
NASA Technical Memorandum 106336

,"/V - --D._'

Proteus Two-Dimensional Navier-Stokes

Computer Code-Version 2.0

Volume 1-Analysis Description

Charles E. Towne, John R. Schwab, and Trong T./3ui
Lewis Research Center

Cleveland, Ohio

October 1993

(NASA-TM-lO6336-VoI-I) PROTEUS
TWO-01MENSIONAL NAVIER-STOKFS

COM_UTER C_E t VERSION 2.0. VOLUME
I: ANALYSIS DESCRIPTION (NASA)

75 p

G3/34 0190203

N/ A

CONTENTS

PRINCIPAL NOTATION ... 3
SYMBOLS ... 3
SUBSCRIPTS ... 5
SUPERSCRIPTS .. 5

SL.'VIMARY 7

!.0 INTRODUCTION .. 9

2.0 GOVERNING EQUATIONS ... 11
2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES 11
2.2 EQUATION OF STATE _.......................... 12
2.3 GENERALIZED GRID TRANSFORMATION 13

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES 15

3.0 TIME DIFFERENCING .. 17

4.0 LINEARIZATION PROCEDURE 19
4.1 INVISCID TERMS .. 19
4.2 VISCOUS TERMS ... 20

4.2.1 Non-Cross Derivatives .. 21
4.2.2 Cross Derivatives .. 22

4.3 EQUATION OF STATE .. 23
4.4 LINEARIZED GOVERNING EQUATION 24

5.0 SPACE DIFFERENCING ... 25

6.0 BOL:_,'DARY CONDITIONS ... 27

6.1 NO CHANGE FROM INITIAL CONDITIONS, Ag = 0 27
6.2 SPECIFIED FUNCTION, g =f ... 27
6.3 SPECIFIED COORDINATE DIRECTION GRADIENT,ag/O_ = f 28
6.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vg. n = f 28
6.5 LINEAR EXTRAPOLATION .. 30

7.0 SOLLrrION PROCEDURE .. 31
7.1 ADI ALGORITHM .. 31
7.2 MATRIX INVERSION PROCEDURE 33

7.2.1 Non-Periodic Boundary Conditions 33

7.2.2 Spatially Periodic Boundary Conditions 35
7.3 UPDATING BOUNDARY VALUES 38

7.3.1 Non-Periodic Boundary Conditions 38
7.3.2 Spatially Periodic Boundary Conditions 40

8.0 ARTIFICIAL VISCOSITY .. 43
8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY 43
8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY 44

9.0 TURBULENCE MODELS .. 47
9.1 BALDWIN-LOMAX MODEL .. 47

9.1.1 Outer Region ... 47

9.1.2 Inner Region ... 49

Proteus 2-D Analysis Description Contents I

9.2

9.1.3 Averaging Procedures for Multiple Boundaries
9.1.4 Transition Model ..
9.1.5 Turbulent Values of). and k ..
CHIEN k-_ TURBULENCE MODEL
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

k-_ Equations ..
Linearization of the k-e Equations
ADI Algorithm for k-e Equations
Matrix Inversion Procedure for k-_ Equations

Updating Boundary Values for k-_ Equations
Turbulent Values of). and k ..

49
50
51
51
51
54
56
57
58
58

APPENDIX A - EXPANSION OF VISCOUS TERMS 59

APPENDIX B - AXISYMMETRIC ANALYSIS
B.1
B.2

° ° ° ° ° ° ° ° ° • ° ° • ° ° 61

GOVERNING EQUATIONS .. 61
LINEARIZATION .. 64
B.2.1 Inviscid Terms ... 65
B.2.2 Viscous Terms ... 65

B.2.3 Equation Of State ... 70
B.2.4 Linearized Governing Equation 71
SOLUTION PROCEDURE ... 71
CHIEN k-t TURBULENCE MODEL 73

B.3
B.4

REFERENCES ... 75

2 Contents Proteus 2-D Analysis Description

PRINCIPALNOTATION

SYMBOLS

Unless specified otherwise, all variables are nondimensional.

S_..vmbol Definition

a

A,B,C

A', B', C'

cp, c,

E,F

Er

Ev, Fv

^ ^

Ev, Fv

L.f%

F,G

hr

H, Hv

i,j

J

k

k

k_, k,

L,

m.q

Speed of sound.

Coefficient submatrices in block tridiagonal system of equations.

Coefficient submatrices for boundary conditions.

Specific heats at constant pressure and volume.

Inviscid flux vectors in the Cartesian or cylindrical coordinate form of the govern-

ing equations.

Inviscid flux vectors in the computational coordinate form of the governing

equations.

Total energy per unit volume.

Viscous flux vectors in the Cartesian or cylindrical coordinate form of the govern-
ing equations.

Viscous flux vectors in the computational coordinate form of the governing
equations.

Non-cross derivative viscous flux vectors in the computational coordinate form of
the governing equations.

Cross derivative viscous flux vectors in the computational coordinate form of the
governing equations.

Flux vectors in the Cartesian or cylindrical coordinate form of the k-, turbulence
model equations.

Flux vectors in the computational coordinate form of the k-, turbulence model
equations.

Stagnation enthalpy per unit mass.

Non-derivative inviscid and viscous terms in the Cartesian coordinate form of the

governing equations for axisymmetric flow.

Non-derivative inviscid and viscous terms in the computational coordinate form
of the governing equations for axisymmetric flow.

Grid indices in the _ and 37 directions.

Jacobian matrix of the generalized grid transformation.

Effective thermal conductivity coefficient.

Turbulent kinetic energy.

laminar and turbulent thermal conductivity coefficient.

Dimensional reference length.

Number of governing equations being solved.

Proteus 2-D Analysis Description Principal Notation 3

Svmbol

Nl, N2

P

Pr_

Pr_, Pr,

q,, q_

q_, qy

Q

R

Re,

S

S'

S,T

^

S,_

t

T

U, V

W

iv

x, r

x,y

Y

6

A,V

_, _

81

,?_, _4_, etc.

01, 0_, 03

K2, K4

2

Definition

Number of grid points in the _ and _/directions.

Static pressure.

Reference Prandtl number.

Laminar and turbulent Prandtl number.

Heat fluxes in the cylindrical x and r directions.

Heat fluxes in the Cartesian x and y directions.

Vector of dependent variables in the Cartesian or cylindrical coordinate form of the
governing equations.

Vector of dependent variables in the computational coordinate form of the gov-
erning equations.

Gas constant.

Reference Reynolds number.

Source term subvector in block tridiagonal system of equations.

Source term subvector for boundary conditions.

Non-derivative terms in the Cartesian or cylindrical coordinate form of the k-,
turbulence model equations.

Non-derivative terms in the computational coordinate form of the k-r turbulence
model equations.

Physical time.

Static temperature.

Velocities in the Cartesian x and y directions.

Velocities in the cylindrical x, r, and swirl directions.

Vector of dependent variables in the Cartesian or cylindrical coordinate form of the
k-, turbulence model equations.

Vector of dependent variables in the computational coordinate form of the k-,
turbulence model equations.

Cylindrical axial and radial coordinates.

Cartesian coordinates.

Ratio of specific heats, cAc,.

Difference operator.

First-order forward and backward difference operators.

Turbulent dissipation rate.

Second- and fourth-order explicit artificial viscosity coefficients in constant coeffi-
cient model.

Implicit artificial viscosity coefficient.

Second- and fourth-order artificial viscosity coefficients in nonlinear coefficient
model.

Parameters determining type of time differencing used.

Constants in nonlinear coefficient artificial viscosity model.

Effective second coefficient of viscosity.

4 Principal Notation Proteus 2-D Analysis Description

S2'mbol

bt

/it, #,

v

,

P

G

T

Txx, Txy, etc.

¢,

SUBSCRIPTS

Subscript

i,)

F

t

X, F

X, y

,

T

SUPERSCRIPTS

Superscript

n

4,

Definition

Laminar and turbulent second coefficient of viscosity.

Effective viscosity coefficient.

Laminar and turbulent viscosity coefficient.

Laminar kinematic viscosity.

Computational coordinate directions.

Static density.

Pressure gradient scaling parameter in nonlinear coefficient artificial viscosity
model.

Computational time.

Elements of shear stress tensor.

Spectral radius in nonlinear coefficient artificial viscosity model.

Definition

Denotes grid location in _ and ,7 directions.

Denotes dimensional reference condition.

Denotes differentiation with respect to physical time.

Denotes differentiation with respect to cylindrical coordinate directions.

Denotes differentiation with respect to Cartesian coordinate directions.

Denotes differentiation with respect to computational coordinate directions.

Denotes differentiation with respect to computational time.

Definition

Denotes time level.

Denotes solution after first ADI sweep.

Proteus 2-D Analysis Description Principal Notation 5

PROTEUSTWO-DIMENSIONAL
NAVIER-STOKESCOMPUTER CODE - VERSION 2.0

Volume I - Analysis Description

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the two-dimensional planar or
axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

'Fhe governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized fn-st- or second-order time differencing.
The boundary conditions are also treated implicitly,-and may be steady or unsteady. Spatially periodic
boundary conditions are also available. • All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminaled by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geometries
require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User's Guide, and contains information needed to run the program. It describes the program's
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer's Reference, and containg detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989. The current documentation

covers Version 2.0, released in early 1992.

PRECEPt,|3 F_AI._;L I_L_r'_K HE_T FILMED

Proteus 2-D Analysis Description Summary 7

\

• s,,_ _

1.0 [N_FRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-proprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the unded)fng
structure of the program if intending to do anything more than run standard test cases with it. The user's
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus two-dimensional Navier-Stokes computer prbgram is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kemighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, input
variables, output variables, and calling sequence of the subroutine. With lust three clearb;-defmed ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into generalized nonorthogonal body-fitted coordinates. They are solved by naarching in time using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external grid
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume I, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the

time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User's Guide, and contains information needed to run the program. It describes the program's
general features, the input and output, the procedure for setting up initial conditions, the computer resource

Proteus 2-D Analysis DescriptionPg¢_C_!_¢; ,L _ , 1.0 Introduction 9

requirements,thediagnosticmessagesthat maybegenerated,the job controllanguageusedto run the
program,andseveraltestcases.Volume3is theProgrammer'sReference,andcontainsdetailedinforma-
tionusefulwhenmodifyingtheprogram.It describestheprogramstructure,theFortranvariablesstored
in commonblocks,andthedetailsOfeachsubprogram.

Version1.0of thetwo-dimensionalProteus code was released in late 1989 (Towne, Schwab, Benson,

and Suresh, 1990). The current documentation covers Version 2.0, released in early 1992.

The authors would like to acknowledge the significant contributions made by .their co-workers. Tom

Benson provided part of the original impetus for the development of Proteus, and did the original coding
of the block tri-diagonal inversion routines. Simon Chert did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal grid
transformation. Frank Molls has created separate diagonalized and patched-grid versions of the code.

Ambady Suresh did the original coding for the second-order time differencing and for the nonlinear coeffi-
cient artificial viscosity model. These people, along with Dick Cavicchi, Julie CoNey, Jason Solbeck, and
Pat Zeman, have also run many debugging and verification cases.

10 1.0 Introduction Proteus 2-D Analysis Description

2.0 GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The basic governing equations are the two-dimensional compressible Navier-Stokes equations. These
equations may be found in several standard references (e.g., Hughes and Gaylord, 1964; Schlichting, 1968;
White, 1974; Anderson, Tannehill, and Pletcher, 1984). In Cartesian coordinates, the two-dimensional

planar equations 1 can be written in strong conservation law form using vector notation as

0Q dE __ OF aEe aFr (2.1)
o--5- + ax ay - ax +-T}-y

where

Q=[p pu pv ET] T (2.2a)

E_
pZp]

• pUv

(Er + p)u]

(2.2b)

F____
puv

pv 2 +p

(er + p)vJ

(2.2c)

0

"rx.x

Xx-y

1 qx
u'rx.x + _r xy pr r

(2.2d)

0

Xxy

_yy
t

Urxy + vryy pr r qy

(2.2e)

Equation (2.1) thus represents, ifi order, the continuity, x-momentum, y-momentum, and energy equations,

with dependent variables p, pu, pv, and Er.

Proteus can be used for both two-dimensional planar or axisymmetric flow. However, the axisymmetric equations
have some additional terms that complicate the analysis somewhat. For the sake of clarity, the main body of this
report describes the two-dimensional planar analysis, and the axisymmetric analysis is described in Appendix B.

Proteus 2-D Analysis Description 2.0 Governing Equations I I

The shear stresses and heat fluxes are given by

•_x = 2u _ + T;x +

Ov .[Ou Or)
"ryy= 21u-'_-y + z_, -_-x + --_-y

/

• T+-g; (2.3)

k OT
qx=- Ox

In these equations, t represents time; x and y represent the Cartesian coordinate directions; u and v are
the velocities in the x and y directions; p, p, and T are the static density, pressure, and temperature; Er is
the total energy per unit volume; and t_, 2, and k are the coefficient of viscosity, second coefficient of
viscosity, and coefficient of thermal conductivity.

All of the above equations have been nondimensionalized using appropriate normalizing conditions.
Lengths have been nondimensionalized by L, velocities by u_, density by p,, temperature by T,, viscosity
by t_,, thermal conductivity by k,, pressure and total energy by p,u2,, and time by L/u,. The reference
Reynolds and Prandtl numbers are thus defined as Re, = p,u,_/tz, and Pr, = i_,u_/k,T,?

Turbulence is modeled using the Boussinesq approach (Schlichting, 1968). The equationspresented in
this section are thus used for both laminar and turbulent flow. For turbulent flow they represent the

Reynolds time-averaged form of the Navier-Stokes equations, with density fluctuations neglected. They
may also be interpreted as the Favre or mass-weighted time-averaged form of the equations. With Favre
time averaging, however, the velocities and thermal variables represent mass-averaged quantities defined by

= _--fi/_, etc., where the overbar represents a conventional Reynolds time-averaged quantity. Details on
Reynolds and Favre time-averaging procedures may be found in Cebeci and Smith (1974), and in Anderson,
TannehiU, and Pletcher (1984). In either case,/_, 2, and k represent effective coefficients. For example, in

-turbulent flow # = tz_ + t*,, where/_z and/_, are the laminar and turbulent viscosity coefficients, and #, comes
from some appropriate turbulence model. The models currently available in the Proteus code are the al-
gebraic eddy viscosity model of Baldwin and Lomax (1978) and the two-equation model of Chien (1982),
implemented as described in Section 9.0.

2.2 EQUATION OF STATE

In addition to the equations presented above, an equation of state is required to relate pressure to the

dependent variables. Any appropriate equation, or even table, could be used. The equation currently built
into the Proteus code is the equation of state for thermally perfect gases, p = pRT, where R is the gas con-
stant. For calorically perfect gases, this can be rewritten as

(2.4)

where _ is the ratio of specific heats, cp/c,. Here the gas constant and specific heats have been
nondimensionalized by u_/T,.

If the flow is such that we can assume a perfect gas with constant stagnation enthalpy, the energy

equation may be eliminated. This assumption is reasonable, for example, in inviscid regions, and in

2 Note that this Prandtl number does not have a physically meaningful value, but is merely defined by a combination
of the normalizing conditions for cp,/_, and k that appear when the equations are nondimensionalized.

