SN o
/

NASA Technical Memorandum 106336 J 00D

5K

Proteus Two-Dimensional Navier-Stokes
Computer Code—Version 2.0

Volume 1-Analysis Description

Charles E. Towne, John R. Schwab, and Trong T. Bui
Lewis Research Center
Cleveland, Ohio

(NASA-TM-106336-Vol-1) PROTEUS NG4-15485
TWO-uUTMENSIONAL NAVIER-STOKES

COMPUTER CUDc, VERSION 2.0. VOLUME

1: ANALYSTIS DESCRIPTION (NASA) unclas
15 p

G3/34 0190203

October 1993

NASN

CONTENTS

PRINCIPAL NOTATION .. ittt et it e atanseseenanneeneenneanenaennns 3
SY MBOLS . . e e e 3
SUBSC RIP TS .. e e 5
SUPERSCRIP TS . e e 5

SUMMARY 0. e e e et ettt et e et e 7

L0 INTROD UCTION . ittt ittt ettt aae i ee ettt iataeaaeeesanannns 9

20 GOVERNING EQUATIONS . .. ittt ittt eaiaiaereeenenaenns 11
2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES 11
2.2 EQUATION OF STATE e e et e e 12
2.3 GENERALIZED GRID TRANSFORMATION 13
2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES 15

30 TIME DIFFERENCINGt iiiiiiiieiiinannn l7

4.0 LINEARIZATIONPROCEDURE iiittiieitttiinnnneeeeinennenenns 19
4.1 INVISCID TERMS .. e e 19
4.2 VISCOUS TERMS . . i e e et e e e 20

4.2.1 Non-Cross Denvatives it e e e e 21
4.2.2 Cross Denvativesttt i e e 22
4.3 EQUATION OF STATE e e e et 23
4.4 LINEARIZED GOVERNING EQUATION i 24

50 SPACE DIFFERENCING it ettt ettt ettt it 25

6.0 BOUNDARY CONDITIONS ..ttt ittt inian st eiaanann 27
6.1 NO CHANGE FROM INITIAL CONDITIONS, Ag=0 27
6.2 SPECIFIED FUNCTION, g=/f ...ttt e e 27
6.3 SPECIFIED COORDINATE DIRECTION GRADIENT, dgfd¢ =f 28
6.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vgen=/f 28
6.5 LINEAR EXTRAPOLATION e e e e 30

7.0 SOLUTION PROCEDURE ittt intaneteonaneneeaennnnaenns 31
7.1 ADI ALGORITHM ... e e e 31
7.2 MATRIX INVERSION PROCEDURE i 33

7.2.1 Non-Periodic Boundary Conditions 33
7.2.2 Spatially Periodic Boundary Conditions 35
7.3 UPDATING BOUNDARY VALUES i 38
7.3.1 Non-Penodic Boundary Conditions 38
7.3.2 Spatially Peniodic Boundary Conditions 40

8.0 ARTIFICIAL VISCOSITYottt iiiiinitinenneetassansooncnnns e 43
8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY 43
8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY 44

9.0 TURBULENCE MODELS ittt ittt iananraaneetacareoneennns 47
9.1 BALDWIN-LOMAX MODEL e e e 47

9.1.1 Outer Regiont e e e 47
9.12 Inmer Reglon 49

Proteus 2-D Analysis Description Contents 1

9.1.3 Averaging Procedures for Multiple Boundaries 49

9.1.4 Transition Model e S0

9.1.5 Turbulent Valuesof Aand k i 51

9.2 CHIEN k-e TURBULENCE MODEL i 51
9.2.1 k-s Equations e 51

9.2.2 Linearization of the k-¢ Equations i 54

9.2.3 ADI Algorithm for k-¢ Equations 56

9.2.4 Matnx Inversion Procedure for k- Equations 57

9.2.5 Updating Boundary Values for k-¢ Equations 58

9.2.6 Turbulent Valuesof fand k i 58
APPENDIX A - EXPANSION OF VISCOUSTERMS i et 39
APPENDIX B - AXISYMMETRIC ANALYSIS ... it e e e 61
B.1 GOVERNING EQUATIONS .. e e e 61

B.2 LINEARIZATION . .. e e e e 64
B.2.1 Inviscid TeIms oot e e e 65

B.2.2 Viscous TeImS . ..ttt i e e e e 65

B.2.3 Equation Of State 70

B.2.4 Linearized Governing Equation i 71

B.3 SOLUTION PROCEDUREt it 71

B.4 CHIEN k-« TURBULENCE MODEL ieiiiinenn. 73
REFERENCES ... ittt ittt iiiiiaeeaannnnn ettt 75

2 Contents Proteus 2-D Analysis Description

SYMBOLS

PRINCIPAL NOTATION

Unless specified otherwise, all variables are nondimensional.

Symbol

a
A B C
A, B, C
G, G

E F

kh kI
L
N,

Definition

Speed of sound.

Coefficient submatrices in block tridiagonal system of equations.
Coefficient submatrices for boundary conditions.

Specific heats at constant pressure and volume.

Inviscid flux vectors in the Cartesian or cylindrical coordinate form of the govern-
ing equations. .

Inviscid flux vectors in the computational coordinate form of the governing
equations.

Total energy per unit volume. -

Viscous flux vectors in the Cartesian or cylindrical coordinate form of the govern-
ing equations. -

Viscous flux vectors in the computational coordinate form of the governing
equations.

Non-cross derivative viscous flux vectors in the computational coordinate form of
the governing equations.

Cross derivative viscous flux vectors in the computational coordinate form of the
governing equations.

Flux vectors in the Cartesian or cylindrical coordinate form of the k-¢ turbulence
model equations.

Flux vectors in the computational coordinate form of the k-¢ turbulence model
equations.

Stagnation enthalpy per unit mass.

Non-denvative inviscid and viscous terms in the Cartesian coordinate form of the
governing equations for axisymmetric flow.

Non-denivative inviscid and viscous terms in the computational coordinate form
of the governing equations for axisymmetric flow.

Grid indices in the ¢ and » directions.

Jacobian matrix of the generalized grid transformation.
Effective thermal conductivity coefficient.

Turbulent kinetic energy.

Laminar and turbulent thermal conductivity coefficient.
Dimensional reference length.

Number of governing equations being solved.

Proteus 2-D Analysis Description Principal Notation 3

Svmbol

Arh NZ

Pr,
Pr, Pr,

qx, qr
9x 4y

94

@, P, etc.

01, 82) 83
K2, Kg

A

4 Principal Notation

Definition

Number of grid points in the ¢ and 5 directions.
Static pressure.

Reference Prandtl number.

Laminar and turbulent Prandtl number.

Heat fluxes in the cylindrical x and r directions.
Heat fluxes in the Cartesian x and p directions.

Vector of dependent variables in the Cartesian or cylindrical coordinate form of the
governing equations.

Vector of dependent variables in the computational coordinate form of the gov-
erning equations.

Gas constant.

Reference Reynolds number.

Source term subvector in block tridiagonal system of equations.
Source term subvector for boundary conditions.

Non-derivative terms in the Cartesian or cylindrical coordinate form of the k-¢
turbulence model equations.

Non-derivative terms in the computational coordinate form of the k-¢ turbulence
model equations.

Physical time.

Static temperature.

Velocities in the Cartesian x and y directions.
Velocities in the cylindrical x, 7, and swirl directions.

Vector of dependent variables in the Cartesian or cylindrical coordinate form of the
k-¢ turbulence model equations.

Vector of dependent varables in the computational coordinate form of the k-¢
turbulence model equations.

Cylindrical axial and radial coordinates.
Cartesian coordinates.

Ratio of specific heats, ¢,/c,.

Difference operator.

First-order forward and backward difference operators.
Turbulent dissipation rate.

Second- and fourth-order explicit artificial viscosity coefficients in constant coeffi-
cient model.

Implicit artificial viscosity coefficient.

Second- and fourth-order artificial viscosity coefficients in nonlinear coefficient
model.

Parameters determining type of time differencing used.
Constants in nonlinear coefficient artificial viscosity model.

Effective second coefficient of viscosity.

Proteus 2-D Analysis Description

Symbol Definition

A A Laminar and turbulent second coefficient of viscosity.

U Effective viscosity coefficient.

Loy He Laminar and turbulent viscosity coefficient.

v Laminar kinematic viscosity.

En Computational coordinate directions.

