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future ICASE reports in this area o[ research will be printed with a green cover. Applied

and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.





THE RECEPTIVITY PROBLEM FOR O(1) WAVELENGTH
GORTLER VORTICES

Andrew P. Bassom 1

Department of Mathematics

University of Exeter

North Park Road

Exeter, Devon EX4 4QE

UNITED KINGDOM

an d

Philip Hall _

Department of Mathematics

University of Manchester

Oxford Road

Manchester. M13 9PL

UNITED KINGDOM

ABSTRACT

Ill this paper we make an investigation of the receptivity of boundary layer flows to GSrtler

vortex modes. A study by Denier, Hall _ Seddougui (1991) of the generation of vortices

by wall roughness elements concluded that such elements are extremely poor as mechanisms

to stimulate short wavelength modes. That work also examined the equivalent proNem

pertaining to O(1) wavelength modes but that analysis was in error. We re-examine this

problem here and demonstrate how the form of the wall roughness is crucial in determining

the vortex stability characteristics downstream of the roughness. In particular we investigate

the cases of both isolated and distributed forcing functions and show that in general a

distributed function is much more important in generating vortices than are either isolated
roughness or free-strealn disturbances.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in

Science and Engineering (1CASE), NASA Langley Research (-'.enter, Hampton, VA 23681.
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1. Introduction

Until quite recently little was known about the important problem of the receptivity of

boundary layers to GSrtler vortices. Perhaps the first work in this direction was performed

by Hall (1990) who was concerned with the receptivity question in the case of vortices

excited by free-stream disturbances. That paper also reviews the various stages of growth

of G6rtler vortices within boundary layers and the reader is referred to that article for an

extended discussion of the linear and nonlinear characteristics of G6rtler modes.

The receptivity work of Hall (1990) used a linearised analysis and this was extended by

Denier, Hall & Seddougui (1991) (hereafter referred to as DHS) ill order to account for the

processes by which GSrtler vortices may be stimulated by wall roughness elements. DHS

considered both isolated and distributed roughness patches and they calculated coupling

coefficients which indicate how the amplitude of the forcing flmction is related to the

induced vortex size. For small vortex wavelength the coupling coefficient is exponentially

small and so it was concluded that this type of mode is unlikely to be directly excited by
wall roughness.

This finding concerning the receptivity of boundary layers t,o high wavenumber vortices

was deduced using an analytical technique in which the flow structure was described by

WKB type expansions. However, in general a numerical method is required in order to

investigate the properties of O(1) wavenumber GSrtler vortices generated by roughness.

Laplace transform solutions of the governing equations were used by DHS in order to

calculate the structure of the vortices at small distances downstream of the roughness

region. This structure could then be used as initial conditions for the numerical marching

of the relevant equations in order to obtain the flow properties at O(1) distances from

the roughness. These initial conditions assume the form of similarity solutions and the

disturbance structure as predicted by DHS implies that close to the roughness the vortex

is effectively confined to a very thin layer adjacent to the bounding surface of the flow.

The type of analysis outlined in DHS was also used by Hall & Morris (1992) in the

context of describing how vortices develop in the flow over a heated flat plate when these

modes are triggered either by localised or distributed wall roughness or by non-uniform

wall heating. Both these papers concluded that for O(1) wavelength modes a vortex field

grows within a wedge at a finite distance downstream of the non-uniformity in the flow.

Subsequent investigations of the receptivity of GSrtler vortices have suggested that the

work of DHS for O(1) wavenmnber modes is erroneous for two reasons. First, the inversion

of the Laplace transform solutions derived in DHS are technically more involved than as

was presented. This in turn has implications for the similarity solution structures and we

show below that the required structure is not confined in the thin wall layer predicted by

DHS. Therefore the numerical solutions obtained by DHS by integrating the full equations

were initiated with incorrect disturbance profiles and so the aim of the current work is to
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reconsiderthis 0(1) wavenumberstudy. This allows us to illustrate how the analysisand
conclusions of DHS need to be amended. First we concentrate on the problem with an

isolated roughness element and then demonstrate how useful deductions concerning the

distributed situation may be obtained.

