NASA Contractor Report 191509

A Formal Language
for the Specification and Verification
of Synchronous and Asynchronous Circuits

David M. Russinoff

COMPUTATIONAL LOGIC, INC.
Austin, Texas

Contract NAS1-18878
September 1993

NANASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

A FORMAL LANGUAGE N94—-15443

(NASA-CR-191509)

VERIFICATION OF SYNCHRONOUS AND

FOR THE SPECIFICATION AND

unclas

ASYNCHRONOUS CIRCUITS Final Report

(Computational togic)

p

a9

0190188

@/

i

"
"

NASA Contractor Report 191509

A Formal Language

for the Specification and Verification
of Synchronous and Asynchronous Circuits

David M. Russinoff

Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas 78703

Contract NAS1-18878 September 1993

1 Introduction

Our past work in the formalization and verification of fault-tolerant systems
has consisted of three tasks:

1. The formal design and verification of a circuit that achieves Byzantine
agreement among four synchronous processors [1];

9. The mechanical verification of the Interactive Convergence clock syn-
chronization algorithm [9];

3. The formalization of the Biphase Mark protocol for asynchronous com-
munication [7].

The purpose of the present task, Task 4, is to investigate the integration of
these previous efforts in the design of an asynchronous Byzantine-resilient
computing system. The ultimate goal is a formally verified gate-level imple-
mentation. :

The design of a hardware circuit that achieves asynchronous communica-
tion is necessarily contingent on an underlying model of hardware behavior.
Any attempt to devise such a circuit in the abstract, without first establish-
ing a suitable model, would be a largely wasted effort. Thus, a prerequisite
for the realization of our goal is the selection of a formal hardware description
language (HDL), along with an underlying behavioral model.

Our previous research in hardware modeling and verification has been
based on an HDL developed at CLI by Brock and Hunt [5]. The utility of the
Brock-Hunt HDL as a verification tool, as demonstrated in the verification
of the FM9001 microprocessor [4], stems from the simplicity of its semantics.
All circuits designed in this language are assumed to be driven by an implicit
global clock. Simulation of a circuit amounts to a computation of a sequence
of states corresponding to clock cycles. Thus, no explicit representation of
time or propagation delays is provided, so that the class of circuits that can
be satisfactorily modeled is limited. In particular, the language is unsuitable
for any application involving asynchrony.

Commercial event-driven simulation languages provide for a broader range
of hardware behaviors. VHDL [7] in particular has gained wide acceptance
in the hardware design community as a validation tool. Since the limitations
of simulation as a method of validation are well known, a formal verification

1

system based on VHDL would have clear practical value. Unfortunately, like
most programming languages in common use, VHDL was not intended as
an object of reason. Inevitably, its semantics are complicated and obscure.
Various attempts to formalize VHDL [2,6] have encountered severe difficulty
and show limited promise of short-term success.

We have undertaken, therefore, to develop a new formal HDL with the
intended application of verifiable asynchronous communication. This paper
is a report on the progress of this endeavor. Our primary objective is to
formalize the event-based behavioral model of VHDL while retaining the
semantic clarity of the Brock-Hunt HDL. Thus, we would like to inherit the
proof methodology developed by Brock and Hunt, including

e abstract descriptions of (acyclic) combinational circuits in terms of
Boolean functions;

o abstract state machine descriptions of sequential devices;
e hierarchical design and verification of complex circuits.
At the same time, our language should provide for

o faithful implementation of the VHDL notions of time and propagation
delay;

e gate-level construction of sequential devices by means of feedback loops,
e.g., flip-flops implemented by cross-coupled nand gates;

e modeling of asynchronous communication.

Following (5], we have developed our language within the logical frame-
work of the Nqthm system of Boyer and Moore [3]. Its simulator (operational)
semantics are expressed by a recursive function SIM, defined in the Nqthm
logic. The two principal arguments of this function are a hardware module
to be simulated and a list of waveforms corresponding to the module’s input
signals, representing the values of those signals as functions of time. The
value returned by SIM is a list of waveforms corresponding to the module’s
output signals, produced by propagating the input values according to the
structure of the module.

In Section 2, we describe our formal notion of time, the structure of
waveforms, and the propagation of signal values. In addition to the two

2

conventional VHDL delay modes, transport and inertial, we define a nonde-
terministic mode, which subsumes the other two and provides a scheme for
concise behavioral descriptions of combinational circuits. We also introduce
the notion of an indefinite or partially specified waveform, which is critical
to the subsequent development as it provides for the simulation of abstract
modules with partially defined behaviors.

In Section 3, we discuss our representation of hardware modules as Nqthm
constants. The behaviors of combinational, sequential, and structural circuits
are defined by means of a STEP function, for which we provide an axiomatic
characterization. The top-level simulator function SIM is defined recursively
in terms of STEP, as described in Section 4. The simulator is complicated
considerably by the possible presence of delta delays, which represent zero-
delay devices as prescribed in the VHDL standard [7]. In conformance with
commercial VHDL simulators, in order to guarantee that simulation termi-
nates, an extra argument is passed to SIM, representing a uniform bound on
the lengths of all zero-delay paths within a circuit. Related constraints are
also imposed on the input waveforms to a module.

Our approach to circuit verification is based on formal notions of module
specification and implementation, as presented in Section 5. Here, we also
describe procedures that automatically derive abstract combinational and se-
quential behavioral modules that serve as specifications for circuits of certain
types. Once a behavioral module has been proved to be a specification of
a circuit, it may be substituted for any instances of the circuit that occur
as components of any larger circuit without affecting its functionality. This
principle is the key to hierarchical circuit analysis.

‘Included in the text are informal statements of some general theorems
that are relevant to the verification of circuits defined in our system. The
proofs of most of these theorems remain to be checked mechanically, and
this work will be a significant portion of the Task 5 effort. The function
definitions that compose the simulator, on the other hand, have all been
formally accepted by the Nqthm prover, and appear in complete form in an
appendix.

2 Signals
2.1 Time

We define a time to be an ordered pair of natural numbers, as recognized by
the predicate TIMEP (see the appendix for the definition of this and all other
functions referenced herein). The set of all such pairs is ordered lexicograph-
ically. Thus, the time origin, the least element of this set, is the pair (0 .
0).

The first component of a time represents the number of time units, which
we arbitrarily take to be picoseconds, that have elapsed since the start of
a simulation. The second component, which we call the delta component,
is required in order to allow zero-delay events. It represents the number of
successive zero-delay events that have been scheduled during the current time
unit.

The time for which an event is scheduled is computed from the current
time t0 and a given propagation delay by the function TPLUS. If the delay is
0, then the value returned is the result of incrementing the second component
of t0 by 1; otherwise the delay is added to the first component of t0 and the
second component is set to 0.

2.2 Waveforms

A waveform is a function that assigns a value to every time. In our formal-
ization, we represent a waveform as an association list. Each pair in this list
consists of a value and a time at which that value was or is to be assumed
by the signal with which the waveform is associated. These pairs, which are
called events, are listed in decreasing order with respect to time. The time
of the earliest event in any waveformis (0 . 0).

There is no restriction on the values that may be assumed by a signal. We
adopt the convention of using the the symbols ’T and ’F to represent high
and low signal values, respectively. The value ’X is special—it represents an
unknown value. Any value other than ’X is said to be definite. A definite
waveform is one that never assumes the value 'X.. A value v1 generalizes a
value v2 if either v1 = v2 or v1 = ’X. A waveform w1 generalizes a waveform
w2 if for every time t, the value of w1 at t generalizes the value of w2 at t. Note
that the set of all waveforms is a lower semi-lattice under this relation. This

means that any two waveforms have a greatest lower bound, i.e., a common
generalization that is generalized by any other common generalization. The
set also has a least element with respect to this ordering, which we call the
null waveform, namely the waveform ' ((X . (0 . 0))), which assigns the
value ’X to every time.

A list of waveforms is called a packet. The lattice structure is extended
in the obvious manner to the set of all packets of any fixed length. Thus,
one packet is said to generalize another if the relation holds between corre-
sponding waveforms.

2.3 Propagation

The functions POST-INERTIAL-EVENT-DEFINITE and POST-TRANSPORT-EVENT-
DEFINITE implement inertial and transport delay, as defined in the VHDL
standard[5]. Each of these functions takes as arguments a waveform v, a
value v, and a time t1 at which v is to be scheduled on w. POST-INERTIAL-
EVENT-DEFINITE takes as an additional argument the current time t0, which
must precede t1. (The effect of scheduling an event with transport delay is
independent of the current time.) The value returned by either function is
the appropriately modified waveform.

However, the correctness of these functions depends on the assumption
that both v and w are definite. If we allow either argument to be indefinite,
then the more general functions POST-INERTIAL-EVENT and POST-TRANSPORT-
EVENT must be used. While the recursive definitions of these functions are
quite complicated, they may be described informally but precisely as follows:

For any waveform w, any v, and any times t0 < t1 < t2, the value
of (POST-INERTIAL-EVENT w v t0 t1 t2) is the greatest lower
bound of the set of all waveforms of the form (POST-INERTIAL-
EVENT-DEFINITE w’ v’ tO t’), where w’ is generalized by v, v’
‘is generalized by v, and t1 < t' <tl.

For any waveform w, any v, and any times t0 < t1 < t2, the value
of (POST-TRANSPORT-EVENT w v t0 t1 t2) is the greatest lower
bound of the set of all waveforms of the form (POST-TRANSPORT-
EVENT-DEFINITE w’ v’ t’), where w’ is generalized by w, v* 1s
generalized by v, and t1 <t/ < t1.

These are the two functions that are actually called by our simulator
to schedule events for signals with inertial and transport delay, respectively.
Note that in addition to accepting an indefinite value and an indefinite initial
waveform, they also accept a range of possible times instead of a definite time
for the scheduling of the event. In order to schedule an event for a definite
time t, the appropriate function is called with t2 = t1 = t.

We also introduce a third mode of propagation delay, called nondetermin-
istic delay, which is implemented by the function POST-NONDETERMINISTIC-
EVENT. The behavior of this function may be described as follows:

Given any waveform w, any v, and any times t0 < t1 < t2, let
tmin be the minimum of t1 and the times of any events scheduled
on w after t0. (POST-NONDETERMINISTIC-EVENT w v t0 t1 t2)
is the waveform whose value at any time t is

(a) the value of w at t, if t < tmin;
(b) X, if tmin < t < t2;
(c) v,ift2<t.

This delay mode is not actually exhibited by any primitive devices, but
turns out to be useful in the behavioral specification of complex circuits.
Its utility, as we shall see in Section 5, stems from the observation that it
subsumes both inertial and transport modes in the sense that the wave-
form (POST-NONDETERMINISTIC-EVENT w v t0 t1 t2) is a generalization of
both (POST-INERTIAL-EVENT w v t0 t1 t2) and (POST-TRANSPORT-EVENT
v v t0tl t2).

3 Modules

Our simulator accepts three types of modules: combinational, sequential, and
structural. A combinational or sequential module is also called behavioral. A
structural module represents a circuit constructed from behavioral modules.
Associated with a module of any type are a fixed number of inputs and a
fixed number of outputs.

We define an input packet (resp., output packet) for a given module to be
a list of waveforms whose length is the number of its inputs (resp., outputs).

The behavior of a behavioral module is characterized by a function STEP of
four arguments: (1) a module mod, (2) an input packet inp, whose length
is the number of inputs of mod, (3) an output packet outp, whose length
is the number of outputs of mod, and (4) a time t. The value returned by
STEP is the result of updating outp by executing any events in inp that are
scheduled for time t. This function is defined so as to exhibit the following
critical properties:

1. Monotonic: if inpl and outpl generalize inp2 and outp2, respec-
tively, then (STEP mod inpl outpl t) generalizes (STEP mod inp2
outp2 t).

2. Nonpredictive: If inpl and inp2 have the same values at all times
that are not later than t, then (STEP mod inpl outp t) = (STEP
mod inp2 outp t). Thus, the past and projected future behavior of a
module is independent of its future input.

3. Nonretroactive: The values of the updated packet (STEP mod inp
outp t) at any time no later than t are the same as those of outp.
Thus, the past behavior of a module is immutable.

3.1 Combinational Modules

The simplest modules are combinational. They consist of four components:
(1) a list of symbols representing input signals; (2) a list of output forms,
which express the values of the output signals in terms of the values of the
input signals; (3) a delay mode corresponding to each output signal; and
(4) a delay range, represented as a pair of numbers, corresponding to each
output signal. A combinational module is primitive if all of its delay modes
are inertial or transport and all of its delay ranges are intervals of length
0. As an example of a primitive module, we define a nand gate as follows:

(DEFN NAND ()

' (COMBINATIONAL itype
(A B) ;inputs
((M-NAND A B)) ;outputs
(INERTIAL) ;modes

((2000 . 2000)))) ;delays

This module has two inputs and a single output with a fixed inertial delay
of 2000 picoseconds. (Note that a fixed delay is represented as a degenerate
range.)

Qutput forms must be defined in terms of monotonic functions, in order
to conform to the monotonicity requirement for our STEP function. Thus,
the function M-NAND, which is used to compute the output of our nand gate,
is defined by

(DEFN M-NAND (A B)
(IF (EQUAL A 'F) ’T
(IF (EQUAL B 'F) 'T
(IF (AND (EQUAL A 'T) (EQUAL B ’T)) 'F
X))

Monotonic versions of other Boolean functions (M~NOT, M-0R, etc.) are defined
similarly.

Execution of (STEP mod inp outp t) for a combinational module mod
amounts to updating each waveform in the packet outp by means of a call to
the appropriate event-posting function, using the value computed from the
corresponding output form and the current input values at time t. Thus, for
combinational modules, the nonpredictive property of STEP may be strength-
ened as follows: If inp1 and inp2 have the same values at time t, then (STEP
mod inpi outp t) = (STEP mod inp2 outp t).

3.2 Sequential Modules

A sequential module consists of ten components: (1) a list of input signals;
(2) a list of output forms; (3) a list of delay modes; (4) a list of delay ranges;
(5) a trigger, which may be either POSITIVE-EDGE or NEGATIVE-EDGE; (6) a
list of symbols, called state variables; (7) a list of forms for computing values
of state variables in terms of their previous values and the values of the
inputs; (8) a minimum admissible clock period; (9) a list of setup times,
corresponding to the inputs; and (10) a list of hold times, corresponding to
the inputs. The first four of these components have the same form as the
components of a combinational module, except that the variables occurring
in the output forms are state variables rather than input signals. Also, a
sequential module is required to have at least one input, the first of which is
always interpreted as the clock input.

8

Saw

A simple example of a positive-edge-triggered sequential module is the
following:

(DEFN D-FLIP-FLOP ()

) (SEQUENTIAL ;type
(CLK D) ;inputs
(Q (M-NOT Q)) ;outputs
(INERTIAL INERTIAL) ;modes
((4000 . 6000) ;delays
(4000 . 6000))
POSITIVE-EDGE ;trigger
Q) state variable
(D) ;state form
12000 ;period
(6000 4000) ;setups
(6000 4000))) ;holds

This module has two inputs: the clock input *CLK and a data input 'D. It
has a single state variable, 'Q, the value of which is computed simply as the
value of *D, and two outputs, both with inertial delay, whose values are those
of ’Q and its negation.

A setup time is given for each input. (In the above example the setups
6000 and 4000 correspond to the inputs *CLK and ’D, respectively.) Each of
these represents the minimum period during which the corresponding input
is required to remain constant immediately before a triggering edge, when
the value of the clock input changes from low to high (i.e., from ’F to 'T)
for a positive-edge-triggered device, or from high to low for a negative-edge-
triggered device. Thus, the first setup, corresponding to the clock input
itself, is the parameter that is conventionally called the clock low (in the
positive-edge case) or clock high (in the negative-edge case).