P Static density.

c Pressure gradient scaling parameter in nonlinear coefficient artificial viscosity
model.

T Computational time.

Texs Txyr €IC. Elements of shear stress tensor.

¥ Spectral radius in nonlinear coefficient artificial viscosity model.

SUBSCRIPTS

Subscnpt Definition

iJ Denotes grid location in ¢ and # directions.

r Denotes dimensional reference condition.

t Denotes differentiation with respect to physical time.

x,r Denotes differentiation with respect to cylindrical coordinate directions.

X, p Denotes differentiation with respect to Cartesian coordinate directions.

¢y Denotes differentiation with respect to computational coordinate directions.

T Denotes differentiation with respect to computational time.

SUPERSCRIPTS

Superscript Definition

n Denotes time level.

* Denotes solution after first ADI sweep.

Proteus 2-D Analysis Description ' Principal Notation 5

PROTEUS TWO-DIMENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION 2.0

Volume 1 - Analysis Description

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the two-dimensional planar or
axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly,-and may be steady or unsteady. Spatially periodic
boundary conditions are also available. = All terms, including the diffusion termis, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy wviscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geometries
require an externally generated computational coordinate systemn.

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User’s Guide, and contains information needed to run the program. It describes the program’s
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer’s Reference, and contain3 detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989. The current documentation
covers Version 2.0, released in early 1992.

PRECEDING FALE BLANK NCT FILMED

Proteus 2-D Analysis Description Summary 7

LT TN Ay g Wiy
%‘,_, . .«umiﬂbﬁ ELN!

1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-propretary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending to do anything more than run standard test cases with it. The user’s
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus two-dimensional Navier-Stokes computer program is a user-eriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kernighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, input
variables, output varables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANS] standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available. ‘

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and tmplicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external gnd
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume I, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in Prozews. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User’s Guide, and contains information needed to run the program. It describes the program’s
general features, the input and output, the procedure for setting up initial conditions, the computer resource

Proteus 2-D Analysis D«scriptioﬁa RECE D e 1.0 Introduction 9
o HOT K pg

T

requirements, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer’s Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989 (Towne, Schwab, Benson,
and Suresh, 1990). The current documentation covers Version 2.0, released in early 1992.

The authors would like to acknowledge the significant contributions made by their co-workers. Tom
Benson provided part of the original impetus for the development of Proteus, and did the original coding
of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal gnd
transformation. Frank Molls has created separate diagonalized and patched-grid versions of the code.
Ambady Suresh did the original coding for the second-order time differencing and for the nonlinear coeffi-
cient artificial viscosity model. These people, along with Dick Cavicchi, Julie Conley, Jason Solbeck, and
Pat Zeman, have also run many debugging and verification cases.

10 1.0 Introduction Proteus 2-D Analysis Description

2.0 GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The basic governing equations are the two-dimensional compressible Navier-Stokes equations. These
equations may be found in several standard references (e.g., Hughes and Gaylord, 1964; Schlichting, 1968;
White, 1974; Anderson, Tannehill, and Pletcher, 1984). In Cartesian coordinates, the two-dimensional

planar equations' can be written in strong conservation law form using vector notation as

0Q E OF _ JEy, + oF,

5t tox Ty T ox oy (2-1)
where

Q=[p pu pv EfJ (2.22)

]

u2+p b
E=|.” (2.2b)
pwv
| (Er+p)u
]
pwv

F= 2.2
PV’ +p (22)

| (ET+p)]

0
E, = Rl Taxx (2.2d)
€, Txy |
-u-txx+vrxy— Pr, gy
0
F,= R‘ Ty (2.2¢)
€ Tyy .
_“Txy ¥y Pr. qyd

Equation (2.1) thus represents, in order, the continuity, x-momentum, y-momentum, and energy equations,
with dependent variables p, pu, pv, and Er.

1 Proteus can be used for both two-dimensional planar or axisymmetric flow. However, the axisymmetric equations
have some additional terms that complicate the analysis somewhat. For the sake of clarity, the main body of this
report describes the two-dimensional planar analysis, and the axisymmetric analysis is described in Appendix B.

Proteus 2-D Analysis Description 2.0 Governing Equations 11

The shear stresses and heat fluxes are given by

_ [ou ov
Toy p(o T ox ‘(2.3)
—_ o7
%=—k5;
__p9or
ly kay

In these equations, ¢ represents time; x and p represent the Cartesian coordinate directions; u and v are
the velocities in the x and y directions; p, p, and T are the static density, pressure, and temperature; Er is
the total energy per unit volume; and u, 4, and k are the coefficient of viscosity, second coefficient of
viscosity, and coefficient of thermal conductivity.

All of the above equations have been nondimensionalized using appropriate normalizing conditions.
Lengths have been nondimensionalized by L,, velocities by u, density by p,, temperature by T,, viscosity
by u,, thermal conductivity by &, pressure and total energy by p,u?, and time by L,/u,. The reference
Reynolds and Prandtl numbers are thus defined as Re, = p,u.L,/u, and Pr, = u1d |k, T,?

Turbulence is modeled using the Boussinesq approach (Schlichting, 1968). The equations presented in
this section are thus used for both laminar and turbulent flow. For turbulent flow they represent the
Reynolds time-averaged form of the Navier-Stokes equations, with density fluctuations neglected. They
may also be interpreted as the Favre or mass-weighted time-averaged form of the equations. With Favre
time averaging, however, the velocities and thermal variables represent mass-averaged quantities defined by
u = pufp, etc., where the overbar represents a conventional Reynolds time-averaged quantity. Details on
Reynolds and Favre time-averaging procedures may be found in Cebeci and Smith (1974), and in Anderson,
Tannehill, and Pletcher (1984). In either case, u, 4, and & represent effective coefficients. For example, in

-turbuleat flow u = p; + ., where y; and y, are the laminar and turbulent viscosity coefficients, and . comes
from some appropriate turbulence model. The models currently available in the Proteus code are the al-
gebraic eddy viscosity model of Baldwin and Lomax (1978) and the two-equation model of Chien (1982),
implemented as described in Section 9.0.

2.2 EQUATION OF STATE

In addition to the equations presented above, an equation of state is required to relate pressure to the
dependent variables. Any approprate equation, or even table, could be used. The equation currently built
into the Proteus code is the equation of state for thermally perfect gases, p = pRT, where R is the gas con-
stant. For calorically perfect gases, this can be rewritten as

p=(y — 1)[5,- % p(* + vz)] ‘ (2.4)

where y is the ratio of specific heats, ¢/c,. Here the gas constant and specific heats have been
nondimensionalized by /T,

If the flow is such that we can assume a perfect gas with constant stagnation enthalpy, the energy
equation may be eliminated. This assumption is reasonable, for example, in inviscid regions, and in

2 Note that this Prandt! number does not have a physically meaningful value, but is merely defined by a combination
of the normalizing conditions for ¢,, u, and k that appear when the equations are nondimensionalized.

12 2.0 Governing Equations Proteus 2-D Analysis Description

adiabatic wall boundary layers if the Prandtl number is near 1 (Briley and McDonald, 1977). The stag-
nation enthalpy is defined as

hr=c,T+ % (@ + 2 2.5)
Here the stagnation enthalpy is nondimensionalized by «?. The temperature is thus

T= % [hT— % W+ v2):| 2.6)

and the equation of state becomes
y—1 1
p=t=p[hr—F 0+ @7

This equation of state does not require the total energy Er, and the energy equation need not be solved.
The total energy may be computed from

Er=phr—p (29)

2.3 GENERALIZED GRID TRANSFORMATION

Because the governing equations in the previous section are written in Cartesian coordinates, they are
not well suited for general geometric configurations. For most applications a body-fitted coordinate system
is desired. This greatly simplifies the application of boundary conditions and the bookkeeping in the nu-
merical method used to solve the equations. The following generalized grid transformation, which can be
orthogonal or nonorthogonal, is therefore used to transform the governing equations from physical (x, y, ?)
coordinates to rectangular orthogonal computational (&, 1,) coordinates.