To begin we shall give a brief derivation of the pertinent equations, fuller details of

which may be found in DHS. Consider the flow of a viscous fluid over a wall of variable

curvature. If U_ is a typical flow velocity far from the wall, u is the kinematic viscosity of

the fluid and L is a typical lengthscale over which the wall curvature varies then we define

a Reynolds numl)er Re by

Re=U_L/u, (1.1)

and we SUl)pose that with respect to Cartesiml axes x*, y*, z* the wall is defined by

=g(x /L) + ARe-½ f z*

where A is a small consta_lt. Variables (x, y, z) are defined according to

(1.2)

(1.3a)

and the corresponding velocity vector is supposed to be given by

(u+, v+, w +) = (u*,Re½v*,Re½w*)/U_.
(1.3b)

Attention is confined to the limit Re _ co mad then

1

p+ = (a,
(1.4a, b)

where p+ is the fluid pressure scaled on pU_ with p the fluid density. The basic flow

velocities u, v are functions of x and y alone whilst g, _?,t_,i5 depend on all three spatial

co-ordinates. Expressions (1.4a, b) are substituted into the linearised Navier-Stokes and

continuity equations and the resulting forms need to be solved subject to no-slip conditions

on the wall y = g and need also match to the free stremn fluid velocity as y _ oo. As

in DHS we shall restrict our analysis to Blasius flow as a specific example although it is

straightforward to generalise the work to other basic boundary layers.

It is convenient to apply a suitable Prandtl transformation to the linearised disturbance

equations to give

fi_ +_3 u + t5_ = 0,

fifi_ + 0fly + _2 u + fifi_ = fiyy + _-'_,

ft9_ + f_Sy + ftfJ_ + 9fJy + GX(x) ftfz = -f_y + 5yy + 5,_,

(1.5a)

(l.5b)

(1.5c)



fit_ + fitSv = -15z + uSuv + tSzz,

fi=-f_y, 9=t_=O on y=O,

fi, 9, t_ _ 0 as y --* oo,

whilst the basic flow qua_ltities satisfy

(1.5d)

(1.5_)

(1.5f)

fi=_=0 on y=0; fi_l as y_o¢.

hi equation (1.5c) the quantity 2(d2g/dx 2) has been replaced by GX(X ) where X and

G are referred to as the wall curvature and GSrtler number respectively. It is convenient

to assume that the function f(x,z) (which determines the geometry of the roughness

oil the wall) may be written as f = fi(x)_(z) and then equations (1.5) may be Fourier

transformed in z. If u,v,.., denote the Fourier transforms of fi,5,.., etc. then it is

convenient to eliminate w and p from the transformed versions of (1.5). If k denotes the
transform variable then we obtain

_tu_ + _u v + vft v + u_z_ = uvv - k2u, (1.6a)

{_,_, + k_+ k_,_} ,, + _u, + {_,_, + k_ + k_xG_,}u

+ {%_- _,o_1o_,_ + k_,} ,,_+ 2 {_,_,,+ _,.OlO_,}u_ (1.6b)

+ - %- - + } + { + k } = o,
linking u mid v whilst w and p may be then deduced from the transformed versions of

(1.5a, d)

u_ + v v + ikw = 0, (1.6c)

_tw_ + _w v = -ikp + wvv - k2w, (1.6d)

should these quantities be desired. On defining F(x) = ftv(x,O)f(x) it is found that

equations (1.6) need to be solved subject to

u=q(k)F(x), v=w=0, on y=0, (1.6e)

u, v, w _ 0 as y _ oc. (1.6f)

DHS showed that wall roughness is inefficient in stimulating small wavelength GSrtler

vortices and so here we shall be concerned solely with the case when the forced vortex

wavelength is comparable with the boundary layer thickness. For all the work undertaken

it transpires that the factor q(k) is merely a multiplicative constant so henceforth we

shall take q(k) = 1 which corresponds to a delta-function shaped hump in the spanwise

direction. Corresponding results for other spanwise distributions may be deduced easily.



Tile remainder of this paper is divided as follows. In §2 we determine solutions

appropriate to the case when F(x) varies on a relatively fast lengthscale. DHS

demonstrated that, at least in theory, the asymptotic forms of these solutions can be used

as the (necessarily unique) initial conditions for marching the full linearised equations

(1.6a, b) in the streamwise direction x. These initial conditions are studied in §3 and the

Subsequent nmnerical solutions addressed in §4. We conclude with a brief discussion of the

implications of this study.