Similarly, each hold time represents the minimum period during which
the corresponding input is required to remain constant immediately after a
triggering edge; the hold time for the first input is conventionally called the
clock high or low, in the positive- and negative-edge cases, respectively.

The minimum clock period is the minimum required elapsed time between
successive triggering edges. In the above example, the minimum period of
12000 happens to coincide with the sum of the clock high and low times, but
this need not be the case (see Subsection 5.2).

9

For a sequential module mod, the computation of (STEP mod inp outp
t) involves the computation of the state of mod at time t as determined by
inp. This state is an assignment of values to the state variables of mod. It is
a recursive function of t, behaving as follows: The state of mod at time (0

0) is the null state, which assigns the value ’X to each state variable. As
long as the inputs are well-behaved, the state changes only when a triggering
edge occurs, at which time a new state is computed from the state forms,
using the previous state values and the current input values. On the other
hand, if at any time any input changes in violation of a setup or hold time,
then the state becomes null.

Execution of (STEP mod inp outp t) for a sequential mod is the same
as for a combinational module, except that the values that are posted on the
output waveforms depend on both the current input values and the current
state, where the latter in turn must be computed from the input history.

As an example, we shall trace the behavior of the state variable ’Q of the
D-flip-flop in response to a sample input packet. For the clock waveform,
we take the following well-behaved clock pulse w1, which exhibits a regular
period of 20000 over the interval from (0 . 0) to ’ (110000 . 0):

y((F . (110000 . 0)) (T . (100000 . 0))
(F . (90000 . 0)) (T . (80000 . 0))
(F . (70000 . 0)) (T . (60000 . 0))
(F . (50000 . 0)) (T . (40000 . 0))
(F . (30000 . 0)) (T . (20000 . 0))
(F . (10000 . 0)) (T . (0 . 0)))

For the data input, we take the following waveform w2:
»((T . (59000 . 0)) (F . (30000 . 0)) (T . (0 . 0))).

Thus, the value of the input signal ’D is ’F on the (half-open) interval from
1(30000 . 0)to’(59000 . 0)and ’Tat allother times. The value of *Q,
which is initially ’X, becomes ’T at the first positive-edge (at time ’ (20000

0)). Since the value of ’D changes to 'F at time ’ (30000 . 0), this
becomes the new value of ’Q at the next triggering edge (at ’ (40000 . 0)).
The ’D value changes again at * (59000 . 0), but at the following edge (at
» (60000 . 0)), the D setup time is violated, so ’Q becomes ’X. This state
persists until the next edge (at ’ (80000 . 0)), when the final value ’T is

assumed.

10

3.3 Structural Modules

A structural module has five components:

(1) a list of global input signal names;

(2) alist of submodules, which may be of any type, including the structural
type;

(3) corresponding to each submodule, a list of output signal names;

(4) corresponding to each submodule, a list of input signal names, each of
which is either an output of some submodule or a global input;

(5) alist of global output signal names, each of which is an output of some
submodule.

Structural modules may be conveniently defined by means of the DEFCIR-
CUIT macro. For example, the following represents a D-flip-flop constructed
by cross-coupling nand gates (where the module NAND3 is a 3-input nand gate
with a definition similar to that of NAND), as shown if Figure 1:

(DEFCIRCUIT D-WITH-NANDS
(CLK D) ;inputs
(Q QN) ;outputs
((NAND) (B2 B1) (a1))
((NAND) (A1 CLK) (B1))
((NAND3) (B1 CLK B2) (A2))
((NAND) (A2 D) (B2))
((NAND) (B1 QN) (Q))
((NAND) (Q A2) (QN)))

Aside from simple syntactic requirements for the lists of input and output
signals, there is only one restriction on the structure of a circuit: we allow
no zero-delay cycles. (For a formal statement of this restriction, see the
definition of DELTA-ACYCLIC.) The purpose of this restriction is to guarantee
that the simulation of a structural module always terminates.

The STEP function is defined so that it accepts structural as well as be-
havioral modules as its first argument mod. If mod is structural, however, the

11

NAND

Al

NAND
NAND
D A1
o o
NAND
AND
,---—-{E;) o]
Lk 3 A2
Vs

NAND

B2

v

Figure 1: D-flip-flop

M

third argument is more complicated. In general, instead of a simple wave
packet, the expected argument is an object called a bundle for mod. This
notion is defined recursively as follows: if mod is a behavioral module, then
a bundle for mod is just an output packet for mod; if mod is structural, then
a bundle for mod is a list consisting of a bundle for each of its submodules.
Thus, a bundle for mod is a list structure consisting of a waveform correspond-
ing to each of the signals produced by mod. In particular, a bundle for mod
always determines an output packet for mod, namely, the list of waveforms
that correspond to the output signals of mod.

The STEP function is also defined recursively according to the structure
of mod: if inp is an input packet and bun is a bundle for a structural module
mod, then (STEP mod inp bun t) is the bundle for mod whose ih member is
(STEP mod; inp; bun, t), where

(a) mod; is the 1** submodule of mod,

(b) inp; is a list of the waveforms corresponding to the input signals to
mod;, extracted from inp and bun through analysis of mod, and

(c) bun, is the i** member of bun.

4 Simulation

4.1 The Function SIM

SIM is a function of four arguments: (1) a module mod, (2) a packet inp of
waveforms corresponding to the module’s inputs, (3) a time t£ at which the
simulation is to terminate, and (4) a bound d on the delta components of
all event times. The returned value is a packet of output waveforms that is
produced by simulating the module over the time interval from the origin
(0 . 0) to time tf.

In order to describe this process more precisely, let ty,ta,...,tn be the
increasing sequence of all times between *(0 . 0) =t; and tf = t, that
have delta components not exceeding d. The computation of (SIM mod inp
tf d) involves a call to STEP corresponding to each of these times: Let
buno, the initial bundle for the simulation, be the bundle for mod in which
every waveform has the constant value ’X (i.e, every waveform is the alist

13

'((X . (0. 0)))). Fori=1,...,n, let bun; be the value of (STEP mod
inp bun;_; t;). The value of (SIM mod inp tf d) is the output packet
determined by the bundle bun,.

4.2 Delta Constraints

Note that the delta bound d is required to reduce the set of times within
a given interval to a finite set, and thus to guarantee termination of the
recursive function SIM. In order to produce the intended behavior of this
function, we must impose constraints on its arguments that ensure that the
times of all scheduled events have delta components bounded by d.

This will require several definitions. First, we shall say that a waveform w
is bounded by d if no event time occurring in w has delta component exceeding
d. Next, we define the level of a signal in a circuit to be the maximum of
the lengths of all zero-delay paths through the circuit starting at the given
signal. A waveform w is admissible for a signal s with respect todif £ < d
and v is bounded by d — £, where £ is the level of s. A bundle, or similarly, an
input packet, for mod is admissible with respect to d if each of its waveforms
is admissible for the signal with which it is associated.

Finally, we may state the following important result: If inp and bun are an
admissible input packet and an admissible bundle for mod wrt d, respectively,
then (STEP mod inp bun t) is an admissible bundle for mod wrt d. It follows
that if inp is an admissible input packet for mod wrt d, then for any time t,
every waveform in the bundle (SIM mod inp t d) is bounded by d. 7

It should be noted that our primary motivation for including delta delays
in our language, in spite of the inherent complications described above, is a
commitment to adhere to the VHDL delay model. All of the modules that we
have defined in this language, including all of the examples presented herein,
exhibit only positive delays. Thus, for our purposes, we may always take the
d parameter of SIM to be 0, and need never deal with times with nonzero

delta components.

4.3 Efficient Execution

The definition of the function SIM, as described at the beginning of this
section, is designed to be as theoretically simple as possible. Its execution,
on the other hand, is impractical for two reasons:

14

1. Every call to STEP for a sequential module requires complete calculation
of the module’s state from its input packet.

9. STEP is called at every legal time during the simulation interval, al-
though it has no effect at times when no events are scheduled.

For the purpose of execution, therefore, we have defined a more efficient func-
tion, FAST-SIM, which may be shown to be equivalent to SIM. This efficiency is
achieved by eliminating both aspects of the redundancy noted above. Firstly,
it is defined in terms of a function FAST-STEP, which records the states of
sequential modules, so that at each step, a state need only be updated rather
than entirely recomputed. Secondly, FAST-SIM is truly event-driven: it calls
FAST-STEP only at times when a relevant event is scheduled.

As an illustration, let us consider a call to SIM with the following argu-
ments: (1)the sequential module D-FLIP-FLOP; (2)the input packet consisting
of the waveforms w1 and w2, defined in Subsection 3.2; (3) the terminal time
1(200000 . 0); (4) the delta bound 0. This results in 200001 calls to STEP
(this number would be even larger if we changed the fourth argument). Each
of these calls requires a recomputation of the state by reexamining the entire
input history, which is clearly impractical. The execution of FAST-SIM on
the same arguments, on the other hand, involves only 18 calls to FAST-STEP,
each of which requires only updating the state in response to the most recent
events. The value returned by '

(FAST-SIM (D-FLIP-FLOP) (LIST wi w2) (200000 . 0) 0)

is the output packet

» (((T 86000 . 0) (X 64000 . 0) (F 46000 . 0)
(X 44000 . 0) (T 26000 . 0) (X 0 . 0))
((F 86000 . 0) (X 64000 . 0) (T 46000 . 0)
(X 44000 . 0) (F 26000 . 0) (X 0 . 0))).

Note that these waveforms record the behavior of the two output signals
whose (delayed) values are defined to be those of the state variable ’Q and
its negation. It is instructive to compare this result with the trace of ’Q given

in Subsection 3.2.

15

5 Specification

Let modc and moda be two modules. We shall say that modc is an implemen-
tation of moda, or equivalently, that moda is a specification of modc, if the
following relation holds: Given a number d, a time t, and an input packet
inp for moda wrt d, inp is also an input packet for modc wrt d and (SIM
moda inp t d) generalizes (SIM modc inp t d). If one module is both an
implementation and a specification of the other, then we say that the two
are equivalent.

This notion of specification is central to our approach to circuit veri-
fication. Our goal is to characterize the behavior of circuits by deriving
behavioral modules that are specifications of given structural modules. For
example, the correctness of our flip-flip implementation D-WITH-NANDS can
be established by showing that it is an implementation in the above sense of
the sequential module D-FLIP-FLOP. The proof of this theorem remains to
be mechanically checked, but we may illustrate it by comparing simulations
of the two modules on the same input. Thus, when (D-FLIP-FLOP) is re-
placed with (D-WITH-NANDS) as the first argument in the call to FAST-SIM
appearing in the previous section, the following output packet is returned:

»(((T 67000 . 0) (F 46000 . 0) (T 24000 . 0) (X 0 . 0))
((F 69000 . 0) (T 44000 . 0) (F 26000 . 0) (X 0 . 0)))

It is easily seen that this output of the implementation D-WITH-NANDS is
indeed generalized by that of the specification D-FLIP-FLOP . It is also
worth noting that this simulation of the implementation involves 35 calls to
FAST-STEP on D-WITH-NANDS along with 76 calls to STEP on its combinational
submodules, as compared to only 18 calls to FAST-STEP for D-FLIP-FLOP.
Thus, there are two distinct benefits of establishing specifications for mod-
ules: concise behavioral description and efficient simulation.

In order to facilitate the verification of more complex circuits, we shall
require the following basic results:

1. If formc is one of the output forms of a behavioral module modc, forma
is another form such that the value of forma generalizes the value of
forme for any assignment of variable values, and moda is the result of
replacing formc in modc with forma, then modc implements moda.

16

2. If modc implements moda, and structc is the result of replacing an
occurrence of moda in structa with modc, then structc implements
structa.

3. If mod1 is a structural module that contains a structural module sub as
a submodule, and mod2 is the result of “flattening” mod! by replacing
the occurrence of sub with the list of submodules of sub (and recon-
structing all input and output lists accordingly), then mod1 and mod2
are equivalent.

4. If modc is a behavioral module that has an output with either TRANSPORT
or INERTIAL delay mode, and moda is the result of changing this delay
mode to NONDETERMINISTIC, then modc implements moda.

5. If modc is a behavioral module that has an output with delay range
(mini . max1), and moda is the result of replacing that delay range
with (min2 . max2), where min2 < mini and max2 > maxi, then
modc implements moda.

The first of these results is trivial, and its application often amounts
to mere tautology checking: if a complicated output form may be shown
to be logically equivalent to a simpler form, then the simpler form may be
substituted without affecting functionality.

The second result is significant in that it provides for hierarchical circuit
analysis: Suppose we wish to analyze a complex structural module that has
structural components. Once behavioral specifications afe derived for the
components, they may be substituted to yield a specification for the original
structure, which is a step toward its behavioral specification.

As applications of the other three results, we have implemented two pro-
cedures for deriving behavioral specifications (combinational and sequential,
respectively) for certain classes of structural modules. These are described
below.

- 5.1 Combinational Specifications

Any structural module modc that (a) is constructed entirely of combina-
tional components, and (b) contains no loops, may be shown to be an im-
plementation of some behavioral combinational module moda. The function

17

COMB-REDUCE, after verifying that a given structure modc satisfies these re-
quirements, automatically generates the appropriate specification moda, con-
structing its components as follows:

1. The input signals of moda are the global inputs of modc.

2. The form for each output is computed by tracing backwards from each
output, constructing by means of a series of substitutions an expression
for the output value in terms of inputs alone.

3. The delay range for each output is determined by the minimum and
maximum of the total delays along all paths from inputs.

4. The delay mode for every output is NONDETERMINISTIC.

The following 1-bit adder, built out of nand gates as shown in Figure 2,
is an example of a circuit that meets the above requirements:

(DEFCIRCUIT ADDER1

(A B C-IN) ;inputs
(s c-0UT) joutputs
((NAND) (A B) (T1)) ;i
((NAND) (A T1) (T2)) ;12
((NAND) (B T1) (T3)) ;13
((NAND) (T2 T3) (T4)) ;14

((NAND) (C-IN T4) (T5)) ;i5
((NAND) (C-IN TS) (T7)) ;i6

((NAND) (TS5 T4) (T6)) ;17
((NAND) (T5 T1) (C-0UT)) ;i8
((NAND) (T7 T6) (S))) ;19

The intended behavior of this device may be described in terms of the
functions M-SUM3 and M-MAJ3, which compute the sum modulo 2 and the
majority, respectively, of three bits. Assuming that the inputs A, B, and
C-IN remain stable for a sufficiently long period, the outputs S and C-0UT of
ADDER1 should eventually stabilize with the values (M-SUM3 A B C-IN) and
(M-MAJ3 A B C-IN), respectively.