(= f(x’y’ t)
n=mn(x,y, 1) (2.9)
T=1

In Proteus, the spatial computational domain is square, with ¢ and » each running from 0 to 1. Using the
chain rule for partial differentiation, the derivatives in the Cartesian form of the governing equations can
be replaced using the following expressions.

o _, 8., 8
ax ~xE T,

o _, 8, 8

0 _,0 ., o8 8

o =% Ty Yo

In the above equations, and in those to follow, subscﬁpts x and y, or £ and #, denote partial differentiation
in that coordinate direction. The only task remaining, then, is to develop expressions for the metric coef-
ficients &,, n,, etc. In differential form we can write

dé=¢xdx + {dy + {dt
dn = ndx + n,dy + ndt
dr=dt

In matrix form this becomes

Proteus 2-D Analysis Description 2.0 Governing Equations 13

dg] [& & &][dx

dx 0 0 1}dt

Similarly,
dx Xp X, X, d¢
dy|=1ys ¥y bo|dn
di 0 0 1]dr
Therefore,

L& &) [x x, X
Nx '1y = yf yr] yz‘
0 0 1 0 0 1

After taking the inverse,
éx éy 61 yr, _'xﬂ xr;y‘z'—yrlx'z
nx Ny M= J| - Ye Xp VpXp T Xg¥e
0 0 1 0 0 1/

where J is the Jacobian of the transformation,

_0Em _ & &
oxy) |nx my
J= ‘fx"ly - éyﬂx (2.11)

This can be evaluated from the known physical (x, y) coordinates by noting J = 1/J-! and

T =g, — x (212

The metric coefficients themselves are

ne=—Jys (2.13)

14 2.0 Governing Equations Proteus 2-D Analysis Description

Unless the physical coordinates (x, y) are defined analytically as functions of the computational coordinates
(£, n), the metric coefficients must be computed numencally.

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES

Applying the generalized grid transformation of the previous section to equation (2.1) yields

Q't + Qgét + er’][+ E;éx + Eqﬂx + Fgéy + F'I"y - EV<§X - EV:’X e chfy - Fynny = 0 (214)

This equation is in chain-rule, or weakly conservative form. That is, the conservation flow vanables are
used, but the metrics appear as coefficients of the derivatives instead of inside the derivatives. Following
Vinokur (1974), the strong conservation law form can be recovered by first dividing by the Jacobian then
adding and subtracting like terms. For example, the E,Z, term becomes

Edx [E¢ ¢
$ex x _ Sx
=[] -(5)

Doing this for all the terms, and rearranging, results in

(_q) +[E§X+F£y+Qé;] +[Enx+F'7y+ert:'
T ¢

§

J J J

[t [Eeste]
S| (5) () el (5), (5,

5 7y ‘ (219
—(F-Fy) (—) +(—) p=0 |
V{ d ¢ (I)’7}

The last three terms, in braces, are called the metric invariant terms. By using the expressions for the metnc
coefficients, given by equations (2.13), one can show that the metric invariants are identically zero. In two
dimensions, this is also true when derivatives are approximated by the finite difference formulas of Section
5.0.3 With the metric invariant terms eliminated, no metrics or flow variables appear as coefficients, and the
strong conservation law form of the governing equations has been recovered.

Equation (2.15) can be rewntten as

30 s o O, oF
) JE | oF _ oLy v
P T el TR (2.16)

where

A_Q
Q=

E= % (E¢, + FE, + QZ)

3 This is not necessarily true in three dimensions, however.

Proteus 2-D Analysis Description 2.0 Governing Equations 15

A
F =7 (Eny+Fn, + Qny)
E, % (Eyéx+Fpé)

2 1
Fy=—Eyne+Fyny)

Using equations (2.2a) through (2.2e) these can be expanded as

[a—

Q=11p pu pv E-Y (2.17a)

L

[7]
puly + pvé, + p&;

(o + P+ pwty + put,
puvé, + (pV° + P)E, + p¥E,
L(ET+p)u£x +(Er+ppvéy + ETE,_

>
1l

(2.17b)

|-

P + pvny, + pny
U+ + +
(pu” + Py T pomy & pun, 2.170)
puwny + (pv" + p)ny + pvm,
| (Er + plunx + (Ep+ p)my + Epn |

>
Il
-

0
£,-L L |5t (2.17d)
S Re | 1plxt+ 1y,
| BxSxt Byly
0]
2 1 1 Tox + Tyl
Fy=— Ty 2.17
V7T Re | toni+ 1y, @
Bxnx + ﬁy’ly

where

. | |

Bx= UTyx T VTx — Pr, 9x

i1 =uty, + vt L q
y w7 pr ¥

In the viscous terms, the shear stresses and heat fluxes are defined exactly as in equations (2.3), except
the derivatives in the Cartesian coordinate directions must be evaluated using the chain rule. For example,

Ou _ du du
ax oz Xt oy M

Note that F and f’v have exactly the same form as E and fiy, but with ¢ replaced by #.

16 2.0 Governing Equations Proteus 2-D Analysis Description

3.0 TIME DIFFERENCING

The governing equations are solved by marching in time from some known set of initial conditions using
a finite difference technique. The time differencing scheme currently used in Proteus is the generalized
scheme of Beam and Warming (1978). The time derivative term in equation (2.16) is written as

A An An An n—1
Q _8y _ 6 AQ) 1 o 6 aQ
ot - At - 1+02 51’ l+82 ot 1+92 At

+ 0[(01 -=- ez)Af, (Af)z]

Al A}
n 8,Ar 3(AQ") At aQn 6, An—1 (1) 2 3
AQ" = 1+6, o + T+0, or + 1+6, AQ + 0] (9, 5 8,)(A7)", (A1) _ 3.1

where AQ‘ = f)"“ - 6" The superscripts n and n+ 1 denote the known and unknown time levels, re-
spectively.

The parameters 6, and 8, determine the type of time differencing scheme used. Some of the methods
available with the above formula are given in the following table.

8, 8, . Method Truncation Error
0 0 Euler explicit oAty

0 —1/2 | Leapfrog explicit O(A)

1 0 Euler implicit O(Ay
1/2 0 Trapezoidal implicit O(AT)

1 1/2 3-point backward implicit O(AT)

Note that even though the generalized time differencing formula includes explicit methods, the Proteus code
assumes an implicit method is being used. Note also that the truncation error listed in the table is the error

in the expression for Aé". The overall numerical method used in modelling the differential equations re-
quires AQ*/ A, so the order of the overall method is this truncation error divided by Ar.

Solving equation (2.16) for 66/61 and substituting the result into equation (3.1) for a(-AQ")lar and
o0Qr/dt yields ' '

Ao it (amfZ”) . a(Af“)) e (afs" N aﬁ’*)

T 1+6, 3¢ n | 1+46,\ 9 ' oy
‘ A A g) A g A n
0,a [aAE) o8FY\ A [OES oF)
TIre,\ "ot T JtTre, \ o T
6, An—1 1 2,3
tog 80 Jro[(e1 —7—02)(&) , (A7)] (3.2)

Proteus 2-D Analysis Description 3.0 Time Differencing 17

- W

4.0 LINEARIZATION PROCEDURE

4.1 INVISCID TERMS

Equation (3.2) is nonlinear, since, for example, AE" = E**+! — E” and the unknown E”+! is a nonlinear
function of the dependent variables and of the metric coefficients resulting from the generalized grid trans-
formation. The equanons must therefore be linearized to be solved by the finite difference procedure used
in Proteus. This is done by expanding each nonlinear expresswn i a Taylor series in time about the known
time level n. Letting G represent any nonlinear expression,

G tl=g" +(%G) At + O(A7)? @.1)

where

96 _3G % 9G¥ oG Aew) oG 9Er
ot 6p ot dpw) Ot o(pv) Or oEr ot

Note that for linearization purposes only the metric scale coefficients have been assumed to be locally inde-
pendent of time. Note also that for this linearization procedure to be second-order accurate, 8G/dr (and
therefore dp/dz, d(pu)/dr, etc.) need only be first-order accurate. Using forward differences, then, so that

ap n pn+1_pn
(*5‘;) =Ta tow)
_4"
T At

+ O(A7)

etc., equation (4.1) becomes

G"tl=G"+ (-‘g%) Ap"+<—————a?i)) A(pu)"+(a‘(fv)) Al +(o) AEL+ 087 (4.2)

"As an example the d(pwvé,)/0¢ term from the x-momentum equation (part of the second element of
JE[3¢) will be used. The nonlinear part of this term is (puv)** 1. Rewnting this i terms of the dependent

vanables,
n+1
1= [2202

Using equation (4.2), this is linearized as

()"t = (o) — @) "~ ")+ V(e T = (pw)"]+ u"[(pW" T — (o9)"] + O(AT)?

which can be rewritten as

Alpw) = — ()" Ap"™ + v A(p)" + 1" A(pV)" + O(AT)?

