Suruayi3uang SV 219

[ w1



¢ €9 | s | 69 6°SS | T'I9 | T'IL | 869 | Sze | 259 | zs9 | zz9 | oot

€ €9 [ 9¢ | 7L VLS | 86S | 8TL | 6IL | LEL || 099 | 69 | 229 | 09

9 LS | €v | 89 v'vS | L'6S | 0oL | 989 | 9z || €59 | TV | 899 | op

9 L'e | €1 | 9¢ ey | 8¥S 1 029 | 2709 | S99 | 6€9 | 029 | v's9 | bz

€ 99 | vv | 68 06y | 6€S | 6S9 | 1'¥9 | +89 | 229 | 1'19 | 2€9 || or

€ L'y | Ty | €§ ey | SIS | 099 | S€9 | 799 | 009 | z6S | 609 | o1

€ 1'9 | 0 | 89 Sy | S0s | 29 | €19 | vvo || 0.5 | 96 | ¢8¢ [ ¢

¢ s [ zv | 65 Sev | Ty | TLS | T9S | 08S | StS | 6€S | ¢S |1
| moT | 4By | MoT | YStH | 8av | moy | ySig | -8ay | moq | ySig (StH)
O ) s (LOSHH) Fu.
uonesuory P3uang ppRIx yI3uang sudy, 3N Ssoup.aey ¥

SoM [ouapu Suuvis ayy) “aadway G v aof

(*sanoy 9o pa3p &jampu pup payzuRY IFTDH PIo) ‘uwas 44s 9°¢ 01 pauriofop

o0SE 10 3u13D fo uoypunf v sv ggpg fo asuodsas Juruayiuang

9V 9oL

41



TN 4

M MR ) M

? jci

- - - - - - - - - - 609 | 965 | 979 | 001
L9 | S| 98 0eS | LOS | LVS Sv9 €79 | £99 LAY L' | T |09
99 [ L'y | ¥8 L'es | 908 123 999 9°¢9 ¢'89 819 | 9°¢9 ¢99 | O¥
89 [ ¢v | €6 | LES | 8IS £'LS 999 ¢S9 | 9L9 €S9 8¢9 | 999 | ¥¢
9% | O | &€ gvs | 6'¢S | 9SS 69 L'89 | 869 9'%9 | 0'¢9 | TS |91
v9 | v¥ | SL 'S | ¢'6v £ vs 999 | 0°S9 | T'89 €79 | 909 1'g9 | 01
9v | 8¢ | £6§ vzs | vOS vs 899 | 09 | £89 08 | OLS | T6S | ¢
e | 1Tt 'y SSy | TSY 8y I'LS 66S | L'8S L9S | 965 | LLS |1
Say | moq | YIH moy | yhig | Sav | moq | USIH | (SMH)
) | =) (LOCUH) Susy
P3uang pPRIX q3uda)g “sudL NN ssoup.IeH :
(‘sunoy gpQI pa3p &jjpinjpu puv payouIn() J2I044 P10 “‘Uais JAdS 9°0 0} pauiofop
som uawr Suvis ayJ) ~1adway S v 40f J,SLE W 3utdv fo uonounf v so 0608 SO asuodsas Sutuaiyi3ualys VAL

42



£ y9 | L'S L 127%Y 4N §9¢ v°99 L9 L'69 L99 99 L'L9 | 001

€ ¢S | 8¢ 1’9 9§ LSS £LS 869 9°89 vIL S'L9 L'99 v'89 | 09

€ €9 | 'S S'L Svs 0'vs 6'vS 1°69 8°L9 669 $°99 6°'S9 0°L9 ,cv,

£ I's { ¢¥ | T9 0°¢s 91§ 6°¢S 9°L9 ¥'99 £°89 (Y 819 LS9 | ve

- - -] - - - - - - - 8¥9 | 6€9 | €59 |91

t Ly | 6t | 96 L0S 6'6v 6'1¢ 1°69 $°e9 0°L9 £'¢9 829 8¢9 | 01

- - - - =" - - - - - 1°09 0°6S y'19 €

£ €9 | 6S | 99 LSy 8 vy 899 L°09 L'6S 079 9°8S 8°LS v'es |1
oy | BAV | W01 (US| Bav | w0 | wBm | Bav | mo1 | wBm | ‘Bav mo | S ?E
wop | ) I o (LOSAH) w:..__m_.&