As a first step toward a verified formalization of this description, we apply
COMB-REDUCE to ADDER1, computing the following specification:

18

NAND
NAND | NAND
L e
3% AND
ZJ - N
15
|
NAND
74
16
o
15
NAND
NAND 17
13
c-Tv &<

Figure 2: 1-Bit adder

19

NAND

c-out

NAND

» (COMBINATIONAL
(A B C-IN)
((M-NAND (M-NAND C~-IN
(M-NAND C-IN
(M-NAND (M-NAND A (M-NAND A B))
(M-NAND B (M-NAND A B)))))
(M-NAND (M-NAND C-IN
(M-NAND (M-NAND A (M-NAND A B))
(M-NAND B (M-NAND A B))))
(M-NAND (M-NAND A (M-NAND A B))
(M-NAND B (M-NAND A B)))))
(M-NAND (M~NAND C-IN
(M=NAND (M-NAND A (M-NAND A B))
(M-NAND B (M-NAND A B))))
(M-NAND A B)))
(NONDETERMINISTIC NONDETERMINISTIC)
((4000 . 12000) (4000 . 10000)))

The two outputs of this module will stabilize after maximum delays of 12000
and 10000, respectively, assuming stable inputs. Their values, however, are
given by rather complicated expressions in terms of M-NAND. To complete our
analysis of ADDER1, we must show that these two expressions are tautolog-
ically equivalent to the forms (M-SUM A B C-IN) and (M-MAJ3 A B C-IN).
Once this is done (automatically by the Nqthm prover), we may conclude
that the following is a specification for ADDER1:

' (COMBINATIONAL
(A B C-IN)
((M-SUM3 A B C-IN)
(M-MAJ3 A B C-IN))
(NONDETERMINISTIC NONDETERMINISTIC)
((4000 . 12000) (4000 . 10000)))

5.2 Sequential Specifications

Our algorithm for deriving a sequential behavioral specification of a struc-
tural module with sequential components requires that (a) the structure con-
tains no cycles passing only through combinational components, (b) all global

20

outputs are expressible as functions of state alone (and not of global inputs),
(c) all sequential submodules have the same trigger and are connected to the
same clock input, and (d) the minimum delays of the outputs of the sequen-
tial components are long enough to respect the hold times of any sequential
inputs to which they are connected (either directly or through paths con-
sisting only of combinational components). The function SEQ-REDUCE, after
verifying that a given structure modc satisfies these requirements, automat-
ically generates a behavioral specification moda. As a preliminary step, the
signals of modc and its submodules are all renamed in order to avoid any
conflicts. The components of moda are then derived as follows:

1.
2.

The input signals of moda are the global inputs of modc.
The trigger of moda is the trigger of the sequential submodules of modc.

The state variables of moda are the state variables of all the sequential
components of modc.

The state forms of moda are computed by tracing backwards from each
state variable of modc to sequential outputs and global inputs, and
constructing by means of a series of substitutions an expression for the
state variable in terms of state variables and global inputs.

The output forms of moda correspond to the global outputs of modc;
they are computed by tracing backwards from each global output to se-
quential outputs and constructing by means of a series of substitutions
an expression for the output value in terms of state variables alone.

The delay range for each output is determined by the minimum and
maximum of the total delays along all paths from sequential outputs.

The delay mode of an output is NONDETERMINISTIC unless it is gen-
erated directly by a sequential component of modc, in which case it
inherits its mode from that component.

The setup and hold times of each input are computed as the minj.aum
times required to respect the setup and hold times of the inputs of the
sequential components to which they are connected.

21

9. The clock period is the maximum of the longest clock period of sequen-
tial component and the time required for internal signals to stabilize in
order to respect setup times of sequential inputs.

As an extremely simple example, we consider the following module, con-
structed by connecting two D-flip-flops (as illustrated in Figure 3):

(DEFCIRCUIT DOUBLE-FLIP-FLOP o
(CLK D) ' ;inputs
(OUT QUTN) ;outputs
((D-FLIP-FLOP) (CLK D) (Q QN))
((D-FLIP-FLOP) (CLK Q) (OUT OQUTN)))

SEQ-REDUCE derives the following behavioral specification for this struc-
ture:

» (SEQUENTIAL ;type
(CLK-2 D-2) ; inputs
(Q-1 (M-NOT Q-1)) ;outputs
(INERTIAL INERTIAL) ymodes
((4000 . 6000) ;delays
(4000 . 6000))
POSITIVE-EDGE ;trigger
(Q-0 Q-1) ;state variable
(D-2 Q-0) ;state form
12000 N ;period
(6000 4000) ;setups
(6000 4000))) ;holds

Note, however, that the structure only barely satisfies the last item in our
list of preconditions for SEQ-REDUCE, since the minimum output delay of
D-FLIP-FLOP happens to coincide with the setup time of 4000. That is, if
the definition of the flip-flop were altered by replacing the lower limit of the
first delay range by any number smaller than 4000, then DOUBLE-FLIP-FLOP
would be rejected by SEQ-REDUCE.

Our final example is a 4-bit loadable shift register com)osed of nand gates
and D-flip-flops. We define this structure hicrarchically, as shown in Figure 4,
using a component consisting of three gates and a flip-flop:

22

.

D-*LiP-FLOP D-FLIP-FLOP
DZI —{n 0 Q D Q—--—-[} ouT
CLK ON CLK QN___B OUTN

CLK S

Figure 3: DOUBLE-FLIP-FLOP

(DEFCIRCUIT SHIFTER-COMPONENT

(CLK IN1 IN2 IN3 IN4)
(@

((NAND) (IN1 IN2) (S1))
((NAND) (IN3 IN4) (S2))

((NAND) (S1 s2) (D))
((D~-FLIP-FLOP) (CLK D)

;inputs
;outputs

(Q QBAR)))

The register is constructed from four of these components:

(DEFCIRCUIT SHIFTER

(CLK LOAD AIN BIN CIN DIN)

(AOUT BOUT COUT DOUT)
((INV) (LDAD) (SHIFT))

;inputs
;outputs

((SHIFTER-COMPONENT) (CLK DOUT SHIFT AIN LOAD) (AQUT))
((SHIFTER-COMPONENT) (CLK AQUT SHIFT BIN LOAD) (BOUT))
((SHIFTER-COMPONENT) (CLK BOUT SHIFT CIN LOAD) (COUT))
((SHIFTER~COMPONENT) (CLK COUT SHIFT DIN LOAD) (DOUT)))

The following behavioral specification is generated by SEQ-REDUCE:

* (SEQUENTIAL

(CLK-5 LOAD-5 AIN-5 BIN-5 CIN-5 DIN-5)

(Q-3-1 Q-3-2 Q-3-3 Q-3

_4)

(INERTIAL INERTIAL INERTIAL INERTIAL)

((4000 . 6000) (4000

(4000 . 6000) (4000
POSITIVE-EDGE

(Q-3-1 Q-3-2 Q-3-3 Q-3-

((M-NAND (M-NAND Q-3-4

(M-NAND AIN-5

(M-NAND (M-NAND Q-3-1

(M-NAND BIN-§

(M-NAND (M-NAND Q-3-2

(M-NAND CIN-5

(M-NAND (M-NAND Q-3-3

(M~NAND DIN-5

I

I

. 6000)
. 6000))

4)

(M-NOT LOAD-S5))
LOAD-5))

(M-NOT LOAD-5))
LOAD-5))

(M-NOT LOAD-5))
LOAD-5))

(M-NOT LOAD-5))
LOAD-5)))

24

;inputs
;outputs
;modes
;delays

ytrigger
;state variables
;state forms

W Sg——
w2 G

m 8——-
"

CLX

NAND

NAND

:}Jo

EF

N2
LK
IN§

C1X

{HIW—CMONEW
N1

CLK QN‘

SHIFTER-COMPONENT

BIN Sl
o)

N1
N2
N3
N4

CLK

@

SHIFTER - COMPONENT

CIN 8._

N]
INZ
43
IN§

ClX

Q

O

N

SHIFTER- COMPONENT

IN]
INZ
IN3
N4

CLX

v

Figure 4: Loadable shift register

o
to |

FLIP-FLOP

°r—9°

ACUT

ceuT

DouT

14000 ;period
(6000 10000 8000 8000 8000 8000) ;setups
(6000 0 0 0 0 0)) ;holds

This sequential module has four state variables and four matching outputs,
corresponding to the four flip-flops. It also has four “data” inputs, along
with a clock and a “load” input. On each cycle, a new state is computed as
follows: if the load is high, then each state variable assumes the value of the
corresponding input; if the load is low, then the values of the state variables
are rotated. Although this behavior may be difficult to ascertain from the
gtate forms shown above, it becomes clear once the following tautology is
noted:

(EQUAL (M-NAND (M-NAND Q (M-NOT LOAD))
(M-NAND A LOAD))
(M-0R (M-AND LOAD A)
(M-AND (M-NOT LOAD) Q))).

This is our only example of a sequential module with a minimum clock pe-
riod (14000) that exceeds the sum of the clock setup and hold times (12000).
The reason for this is that a signal that is sent from one flip-flop to another
must arrive sufficiently in advance of a triggering edge to respect the receiver’s
setup time. Thus, the time elapsed from one positive edge to the next must
be at least the sum of the maximum delay of the sent signal (6000), the delay
along the path to the receiver (4000), and the setup time of the receiver’s
input (4000).

It is also worth noting that the hold times for all but the clock input are
0. The reason for this is that the delay along every path from an input to a
flip-flop is at least as long as the flip-flop’s hold time.

6 Future Work

The HDL that we have described is sufficiently expressive for the modeling
of both synchronous and asynchronous devices. Thus far, however, we have
only outlined a methodology for specifying and verifying combinational and
synchronous circuits designed in this language. Many of the theorems on
which this methodology is based remain to be formalized and mechanically

26

checked. Once this body of theorems is established, our next goal will be to
extend the theory to the asynchronous realm. This effort will be driven by the
design of a circuit that achieves communication between two asynchronous
processors according to a version of the protocol that was formalized in [7].
The formal specification and verification of this design will be delivered with
the report on Task 5.

References

(1] Bevier, William R. and Young, William D., Machine checked proofs of
the Design and Implementation of a Fault-Tolerant Circuit, Technical
Report 62, Computational Logic, Inc., NASA CR-182099, November
1990.

(2] Borrione, Dominique D., Pierre, Laurence V., and Salem, Ashraf M.,
Formal verification of VHDL descriptions in the PREVAIL environment,
in IEEE Design and Test, June, 1992.

[3] Boyer, R. S. and Moore, J, A Computational Logic Handbook, Academic
Press, Boston, 1988.

[4] Brock, Bishop C. and Hunt, Warren A., Jr., A Formal HDL and its use
in the FM9001 verification, in Proceedings of the Royal Society, 1992.

[5] Brock, Bishop C., Hunt, Warren A., Jr., and Young, William D., In-
troduction to a formally defined hardware description language. In Pro-
ceedings of the IFIP Conference on Theorem Provers in Circuit Design,
June 1992.

[6] Filippenko, Ivan V., VHDL verification in the State Delta Verification
System, in ACM SIGDA International Workshop on Formal Methods in
VLSI Design, January 1991.

[7] Institute of Electrical and Electronic Engineers, IEEE Standard VHDL
Language Reference Manual, 1988.

[8] Moore, J Strother, A Formal model of asynchronous communication
and its use in mechanically verifying a biphase mark protocol, Technical
Report 68, Computational Logic, Inc., NASA CR-4433, June 1992.

27

[9] Young, William D., Verifying the interactive convergence clock synchro-
nization algorithm using the Boyer-Moore theorem prover, Technical
Report 77, Computational Logic, Inc., NASA CR-189649, April 1992.

Appendix

chppnknd kR sk Rk aikkk bRk ko ko kk kg kR kR R R kRN

; WAVEFORMS

;;‘i#‘*#*i###***it*t******#***‘##***#*##*t*#***‘*#**t**#i#tﬁtt####‘#tt##

-, -

;;A moment in time is a pair of numbers:

(detn timep (x)
(and (listp x)
{aumberp (car x))
(numberp (cdr x))))

(defn zero-time ()

1(0 . 0))

;;Moments in time are ordered lexicographically:

(defn tlessp (a b)
(it (equal (car a) (car b))
(lessp (cdr a) (cdr b))
(lesap (car a) (car b))))

(defn tleq (a b)
(not (tleasp b a)))

: ;Events are scheduled at times that are computed from the current time
; ;and propagation delays as follows:

(defa tplus (t0 delay)
(it (zerop delay)
(cons (car t0) (addl {(cdr t0}))
(cons (plus (car t0) delay) 0)))

;A waveform is an alist that associates signal values with the times
;;at which they are assumed by the signal:

28

I

(defn waveformp (w)
(it (listp w)
(12 (1istp (cdr w))
(and (waveformp (cdr w))

(timep (cdar w))

(tlessp (cdadr @) (cdar w))

(not (equal (caadr w) (caar w))))

(equal (cdar w) (zero-time)))

1))
;A packet is a list of waveforms:

(defn packetp (1 n)
(it (zerop n)
(nlistp 1)
(and (1istp 1)
(wavetormp (car 1))
(packetp (cdr 1) (subl n)))))

;;The value of a signal at a given time is computed from its waveform
;;a8 follows:

(defn wave-value (wave time)
(it (1istp wave)
(i (tlessp time (cdar wave))
(wave-value (cdr wave) time)
(caar wave))

1))

(defn packet-values (packet time)
(i2 (listp packet)
(cons (wave-value (car packet) time)
(packet-values (cdr packet) time))
0

; ;To compute the f£inal value of a waveform:

(defn last-value (w)
(caar w))

(defn last-values (p)

(if (1istp p)
(cons (last-value (car p))

29

(last-values (cdr p)))
oaon

;:;There is no restriction on the values that may be assumed by a signal.
;;The value ‘X, however, is special ~-- it represents an unknown value.

; ;Any other value is “"definite". A waveform is detinite it never assumes
; ;the value 'X:

(defn defvalp (v)
(not (equal v 'x)))

(defn detwavep (w)
(it (listp w)
(and (defvalp (caar w))
(defwavep (cdr w)))
t))

;A value vi generalizes v2 if vi ig either v2 or 'X. A wave wl
; jgeneralizes a wave w2 if at all times, the value of wi generalizes the
;;value of w2:

(defn genvalp (vi v2)
(or (equal vi v2) (equal vi ’x)))

(defn genwavep (w1 w2)
(it (and (listp w1) (listp w2))
(and (genvalp (caar wi) (caar w2))
(it (tlessp (cdar w2) (cdar wi))
(genwavep (cdr w1) w2)
(if (tlessp (cdar wi) {(cdar w2))
(genwavep w1 (cdr w2))
(or (equal (cdar wi) (zero-time))
(genvavep (cdr w1) (cdr 92))))))
1)
((lessp (plus (count wi) (count w2)))))

(defn genpacketp (pi p2)
(it (listp p1)
(and (genwavep (car p1) (car p2))
(genpacketp (cdr p1) (cdr p2)))
(alistp p2)))

;;Histories and futures:

30

(defn wave-history (wave time)
(it (listp wave)
(it (tlessp time (cdar wave))
(vave-history (cdr wave) time)
vave)
vave))

(defn packet-history (packet time)
(i2 (1istp packet)
(cons (wave-history (car packet) time)
(packet-history (cdr packet) time))

On

(defn packet-histories (packets t0)
(it (listp packets)
(cons (packet-history (car packets) t0)
(packet-histories (cdr packets) tO))
0N

(defn wave-future (wave time)
(it (listp vave)
(if (tlessp time (cdar wave))
(cons (car wave) (wave-future (cdr wave) time))
(it (tlessp (cdar wave) time)
(1ist (cons (caar wave) time))
(list (car wave))))
wave))

(defn packet-future (packet time)
(it (1listp packet)
(cons (wave-future (car packet) time)
(packet-future (cdr packet) time))
0»

;;To determine whether some waveform of a packet aquires a new value
;;at a given time:

(defn new-value-p (wave time)
(it (listp wave)
(if (tlessp time (cdar wave))
(new-value-p (cdr wave) time)
(equal time (cdar wave)))

1))

31

(defn some-new-value-p (packet time)
(iz (1istp packet)
(or (new-value-p (car packet) time)
(some-new-value-p (cdr packet) time))

1))

H ;“‘i‘.‘.‘itittﬁi‘*#*###**tit**ttt#tt*#t***#**tt#*i**********t**#***ti##

HH PROPAGATION
et L L e e e e SR A L A LR Sl e TS S a et o)

; iThe following two functions implement "transport" and "“inertial”

; ;delay, as defined in the VHDL standard. They may be used to schedule
;;a transaction with value V at time Ti on a waveform W, assuming that V
;;and all values of W are definite, and that T1 exceeds the current time
7 TO:

(defn post-transport-event-definite (w v t1)
(it (listp w)
(it (tlesap (cdar w) t1)
(iz (equal (caar w) v)
v
(cons (cons v t1) w))
(post~transport-event-definite (cdr w) v t1))

1))

(defn post-inertial-event-definite (w v t0 t1)
(it (listp w)
(it (tlessp t0 (cdar w))
(if (and (tlesasp (cdar w) t1) (equal v (caar w)))
(post-inertial-event-definite (cdr w) v t0 (cdar w))
(post-inertial-event-definite (cdr w) v t0 t1))
(it (equal v (caar w))
]
(cons (coms v ti) w)))

1))

;;In the presence of indefinite values, Wwe use the following more

; ;general functions. Instead of fixed delays, we allow delay ranges:
; ;we assume that the time of the event is at most T2 and (if T1

; iprecedes T2) at least Ti, where T12 and T2 both exceed TO:

(defn post-transport-event (w v t0 ti t2)
(if (listp w)

32

(it (tlessp t0 (cdar w))
(it (tlessp (cdar w) t2)
(it (equal v (caar w))
(post-transport-event (cdr w) v t0 ti (cdar w))
(it (tlessp ti t2)
(it (tlessp t1 (cdar w))
(if (1istp (cdr w))
(it (equal v (caadr w))
(it (equal v ’x)
(cdr w)
(cons (cons v t2)
(cons (cons 'x (cdar w))
(post-transport-event
(eddr w) v t0
t1 (cdadr %)))))
(post-transport-event (cdr w) v t0 t1 t2))
1)
(if (tlessp (cdar @) t1)
(it (equal (caar @) ’'x)
(cons (cons v t2) w)
(it (equal v ’X)
(cons (cons ’'x tl) w)
(cons (cons v t2) (coms (coms 'x t1) W))))
(if (listp (cdr @))
(if (equal (caadr @) 'x)
(cons (cons v t2) (cdr w))
(it (equal v ’x)
(cons (coms 'x ti) @)
(cons (cons v t2)
(cons (coms ’x t1) (ecdr w)))))
1)) '
(cons (cons v t2) @)))
(post-transport-event (cdr w) v t0 t1 t2))
(i (equal (caar @) v)
L]
(it (equal (caar @) ’'x)
(cons (cons v t2) w)
(it (tlessp ti1 t2)
(it (equal v 'x)
(cons (coms ’'x t1) w)
(cons (cons v t2) (coms (coms ’'x t1) w)))
(cons (coms v t2) ¥)))))

1))

33

(defn post-inertial-event (v v t0 ti t2)
(it (listp w)
(it (tlessp tO (cdar w)})
(if (tlessp (cdar w) t2)
(i2 (equal v (caar w))
(post-inertial-event (cdr w) v t0 t1 (cdar w))
(it (and (tlessp (cdar @) ti)
(or (equal (caar w) ’x)
(and (equal v ’x)
(not (equal (caar w) (cdadr w))))))
(post-inertial-event (cdr w) v t0 (cdar w) t2)
(post-inertial-svent (cdr w) v t0 t1 t2)))
(post-inertial-event (cdr @) v t0 t1 t2))
(it (equal (caar w) -v)
v .
(it (equal (caar @) ’'x)
(conms (cons v t2) w)
(it (tlessp ti t2)
{if (equal v ’'x)
(cons (cons ’x t1) W)
(cons (cons v t2) (coms (coms 'x t1) w)))
(cons (cons v t2) w)))))
1)) '

; ;We also provide a third delay mode, NONDETERMINISTIC, vhich generalizes
; ;both TRANSPORT and INERTIAL:

(defn post-nondeterministic-event (w v t0 t1 t2)
(i (listp @)
(it (tlessp t0O {cdar w))
(if (tlessp (cdar w) t1)
(i2 (listp (cdr w))
(iz (equal (caar w) {(caadr w))
(post-nondeterministic-event (cdr w) v t0 t1 t2)
(post-nondeterministic-event
(cdr ®) v t0 (cdar w) t2))
1)
(post-nondeterministic-event (cdr w) v t0 t1 t2))
(i2 (or (equal (caar w) ’'x) (tleq t2 t1))
(if (equal (caar w) v)
v
(cons (cons v t2) w))
(it (equal v 'x)
(cons (cons ’'x t1) w)

34

(cons (cons v t2) (cons (coms ’x t1) w)))))

1))

H ;‘*“**i‘i‘it““#t*tt**!illl*t#*####ttt‘*#*t*####t###*ti##**i#t*t#*tt**##*

HH MODULES
HE e b L D L L e Y

(defn type (mod)
;& litatom
(car mod))

(disable type)

i¥e shall implement three module types, COMBINATIONAL, SEQUEKTiAL, and
i ;STRUCTURAL. Combinational and sequential modules are called BEEAVIORAL.

(defn combinationalp (mod)
(equal (type mod) ’combinational))

(defn sequentialp (mod)
(equal (type mod) ’sequential))

(defn behavioralp (mod)
(or (combinationalp mod) (sequentialp mod)))

(defn structuralp (mod)
(equal (type mod) ’structural))

;iAssociated with any module are lists of inputs and outputs:

(defn inputs (mod)
(cadr mod))

(disable inputs)

(defn outputs (mod)
(caddr mod))

(disable outputs)

(defn number-of-inputs (mod)
(length (inputs mod)))

35

(defn number-of-outputs (mod)
(Length (outputs mod)))

; ;Module behavior will be characterized by a "step” function of 4

; ;arguments: (1) a moduls, (2) an input packet, (3) an output packet,
;;and (4) a time. The value returned is the result of updating the
;;output packet by executing any events in the input packet that occur
;;at the given time. This function will be required to exhibit the
;;following five properties (although I don’t know why I care about

; ;the last two):

;5 (1) Monotonic:

(IMPLIES (AND (PACKETP INP1 (NUMBER-OF-INPUTS mod))
(PACKETP INP2 (NUMBER-OF-INPUTS mod))
(GENPACKETP INP1 INP2)
{PACKETP OUT1 (NUMBER-OF-QUTPUTS mod))
(PACKETP OUT2 (NUMBER-OF-QUTPUTS mod))
(GENPACKETP QUTP1 OUTP2)

HH (TIMEP TO))

(GENPACKETP (STEP mod INP1 QUTPi TO)

{STEP mod INP2 QUTP2 T0O)))

i+ (2) Nonpredictive:

(IMPLIES (AND (PACKETP INP1 (NUMBER-OF-INPUTS mod))
(PACKETP INP2 (NUMBER-OF-INPUTS mod))
(EQUAL (PACKET-HISTORY INP1 TO)
(PACKET-HISTORY INP2 TO))
(PACKETP OUT (NUMBER-OF-OUTPUTS mod))
(TIMEP TO0))
(EQUAL (STEP mod INP1 OUTP TO)
(STEP mod INP2 OUTP TO)))

; ;For combinational modules, Property (2) may be strengthened as follows:

(IMPLIES (AND (PACKETP INP1 (NUMBER-OF-INPUTS mod))
; .. (PACKETP INP2 (NUMBER-QF-INPUTS mod))
¥ (EQUAL (PACKET-VALUES INP1 TO)
(PACKET-VALUES INP2 TO))
(PACKETP OUT (NUMBER-OF-QUTPUTS mod))
(TIMEP TO))
(EQUAL (STEP mod INP1 QUTP TO)

36

Ik

ey

o

T

(STEP mod IKP2 QUTP T0)))

;3 (3) Nonretroactive:

i (IMPLIES (AND (PACKETP INP (NUMBER-OF-INPUTS mod))
; (PACKETP OUT (NUMBER-OF~CUTPUTS mod))
; (TIMEP TO))

; (EQUAL (PACKET-HISTORY (STEP mod INP OUTP TO) TO)
; (PACKET-HISTORY OUTP T0O))

;i (4) Yonretrospective:

; (IMPLIES (AND (PACKETP INP (NUMBER-OF-INPUTS mod))

i (PACKETP OUT1 (NUMBER-OF-QUTPUTS mod))

(PACKETP OUT2 (NUMBER-OF-OUTPUTS mod))

(EQUAL (PACKET-FUTURE OUTP1 TO)
(PACKET-FUTURE OUTP2 TO))

HH (TIMEP T0))

(EQUAL (PACKET-FUTURE (STEP mod INP OUTP1 TO) TO)
(PACKET-FUTURE (STEP mod INP OUTP2 TO) TO)))

i; (8) Idempotent:

(IMPLIES (AND (PACKETP INP (NUMBER-OF-INPUTS mod))
(PACKETP OUT (NUMBER-OF-OUTPUTS mod))

HH (TIMEP T0))

HH (EQUAL (STEP mod INP (STEP mod INP OUTP TO) TO)

(STEP mod INP OUTP TO))

s PeeBsbRR ks kb bk kb kkkk bk kd ok khkkkkdkkhka Rk kR Rk kR Rk R Rhk

HH COMBINATIONAL MODULES
B L L L T T T T T A TSI T

i iAssociated with each output of a behavioral module is a delay mode,
j iwhich may be INERTIAL, TRANSPORT, or NONDETERMINISTIC, and a delay

;iTange:
(defn modes (mod)
;& 1list of litatoms
(cadddr mod))
(disable modes)

(defn delays (mod)

37

;a list of pairs of numbers, (MIN . MAX), corresponding to outputs.
;If MAX is NIL (more generally, if MAX does not exceed MIN), then MIN
;is used for both extremes.

{caddddr mod))

(disable delays)
(defn min-delay (pair) (car pair))

(defn max-delay (pair)
(max (car pair) (cdr pair)))

(defn post-event (v v t0 mode t1 t2)
(case mode
(transport (post-transport-event w v t0 ti t2))
(inertial (post-inertial-event w v t0 ti t2))
(nondeterministic (post-nondeterministic-event w v t0 t1 t2))
(otherwise (post-inertial-event @ v t0 t1 t2))))

(defn post-events (packet values tO modss delays)
(it (listp packet)
(cons (post-event (car packet)
(car values)
t0
(car modes)
(tplus tO (min-delay (car delays)))
(tplus t0 (max-delay (car delays))))
(post-events (cdr packet)
(cdr values)
t0
{cdr modes)
(cdr delays)))

0N

(defn combinational-step (mod inp outp time)
(post-events outp
(eval$ ’list
(outputs mod)
(pairlist (inputs mcd) (packet-values inp time)))
time
(modes mod)
(delays mod)))

;iSome gates:

38

(defn m-and (a b)
(iz (equal a ’f) 'f
(if (equal b 'f) 'f
(i2 (and (equal a ’t) (equal b ’'t)) 't
’x))))

(defn m-or (a b)
(it (equal a 't) 't
(iz (equal b 't) 't
(it (and (equal a 'f) (equal b 'f)) 'f
’x))))

(defn m-not (a)
(if (equal a ’'t) 'f
(it (equal a 'f) 't
'x)))

(defn m-nand (a b)
(m-not (m-and a b)))

(defn m-and3 (a b ¢)
(it (equal a ’f) 'f
(iz (equal b ’t) 'f
(it (equal ¢ ’f) 't
(if (and (equal a ’t) (equal b ’t) (equal ¢ ’t)) 't
'x)))))

(defn m-nand3 (a b c)
(m-not (m-and3 a b c)))

(detn inv ()
’(combinational ;type
(a) ;inputs
((m-not a)) ;outputs
(inertial) :modes
((2000))))

(defn nand ()
'(combinational ;type

(a b) ;inputs
((m-nand a b)) ;outputs
(inertial) :modes

((2000)))) ;delays

39

(defn nand3d ()

*(combinational ;type
(abe) ;inputs
((m-nand a b ¢)) ;outputs
(inertial) ;modes
((2000)))) ;delays

B T L e L L R L I Rl et bty
i SEQUENTIAL MODULES

H ;##*i*ti#**i**ttt****i#*##t**#ii*#i#*‘#******##**ﬁ***********t#*‘#tti***

; ;A sequential module has (along with INPUTS, OUTPUTS, MODES, and DELAYS)
;18ix additional components:

(defn triggqrr(mod)
;either POSITIVE-EDGE or NEGATIVE-EDGE
{cadddddr mod))

(defn locals (mod)
;a list of litatoms (internal state variables) from which output forms
;are constructed (rather than from input variables)
(caddddddr mod))

(disable locals)
(defn state (mod)
;& list of forms (for computing local values), which may involve locals
;and input variables
(cadddddddr mod))
(disable state)
(defn period (mod)
;a number
(caddddddddr mod))
(disable period)
(defn setups (mod)

;& 1list of numbers
(cadddddddddr mod))

40

(disable setups)
(defn holds (mod)
;& list of numbers
(caddddddddddr mod))
(disabls holds)

;1A positive-edge-triggered device:

(defn d-flip-flop ()

*(sequential ;type
(cik d) ;inputs
(q (m-not q)) ;outputs
(inertial inertial) ;modes
((4000 . 6000) ;delays

(4000 . 6000))
positive-edge ;trigger
(q) ;locals
(a) ;state
12000 ;period
(8000 4000) ; setups
(8000 4000))) ;holds

(defn ncopies (n x)
(it (zerop n)
0

(cons x (ncopies (subi n) x))))

(defn kill-state (mod)
(ncopies (length (locals mod)) 'x))

(defn next-state (state inputs mod)
(eval$ ‘list o
(state mod)
(append (pairlist (locals mod) state)
(pairlist (cdr (inputs mod)) inputs))))

(defn check-clock-setup-or-hold (w time)

(and (equal (caadr w) (m-not (caar w)))
(tleq (tplus (cdadr @) time) (cdar ¥))))

(defn check-data-setups (inp time setups)

(it (1istp inp)

41

(and (not (equal (last-value (car inp)) ’x))
(tleq (tplus (cdaar inp) (car setups)) time)
(check-data-setups (cdr inp) time (cdr setups)))

%))

(defn check-period (w period)
(and (equal (caaddr w) (caar w))
(tleq (tplus (cdaddr w) period) (cdar v))))

(defn check-data-holds (inp edge time holds)
(it (listp inp)
(and (or (not (new-value-p (car inp) time))
(tleq (tplus edge (car holds)) time))
(check-data-holds (cdr inp) edge time (cdr holds)))

t))

(defn last-time (p)
(it (listp p)
(iz (tlessp (last-time (cdr p)) (cdaar p))
(cdaar p)
(last-time {(cdr p)))
(zero-time)))

(detn strip-events {(p time)
(iz (listp p)
(it (equal time (cdaar p))
(cons (cdar p) (strip-events (cdr p) time))
(cons (car p) (strip-events (cdr p) time}))

P))

(prove-lemma leq-count-strip-events (rewrite)
(not (lessp (count p) (count (strip-events p time)))))

(prove-lemma lessp-count-strip-events (rewrite)
(implies (and (packetp p n) (mot (equal (last-time p) (zero-time))))
(lessp (count (strip-events p (last-time p)))
(count p))))
(disable strip~events)
(disable last-time)
(defn compute-state (mod inp trigger)

(it (packetp inp (length inp))

42

(let ((time (last-time inp)))
(if (equal time (zero-time))
(xill-state mod)
(if (equal (cdar (car inp)) time)
(it (equal (caar (car inp)) trigger)
(iz (and (check-clock-setup-or-hold
(car inp) (car (setups mod)))
(check-data-setups
(cdr inp) time (cdr (setups mod)))
(check-period (car inp) (period mod)))
(next-state (compute-state mod
(strip-events inp time)
trigger)
(last-values (cdr inp))
mod)
(kill-state mod))
(it (and (equal (caar (car inp)) (m-not trigger))
(check-clock-setup-or-hold
(car inp) (car (holds mod))))
(compute-state mod (strip-events inp time) trigger)
(kill~-state mod)))
(it (and (equal (cdar (car inp)) trigger)
(not (check-data-holds
(cdr inp) (cdar (car imp))
time (cdr (holds med)))))
(xill-state mod)
(compute-state mod (strip-events inp time) trigger)))))
1)
((lessp (count inp))))