This linearization procedure, when applied to the entire AE" term in the vector equation (3.2), can be
written as

PRECED:""‘

Proteus 2-D Analysis Description £k adi HoT FI gD 4.0 Linearization 19

AE" =(9E) AQ" + O(AT)? (4.3)
0Q

where (5f3/66)" is a Jacobian coefficient matrix (not to be confused with the Jacobian J of the generalized

gnid transformation.) A similar equation can be written for AF~.

Each term in each element of E and f’, given by equations (2.17b) and (2.17¢), is linearized using the
above procedure to generate the elements of the Jacobian coefficient matrices 6f3/66 and 6f7/66. (Note
that 9E/0Q = JOE/3Q.) When this is done JE/3Q can be written as

(5({X fy 0
dp op 9p o

b _| B T SRR S e g S I

A ap op op op -
S p, _p o p_

Q 30 Y et Som S LA By Y GE;
ép dp op o
—f‘(fz - 3) Rt g Ko+ g +f‘<] "%y)

where fi = ué, +v¢, and = (Er+ p)/p. The Jacobian matrix 513/6(3 has the same form as af:/aé, but
with ¢ replaced by .

The linearized pressure terms have deliberately been left in terms of dp/dp, 9p/d(pu), etc. The ex-
pressions to be used for these derivatives depend on the equation of state. Those currently built into the
Proteus code, for a perfect gas, are presented in Section 4.3.

4.2 VISCOUS TERMS

The nonlinear viscous terms in equation (3.2), mmvolving AI:Z'& and Al:" v, must also be linearized. To do

this, the elements of E, and Fy, given in equations (2.17d) and (2.17e), must first be rewntten in terms of
the dependent variables, and with derivatives in the Cartesian directions transformed to derivatives in the
computational directions using the chain rule. When the resulting expressions are substituted into equation
(3.2), mixed second derivatives appear as well as second derivatives in a single coordinate direction. The
mixed, or cross, derivative terms would lead to considerable complications in the implicit numerical solution
algorithm if they were linearized using the procedure presented in Section 4.1. The two types of second

derivatives are thus treated differently, and Ey and F, are wntten as

EV=EV +EV ’
A oA oAl (4.5)
FV=FV1+FV2

where Ey, and Fy, only contain derivatives in the ¢ and » directions, respectively, and Ey, and Fy, contain

derivatives in the other direction. The fully expanded expressions for i;vl, ﬁyz, etc., are fairly long, and
therefore are presented in Appendix A.

20 4.0 Linearization Proteus 2-D Analysis Description

4.2.1 Non-Cross Derivatives

Examination of the elements of ﬁy, in equations (A.2a) through (A.2c), and (A.2e), shows that every
term has the form fg,, where g is a function of the dependent vanables, and f'is a function of y, 4, &, and/or
the metnic coefficients. Expanding in a Taylor series about time level n gives

L[z T
(fgg)n+l =(f2) +[613 :I At + O(A‘-r)2

For linearization purposes only, we will assume f is locally independent of time. We can thus write

n n n a "
Uz "' = U + /" 55 [5—g] Az + Oy

where

e _%8 % , 02 Oy
dr 0Op Ot d(pu) Ot

Therefore

n n n 0 Og og "
(fgg) e (f;gg) +f Er [EAP + mA(pu) + } + 0(A1)2

As with the inviscid terms, the linearization procedure for the entire AE?, viscous term in equation (3.2) can
be wrtten as

n
An af;‘Vl n 2
AEVl = ~ AQ" + O(AT) (4.6)

Q

A rimilar equation may be written for AI:‘%. The Jacobian coefficient matrix ai:V, /’66 1s

0 0 0 0

v\ 2(1) i (d) 0
A XX

oQ Re |/ of “n

Y 5 (1 a (1 0

0 vt \P) wa \P

A 3 A A

aEVl aEV, .aEVl « d (oT)
A I 03 \ A

9Q 2Q aQ 9 \ %

L 41 42 43 J

where

te= (2 + DE5+ uE}

Proteus 2-D Analysis Description 4.0 Linearization 21

. 2
Uyy = “§x2 + (2p + })fy

ayy = (1 + 44,8,

w0=F G+)

Evn) __. 2 (%) my2 (L)
A - XX Xy
6Q oL\ p ot \ P
21
A
oK,
1 J u v
oy > =—sy 35 (7)3 ()
31
af?‘V e u’ ¥ wy oT
=, L (A)—a, 2 (2)-2 LA
Y e (2) o (2) e (1) (8)
a1
A A
%y, v \ .2 (aT)
n = 0 3%
aQ 66 ¢ d(pu)
42 21
N A
Oy, __ oE,, +aoi< oT)
66 56 ' 8¢ \ O(pv)
43 31

Like the pressure terms discussed earlier, the form of the temperature terms will depend on the equation
of state being used. Those currently built into the Proteus code, for a perfect gas, are presented in Section
4.3.

Note that in equation (4.6) the derivatives appearing in the Jacobian coefficient matrix aﬁ:vl /5() are also
to be applied to the AQ" appearing outside the parentheses. For example, the element in the second row
and second column of JEy,/8Q, which corresponds to the A(pu) term in the x-momentum equation, is
ax0(1/p)/8&. For this term, the notation used in equation (4.6) means

A n

3Ey,
oQ

The Jacobian coefficient matrix for the remaining non-cross derivative viscous terms, 3Fy,/0Q, has the

same form as 6ﬁy, /6(), but with ¢ replaced by #.

4.2.2 Cross Derivatives

As stated earlier, linearizing the cross derivative viscous terms in the same way as the remaining terms
is very complicated within the framework of the implicit numerical solution algorithm used in Proteus.

22 4.0 Linearization Proteus 2-D Analysis Description

They are therefore simply lagged (ie., evaluated at the known time level n and treated as source terms.)
As noted by Beam and Warming (1978), this does not lead to a formal accuracy loss since

AE}, = AE}" '+ 0(ax)’
A A) (4.8)
AFy, = AFy " + O(47)

43 EQUATION OF STATE

The expressions to be used for dp/dp, 8T|dp, etc., which arise from the linearization procedure, depend
on the equation of state. The equation currently built into Proteus is for perfect gases, and can be wntten
as

1
p=(— 1)[57— 7p(u2 + vz):l 4.9
or, in terms of temperature, as
_ L[Er_ 1 a2
T—CVI: 5~ (u +v):| - (4.10)
With this equation of state, then, the approprate derivatives are
op y—1 49 .
2 = 3 (" +v%) (4.11a)
% __ i " 4.11b
op -
o) - y— 1y (4.11c)
9p
ST 1 (4.11d)
AT __ 1 Er_ 1 0
ap_—cv[pz_p(" +v):| (4.12a)
T _ u ‘
3w~ op (4.12b)
aT v
B} B =~ o (4.12c)
arT 1
0Er &P (4.12d)

If constant stagnation enthalpy is assumed, as discussed in Section 2.2, the appropriate equation of state
is '

y =1 1 ’
=" p[hT— > a?+ v.z)] (4.13)
and the temperature becomes

=L [hr— % o+ v2):| 4.14)

Proteus 2-D Analysis Description 4.0 Linearization 23

With these equations, the derivatives of p and 7 with respect to the dependent variables are

op y-1 1.2, .2
ap = 7 [hT+ 5 (u +v)]
p oyl

apuw 7
g y-1
apv) Y
or 1 2., .2
dp P @ +v)
T _ u
Apu) ppP
or __ v
o(pv) CpP

4.4 LINEARIZED GOVERNING EQUATION

The linearized form of equation (3.2) can now be written as

A 0.A1 ~\" A E
AQ"+ 1 0 5]/:: AQn +_£_ 3f

n A n

_0ar) 5 B Y adr |42 Fy \ &
1+8,) 0t ; on A
9Q oQ

n N N
_ Az i+_a_f‘_ + At aEVn n aFVl
n

A A A A n—
(1+ 657 [FEy, N oFy, 8o [9Ey, OFy,
T Tve, 52 T e) TTv6,\ oz T

8 Ay
.- +292 AQ "+ o[(el -2- 62)(Ar)2, (03— 0,)(A7)%, (mf]

>
o)
S

]

{4.15a)

(4.15b)

(4.15¢)

(4.16a)

(4.16b)

(4.16¢)

(4.17)

There are a couple of things that should be mentioned about this equation. First, this equation is in
so-called “delta” form. We will actually be solving this equation for AQ" and recovering Q**' from

6”“ = Aé" + Q" And second, in the coefficients of the cross derivative viscous terms the time differencing
parameter 6, has been replaced by 6. For second-order time differencing (i.e., if 6, =8, + 1/2), 85 should
be set equal to 8,. For first-order time differencing, however, 8; can be set equal to zero without losing

accuracy.