12 2.0 Governing Equations Proteus 2-D Analysis Description

adiabatic wall boundary" layers if the Prandtl number is near 1 (Briley and McDonald, 1977). The stag-

nation enthalpy is defined as

hr =cpT + 1 (u 2 + v 2) (2.5)

Here the stagnation enthalpy is nondimensionalized by uL The temperature is thus

1 + v2)]T = --_p [hT-- l (u 2 (2.6)

and the equation of state becomes

Y -1 p[h T- 1 (u2+v2)]P= y -_-
(2.7)

This equation of state does not require the total energy Er, and the energy equation need not be solved.
The total energy may be computed from

E r = ph r- p (2.8)

2.3 GENERALIZED GRID TRANSFORMATION

Because the governing equations in the previous section are written in Cartesian coordinates, they are

not well suited for general geometric configurations. For most applications a body-fitted coordinate system
is desired. This greatly simplifies the application of boundary conditions and the bookkeeping in the nu-
merical method used to solve the equations. The following generalized grid transformation, which can be

orthogonal or non0rth0gonal, is therefore used to transform the governing equations from physical (x, y, t)
coordinates to rectangular orthogonal computational (_, 17, -r) coordinates.

= ¢(x,y, t)

n = n(x,y, t)

"r=l

(2.9)

In Proteus, the spatial computational domain is square, with _ and ,/each running from 0 to 1. Using the
chain rule for partial differentiation, the derivatives in the Cartesian form of the governing equations can

be replaced using the following expressions.

(2.10)

0t = ¢'_ + 7, G-_ + 0-7

In the above equations, and in those to follow, subscripts x and y, or _ and 7, denote partial differentiation

in that coordinate direction. The only task remaining, then, is to develop expressions for the metric coef-
ficients G, nx, etc. In differential form we can write

a¢ = G& + Cyay+ Cdt

an = n._& + ,_ydy+ nat
dz = dt

In matrix form this becomes

Proteus 2-D Analysis Description 2.0 Governing Equations 13

Similarly,

Therefore,

After taking the inverse,

d_= _y,,//+/
a+ o lJLdtj

y = y//a_/
dt 0_ xJLd_J

[+o:,+0t:[+o:"0x :l-

0 _'=J-y:0x+0y°x_]:+
where J is the Jacobian of the transformation,

J= O(x,y---_= ,Tx

This can be evaluated from the known physical (x, y) coordinates by noting J = l/J- _ and

j_]. O(xy)___ _[x_ x,7 t
0(¢, _t) Y¢ Y,7

j- a = x¢y,7 _ x_

The metric coefficients themselves are

=-

n_ = - JY_+

,ly= J_¢

+,=-.,++(,+-y++_

tit = - xz_Ix - y_rty

(2.1])

(2.12)

(2.13)

14 2.0 Governing Equations Proteus 2-D Analysis Description

Unless the physical coordinates (x, y) are defined analytically as functions of the computational coordinates
(_, r/), the metric coefficients must be computed numerically.

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES

Appl_fng the generalized grid transformation of the previous section to equation (2.1) yields

Q`r + Q¢_t + Q,Trlt+ E_x + Enqx + F_y + F,Ir/y - Ev_* x - EGn x - Fv¢_y - F_ny = 0 (2.14)

This equation is in chain-rule, or weakly conservative form. That is, the conservation flow variables are
used, but the metrics appear as coefficients of the derivatives instead of inside the derivatives. Following
Vinokur (1974), the strong conservation law form can be recovered by first dividing by the Jacobian then
adding and subtracting like terms. For example, the E,G term becomes

E_x_IE__jx

Doing this for all the terms, and rearranging, results in

I E_x+F_y+Q_t] +[E_Ix+FrlY+Q_?r 1
`r _ ,7

'r + it ' q_(._if_)vt _(E_Ev) _._ff__)_ q

(2.15)

The last three terms, in braces, are called the metric invariant terms. By using the expressions for the metric
coefficients, given by equations (2.13), one can show that the metric invariants are identically zero. In two
dimensions, this is also true when derivatives are approximated by the t-mite difference formulas of Section

5.0. 3 With the metric invariant terms eliminated, no metrics or flow variables appear as coefficients, and the

strong conservation law form of the governing equations has been recovered.

Equation (2.15) can be rewritten as

A A
A A A

OQ dE . OF OEv OFv

= o-C + o--C (2.16)

where

= j (E¢ x + FCy + Q_t)

3 This is not necessarily true in three dimensions, however.

Proteus 2-D Analysis Description 2.0 Governing Equations 15

1 (EOx + + Q_t)_=7 r_y

^ i
rv = 7 (Ev ¢_+ Vv¢y)

5Fv= (Evnx+Fvny)

Using equations (2.2a) through (2.2e) these can be expanded as

^ 1
Q =7 [p pu pV ET] T

[pu_x+ pV_y+ pc,]
I | (,,,,2+ p)¢_+ e,_,_y+ p<, I

[(er+p)=¢_+(st+p)_¢_+Ercd

(2.17a)

(2.17b)

pU_x + pV'qy + Pqt

[(Er+ P)Wqx + (Er+ p)V'qy + ETrl t

(2.17c)

^ 1 1
Ev- j Re r

[° 1CxAx + ¢_y_y

]'rxyCx + "ryy_yI

L_ + flyby J

(2.17d)

^ 1
Fv= j

o 11 rx.x_x + Zxyr/y

Rer "rxYrlX + _YYnYl
#_,n_+ #yny J

(2.17e)

where

1
#x = Urxx + VTxy pr r qx

1
#Y= U_xY+ _YY Prr qy

In the viscous terms, the shear stresses and heat fluxes are defined exactly as in equations (2.3), except
the derivatives in the Cartesian coordinate directions must be evaluated using the chain rule. For example,

O__Ku= O_.__U_u Ou
Ox O_ _ + _ n:,

Note that _"and FF have exactly the same form as 1_and Ev, but with _ replaced by ,/.

16 2.0 Governing Equations Proteus 2-D Analysis Description

3.0 TIME DIFFERENCING

The governing equations are solved by marching in time from some known set of initial conditions using
a finite difference technique. The time differencing scheme currently used in Proteus is the generalized
scheme of Beam and Warming (1978). The time derivative term in equation (2.16) is written as

A/,/

b(_ AQ n 01 0(AQ) 1 3Q n 02 A6n-1
--__. --+ +

Oz Az I+02 Oz 1+82 Oz 1+02 AT

O[(01 -1 02)Az, (Az) 2]+ _--

or,

A

1 + 0 2 dT 1 + 0 2 0z + _ au + o ol --T - o2 (a,):, (AT)3 (3.1)

where A_ = _+1_ t_. The superscripts n and n + I denote the known and unknown time levels, re-

spectively.

The parameters 0t and 02 determine the type of time differencing scheme used. Some of the methods
available with the above formula are given in the following table.

01 02 Method Truncation Error

0
0
1

1/2
1

0

- 1/2
0
0

1/2

Euler explicit
Leapfrog explicit
Euler implicit
Trapezoidal imphcit
3-point backward implicit

O(AT)_
O(AT) s
O(AT)_
O(AT)s
O(A-r)s

Note that even though the generalized time differencing formula includes explicit methods, the Proteus code
assumes an implicit method is being used. Note also that the truncation error listed in the table is the error

in the expression for A(_. The overall numerical method used in modelling the differential equations re-
^

quires AQ_/AT, so the order of the overall method is this truncation error divided by AT.

^ ^

Solving equation (2.16) for 0Q/0T and substituting the result into equation (3.1) for d(-AQ")/Oz and

O(_'IOTyields

OlAT 0(A_n) _(A_'n) AT

A(_n= 1+02 _9_ + On 1+02 + On J

01AT O(AEv n) O(AFv n) AT OEv cgFv

at + 1+o2 a¢

1 l_ 02)(Az)2, (A.r)3_02+ (3.2)

Proteus 2-D Analysis Description 3.0 Time Differencing 17

!:4_:]Q_l_J,g._._
... _.,._.. :

4.0 LINEARIZATION PROCEDURE

4.1 INVISCID TERMS

^ ^ ^

Equation (3.2) is nonlinear, since, for example, AI_, = E" ÷ ' - E" and the unknown E _ ÷ ' is a nonlinear

function of the dependent variables and of the metric coefficients resulting from the generalized grid trans-
formation. The equations must therefore be linearized to be solved by the finite difference procedure used
in Proteus. This is done by expanding each nonlinear expression in a Taylor series in time about the known
time level n. Letting G represent any nonlinear expression,

{ 0G "_nAz
G_+ 1= G,_+ \ 0-r / + O(Az)2 (4.1)

where

OG OG Op OG O(pu) OG O(pv) OG OET

O----_-= Op & + O@u) & + d(pv) & + OE r &

Note that for linearization purposes only the metric scale coefficients have been assumed to be locally inde-
pendent of time. Note also that for this linearization procedure to be second-order accurate, OG]Or (and

therefore Op]Ox, O(pu)l&, etc.) need only be first-order accurate. Using forward differences, then, so that

(Op)np"+l-p _- A; + o(a_)

Ap n
= A----C+ O(Az)

etc., equation (4.1) becomes

(G n+{=G n+ (OG _n OG OG OG
p) ap" + O(pu) + a(pv)" + aE.+ O(a_)2\

(4.2)

As an example the 8(puv_y)]O_ term from the x-momentum equation (part of the second element of

dElOS) will be used. The nonlinear part of this term is (puv) "÷ 1. Rewriting this in terms of the dependent
variables,

(puv)n + l I (Pu)(pv)]n + l=: -_

Using equation (4.2), this is linearized as

(ptgc)n + 1 = (puv}n _ (tlv)n(pn + 1 _ pn) + vn[(pu)n + 1 _ (pu)n] + un[(pv)n + 1 _ (pv)n] + O(AT)2

which can be rewritten as

a(puv) _ = _ (uv)'_ap_ + v"a(pu) _ + u"a(pv)" + O(a_)2

^

This lineafization procedure, when applied to the entire AE" term in the vector equation (3.2), can be
written as

PREcE.DtNG t.'_,¢:_

Proteus 2-D Analysis Description '"-;;:ri_'¢ t:_/OY F_,._,#IED
4.0 Linearization 19

n

(4.3)

^ ^

where (0E/0Q) _ is a Jacobian coefficient matrix (not to be confused with the Jacobian J of the generalized
^

grid transformation.) A similar equation can be written for AF n.

Each term in each element of 1_ and [7, given by equations (2.17b) and (2.17c), is linearized using the

above procedure to generate the elements of the Jacobian coefficient matrices O[;/aQ and O_'/01_. (Note

that OE[c?Q = JOE/dO.) When this is done Oi_/OQ can be written as

A

0Q

_t _-_ _y 0

_ - uft Ct + fl + u_x + _x u_y + _:_ OE r _x

Op Op 3p 3p
-_p _y -- Vfl V_x + _ _y _t q- ft -b V_y -t- O'_'_ _y OET Cy

-fl - _ f2¢x +fl O(pu) O(pv) +

(4.4)

where J_ = u¢_ + v¢, and J_ = (Er + P)Ip. The Jacobian matrix OFIO(_ has the same form as OE/OQ, but

with _ replaced by _/.

The linearized pressure terms have deliberately been left in terms of Op/Op, Op/O(pu), etc. The ex-

pressions to be used for these derivatives depend on the equation of state. Those currently built into the
Proteu; code, for a perfect gas, are presented in Section 4.3.

4.2 VISCOUS TERMS

The nonlinear viscous terms in equation (3.2), involving z_l_, and A[7_,, must also be linearized. To do

this, the elements of l_v and irv, given in equations (2.17d) and (2.17e), must ftrst be re'_xitten in terms of

the dependent variables, and with derivatives in the Cartesian directions transformed to derivatives in the

computational directions using the chain rule. When the resulting expressions are substituted into equation
(3.2), mixed second derivatives appear as well as second derivatives in a single coordinate direction. The
mixed, or cross, derivative terms would lead to Considerable complications in the implicit numerical solution

algorithm if they were linearized using the procedure presented in Section 4.1. The two types of second
^ ^

derivatives are thus treated differently, and Ev and Fv are written as

A A A

E F = Ev_ + Ev 2
A A A

Fv = Fv_ + Fv 2

(4.5)

where i_v_ and [:v, only contain derivatives in the _ and _/directions, respectively, and i_v2 and [:v2 contain
^ ^

derivatives in the other direction. The fully expanded expressions for E m, Ev2, etc., are fairly long, and

therefore are presented in Appendix A.

20 4.0 Linearization Proteus 2-D Analysis Description

4.2.1 Non-Cross Derivatives

Examination of the elements of Ev_ in equations (A.2a) through (A.2c), and (A.2e), shows that every
term has the formfg_, where g is a function of the dependent variables, andfis a function of/_, 2, k, and/or
the metric coefficients. Expanding in a Taylor series about time level n gives

(fg{)n + 1 = (fg_)n + Oz A, + O(A,) 2

For linearization purposes only, we will assume fis locally independent of time. We can thus write

+1 F -I",,,
(fg¢)n = (fgon + fn 4 k a_ j + o(aC

where

Thel-efore

og Og ap ag o(pu)
--=_--'k- -q- ""
Oz Op O'r O(pu) Or

(fgOn+] =(fg¢)n+fn4[Og Og inAp + _ a(pu) + ... + O(a_)2

^

As with the inviscid terms, the linearization procedure for the entire AE_,_ viscous term in equation (3.2) can
be written as

An 0
= - AQ n + O(Av) 2 (4.6)

AEvl OQ

an ^ ^

A _imilar equation may be written for AFv,. The Jacobian coefficient matrix OEva/OQ is

where

aEv_ 1

^ Re rOQ

0 0 0 0

\ ao
0

OQ

aEv 1
7

OQ

t 0 0-- o
21

) o o
31

_ 0T

aQ OQ
41 42 43

_xx= (2# + 2)_2x + #_

(4.7)

Proteus 2-D Analysis Description 4.0 Linearization 21

0

OQ

0 1

OQ

a(pu)
42 21

= - O(pv)
43 31

Like the pressure terms discussed earlier, the form of the temperature terms will depend on the equation
of state being used. Those currently built into the Proteus code, for _a perfect gas, are presented in Section
4.3.

^ ^

Note that in equation (4.6) the derivatives appearing in the Jacobian coefficient matrix OEv_/OQ are also

to be applied to the A(_ appearing outside the parentheses. For example, the element in the second row
^ ^

and second column of OEvJOQ, which corresponds to the A(pu) term in the x-momentum equation, is
ax,O(l/p)lO_. For this term, the notation used in equation (4.6) means

0 ^n n O 1 nA(pu/J)n
- _ AQ2 = _-_(7-

OQ
22

= axx -_ p_"

^ ^

The Jacobian coefficient matrix for the remaining non-cross derivative viscous terms, OFvJOQ, has the
^ ^

same form as OEvJOQ, but with ¢ replaced by _/.

4.2.2 Cross Derivatives

As stated earlier, linearizing the cross derivative viscous terms in the same way as the remaining terms
is very complicated within the framework of the implicit numerical solution algorithm used in Proteus.