2. Vortices induced by short scale roughness elements

We now examine solutions of (1.6a, b) when the forcing function F(x) varies on a fast,

say O(e), lengthscale. Suppose that the forcing begins at x = 5: and define

X = (x - _)/e and F(x) = F*(X). (2.1)

I without loss of generality so that the original
DHS pointed out that we may take _ =

lengthscale L has been fixed in terms of the distance from the leading edge to the position
1 then convective and vertical

where the forcing begins. In the neighbourhood of _ =

diffusion effects are comparable in a region of depth O(e_ ) and the wall forcing implies

that u will be 0(1) there. If we define

then for ( = O(1) the disturbaalce quantities develop as

(,,,v,w,p)= +'
(2.2a)

whilst

If the governing equations (1.6a, b) are Laplace-transformed with respect to X and

solutions of the forms (2.2a) sought then DHS demonstrated that the transformed functions

u0, v0 are given by

+ Ai f0

Ai [(As)

(2.3a)

(2.3b)



where s denotes the transform variable and Ai is the usual Airy function. Furthermore,

by considering these expressions as ( _ oo, it was shown that the flow in this wall layer

induces a motion in the zone y = O(1) and there

u = U0e_ +..., v = goe-i +..., (2.4a)

where U'0, V0, the transforms of U0 and V0, are given by

b'0 - 3F(__s)_' (sA)-_ Ai'(0)q*(y, k) + _ = -3_P(s)s] A-½ Ai'(0)q*(y, k) +...,
7._ " ° " '

(2.4b)
with q* satisfying the stationary Rayleigh problem

- k q*- = 0, q'(0) = 1, = 0. (2.4c)

DHS restricted their attention to the case when F* = _(X) and showed that this choice

leads to a solution in which

Uo ,,_ -_(_o _/X _ , Vo ,,, X--[Vo (/'X ½ . (2.4d)

This in turn suggests a form of similarity solution as appropriate initial conditions for

a nmnerical solution of the system (1.6a, b) to O(1) distances downstream of the delta-

function shaped hump. However, DHS were unable to obtain similarity solutions of the

type assumed in (2.4d) and so they proposed an alternative form which had the unusual

feature of predicting that the disturbed flow remains confined to a thin wall layer even at

O(1) distances from the roughness. We demonstrate that this conclusion is incorrect (see

§3) but first we examine the inversion of expressions (2.3a, b) for an illustrative selection

of roughness functions F*(X).

Since the transformed quantities fi0, 00 involve Airy functions of argument proportional

to s_ it is clear that in order to obtained the inverted forms u0, v0 it is essential to cut

the complex s-plane in an appropriate manner. It is a standard result of tra_asform theory

that if t_(s) is the Laplace transform of any suitably well behaved function Q(X) then

1 /c+i_ e,x Q(s)ds 'O(X ) = -ff  i.

where the line of integration passes to the right of any singularities in Q(s). If we cut

the s-plane along the arg(s) = _- ray then we can invert Q(s) by integrating around the

classical 'key-hole' shaped contour sketched in Figure 1 and which is composed of a large

semi-circular arc of radius R and linear portions £1, £2, £.._,£4 and £5. The first two of

the straight line contours are located just above and below the branch cut and a small

circle C, radius 6, which has centre s = 0. For all physically realistic roughness shapes it is
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straightforward to verify that, assumingthe senti-circular arc is chosenso as to avoid any

singularities in Q(s), then as R _ e¢ the integrals over the straight lines/:;3,/24 and the

senti-circle _ 0 and the inverse of 0(s) follows once _ _ 0.

We now demonstrate how contributions from /21, /22, C and any poles can play

contrasting roles as the forcing fimction F*(X) is varied. Interest is restricted to the

case X ----* oc for this limit indicates the appropriate initial conditions for a numerical

solution of equations (1.6a, b) in order to obtain the vortex characteristics for x = O(1).

2.1. The delta function F*(X) = 6(X).

Now ['(s) = 1 and so u0 and v0 have no poles in the s-plane. In addition the

contribution from C _ 0 as its radius shrinks to zero so that the dominant part of

the solution must arise from the integrals along £1 and/22. If we define

-_x = o3, _ = x_,71:_, (2.5)

then 1

9A-_ (2.6a)
vo -- 2rriX I N,

(,.) ,,- ( )04exp(-03)[e _ Ai' 077e_ -e _ Ai' 0rle-_- -iv/3Ai'(0)

_OO i'w" 2i'a* i_"
+02,1 (e-_ Ai (Ore -r) -e--_-- Ai (Ote-_))dr]dO.

Elementary analysis demonstrates that

1 2N-, _r_N" 0,N'"' + gr/ + =
(2.6b)

with

iAi(0)r(_), g'" iAi'(0) 8
N(0)=N'(0)=0, N"(0)- _ (0)- _ r(g), (2.6c)

and where ' denotes a derivative with respect with to r/. It is possible to express N in

terms of the Whittaker fimction W_,, defined in Abramowitz & Stegun (1965) so that

1 3

N" 4i Ai(0)r(__)_1 exp (__r/3) W2,_ _ (gr/).-- [1
9_

A study of the inversion of (2.3a) leads to the solution

t/0 --

(2.7)

9 i ( 3 Ai'(0)) F(_)t] exp (_ _r?)2iTrX 9_/. _ 7Ai(0) + Ai(0)

/o" ]+_,11v"- _N' + _,?N - ,exp (-_,_) (_ + _t _ '
(2.s)



and the solutions (2.6a), (2.8) together give the large X solution (2.2a). Although they

are not required in this study, the relevant forms of the spanwise velocity and pressure

disturbance components, w0 and P0, may now be retrieved from (1.6c, d).