8 uonesuoly Yjsuan)§ pRIX YISudI)§ *Sud ], 3N ssaup.aey :

SOM JDudIW SUILIDIS Y ])

("sunoy 01 pasv Kjpinypu pup Pajoo)y ity pajnialaddy ‘umwdis JJs 9'0 01 pauLiofap
aadway SI v J0f J,0sE w Suidv fo uonounf v sv 9608 Jo asuodsas SuruayiSuang

8V 219v1

43



R RN EE i L R T T TR T E_ [T

- - - - - - - - - - 896 9°9¢ 0°LS
- - . - - - - - - - L'e9 | 679 (A2

€ c9 | 19 | ¢L | 815 | s1s | zes | 69 | 89 | 069 | TS9O | S¥9 | LS9

€ L | sc | 28 | oS | €€5 | ¥SS | €89 | ¥L9 | 889 | 899 | €99 | TLY | ¥T

€ 9 | 1< 198 | 925 | 0zs | ¢€€s | 129 | 049 | €L9 | 099 | 1S9 | -8L9 [ 9T

9 cc | zv | 69 | 02S | SIS | L€ | 699 | €9 | €89 | €S9 | L¥9 | 199 |01

9 6 | 9% | 69 | 88y | oLy | zoS | 8% | vzo | 089 | T | 619 | 979 |

€ 2L 1 8s | 28 | 1ov | 8cv | vvp | 965 | 165 | TO9 | 065 | 8LS | 8'6S T
o1 | say | moy | ysig | Bav | moq | uSm | ‘3av | moq | uSyg _‘ Cm)
o ) 7 e | wosuw Ty
: . qi3uan)S pPRIX Y3uang Su3L NN | ¢ ssuptel R

(-sunoy ppp1 p23v Kpanpu pup Pajoo)) Iy pajpaa[oIdy ‘uwiis AdS 9°0 01 pauLiofap
Som Jouamw Sulupis ay) “dadway SI v 40f J,SLE 1D Su18p fo uoyounf v sv 9608 fo asuodsai Suruay3uang ‘6V 319vL

44



9 o 79 TTI e T79 T30 TT9 59— 001
759 T T %9 9 TT9 TE9 T79 X
TTY T 099 A T T T % 9%
g9 99 s 9 99 ¥I9 T 9 2R N 7
U9 ) 7 TTY X5 A <9 TY 99 OT SLE
779 g9 U9 TF9 A% A T9 <79 TR 0T
IS TS %% 719 0 IT9 A T%C 579t
TS TS T3 23S 9% ACS S IS S
519 <0 T 19 T99 TI9 539 T0 TG99 [ 001
Y TTY 59 9 79 69 559 059 T TL
TE9 g9 U9 g9 99 TI9 559 28 599 9%
T 9EY T 9 59 99 99 759 9 ¥¢
T79 509 T TTY TTY 9 II9 59 AR 0S¢
TT9 09 TTY IC9 Tt 099 C59 TT9 S 0T
TS 9% TT%S T 19 I 79 79 A
2 IET /229 U0 AT 0 AL S AT
T30 559 L 759 719 T60 99 T30 599 | 00T
T €79 <99 o 799 g9 69 g9 99— 7L
879 509 sagze 09 &Y 9 LY 579 799 9%
719 19 19 59 g0 ALY 550 59 NSTRN B 7
BT TET 009 I T9 Tt ) I't9 g5 9T sct
gIS 0% TS 19 TT9 79 79 779 2 )
TTT %S TS 009 T6S 09 9 63 7T T
TS 57 TS TTT T3S TAL)S 879 A %S T
— VT —Y RO T
90 = 0 =7 oPuny | “dumy

(31025 L0€) ssaupavpy or1fiadng jjamyd0y :spu) caadway S v J0f Suruiof Suimogjof
Payouan() 121044 pjo) Jouamus 10f (3) umais JJs puv ainmiadway fo uonounf v s g6z Jo 101a0yaq Sutuapivy a8y