24 4.0 Linearization Proteus 2-D Analysis Description

5.0 SPACE DIFFERENCING

To solve equation (4.17) an evenly spaced gnd is defined in the computational (£, #) coordinate system.
Spatial derivatives are then approximated by finite difference formulas. First derivatives in the ¢ direction
are approximated using the following second-order central difference formula.

of fi+1,j—ﬁ—1,j

The subscripts i and j represent grid point indices in the ¢ and 5 directions. The computational gnd spacing
A¢ is constant, and equal to 1/(N, — 1), where N, is the number of grid points in the £ direction. A similar
formula is used for first denivatives in the » direction.

The non-cross derivative viscous terms in the £ direction in equation (4.17) all have the form

0 0
¥ [f ¥ (gAQ)]

where Q represents one of the elements of 6 Using central differences this is approximated by

9 d
% [i (gAQ):l ~ 6,[f8,(280)]; ;

Lj
- % io 12, P& s 1y~ fi- 1, 5EAQ: 1)
= Vi Me8D, 1 = @800
i1, [AD) — (€80), -,
— o (i + S 1,)EAD 41,5~ (5A0);]
= Ur+ fimr JIEAQ);— (68D 1)
=gz Vimn+ £)Es0i

- ~fic1,j+ 2+ fivr)EAOD)
+(fij+ fig1,)@AD); 41) (5.2)

2(Aé)

A similar formula is used for second derivatives in the » direction.

Cross denivative viscous terms are evaluated using the following central difference formula.

Proteus 2-D Analysis Description 5.0 Space Differencing 25

3 g
Zlra) =arao.
129}
1
=—2‘A_§[.f;+1,j(6ng)i+ 1,j_ f"'—l,j(éng)i—l,j:l

1
= anihy Lfiv 1, /84141 = &1,

—fim1, (8= 8o, - 1)) -3

Note that this formula is only needed for the source terms, since the viscous cross derivative terms are lagged
one time level.

When first derivatives are needed normal to a computational boundary, such as for Neumann boundary
conditions, either first- or second-order one-sided differencing is used. The first-order formula at the { =0

boundary 1s

)
(6—§> ~ a5 (b=) (5.4)
1,/ _
and at the £ = 1 boundary, . : -
of 1 -
(E) = 25 Un= -1 (5.5)
Nl’j
The second-order formula at the ¢ = 0 boundary is -
17)
(a_j;) = zig (=3f,;+40,;= 55 (5.6)
1J
and at the £ = | boundary,
of 1
(5) = 2a¢ v —25= 4m =it 3w (5.7
Nl’j

Similar formulas are used at the » = 0 and # = 1 boundaries.

26 5.0 Space Differencing Proteus 2-D Analysis Description

6.0 BOUNDARY CONDITIONS

Choosing boundary conditions is perhaps the most important step in solving a flow problem with
Proteus. Since the equations being solved at interior points are the same for every problem, the boundary
conditions are what determines the final flow field for steady flows.

With the difference formulas presented in Section 5.0, N, boundary conditions are required at each
computational boundary, where N,, is the number of equations being solved. Note, however, that this is
a numerical requirement, not a mathematical one. For example, for one-dimensional Euler flow N,, = 3.
However, characteristic theory shows that, mathematically, only two conditions may be specified at a sub-
sonic inflow boundary, and only one at a subsonic outflow boundary (Pulliam, 1986a). Some sort of ex-
trapolation is typically used for the additional numerical boundary conditions. :

A variety of boundary conditions are built into the Proteus code, including: (1) specified values and/or
gradients of Cartesian velocities « and v, normal and tangential velocities V, and V,, pressure p, temperature
T, and density p; (2) specified values of total pressure pr, total temperature 77, and flow angle; (3) linear
extrapolation; and (4) spatial periodicity. Another useful boundary condition is a “no change from initial
condition” option for u, v, p, T, p, pr, and/or Tr. Provision is also made for user-written boundary condi-
tions. The boundary conditions may be steady, unsteady, or time-periodic. The exact combination of
boundary conditions to be used will depend on the problem being run.

The boundary conditions in Proteus are treated implicitly. They may be viewed simply as additional
equations to be solved by the ADI solution algorithm. And, in general, they involve nonlinear functions
of the dependent variables. They must therefore be linearized using the procedure described in Section 4.0.
The following sections describe this linearization for the general types of boundary conditions currently built
into Proteus. ‘

6.1 NO CHANGE FROM INITIAL CONDITIONS, Ag =0

This boundary condition simply sets the boundary value of the function g equal to its initial condition
value. It can be wntten as ‘

A =gt -g"=0 6.1)
In general, g can be a nonlinear combination of the dependent vanables 6 Lineanizing g using the proce-
dure described in Section 4.0, we get

n
b5} A
gt =g"+ (g) AQ" + O(A7)? (6.2)
oQ
Neglecting the O(A7)? linearization error, the linearized form of equation (6.1) can thus be written as
a n
g A
< q) 2= 63)
9Q
6.2 SPECIFIED FUNCTION. g=f
A specified function at a boundary can be written simply as
g'tl=r (6.4)

Proteus 2-D Analysis Description 6.0 Boundary Conditions 27

where g is the function being specified and f is the value being specified. Note that f can vary along the
boundary, and can be time-dependent. Using equation (6.2) and neglecting the lineanzation error, the

linearized boundary condition becomes

n

1) A

< £ > AQ" =f-g" (6.5)
0Q

6.3 SPECIFIED COORDINATE DIRECTION GRADIENT, dg/d¢ =f

A specified gradient of a function in a coordinate direction can be written as

ag n+1
<_67)_> =f (6.6)

where g is the function whose gradient is being specified, fis the specified value, and ¢ is the coordinate
direction & or . Note that fcan vary along the boundary, and can be time-dependent.

The linearized form of g is given by equation (6.2). The linearized form of equation (6.6) can thus be

written as _
s\ o | (28 aor |- re ooan
(6¢)+0¢ <56>AQ = f+ O(A71) 6.7)

Replacing differential operators with difference operators and neglecting the linearization error, the
linearized boundary condition can be written as

5g ! n n ’
sl | =)aQ" |=r-5 (6.8)
¢<5Q) #

where &, represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either first-order two-point or second-order three-point differencing.

Note that this boundary condition is a specified value of the derivative with respect to the computational
coordinate, not with respect to the physical distance in the direction of the computational coordinate.
Following Komn and Kom (1968), and using the properties of the generalized coordinate transformation, it
can be shown that for the ¢ direction the two derivatives are related by

o8 _ J %8
Osg \/-’;5—'*'—’7)’7 o¢

Similarly, for the # direction, i
og J og

ds, d
5, /§x2+€y2 n

If the value f= 0, of course, the two derivatives are equivalent.

6.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vgan =f

A specified gradient of a function normal to the boundary can be written as

V'ttin =1 (6.9)

28 6.0 Boundary Conditions Proteus 2-D Analysis Description

where g is the function whose gradient is being specified, fi1s the specified value, and n represénts the unit
vector normal to the boundary. Note that fcan vary along the boundary, and can be time-dependent.

For illustrative purposes, assume we are specifying a gradient normal to a constant ¢ boundary. Then
- 1
7 =roar = s

where

Equation {6.9) can then be written as
1
& g) =S (6.10)

Using the chain rule to expand g7+! and gj*!,

n+1 n+1 n+1
& =& ¢xt& Nk

n+1 n+1 n+1
& =& &Htg m

Substituting into equation (6.10) and rearranging,

GG+ e Gt Sy =rf

Solving for g7+,

az\"*' f ag \"*!

m2

Now, in order to incorporate this equation into the ADI solution procedure used in Proteus, the dg/dn term
in =quation (6.11) is lagged one level, and evaluated at time level # instead of n+ 1. Strictly speaking, this
introduces an O(A1) error into the solution. In practice, however, the actual error will depend on the degree
of nonorthogenality of the coordinates near the boundary. For orthogonal coordinates no error is intro-
duced. .