2.2. The Heaviside function F*(X) = H(X).

In this case _'(s) = 1Is and the inversion of tT0(s,() no longer has a negligible

contribution from the small circle C as b" ---, O. If the substitutions (2.5) are made it

is a straightforward but lengthy task to deduce that as X ---, cx)

V 0 --

1 1

9_A-_
1 2

4_,x_ r(- _)r(_)&,_), (2.9a)

where

°

I 2 c,m 4 7#_'" 0 :iV"" + it/ iv +

or, equivalently,

:9(0) = 19'(0)= o, _ _ 1 as
_1 -_ _¢, (2.9b)

Y0 -- 3v/SA-_ f_

In turn, inversion of (2.3a) leads to

(2.9c)

vo(q)exp(iq3)dq dp-1 exp(-_t3)dt_9 ]

' (2.9d)

+/.oe" [/o''o(qlo-.(.'-¢I.ql+

2.3. A distributed roughness element.

hi order to illustrate the effect of a distributed as opposed to an isolated roughness

patch we now consider a forcing function given by

F*(X) = sinX. (2.10)

In this case if(s) = 1/(1 + s 2) and this introduces simple poles into the Laplace inversion

integrals required in order to deduce Uo and Vo. For this particular choice of forcing

function T'(s) _ 1 as s _ 0 and thus the contributions to uo(X, _), vo(X, _) arising from

the parts £1, £2 and C of the contour sketched in figure 1 are identical to those relevant

to the delta function shaped hump problem considered above.

Inclusion of the terms arising from poles in T'(s) leads to the complete solution

--_--_ 2iv0(X,() : _2_rzx. N(,i ) +... M(X,() (2.11a)
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as X _ _ where N(,I) is as defined in (2.6) and M(X,{) satisfies

( ) ( )-- --¢ 'a-t'T Ai A_e_( + e -'x--_- Ai A_e-_( ,

O_2
(2.11b)

with

o___MM(x,o)_ 2i cosX. (2.1xc)
M(X,O) =0, O_ 3_

Furthermore, if we denote the solution (2.8) of the delta function problem by ri0(X, ()

tiled

uo(X,_) = (_o(X,_)+ ...) + }_ (Q+(X,_) + Q_(x, _))

i_ i,¢ iX"1 ai(A½eT_)e ix - Ai(A½e-T_)e- ),
+ 2i Ai(0)

(2.12a)

with

Q±(X,() = e+i(x+-_){ Ai(A-_e+__) :=_'"
e T 3

3Ai(0)$_

e_=_ f_Ai(A½e+_t)dt + $-]e_:_ Ai'(0)Ai($ke+_)f0 2 du .

(2.12b)

Although the periodic forcing (2.10) is very specific it does illustrate much of the nature

of the Laplace transform solutions that arise from a wide variety of distributed functions.

If the forcing has a zero mean value then T'(s) tends to an O(1) constant as .s --+ 0 and so

the/21,/22 and C parts of the contour for the Laplace inversion gives a solution proportional

to (2.6a) for v0 and (2.8) for u0. On the other hand if T'(s) has a simple pole at the origin

(wllich corresponds to a distributed forcing flmction with non-zero mean) then we recover

a multiple of the Heaviside type solution presented in §2.2. Each pole in ['(s), other than

at the origin s = 0, leads to terms like M(X,() in (2.11) and Q+(X,() in (2.12a). These

flmctions are periodic in X and for a general periodic forcing flmction these terms in the

solutions for v0 and u0 need to be replaced by infinite sums akin to Fourier series.

The solutions (2.11a), (2.12a) indicate that as X _ ec the influence of the contributions

arising from any poles of ['(.s) is confined t() a thin region adjacent to the wall whereas

th()se from the delta-function part of the solution expand into a region where _ = O(X _ ).

Thus the s()lution parts divide into forms governed by two distinct structures and this

p()int is exI)lored fin'ther in the coming section.