22 4.0 Linearization Proteus 2-D Analysis Description

They are therefore simply lagged (i.e., evaluated at the known time level n and treated as source terms.)
As noted by Beam and Warming (1978), this does not lead to a formal accuracy loss since

A n
An = AE_,2- 1AEv2 -'1"-O(A'c) 2

A_"v_=A_v;' + O(Arf

(4.8)

4.3 EQUATION OF STATE

The expressions to be used for op/ap, OT/Op, etc., which arise from the linearization procedure, depend
on the eqtiation of state. The equation currently built into Proteus is for perfect gases, and can be written
as

p=(y- I)[ET -1-}- p(u2 + v2)l (4.9)

or, in terms of temperature, as

T = --_- p 2 (u2 + _2) (4.10)

With this equation of state, then, the appropriate derivatives are

OT

ap

Op _-1
- (u 2 + v2) (4.1 la)

Op 2

Op
-- (y -- 1)u (4.1 lb)

O(pu)

ap
= - (y - 1)v (4.1 lc)

a(pv)

Ol,
OET = y -1 (4.11d)

-- Cv P 2 P (U 2 + v 2 (4.12a)

aT = _ ._E__u (4.12b)
O(pu) q,p

aT =-- v (4.12c)
a(pv) c_p

OT 1-- (4.12d)
aE r c_p

If constant stagnation enthalpy is assumed, as discussed in Section 2.2, the appropriate equation of state
is

-'-1[]p- _' p hr- (u 2+v2) (4.13)

and the temperature becomes

1 v2)]T=_u_p [hr_ 1 2-f(u + (4.14)

Proteus 2-D Analysis Description 4.0 Linearization 23

With these equations, the derivatives of p and T with respect to the dependent variables are

*,-'[]ap T hr + (u2 + v2)

@ y-1
-- /d

a(pu) ;'

@ _-I
a(pv)

aT _ 1 (u 2 +v2)
ap c;p

aT u

a(pu) cpp

8T v

a(pv) Cpp

(4.15a)

(4.15b)

(4.15c)

(4.16a)

(4.16b)

(4.16c)

4.4 LINEARIZED GOVERNING EQUATION

The linearized form of equation (3.2) can now be written as

{I(- Yl l}Aha+
1 +0-----_ 0: &t_o / L\ oo

01A-r

1 +02

+

(4.17)

There are a couple of things that should be mentioned about this equation. First, this equation isin

so-called "delta" form. We will actually be solving this equation for A(_ and recovering (_+ _ from

(_ +' = At_ + (_. And second, in the coeflqcients of the cross derivative viscous terms the time differencing
parameter 01 has been replaced by 03. For second-order time differencing (i.e., if 01 = 02 + 1/2), 03 should
be set equal to 01. For fa-st-order time differencing, however, 03 can be set equal to zero without losing

accuracy.

24 4.0 Linearization Proteus 2-D Analysis Description

5.0 SPACE DIFFERENCING

To solve equation (4.17) an evenly spaced grid is defined in the computational (_, r/) coordinate system.

Spatial derivatives are then approximated by finite difference formulas. First derivatives in the _ direction

are approximated using the following second-order central difference formula.

)of 6¢f ,J =
-_" i,j

(5.1)

The subscripts i andj represent grid point indices in the _ and q directions. The computational grid spacing

A_ is constant, and equal to 1/(NI - 1), where N1 is the number of grid points in the r direction. A similar
formula is used for first derivatives in the ,7 direction.

The non-cross derivative viscous terms in the _ direction in equation (4.17) all have the form

where Q represents one of the elements of (_. Using central differences this is approximated by

O_ (gAQ) " 6_[ff_(gAQ)]i,j
i,j

1
= A-_ {f/+ 112,J6_ (gAQ)i+ l12,j -- fii-l/2,j6¢(gAQ)i-l/2,j}

_ 1 (fi + l l2,j[(gAQ)i + 1,j - (gAQ)i j]
(aOz

- fi- ll2,j[(gAQ)i,j- (gaQ)i- l,j]}

1

-- 2(a x)2 {(f/,j + f/+ l,j)[(gAQ)i+ l,j- (gAO)i,j]

- (fi, j + fi- 1,)[(gAQ)i,j - (gAQ)i- 1,j]}

_ 1 {(f/ 1,j + fi,j)(gAQ)i- l,j
2(A_)2 -

- - (fi- l,j+ 2fi,j+ fi+ 1,j)(gAQ)i,j

+ (f/,j+ f/+ l,j)(gAQ)i+l,j}

A similarformula isused for second derivativesin the 'Idirection.

Cross derivativeviscousterms are evaluatedusing the followingcentraldifferenceformula.

(5.2)

Proteus 2-D Analysis Description 5.0 Space Differencing 25

c3 (f____) __6_(f6,1g)i,j
6q_ i,j

_ 1 [fi + 1,j(6rl g)i + l,j -- fi - l,j(6_ g)i - l,j]
2A_

1
-- 4A_A_/ If/+ 1,j(gi+ 1,j+ 1 - gi+ 1,j- 1)

-- fi-- l,J_gi-- l,j+ 1 -- gi--1,j- 1)]
(5.3)

Note that this formula is only needed for the source terms, since the viscous cross derivative terms are lagged
one time level.

When fn'st derivatives are needed normal to a computational boundary, such as for Neumann boundary

conditions, either ftrst- or second-order one-sided differencing is used. The first-order formula at the _ = 0
boundary is

(-_)],j_--_(f2,j-f_,j) (5.4)

and at the _ = 1 boundary,

(5.5)

The second-order formula at the _ = 0 boundary is -

Of) __ 1_'- 1,j 2A_-_- (-- 3f],j + 4f2, j -- .f3,j) (5.6)

and at the _ = 1 boundary,

(5.7)

Similar formulas are used at the _/= 0 and v/= 1 boundaries.

26 5.0 Space Differencing Proteus 2-D Analysis Description

6.0 BOL.-NDARYCONDITIONS

Choosing boundary conditions is perhaps the most important step in solving a flow problem with
Proteus. Since the equations being solved at interior points are the same for every problem, the boundary
conditions are what determines the final flow field for steady flows.

With the difference formulas presented in Section 5.0, N,, boundary conditions are required at each
computational boundary, ,*'here N,q is the number of equations being solved. Note, however, that this is
a numerical requirement, not a mathematical one. For example, for one-dimensional Euler flow N,, = 3.
However, characteristic theory shows that, mathematically, only two conditions may be specified at a sub-
sonic inflow boundary, and only one at a subsonic outflow boundary (PuUiam, 1986a). Some sort of ex-
trapolation is typically used for the additional numerical boundary conditions.

A variety of boundary conditions are built into the Proteus code, including: (1) specified values and/or
gradients of Cartesian velocities u and v, normal and tangential velocities 1I, and V,, pressure p, temperature
T, and density p; (2) specified values of total pressure pr, total temperature Tr, and flow angle; (3) linear
extrapolation; and (4) spatial periodicity. Another useful boundary condition is a "no change from initial
condition" option for u, v, p, T, p, Pr, and/or Tr. Provision is also made for user-written boundary condi-
tions. The boundary conditions may be steady, unsteady, or time-periodic. The exact combination of
boundary conditions to be used will depend on the problem being run.

The boundary conditions in Proteus are treated implicitly. They may be viewed simply as additional
equations to be solved by the ADI solution algorithm. And, in general, they involve nonlinear functions
of the dependent variables. They must therefore be linearized using the procedure described in Section 4.0.
The following sections describe this linearization for the general types of boundary conditions currently built
into Proteus.

6.1 NO CHANGE FROM INITIAL CONDITIONS: Ag = 0

This boundary condition simply sets the boundary value of the function g equal to its initial condition
value. It can be written as

Agn = gn + 1 _ gn = 0 (6.1)

In general, g can be a nonlinear combination of the dependent variables 0- Lineafizing g using the proce-

dure described in Section 4.0, we get

gn + 1 = gn + A_n + O(Ax)2

\OQ /

(6.2)

Neglecting the O(Ar) 2 linearization error, the linearized form of equation (6. I) can thus be written as

A n=0 (6.3)

6.2 SPECIFIED FUNCTION: _ =f

A specified function at a boundary can be written simply as

gn + I = f (6.4)

Proteus 2-D Analysis Description 6.0 Boundary Conditions 27

whereg is the function being specified and f is the value being specified. Note that f can vary along the
boundary, and can be time-dependent. Using equation (6.2)and nedecting the linearization error, the
linearized boundary condition becomes

(6.5)

6.3 SPECIFIED COORDINATE DIRECTION. GRADIENT, de/d4} =f

A specified gradient of a function in a coordinate direction can be written as

-_-7 =f (6.6)

where g is the function whose gradient is being specified, fis the specified value, and q_ is the coordinate
direction _ or 7- Note that fcan vary along the boundary, and can be time-dependent.

The linearized form of g is given by equation (6.2). The linearized form of equation (6.6) can thus be
written as

(Og)n 0 AQ n =f+ O(Az) 2 -(6.7)

Replacing differential operators with difference operators and neglecting the linearization error, the
linearized boundary condition can be written as

_-f- (6.8)
0O

where 6_ represents the one-sided difference operator to be used at the boundary. Options are available in
Proteu_ to use either first-order two-point or second-order three-point differencing.

Note that this boundary condition is a specified valueof the derivative with respect to the computational
coordinate, not with respect to the physical distance in the direction of the computational coordinate.
Following Korn and Kom (1968), and using the properties of the generalized coordinate transformation, it
can be shown that for the _ direction the two derivatives are related by

Og j Og

os¢ _/_2 + ,Iy2 o¢

Similarly, for the r/direction,

Og j dg

0% 4_x 2 + _y2 07

If the value f= 0, of course, the two derivatives are equivalent.

6.4 SPECIFIED NORMAL DIRECTION GRADIENT. V_,. n =f

A specified gradient of a function normal to the boundary can be written as

Vg_ + 1. n =f (6.9)

28 6.0 Boundary Conditions Proteus 2-D Analysis Description

whereg is the function whose gradient is being specified, fis the specified value, and _ represents the unit
vector normal to the boundary. Note that fcan vary along the boundary, and can be time-dependent.

For illustrative purposes, assume we are specifying a gradient normal to a constant _ boundary. Then

n - IV_l - m _x i +---_y

where

m=4_x2+_y 2

Equation (6.9) can then be written as

1 ,,+1 G ,,+m (gx +gy l_y) =f (6.10)

Using the chain rule to expand _ + _and _ + _,

n+l n+l_ + n+lgx = g¢ cx g,7 nx

g; +1 =.g_ + ICy + g_ + lt/y

Substituting into equation (6.10) and rearranging,

tl+ + g,+ + m:

Solving for g_ ÷ _,

: ,m m2 (_xnx+ _yrly) c3g n + (6.11)

Now, in order to incorporate this equation into the ADI solution procedure used in Proteus, the Og/Ort term
in equation (6.11) is lagged one level, and evaluated at time level n instead of n + 1. Strictly speaking, this

introdt_ces an O(Az) error into the solution. In practice, however, the actual error will depend on the degee
of nonorthogonality of the coordinates near the boundary. For orthogonal coordinates no error is intro-
duced.

Using equation (6.2), and introducing difference operators and neglecting the linearization error, we can
now write the linearized boundary condition as

1 n n (6.12a)

where 6¢ represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either first-order two-point or second-order three-point differencing.

Note that the unit vector _ in equation (6.9) is in the direction of increasing _. Therefore, a positive

value for fin equation (6.12a) indicates a flux in the direction of increasing _. Thus, a positive fat _ = 0

implies a flux into the computational domain, and a positive fat _ = 1 implies a flux out of the computa-
tional domain.

Specif)fng a gradient normal to a constant _ boundary is done in an exactly analogous manner. The

resulting equation is

Proteus 2-D Analysis Description 6.0 Boundary Conditions 29

6,7 A(_n = 1 n-- 2 (rlx_x + _ly_y)6_ gn -- 6,7g

_Q / d m

(6.12b)

where

m = _/_/x 2 + r/y2

A positive value for f in equation (6.12b) indicates a flux in the direction of increasing r/. Thus, a positive
fat J7 = 0 implies a flux into the computational domain, and a positive fat _ = 1 implies a flux out of the
computational domain.

6.5 LINEAR EXTRAPOLATION

Linear extrapolation from the two adjacent interior points is also available as a boundary condition.
At the _ = 0 boundary, where i = 1, this can be written as

n+l - 2g727+g'L+ ' = o (6.13)

Note that this is equivalent to setting (02g/0_2)_._ = 0. Using equation (6.2), we can write the linearized
boundary condition as

(O"_-gA_ An (2) An AQ7+ gn+2gn+l-gi+ 2 (6.14)
AQi -2 dlQi+]+ -- " 2=-

k, OQ /i i+1 \ OQ /i+2

Analogous extrapolation boundary conditions can easily be written for the remaining boundaries.

30 6.0 Boundary Conditions Proteus 2-D Analysis Description

7.0 SOLL-rION PROCEDURE

7.1 ADI ALGORITHM

The governing equations, presented in linearized matrix form as equation (4. t 7), are solved by an alter-

nating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Briley and

McDonald (1977), and by Beamand Warming (1978). Although the split equations can be developed in

more than one way, in this discussion the approximate factorization approach is used.

Letting LHS(4.17) represent the left hand side of equation (4.17), we can write

LHS(4.17) = I-_ i'_- 2 _ --_ aQ _'_ aQ aQ
(7.1)

where I represents the identity matrix. Note that in this equation, using the BlOC term as an example, the

notation used is meant to imply

.Q OQ OQ OQ

The term in braces in equation (7.1) can be factored to give

01A'c 0 " OF. O 01A¢
^ - I+

LHS(4.17)= I+ 1+02 03 0Q 0Q 1+02 t A

0 OF

on o() A)]nOQ

OQ

'(7.2)

The last term represents the splitting error. Note-that, since A(_ = O(A-r), this term can be neglected

without affecting the overall time accuracy of the algorithm, even when second-order time differencing is
used.

Proteus 2-D Analysis Description 7.0 Solution Procedure 31

Equation(4.17)canthusberewritteninspatiallyfactoredform,and,ne_ectingthetemporaltruncation
andsplittingerrorterms,becomes

E (A01Az d dE

I + 1 + 02 d_ OQ

t A A /1

A_ 0E • OF "_

1+02 --_- "+-_ : +_

03Az

1+82

)l I (A A

Ev 0lAx O OF OO l I + _1 A_n =

3Q 1 + 02 &i 06 dQ

A " A I'l A A 17

1+o2 -5? -+ + 1+ + -NC

02 A_n- 1
1 +02

n-I

0Er,: 0Fv_

Equation (7.3) can be split into the following two-sweep sequence.

Sweep 1 (¢ direction)

(7.3)

A.

AQ + 01Az O A(_*

1+02 O* L\ dO f J

I A A n

A-r dE . OF "_ A_

1+02 --_--¢---_-J -t 1+02

n

(1 + Oz)AZ / ':3Ev2 OFv 2

I+O
+

0lAx O 0 t AQ* =

1 + 82 0_ OQ

nA A

^ A n--I

03a, (0EF_ 0FF2)1+02 _ 0* +--_-_ -i

02 A(_n - 1 (7.4a)
1 +82

Sweep 2 (_/direction)

O1A'r O O A6n 01Az 0 0 _ A6 n = AQ* (7.4b)
A(_n+ 1+02 Or/ \-_- / I+02 &l 0Q

In the above equations, Q* represents an intermediate solution to the governing equations: It should be

noted that in Proteus, physical (i.e, n + 1 level) boundary conditions are used during the first ADI sweep.

This introduces an O(Az) error in dQ/&r on the boundary for unsteady flows, but no error for steady flows.

