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Introduction

In this Progress Report, we describe our current research activities concerning the
development and implementation of advanced ultrasonic nondestructive evaluation methods
applied to the characterization of stitched composite materials and bonded aluminum plate
specimens. One purpose of this investigation is to identify and characterize specific features of
polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a
stitched composite laminate. Another focus is to explore the feasibility of implementing medical
linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to
inspect and characterize bonded aluminum lap joints. As an approach to implementing
quantitative ultrasonic inspection methods to both of these materials, we focus on the physics

that underlies the detection of flaws in such materials.
Measurements of Stitched Composites with 3D Architecture

In this section of the Progress Report we describe the experimental methods applied and
the resultant data obtained from through-transmission and polar backscatter measurements of a

set of stitched composite samples.

Samples

A total of four stitched composite plate samples were investigated in this study. Each
composite sample was comprised of a series of woven carbon/epoxy sheets laid-up in a
0°/45°/90° pattern. The plates had Kevlar™ stitching running perpendicular to the laminae and
the front and back surfaces of each plate were machined smooth to remove any surface

impressions.

Three of the samples (labeled 2150-3-CAll, 2150-3-CAI2, and 2150-3-CAI3) were cut
from a single large piece of material that had previously been impact-damaged at one end. The
samples were cut from the end of this large piece opposite the region of impact, where there was
presumably no damage. The samples were labeled on one side, indicating where the impact
damage had occurred. Each of these samples measured approximately 4" x 5" with a thickness
of 0.075". The stitches in these samples appeared to be approximately 0.025" (1mm) in
diameter, and were spaced in a grid-like pattern with 4mm to 6mm separation between

successive stitches.



The fourth sample (labeled 2130-7-CAIl) was cut from the undamaged portion of a
separate large plate of impacted composite material. This sample measured 4" x 5" with a
thickness of 0.275". The stitches in this sample appeared to be about 0.075" (2mm) in diameter,
and were spaced in a grid-like pattern with 4mm to 6mm separation between stitches. The
surface of this sample had a different appearance than the three thinner samples described above;
for this sample, the stitches were a different color and the stitched areas were somewhat oblong
in shape. The pattern of the carbon fiber tows on the front and back surfaces also appeared to be
more complex with this sample than with the thinner samples. This may be due to a different

weave pattern used in the laminae for this particular sample.

Experimental Set-Up and Procedure

Initially, a through-transmission C-scan was performed on each sample to determine if
the plates had any internal delaminations, nonuniformities, or porosity. All measurements were
performed in an immersion tank using Panametrics V311 0.5" diameter, point-focused (4")
piezoelectric transducers of 10 MHz nominal center frequency. For the through-transmission C-
scans, the samples were positioned such that the front surface was 4" away from the transmitting
transducer and the matched receiving transducer was placed 8" away from the transmitting
transducer. Transmitted ultrasonic signals were broadband pulses generated by a Panametrics
5800 Pulser/Receiver. Each through-transmitted pulse was captured by the receiving transducer,
amplified and filtered by the receiver section of the Panametrics 5800, and subsequently sent to a
Tektronix 2430a digital oscilloscope for digitization. The peak-to-peak signal voltage amplitude

at each site was stored on a Macintosh IIx computer.

A polar backscatter investigation was performed on one of the thinner samples (2150-3-
CAIl). A Panametrics V311 0.5" diameter, point-focused (4") piezoelectric transducer of 10
MHz nominal center frequency was used to transmit and receive the ultrasonic signal. The
transducer was positioned at a polar angle of 30° (the azimuthal angle was varied), with the axis
4" away from the top surface of the sample. Figure 1 illustrates the transducer position in
relation to the sample. Transmitted ultrasonic signals were broadband pulses generated by a
Panametrics 5800 Pulser/Receiver. The backscattered ultrasonic signals were received by the
transmitting/receiving transducer, amplified and filtered by the receiver section of the
Panametrics 5800, and sent to a Tektronix 2430a digital oscilloscope for digitization. A total of
20 us of the backscattered signal was digitized at 50 megasamples/sec. The rf signal at each site
was stored on a Macintosh IIx computer. For each data run, a reference signal was obtained by

capturing the signal reflected from a stainless-steel plate. Data analysis proceeded as follows: at

.



Polar Backscatter Method

Transducer

Figure 1. Schematic diagram showing transducer and sample orientation for polar backscatter
experiment.

each interrogated site the power spectrum corresponding to the reference signal (expressed in
dB) was subtracted from the power spectrum corresponding to backscattered signal from the
sample (also in dB) thus giving the apparent backscatter transfer function. This process is
employed to deconvolve the response of the equipment from the measured backscattered signal.
The resulting backscatter transfer function was then averaged (in the log domain) from 4 to 8

MHz to obtain a single parameter (integrated backscatter) for each site.