3. The evolution of O(1) wavelength vortices further downstream

We now show how tile solutions of the preceding section may be used to deduce unique

initial conditions of a form suitable for the marching of equations (2.6a, b) to O(1) values

of x. As we allow X ---* c_ the similarity variable implied by the results of §2 is

1

( = y (A/:_) 5 , _=x-2, (3.1)

and for ( = O(1) the appropriate expansions for the disturbance velocity components u
and v are

u = --=-u0(() + ..., v = -:--Fv0(() + ..., (3.2a, b)
X ,T3

in the case of r*(x) = The functions Uoand Vosatisfy

d 4vo d 3Vo 7 d2 vo

d(---X- + ._(2 d(--T + 5( d¢-_ -0, (3.2c, d)

d2uo a (2duo
d( _ + 3" d( + (u° = v°'

which need to be solved subject to

dvo
UO _ Co _ _ _ O_ on

d(
dr0

(----0; u0,--_---*0 as (---*oo. (3.3)

DHS observed that equation (3.2d) may be solved for d2vo/d( 2 in terms of Whittaker

functions. This equation is linear and the constant of proportionality in the solution

comes directly from the Laplace solution (2.6a) so that

v0 -- 27r q-1 exp (_lqS) Ws,_ (_ , dq dp. (3.4)

Now DHS argued that the homogeneous form of equation (3.2c) has the eigensolution
1

uoH = (exp (_g(3) and that any other linearly independent solution of (3.2c) behaves

like u0 _ (-s as ( ---+(x_. In turn, since uoH(O) = 0 it was stated that the inhomogeneous

form of (3.2c) can only be solved if a finite multiple of the algebraically decaying solution

is retained. In that case the solution cannot be matched with the flow in the core region

where y = O(1). It was therefore concluded that this similarity solution cannot be the

required form for & small. Instead, DHS proceeded to identify another similarity solution

in which to leading order u0 :'- Y:-_u0(() and v0 --- _-]v0(() and these forms of sohttions

led to the conclusion that the disturbance is confined to the region where ( -- O(1).

However the above argument is flawed as a particular solution of (3.2c) may be found

which excludes the algebraically decaying homogeneous solution whilst at the same time

vanishing at ( = 0. (That this is possible was kindly pointed out to us by Professor S.N.

Brown.) Then

u0-O(exp(_l(3h 1,_ tt 1 , 5(2V0.__(exp( 1_¢3)1(_"

J0 (_ + _t _) vo(t)exp(_t'_)dt,

(3.5)
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is a suitable solution of (3.2a) where D is some constmlt whose value is as yet unknown.

Its value could be determined by examining fllrther terms in the similarity expansions

(3.23, b) lint it is much more convenient to deduce the required value directly from the

Laplace transform solution (2.7). This gives

3 Ai' (0) '_ 4 (3.6)1 7 Ai(0) + -_(6)) ] 1-'(.g).D- 2x/_rr

Solutions (3.4-6) describe how the vortex develops at small O(1) distm_ces downstream of a

delta-shaped hump and within O(i: _ ) distances of the wall. They therefore provide suitable

starting conditions for a numerical solution of equations (2.63, b) to greater distances

downstremn.

For the case F*(X) = H(X) the Laplace solutions (2.93, c) suggest that for 0 < i: << 1

--_ (3.7)u = _0(_) +..., _ = • _0(_) +-..,

with

Now

d2uo j 2duo d4vo I 2 d3v° 4 cI2v° (3.8)

de---r + _¢ de _o, d_---;+ _ de--r + _¢-_ - o.

3x/3A- _

v0- 27r f0 (_-1)exp(-_ta)W,,_({t3) dr, (3.9)

in order to match with solution (2.9c). There is a subtle difference in the solution of the u0

equation (3.8a) in contrast to that of equation (3.2a). In the latter case it was seen that of

the two homogeneous solutions of the equation one decays algebraically whilst the other

decays exponentially and also vanishes at ( = 0. Hence the unknown D was contained in

solution (3.5) and needed to be deduced by using extra information. However (3.8a) has

the homogeneous solutions u0 = 1 and uo = f: exp(-_ta) dt so this equation has a unique

solution when the boundary conditions u0(0) = 1, u0 _ 0 as _ ---* oo are imposed (with

the first condition coming from (1.6e)). Thence

uo = A f: exp(-_t3)dt + f_ exp(-_t3) { fotV°(q)exp(_q3)dq} dt' (3.10)

where the constant A is chosen so that u0(0) = 1.

In the two cases described above we have derived solutions of equations (1.63, b) valid

for 0 < 2 << 1 and y = O(_). To deduce the requisite forms for y = O(1) we let the

similarity variable ¢ _ _ and then

u -- 2flft q*(y'k) +...,

1

v-- _c,+flq (y,k) + ...,

where the flmction q*(y, k) has been defined by (2.4) and the constant

F*(X) = 6(X) and /3 -

(3.11)

fl= 2-for
3

1 for the Heaviside forcing. In this way we have solutions
3
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valid for small distances downstream of the roughness dement and these may be used to

initiate the numerical solutions of (2.6a, b).