(enable strip-events)
(enable last-time)

(defn sequential-state (mod inp)
(case (trigger mod)
(positive-edge (compute-state mod imp ’'t))
(negative-edge (compute-state mod inp 1))
(othervise (compute-state mod inp)

(defn sequential-step (mod inp outp time)
(post-events
outp
(eval$ 'list

43

(outputs mod)
(pairlist (locals mod)
(sequential-state mod (packet-history imp time))))
time
(modes mod)
(delays mod)))

(defn behavioral-step (mod inp outp time)
(case (typs mod)
(combinational (combinational-step mod inp outp time))
(sequential (sequential-step mod inp outp time))
(otherwise 1)))

M ;“#‘#‘**#**#**##i‘*t*t#****#*#***‘*#**i#****#t*t****#*****tt#‘tt‘i*#

HH STRUCTURAL MODULES
Lt L e L E bt bt b il

;:Structural modules are built recursively out of submodules. A
; ;structural module has 5 components:

; (defn inputs (mod)
; :a list of litatoms
i (cadr mod))

; (defn outputs (mod)
; ;& list of litatoms
; (caddr mod))

(defn submodules (mod)
;& list of moduless
(cadddr mod))
(disable submodules)
(defn subinputs (mod)
;a list of lists of litatoms
(caddddr mod))
(disable subinputs)
(defn suboutputs (mod)

:a 1ist of lists of litatoms
(cadddddr mod))

44

——

(disable suboutputs)

(defn unionl (1)
(if (listp 1)
(union (car 1) (unionl (cdr 1)))
9)))

(defn signals (mod)
(unionl (cons (inputs mod) (suboutputs mod))))

(defn lookup (key keys list)
(it (listp keys)
(it (equal key (car keys))
(car list)
(lookup key (cdr keys) (cdr 1list)))
1))

(defn find-list (key lists)
(iz (listp lists)
(it (member key (car lists))
(car lists)
(2ind-list key (cdr lists)))
1))

(defn find-outputs (out mod)
(find-1list out (suboutputs mod)))

(defn lookup-list (key keys list)
(it (listp Xkeys)
(it (member key (car keys))
(car list)
(lookup-list key (cdr keys) (cdr list)))
1))

(defn find-submodule (out mod)
(lookup-list out (suboutputs mod) (submodules mod)))

(defn find-inputs (out mod)
(lookup-list out (suboutputs mod) (subinputs mod)))

(defn find-delay (out mod)
(lookup out (find-outputs out mod) (delays (find-submodule out mod))))

45

(defn find-mode (out med)
(lookup out (find-outputs out mod) (modes (find-submoduls out mod))))

; ;The following macro is given for convenience in defining structural
;;modules: -

(defmacro defcircuit (name inputs outputs krest occurrences)
‘(defn ,name ()
‘(structural ,’,inputs ,’,outputs
,»(list ,@(mapcar #’first occurrences))
, ', (mapcar #’second occurrences)
,7,(mapcar #’third occurrences})))

;;As an example, we build a D-flip-flop out of nand gates:

(defcircuit d-with-nands
(clx d) ;inputs
(q qn) ;outputs
((nand) (b2 b1) (al))
((nand) (a1 clk) (b1))
((nand3) (b1 clk b2) (a2))
((nand) (a2 d) (b2))
((nand) (b1 qn) (q))
((nand) (q a2) (gn)))

;;Ve define two predicates that must be satisfied by any structural
;;module, The first of these, SYNTAX-OK, checks that all list have
;;appropriate lengths, etc.:

(defn match-inputs (subins subs)
(if (listp subs)
(and (1listp subins)
(equal (length (car subins)) (number-of-inputs (car subs)))
(match-inputs (cdr subins) (cdr subs)))

t))

(defn match-outputs (subouts subs)
(if (1istp subs)
(and (equal (length (car subouts)) (aumber-of-outputs (car subs)))
(match-outputs (cdr subouts) (cdr subs)))

t))

(defn appears (x 1)
(it (listp 1)

46

(or (member x (car 1))
(appears x (cdr 1))})
1))

(defn all-appear (1 m)
(it (1istp 1)
(and (appears (car 1) m)
(all-appear (cdr 1) m))
t))

(defn lists-all-appear (ls m)
(iz (listp 1s)
(and (all-appear (car 1s) m)
(lists-all-appear (cdr 1s) m))
t))

(defn none-appear (1 m)
(it (listp 1)
(and (not (appears (car 1) m))
(none-appear (cdr 1) m))

t))

(defn distinct-symbols (1)
(it (listp 1)
(and (litatom (car 1))
(not (member (car 1) (cdr 1)))
(distinct-symbols (cdr 1)))
t))

(defn all-distinct-symbols (1s)
(it (listp 1s)

(and (distinct-symbols (car 1ls))
(none-appear (car ls) (cdr 1s))
(all-distinct-symbols (cdr 1s)))

t))

(defn syntax-ok (mod)
(and (equal (length (subinputs mod)) (length (submodules mod)))
(match-inputs (subinputs mod) (submodules mod))
(equal (length (suboutputs mod)) (length (submodules mod)))
(match-outputs (suboutputs mod) (submodules mod))
(all-appear (outputs mod) (suboutputs mod))
(l1ists-all-appear
(subinputs mod) (coms (inputs mod) (suboutputs mod)))

47

(all-distinct-symbols (cons (inputs mod) (suboutputs mod))})))

;;The other predicate that must be satisfied by any structural module,
; ;DELTA-ACYCLIC, checks for cyclic O-delay paths. It is defined inm
;;terms of an important auxiliary function, DLEVELS:

(defn delete (x 1)
(if (1istp 1)
(if (equal x (car 1))
(cdr 1)
(cons (car 1) (delets x (cdr 1))))
1))

(defn subbagp (1 m)
(if (1istp 1)
(and (member (car 1) m)
(subbagp (cdr 1) (delete (car 1) m)))
t))

{defn subsetp (1 m)
(it (1istp 1)
(and (member (car 1) m)
(subsetp (cdr 1) m))
t))

(prove-lemma length-delete (rewrite)
(implies (member x 1)
(equal (length (delete x 1))
(subl (length 1)))))

(prove-lemma member-delete (rewrite)
(implies (and (member x 1)
(not (equal x y)))
(member x (delete y 1))))

(prove-lemma lessp-length-subbagp ()
(implies (and (subbagp 1 m)
(member x m)
{not {member x 1)))
(l1essp (length 1) (length m))))

(prove-lemma subsetp-delete (rewrite)

(implies (and (subsetp 1 m)
(not (member x 1)))

48

(subsetp 1 (delete x m))))

(prove-lemma subsetp-subbagp (rewrite)
(implies (and (distinct-symbols 1)
(subsetp 1 m))
(subbagp 1 m))
((induct (subbagp 1 m))))

(prove-lemma lessp-length-subset (rewrite)
(implies (and (subsetp 1 m)
(distinct-symbols 1)
(member x m)
(not (member x 1)))
(lessp (length 1) (length m)))
((use (lessp-length-subbagp))))

(defn fmax (x y)
;the maximum of x and y, with F treated as infinite
(if (and x y)
(max x y)

1))

(defn select-deltas (delays env)
(it (listp delays)
(it (zerop (min-delay (car delays)))
(cons (car env) (select-deltas (cdr delays) (cdr emv)))
(select-deltas (cdr delays) (cdr env)))
0N

(prove-lemma lessp-count-submodules-mod (rewrite)
(implies {structuralp mod)
(equal (lessp (count (submodules mod)) (count mod)) t))
((enable submodules type)))

; ;Suppose IN in a signal of a structural module MCD, ENV is a list of

; ;length (NUMBER-OF-OUTPUTS MOD), and BAD is a list of signals of MOD.
; ;Assume that for sach i < (NUMBER-OF-OUTPUTS MOD), the ith member of
;;ENV is the length of the longest O-delay path starting at the ith

; ;member of (OUTPUTS MOD) and leading outward. Assume further that
;;there is an infinite (i.e., cyclic) O-delay path starting at each BAD
;;signal. Then (DLEVEL$ O IN MOD ENV BAD) is the length of the lougeast
; ;0-delay path starting at IN:

(defn lookup~all (x 1 m)

49

(it (listp 1)
(i2 (equal x (car 1))
(cons (car m) (lookup-all x (cdr 1) (cdr m)))
(lookup-all x (cdr 1) (cdr m)))
m))

(defn lookup-inputs (x 1 m)
(it (1istp 1)
(cons (lookup-all x (car 1) (inputs (car m)))
(lockup-inputs x (cdr 1) (cdr m)))
m))

(defn fmaxl (1)
(if (listp 1)
(fmax (car 1) (fmaxl (cdr 1)))
0))

(defn fmaxll (1)
(it (1listp 1)
(tmax (fmaxl (car 1)) (fmaxll (cdr 1)))
0))

(defn faddi (n)
(if n (addi n) 1))

(defn faddil (1)
(i1 (listp 1) S
(cons (faddi (car 1)) (faddil (cdr 1)))
O»n

(defn dlevel$ (mode in mod env bad)
(case mode
(0 (if (structuralp mod)
(i2 (and (not (member in bad))
(equal (length (suboutputs mod))
(length (submodules mod)))
(member in (signals mod))
(distinct-symbols bad)
(subsetp bad (signals mod)))
(fmaxll (cons (lookup-all in (cutputs mod) env)
(dlevel$
3
(lookup-inputs in
(subinputs mod)

50

(submodules mod))
(submodules mod)
(dlevel$ 2 (suboutputs mod) mod env
(cons in bad))
o
1)
(fmaxl (faddil (select-deltas (delays mod) env)))))
(1 (if (listp in)
(cons (dlevel$ 0 (car in) mod env bad)
{dlevel$ 1 (cdr in) mod env bad))
O»
(2 (it (1istp in)
(cons (dlevel$ 1 (car in) mod env bad)
(dlevel$ 2 (cdr in) mod env bad))
0N
(3 (it (listp mod)
(cons (dlevel$ 1 (car in) (car mod) (car emnv) bad)
(dlevel$ 3 (cdr in) (cdr med) (cdr env) bad))
on
(othervise £))
((ord-lessp (lex (list (count mod)
(difference (length (signals mod)) (length bad))
(count in))))))

(defn delta-~acyclic (mod)
;determines whether there is any cyclic O-delay path within MOD
(Zmaxll (dlevel$ 2
(suboutputs mod)
mod
(ncopies (number-of-outputs mod) 0)

0O

(defn modulep$ (flag mod)
(if (equal flag ’list)
(if (listp mod)
(and (modulep$ t (car mod))
(modulep$ 'list (cdr mod)))
t)
(case (type mod)
(structural
(and (syntax-ok mod)
(delta-acyclic mod)
(modulep$ ’list (submodules mod))))
(combinational

51

(and (equal (length (delays mod)) (length (outputs mod)))
(equal (length (modes mod)) (length (outputs mod)))))
(sequential
(and (equal (length (delays mod)) (length (outputs mod)))
(equal (length (modes mod)) (length (outputs mod)))
(equal (length (state mod)) (length (locals mod)))
(equal (length (holds mod)) (length (inputs mod)))
(equal (length (setups mod)) (lemgth (inputs mod)))))
(othervise £))))

(defn modulep (mod)
(modulep$ t mod))

;;We shall define a step function for structural modules. Instead
;;of an output packet, the object on which this function operates
i;(its third argument and its value) is an output "bundle”, which
;iconsists of a packet corresponding to each behavioral component.

;;First, we extract from a wave bundle the packet correspondlng
;;to a module’s output signals:

(defn select-wave (key signals packets)
(it (listp packets)
(iz (member key (car signals))
(lookup key (car signals) (car packets))
(select-wave key (cdr signals) (cdr packets)))
1))

(defn select-packet (keys signals packets)
(it (listp keys)
(cons (select-wave (car keys) signals packets)
(select-packet (cdr keys) signals packets))
O»n

(defn output-packet$ (flag bundle mod)
(if (equal flag ’list)
(it (listp mod)
(cons (output-packet$ t (car bundle) (car mod))
(output-packet$ flag (cdr bundle) (cdr mod)))
M
(it (structuralp mod)
(selesct-packet
(outputs mod)
(suboutputs mod)

52

(output-packet$ ’list bundle (submodules mod)))
bundle)))

(defn output-packet (bundle module)
(output-packet$ t bundle module))

;;Bext, we extract, from an input packet and a bundle, a list of
; ;the input packeta to a module’s submodules:

(defn input-packet (ins inpacket bundle mod)
(select-packet
ins
(cons (inputs mod) (suboutputs mod))
(cons inpacket (output-packet$ ’'list bundle (submodules mod)))))

(defn input-packets (ins inpacket bundle mod)
(it (listp ims)
(cons (input-packet (car ins) inpacket bundle mod)
(input-packets (cdr ins) inpacket bundle mod))
0N

(defn subinput-packets (inpacket bundle mod)
(input-packets (subinputs mod) inpacket bundle mod))

(defn step$ (flag mod inpacket bundle time)
(iz (equal flag ’list)
(if (listp mod)
(cons (step$ t (car mod) (car inpacket) (car bundle) time)
(step$ ’list (cdr mod) (cdr inpacket) (cdr bundle) time))
)
(it (structuralp mod)
(step$ ’list o
(submodules mod)
(subinput-packets inpacket bundle mod)
bundle
time)
(it (some-new-value-p inpacket time)
(behavioral-step mod inpacket bundle time)
bundle))))

(defn step (mod inpacket bundle time)
(step$ t mod inpacket bundle time))

M ;.‘.t*‘*t#‘*#**t#t#‘t#*t*tt##!ll##*t#tt##*#*#*#**t##t‘t##t#ttt#i‘#ttt‘t*‘#

53

HH SIMULATION : oo
RS LE LI L T L L L Y P e P T P T

;A simulation of a module is the computation of an output packet

; sproduced in response to a given input packet. We would like to allow
i ;both packets to be infinite. Note that even when the input packet is
;ifinite, the output (of a structural module) may never stabilize.
;;Since our implementation does not allow the explicit representatiom of
;iinfinite waveforms, our simulator takes a time argument (in addition

i to a module and input packet). The value returmed is a wave packet
;iTepresenting the output produced up to that time.