01V 21901

45



il

T T R T TR

T [ i 11 R 5

9528 4S Y $09 09 309 9°LS LS 0738% 00T
1738% VLS 6 8% 4 179 09 £ 8% ["8% 98¢ L
805 t oS 909 Lt9 %) 69 ¢19 L09 319 9t
9 £ 19 3LH ['v9 (%) 35 1779 619 4 j 24 S
19 009 £ 0w 9°¢Y 282 £ $'19 0ty 91 Wmhm ,
609 ¢ 6% |4 LY 39 L't9 89 9709 ¢'t9 1)
CLS 249 8% 919 T'19 909 19 719 {9 [
v oS Y LS L 09 v 09 019 1Y 4419 L'8S | |
6'LS LS 978% 952 [9%2Y 979 79 619 089 01
¥y 09 ¥ 65 6’19 979 L't9 %9 4 ['19 9 L
19 019 009 [ YY) £ 59 979 779 09 9t
ti9 ¥ 09 0709 1 %82°] L9 1YY 79 69 L9 | 74
A 09 TT9 59 99 59 FEY [E9 5E9 | 9T 0t
009 1765 $09 09 L7 (2% (A4 619 4 1]
99% 09% VLS 26 19 [AR%] v09 g 909 t
0°¢s L0S 6 ¢S 8765 ¢ 65 1709 L'LS CLS [78S !
[ 8¢9 ALY L9Y 659 L'L9 59 059 859 01
0°¢9 0y 9 99 9°%9 699 LYo 99 679 L
$9 L1y 07¢9 6%Y YY) €99 2% |9§%2°) 979 9¢
0’19 385 %) 759 ['59 9°%9 (452 L'tY Lv9 | 74
TS 8T TS 20 Tt9 59 I'tY TTY T 9T STt
["LS [79% LS 9 W4 LY v v 819 99 01
£ 9% 9°%¢ 695 L'6S §6s 009 £0Y oS 919
I'ov 68% 6y L'LS vLS 8 6 9S £9% ¢ LS T
— 6aV RUT | "8V AU U3TH TV [ A0l | TH | ) | W)
90 =7 | 0 =7 0="7 ouny, | cdudr
(2138 LOf) Ssaupavf] pifiadng 11omMy20y SpuU[) sadway §J v 10f Sutuuof Suimoniof
Pajoo;) A1y Paipda]addy JouaIpul J0f (3) ulDdis JdS pup aumaaduay fo uonounf o sv 607 J0 41014vYyaq Suruapivy a3y ITV 2]9vL

[P ————

46



DIDp SSAUPIDY INOY ()/ o

-- - - - - - - - - - ['L9 9°¢9 $0L | 001
6C | L1 'y %9 L9 299 £CL 2L Yol | WL°L9 | 859 | 869 | 09
I's | 8¢ 125 29 1'19 £°¢9 1CL 8'1IL $CL 9°L9 899 389 | O0v
e | 60 6t 9°09 1°6S 1729 80L v 0oL 1L $99 79 69 _VN |
¢y | T 'y PLS L9S 08§ £°69 ¥'89 oL £°S9 69 6'S9 | 91
e | 6T | L'¢ 89S L9S 69S 899 1°99 $°L9 9 6'¢t9 9'%9 | 0T
9 8¢ | 99 L0S 0°08 (AN §Y L't9 $79 99 1°09 98¢ 809 || £
8L | TL ¢'8 1917 '8y t8y v19 19 919 (%Y 1°¢S 08 |1

47

"BAV | M0 | Y3ty | v3AV | Mo | Y3 | ‘3AV | moq | ySiyg || 8Ay | Mo | YIH | (sap)

e @ | =) 1 e @oeary | STl
| vuopeiuory |  wlwnsppx | wiwngswrp | sswprey | PPV

("sanoy (@ pa3v Kppanyou puv payouanb 121pm prod ‘Pajpal] ID3F] UOUN]OS “pa]00I 41D ‘UIDLIS JJS 9°() 01 PauLICfop
SoM poudput Supuvis ayy) “4adway 95 v 10f J.,0SE w0 3uSp fo uondunf v sp ggoz fo asuodsar SuruayiSusnS  Zrv 21quf