Finally we discuss the case of the distributed roughness dement. As before we shall

concentrate on the particular case F(X) = sinX where X = _/e although the analysis is

easily extended to other functions. The solution for _- << 1 is composed of two parts. The

first of these is just the delta-function solution given in §3.1 above whereas the second

contains the fast streamwise variation arising from the form of the forcing function. Then

where the similarity variable ( = O(1) the solutions for u and v develop according to

)_,~ --_--uo(() + ... + r)o(X,q + ... , (3.12a)

v,_ _-Vo(()+... + ¢-'Vo(X,¢)+... , (3.12b)

where Uo, Vo are as given in (3.2-4) mad

cOVo
_--_- + P0 = 0, _- \_-] -0. (3.13)

These equations cannot be solved subject to the necessary conditions that 00 =

F(X) = sinX and 170 = 0 on y = 0. Then in an ilmer layer where Y = y/e½ = O(1) the
'fast' part of the solution (3.12) develops as

with

3A½
P±-

2

all d

subject to UJ(X,O)

aS Y ---+ oo so

u~. ..... + v0t(x,y),
v ... . ..... + ¢-]vot(x,y), (3.14)

Vot = p+e ix + P_e -iX,

-e± _-Y jfy_Ai(A _e±_-t)dt _ A-] e;-7 - (ai'(_e±_y) _ Ai,(0))J

Ay OUt° AVot - O_UJ
OX + 0}'2 '

= sinX and Uot _ 0 as Y _ cx_. It is straightforward to verify that

(3.15a)

(3.15_)

(3.15c)

Vo_ -+ 3A-½ Ai'(0)cos(X _rr) and Uot 3A-½ Ai'(0)cos(X + _ )/_', (3.16)-- __+ 171.

which shows that the flmctions/--?o(X, () and Vo(X, () defined in (3.12) are given by

Oo = 3A-½ Ai'(0)
_" 171. l

( cos(:,; + _ ), #0 = 3A-._ Ai'(0)cos(X - '_). (3.17)
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Finally we have that in the y = O(1) region the 'slow' and 'fast' parts of the solution

develop according to

l-I I "_

_,_u *(_,k) + + _Uo(X,y) + ...... , (3.1s).... .,

u_ _ q

I_. 5 --2 _v~_ q*(_,k)+ ...... +_ _Vo(X,y)+ ...... ,
X_

where

1 00 3_-_'Ai'(o)q*(_,k)c°s(X+ _)/_
_0 = 3_-" Ai'(0)q'(y, k)cos(X - _), =

and q*(y, k) has been defined by the Rayleigh equation (2.4).

We consequently have the result that for the distributed forcing problem the solution

structure in the vicinity of the start of the forcing is composed of three distinct regions.

The component of the solution associated with the fast streamwise variation satisfies the

Rayleigh equation for y = O(1), is given by the simple pair of equations (3.13) when

(_ = O(1) and is governed by viscous-type balm_ces where y = O(e_) • This structure

contrasts to that relevant to the isolated forcing case in which this last region adjacent to

y = 0 is not required.

For O(1) values of x we can seek a solution of (1.6) corresponding to a distributed wall

roughness with non-zero mean value. If y = O(1) then

1

u = us(x,y) + _u_,(x,X,y) +..., (3.19)
2

v = vs(_, _) + _-_ v_(_,x, _) + ...,

where the fast flmctions UF and vF are periodic in X with zero mean and are, at leading

order in ¢, proportional to q*(y, k). If the expansions (3.19) are substituted into (1.6) and

we average with respect to the fast variable X we see that us and vs also satisfy (1.6).

We note here the fact that uF and vF are driven directly by the wail forcing and adjust

to the forcing in wall layers of thickness O(_). Moreover, we stress that the fact that

the GSrtler number is O(1) metals that no growth or decay of the vortex is possible on

the short O(_) scale so we monitor the evolution of the vortex just in terms of us and vs.

Since the snmll _ forms of these flmctions are given by the leading order terms in (3.18a, b)

it follows that the stability problem for the F*(X) = sin X forcing is, at leading order in

c, identical to that for the delta function case. In a similar way, for distributed periodic

functions which provoke the small slow x response appropriate to a Heaviside function the

stability problem defined in terms of the slow response of the vortex is identical to that

for the case F*(X) = H(X). It follows that, so long as we define instability in terms

of the appropriate downstremn scale, i.e. x = 0(1), we can use results fl'om the cases

F*(X) = _(X) and H(X) in order to deduce the stability properties of GSrtler vortice ,_;

induced by a general wall forcing shape.