Using equation (6.2), and introducing difference operators and neglecting the linearization error, we can
now write the linearized boundary condition as

9 " AV n n
5 (A)AQ A R (6.122)
aQ m

where &, represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either first-order two-point or second-order three-point differencing.

Note that the unit vector 7 in equation (6.9) is in the direction of increasing ¢. Therefore, a positive
value for fin equation (6.12a) indicates a flux in the direction of increasing ¢. Thus, a positive fat ¢ =0
implies a flux into the computational domain, and a positive f at ¢ = | implies a flux out of the computa-
tional domain.

Specifying a gradient normal to a constant » boundary is done in an exactly analogous manner. The
resulting equation is

Proteus 2-D Analysis Description 6.0 Boundary Conditions 29

m

n
4 A S, .
Sy (A)AQ" = = —5 (1x8x + 1y8,)058" — 6,8" (6.12b)

where

[o2 2
m=-~/ny +ny

A positive value for fin equation (6.12b) indicates a flux in the direction of increasing n. Thus, a positive
fat y =0 implies a flux into the computational domain, and a positive f at n = 1 implies a flux out of the
computational domain.

6.5 LINEAR EXTRAPOLATION

Linear extrapolation from the two adjacent interior points is also available as a boundary condition.
At the ¢ = 0 boundary, where i = 1, this can be written as

gt gt + gl =0 (6.13)

Note that this is equivalent to setting (82g/8&?),,,=90. Using equation (6.2), we can write the lineanzed
boundary condition as

n n) n .
Og A dg A og A
< ~ >AQ?"2(~) AQ?+1+<—A AQ7+2=_8’?+2&‘H+1—&"+2 (6.14)
aQ i aQ i+1 aQ i4+2

Analogous extrapolation boundary conditions can easily be written for the remaining boundaries.

30 6.0 Boundary Conditions Proteus 2-D Analysis Description

7.0 SOLUTION PROCEDURE

7.1 ADI ALGORITHM

The governing equations, presented in linearized matrix form as equation (4.17), are solved by an alter-
nating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Brley and
McDonald (1977), and by Beam-and Warming (1978). Although the split equations can be developed in
more than one way, in this discussion the approximate factorization approach is used.

Letting LHS(4.17) represent the left hand side of equation (4.17), we can write

A N
018t | o (oE %En) o of v

2 9 9oF _ AQ" (7.1
T+6, | 26\ 50 20 m\ 20 26 Qe @

LHS(4.17) =< I+

where I represents the identity matrix. Note that in this equation, using the 8/9¢ term as an example, the
notation used is meant to imply

A N
N oE . oF
2 ok _%En) - aa ok o B g
¢\ a0 80 ¢\ 20 8Q

The term in braces in equation (7.1) can be factored to give

n A n

0,At 5 [s OEy 8,At 3 of Iy A
LHS@4.17)=| 1+ 1;9 s\ == 4 1+ 141r9 =\ 2- i AQ”
2 aQ 4Q 2 M\ Q 4Q
2 A E A oF "
618t \| o (kv o [oF %Fun |, 00 (1.2
“\1+0 N0 a0 N\ 50 a6 Q
2 aQ Q- Q aQ

The last term represents the splitting error. Note “that, since AQ*» = O(A7), this term can be neglected
without affecting the overall time accuracy of the algorithm, even when second-order time differencing is
used. .

Proteus 2-D Analysis Description 7.0 Solution Procedure 31

Equation (4.17) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation
and splitting error terms, becomes

n

A A
0,Ar r OJEp 0,A7 ¢ OFpy A
g - — e By Tt | [80=
+6; 08\ aQ 2Q 6 M\ aQ 8Q
N N n A N n A A n
At _@+£ + At aEVx " aFVl + (1+85)Ar aEyz + aFVz
1+8, \ 92 oy 1+6, \ oz an 1+6, Y an
A A n—1
_ 0 [OEy, Oy, PR BV (7.3)
T+6, \ @z on 1+6,

Equation (7.3) can be split into the following two-sweep sequence.

Sweep 1 (& direction)

n

n A
A x elAT a P A x 91A‘r d 6EV] A x
AQ + 2 AQ |- 2| =2)ad |-
T+, 02 (a) 140, 0 9
A" E, oF
__Ar 6_E_+_3i 4 At Yi + !
1106, \ 02 ' oy T+6, \ 2 ' oy

n n—1

N N A N
N (1+0;)Ar (6EV2 N aFVZ) 0;A7 (aEVZ N aFV2) + 1329 Aén_l (7.4a)
2

>

>

n

1+6, ¢ an T1+6, \ o on

Sweep 2 (» direction)

n ‘ A n

A 6,A F 8,A oFy A

AQr 48T 0 [OF h A |- S 0 [) AQt | =4Q (7.4b)
1+8, on 2Q 1+8, dn 00

In the above equations, Q" represents an intermediate solution to the governing equations.® It should be
noted that in Proteus, physical (i.e, n + 1 level) boundary conditions are used during the first ADI sweep.
This introduces an O(At) error in §Q/d+ on the boundary for unsteady flows, but no error for steady flows.
This point is discussed in detail by Briley and McDonald (1980).

A A A A ~ A
4 The notation here is somewhat inconsistent. The quantity AQ"=Q*!— Q" but AQ"=Q" — Q" not

6n+l _ 6’.

32 7.0 Solution Procedure _ Proteus 2-D Analysis Description

Applying the spatial differencing formulas of Section 5.0 results in

Sweep 1 (& direction)

n ’ n
Ae 6,47 OE A OE X
AQ; + AQ; - AQ; _
Ql (1 +92)2A§ (66) Ql+] (66) Ql !

i—=1

0 AT Ax N g A x
_m[(ﬁ_l+ V8 AQ = (o + 2+ £)8 AQ + (i + fi4)84 18Q1, 1] =
2
Az A Ay At A AN
“Tro; (8:E+6,F)" + e (8:Ey, + 6,F)
(1+03)At A A \p G347 A A o\n-1 6 An_ (7.5a)
—Tve (8:Ey, + 6,Fy,) “Tve, (8:Ey,+ 6,F,)" ' + e, AQ

Sweep 2 (n direction)

GA A n A n
A T JF An dF n
AQ} + . AQT - % AQ;_,
(1+6,)241 A S+ A J
Q i+ oQ i

eAT nn An nn A’l nn An
T 0T 0200 +91)2(A'1)2 (o1 +) AQ = (o1 + 2 +1 4)G AQ + (f+ £ 1) g4 18Qf 4 1] =
))

A=
AQ
The subscripts i and j represent grid point indices in the ¢ and n directions. For notational convenience,
terms without an explicitly written i or j subscript are understood to be at i or j. In the viscous terms on
the left hand side, f is the coefficient of 8/8¢ (or 9/én, depending on the sweep) in the 6fZV1/56 (or
ai‘y,/aé) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 8/3¢ (or 3/0n)

in the aﬁy,/aé (or 6f’y,/66) Jacobian coefficient matrix. Equations (7.52) and (7.5b) represent the two-
sweep alternating direction implicit (ADI) algorithm used to advance the solution from time level
nton+ 1. ’

(7.5b)

7.2 MATRIX INVERSION PROCEDURE

7.2.1 Non-Periodic Boundary Conditions

The complete set of algebraic equations for the first ADI sweep with non-penodic boundary conditions
can be written in the following block matrix form.

5 Although this discussion is written for the first ADI sweep, an exactly analogous procedure is followed for the
second sweep.

Proteus 2-D Analysis Description 7.0 Solution Procedure 33

By C) A} AQ, 1
A, B G AQ, S,
Nx
A; By G AQ; S;
. .=l . (7.6)
L] R '. L]
Ay -2 By_y Cy 2 A?Nl -2 Sy, -2
Ay -1 By 1 Cy AQ:Xl—l Sn, -1
% AN By | AQu L ™

These equations result from the application of equation (7.5a) for i =2 to N, — 1, with boundary conditions

added at i = | and i = N,. The parameter Aé' is the N .-element vector containing the unknown dependent
variables; A, B, and C are the N,, x N,, coefficient submatrices at i — 1, i, and i + 1, respectively; and S is
the N,-element subvector containing the explicit source terms. Also, A’, B’, and C’ are the coefficient
submatrices and S’ the source term subvector for the boundary conditions. A varety of boundary condi-
tions may be used. They are described briefly in Section 6.0, and in greater detail in Volumes 2 and 3.