-

v IR YT LT T

[[RY

NIRRT TR

DIDp SS2UPIDY INOY T/ x5 [ 4N0Y 9E +

€ 8 | 0s | 79 | s | S9s | 885 | voL | TE9 | LIL || 1S9O | 9O | 099 | 001

€ 1's | v | s9 | L9s | 295 | 8LS | 869 | 889 | SOL [ ..1'S9 | ..€T9 | ..£99 09

€ 66 | e | €L | €sS | 1'SS | LSS | €8 | 999 | €69 | .87 | 609 | .8

€ 8¢ | 6% | L9 svs | L€s | 16 | L99 | v99 | €L9 | ¥19 | T'I9 | 919

- - - - - - - - - - €65 | €85 | 009

€ LS | ov | v9 | €25 | LIS | 1€S | 9¥9 | TE9 | TS9 | 8LS | 09§ | I'6S |oOr |

- - -- - - - - - - - 1SS | 9vS | S§°SS | €

3 19 | 96 | L9 | oSy | vzv | 86y | T9S | 1'SS | 9LS | 1°0S | S6¥ | SOS |1

8oy | moq (B | Bav | moq | ySiy | 3av | Mo | USIH 3ay | mol | Yy || (sap)

@ D e we | g
nonesuoyy - J3uans pRIX BuanS “SUIY, NN Ssoup.rey i

(-sunoy g1 p25v Kypanyou puv PayIuINQY J2J0AL PI0) ‘UILIS A4S 9°0 0F pauuiofop
som ousmow Sunupss ayy) ‘4adway G v 10f J ,S7E w Suidv fo uondsunf v sv 060 Jo asuodsas Suruoyiuang

€IV 31901

48



DIDp SSoUPIVY AN0Y T/ 4y [/ ANOY 9F o

-- - - - - - - - - - 6'v9 S¥9 | 8S9 | 001
896 %Y 8°LS 1°89 1°L9 £69 | .99 | .LES9 | ..6°S9 | 09
¢SS | TS 896 8°L9 699 €69 [ .LL9 | 699 | T8 [ OF
£9S | L'YS v6s 1'69 6'L9 | 90L (A% 9°t9 ¥ || ¥T
¢es | TTS 6'vS €99 169 v'L9 €79 609 €v9 | 91
8¢S | 87§ R4 1°L9 869 | L8 2’19 L09 | 9719 joOr
§0S 08 6°0S A% 9 | L'E9 £LS L9S | L'LS | €
69 | ¥ L'LYy €8¢ €9s | TI9 0'vS 9¢S | LYS |1
"8AV | MOT | Y3tH | SAV | Mo | ydig (| *3ay | mo] | 43y | (supp

) sy | (LOCHH) Sursy
y3uanS ppRIX - Ydudang "sudl, "IN SsoupJaey :
(*sinoy ppQ1 pa3v &jjoanypu puv PayruINY 19704 Pl0) “UILIS JdS 90 0F EE,S\%
SOM [ouaIow Sunvls ayr) “sadway G v 40f J ,0S€ 0 SuiSv Jfo uoyounf v sv 6oz fo asuodsas SuruapSuans  pIv 9oL

49



T,

W0 L e

L

"Nl

DIDP SSIUPIDY ANOY T/ 44 [ ANOY 9E

€ 8V | 9'¢ 19 ¥ 65 1°6S 0°09 6'0L 1'oL | 8'IL 8¢9 (% 79 | 001
€ I's | I'v | 6§ 0°LS L9S §°LS €oL | L'69 'L || .0°€9 | ..0T9 | .L.TY9 | 09
[4 ¢S | ¥S | LS €8S £°LS v 65 8°0L €69 | 9C°L || .ST9 | L9 | 09 | OF
£ S 1 0§ | 6°¢ 0°9¢ IYY LS 069 8°L9 | 80L 019 8°8S 1'€9 | ¥C
- - - - - - - - - - 1°6S 8°8S ¢6S || 91
[4 S | 6v | 09 L1S L0S 928 £'v9 ey | v'S9 1°LS 1°9§ 8°'LS | OI
- - - -- - - - - - - £'9S 9°6¢ 696 | ¢
t 08 | 8L '8 6'vv 9847 1Y% 9’65 | 98¢ §09 16y 6'8v Sev |1
| 8av | moq |yBip | Bav | moq | St | Bav | moq | uSig | BAv | M0T | WHH | (up)
) = (s (LOSHH) susv |
~ uonjeguory G Buang pRIX - J)3ua)§ "SUSL N[ ssoupJIel] A
(sanoy g1 p2Sv &panipu pup Pajoo)) i1y pajviajarry ‘umwis 4ds 9°0 9 pauuofap
som pouaspw Suuvis ayj) “Jadwdy S v 40f J.STE W Su1Sp fo uoyounf v sv P67 fo ssuodsas Jumayiduans "SIV qPL