13

4. The numerical work

The similarity solutions derived in the preceding section yield the unique vortex forms

valid at small distances downstream of the forcing function. In order to investigate the

development of vortices at O(1) downstream distances it is necessary to solve equations

(1.6a, b) numerically. Since these equations are parabolic in nature a standard marching
1schenle was implemented in order to follow the flow from x = 5 + Ax where Ax is a small

specified distance from the start of the forcing. The details of the numerical technique

closely follow those given by Hall (1983) and the reader is referred to that article for a full

description. Certain modifications were found to be required for the current prol)lem- in

particular equations (1.6a, b) were finite-differenced in y but in order to resolve the initial

vortex form which is concentrated close to y = 0 it was necessary to replace the uniform

grid employed by Hall (1983) by a variable spaced mesh with nodes tightly packed near

y = 0 but relatively sparsely spaced as y _ oo.

The solutions presented in this paper were all verified by making the usual checks

that the results were independent of grid spacing and choice of Ax. As a measure of the

disturbance energy we monitored the value of

_0 °°E = (u 2 + v 2 + w2)dy,

and defined the local growth rate/_ = E-ldE/dx. The position of neutral stability can

be taken to be the location at which fl = 0 and this position does depend to some extent

on the choice of the particular flow property used to define/_. (This point is discussed in

detail by Hall (1990).)

For a selection of values of k with fixed values of G we calculated the position at

which the induced vortex structure begins to grow. The local wavenumber kx and local

G6rtler number Gx were evaluated at that point and used to generate a neutral curve in

the (k,, Gx) plane. It is worthwhile to emphasise that since the forcing was applied at the

same point (x = ½) for each calculation, the GSrtler number G is a measure of how close

the forcing is to the unstable region.

We first report on the calculations for the delta-function forcing considered in §2.1.

In this case the leading order similarity solution valid a small distance downstream of the
1

forcing at x = y is given by (3.2a, b), (3.4)-(3.6), (3.11) and these were used to initiate
1

the computations at x = $ + Ax. However we found that these leading order solutions

are insufficiently accurate for our purposes for when these were used our computed neutral

curves were not independent of grid spacing or the choice of Ax. Therefore it was deemed

necessary to develop a further term in the similarity solution (3.2). This is a routine task

and it was found that these two leading terms in the small (x - 1_) solutions were sufficient
2

to ensure adequate convergence.
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Our results for the delta-function problenl are summarised in Figure 2 where we

show neutral curves for a variety of values of G. We observe that the lowest critical

Ggrtler nmnber occurs when G is about 8 and then takes a value of about 15.5. This is

somewhat greater than that found by DHS (who quoted a lowest critical value of 12) whose

computations were started with the incorrect similarity forms. This therefore suggests

that localised wall roughness in its most dangerous form produces growth in the vortex

structure when the local G/Srtler number is roughly 15.5. In Figure 3 we give further

details of the envelope of the neutral curves of Figure 2. We see in Figure 3 that initially

Gc decreases with G up to the point where G _ 8 after which G_ increases with G. The

critical wavenumber kc is a monotonic decreasing function of G and at the lowest critical

G_, kc ._ 0.92.

In Figure 2 we have also indicated the asymptotic form of the neutral stability curve

which is valid for large kc. This asylnptotic expression may be deduced from the workings

of Hall (1982) and we see that the first two terms of this asymptotic expansion gives

surprisingly good agreement with our computed values even at quite modest values of k_.

We turn now to study the problem of I-Ieaviside forcing as developed in §2.2. In this

case we again initiated our calculations using the first two terms in the requisite similarity

solution forms in order to achieve satisfactory convergence. The dependences of critical

G/Srtler number Gc and local vortex wavenumber k_ are shown as flmctions of G in Figure

4. We note the radically different behaviours of these forms when compared with the

results for the isolated delta-function forcing problem. In particular we note that both k_

and G_ are monotonic functions of G and, in particular, G_ _ 0 as G --* 0. This means

that the critical G6rtler number can be reduced to an arbitrarily small value by choosing

the origin where the forcing begins increasingly close to the leading edge. Thus it appears

that when the forcing commences near the leading edge only a very small amount of wall

curvature is required in order to cause vortex growth.

As was pointed out in the preceding section we may deduce the vortex response due to

a general distributed wall forcing by examining the stability characteristics of the Ggrtler

modes for the delta- function and I-Ieaviside wall problems. When the forcing function

has zero mean value then the appropriate stability characteristics close to the start of the

forcing are reminiscent of the results for the delta-function case whereas for a non-zero

mean valued wall forcing it is the results summarised in figure 4 which are pertinent.