This point is discussed in detail by Briley and McDonald (1980).

4 The notation here is somewhat inconsistenL The quantity AQa= Qn+t_ Qn, but A = -Q_, not
^ ^

Q_+I- Q °"

32 7.0 Solution Procedure Proteus 2-D Analysis Description

Applying the spatial differencing formulas of Section 5.0 results in

Sweep 1 (¢ direction)

+

1(1+02)2A_ \ OQ]i+1 \ OQ i-1

xn r/--Af_ * /2 /2o,a
(1 + 02)2(A_) 2 -

^ A /2

1 +02 1 +02

(1 + Os)az ^ ^ n 03A'r ^ ^ n 02 A(_/2 - 1 (7.5a)
1 + 02 (6¢Ev2 + _'TFv2) 1 + 0 2 (6¢Ev2 + _'TFv2) --1 + 1 + 0-------_

Sweep 2 (,7 direction)

^/2 0fAT OF ^/2AQ_+ _ ^a-- i -- AQ__ 1
AQ) + (1 + 02)2At/ OQ ,]j +1 \ OQ //j_ 1

-- /2 /2 AT/ n n ^/20,Az [(fj_, + fy)agT_ ,Ah. _ _ (fj_ 1 + 2fy +fy+ ,) gj AQ) . (fj + g+ 1) gy. ,AQ_+ ,] =
(1 + 02)2(A,/) 2 ¢ - 1

A, (7.yo)
AQ

The subscripts i and j represent grid point indices in the _ and r/directions. For notational convenience,

terms without an explicitly written i or j subscript are understood to be at i or j. In the viscous terms on

the left hand side, f is the coefficient of O]O_ (or 0/Or/, depending on the sweep) in the OEv_/O(_ (or

cgFvl/OQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following O/O_ (or 0/&l)
^ ^ ^ ^

in the OEvz/c3Q (or OFvdOQ) Jacobian coefficient matrix. Equations (7.5a) and (7.5b) represent the two-

sweep alternating direction implicit (ADI) algorithm used to advance the solution from time level
nto n+ 1.

7.2 MATRIX INVERSION PROCEDURE

7.2.1 Non-Periodic Boundary, Conditions

The complete set of algebraic equations for the first ADI sweep with non-periodic boundary conditions

can be written in the following block matrix form?

s Although this discussion is written for the first ADI sweep, an exactly analogous procedure is followed for the
second sweep.

Proteus 2-D Analysis Description 7.0 Solution Procedure 33

B_

A2

C_ A_

B2 C2

A3 B3 C3

AN t - 2 Bx_-2 Cx_-2

Ax,-1 BN 1-1 CN_-I

c_. A'N, B'_I

A,

AQ1
AZ

AQ2
A.

AQ3

A,

AQ_fi,- 1

AQN 1

s_

s2

$3

SN 1 -- 2

SN 1 - 1

S'N1I
L

(7.6)

These equations result from the application of equation (7.5a) for i = 2 to N_ - 1, with boundary conditions

added at i = 1 and i = N,. The parameter A0* is the N,a-element vector containing the unknown dependent

variables; A, B, and C are the N,q x N,q coefficient submatrices at i - 1, i, and i + 1, respectively; and S is

the N,q-element subvector containing the explicit source terms. Also, A', B', and C' are the coefficient

submatrices and S' the source term subvector for the boundary conditions. A variety of boundary condi-

tions may be used. They are described briefly in Section 6.0, and in greater detail in Volumes 2 and 3.

Note that the equations at the boundaries may contain coefficients at the boundary point and the two

adjacent interior points. This occurs, for example, when extrapolation or second-order gradient boundary

conditions are specified. As written, therefore, the coefficient matrix in equation (7.6) is not block
tridiagonal. However, A_ can be eliminated by multiplying the second row of the matrix by AI C$ a and

subtracting from the first row. C'_t can be eliminated in a similar manner. Doing this, we define

B I=B_ -A]C 21A 2

C 1 = C] -- A]C 2 lB 2 (7.7)

and

s_ = s'_ - A] c_- ls2

=A' -C' A -1
AN l N l N 1 N l - 1 BN 1 - 1

B_,,l B'ul -- C N_ A- 1= ' N 1 -- ICNI -- 1 (7.8)

• A-1Sx t = S'N_ - C NI N_- tS_ - 1

34 7.0 Solution Procedure Proteus 2-D Analysis Description

The set of algebraic equations solved during the first ADI sweep can now be written as

B_ C_

A2 B2 C2

A3 B3 C3

AN] - 2 BN_-2 CN__2

AN_-I BN_-1 CNt-1

AN l BN 1

A,

A.

AQ2
AZ

AQ3

A.

,,%-2
AQN_.- 1

AQN t

S 1

S2
i

$3

I

i

i
= i •

i SN, _ 2

SN l -- 1

: SN_

(7.9)

Since the coefficient matrix is now block tridiagonal, the equations can be solved using the block matrix
version of the Thomas algorithm (e.g., see Anderson, TarmehiU, and Pletcher, 1984). The procedure can
be summarized as follows:

1. Define D] = BI.

^

2. Compute E, = Dr 'C] and AQI = Dr'St.

3. For i= 2 to Nt, compute

Di = Bi - AiEi- 1

E i = D TlC i

A

AQ; = D T _(Si- AiA(_[_ l)

(Actually, E, is only needed for i = 2 to Nt - I).

^ ^

4. Then, set AQu, = AQ%t.

^ . ^ ^

5. Finally, for i = N, - 1 to 1, compute AQi = AQ_ - E,AQ,+ ,.

^ ^

In the Proteus code, in step 2 El and AQI are actually obtained by solving DtEt= CI and DtAQ] = St
^

using LU decomposition of D. A similar procedure is used to compute Ei and AQ_ in step 3.

7.2.2 Spatially Periodic Boundary, Conditions

In computational coordinates a spatially periodic boundary condition ira the _ direction may be repres-

ented as shown in Figure 7.1.6

6 As in Section 7.2.1, this discussion is written for the first AD! sweep, but an exactly analogous procedure is followed
for spatially periodic boundary conditions in the second sweep.

Proteus 2-D Analysis Description 7.0 Solution Procedure 35

N8-1

o 0 []

o 0 o

2(

]=1(
_-i

[] 0 o

[] _ 0 C
2 /vl /Vi+l

/

Figure 7.1 - Spatially periodic boundary condition.

The grid points along the i = 1 and i = N_ lines are "similar" in the geometric sense, and have the same

flow solution. Therefore, for a spatially periodic boundary condition in the _ direction, Ql = 0_r

To implement this boundary condition, an additional set of points is added at i = N_ + l, setting
^ ^

Qx, + _= Q2. This allows us to use central differencing in the _ direction at i = N,, computing the coeffi-
cients in the same way as at the interior points.

36 7.0 Solution Procedure Proteus 2-D Analysis Description

Theresultingsetof algebraicequationsvdllconsistof N_ - 1 equations (for i = 2 to NO, with N, + 1
unknowns. The block coefficient matrix thus has N_ - 1 rows and ,V, + 1 columns, as follows:

A2 B2 C2

A3 B3 C3

A4 B4 C4

AN 1 - 2 B%_ 2 CNt- 2

A,v_- 1 BN1- 1 CN l - 1

AN1 BN1 CNt

ix.

AQt
A,

AQ2
A.

AQ3
A,

AQ4

AI

AQn, + 1

$3

$4

SN 1 -

SN1-

SN 1

(7.10)

These equations result from the application of equation (7.5a) for i = 2 to N_. As in the previous section,

parameter A0* is the N,q-element vector containing the unknown dependent variables; A, B, and C are the
N,o x N,q coefficient submatrices at i - 1, i, and i + 1, respectively; and S is the N,q-element subvector con-
taining the explicit source terms.

^ ^ ^ 0Since Q_ = Qn, and Q2 = u_+_,equation (7.10) can be rewritten with Nt - 1 unknowns as:

B2 C2 A2

A3 B3 C3

A4 B4 C4

ANa-2 BN_-2 CN_-2

ANa-1 BN_-I CN_-I

CNa AN_ BNa

/k,

AQ2
A*

AQ3
A*

AQ4

1%_2

[AQNt

S2

$3

Sa

SN_-

SN_

(7.11)

An efficient algorithm to solve this system can be derived that is similar to the Thomas algorithm for
block tridiagonal systems. The procedure can be summarized as follows:

1. Define D2 = B2 and F2= Cur

^

2. Compute Ea = D2-1C2, G2 = D_-1A2, and AQ_ = D_-_S2.

Proteus 2-D Analysis Description 7.0 Solution Procedure 37

. For i =3 to N_ - 1, compute

Di = Bi- AiEi- 1

E i = D T 1C i

Fi = - Fi- 1El- 1

Gi = - D7 l AiGi- 1

A A

AQ_ = D 7 1(Si- AiAQ)_ 1)

. Compute

=D -1

FN_ - 2 = AN_ -- FN_ - 2EN_ - 2

N1 - 1

DNt = BN_ _ E FiGi
i=2

A s A

AQh, =D_I 1 SN-- FiAQ_
i=

^ ^

5. Then, set AQs t = AQ'_ l .

^ ^ ^

6. Compute AQ_rl - l = AQ'_1 - t - G_vl- lAQ_v_.

^ ^ ^

7. Finally, for i = Nt - 2 to 2, compute AQ, = A(_ - EiAQi. - G,AQ_.

In the Proteus code, in step 2 E2, G2, and A0_ are actually obtained by solving D2F-o = C2, D2G2 = A2,
^ ^

and D2AQ_ = $2 using LU decomposition of D. A similar procedure is used to compute E,, G. and AQ7
^

in step 3, and G_x_ l and AQ'_ l in step 4.

7.3 UPDATING BOUNDARY VALUES

7.3.1 Non-Periodic Boundary Conditions

With the ADI algorithm described in Section 7.1, if gradient or extrapolation boundary, conditions are

used for the first sweep, the boundary values from the first sweep must be updated after the second sweep.

This point is easiest to illustrate by looking at the following figure.

38 7.0 Solution Procedure Proteus 2-D Analysis Description

77

1 0 0 0

0 0 0 ,_

0 0 0 A

0 0 0 0 '
0 I

IB

Figure 7.2 - Updating boundary values for non-periodic
boundary conditions.

In Figure 7.2, a 5 x 5 grid is shown in computational space. The triangles represent grid points at which

the intermediate values Q* are computed during the first ADI sweep. These include the boundary points

at ¢ = 0 and _ = 1. The circles represent grid points at which the final values (_*, are computed during
the second ADI sweep, including the boundary points at _/= 0 and rl = 1. If gradient or extrapolation
boundary conditions are used during the fixst sweep, so that the boundary values depend on the interior
values, then the intermediate values at _ = 0 and _ = 1 must be updated after the second sweep to be con-
sistent with the final values at the interior points.

To do this, after the second sweep the boundary condition equations are rewritten and solved at the

boundaries. At the _ = 0 boundary,

B 1 AQ 1 + C 1 AQ2 + A 1 AQ 3 = (7.12)

The subscripts refer to the value of i, the index in the _ direction. This equation is applied for j = 2 to
N2 - 1 in the r/direction. For notational convenience, however, the subscript j has been omitted.

All the terms in equation (7.12) are known except A_. Solving,

a67= (Ba")- '(sa c, o: - Al' (7.13)

At the _ = 1 boundary,

c,n A_--_n A,n ^ n ,n ^n =
N 1 _XdN 1 -- 2 + N l AQN l - 1 + B,% AQN t S'_t (7.14)

Proteus 2-D Analysis Description 7.0 Solution Procedure 39

] t 7/ e_ t_ A ?'1An _B,n ^AQN t= t ,V,)- (SN 1 -- CN, AQN,- 2 -- AN, AQN,- 1) (7.15)

Finally, note from Figure 7.2 that new comer point values are never computed in the solution algorithm.

To make the comer values consistent with the rest of the flow field, in Proteus the comer values of density
p and total enerD Er are arbitrarily defmed by linearly extrapolating from the two adjacent points in both
the _ and _ directions, and averaging the two results. The comer values of the velocities are updated by
doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity whose ab-
solute value is lower is used. This was done to maintain no-slip conditions at duct inlets and exits.

7.3.2 Spatially Periodic Boundary Conditions

Updating boundary values from the first sweep is complicated somewhat when spatially periodic
boundary conditions are used.

7?

1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

C 0 0 0 _-, "-
0 1

Figure 7.3 - Updating boundary values for periodic
boundary conditions in the _ direction only.

The situation for a periodic boundary condition in the _ direction but not in the _/direction is shown
in Figure 7.3. The triangles again represent grid points at which intermediate values are computed, and the

circles represent grid points at which final values axe computed. As can be seen from the figxlre, the inter-
mediate values at ¢ = 0 must be updated after the second sweep to be consistent with the final values at the

interior points. This is easily done by setting (_l = (_¢_ forj = 1 to 3/2.

40 7.0 Solution Procedure Proteus 2-D Analysis Description

C
0

0 0 0 A

0 0 0 A

0 0 0 A

0 0 0 ZX

0 0 O, '

Figure 7.4 - Updating boundary values for periodic
boundary conditions in the r/direction only.

The situation for a periodic boundary condition in the ,7 direction but not in the _ direction is shown
in Figure 7.4. In this case, the intermediate values at _ = 0 and at _ = 1 must be updated after the second
sweep. To do this, the same procedure described in Section 7.3.1 for non-periodic boundary conditions is

^ ^

used, but for j= 2 to N2 instead of N,- 1. Then, for the lower comer values, Q_.I = Ql_v2 and

_1, 1 = QNb N2"

Proteus 2-D Analysis Description 7.0 Solution Procedure 41

r/

1, 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

C 0 0 0 ,.,"=
o I _

Figure 7.5 - Updating boundary values for periodic
boundary conditions in both the _ and _t directions.

And fmally, the situation for periodic boundary conditions in both the _ and n directions is shown in
Figure 7.5. Like the case with periodic boundary conditions only in the ¢ direction, the intermediate values

a ^

at _ = n must be updated after the second sweep. This is again done by setting Q_ = Q_, for j = 1 to N2.

42 7.0 Solution Procedure Proteus 2-D Analysis Description

8.0 ARTIFICIAL VISCOSITY

With the numerical algorithm of Section 7.0, high frequency nonlinear instabilities can appear as the
solution develops. For example, in high Reynolds number flows oscillations can result from the odd-even
decoupling inherent in the use of second-order central differencing for the inviscid terms. In addition,

physical phenomena such as shock waves can cause instabilities when they are captured by the f'mite dif-
ference algorithm. Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress
these high frequency instabilities. Two artificial viscosity models are currently available in the Proteus
computer code - a constant coefficient model used by Steger (1978), and the nonlinear coefficient model
of Jameson, Schmidt, and Turkel (1981). The implementation of these models in generalized
nonorthogonal coordinates is described by Pulliam (1986b).