Results

Through-transmission peak-to-peak signal-loss images of all four samples are shown in
Figures 2 through 5. Step sizes for each of the scans was 1mm x lmm. A tape marker was
adhered to the upper left corner of each sample thus providing a reference position in each
image. The areas that appear darker correspond to regions of less signal loss compared to the

lighter areas. The pattern of light spots in each image corresponds to the stitching in the plate;
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Figure 2. Sample: 2150-3-CAll, stitched quasi-isotropic composite, 4.5"x5"x0.07", surfaces
ground smooth. Through-transmission C-scan, 10 MHz, 0.5" diameter transducers with 4" focal
length; 135 x 93 sites, Imm stepsize. Image shows peak-to-peak values.
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Figure 3. Sample: 2150-3-CAI2, stitched quasi-isotropic composite, 3.75"x5"x0.07", surfaces
ground smooth. Through-transmission C-scan, 10 MHz, 0.5" diameter transducers with 4" focal
length; 139 x 82sites, Imm stepsize. Image shows peak-to-peak values.



i g o

'————-————_————————-————‘

-

r

1\ IMPACT
\

tape
marker

scan area 4.250'

2150-3-CAI3

r—————_-————_-—
L——-———-—--—-

. R S S S

sample holder

5.000" »

Figure 4. Sample: 2150-3-CAI3, stitched quasi-isotropic composite, 4.25"x5"x0.07", surfaces
ground smooth. Through-transmission C-scan, 10 MHz, 0.5" diameter transducers with 4" focal
length; 139 x 96 sites, Imm stepsize. Image shows peak-to-peak values.
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Figure 5. Sample: 2130-7-CAll, stitched quasi-isotropic composite, 4"x5"x0.25", surfaces
ground smooth. Through-transmission C-scan, 10 MHz, 0.5" diameter transducers with 4" focal
length; 135 x 83 sites, Imm stepsize. Image shows peak-to-peak values.
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less of the signal appeared to get through the Kevlar™ stitched region compared to the amount of
signal transmitted through the carbon/epoxy. With the exception of the areas near the stitches,
the images all seem to be fairly uniform in gray-scale, suggesting that there are no gross defects

(i.e. porosity, delaminations, etc.) in the samples.

Polar backscatter C-scans performed on sample 2150-3-CAll, at a polar angle of 30° and
varying azimuthal angles, are shown in Figure 6. The region interrogated was the same area
inspected with through-transmission signal loss as described above. The step size was 0.5mm x
0.5mm, and the total scan area was 20mm x 20mm. In all the integrated backscatter images,
white corresponds to a value of -50dB below the reference signal from the stainless-steel plate,
and black corresponds to -30 dB below the stainless-steel plate reference. A stitch-like pattern of
dark (high-scattering) spots is clearly discernible in specific images (at azimuthal angles of 22°,
67°, and 202°). It has been shown previously that backscatter from the carbon fibers in a
composite laminate is minimized when the azimuthal angle of insonification is parallel to the
fiber direction and a maximum when the azimuthal angle of insonification is perpendicular to the
fiber direction.[1-6] Thus, one might expect to see the least amount of backscatter arising from
the embedded carbon fibers to occur at azimuthal angles that are furthest from being
perpendicular to the fiber direction in any layer; however, the backscatter from the stitches
should be isotropic with respect to azimuthal angle. Therefore, the greatest contrast between
stitches and embedded carbon fibers should occur at angles where the contribution to the
scattered signal from the embedded fibers is the least. Evidence of this can be seen in the images
for angles 22°, 67° and 202°, where the stitch pattern is most easily distinguished from the
surrounding material and is consistent with the quasi-isotropic lay-up of this specimen. The
stitched areas in the images appear to be 3 to 6 pixels (1.5mm to 3mm) in diameter. This may be
due to changes in the material around the stitches, or to the point spread function of the

interrogating beam, which had a -6dB beam width of 1.2mm.