»

50



R L

DIDP SSQUPIDY ANOY T/ 44 / ANOY 9F 4

- - - - - - - - - - 6'LS LS | 9°8S 001
€ €9 | ¥S | V'L 6'vS £'vs Y 0°L9 L'99 'L | LP09 | LP6S | L6719 09
£ 29 | LY | 9L 1YY 6'vS 09§ 8°L9 £°L9 089 | .S'19 | .0°19 | .0'79 oy
£ 09 I'S | 0L 1°LS 1°9¢ 6'LS 8°69 $°69 1°0L €19 v'09 0°29 144
[4 1'9 1 09 | 29 1SS Y §'ss 6°89 £°89 $°69 ¥°09 1°09 19 9I
£ 8¢ | TS | 89 6'vS 1284 8°SS 189 9°L9 6°89 0°09 1°6S 09 01
- - - - - - - - - - 9°9¢ 0°9¢ VLS €
£ S8 | 08 06 S8y 6'LY £ 6v €79 0’19 'e9 0TS | LOS 6°CS 1
Ciaeay | BAV | MOT | USIH | BAY | mo] | ySiy | SAy | moq | ySig | ‘Say | mop | BT || (sarp
: WWM 1 e e | oD | @%ﬁc, u@www
o h  uoneguoy [13uang pRIX. | yjBuang “sudy, N 1 SsJupJey :
(*sanoy 001 p23v Ajvinou puv pajoo) Iy Pajvda]aIdy ‘UIs 4JS 9°( 01 pauLofsp
SoM [ouapw Sunupis ayL) “4odway S v 10f J ,0SE W SurSp fo uonounf v sv P07 Jo asuodsas 3uuaySuanys 91y quI

51



ar

[l I

[T T

ey

g 1

110 i

T8S 185 65 0 (9 T 19 Ne) 8 09 09 T 19 || 00T
T TTY Tt9 69 69 79 0t9 Y T |09
T Tt9 NSy T 82 799 NS ALY 659 || OF
759 59 9759 799 LY o 099 759 v99 [ ¥C
899 T99 TZ9 Y L'99 979 99 99 TI9 [ 9T
099 Ty 699 899 (2672) 039 650 759 €99 || OT
TEY (Y 2 (2] T TS (4Y 319 A I Y
T0S (957 0TS TTS TtS (879 TS gTS 6 | T
LS9 L V9 0 L9 89 819 9789 6 L9 T L9 T 39 | 001
L'T9 599 389 69 U769 90L T89 379 889 (09
789 6 L9 69 669 XY A ) U89 69 || OF
99 699 284 TE9 T8Y TOL T8Y Y 889 [¥¢
T99 659 699 7I9 7799 284 %9 7I9 689 || 91
rAESY 89 8T 5799 T99 09 NS 9SY 659 [ 0T
8IS TTS TTS 9% TS ALY Y% TS ST €
91]7 L6t 87 257 09% 10057 (9} 7 6P 69% || 1
T 89 709 | C69 989 LL9 T69 ) 919 6 L0 07
L99 799 09 SI9 699 619 TI9 TI9 TI9 |09
8Y9 f72) T TT9 059 659 059 )72Y) LS9 v
03% TLS 685 19 09 719 A3 065 JA(I I 74
(49 5 TS TS T8 TLS 668 67S 457 TS 9T
9% 1857 )7 4y 8IS TS (AL T8V NS 1)
TSt THE T9t 7T 69t TS (18 §7 (91]7 STV | €
1814 69¢C T6C 3Tt 80t TIE 79t LSt TIT || ¥
“EAV RO YSTH | 5V AU UoTH "BAV mOT [ UH | (sIH)
90 =7 T =7 =" ouny,