8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The

standard explicit smoothing uses fourth-order differences, and damps the high frequency nonlinear insta-
bilities. Second-order explicit smoothing, while not used by Steger or Pulliam, is also available in Proteus.
It provides more smoothing than the fourth-order smoothing but introduces a larger error, and is therefore
not used as often. The implicit smoothing is second order and is intended to extend the linear stability
bound of the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms

to the right hand side of equation (7.5a) (i.e., the source term for the first ADI sweep.)

j (VCA_Q + VnA,TQ) j [(VCA_)2Q + (V,TA,7)2Q] (8. I)

where _) and _) are the second- and fourth-order explicit artificial viscosity coefficients. The symbols V
and A are backward and forward first difference operators. Thus,

VCQi = Qi- Qi- 1

AcQi = Qi+ 1 - Qi

V¢A¢Qi = Qi + 1 -- 2Qi + Qi- 1

(VCA¢)2Qi = Qi + 2 - 4Qi + 1 + 6Qi - 4Qi _ 1 + Qi - 2

Equivalent formulas are used for differences in the _/direction.

A few details should be noted at this point. First, the sign in front of the artificial viscosity term being

added to equation (7.5a) depends on the sign of the "i" term in the difference formula. For damping, that
term must be negative when added to the right hand side of the equations (i.e., explicit artificial viscosity),

and positive when added to the left hand side (i.e., implicit artificial viscosity.) See Anderson, Tannehill,
and Pletcher (1984) for details. Second, the terms being added are differences only, and not finite difference

approximations to derivatives. They are therefore not divided by A_, etc. Third, the variables being dif-

ferenced are Q, not 0. As noted by Pulliam (1986b), scaling the artificial viscosity terms by 1/J makes them

consistent with the form of the remaining terms in the equations. Fourth, the terms are also scaled by Az.

This makes the steady state solution independent of the time step size (PuUiam, 1986b). And finally, note
that the fourth-order difference formula cannot be used at grid points adjacent to boundaries. At these

points, therefore, the appropriate fourth-order' term in expression (8.1) is replaced by a second-order term.

Thus, for points adjacent to the _ = 0 and _ = 1 boundaries, - _)Az[(VeA¢)2Q]/J is replaced by

Proteus 2-D Analysis Description 8.0 Artificial Viscosity 43

+ _ VCA¢Q (8.2)

A similar expression is used at points adjacent to the _7= 0 and _/= I boundaries.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the
equations specified.

_IAT ^.
j [V_A_(JAQ)]

e/AT ^
j [VnA_ (JAQn)]

to equation (7.5a)

to equation (7.5b)

(8.3)

Note that the addition of the artificial viscosity terms, in effect, changes the original governing partial
differential equations. At steady state, the difference equations with the artificial viscosity terms added ac-
tually correspond to the following differential equations. 7

dE + _ F _ + 7- (A_) 2 0 (JQ____)+ (A_) 2 O (JQ___._)

j (a_) 4 _ #(JQ)
a_4 +(a'fl 4 on4

The implicit terms do not appear, since they difference A0, and in the steady form of the equations

A(_ = 0. The artificial viscosity terms do not represent anything physical. The coefficients should therefore
be as small as possible, but still large enough to damp any instabilities. Although optimum values will vary
from problem to problem, recommended levels are _)= O(1) and ez = 2_) (Pulliam, 1986b). The recom-
mended level for _>, when used, is _)= O(1).

8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by
Pulliam (1986b), but in the current notation, the following terms are added to the right hand side of

equation (7.5a).

+I

(8.4)

The difference operation A_V_A_Q is given by

AcV¢A_Qi = Qi + 2 - 3Qi + l + 3Qi - Qi - 1

In the expression (8.4), _b is defined as

= _,_ + ¢y (8.5)

7 These equations represent the use of the constant coefficient artificial viscosity model presented in this section. The
nonlinear coefficient model to be presented in Section 8.2 is more complicated, but the same principle applies.

44 8.0 Artificial Viscosity Proteus 2-D Analysis Description

where _b_ and _y are spectral radii defined by 8

_ky=

/ 2
IUI + ax/G + _y2

A_

I V I + a_/llx 2 + fly 2

All

(8.6)

Here U and V are the contravariant velocities without metric normalization, defined by

and a = ,f'? RT , the speed of sound.

U = _t + G u + _yV (8.7)
V = lit + llx u + llyV

The parameters _a) and et4) are the second- and fourth-order artificial viscosity coefficients. Instead of
being specified directly by the user, as they are in the constant coefficient model, in the nonlinear coefficient
model they are a function of the pressure field. For the coefficients of the _ direction differences,

(_2>)i = _:2A_"max(ai + 1, ai, ai - 1) (8.8a)

(4% =maxC0,,,a, -(4G3 (8.8b)

where

°i --
Pi + l - 2pi + Pi- I

p_+ _+ 2p_+ p__ _
(8.9)

Similar formulas are used for the coefficients of the _/direction differences.

The parameter o is a pressure gradient scaling parameter that increases the amount of second-order
sm 3othing relative to fourth-order smoothing near shock waves. The logic used tc compute _(*) switches
off the fourth-order smoothing when the second-order smoothing term is large.

The parameters K2 and r4 are user-specified constants. Like the coefficients in the constant coefficient
model, the optimum values will be problem-dependent, and are best chosen through experience. Cases have
been run with values of r2 ranging from from 0.01 for flows without shocks to 0.1 for flows with shocks,

and r4 ranging from 0.0002 for flows computed with spatially constant second-order time differencing to
0.005 for flows computed with spatially var35ng first-order time differencing. PuUiam (1986b) gives

r2 = 0.25 and K, = 0.01 as typical values for an Euler analysis.

Like the constant coefficient artificial viscosity model, the nonlinear coefficient model requires special

formulas near boundaries. To apply (8.4) at i = 2, _7) is needed at i = 1. It is defined as

= max(,o1)

With the above definition, applying (8.4) at i = 2 and i = N_ - 1 requires o at i = 1 and i = N_. They are
defined as

It should be noted that the grid increments A¢ and At/ in these definitions do not appear in the corresponding
formulas presented by Pulliam (1986b). This is because the grids used by Pulliam are constructed such that
A_ = At/= 1, while in Proteus A¢ = l[(Nl - l) and At/= 1/(.V2 - 1). The definitions used here for _ and _ky re-
sult in an artificial viscosity level equivalent to that described by Pulliam.

Proteus 2-D Analysis Description 8.0 Artificial Viscosity 45

p4 + 4p3+ +

-- PN, - 3 + 4PN_ - 2 -- 5PN_ -- 1 + 2PN_

P_V_- 3 + 4PN_ - 2 + 5PN_ - 1 + 2PN_

And, finally, applying (8.4) at i = 2 and i = N_ - 1 requires A_VcA_Q at i = 1 and i = N_ - 1.
numerous formulas that could be used. The ones currently in the Proteus code are

ACV,_ACQ1 = -- Q5 + 5Q4 - 9Q3 + 7Q2 - 2Q1

ACVCA_QN_ - 1 = QN_ - 4 - 5Q_fi _ 3 + 9QN_ - 2 - 7Qx 1- 1+ 2QN_

There are

46 8.0 Artificial Viscosity Proteus 2-D Analysis Description

9.0 TURBULENCE MODELS

As noted briefly in Section 2.0, for turbulent flow the Reynolds stress and turbulent heat flux terms are

modeled using the Boussinesq approach. An effective viscosity is thus defined as # = gz +/_,, where _zt is

the laminar, or molecular, viscosity coefficient, and gr is the turbulent viscosity coefficient. Similarly, an

effective second coefficient of viscosity is defined as 2 = 2_+ 2,, and an effective thermal conductivity coef-
ficient is defined as k = kz + k,.

The turbulent coefficients must be computed using a turbulence model appropriate for the flow being

computed. In Proteus, turbulence is modeled using either a generalized version of the Baldwin and Lomax

(1978) algebraic eddy viscosity model, or the Chien (1982) low Reynolds number k-_ model.

9.1 BALDWIN-LOMAX MODEL

For wall-bounded flows, (i.e., boundary layers), the Baldwin-Lomax turbulence model is a two-layer model,
with

= I(#t)inner foryn <Yb

I'tt ((l_t)outer for Yn > Yb
(9.1)

where y_ is the normal distance from the wall, and Yb is the smallest value ofy_ at which the values of tz, from

the inner and outer region formulas are equal. For free turbulent flows (i.e., mixing layers, jets, and wakes),

#, = (#,)o,,er. In the inner region, in addition to the Baldwin-Lomax model, an alternate expression first

presented by Spalding (1961), and later by Kleinstein (1967), is also available.

In a simple boundary layer analysis, with only one solid surface, the procedure fc,r computing/_, is rel-
atively straightforward. In a general Navier-Stokes analysis, however, any or all of the boundaries may be

solid surfaces. If both boundaries in a given coordinate direction are solid surfaces, the turbulence model
is applied separately for each surface. An averaging procedure is used to combine the resulting two gr

profdes into one. If neither boundary in a given direction is a solid surface, the formulation for free turbulent
flows is used. In addition, values of u, are computed separately for both the _ and _ directions. This results

in two complete turbulent viscosity fields. Another averaging procedure is then used to compute a single
value of/a, at each point in the flow?

9.1.1 Outer Region

The outer region turbulent viscosity at a given _ or _ station is computed from

(tat)oute r = KCcpp FKlet,FwakeRe r (9.2)

where K is the Clauser constant, taken as 0.0168, C,p is a constant taken as 1.6, and p is the static density.

The parameter F.,,, is computed from

9 This discussion is for the most general situation. When the flow is expected to be predominantly in one direction,
input parameters in the Proteus code should be used to specify that direction.

Proteus 2-D Analysis Description 9.0 Turbulence Model 47

Yma_F_a_
Fwake= } C V 2 Ymax

t <,¢s

for wall-bounded flows

for free turbulent flows
(9.3)

where C.k is a constant taken as 0.25, and

where P" is the total velocity vector.

The parameter F,_.x in equation (9.3) is the maximum value of

ly. l(l-e-'+/"÷)F_Vn)= Y. _I

for wall-bounded flows

for free turbulent flows
(9.4)

and ym,_ is the value ofyn corresponding to F,_ox. It has been found that for wall-bounded flows the function
F(y_) can have two peaks. As noted by Kirtley (1987), using the second peak as the location of Fmox yields
the best results.

For wall-bounded flows, yn is the normal distance from the wall. For free turbulent flows, two values

of F.,.. and y... are computed- one using the location of I _'1,._. as an origin for y., and one using the lo-

cation of I VI.,_. The origin giving the smaller value of y..x is the one finally used for computing y., F_._,
and y

In equation (9.4), is the magnitude ot _ the total vorticity, defined for two-dimensional planar flow
as

The parameter A ÷ is the Van Driest damping constant, taken as 26.0. The coordinate y+ is deemed as

_/'r wPwR er
Y+-- pwu_Yn Rer- Yn (9.6)

I.Lw IZw

where u_ = ./z,[p,Re, is the friction velocity, z is the shear stress, and the subscript w indicates a wall value.

In Proteus, -c, is set equal to _,lfil,

The function FK_,b in equation (9.2) is the Klebanoff intermittency factor. For free turbulent flows,

FK_ = 1. For wall-bounded flows,

= Ymax (9.7)

This factor accounts for the experimentally observed fact that, as the free stream is approached, the fraction
of time the flow is turbulent decreases. In equation (9.7), B and CK_,_ are constants taken as 5.5 and 0.3,

respectively. (Cxz_),_ is a constant normally equal to 0.0. However, when using the Baldwin-Lomax model

to generate initial turbulent viscosity values for the Chien k-s model (discussed in Section 9.2), (CKu_),_ is
set equal to 0.1. This yields a small positive value for #, in the free stream, and has been found to minimize
starting problems with the k-s model.

48 9.0 Turbulence Model Proteus 2-D Analysis Description

9.1.2 Inner Region

The inner region turbulent viscosity in the Baldwin-Lomax model is

(Izt)inner = pl 2 fi Re r (9.8)

where l is the mixing length, normally given by

l = ryn(l - e - y'IA +) (9.9)

and x is the Von Karman constant, taken as 0.4.

A modified form of equation (9.9), proposed by Launder and Priddin (1973), may also be used. This
formula is most useful for flows with steep negative gradients of shear stress normal to the wall, such as
accelerated flows or flows with suction. Their modified formula for l is

l= ryn(1- e - y+(C)_/A +) (9.1 O)

where

+ • ,161
"t'w /'tw fi w

and n is a constant taken as 1.7.

The inner region turbulent viscosity may also be computed using an alternate expression first presented
by Spalding (1961), and later by Kleinstein (1967). In this model,

,_B[+-1- _:u+ - 1 (_:u+) 2] (9.11)(tzt)inner = IztKe- e '_u

where

:
u_ _/_wlPwRer

Again, in Proteus, z, is set equal to g, lfil,.

9.1.3 Averaging Procedures for Multiple Boundaries

As noted earlier, if both boundaries in a given coordinate direction are solid surfaces, the turbulence
model equations are applied separately at each surface. It is assumed that the two inner regions do not
overlap. The outer regions, of course, do overlap, and an averaging procedure is used to combine the two
outer region/_, profiles into one. For example, if the _/= 0 and _/= 1 boundaries are both solid surfaces, _°
the two values of F,,,,, at a particular _ station are combined using the following averaging formula:

(-r.a,,)_ A + (Fw_k,)2A
Fwa_= fl + f2 (9.12)

Here (F,**,)_ and (F,**,)2 are the separate values computed for the ,/= 0 and _/= 1 surfaces using equation
(9.3). The parametersf and A are defined by

lO An analogous procedure is used for solid surfaces in the ¢ direction.

Proteus 2-D Analysis Description 9.0 Turbulence Model 49

where n is a constant taken as 2.0, (y,), and (Y,)2 are the normal distances to the g = 0 and _ = 1 surfaces,

respectively, and D, and Da are the normal' distances from the two n surfaces to the location of [V[. In
addition, the yfly_o= value needed in equation (9.7) for Fx_ is computed for both _ surfaces, ana trig=mini -
mum is used. These values of F, ok, and FK_ are then used in equation (9.2) to compute (g,)

The averaging procedure described above computes a single #, profile from the two profiles that are
computed when both boundaries in a given coordinate direction are solid surfaces. We still must average
the two values that result from computing /a: separately for both coordinate directions, n Following
Goldberg and Chakravarthy (1987), this is done using the following formula:

ut /y,)i + (ut /y,,)

#t [-(lly,,)_ + (lly,,)_] 112

0'.)2(mh + &Offu02
(9.13)

Here (/a,)_ and (/a,)= are the separate values computed due to the presence of boundaries at _ = 0 and
= 1, and at n = 0 and ,I = 1, respectively, ffthere is only one solid surface in the _ direction, (y,)_ is taken

as the normal distance to that surface. If both { boundaries are solid surfaces, (y,)_ is taken as the normal
distance to the closest one. If there axe no solid surfaces in the _ direction, (y,)a is the normal distance to

the location of either [V I.,, or [l_[m_,,, as described in Section 9.1.1. Analogous rules axe used for (y.)_.

9.1.4 Transilion Model

After /a, has been computed using the procedure described in the previous sections, a transition inter-
mittency factor may be applied to simulate laminar-turbulent transition. The transition model is based on
one given by Cebeci and Bradshaw (1984) for boundary layer analyses, and assumes that a geometric leading
edge exists at either _ = 0 or _ = 0. They report that the model is valid for adiabatic flows at Mach numbers
less than 5. In this transition model,

= _0 for x <_Xtr
_zt

(Y tr I_t for x > Xtr

(9.14)

where x is the distance from the leading edge, the subscript tr indicates a value at the start of the transition
region, and y,, is a transition intermittency factor given by

Ytr = 1 - exp - G(x - 9Ctr dx (9.15)

In equation (9,15), u, is the velocity at the edge of the boundary layer. The factor G is given by

3

Ue Re- 1.34G=8.33x 10-a--T - x,,
V

where Re,,, = (u, x/v),_Re,, and v is the laminar kinematic viscosity at the edge of the botmdary layer.

u As noted earlier, this discussion is for the most general situation. When the flow is expected to be predominantly
in one direction, input parameters in the Proteus code should be used to specify that direction.