5. Conclusion

In this work we have described how isolated and distributed roughness elements can

stinmlate the growth of linearised G6rtler vortices. In particular, Laplace transform

techniques are required in order to deduce how vortex modes evolve close to the forcing.

Integration of the full governing equations allows the development of vortices to be
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monitored at O(1) distances downstream of the commencementof the forcing. This

numerical integration requires suitable initial vortex profiles to be specified and these

(necessarilyunique) forms may be found in the form of similarity solutions which may be
derived directly from the Laplace solutions. Two specific forcing functions have been

considered in our work. First, a delta-function was taken as a model of an isolated

roughness element and the stability characteristics of induced vortices computed. This

calculation was previously performed by DHS but faulty initial conditions meant that

their conclusions regarding the receptivity of O(1) wavelength vortices were unreliable.

Our improved workings have led us to conclude that isolated elements can trigger unstable

vortices at local Ggrtler number greater than about 15.5 but for G_ less than this value

the flow is not susceptible to vortex instabilities.

When the isolated element is replaced by a distributed roughness patch we have shown

that the stability characteristics of induced modes are radically altered. Of importance,

we have seen that as the GSrtler nmnber decreases to zero so the critical local wavenumber

kc grows and the critical local Ggrtler number Gc _ 0. This suggests that distributed wall

forcing can be extremely important in generating GSrtler modes since irrespective of the

particular value of Gx unstable modes can exist. As was pointed out by DHS, for free-

stream disturbances the critical G_ is roughly 6 so that free-stream disturbances are clearly

less dmlgerous in provoking GSrtler vortices than are distributed wall elements. However

these free-stream disturbances are more significant than isolated roughnesses and, for a

general roughness profile composed of both distributed and short-scale variations we have

shown that it is the former type which tends to dictate the receptivity properties of the

flow. DHS suggested that the localised wall roughness mechanism would be relevant only

in an experimental facility with remarkably tiny free-stream disturbances. Our work here

allows us to extend this conclusion and speculate that a distributed wall element provides

the easiest route to the generation of vortex modes.

Unfortunately there are few exl)eriments carried out on the GSrtler vortex l)roblem; in

fact we are unaware of any experiments which address the receptivity problem for Ggrtler

vortices. The fundamental experimental difficulty with the problem is that results appear

not to be reproducible from (lay to day with the same apparatus. It is likely that this is

caused by the sensitive dependence on initial conditions which the vortices exhibit, see Hall

(1983) for an explanation of why this is the case. However if wall roughness is sufficiently

large then it is probable that it will lead directly to the linear growth of vortices, the

analysis we have given here can then be used to predict the response of the flow. Note here

that it is a simple matter to extend the analysis to describe three-dimensional objects, see

DHS, so that controlled experiments could be carried out in order to see the response of
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tile flow to different wall disturbances. Thus we argue that the present calculation gives

the experimentalist, for the first time, a chmlce to obtain agreement between theory and

experiment in the GSrtler problem.
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Figure 1. The key-hole contour used to evaluate the Laplace inversions of §2. The complex

s-plane is cut along the negative real axis and the contour consists of two large arcs of radii

R, linear portions lines L:1, L:2, £a, -_4 and L;sas shown. The line/Z1 and/:2 are located

above and below the branch cut and a small circle C of radius 5. Integrals along the line

parallel to the imaginary axis passing through the point .s = c + 0i may be deduced by

allowing R --_ oo, 5 _ 0 and then applying Cauchy's residue tlleorem.
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Figure 2. The neutral curves corresponding to a delta-function shaped wall forcing and

a_l initial disturbance constructed from the first two terms of the similarity solution which

starts as in (3.2). The curves correspond to the values G = 5., 5.7, 6.5, 7.5, 10., 12.5_ 15., 20.

The dashed curves are the one term and two term forms of the appropriate large

wavenumber right-hand neutral branch (derived from Hall 1982).
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Figure 3. The critical local G6rtler numl)er Gc as a flmction of the G6rtler munber G

appropriate to a delta-function wall forcing.
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Figure 4. a) The critical local G6rtler number Gc and b) the critical local vortex

wavemunber kc as functions of the G6rtler number G appropriate to a Heaviside-function

wall forcing.
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Figure 4. a) The critical local GSrtler number Gc and b) the critical local vortex

wavenuml_er kc as functions of the GSrtler number G at)l)rol)ri_tte to a Heaviside-function

wall forcing.
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