;;The simulator is defined recursively in terms of STEP. In order to
; ;guarantee termination of the recursion, all events are assumed to be
;ischeduled at times whose 2nd (delta) components are uniformly bounded

; ;by some number D, which is passed to the simulator as a 4th argument.

i ;The valid time that immediately follows a given time is computed as
;ifollows:

(defn tinc (time d)
(it (lessp (cdr time) d)
(cons (car time) (addi (cdr time)))
(cons (addl (car time)) 0)))

;:We define a function that steps recursively:

(defn walk (mod inpacket bundle start stop d)
(it (tlessp start stop)
(walk mod
inpacket
(step mod inpacket bundle (tinc start d))
(tinc start d)
stop
d)
bundle)
((ord-leasp {cons (addl (difference (addl (car stop)) (car start)))
(difference d (cdr start))))))

; ;We make no assumptions about the waveforms initially associated with any
;;0f the signals produced by MOD. Thus, we take each of these to be the

; ;vaveform whose value is everywhere unknown:

(defn null-bundle$ (flag mod)

54

(iz (equal flag ’list)
(if (listp med)
(cons (null-bundle$ t (car mod))
(null-bundle$ *'list (cdr mod)))
M)
(it (structuralp mod)
(null-bundle$ ’list (submodules mod))
(ncopies (number-of-outputs mod) (list (cons ’'x (zero-time)))))))

(defn initialize (mod inp)
(step mod inp (null-bundle$ t mod) (zero-time)))

(defn sim (mod inp t1 d)
(packet-history
(output-packet
(walk mod inp (initialize mod inp) (zero-time) ti d) mod)

t1))

o 3 A ool ol o ok oo o ok ol o o o o ko o o o o o e ko ok o ook ok ko ok ok o Ok ok ok Rk Rk kR

HH DELTA CONSTRAINTS
b Aok ok kKR kR R KRR OR Ok Rk kR ok ko R kR R

;:We require that no event is ever scheduled for a time with delta

: ;component exceeding the D argument of WALK. This imposes a lower
;ibound on D, namely, the maximum of the dlevels of the signals of MQOD
;;and its submodules:

(defn dmin$ (flag mod env)
(it (equal flag ’list)
(it (listp mod)
(max (dmin$ t (car mod) (car env))
(dmin$ ’list (cdr mod) (cdr env)))
0)
(it (structuralp mod)
(max (fmaxll (dlevel$ 2
(cons (inputs mod) (suboutputs mod))
mod env ()))
(dmin$ ’list
(submodules mod)
(dlevel$ 2 (suboutputs mod) mod env ())))
(max (fmaxl env)
(fmaxl (faddil (select-deltas (delays mod) env)))))))

35

(defn dmin (mod env)
(dmin$ t mod env))

::Restrictions are similarly imposed on the 2nd and 3rd arguments of
; s WALK:

(defn bounded-delta-p (x d)
(leq (cdr x) d))

(defn bounded-waveform-p (w d)
(it (listp w)
(it (listp (cdr w))
(and (bounded-waveform-p (cdr w) d)
(timep (cdar w))
(bounded-delta-p (cdar w) d)
(tlessp (cdadr w) (cdar w))
(not (equal (caadr w) (caar #))))
(equal (cdar w) (zero-time)))
1))

(defn bounded-packet-p (p dlist)
(it (listp dlist)
(and (1listp p)
(bounded-waveform-p (car p) (car dlist))
(bounded-packet-p (cdr p) (cdr dlist)))
(nlistp p)))

(defn differences (d 1)
(it (listp 1)
(cons (difference d (car 1))
(differences d (cdr 1)))
0N

(defn inpacketp (p mod env d)
(and (leq (dmin mod env) d)
(bounded-packet-p
p (ditferences d (dlevel$ 1 (inputs mod) mod env ())))))

(defn bundlep$ (flag bun mod env d)
(it (equal flag ’list)
(if (liatp mod) -
(and (bundlep$ t (car bun) (car mod) (car env) d)
(bundlep$ ’list (cdr bun) (cdr mod) (cdr env) d))

{nlistp bun))

56

(it (structuralp mod)
(bundlep$ ‘list
bun
(submodules mod)
(dlevel$ 2 (suboutputs mod) mod env ())
d)
(bounded-packset-p bun (differences d env)))))

(defn bundlep (bun mod env d)
(bundlep$ t bun mod env d))

Rk ok ook kb k ok ok k ko koo kok ko k kR kk ok kR kR Rk ek

A FAST SIMULATOR
R e T LTI

(defn update-state (mod inp state time trigger)
(it (equal time (zero-time))
(kill-state mod)
(it (new-value-p (car inp) time)
(it (equal (caar (car inp)) trigger)
(it (and (check-clock-setup-or-hold
(car inp) (car (setups mod)))
(check-data-setups
(cdr inp) time (cdr (setups mod)))
(check-period (car inp) (period mod)))
(next-state state (last-values (cdr inp)) mod)
(kill-state mod))
(if (and (equal (caar (car inp)) (m-not trigger))
(check-clock-setup-or-hold
(car inp) (car (holds mod))))
state
(kill-state mod)))
(it (and (equal (cdar (car inp)) trigger)
(not (check-data-holds
(cdr inp) (cdar (car imp))
time (cdr (holds mod)))))
(kill-state mod)
state)))
((lessp (count inp))))

(defn fast-sequential-step (mod inp bundle time)

(let ((state (update-state
mod

57

(packet-history inp time)
(cdr bundle)
time
(if (equal (trigger mod) ’negative-edge) 'f ’t))))
{cous (post-events
(car bundle)
(eval$ ’list (outputs mod) (pairlist (locals mod) state))
time
(modes mod)
(delays mod))
state)))

(defn fast-behavioral-step (mod inp bundle time)
(case (type mod)
(combinational (combinational-step mod inp bundle time))
(sequential (fast-sequential-step mod inp bundle time))
(otherwise 1)))

(defn fast-output-packet$ (flag bundle mod)
(if (equal flag ’list) 7
(if (listp mod) S
(cons (fast-output-packet$ t (car bundle) (car mod))
(tast-output-packet$ flag (cdr bundle) (cdr mod)))
M
(if (structuralp mod)
(select-packet
(outputs mod)
(suboutputs mod)
(fast-output-packet$ 'list bundle (submodules mod)))
(if (sequentialp mod)
(car bundle)
bundle))))

(defn fast-output-packet (bundle module)
(fast-output-packet$ t bundle module))

;;Hext, we extract, from an input packet and a bundle, a list of
; ;the input packets to a module’s submodules:

(defn fast-input-packet (ins inpacket bundle mod)
(select-packet
ins
(cons (inputs mod) (suboutputs mod))
(cons inpacket (fast-output-packet$ ’list bundle (submodules mod)))))

58

——

(defn fast-input-packets (ins inpacket bundle mod)
(it (listp ins)
(cons (fast-input-packst (car ins) inpacket bundle mod)
(fast-input-packets (cdr ins) inpacket bundle mod))

0N

(defn fast-subinput-packets (inpacket bundle mod)
(fast-input-packets (subinputs mod) inpacket bundle mod))

(defn fast-step$ (flag mod inpacket bundle time)
(i (equal flag 'list)
(iz (listp mod)
(cons (fast-step$ t (car mod) (car inpacket) (car bundle) time)
(tfast-step$
’list (cdr mod) (cdr inpacket) (cdr bundle) time))
O
(it (structuralp mod)
(fast-step$ ’list
(submodules mod)
(fast-subinput-packets inpacket bundle mod)
bundle
time)
(i (some-new-value-p inpacket time)
(fast-behavioral-step mod inpacket bundle time)
bundle))))

(defn fast-step (mod inpacket bundle time)
(fast-step$ t mod inpacket bundle time))

(defn next-wave-event (wave t0)
(it (listp wave)
(it (tlessp t0 (cdar wave))
(it (tlessp t0 (cdadr wave))
(next-wave-event (cdr wave) t0)
(cdar wave))

1)
1))
(defn ftmin (t1 t2)
(if ¢1
(iz (and t2 (tlessp t2 t1)) t2 t1)
t2))

59

(defn next-packet-event (p t0)
(iz (listp p)
(£tmin (next-wave-event (car p) t0)
(next-packet-event (cdr p) t0))
1))

(defn next-bundle-event$ (flag bun mod t0)
(i2 (equal flag ‘list)
(iz (listp mod)
(ftmin (next-bundle-event$ t (car bun) (car mod) t0)
{next-bundle-event$ ’'list (cdr bun) (cdr mod) t0))
1)
(case (type mod)
(structural (next-bundle-event$ ’'list bun (submodules mod) t0))
(combinational (next-packet-event bun t0))
(sequential (next-packet-svent {car bun) t0))
(otherwise 1))))

(defn next-event (inp fbun mod t0)
(ftmin (next-packet-event inp t0)
(next-bundle-event$ t fbun mod t0)))

(prove-lemma tgreaterp-next-wave-event (rewrite)
(implies (next-wave-avent w t0)
(tlessp tO (next-wave-event w t0)}))
((disable tlessp)))

(prove-lemma tgreaterp-next-packet-event (rewrite)
(implies (next-packet-event p t0)
(tlessp t0 (next-packet-event p t0)))
((disable tlessp)))

(prove-lemma tgreaterp-next-bundle-event (rewrite)
(implies (next-bundle-event$ flag bun mod t0)
(tlessp t0 (next-bundle-event$ flag bun mod t0)))
((disable tlessp)))

(prove-lemma tgreaterp-next-event (rewrite)
(implies (next-event inp bun mod t0)
(tlessp tO (next-event inp bun mod t0)))
((disable tlessp)))

(prove-lemma fast-walk-lemma (rewrite)
(implies (and (tlessp t0 tnext)

60

o

—a

(tleq tnext t1)
(bounded-delta-p tnext d))
(lex-lessp (list (difference (addl (car t1)) (car tnext))
(difterence d (cdr tnext)))
(1ist (difference (addl (car t1)) (car t0))
(difference d (cdr t0))))))

(disable tlessp)

(disable next-event)
(disable lax-lessp)
(disable difference)

(defn fast-walk (mod inpacket fbundle start stop d)
(let ((tnext (next-event inpacket fbundle mod start)))
(if tnext
(it (bounded-delta-p tnext d)
(it (tlessp stop tnext)
fbundle
(fast-walk mod
inpacket
(tast-step mod inpacket fbundle tnext)
tnext
stop
d))
1)
fbundle))

((ord-lessp (lex (list (difference (addl (car stop)) (car start))

(difference d (cdr start)))))))

(enable tlessp)

(enable next-event)

(unabl, lex-lessp)

(enable difference)

(defn null-fbundle$ (flag mod)
(it (equal flag ’list)

(if (listp mod)
(cons (null-fbundle$ t (car mod))

61

(null-fbundle$ ’'list (cdr mod)))
M)
(i2 (structuralp mod)
(null-fbundle$ ’list (submodules mod))
(it (combinationalp mod)
(ncopies (number-of-outputs mod) (list (cons ’x (zero-time))))
(cons (ncopies (number-of-outputs mod)
(list (cons ’'x (zero-time))))
(xill-state mod)}))))

(defn fast-initialize (mod inp)
(fast-step mod inp (null-fbundle$ t mod) (zero-time)))

(defn extract-bundle$ (flag fbun mod)
(if (equal flag ’list)
(it (listp mod)
(cons (extract-bundle$ t (car fbun) (car mod))
(extract-bundle$ ’'list {cdr fbun) (cdr mod)))
)
(if (structuralp mod)
(extract-bundle$ ’'list fbun (submodules mod))
(if (combinationalp mod)
fbun
(car fbun)))))

(defn extract-bundle (fbun mod)
(extract-bundle$ t fbun mod))

(defn fast-sim (mod inp ti d)
(packet-history
(output-packet
(extract-bundle
(fast-valk mod inp (fast-initialize mod inp) (zero-time) t1 d)
mod)
med)
t1))

T D e L Ll el bbbt b bt d sttt
FAST-DLEVEL$

; “‘*t**“#“**.‘#"“#*********#*‘#i‘#***#*#*##*****“*###‘***“*##‘t#“
(defn pushl (list stack)
(if (listp list)

62

(cons (cons (car list) stack)
(pushl (cdr list) stack))
0N

(defn good-list (mod bad)
(i (1istp mod)
(cons (differencs (length (signals (car mod))) (length (car bad)))
(good-list (cdr mod) (cdr bad)))
0N

(defn struct-depth$ (flag mod)
(it (equal flag ’'list)
(if (listp mod)
(max (struct-depth$ t (car mod))
(struct-depth$ ’'list (cdr mod)))
1)
(it (structuralp mod)
(add1 (struct-depth$ ’'list (submodules mod)))

1))

(defn struct-depth (mod)
(struct-depth$ t mod))

(defn zero-pad (1 n)
(it (lessp n (length 1))
(zero-pad (cdr 1) n)
(it (lessp (length 1) n)
(cons 0 (zero-pad 1 (subi n)))
1))
((lessp (plus (count 1) n))))

(prove-lemma length-zero-pad (rewrite)
(equal (length (zero-pad 1 n)) (fix n)))

(defn lex-max (x y)
(it (lex-lessp x y) vy x))

(defn reverse (x)
(it (listp x)
(append (reverse (cdr x)) (list (car x)))
0 W

(defn good-measure-1 (in mod bad n)
(reverse (append (list (count in) (count mod))

63

(zero-pad (good-list mod bad) n))))

(defn good-measure-2 (mode in mod bad n)
(it (equal mode 3)
(it (listp mod)
(lex-max (good-measure-1 (car in) (car mod) bad n)
(good-measure-2 3 (cdr in) (cdr mod) bad n))
(ncopies (plus 2 n) 0))
(good-measure-1 in mod bad n)))

(defn good-measure (mode in mod bad n)
(if (equal mode 3)
(lex (append (good-measure-2 mode in mod bad n) (1list (count mod))))
(lex (append (good-measure-2 mode in mod bad n) (list 0)))))

(prove-lemma length-reverse (rewrite)
(equal (length (reverse 1)) (length 1)))

(detn tailp (s 1 k)
(it (zerop k)
(equal s 1)
(tailp s (cdr 1) (subl k))))

(prove-lemma lex-lessp-raverse ()
(implies (and (lex-lessp (reverse gi) (reverse g2))
(tailp gt 11 k)
(tailp g2 12 k))
(lex-lessp (reverse 11) (reverse 12))))

(prove-lemma lex-lessp-append (rewrite)
(implies (lessp a b)
(lex-lessp (append 1 (cons a ())) . . ceee
(append 1 (cons b ())))) ’
({induct (length 1))))

(prove-lemma lex-lessp-reverse-good-list (rewrite)
(implies {(and (listp mod)

(equal (type (car mod)) ’structural)
{not (member in (car bad)))
(member in (signals (car mod)))
(distinct-symbols (car bad))
(subsetp (car bad) (signals (car mod))))

(lex-lessp

(reverse

64

(good-list
mod (cons (cons in (car bad)) (cdr bad))))
(reverse (good-list mod bad)))))

(prove-lemma tailp-zero-pad ()
(implies (leq (length g) n)
(tailp g (zero-pad g n) (difference n (length g)))))

(prove-lemma tailp-cdr ()
(implies (and (tailp g 1 k) (listp g))
(tailp (cdr g) 1 (addl k))))

(prove-lemma length-good-list (rewrite)
(equal (length (good-list mod bad)) (length mod)))

(prove-lemma difference-subi (rewrite)
(equal (difference (subl x) y)
(subi (difference x y))))

(prove-lemma lex-lessp-reverse-zero-pad (rewrite)
(implies (and (listp mod)
(lessp (length mod) n)
(equal (type (car mod)) ’structural)
(not (member in (car bad)))
(member in (signals (car mod)))
(distinct-symbols (car bad))
(subsetp (car bad) (signals (car mod))))
(lex-lessp
(reverse
(zero-pad (good-list (cons sub mod)
(cons ()
(cons (coms in (car bad))
. (cdr bad))))
n))
(reverse (zero-pad (good-list mod bad) n))))
((use (tailp-zero-pad
(g (good-list (cons sub mod)
(cons () (cons (cons in (car bad))
(cdr bad))))))
{tailp-cdr
(g (good-list
(cons sub mod)
(cons () (cons (cons in (car bad)) (cdr bad)))))
(1 (zero-pad

65

(good-list
(cons sub mod) —
(cons () (cons (comns in (car bad)) (cdr bad))))
n))
(k (subt (difference n (length mod))))})
(lex-lessp-reverse
(g1 (good-list mod (cons (coms in (car bad)) (cdr bad))))
(11 (zero-pad
(good-list
(cons sub mod)
(cons () (coms (coms in (car bad)) (cdr bad))))
n)) -
(x (difference n (length mod))) '
(g2 (good-list mod bad))
(12 (zero-pad (good-list mod bad) n)))
(tailp-zero-pad (g (good-list mod bad))))
(disable zero-pad signals tailp)))