50 9.0 Turbulence Model Proteus 2-D Analysis Description

If we assume that, througla the transition region, u, "-"(u,),, and v _ v,r, then equation (9.15) may be re-
written as

I):1_tr = 1-exp -8.33 x 10-4Re 0"66(x - 1
x_ \ Xtr

(9.16)

To implement equation (9.16) in Proteus, we replace x/x,, with Rex/Re_,, where Rex is defined as

Re x Ivlm=°
-- v Rer

For flows predominantly in the _ direction, I v l,,o is the maximum total velocity magnitude at the current

station, D is the distance from the point where l V] = Ivim=,o the leading edge at _ = 0, and v is eval-

uated at the point where Ivl = Ivi. Ananalogousder_tion of Rex is used for flows predominantly in
the _ direction.

9.1.5 Turbulent Values of). and k

The turbulent second coefficient of viscosity is simply defined as

2
(9.17)

The turbulent thermal conductivity Coefficient is defined using Reynolds analogy as

cpktt

k t = _ Prr (9.18)

where cp is the specific heat at constant pressure, and Pr, is the turbulent Prandtl number. In Proteus, the
turbulent Prandtl number may be treated as constant, or as a variable using the following formula (Wassel
and Catton, 1973):

,ex,(+r')Cpr 3 lat/_l
(9.19)

Prt- CprIPrt (Cpr2)1 - exp pr l Izt/#l

Here Ce,_, Cp,2, Cp,3, and Cp,_ axe constants taken as 0.21, 5.25, 0.20, and 5.0, respectively, and Pr+= cplzdk+
is the laminar Prandtl number.

9.2 CHIEN k-z TURBULENCE MODEL

9.2.1 k-e Equations

The low Reynolds number k-r formulation of K. Y. Chien (1982) was chosen because of its reasonable

approximation of the near wall region and because of its numerical stability. Here k and e are the turbulent
kinetic energy and the turbulent dissipation rate, respectively. _2 In addition, the Chien k-e turbulence model
was frequently used in past Navier-Stokes computations with good results (Nichols, 1990, 1991; Patel, Rodi,
and Scheuerer, 1985; Sahu, 1984.) The set of k-e equations are lagged in time and solved separately from
the Navier-Stokes equations to allow for code modularity in turbulence modeling. In Cartesian coordinates,

the two-dimensional planar equations for the Chien k-_ model can be written using vector notation as

12 It should be noted that in the Chien model, E is actually the isotropic portion of the turbulent dissipation rate.
Throughout this manual, however, it is referred to as simply the turbulent dissipation rate.

Proteus 2-D Analysis Description 9.0 Turbulence Model 51

where

0W OF + 0G
-_-+-_-x -_y --S+T (9.20)

and

,o_

puk- 1 oh]

F [put- i _ |

_ 1 Ok]

- LPVC 1 O_ |

I c 2
s= qek T R_,Gp

_ 2 o k [

T = Y_
2 ize- y+/2

(9.21a)

(9.21b)

(9.21c)

(9.21d)

(9.21e)

52 9.0 Turbulence Model

/_k = # + /'tt
o"k

ju_---- # + _t---Z-t

q = _.3s

_ 2 ,_,/36)C2= C2,(1 Te-

_k = 1.0

%= 1.3

C2= 1.8

pk 2
R,=--fir-

st p 2ek = _ , - y pke2

(9.22a)

(9.22b)

(9.22c)

(9.22a)

(9.22e)

(9.22f)

(9.22g)

(9.22h)

(9.23a)

Proteus 2-D Analysis Description

(9.23b)

Ou Ov (9.23c),02= -y# +

The turbulent viscosity is given by

k 2

lat = Cup _ (9.24a)

Cu= Cu,(1- e" GY*) (9.24b)

Cu, = 0.09 (9.24c)

C3 = 0.0115 (9.24d)

Note that the vectors W, F, G, and S are used in most staradard k-r formulations (with different con-

stants), and the vector T is unique to the low Reynolds number formulation of Chien. The parameter y_
is the minimum distance to the nearest solid surface, and y+ is computed from y,. The production of tur-

bulent kinetic energy Pk includes the full Boussinesq approxiination for compressible flows. All of the
above equations have been nondimensionalized using appropriate normalizing conditions.

Nondimensionalization of mean flow properties is discussed in Section 2.1. The turbulent kinetic energy
k and the turbulent dissipation rate _ have been nondimensionalized by u_ and p,_/_,, respectively.

Following the procedure of Section 2.3, the following generalized grid transformation is used to trans-

form the k-r equations from physical (x, y, t) coordinates to computational (¢, ,_, z) coordinates.

=(x,y)

=(x,y)
T=l

(9.25)

Applying the generalized grid transformation to equation (9.20) yields

W z + F_ x + Frlr/x + G_y + G_Ty = S + T (9.26)

Although the above equations can not be put into exact strong conservation law form, the procedure

used to do so for the mean flow equations, described in Section 2.4, is nonetheless appfied to equation

(9.26). The result is

A A A

0W OF 0G ^ ^
0, +--_-- +-_q = S + T (9.27)

where

1
1_r= 7 [_k] (9.28a)

A A A A

F = F c - F D - F M (9.28b)

FC = _xpu_ + _ypw. j
(9.28c)

Proteus 2-D Analysis Description 9.0 Turbulence Model 53

1%- y Rer [U_(Gnx+ Cyny)%]

A A A

= Gc - Gz) - G_

^ 1 [nxpuk+_yp vk]
cc = 7 ['rxP_ + np_,__l

2

^ I 1 [_k(n2x + ny)k. l

GD- j Rer

cM = 7- Re--TLu,(Gn_+ _ene)_j

1 [Pk-Rero_ 2]S=-J" Clpk t RerC-_Pt]

Re r 2Yn

= 2 _ e-y+12

Rer y#

(9.28d)

(9.28e)

(9.280

(9.28g)

(9.28h)

(9.28i)

(9.28j)

(9.28k)

Note that in equation (9.28j), the term P, involves derivatives with respect to the Cartesian coordinate
directions (see equations (9.23a-c.) These are evaluated using the chain rule.

9.2.2 Linearization of the k-_ Equations

Solving equation (9.27) for afVlOr and substituting the result into the time differencing scheme of Beam

and Wanning (1978), given by equation (3.1), for a(A@'9/O'r and O@"]Or yields

i A A A A

01az a(AFc) a(AFD) O(AFM) a(AGc)

A A A A

Az OFc OFD OFM OGc

+ 1+o 2 a_ _-_ + a_ an

-Jr _ nt- O 01 -- T -- 02 (a,)2' (az)3

A- A ?I

Or/ + on + AS + A

A A ,_I

aGD OGM _)+g+

(9.29)

Equation (9.29) is then linearized using the procedure described in Section 4.0. Let

A A A A

aFc OFD OGc ago as aT
A=---Z-, B=--, C=-----2-, D=---W-, M =-----2-, N- ^

OW a,_v oW Ow ow OW
(9.30)

54 9.0 Turl_lenee Modal Proteus 2-D Analysis Description

be the Jacobian coefficient matrices, where

0]0 _xu + _yV
(9.31)

B_

1 2 .2 J0 1
JRe r

0]2 J

-- u,(_2x + _y)(--y-)_

(9.32)

C=[rlxuq-rlyV 0]0 _Ix u + rlyV
(9.33)

1 2 0 0], 2 (J)
JRe r u'(rtx + rt2Y) 7 ,7

(9.34)

M_ k2]
2C u k Pk - C Re r

"d _t _ 2 lat

P_ 2
(9.35)

21.t

2
PYnRe r

0

0

21z - y+12
• 2 e
PYnRer

(9.36)

The linearized form of equation (9.29) can now be written as

Proteus 2-D Analysis Description 9.0 Turbulence Model 55

A O,A_ F O(AACV)O(_a4V) O(CACV)
AW"+ f¥_ L _ o_ + o,7

OlAz

,., A n--I

__0(AFM) + --
1 + 02 0_ On

A A A

Az OFc OFD OFM

1+02 0_ +_+ 0,

+o[(o,1

A A A n

OG c OG D OG_ ,_) 02o,7 +--g-_ +-N-. + g+ + 1+o---7

(9.37)

9.2.3 ADI Algorithm for k-, Equations

Letting LHS(9.37) represent the left hand side of equation (9.37), we can write

LHS(9.37)= I-_ 1+02 (A-B) 0_

where | represents the identity matrix. Factoring the term in braces, and neglecting the temporal truncation
and splitting errors, equation (9.37) becomes

I + 1 + 0-------_ (A - B) - (M + A5 I + 1 + 02 (C - D) AVVn =

A A n--I

O1Az I O(AFM) 0(AGM) I

(9.39)

Using the procedure of Douglas and Gurm (1964), as written by Briley and McDonald (1977), equation
(9.39) can be split into the following two-sweep sequence.

Sweep 1 (_ direction)

n A A --in-- 1

{I4 I+0201Az[0-_-(A- B)-(M+ A)]} AV¢* _ l+020'Az I 0(AFM)o______----- + 0(AGM)0_t /
?1

l+o_ o_ +-_+ o: o_ +-NC+-GC +g+ + 1+o---_+ (9.40a)

Sweep 2 (r/ direction)

{ 1}I + X+ 0-------_ (C- D) AfV n = AVe*
(9.40b)

56 9.0 Turbulence Model Proteus 2-D Analysis Description

To approximate spatial partial derivatives, the spatial differencing formulas of Section 5.0 are used in
equations (9.40a) and (9.40b). Following Nichols (199!), the spatial derivatives for the convective terms
are approximated using first-order upwind differencing. A first-order backward difference approximation is
used for the terms with positive eigenvalues, and a first-order forward difference approximation is used for
the terms with negative eigenvalues.

9.2.4 Matrix Inversion Procedure for k-e Equations

Non-Periodic Boundary Conditions

Explicit boundary conditions are used for ease of implementation and modification. The complete set
of algebraic equations for the first ADI sweep with non-periodic boundary conditions can be written in the
following block matrix form.

B2 C2

A3 B3 C3

A4 B4 C4

AN 1 - 3 BN 1 - 3 CN 1 - 3

A_|_2 BN 1-2 CN 1-2

AN t - I BN 1 - 1

^ o

AW 2
^,

AW 3
^ •

AW 4

^ •

AW_ 3
^;I-

AWN 2
^ tl-

AWN 1- I

^ •

RH3 2 -- A2AW l

RHS3

RHS 4

RHSN] - 3

RHSI," 1 - 2
^ .

RHS2¢ 1 _] -- C_l - tAW2ct

(9.4])

In the above matrix, A, B,, and Ci are the 2 x 2 coefficient matrices in front of AVe7,_ t, A_,, and
^

AWT_+t, respectively, and they should not be confused with the Jacobian coefficient matrices A, B, and C

defined in equations (9.30). The above block tridiagonal coefficient matrix is solved using the Thomas al-
gorithm discussed in Section 7.2.1. An analogous procedure is used for the second ADI sweep.

Spatially Periodic Boundary Conditions

A spatially periodic boundary condition in the _ direction may be represented as shown in Figure 7.1.

Following Section 7.2.2, an additional set of grid points is added at i = N_ + 1, setting '_r_vt + t = _'2. This
allows us to use central differencing in the _ direction at i = Nt.

^ ^ A ^

Since Wl = 'W# l and W2 = Wv, + l, equation (9.41) can be rewritten as:

B2 C2 A2

A3 B3 C3

A,, Ba Ca. .

C_

BNI-2 CNi-2

AN 1-1 BN,-1 CN t-1

AN t BN t

/k It

AW 2
/X ,

AW 3
A ,

Aw4

A,

AW,v - 2

_WN, - 1L

AW_ t

RHS 2

RHS 3

RHS 4

RHSN t - 2

RHSNt - 3

RHSN_

(9.42)

Proteus 2-D Analysis Description 9.0 Turbulence Model 57

To solve the above system, the algorithm described in Section 7.2.2 is used. An analogous procedure
is used for the second ADI sweep.

9.2.5 Updating Boundary Values for k-e Equations

For easy modification and easy accommodation of complicated boundary conditions for k and e, non-
periodic boundary conditions are treated explicitly in the solver. After the k and _ values at the interior
points are advanced in time, the values at the boundaries are simply computed from the new interior values
using the specified boundary conditions.

Spatially periodic boundary conditions in either sweep direction axe treated implicitly, as described in the
previous section. For a periodic boundary condition in the _ direction, the k and e values at i = 1 are easily

updated by setting _r = _r¢_. An analogous procedure is used for periodic boundary conditions in the _/
direction.

9.2.6 Turbulent Values of 2 and k

The turbulent second coefficient of viscosity 2, and the turbulent thermal conductivity coefficient k, are
defined as described previously in Section 9.1.5.

58 9.0 Turbulence Model Proteus 2-D Analysis Description

APPENDIXA - EXPANSIONOFVISCOUS TERMS

In Section 4.2, the viscous terms in the governing equations are linearized. To do this, the elements of

i_v and _'v, given in equations (2.17d) and (2.17e) must ftrst be rewritten in terms of the dependent variables,
and with derivatives in the Cartesian directions transformed to derivatives in the computational directions

^ ^

using the chain rule. The non-cross derivative terms, involving Evl and Fv_, are then lineafized using Taylor

series expansion. The cross derivative terms, involving l_v2 and Fv,, are simply lagged one time level. This

Appendix presents the fully expanded viscous terms required in the linearization procedure.

^

The viscous term Ev is _ven by equation (2.17d), which is repeated here.

° 1^ 1 1 z_G + z_y

Ev= J Rer Zxy_x + _Yr_Y l
(A.1)

where

Tx.x = 2/_ux + 2(ux + vy)

Tyy= 2#vy +)L(ux + vy)

_ = U(uy + v_,)

fix = t'tr x.x + v'r xy -- --

fly= ttrxy + VTyy -- --

q,,= -_:Tx

qy= -kTy

1

pr r qx

1

pr r qY

The chain rule is used to transform derivatives in the Cartesian directions into derivatives in the com-

putational directions, resulting in

¢._ = (2u + ,_)(Gu¢ + n_u_) + :.(_yV¢+ ,lyV,7)

Zyy = (2_ + 2)(_yV_ +_yvn) + 2(_xU ¢ + _xUn)

_rxy= u(¢yu¢ + nyun + _xV¢+ n._v,7)

fix = (2# + 2)(_xUU ¢ + rtxUUn) + 2(_jyuv_ + _lyuv,7)
k

+ ta(¢yVU_ + nyV% + CxWi + rlxW,7) + _ (¢xT_ 4: _lxTn)

fly = (2# + 2)(_yw¢ + _lyw,7) + 2(¢xVU _ + rlxVUn)

k

+ u(¢yuu_ + _yUUn + _xUV¢ + ,_xuvn) + _ (¢yT_ + ,TyTn)

Proteus 2-D Analysis Description A. Expansion of Viscous Terms 59

The above expressions for the z's and fl's are next substituted into equation (A.1). The _ derivative

terms become elements of l_vt, and the _ derivative terms become elements of l_v2. The resulting four ele-
^

ments of Evt (excluding the 1/JRer coefficient) are

A

(Ev, h = 0 (A.2a)

^ 2
(A.2b)

(Ev,)3 = 2u_v¢ + ;_y(_:,u: + ¢F¢) + uG(_yu: + G_O (A.2c)

+ M_(_yVU¢+ L,w 0 + _@(_yUU¢+ _#v¢) + _ (_, + (A.2d)

For linearization it is convenient to rewrite the last element as

(2u + 2)

2

+ _tz [¢2(v2)_ + _#(u2)_] + k..k__(#2xerr + _2)T _ (A.2e)

The elements of lrv_ have exactly the same form as those of l_v_, but with _ replaced by r/.