Note that the equations at the boundaries may contain coefficients at the boundary point and the two
adjacent interior points. This occurs, for example, when extrapolation or second-order gradient boundary
conditions are specified. As written, therefore, the coefficient matrix in equation (7.6) is not block

tridiagonal. However, A} can be eliminated by multiplying the second row of the matrix by Ai Cz' and
subtracting from the first row. C'y, can be eliminated in a similar manner. Doing this, we define

B, =B, — A} C;'A,
C,=Cj —A1C; B, (7.7)
S, =Sy —A;Cy!
and
Ay =A%y —Cy Ay’ By _,
By, =By, — Cv, Ay, 1Ci, - 1 (7.8)

—1
Sy, =S, —Cn AN —1Sw, -1

34 7.0 Solution Procedure Proteus 2-D Analysis Description

The set of algebraic equations solved during the first ADI sweep can now be wrtten as

A
B, G AQ, S,
A x
A B G Q; S,
A; By G AQ; S,
L] » = L] (7.9)
Ay -2 By 2 Cy A?Nl -2 Sy, -2
Ay -1 By Cy AQzAVl -1 SN, -1
Av, By | aQy, Sw,

Since the coefficient matrix is now block tridiagonal, the equations can be solved using the block matrix
version of the Thomas algorithm (e.g., see Anderson, Tannehill, and Pletcher, 1984). The procedure can
be summarized as follows:

1. Define D] = Bl.

2. Compute E, = D;!C; and AQ; =Dr'S,.
3. Fori=2to N,, compute
D;=B,—AE,_,
E;=D; C;
N , —1 N ,
AQ" = D" (S‘ - AiAQi— 1)
(Actually, E; is only needed fori=2to N, — I).
4. Then, set AQy, = AQ',.
5. Finally, for i= N, — 1 to 1, compute A(A),-='A(A)f - E,A(A),»H.

In the Proteus code, in step 2 E, and Aéi are actually obtained by solving D,E, = C, and DlAéi =8,
using LU decomposition of D. A similar procedure is used to compute E, and Aé,’» in step 3.

7.2.2 Spatially Periodic Boundary Conditions

In computational coordinates a spatially periodic boundary condition in the ¢ direction may be repres-
ented as shown in Figure 7.1.5

6 As in Section 7.2.1, this discussion is written for the first ADI sweep, but an exactly analogous procedure is followed
for spatially periodic boundary conditions in the second sweep.

Proteus 2-D Analysis Description 7.0 Solution Procedure 35

N
Ny ® o o o
Np-10 o o o
20 o @] u}
j=10 = o 5
i=1 2 Y% N N1 €

Figure 7.1 - Spatially periodic boundary condition.

The grid points along the i= 1 and i= N, lines are “similar” in the geometric sense, and have the same

flow solution. Therefore, for a spatially periodic boundary condition in the ¢ direction, 61 = éyl.

To implement this boundary condition, an additional set of points is added at i= N + 1, setting

Qu, +1 = Q:. This allows us to use central differencing in the ¢ direction at i = N, computing the coeffi-
cients in the same way as at the interior points.

36 7.0 Solution Procedure Proteus 2-D Analysis Description

The resulting set of algebraic equations will consist of N, — 1 equations (for i=2 to N}), with N, + 1
unknowns. The block coefficient matnx thus has N; — 1 rows and .V, + 1 columns, as follows:

Nx

] S| aQ; i]
A, B G AQ; S,
A; B, G, | A(?E S,
A, B, C, AQ, S,

. . = . (7.10)

Ay -2 By_2 Cy_» A(:)Zv,—z Sy, -2

Ay -1 By 1 Cy - AQy, -1 Sy, -1
AN, By Cy, fi‘ij, Sw,

- HAQN 41| - }

[-]

These equations result from the application of equation (7.5a) for i=2 to N;. As in the previous section,

parameter AQ" is the N, -element vector containing the unknown dependent variables; A, B, and C are the
N, x N, coefficient submatrices at i — 1, i, and i + 1, respectively; and S is the N.-element subvector con-
taining the explicit source terms.

Since f)l = QNI and 62 = ém +1, equation (7.10) can be rewritten with N, — | unknowns as:

B, G : Ar AQ; S,
A; By G A?3 S;
Ay By G4 AQ, Sy
] A I (.11
- . R *- .
Ay -2 By 2 Cy 2 A?Nl —2| [Sw -2
Ay, -1 By -1 Cy AQ}X, -1 Sy, -1
Cw Ay, By AQy, S,
L. . L .

An efficient algorithm to solve this system can be derived that is similar to the Thomas algorithm for
block tridiagonal systems. The procedure can be summarized as follows:

1. Define D, =B; and F, = Cy,.

2. Compute E, = D51C;, G, = D5 'A,, and AQ} = D;'S,.

Proteus 2-D Analysis Description 7.0 Solution Procedure 37

7.

For i =3 to N, ~ I, compute

D;=B,—-AE,_,
E=D;'C
Fi=-F_.E_,
Gi=—Di-1Az‘Gi—l

A6§ =D; '(S;— AzA(A):'— 1)

Compute

Gy 1= Dz_vll— 1Cx 1 = AN, - 16y, —2)
Fy_1=An —Fy _2Ex -2

N-1

Dy, =By, — Z FG;
i=2

N -1

AQy, =Dy Sy~ Y. FAQ;
i=2

Then, set A(A)Nl = A(A)’Nl .
Compute AQy, _, = AQ' -1 — Gy, -;:AQu,.

Finally, for i = N, — 2 to 2, compute Aé, = Aé{ - E,-A(AZ,-+ - G,A(A)Nl.

In the Proteus code, in step 2 E,, G,, and Aé; are actually obtained by solving D,E, = C;, D,G; = A,,
and DZAQQ = S, using LU decomposition of D. A similar procedure is used to compute E;, G;, and Aé,‘

in step 3, and Gy, -, and A(f)',,,l in step 4.

7.3 UPDATING BOUNDARY VALUES

7.3.1 Non-Periodic Boundary Conditions

With the ADI algorithm described in Section 7.1, if gradient or extrapolation boundary conditions are
used for the first sweep, the boundary values from the first sweep must be updated after the second sweep.
This point is easiest to illustrate by looking at the following figure.

38 7.0 Solution Procedure Proteus 2-D Analysis Description

)
1r o) @] O
4o e o o o
4 e 12 o o
- 4 =Y ° =Y N
05 & o & —

Figure 7.2 - Updating boundary values for non-periodic
boundary conditions.

In Figure 7.2, a 5 x 5 grid is shown in computational space. The triangles represent gnd points at which
the intermediate values Q" are computed during the first ADI sweep. These include the boundary points

at ¢ =0 and ¢ = 1. The circles represent grid points at which the final values Q»*- are computed during
the second ADI sweep, including the boundary points at =0 and n = 1. If gradient or extrapolation
boundary conditions are used during the first sweep, so that the boundary values depend on the interior
values, then the intermediate values at £ = 0 and ¢ = 1 must be updated after the second sweep to be con-
sistent with the final values at the interior points.

To do this, after the second sweep the boundary condition equations are rewritten and solved at the ¢
boundanes. At the & =0 boundary,

BAQ! + C'AQ} + ATAQ) = S (7.12)
The subscripts refer to the value of , the index in the ¢ direction. This equation is applied for j= 2 to
'y — 1 1n the » direction. For notational convenience, however, the subscript j has been omitted.
All the terms in equation (7.12) are known except A()’f. Solving,
An -1 an R RIWY
At the £ = 1 boundary,

An M AR n
AQN1“2+AN1 AQNl—l +BN1AQNI=SN1 (714)

Proteus 2-D Analysis Description 7.0 Solution Procedure 39

A _ , s A , A
AQy, = (B%)™ '(S¥, — C%, AQ%, _, — A%, AQ%, _) (7.15)

Finally, note from Figure 7.2 that new comer point values are never computed in the solution algorithm.
To make the corner values consistent with the rest of the flow field, in Proteus the comer values of density
p and total energy Er are arbitrarily defined by linearly extrapolating from the two adjacent points in both
the ¢ and » directions, and averaging the two results. The corner values of the velocities are updated by
doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity whose ab-
solute value is lower is used. This was done to maintain no-slip conditions at duct inlets and exats.