(prove-lemma ord-lessp-good-measure-0 (rewrite)
(implies (and (listp mod)
(lessp (length mod) n) -
(equal (type (car mod)) 'structural)
(not (member in (car bad)))
(member in (signals (car mod)))
(distinct-symbols (car bad))
(subsetp (car bad) (signals (car mod))))
(lex-lessp
(good-measure-1
ins _
(cons sub mod)
(cons () (coms (coms in (car bad)) (cdr bad))) n)
(good-measure-2 0 in mod bad n)))
((use (lex-lessp-reverse
(g1 (zero-pad
(good-list
(cons sub mod)
(cons () (cons (cons in (car bad)) (cdr bad))))

n))
(11 (append (list (count ins) (count (coms sub mod))) _
(zero-pad
(good-list

(cons sub mod)
(cons () (cons (coms in (car bad))
(cdr bad))))

66

n)))
(g2 (zero-pad (good-list mod bad) n))
(12 (append (list (count in) (count mod))
(zaro-pad (good-list mod bad) n)))
(x 2)))

(disable zero-pad signals good-list reverse)))

(prove-lemma good-measure-2-open-1 (rewrite)
(implies (listp mod)
(equal (good-measure-2 3 in mod bad n)
(lex-max
(good-measure-1 (car in) (car mod) bad n)
(good-measure-2 3 (cdr in) (cdr mod) bad n)))))

(disable good-measure-2-open-1)

(prove-lemma good-measure-2-open-2 (rewrite)
(implies (nlistp mod)
(equal (good-measure-2 3 in mod bad n)
(ncopias (plus 2 n) 0))))

(disable good-measure-2-open-2)

(prove-lemma not-ord-lessp-0 (rewrite)
(implies (equal (length x) (fix k))
(not (lex-lessp x (ncopies k 0)))))

(prove-lemma lex-lessp-append-ai-a2 ()
(implies (and (not (lex-lessp al a2))
(lex-lessp b2 bl)
(equal (length al) (length a2)))
(lex-lessp (append a2 b2) (append al b1))))

(prove-lemma length-ncopies (rewrite)
(equal (length (ncopies n x)) (fix n)))

(prove-lemma not-zerop-count-cons ()
(not (zerop (count (cons (car mod) (cdr mod))))))

(prove-lemma count-listp ()
(implies (listp mod) (not (zerop (count mod))))
((use (not-zerop-count-cons))
(disable count-cons)}))

67

(prove-lemma ncopies-plus-n-2 ()
(equal (append (ncopies n 0) ’(0 0))
(ncopies (plus n 2) 0)))

(prove-lemma assoc-plus () -
(equal (plus x y) (plus y x)))

(prove-lemma ncopies-plus-2-n ()
(equal (append (ncopies n 0) ’(0 0))
(ncopies (plus 2 n) 0))
((use (ncopies-plus-n-2)
(assoc-plus (x 2) (y n)))))

(prove-lemma append-append (rewrita)
(equal (append (append a b) c)
(append a (append b c))))

(disable append-append)

(prove-lemma lex-leq-0 (rewrite)
(implies (listp mod)
(lex-lessp (ncopies (plus 2 n) 0)
(good-measure-2 0 in mod bad n)))
((use (lex-lessp-append-ai-a2 ‘
(a1 (reverse (zero-pad (good-list mod bad) n)))
(a2 (ncopiea n 0))
(bt (list (count mod) (count in)))
(b2 (1ist 0 0)))
(ncopies-plus-2-n)
(count-listp))
(enable append-append)))

(prove-lemma lex-lessp-good-measure-3 (rewrite)
(implies (and (1listp mod)
(lessp (length mod) n)
(equal (type (car mod)) ’structural)
(not (member in (car bad)))
(member in (signals (car mod)))
(distinct-symbols (car bad))
(subsetp (car bad) (signals (car mod))))
(lex-lessp
(good-measure-~2
3
ins

68

(pushl subs mod)
(cons () (cons (cons in (car bad)) (cdr bad)))
n)
(good-measure-2 0 in mod bad n)))
((disable good-measure-2 good-measure-1 signals ord-lessp count-cons)
{enable good-measure-2-open-1 good-measure-2-open-2)
(induct (good-list subs ins))))

(prove-lemma lex-lessp-append-2 ()
(implies (lex-lessp al a2)
(lex-lessp (append al bil) (append a2 b2))))

(prove-lemma length-append (rewrite)
(equal (length (append a b))
(plus (length a) (length b))))

(prove-lemma length-good-measure-2 (rewrite)
(equal (length (good-measure-2 mode in mod bad n))
(plus n 2)))

(prove-lemma ord-lessp-good-measure-3 (rewrite)
(implies (and (1listp mod)
(lessp (length mod) n)
(equal (type (car mod)) ’structural)
(not (member in (car bad)))
(member in (signals (car mod)))
(distinct~symbols (car bad))
(subsetp (car bad) (signals (car mod))))
(ord-lessp
(good-measure
3
ins
(pushl subs mod))
(cons () (cons (cons in (car bad)) (cdr bad)))
n) ' ' .
(good-measure O in mod bad n)))
((disable good-measure-2)
(use (lex-lessp-append-2
(a1 (good-measure-2
3
ins
(pushl subs mod)
(cons () (cons (coms in (car bad)) (cdr bad))) n))
(a2 (good-measure-2 0 in mod bad n))

69

(b1 (list (count (pushl subs mod))))
(b2 (list 0))))))

(prove-lemma not-lex-lessp-append (rewrite)
(implies (and (not (lex-lessp al a2))
(not (lex-lessp bi b2))
(equal (length al) (length a2)))
(not (lex-lessp (append al bi) (append a2 b2)))))

(prove-lemma zero-pad-cons-0 ()
(implies (lessp (length g) n)
(equal (zero-pad g n)

(zero-pad (cons 0 g) n))))

(prove-lemma lex-lessp-lex-lessp-append (rewrite)
(implies (and (lex-lessp a b)
(equal (length c) (length d)))
(lex-lessp (append a c) (append b d)}))

(prove-lemma not-lex-lessp-reverse-zero-pad ()
(implies (and (not (lex-lessp (reverse gi) (reverse g2)))
(equal (length gi) (length g2)))
(not (lex-lessp (reverse (zero-pad gl n))
(reverse (zero-pad g2 n))))))

(prove-lemma zero-pad-cdr (rewritse)
(implies (and (listp g)
(lessp n (length g)))
(equal (zero-pad (cdr g) n)
(zero-pad g n))))

(prove-lemma lex-leq-zero-pad-cdr ()
(implies (listp g)
(not (lex-lessp (reverse (zero-pad g n)) _.
(reverse (zero-pad (cdr g) n)))))
((use (not-lex-lessp-reverse-zero-pad
(g1 g) (g2 (comns 0 (cdr g))))
(zero-pad-cons-0 (g (cdr g))))))

(prove-lemma append-append-append (rewrite)
(equal (append (append (append a b) c) d)
(append a (append b (append c¢ d)))))

(disable append-;ppcnd-append)

70

—

(prove-lemma ord-lessp-good-measure-1 (rewrite)
(implies (listp mod)
(ord-lessp (good-measure i ins (cdr mod) (cdr bad) n)
(good-measure 0 in mod bad n)))
((use (lex-leq-zero-pad-cdr (g (good-list mod bad)))
(lex-lessp-append-ai-a2
(a1 (reverse (zero-pad (good-list mod bad) n)))
(a2 (reverse (zero-pad (cdr (good-list mod bad)) n)))
(b1 (1ist (count mod) (count in) 0))
(b2 (1ist (count (cdr mod)) (count ins) 0))))
(enable append-append-append) ’
(disable zero-pad signals)))

(prove-lemma ord-lessp-good-measure-i (rewrite)
(implies (and (listp in)
(not (equal i 3))
(not (equal j 3)))
(ord-lessp (good-measure i (cdr in) mod bad n)
(good-measure j in mod bad n)))
((use (lex-lessp-append-ai-a2
(a1 (reverse (cons (count mod)
(zero-pad (good-list mod bad) n))))
(a2 (reverse (cons (count mod)
(zero-pad (good-list mod bad) n))))
(b1 (Qist (count in) 0))
(b2 (list (count (cdr in)) 0))))
(enable append-append)
(disable good-list)))

(prove-lemma ord-lessp-good-measure-i-car (rewrite)
(implies (and (listp in)
(not (equal i 3))
(not (equal j 3)))
(ord-lessp (good-measure i (car in) mod bad n)
(good-measure j in mod bad n)))
((use (lex-lessp-append-ai-a2
(a1 (reverse (cons (count mod)
(zero-pad (good-list mod bad) n))))
(a2 (reverse (cons (count mod)
(zero-pad (good-list mod bad) n))))
(b1 (list (count in) 0))
(b2 (1ist (count (car in)) 0))))
(enable append-append)

71

(disable good-list)))

(prove-lemma ord-lessp-trans-1 (rewrite)
(implies (and (ord-lessp b c) (ord-lessp a b))
(ord-lessp a c)))

(prove-lemma length-append-good-measure-2 ()
(equal (length (append (reverse (zero-pad (good-list x bad) n))
{cons (count x) (coms (count (car in)) '(0)))))
(length (append (good-measure-2 3 (cdr in) z bad n)
(list (addi (plus (count x) (count z))))))))

(prove-lemma lex-lessp-antisymmetry ()
(not (and (lex-lessp x y) (lex-lessp y x))))

(prove-lemma not-lex-lessp-good-measure-2-3 ()
(implies (1listp mod)
(not (lex-lessp (good-measure-2 3 in mod bad n)
(good-measure-2 1 (car in) (car mod) bad n))))
((use (lex-lessp-antisymmetry
(x (good-measure-2 3 {(cdr in) (cdr mod) bad n))
(y (good-measure-2 1 (car in) (car mod) bad n))))))

(prove-lemma length-append-good-measure-1 (rewrits)
(equal (length (append (good-measure-1 (car in) (car mod) bad n)
'(0)))
(langth (append (good-measure-2 3 in mod bad n)
(list (count mod)))}))

(prove-lemma ord-lessp-good-measure-1-3 (rewrite)
(implies (1listp mod)
(ord-lessp (good-measure 1 {car in) (car mod) bad n)
(good-measure 3 in mod bad n)))
{(use (lex-lessp-append-ai-a2
(a1 (good-measure-2 3 in mod bad n)) .
(a2 (good-measure-2 1 (car in) (car mod) bad n))
(b1 (list (count mod)))
(»2 *(0)))
(not-lex-lessp-good-measure-2-3))
(disable good-measure-1)))
(prove-lemma length-good-measure-1 (rewrite)
(equal (length (good-measure-1 in mod bad n))
(plus n 2)))

72

(prove-lemma ord-lessp-good-measure-3-3 (rewrite)

(implies (1listp mod)

(ord-lessp (good-measure 3 (cdr in) (cdr mod) bad n)

(good-measure 3 in mod bad n)))

((enable good-measure-2-open-1)

(use (lex-lessp-append-al-a2
(a2 (GOOD-MEASURE-2 3 (CDR IN) (CDR MCOD) BAD X))
(a1 (good-measure-1 (car in) (car mod) bad n))
(b2 (list (count (cdr mod))))
(b1 (list (count mod)))))

(disable good-measure-2 good-measure-1)))

(prove-lemma ordp-good-measure (rewrite)
(ordinalp (good-measure mode in mod bad n)))

(disable good-measure)

(defn fast-dlevel$ (mode in mod env bad n)

(case mode

(0 (it (listp mod)

(it (and (structuralp (car mod))

(it

(lessp (length mod) n))
(and (not (member in (car bad)))

(equal (length (suboutputs (car mod)))
(length (submodules (car mod))))

(member in (signals (car mod)))

(distinct-symbols (car bad))

(subsetp (car bad) (signals (car mod))))

(fmaxll
{cons (if (listp (cdr mod)})

(fast-dlevel}
i
(lookup-all
in (outputs (car mod)) (car emnv))
(cdr mod) '
(cdr env)
(cdr bad)
n)
(lookup-all
in (outputs (car mod)) (car emnv)))
(fast-dlevel$
3
(lookup-inputs

73

in
(subinputs (car mod))
(submodules (car mod)))
(pushl (submodules (car mod)) mod)
. (pushl (suboutputs (car mod)) anv)
(cons ()
(cons (coms in (car bad)) (cdr bad)))
n)))
1)
(it (listp (cdr mod))
(tmaxl (faddil (fast-dlevel$ 1
(select-deltas
(delays (car mod)) (car emv))
(cdr mod)
(cdr env)
(cdr bad)
n)))
(fmaxl (faddil (select-deltas
(delays (car mod)) (car emv))))))
1))
(1 (it (listp in)
(cons (fast-dlevel$ O (car in) mod env bad n)
(fast-dlevel$ 1 (cdr in) mod env bad n))
0N
(2 (if (listp in)
(cons (fast-dlevel$ 1 (car in) mod env bad n)
(fast-dlevel$ 2 (cdr in) mod env bad n))
0N
(3 (it (listp mod)) N
(cons (fast-dlevel$ 1 (car in) (car mod) (car env) bad n)
(fast-dlevel$ 3 (cdr in) (cdr mod) (cdr env) bad n))
0N
(otherwise 1))
((ord-lessp (good-measure mode in mod bad n))))

(defn fast-delta-acyclic (mod)
idetermines whether there is any cyclic O-delay path within MOD
(fmaxll (fast-dlevel$ 2
(suboutputs mod)
(1ist mod)
(1ist (ncopies (number-of-outputs mod) 0))
(1ist ())
(struct-depth mod))))

74

S

ML LI AL LER S R A2 22 R RIS R TR 2R R RS2 E2 SRS R0 22222222 R 2 22 2t 7

HH MODULE REDUCTICN
AL LI IR L 2 e T T L P e T E PPy

; ;Functions that traverse structural modules will have an argument that
;;Tepresents a bound on the length of the path to be traversed, in order
;ito establish termination. For this purpose, we define a function that
; icomputes the length of the longest path through combinational

; scomponents of a structure:

(defn slevel$ (flag out mod bad)
; (SLEVELS T OUT MOD ()) is the length of the longest path through
;combinational components to OUT. MOD is assumed to be a flat
;atructure.
(iz (equal flag °’list)
(it (listp out)
(fmax (slevel$ t (car out) mod bad)
(slevel$ ’'list (cdr out) mod bad))
0)
(it (or (member out (inputs mod))
(sequentialp (find-submodule out mod)))
0
(it (and (not (member out bad))
(distinct-symbols bad)
(member out (signals mod))
(subsetp bad (signals mod)))
(fadd1 (slevel$ 'list (find-inputs out mod) mod (cons out bad)))
1)))
((ord-lessp (lex (list (difference (length (signals mod)) (length bad))
(count out))))))

(defn sdepth (mod)
;the maximum length of all paths through combinational components
(slevel$ ’list (signals mod) mod ()))

; ;0utput delays are computed by tracing backwards to sequential
;;outputs and global inputs:

(defn max-delay-to-signal$ (flag out mod d)
(iz (equal flag ’list)
(if (listp out)
(cons (max-delay-to-signal$ t (car out) mod d)
(max-deslay-to-signal$ ‘list (cdr out) med d))

75

19))
(i? (member out (inputs mod))
0
(it (sequentialp (find-submodule out mod))
(max-delay (find-delay out mod))
(it (zerop d)
z
(plus (fmaxl (max-delay-to-signal$
'1ist (find-inputs out mod) mod (subt d)))
(max-delay (find-delay out mod))))))) -
((ord-lessp (lex (list d (count out))))))

(defn tmin (x y)

(it x
(it y
(iz (lessp x y)
x
y)
x)

y))

(defn fminl (1)
(it (1istp 1)
(fmin (car 1) (fminl (cdr 1)))
1))