*(212s [Sp) SSaupivy] Jo191f12dng [jMyd0Y SIUf}
IO PIo) Jouamui 4of (3) umwass JdS puv aunmaadwiay fo uonou

“1adway <[ v 10f Sunuuiof Suimojjof payPuINQ
nf v s S60TX Jo 401vyaq Suruapivy a3y

LIV 21901

52



Pt T w4

v LV 372 128474 $ 05 ¥ U% 9 0% wl
5 59 3 0% LTS SIS 8°0% |84 09
098 NYY £ 95 LSS 6vS L9% 1]
PEsS %Y 9es (4% 9% L'tS 74 ,
29 57 S R A9 TTS i %S 9T sLE
%Y 6 ¢S 9L %Y 0ts %S 1)
98P "8y tov 'Ly (A1 7 8Ly t
Vot 06t ¢ Op 9 0v 00v cly T
0%S LTS 8'5% 095 Y ¥9% 001
69% 9°%% 8% L'LS ["LT 8% 09
1'8% v LS 283 LS ¥ 9% 9LS or
LLS 6 9% L35 3 85 283 $ 65 44
5% 5% IS 0TS 9% TTS 9T 05t
4 6°1S %S LTS S A4S 0T
vy Sty 847 [447% %7 847 t
85t 'S¢ 9t LY L9Y 9LY I
$6S £6s 0°09 68% 6'LS 9°6S 00T
1Y 9% L9% %Y 1952Y 09§ 09
[487Y %Y LvS 67S 7Y 2 YY 1]
$ 08 ¢ 0% 188 L 0% MY 60S Ve
T0% A 317 17 0% 0¥ 9T STt
VLY 39¢ 08¢ 3LY 69t S8t 01
97¢ L0C 74 v6l 88C POt t
'ed VI I'vce 00 v 6c v 0t I
8V ROT | WH G [ W
. TO =7 - ouny, | ‘dumj,
“(3100s [ Sp) ssaupvpy (o1otfiadng jjamyo0y spuf) sadway §J v 10f Sutuuof Suimoqof pajoo) ]
A1V PaIDIdaI3y [vuapout 40f (3) umdis JJS pup ainpsadwal fo uonounf v so SEOTX Jo 101avyaq Suruapivy 23y "SIV 2)qv

53



v e

T A AT TR ™R Co
- - =" - - - - - - - 9°709 079 L€y | 001
ve 6t t'88 8'L8 688 ¢'T6 €6 | 976 £ S9 ¥ v9 6'S9 |t 09
(A 9°C ¥'16 ¢'16 ¢'16 £ V6 0°'v6 Sv6 ¥'99 0°S9 1'L9 | Oy
9°C te ¥°06 ¢°68 (A1) 1'v6 £e6 | 056 LS9 €9 699 | ¥T
8T LY ¥°06 1°06 L 06 v'v6 v'v6 Sv6 1908 2 9 s 9
14 Y 698 8°68 6'L8 0'Z6 1°06 C°L6 ['19 9°6S 6’19 | 01
0'tl ] 0°09 ¥ 68 [°19 0'LL oL SLL 6'LY ey LTS || ¢
|4 ¥'8l | 0°¢S 124 9°tS 6°SL 9°SL 9L L9t £st 8¢ || L
|imoy | ySig | Bav | moq | wBH | Bay | o7 | YStH | SV | m0] utH || (sIp)
@) T (s) (LSYaH) , m..__m,_«
uonjeduory - IBudaS PPRIX Y)ZuanS “sWL, "M ssoupJey :
(‘sanoy oI paSv KJvanyou puv payduanb 12;m pjod ‘pajpai] JUSF] UouNjos ‘pajood 41w ‘Uwais JdS 9°0 01 pauuiofap
SoM ouamut Suruvis ayf) ‘4adway 9] v 40f 4 ,0SE W Suidp Jo uoppunf v sv $60z7X Jo asuodsas Suwayisuans 61V 31901