Anisotropy scans were performed on a stitched region and a non-stitched region of
sample 2150-3-CAI1 with a polar angle of 30°. At every azimuthal angle (varied in 2° steps),
nine site averages were taken. Figure 7 shows integrated backscatter (4 to 8 MHz) plotted vs
azimuthal angle for both regions (stitched and non-stitched). The curves appear similar except at
the angles 22° and 202°, where the contrast between the stitches and fibers is greatest.
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Figure 6: Polar integrated backscatter images (4 to 8 MHz) from sample 2150-3-CAlIl. Polar
angle Theta = 30°
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Figure 7. Integrated backscatter (4 to 8 MHz) plotted vs azimuthal angle for both regions
(stitched and non-stitched).
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Detection of Disbonded Regions in Bonded Aluminum Plates Using an
Ultrasonic 7.5 MHz Linear Array Medical Imaging System

Introduction

Current concern for ensuring the air-worthiness of the aging commercial air fleet has
prompted the establishment of broad-agency programs to develop NDT technologies that address
specific aging-aircraft issues.[7, 8] One of the crucial technological needs that has been
identified is the development of rapid, quantitative systems for depot-level inspection of bonded
aluminum lap joints on aircraft.[7-9] Research results for characterization of disbond and
corrosion based on normal-incidence pulse-echo measurement geometries are showing promise,
but are limited by the single-site nature of the measurement which requires manual or mechanical
scanning to inspect an area.[10-13] One approach to developing efficient systems may be to
transfer specific aspects of current medical imaging technology to the NDT arena. Ultrasonic
medical imaging systems offer many desirable attributes for large scale inspection. They are
portable, provide real-time imaging, and have integrated video tape recorder and printer
capabilities available for documentation and post-inspection review. Furthermore, these systems
are available at a relatively low cost (approximately $50,000 to $200,000) and can be optimized
for use with metals with straight-forward modifications. As an example, ultrasonic phased-array
and linear array imaging technology, which was first developed for use in the medical industry,
has been successfully implemented for some NDT applications by other investigators.[14-16]

Currently, we are engaged in an investigation that explores the feasibility of
implementing medical linear array imaging technology as a viable ultrasonic-based
nondestructive evaluation method to inspect and characterize bonded aluminum lap joints.
Images of a series of epoxy-bonded aluminum plate specimens, each with intentionally
disbonded regions (adhesive tape), were obtained using an unmodified, commercially-available
Hewlett-Packard SONOS 1500 medical imaging system. Because of the nature of detecting
disbonded regions in relatively thin aluminum specimens, the SONOS 1500 imaging system was
operated in a mode normally employed to image peripheral blood vessels in a clinical setting.
These images were compared with corresponding conventional ultrasonic contact transducer
measurements in order to assess whether these images can detect disbonded regions and provide
information regarding the nature of the disbonded region. The results of this investigation may
provide a step toward the development of a rapid, real-time, and portable method of adhesive

bond inspection and characterization based on linear array technology.
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Discussion

Preliminary results, comparing the images of the bonded aluminum plate specimens
obtained with the linear array with the corresponding ultrasonic rf A-lines obtained using a
contact transducer, suggest that linear array imaging can play a useful role in detecting disbonded
regions and providing information describing bond interface characteristics. The disbonded
regions were easily discernible from the well-bonded regions in the images obtained from either
side of each specimen. Images of the specimens show that the disbonded regions appear much
different when the images obtained from the "bottom" of the specimen are compared with those
obtained from the "top". Our preliminary results show that a relatively "bright" disbond region
observed when the specimens are imaged from the "bottom" side and a "dark" disbond region
observed when the specimens are imaged from the "top" side agree with the corresponding echo
decay patterns obtained with the contact transducer; i.e., a relatively higher attenuation
associated with the disbonded region when interrogated from the "top"” when compared with the
results obtained from the "bottom”. Subsequent destructive analysis of the specimens indicated
that the "bottom" plate was in direct contact with the adhesive of the masking tape (as expected)
but the "top" plate had a thin substance adhered to it. These preliminary results suggest that the
images obtained with the linear array may convey information regarding the characteristics of the

interface between the aluminum and the disbond.

Many aspects of the images of the well-bonded regions of the specimens obtained with
the SONOS 1500 linear array are consistent with the contact transducer data. Modulations of the
brightness of the well-bonded region in the images of specific specimens agree with the observed
modulations in the echo decay patterns obtained with the contact transducer. Image patterns of
specimens that have aluminum plates of different thicknesses are consistent with the measured rf
A-lines of these specimens. The images and corresponding rf A-lines of these specimens show
that the well-bonded regions appear different when interrogated from the "bottom" side and
compared with the image from the "top” side. This difference between the two sides is evident in

the measured echo decay patterns obtained.

These preliminary measurements, showing the linear-array images of the bonded
aluminum plate specimens and the corresponding agreement with contact transducer
measurements, suggest that linear array technology may provide a viable means to detect
disbonded regions in bonded aluminum joints. Furthermore, these images may provide useful
information regarding the nature of the disbonded region. It appears that medical linear array
imaging technology may offer a useful means to develop a rapid, real-time, and portable method

of adhesive bond inspection and characterization.
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