(defn min-delay-to-signal$ (flag out mod d)
(it (equal flag ’'list)
(iz (listp out)
(cons (min-delay-to-signal$ t (car out) mod d)
(min-delay-to-signal$ *list (cdr out) mod d))
0))
(if (member out (inputs mod))
0
(it (sequentialp (find-submodule out mod))
(min-delay (find-delay out mod))
(it (zerop d)
1
(plus (fminl (min-delay-to-signal$
'1ist (find-inputs out mod) mod (subl d)))
(min-delay (find-delay out mod)))))))
((ord-lessp (lex (list d (count out))))))

(defn collect-delays (mod d)

76

(pairlist (min-delay-to-signal$ ’list (outputs mod) mod d)
(max-delay-to-signal$ 'list (outputs mod) mod d)))

; ;The delay mode of an output is nondeterministic unless it is
;;generated directly by a sequential component, in which case it
;;inherits its mode from that component:

(defn collect-all-modes (outs mod)
(if (1listp outs)
(cons (if (sequentialp (find-submodule (car outs) mod))
(zind-mode (car outs) mod)
'nondeterministic)
(collect-all-modes (cdr outs) mod))
0N

(defn collect-modes (mod)
(collect-all-modes (outputs mod) mod))

i ;Output forms are constructed by tracing back to locals and global
;inputs;

(detn subst$ (flag vals vars form)
(it (equal flag ’list)
(i2 (listp form)
(cons (subst$ t vals vars (car form))
(subst$ ‘'list vals vars (cdr form)))
)
(it (member form vars)
(lookup form vars vals)
(iz (nlistp form)
form
(it (equal (car form) ’quote)
form
(cons (car form) (subst$ ’'list vals vars (cdr form)))))})))

(defn subst (vals vars form)
(subst$ t vals vars form))

(detn signal-form$ (flag out mod d)
;If D is at least the slevel of QUT, then (SIGNAL-FORM$ T OUT MOL D)

;is an expression for the signal OUT in terms of the inputs of MOD and
;the locals of its sequential components

7

(it (equal flag ’list)
(it (listp out)
(cons (signal-tform$ t (car out) mod d)
(signal-form$ ’‘list (cdr out) mod d))
o))
(12 (member out (inputs mod))
out
(it (sequentialp (find-submodule out mod))
(lookup out
(find-outputs out mod)
(outputs (find-submodule out mod)))
(it (zerop 4)
b
(subst (signal-form$ ’list (find-inputs out mod) mod (subi d))
(inputs (find-submodule out mod))
(lookup out
' (find-outputs out mod)
(outputs (find-submodule out mod))))))))
((ord-lessp (lex (list d (count out))))))

(defn signal-forms (out mod d)
(signal-form$ ’list out mod d))

(defn collect-outputs (mod d)
(signal-forms (outputs mod) mod d))

;;1f a structure is acyclic and has only combinational components,
;;then it reduces to a combinational module:

(defn comb-reduce (mod)
(let ((d (sdepth mod)))
(it d
(list ’combinational
(inputs mod)
(collect-outputs mod d)
(collect-modes mod)
{(collect-delays mod d))
1))

; ;The reduction of a sequential structure requires renaming of signals
::;and locals in order to enmsure that the locals and inputs of the
; ;resulting module are distinct:

78

(prove-lemma lessp-quotient (rewrite)
(implies (leq 10 n)
(lessp (quotient n 10) n)))

(prove-lemma lessp-remainder (rewrite)
(implies (leq 10 n)
(lessp (remainder n 10) n)))

(defn number-codes (n)
(if (lessp n 10)
(cons (plus n 48) 0)
(append (number-codes (quotient n 10))
(number-codes (remainder n 10)))))

(defn append-number (a n)
(pack (append (unpack a) (cons 45 (number-codes n)))))

(defn append-number-in-list (1 n)
(it (Qistp L)
(cons (append-number (car 1) n)
(append-number-in-list (cdr 1) n))

0

(defn append-number-in-lists (1 n)
(iz (listp 1) , L
(cons (append-number-in-list (car 1) n)
(append-number-in-lists (cdr 1) n))
0O»

(defn append-number-in-term$ (flag term vars n)
(i2 (equal flag ’'list)
(if (listp term)
(cons (append-number-in-term$ t (car term) vars n)
(append-number-in-term$ ’'list (cdr term) vars n))
0))
(if (listp term) o
(it (equal (car term) 'quote)
term
(cons (car term))
(append-number-in-term$ ’list (cdr term) vars n)))
(it (member term vars)
(append-number term n)
term))))

79

(defn append-numbers-in-module (mod n)
(case (type mod)
(sequential
(1ist ’sequential
(append-number-in-list (inputs mod) n)
(append-number-in-term$ ’'list (outputs mod) (locals mod) n)
(modes mod)
(delays mod)
(trigger mod)
(append-number-in-list (locals mod) n)
(append-number-in-term$
"1ist (state mod) (append (inputs mod) (locals mod)) mn)
(period mod)
(setups mod)
(holds mod)})
(combinational
(1ist ’combinational
(append-number-in-list (inputs mod) n)
(append-number-in-term$ ’list (outputs mod) (imputs mod) n)
(modes mod)
(delays mod)))
(othervise 1)))

(defn append-numbers-in-submodules (mods n)
(i (listp mods)
(cons (append-numbers-in-module (car mods) n)
(append-numbers-in-submodules (cdr mods) (addi n)))
00D

(defn rename-structure (mod)
(1ist ’structural
(append-numbar-in-list (inputs mod) (length (submodules mod)))
(append-number-in-list (outputs mod) (length (submodules mod)))
(append-numbers-in-submodules (submodules mod) 0)
(append-number-in-lists (subinputs mod) (length (submodules mod)))
(append-number-in-lists
(suboutputs mod) (length (submodules mod)))))

;;Setup and hold times of sequential submodules impose comstraints on
;;the stability of the structure’'s signals:

(defn add-max~delays (delays 1)
(if (listp 1)

80

(cons (plus (max-delay (car delays)) (car 1))
(add-max-delays (cdr delays) (cdr 1)))
0)

(defn compute-setup$ (flag in submods subins subouts mod d)
iThe period for which IN must remain stable prior to a triggering edge
iin order not to vioclats the setup time of any input to a sequential
;submodule is given by
; (COMPUTE-SETUP$
i T IN (SUBMODULES MOD) (SUBINPUTS MOD) (SUBOUTPUTS MOD) MOD D))
(if (equal flag ’list)
(if (listp in)
(cons (compute-setup$
t (car in) submods subins subouts mod d)
{compute-setup$
*list (cdr in) submods subins subouts mod d))
)
(it (listp submods)
(it (sequentialp (car submods))
(fmax (fmaxl (lookup-all in (car subins)
(setups (car submods))))
(compute-setup$
t in (cdr submods) (cdr subins) (cdr subouts) mod d))
(iz (member in (car subins)) '
(it (zerop 4d)
1
(fmax (fmaxl (add-max-delays
(delays (car submods))
(compute~-setup$ ’list
(car subouts)
(submodules mod)
(subinputs mod)
(suboutputs mod)
mod
(subl 4))))
(compute-setup$ t in (cdr submods) (cdr subins)
(cdr subouts) mod d)))
(compute-setup$
t in (cdr submods) (cdr subins) (cdr subouts) mod d)))
0)) .
((ord-lessp (lex (list d (count submods) (count in))))))

(defn compute-setups (ins mod d)
(compute-setup$

81

'1ist ins (submodules mod) (subinputs mod) (suboutputs mod) mod d))

(defn collect-setups (mod d)
(computs-setups (inputs mod) mod d))

(detn snbtract-min-delays (delays 1)
(it (listp 1) -
(cons (difference (car 1) (min-delay (car delays)))
(subtract-min-delays (cdr delays) (cdr 1)))
0N

(defn compute-hold$ (flag in submods subins subouts mod d)
;The period for which IN must remain stable following a triggering
;edge in order not to violate the hold time of any inmput to a sequential
;submodule is given by
; (COMPUTE-HOLD$
; T IN (SUBMODULES MOD) (SUBINPUTS MOD) (SUBOUTPUTS MOD) MOD D))
(it (equal flag ’'list)
(it (listp in)
(cons (compute-hold$
t (car in) submods subins subouts mod d)
(compute-hold$ '
'list (cdr 1n) submods sublns subouts mod d))
M0 SR
(if (listp submods)
(it (sequentialp (car submods))
(fmax (fmaxl (lookup-all in (car subins)
(holds (car submods))))
(compute-hold$
t in (cdr submods) (cdr subins) (cdr subouts) mod d))
(it (member in (car subins))
(it (zerop d)
t ,
(fmax (fmaxl (subtract-min-delays
(delays (car submods))
(compute-hold$ ’list
(car subouts)
(submodules mod)
(subinputs mod)
(suboutputs mod)
mod
(subl d))))
(compute-hold$ t in (cdr submods) (cdr sublns)
(cdr subouts) mod d))) o

82

'l

(compute-hold$
t in (cdr submods) (cdr subins) (cdr subouts) mod d)))
0))
((ord-lessp (lex (list d (count submods) (count in))))))

(defn compute-holds (ins mod d)
(compute-hold$
'1ist ins (submodules mod) (subinputs mod) (suboutputs mod) mod d))

(defn collect-holds (mod d)
(compute-holds (inputs mod) mod d))

; iReduction of a sequential structure requires that (1) the structure is
;iflat, (2) there are no cycles passing only through combinational

; ;components, (3) global outputs are functions of state {and not of

; ;8lobal inputs), (4) all sequential submodules have the same trigger
;;and are connected to the same clock, and (5) the minimum delays of the
; joutputs of the sequential components are long enough to respect the
;;hold times of the sequential inputs that they feed:

(defn check-holds (holds delays)
(it (listp holds)
(and (leq (car holds) (min-delay (car delays)))
(check-holds (cdr holds) (cdr delays)))
t))

(defn check-internal (mod submods subins subouts clk trigger d)
(if (1istp submods)
(and (if (sequentialp (car submods))
(and (equal (trigger (car submods)) trigger)
(equal (caar subins) clk)
(check-holds (compute-holds (car subouts) mod d)
(delays (car submods))))
(combinationalp (car submods)))
(check-internal
mod (cdr submods) (cdr subins) (cdr subouts) clk trigger d))

t))

(defn check-outputs$ (flag out mod d)
;Global outputs are required to be functions of state
(it (equal flag 'list)
(it (listp out)
(and (check-outputs$ t (car out) mod d)
{check-outputs$ ’'list (cdr out) mod d))

83

(iz Eizmbor out (inputs mod))
(i: (sequentialp (find-submodule out mod))
(i; (zerop 4)
(c:ock-outputss 11ist (find-inputs out mod) mod (subi d))))))
(Cord-lessp (lex (list d& (count out))))))

(defn check-saeq-struct (mod trigger d)
(and (check-outputs$ 'list (outputs mod) mod d) -
(check-internal mod

(submodules mod)
(subinputs mod)
(suboutputs mod)
(car (inputs mod))
trigger
d))) —

;sThe minimum clock period is bounded by the maximum of the periods of B
; ;the sequential components. It also must be long enough to allow
;;internal signals to stabilize in order to respect setup times:

(defn minimum-period$ (submods subouts mod d)
(if (1istp submods)
(iz (sequentialp (car submods))
(max (max (period (car submods))
(fmaxl (add-max-delays .

(delays (car submods))
(compute-setups (car subouts) mod d))))

(minimum-period$ (cdr submods) (cdr subouts) mod d))

(minimum-period$ (cdr submods) (cdr subouts) mod d))

on

(defn minimum-period (mod d)
(minimum-period$ (submodules mod) (suboutputs mod) mod d))

; ;State forms are constructed in the same manner as output forms, by
;;tracing back to locals and global inputs:

(defn collect-all-states (subins submods mod d)

84

(if (listp submods)
(i (sequentialp (car submods))
(append (subst$ ’'list
(signal-torms (car subins) mod d)
(inputs (car submods))
(state (car submods)))
(collect-all-states (cdr subins) (cdr submods) mod d))
(collect-all-states (cdr subins) (cdr submods) mod d))

0))

(defn collect-state (mod d)
(collect-all-states (subinputs mod) (submodules mod) mod d))

i :The locals of the reduced modules are just the union of the locals of
;;all sequential components:

(defn collect-all-locals (submods)
(it (1istp submods)
(it (sequentialp (car submods))
(append (locals (car submods)) !
(collect-all-locals (cdr submods)))
(collect-all-locals (cdr submods)))
0)

(defn collect-locals (mod)
(collect-all-locals (submodules mod)))

;:Before a sequential structure is reduced, its locals and signals are
i;renamed and its admissibility is established:

(defn reduce-renamed-struct (mod trigger d)

(1ist ’sequential
(inputs mod)
(collect-outputs mod d)
(collect-modes mod)
(collect-delays mod d)
trigger
(collect-locals mod)
(collect-state mod d)
(minimum-period mod d)
(collect-setups mod d)
(collect-holds mod d)))

85

(defn seq-reduce (mod trigger)
(let ((d (sdepth mod)))
(it (and d (check-seq-struct mod trigger d))
(reduce-renamed-struct (rename-structure mod) trigger d)

1))

;iA structure is reduced after searching for sequential components:

(defn determine-type-of-reduction (mod submods)
(i2 (1istp submods) -
(case (type (car submods))
(combinational (determine-type-of-reduction mod (cdr submods)))
(sequential (seq-reduce mod (trigger (car submods))))
(otherwise t)) R
(comb-reduce mod)))

(defn reduce-structure (mod) —
(determine-type-of-reduction mod (submodules mod)))

(detn reduce-module$ (flag mod)
(it (equal flag ’list)
(it (listp mod)
{cons (reduce-module$ t (car mod))
(reduce-module$ ’'list (cdr mod))) h
0)
(if (structuralp mod)
(reduce-structure (list ’structural !
(inputs mod)
{outputs mod)
(reduce-module$ ’list (submodules mod))
(subinputs mod)
(suboutputs mod)))
mod)))

(defn reduce-module (mod)
(reduce-module$ t mod))

86

&)

Form Approvec

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of infarmation s estimated to dverage 1 hout per response, including the time for reviewing instructions, searching ewsting data sources,
gathering and maintaining the data needed, and compieting and reviewing the coliection of information. Send comments regarding this burden esumate o any ather aspect of this
coliection of information, including suggﬁ!tons 1or reducing this burden, to Washington Headquarters Services. Directorate for information Operauions and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, V 222024302 _and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), washington, DC 20503.

T. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1993 Contr
a. TITLE AND SUBTITLE) 5. FUNDING NUMBERS
A Formal Language for the Specification and Verification NAS1-18878

of Synchronous and Asynchronous Circuits
WU 505-64-10-13

6. AUTHOR(S)
David M. Russinoff

o s et ——
. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Computational Logic, Inc.
1717 W. Sixth St. Suite 290 .
Austin, TX 78703-4776

3. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Langley Research Center NASA CR-191509

Hampton, VA 23681-0001

e T ——
11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Ricky W. Butler
Final Report - Task 4

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Catagory 61

e —
13. ABSTRACT (Maximum 200 words)

We describe a formal hardware description language for the intended application

of verifiable asynchronous communication. The language is developed within the
logical framework of the Nqthm system of Boyer and Moore and is based on the
event-driven behavioral model of VHDL, including the basic VHDL signal propagation
mechanisms, the notion of simulation deltas, and the VHDL simulation cycle.

core subset of the language corresponds closely with a subset of VHDL and is
adequate for the realistic gate-level modeling of both combinational and

sequential circuits. Various extensions to this subset provide means for convenient
expression of behavioral circuit specifications.

T4, SUBJECT TERMS 15. NUMBER OF PAGES

Formal methods, Verification, VHDL, asynchrony 87
16. PRICE CODE

A0S .
20. LIMITATION OF ABSTRACT

w — e ——
17, SECURITY CLASSIFICATION]18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION
%F gEPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500 Prescnbed by ANSH Std 239-18
298-102