54



3 61 Tl €C | 968 | T68 | L'68 | 1€6 | 0¢6 | T€6 | 89 | 79 | 769 | oo1

€ L'T v'T I't | 688 | v'88 | L'68 | 1'¢6 | 876 | €€6 | .99 | 99 | 029 | 09

€ 8°¢ 0°¢ Ov | L8 | 118 | LL8 | 126 | 816 | €26 | 89 | 09 | z's9 o

€ 69 L9 CL pLeL [ oeL | Ty | 978 | 028 | 0¢8 || 08 | zis | 68s | vz

3 LTU 901 | eel | 0oL | 989 | 91L | z2z8 | 918 | v'e8 | 925 | 615 | ¢€c | o

€ SSU 1 9%¢ | 691 | ¥'8S | 6°LS | 88S | 1'8L | 94L | v8L | 19v | 1St | 89y | oL

€ 0tc | 8T | 8¢ [ Szv | Ty | oer | TOL | 689 | 9'1L | Tse | €vE | 19¢ | ¢

€ 961 | T6l | 661 | T | 9y | ey | 0L9 | 199 | s89 || 08z | 692 | c6z It
T e Bt TV | ne1 | W | By | we1 | B 1| P G
Jox %) sy L asy) (LSH¥H) | Pwmy
N * uoneduopy Wm3uans ppIx | wlBueng ssugy "IN ssoup.aeyy || Bwdy

(*sanoy gpo1 padv &jpanpu pup D2Yyduang) 1ajogy pjo)
SDM. [DudIoul Sunvls 2y J) “sadway SJ v 40f o,

‘uwns JJs 99 01 pauiofop
§TE W Sw3v fo uoyounf v sv §ezx Jo asuodsas Surayduang

0TV a1qvl

55



- - - - - - -- - - - LS9 | L' | 0°L9 | 001
€ 81 81 61 198 | €98 | 806 | 196 | 1716 | T96 | LL9 | 699 | 889 |09
€ L1 €1 v'T 1’68 | 768 | v06 | Ts6 | 06 | ¥'S6 | ¥89 | 6L9 | 169 || O
€ ST Tt 8T 3v6 | 216 | 046 | 696 | L¥6 | 886 | 919 | 699 | ¥'89 | T
€ 6T ' €€ 688 | 188 | 768 | S€6 | vie | TH6 | S99 | 6'S9 | 699 |91
€ Ty S 9’y ¢8| 0cg | 928 | 806 | 188 | ¥T6 | TS9O | 8¥9 | 859 | OL
¢ Ovi | 1el | 8vl | 079 | v09 | §€9 | s8 | SLL | €6L | 815 | SIS TS )€
€ 36l | 061 | s0z | o6y | 68 | Tev | 91L | €1L | 8IL | €O | L6 | Oy | T
| 3ay | mo1 | uBiH [ "Bav | moq | uSig | 3ay | moq | udH Sy | moy | YSiH
o4 (%) (1s¥) e (srad) - Buisy
voREsUor W3NS PRIA. wuong "swAL NN || SSUPIEH .

(-sanoy gp1 pa3v Kjpangou puv paYIUIN,

00 P00 ‘utosss 4dS 9°0 03 pauuiofop

soM pousw Suruvls 2yJ) “Jaduiay SI D 10f 08§ I Surdv fo uonounf v sv S60TX Jo asuodsas Suudyiduaijg

"ITV 21971

I o

56



[4 I't 0t | 9'vL LvL 1'¥8 0'v8 I'v8 $°6S £g6s | 009

t el 0°SL 0'v8 0't8 9°'v8 $'9¢ v'9$ L9S

t SoL vIL €18 18 918 (%Y 8¢S | LS

[4 0°$9 199 8L ['8L 6°8L §0S ¢o0s | 01§

¢ 0'vs 9°LS 0°¢tL ¢TL 0vL 1oy 86t SOy | 91
€ 9°9¢ £8y ¢iL £ 0L £lL vLE 8'9¢ 08t | OT
t 8'Le 9°8¢ 9°S9 €S9 8¢9 9°TC L0¢ S¥e || €
t A7

("sanoy g1 pa3v Kpvanpu pup

pajoo)y 11y paipialaddy ‘umwais JdS 9 0 03 pauLiofop
SoM [oudow Supuvis ayJ) “saduiay GI 0 4of 75 1w Sursp fo uonounf v sv §epzx fo asuodsas SutuaySuang