^

The four elements of Ev2 (again excluding the llJRe, coefficient) are

/k

(Ev_h = o (A.3a)

^

(Ev2)2 = 2la_xnxU n + 2¢xOlxUn + _lyV_) + U¢yOlyu n + rlx%) (A.3b)

A

(Ev2) 3 = 2t_ynyv n + 2¢y(nxUn + rlyVrl) + la_x(rly% + rlxVrl) (A.3c)

^

(Ev_)a = 2u(_x_qxUU,7 + _yrlyW_l) 4" ,J._x(nxUl,lrl + rlyh'Vrl) -t-)._y(rlxVU q d- rlyWrl)

k

+ ll_x(rlyVUrl + rlxW_7) + I.t_y(rlyttU_7 + _lxh'Vrl) + _ (¢x_lx + Cy_ly)Trt
(A.3d)

The elements of Fv_ have exactly the same form as those of Ev_, but with ¢ replaced by n and n replaced

by _.

60 A. Expansion of Viscous Terms Proteus 2-D Analysis Description

APPENDIXB - AXISYMMETRICANALYSIS

The analysis used in Proteus for axisymmetric flow is essentially the same as for two-dimensional planar
flow, described in the main body of this report. However, there are some additional terms in the
axisymmetric equations that complicate things somewhat. For that reason, the axisymmetric analysis is

described separately in this appendix.

B.I GOVERNING EQUATIONS

In cylindrical coordinates, the governing equations for axisymmetric flow, with swirl, can be written
using vector notation as

Off Q) a(r E) Off F) Off E v) a(r Fv)
Ot -4 Ox ¢ Or I- H - Ox + Or + HV (B. 1)

where
.

Q=[p pu pv pw Er] T (B.2a)

[,u]pu 2 +p

(Er + p)u

F._..

puv

pv 2 + p

(E r + p)v

(B.2c)

I 0

0

--p -- pw 2

pvw

0

(B.2d)

T.XX

Txr

ZxO
1

_trxx + V'txr + WZxB -- _ qx
rl r

(B.2e)

Proteus 2-D Analysis Description B. Axisymmetrie Analysis 61

TXj

TI. r

TrO
1

UZxr + VTrr + W'rrO -- _ qr
rr r

(B.2f)

1 _ T00
H V = _ (B.2g)

Equation (B. 1) thus represents, in order, the continuity, x-momentum, r-momentum, 0-momentum (swirl),
and energy equations, with dependent variables p, pu, pv, pw, and Er. Note that the additional terms in
these a.'dsymmetric equations destroy the strong conservation law form of the two-dimensional planar
equations presented in Section 2.1. Unfortunately, the axisymmetric form of the equations cannot be put
into strong conservation law form (Vinokur, 1974.)

The shear stresses and heat flukes are given by

Ou AV Ou 1 (0(rv) /]_xx=2/_-_-x + Lox+v-\

0v _rau l(0(,_))]rrr=2#'_-r + Lox+7 Or

v [ou. 1(o(_)'_]T00=Z#-Y+2 -_--x +7 Or ,]_]

"rxr= #(Ou Ov-_; +-y£) (B.3)

(ow w)Z rO = Ix Or r

In these equations, x, r, and 0 represent the axial, radial, and circumferential directions, respectively; and
u, v, and w represent the velocities in those directions. The remaining symbols are the same as those in the
two-dimensional equations describea in Section 2.1.

For turbulent flow, #,)., and k represent effective coefficients. The turbulence model is described in

Section 9.0. The only modification to the model for axisymmetfic flow is the definition of 1_1, the mag-

nitude of the total vorticity. For axisymmetric flow,

62 B. Axisymmetric Analysis Proteus 2-D Analysis Description

5 = -g;/+--r) + 77) + a_ a_

When the generalized grid transformation of Section 2.3 (with y replaced by r), is applied to equation

(B.1) the result is

(r Q)_ + (r Q)_t + (r Q)n_ t + (r E)_ x + (r E),Tr/x + (r F)=x_r "1- (F F)r/r/r + H

- (rEv)_ x - (rEv)n,1 x - (rFv)_ r - (rFv)n_ r - H V = 0 (B.4)

Although this axisyrnmetric equation cannot be put into exact strong conservation law form, the pro-

cedure used to do so for the two-dimensional equation, described in Section 2.4, is nonetheless applied to

equation (B.4). The result is

A A A A A

a(r Q) a(r E) a(r F) ^ a(r E v) a(r F v) ^

am-T-+ a----T-+T +rI- a¢ + a_ +nv (B.5)

where

= 1 (E_x + F_ r + Q_t)

^ 1
F = 7 (Er/x + Fr/r + Qr/t) "

fi=rI
J

^ 1
Ev = 7 (EV _x + Fv _r)

^ 1
Fv= 7 (Ev'Tx + Fvvlr)

^ H e

Hv= j

Using equations (B.2a) through (B.2g) these can be expanded as

^ 1
Q=7[p pu pv pw ET] r (B.6a)

#U_x + OVer + P_t

(p,2+.p)¢_+ p_¢r + p_'¢,

PUV_x + (Pv2 + P)_r+ PV_t

pUW_ x + pVW_ r + pW_ t

(Er+ P)U_x + (Er+ P)VCr + Er _t

(B.6b)

Proteus 2-D Analysis Description B. Axisymmetric Analysis 63

1

ptalx q- pWlr -t- P_lt

(pu 2 + p)rl x + puwl r + pzal r

ptlv_l x + (pv 2 + p)rlr + pV_l t

ph'W_x + pvWrlr -b pWrlt

(ET+ p)u'q x + (ET+ P)V_r + ET_t

(B.6c)

--p -- pw 2

pvw

0

(B.6d)

^

Et:-
1 1

J Re r

0

Zx.x_x + Txr_r

T_r_x + "rrr_r

ZxO_x + ZrO_r

(B.6e)

^ 1
Fv- j

0

"rx.xrl x -b T xrrl r
1

Re r "rxrrlx q- Xrrrlr

TxOrl x + ZrOrl r

fl XrtX + flrrlr

(B.6f)

o]
0 .

"0°]
(B.6g)

where

1
fix = l'l'r x.x "4- V'r xr 't- W'r xO -- _ qx

1
_Sr= UZxr+ VZrr+ WZro -- _. qr

rt r

(B.7)

B.2 LINEARIZATION

^

Solving equation (B.5) for OQlOz (assuming r is not a function of time) and substituting the result into the
^ ^

time differencing scheme of Beam and Warming, given by equation (3.1), for O(AQ")/0-r and c3Q"lOr yields

64 B. Axisymmetric Analysis Proteus 2-D Analys/s Description

01AT 1 a(rAE) 0(rAF") Az 1 "0(rE)

A6n= 1 + 02 r 0_ + a------_-+ A_ln 1 + 02 r a_

01Az 1 O(rAEv n) O(rAFv) ^ n Ar 1 O(rEu)

+ 1 + 0 2 r O_ + O_r + AHv + 1 + 0 2 r O_

+ 1+ o------_- + o 0_ - 5- - o2 (A_)2, (a_) 3

a(,'P)
f

art

f" rl

a(rFv)
+

3,7
+Hv

(B.8)

This equation must be linearized using the procedure described in Section 4.0.

B.2.1 lnviscid Terms

For the inviscid terms the Jacobian coefficient matrix OEIOQ is

^

0Q

_t _x ¢, 0 0

_p ap ap Op ap

o, o,
-- wfl w_, w{, Ct + fl 0

(:.) o, ()--ft -- "_p A¢,, +A A_r +fl Op Op Op

(B.9)

^ ^ ^ ^

wheref = u_, + v_, and)_ = (Er+p)/p. The Jacobian matrix OFIOQ has the same form as OE/OQ, but with
replaced by _/.

^

For the additional term H, the linearization procedure gives

0fi
---7--=
aQ

0 0 0 0 0

0 0 0 0 0

Op w2 Op Op Op 2w ap
- _ + O(pu) O(pv) O(pw) OET

- vw 0 w v 0

0 0 0 0 0

(e.lO)

B.2.2 Viscous Terms

^ ^

To linearize the viscous terms, Evp Ev_, etc., must first be rev, xitten in terms of the dependent variables,
and with derivatives in the cylindrical coordinate directions transformed to derivatives in the computational
directions using the chain rule. The shear stress and heat flux terms, given by equations (B.3) and (B.7),
become

Proteus 2-D Analysis Description B. Axisymmetric Analysis 65

T= = (2_ +).)(_ + n_u,7)+ _ [_(_)¢ + ,v(_) n]

2
T,r= 2_(G_'¢+ n,%) + :'-(Gu_+ n._u,7)+ 7- [G(rv)¢ + nr(rV),7]

v 2
ToO= 2p. "7 + 2(g-eu_ + '/xUn) + -7- [¢r(rV)_ + Y/r(rV)n]

_r = _'(_,_ + n,% + Gv¢ + '7_v,7)

"L_O----_(_xW¢+ n_w,7)

'W

).
#_ = (2_ +).)(Guu¢ + ,u-_,7)+ -/- [Gu(n,)¢ + nrU(_),7]

+ _(_vu¢ + n,:'% + _w¢ + n._n) + _(G_¢ + n._ww,7)
k

+ _ (_xT_ + _IxTn)

2
#, = 2_(¢,_,¢+ nr_,n)+ -7 [¢_v(n,)¢+ nrr(n,)n]

+ _,(¢,_,u¢+ n,.u%+ G_¢ + nx_n) + _(_rWW¢+ n_ww,_)
2

+ 2(¢xVU¢ + _lxVUn) -- U --7- + (¢rT¢ + _lrT'7)

The above expressions for the shear stress and heat flux terms are substituted into equations (B.6e)
through (B.6g). As in the two-dimensional planar case, the cross derivative terms are separated from the
non-cross derivative terms. In addition, for the axisymmetric case the non-derivative terms are included
with the cross derivatives.

The resulting five elements of I_v_ (excluding the llJRe, coeffident) are

A

(Ev_)_ = 0

(Ev,h = 2_Gu¢ + tG ¢_¢ + -7 G(r_)¢ + _r(L.u¢ + Gv¢)

(Ev,)_ = 2_v¢ + '_L- _¢ + -?- _(r_)¢ + _x(_rU¢ + G_'_)

^ 2 _2

(Ev)4 = l_xW_ + _¢rWu

(Ev_)5 = 2la(¢xUU¢ + ¢rW;) + 2?x CxUU¢ + 7- _rU(rv)¢ +)'_r _xVU_ + -7" _r'¢(rv)¢

+ _,G(Gru¢ + Gw¢ + Gww¢) + _r(_uu¢ + Guv¢ + Gww¢) +

For linearization it is convenient to rewrite the last element as

A r;:

(EvI)5 _ (2/a + 2) [_2x(U2) ¢ + ¢_(v2)¢] + (/_ +).)_xCr(uv)¢ + "_r + (_r v2 + Cx zzv)
2

+ T" + w2)¢ + ¢_(u2 + w2)¢] + _k (¢2 + ¢r2)T¢

(B.Ila)

(B. 1 lb)

(B. 1 lc)

(B. 1 l d)

(B.Ile)

(B.110

66 B. Axisymmetric Analysis Proteus 2-D Analysis Description

^ ^

The elements of Fvl have exactly the same form as those of Evl, but with _ replaced by _/.

^

The five elements of Evz (again excluding the 1/JRe, coefficient) are

^

(Ev2h =0

^ _ F I]

(EV2)2 = 2/'tCxr/xUr/+ _,xLlTxUq + 7)Tr(rV)) d + IZCr(_rt_? +)IxVq)

A [,](Ev2)3 = 21_{rrlrV_ +)'_r rlxurl "k --_ rlr(tW)r l "4- _x(rlr_t_ -b rlxrrl)

^ - 1 1 nrV(rv)J J(Ev2)s= 21a(_x_IxUU,7+ _rrlrW_) + ;.'x[rlxuu,r +'TrlrU(rv),J + ;._rE_TxVU_+-" F

+ _,G(,7,_u,7+ ,7_w,7+ ,7,,ww.) + M,(,7,_ + '7_,7 + '7_'w,7)
2w k

- u6-7- + _ (¢_,t_+ ¢,.,i,.)%

The last element can be rewritten as

(B. 12a)

(B.12b)

(B. 12c)

(B. 12d)

(B.12e)

^ . V
(Ev2)5 = 21.t(_ xrlxUUrl "4" _r37rVVq) + 2 _ x(rlxUUrl "1- rlrUVrl) q- ,_._r(rl xVZt_ + rlrW_7) -'b Arlr "-F (_ xU -'k _rV)t"_

"k ld _ x(rl rlrUrl "1- rl xtZV rl 4- rl xww rl) "k Id _ r(rl r1272rl q- rl xl, lV rl -b rl rWW rl)

w2- u_-7- + (G,7_ + _m_)T,_ (B. 120

^ ^

Tbe elements of Fv2 have exactly the same form as those of Ev2, but with _ replaced by)7 and)7 replaced
by _.

/k

(Hv)] = 0 (B. 13a)

(B.13b)

^

The five elements of Hv are

(B.13c),

A

(Hvh = o

^ 2
(Hv)3 = - eu _ - ;.(¢xU_+ ,Ixu_) + 7 [6(r_): + _r(rv),]

A W

(Hv)4 = U(_rW_+ n,.w,_)- U-7-

^

(Hv)_ = o

(B. 13d)

(B. 13e)

Proteus 2-D Analysis Description B. Axisymmetrie Analysis 67

^ ^

Performing the linearization, the Jacobian coefficient matrix dEv_/OQ is

where

0

Re"_ ? (3,

\-7_-Q/51

0 0 0 0

3 I

0

1

=" -_- +=;" 7q o

/ _1

0 0 azz-_L'-_-) 0

^ (O^ 3 ^

axx = (2# + 2)_x 2 + #_r 2

arr = gCx 2 + (2/_ + 2)G 2

%_ = uG 2 + u_"

• 2
a_r = -7" GG

, 2
CXrr = -7 _r 2

k
_0 = _ (G 2+ _2)

0 _ O u , v

_Q _w (_-) -_' _-)-_ T_
21

O] 3 v , v
-= -- rtxr -- O:rr W -'fi- -- O:rr ---fi- r ¢

dQ
31

OEvz O

41

(') () ()()OEv_ 0 u2 0 2 3 2

OQ 51

--f- r_ - 2axr --7 r¢ + ao

(B.14)

68 B. Axisymmetric Analysis Proteus 2-D Analysis Description

= - a(pu)

52 21

a a v aT
' = - -' + _ -b-q + _o

aQ
aQ 53 31

a(pw)

54 41

The Jacobian coefficient matrix for the remaining non-cross derivative viscous terms, aiZv_lOQ, has the
^ ^

same form as OEvJOQ, but with _ replaced by n.