TV 21901

57



) M| ]

FT I I T

o m i R T T A TR

58

- - - - - - - - - - 0'vS L'1S S Y
3 9°C 9°'1 (ALY 19 A 0oL 8°CL L'T8 8’18 £'e8 6'9$ 9°6S 1'8¢
¢ Ve ST oy 1L £0L 8'IL v'e8 | 818 1'¢8 1'8S LS ¥'8S
¢ 'y e 0°S 'L SOL ¢lL ¥'Z8 '8 0°¢8 L'LS 6°9¢ L'8S
€ LY LY 38 4 LOL 669 L'IL L'T8 ¢'T8 8°C8 69§ $°9¢ 9°LS
£ 09 V'S €9 $°99 [AY) ¢°L9 $08 | S8L L18 (4 6'1§ | %Y
1 9l 8¢l 6Ll o6y 8'8Y v 6y CIL 9°0L ViL I'vv Sty - 4%
¢ S°L1 ¥ Ll LL1 'Ly £ ov S'LY 9°'1L vOL L 8°St [°6¢ 9t
,‘ | e

(“sunoy gpo1 p?3v Guunpu puv Pajoo) 11y Parwia]aIdy ‘UM 4dS 9°0 03 pauLiofop
som pouapput Sutums ayy) ‘4adway G v 10f J,0S€ w 3uiSp fo uonounf v sv S6OTX Jo asuodsas Suruaypsualg

oo e [

"ECV 21901









Form Approved

REPORT DOCUMENTAT'ON pAGE OMB No. 0704-0188

collection of information s estimated 13 average * mour per resporse, including the time for reviewing (nstructions, searcning existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re?ardm; this burden estimate or any other aspect of thiy
Collection of nformation, incluging suggestions for reducing this burgen  t2 Nashington Headauarters Services, Directorate for infQrenation Operations and 5590!15, 1215 jef{erson
Dawis Highway, Suite 1204, Arlington, V3 22202-4302. and 16 the O*fice of Management and Budge:. Paperwork Reduction Project (0704-0188), Wash:ngton, &C 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1993 Contractor Report
5. FUNDING NUMBERS

public reporting burden for this

4. TITLE AND SUBTITLE
Effect of Thermal Processing Practices on the Properties of C NAS1-19399
Superplastic Al-Li Alloys

T AUTHORE) WU 505-63-50-03
Stephen J. Hales and Henry E. Lippard

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES}
REPORT NUMBER

Analytical Services & Materials, Inc.
107 Research Drive
Hampton, VA 23666

10. SPONSORING / MONITORING

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REPORT NUMBER

NASA Langley Research Center NASA CR-4548
Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES
Stephen J. Hales: Analytical Services & Materials, inc., Hampton, VA

Henry E. Lippard: Northwestem University, Dept. of Materials Science, Evanston, IL
Langley Technical Monitor: Thomas T. Bales Final Report

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 26

13. ABSTRACT (Maximum 200 words)

The effect of thermal processing on the mechanical properties of superplastically formed structural components
fabricated from three aluminum-lithium alloys was evaluated. The starting materials consisted of 8090, 2080 and
X2095 (Weldalite TM049), in the form of commercial-grade superplastic sheet. The experimental test matrix was
designed to assess the impact on mechanical properties of eliminating solution heat treatment and/or cold water
quenching from post-for_mmg thermal processing. The extensive hardness and tensile property data compiled
are presented as a function of aging temperatire, superplastic strain and temper/quench rate for each alloy. The
tensll_e properties of the materials following superplastic forming in two T5-type tempers are compared with the
baseline T6 temper. The implications for simplifying thermal processing without degradation in properties are
discussed on the basis of the results.

14. SUBJECT TERMS 75, NUMBER OF PAGES
AIumlnurn-_thhlum Alloys Mechanical properties 68
Superplastic Forming 16. PRICE CODE
Heat Treatment AO4
17 SECURITY CLASSIFICATION 118, SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED LUNCL ASSIFIE
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

298-102

¥ U.S. GOVERNMENT PRINTING OFFICE: 1993 - 728-064/86059

"
il



1l by

i A