^ ^

And finally, lmearizing I_Iv,the Jacobian coefficient matrix aI-IvlaQ is

A

aHv

0

0

(A)1 aHv

Rer aQ 31

OQ
41

0

0 0 0 0

0 0 0

OH V OHv

o4 o
32 33

o o
0 0 0

(B.I5)

where

I

+ [2. +).(_,z{ + n,.zn)] T -_" + a v

(A)ally 1
__ _ 2_x_ (1)_ _x_ (__)

aQ
32

Proteus 2-D Analysis Description B. Axisymmetrie Analysis 69

(A) ()
0Hv 0 1

= - _r _ W - [2_+ _(_,r_+ _,r_)]-----
OQ

33

(A)_Hv ; O +-----
_Q 41

(A) 163HQ =_r-_-_ <-_t-----

44

#wr p /'tr/r-_--_ (-_ -)

,,r p + t_/r

B.2.3 Equation Of State

The equation of state given in Section 4.3 must be modified slightly to add the swirl velocity w. Thus,

p = (3'-1)[ET,+p(u2+v2+w2)l (B.16)

or, ha terms of temperature,

1 [ET 1 (u2+v2+w2)l. (B.17)T=W P 2

The derivatives arising from the linearization are the same as those presented ha-Section 4.3, except for

Op y- 1 v2
0---7 = 2 (u2+ +w2) (B.18a)

0p =- 0'- 1)w (B.18b)
0(pw)

O___TT= 1 lET I v2)1 (B.18c)Op c v p2 P (u2 + + w2

07" =-- w (B.18d)
O(pw) c_p

If constant stagnation enthalpy can be assumed, the appropriate equation of state is

y--1 [1 (u2+v 2]P= _ P hr- T + w2) (B.19)

and the temperature becomes

T - __1 1 (u 2 + v2- c, [hr - +w2)]

Again, the derivatives arising from the linearization are the same as in Section 4.3, except for

Op 7 hT + T + w2)

3p 3,-1
-- __--]4?

O(pw) _'

(B.20)

(B.21a)

(B.21b)

70 B. Axisymmetric Analysis Proteus 2-D Analysis Description

OT

Op
1 (u 2 + v 2 + w 2)

c:

OT w

a(pw) c:

(B.21c)

(B.21d)

B.2.4 Linearized Governing Equation

The linearized form of equation (B.8) can now be written as

OIA_ 1 r (a_ _nA6n r (a_ A6n + (O_ A6n

AI_n+ 1+02 r' _ \-_-Q// \ oQ \ oQ

01A,'r

1 +02

A _'I A ?'/ A n

0Hv A(_n

r . On OQ O(_

. . (..).Ar 1 0(rE) O(rF) Ax 1 O(rEv_) + __ + Hv
1 +0 2 r 0_ + 0-----_ + + 1 +0 2 r 0------_---- Or/

A A n A A n--1

+ 1 + 0 2 r 0_ t- 0------_---- 1 + 0 2 r 0---_--- +

-_ 1 + 0 2 + O 01 - -_- - 0 2 (Az) 2, (0 3 - Ol)(A'r) 2, (At) 3

(B.22)

B.3 SOLUTION PROCEDURE

Letting LHS(B.22) represent the left hand side of equation (B.22), we can write

{ I()0IA_" l a r 0_: r 0Ev1 +__..kr c_:_F__r____]/ _, AQ (B.23a)t.HS(B.22)=K+I+O: r $y a-_-- oQ

where

and I represents the identity matrix.

LHS(B.22) ----IK +

o. .23b,x=i+. _+o----7 _6 ao

The term in braces in equation (B.23a) can be factored to give

0,A" ! 0 r-_Q -r I+ 0_"--r O'_vl
1+0 2 • O_ "_Q 1+0 2 _" _r/

(OIA" 12 I[_('E rOF'lll _9_ : OF 'FvI)]nA_n ('.2')-- _ --l-_K-r , "'7--OQ _Q : Orl _r-_Q -r c3"---_-

The last term represents the splitting error.

Proteus 2-D Analysis Description B. Axisymmetric Analysis 71

Equation (B.22) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation

and splitting error terms, becomes

(
ol_ I a \ a_ K+
1+ 05 _ a_ r---, (K-')° 0,_. 1 0 0_

K +

n ^ ^ /1

^ ^) A_" I : O(rEvl) + O(rFvl) l_Iv)A, 1 : O(rE) + O(rF) +{I +_'7"k 0_ _ +1+o5 r \-5?- --/7-.
n ^

(1 +03)A_I+ 02 rl(o(r'v2)O_ + O(rFv2))Or1 lOaA'r+05 "_lQ O(r_2v2}O_ + O(rFv2)) n-l+'O-_ _ 02 A&n-I_'/ (B.25)
+

Using the procedure of Douglas and Gunn (1964), as written by Briley and McDonald (1977), equation

(B.25) can be split into the following two-sweep sequence.

Sweep 1 (¢ direction)

+

^ - ° (^ o,r,,,,a, 1 [a(r E) + O(r F) + i_!) Ax 1 a(r Ev,) I2I1+02 • _,----_ _ 4 1+02 "_ 0{ _+

n--1

1+ 02 7 "O'_ ÷ 0,7 1+ 02 7 0_ + On

02 --_n- 1

+ 1-_2/xt2
(B.26a)

Sweep 2 (r/ direction)

 +1+02r O---g-
^ ^,

AQ n = KnAQ (B.26b)

Or, expanding K and rearranging,

Sweep 1 (¢ direction)

]] 01A_ 1
^" OlAf" 1 a al_ • 0tA'r 1 a • Q" +

AQ + 1 +02 r O_ • A(_ 1+02 r a{ OQ 1+02 •

A_ 1 [" a(r E) O(r F)) Ax 1 O{r Evl)1+02 r k_+"-'_ +I_! ,+ 1+02 r 0_ + +I2I

n--I^ ^ n ^ ^

+ 1+02 _ a_ + N 1+05 _ 0_ + N

(O(_ OQ

02 .2_- 1 (B.27a)

72 B. Axisymmetrie Analysis Proteus 2-D Analysis Description

Sweep 2 (_/direction)

01Az 1 0^

AQ" +
I +02 r &7

r

c_Q I+02 _ t3r/ r L c_Q /

A6"+ I +02 r t96 0Q

n

7 AQa =
+ I + 02 "_ 8Q 0Q

(B.27b)

Applying the spatial differencing formulas of Section 5.0 results in

Sweep 1 (¢ direction)

[(: (:/::o,,1^ • O1A" 1 01_ ^' 0E ^"
-- AQi+l r

AQi+ (1 +02)2A _ r r _6 --i+l

OIA" +[(r._lf. ,+ri_)g,_ 1 Qi_l--(ri-l_-l+2rif,'+ri+lfi+l)"giAQ,+(rifi+r*+lfi+l)"g,"+lA6;+l]
(I + 02)2(A_) 2

n

+ l+O--"-'_ 0(_ c3Q I+02 T [6{(rE)+6'(rF)+l_l]n+ l+e2 _ [6_(rEv')+
i

^ ^ 0 ^. (B.28a)(I+03)A, 1 * ^ 03 A" 1 -1 2 A -l
+ 1 "+'02 7 [6_(rEt'2)+6,l(rFv'2)] n 1 +02 _ [64(rEt'2)+6"(rFv'2)Y +1--"-+_2 Q

Sweep 2 (7 direction)

"n 81A': 1 _ A67+ _ A ^"r I -- r Qj- 1

AQj + (1 + 02)2A_/ 7 0Q /j + 1 t_Q /j _ 1

" " ^ ^ r -- "" " A _" "1
etA" +[(rj_,fj_,+rjfj)%_iAQ__l-(r)_14 ,+2r)fj+rj+lf)+l)'gfAQT+(rjfj+ j+,fj+Ogj+t tg,+l._

(1 + 02)2(A_/) 2

7 / AQ; = AQ + 1 + 02 r 06 aQ
+ 1+02 r IX 0Q OQ /

These equations are solved using the same matrix inversion procedure described in Section 7.2.

B.4 CHIEN k-e TL'RBULENCE MODEL

The axisymmetric k-_ equations for the Chien model can be written using vector notation as

O(rVO O(rG)
= r(S + T)o---i--+ ox + 0---7- (B.29)

where W, F, G, S, and T are the same as the corresponding terms in the two-dimensional planar equations

with the coordinate y replaced by r, and

,,=L,ox,
+(Ou 2

(B.30a)

Proteus 2-D Analysis Description B. Axisymmetdc Analysis 73

Ou Ov v (B.30b)
P2 = -_-x + --_r + --/-

The analysis for the axisymmetric k-_- equations is the same as for the two-dimensional planar k-_ equations,
described in the main body of this report.

74 B. Axi_'mmetrie Analysis Proteus 2-D Analysis Description

REFERENCES

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. (1984) Computational Fluid Mechanics and Heat
Transfer, Hemisphere Publishing Corporation, McGraw-Hill Book Company, New York.

Baldwin, B. S., and Lomax, H. (1978) "Thin Layer Approximation and Algebraic Model for Separated
Turbulent Flows," AIAA Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) "An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations," AIAA Journal, Vol. 16, No. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977) "Solution of the Multidimensional Compressible Navier-Stokes
Equations by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, pp. 373-397.

Briley, W. R., and McDonald, H. (1980) "On the Structure and Use of Linearized Block Implicit Schemes,"
Journal of Computational Physics, Vol. 34, No. I, pp. 54-73.

Cebeci, T., and Bradshaw, P. (1984) Physical and Computational Aspects of Convective Heat Transfer,
Springer-Verlag, New York.

Cebeci, T., and Smith, A. M. O. (1974) Analysis of Turbulent Boundary Layers, Academic Press, New York.

Chen, S. C., and Schwab, J. R. (1988) 'q'hree-Dimensional Elliptic Grid Generation Technique with Ap-
plication to Turbomachinery Cascades," NASA TM 101330.

Chien, K. Y. (1982) "Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number
Turbulence Model," AIAA Journal, Vol. 20, No. 1, pp. 33-38.

Dcu_as, J., and Gurm, J. E. (1964) "A General Formulation of Ahemating Direction Methods. Part I -
Parabolic and Hyperbolic Problems," Numerische Mathematik, Vol. 6, pp. 428-453.

Goldberg, U. C., and Chakravarthy, S. R. (1987) "A New Computational Capability for Ramjet
Projectiles," AIAA Paper 87-2411.

Hughes, W. F., and Gaylord, E. W. (1964) Basic Equations of Engineering Science, Schaum's Outline Series,
McGraw-Hill Book Company, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) "Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA Paper 81-1259.

Kemighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book
Company, New York.

Kirtley, K. R. (1987) "A Coupled, Parabolic-Marching Method for the Prediction of Three-Dimensional

Viscous Incompressible Turbomachinery Flows," Ph.D. Thesis, Pennsylvania State University.

Kleinstein, G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers,"
AIAA Journal, Vol. 5, No. 8, pp. 1402-1407.

Korn, G. A., and Kom, T. M. (1968) Mathematical Handbook for Scientists and Engineers, McGraw-Hill
Book Company, New York.

Proteus 2-D Analysis Description References 75

Launder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Len_h Near
a Wall," International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Nichols, R. H. (1990) "l'wo-Equation Model for Compressible Flows," AIAA Paper 90-0494.

Nichols, R. H. (1991) "Calculation of the Flow in a Circular S-Duct Inlet," AIAA Paper 91-0174.

Patel, V. C., Rodi W., and Scheuerer, G. (1985) "Turbulent Models for Near-Wall and Low Reynolds
Number Flows: A Review," AIAA Journal, Vol. 23, No. 9, pp. 1308-1319.

PuUiam, T. H. (1986a) "Efficient Solution Methods for the Navier-Stokes Equations," Numerical Tech-
niques for Viscous Flow Calculations in Turbornachinery Bladings, Lecture Series 1986-02, Von Karman
Institute for Fluid Dynamics, Brussels, Belgium.

PuUiam, T. H. (1986b) "Artificial Dissipation Models for the Euler Equations," AIAA Journal, Vol. 24,
No. 12, pp. 1931-1940.

Sahu, J. (1984) "Na,der-Stokes Computational Study of Axisymmetric Transonic Turbulent Flows with a
Two-Equation Model of Turbulence," Ph. D. Thesis, University of Delaware.

Schlichting, H. (1968) Boundary-Layer Theory, McGraw-Hill Book Company, New York.

Spalding, D. B. (1961) "A Single Formula for the Law of the Wall," Journal of Applied Mechanics, Vol.
28, pp. 455-457.

Steger, J. L. (1978) "Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Ge-
ometries," ALAA Journal, Vol. 16, No. 7, pp. 679-686.

Towne, C. E., Schwab, J. R., Benson, T. J., and Suresh, A. (1990) "PROTEUS Two-Dimensional
Navier-Stokes Computer Code - Version 1.0, Volumes 1:3," NASA TM's 102551-3.

Vinokur, M. (1974) "Conservation Equations of Gasdynamics in Curvilinear Coordinate Systems," Journal
of Computational Physics, Vol. 14, pp. 105-125.

Wassel, A. T., and Carton, I. (1973) "Calculation of Turbulent Boundary Layers Over Flat Plates With
Different Phenomenological Theories of Turbulence and Variable Turbulent Prandtl Number," Interna-
tional Journal of Heat and Mass Transfer, Vol. 16, pp. 1547-1563.

White, F. M. (1974) Viscous Fluid Flow, McG-raw-Hill Book Company, New York.

76 References Proteus 2-D Analysis Description

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden 1or this colleclion of infon'nation is estimated to average 1 hour per reSpOnse, including the time for reviewing instructions, searching existing data soorc_,
gathering and mainlaining the data needed, and comple!ing _d reviewing the _.ollection of information. Send comments regarding this burden estimate or any other aspect of this
collection of inforrnalion, including suggestions for reducing this burden, 1o Washington Headquarlars Services, Directorat e for Information Operallons an..d Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington.VA 22202-4302, and to the Offn:e of Management and Budget, Paperwork Reduction Prolect (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1993

4. TITLE AND SUBTITLE

Proteus Two-Dimensional Navier-Stokes Computer Code-Version 2.0

Volume 1-Analysis Description

6. AUTHOR(S)

Charles E.Towne, John R. Schwab, and Trong T. Bui

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135- 3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

Technical Memorandum

5. FUNDING NUMBERS

WU- 505--62-52

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8105

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA TM- 106336

11. SUPPLEMENTARY NOTES

Responsible person, Charles E. Towne, (216) 433-5851.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

i12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A computer code called Proteus 2D has been developed to solve the two-dimensional planar or axisymmetric,

Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in

this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.

Code readability, modularity, and documentation have been emphasized. The governing equations are solved in

generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution proce-

dure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using

second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscos-

ity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the

assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options

are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis

Description, and presents the equations and solution procedure. It describes in detail the governing equations, the

turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formu-

las, the ADI solution procedure, and the artificial viscosity models.

14. SUBJECT TERMS

Navier-Stokes; Computational fluid dynamics; Viscous flow; Compressible flow

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

78
16. PRICE CODE

A03

20. LIMITATION OF AB:STHACT

Standard Form 298 (Flev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