7.3.2 Spatiallv Periodic Boundary Conditions

Updating boundary values from the first sweep is complicated somewhat when spatially periodic
boundary conditions are used.

n
1+ o o o) o
& o =S =S =S
4 o o - o
+ o L2 o =)
0, o o & o,

Figure 7.3 - Updating boundary values for periodic
boundary conditions in the & direction only.

The situation for a periodic boundary condition in the ¢ direction but not in the 5 direction 1s shown
in Figure 7.3. The triangles again represent grid points at which intermediate values are computed, and the
circles represent grid points at which final values are computed. As can be seen from the figure, the inter-
mediate values at & = 0 must be updated after the second sweep to be consistent with the final values at the

interior points. This is easily done by setting (All = ém forj=1to N

40 7.0 Solution Procedure Proteus 2-D Analysis Description

4 r) e o a
4 ° T} e ’N
4 e ° ° a
05 e e o ,{'tf

Figure 7.4 - Updating boundary values for periodic
boundary conditions in the direction only.

The situation for a periodic boundary condition in the » direction but not in the ¢ direction is shown
in Figure 7.4. In this case, the intermediate values at & = 0 and at £ = 1 must be updated after the second
sweep. To do this, the same procedure described in Section 7.3.1 for non-periodic boundary conditions is

used, but for j=2 to N, instead of N;— 1. Then, for the lower comer values, 61_,=6. ~, and

2] A
Qw1 = Qw4

Proteus 2-D Analysis Description 7.0 Solution Procedure 41

2 e 122 1< e
a o o e o
N o e e o
O0 © © © (1'} Tf

Figure 7.5 - Updating boundary values for periodic
boundary conditions in both the £ and 5 directions.

And finally, the situation for periodic boundary conditions in both the ¢ and # directions is shown in
Figure 7.5. Like the case with periodic boundary conditions only in the ¢ direction, the intermediate values

at ¢ = N must be updated after the second sweep. This 1s again done by setting 61 = (A)A-‘ forj=1to N,.

42 7.0 Solution Procedure Proteus 2-D Analysis Description

8.0 ARTIFICIAL VISCOSITY

With the numerical algorithm of Section 7.0, high frequency nonlinear instabilities can appear as the
solution develops. For example, in high Reynolds number flows oscillations can result from the odd-even
decoupling inherent in the use of second-order central differencing for the inviscid terms. In addition,
physical phenomena such as shock waves can cause instabilities when they are captured by the finite dif-
ference algorithm. Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress
these high frequency instabilities. Two artificial viscosity models are currently available in the Proteus
computer code - a constant coefficient model used by Steger (1978), and the nonlinear coefficient model
of Jameson, Schmidt, and Turkel (1981). The implementation of these models in generalized
nonorthogonal coordinates is described by Pulliam (1986b).

8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The
standard explicit smoothing uses fourth-order differences, and damps the high frequency nonlinear insta-
bilities. Second-order explicit smoothing, while not used by Steger or Pulliam, is also available in Proteus.
It provides more smoothing than the fourth-order smoothing but introduces a larger error, and is therefore
not used as often. The implicit smoothing is second order and is intended to extend the linear stability
bound of the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms
to the right hand side of equation (7.5a) (i.e., the source term for the first ADI sweep.)

sg)A‘r e(g)At 2) 2
7 (Ve Q + V,4,Q) - ——— [(V:4)°Q+ (V,4,)°Q] 8.1

where ¢2 and @ are the second- and fourth-order explicit artificial viscosity coefficients. The symbols V
and A are backward and forward first difference operators. Thus,

VeQ=Q-Q_,
A:Q;= Q+1-Q
Ved Q=Q; 41 —2Qi+Q;
(Ve Q=Qi 4y —4Qi 1 +6Q:—4Qi_, +Q;_;

Equivalent formulas are used for differences in the » direction.

A few details should be noted at this point. First, the sign in front of the artificial viscosity term being
added to equation (7.5a) depends on the sign of the “i” term in the difference formula. For damping, that
termm must be negative when added to the right hand side of the equations (i.e., explicit artificial viscosity),
and positive when added to the left hand side (i.e., implicit artificial viscosity.) See Anderson, Tannehill,
and Pletcher (1984) for details. Second, the terms being added are differences only, and not finite difference
approximations to derivatives. They are therefore not divided by A&, etc. Third, the vanables being dif-

ferenced are Q, not Q. As noted by Pulliam (1986b), scaling the artificial viscosity terms by 1// makes them
consistent with the form of the remaining terms in the equations. Fourth, the terms are also scaled by Ar.
This makes the steady state solution independent of the time step size (Pulliam, 1986b). And finally, note
that the fourth-order difference formula cannot be used at gnd points adjacent to boundaries. At these
points, therefore, the appropriate fourth-order term in expression (8.1) is replaced by a second-order term.
Thus, for points adjacent to the ¢ =0 and ¢ = | boundanes, — :#Az[(V,A,)*Q]// 1s replaced by

Proteus 2-D Analysis Description 8.0 Artificial Viscosity 43

sg)Ar
+—7‘—V§A§Q (8.2)

A similar expression is used at points adjacent to the n = 0 and n = 1 boundarnes.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the
equations specified.

SIAT Ng .
-—5 [V:8:(/AQ")] to equation (7.5a)
(8.3)
EIAT A n .
- [VnAn(JAQ)] to equation (7.5b)

Note that the addition of the artificial viscosity terms, in effect, changes the original governing partial
differential equations. At steady state, the difference equations with the artificial viscosity terms added ac-
tually correspond to the following differential equations.’

I

& o, oF, 2 *UQ 5*(JQ
OE OoF _ v V+€5 (a2 VD any? (2Q)
- n

e+ o FER 08 (An)

£ FUQ) FUQ)
E A 4 A 4
7 [(9] Py + (An) o

The implicit terms do not appear, since they difference Aé, and in the steady form of the equations

AQ = 0. The artificial viscosity terms do not represent anything physical. The coefficients should therefore
be as small as possible, but still large enough to damp any instabilities. Although optimum values will vary
from problem to problem, recommended levels are ¢ = O(1) and ¢, = 2¢# (Pulliam, 1986b). The recom-
mended level for ¢@, when used, 1s 2 = O(1).

8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by
Pulliam (1986b), but in the current notation, the following terms are added to the right hand side of

equation (7.5a). '
V& v
V:{ (T) ot (T) .](‘(fz)AzQ - ‘(:4)A¢V:A§Q)i}

L i+1 i

+Vy (%) " (—-!’_)] (S(rzz)AnQ - eg)AnVnAﬂQ)/ (84

J+1 J

The difference operation A,V.A,Q is given by
AV A Qi =Q; = 3Q 1 +3Q— Qi
In the expression (8.4), ¥ is defined as '
b=Vt v, (8.5)

7 These equations represent the use of the constant coefficient artificial viscosity model presented in this section. The
nonlinear coefficient model to be presented in Section 8.2 is more complicated, but the same principle applies.

44 8.0 Artificial Viscosity Proteus 2-D Analysis Description

where , and ¢, are spectral radii defined by®

—
UL+ ay & +¢&)}

‘px -
A
/é 2 2 (8.6)
" [V +ayn + Ny
Y- An
Here U and V are the contravariant velocities without metric normalization, defined by
U=¢,+Eu+ ity
SR 8.7)

V=un+nu+ny
and a = /yRT , the speed of sound.
The parameters ¢ and @ are the second- and fourth-order artificial viscosity coefficients. Instead of
being specified directly by the user, as they are in the constant coefficient model, in the nonlinear coefficient

model they are a function of the pressure field. For the coefficients of the ¢ direction differences,

(8(;))": kAt max(o; .y, 0 ;1) (8.8a)
(8(54))1' = max[o, K4AT - (8(52))1':]) (8.8b)

where

o= Piv1— 2P+ P
‘ Piy1t 2+ piy

(8.9)

Similar formulas are used for the coefficients of the » direction differences.

The parameter o is a pressure gradient scaling parameter that increases the amount of second-order
smoothing relative to fourth-order smoothing near shock waves. The logic used tc compute ¢ switches
off the fourth-order smoothing when the second-order smoothing term is large.

The parameters «; and x. are user-specified constants. Like the coefficients in the constant coefficient
model, the optimum values will be problem-dependent, and are best chosen through experience. Cases have
been run with values of «, ranging from from 0.01 for flows without shocks to 0.1 for flows with shocks,
and x, ranging from 0.0002 for flows computed with spatially constant second-order time differencing to
0.005 for flows computed with spatially varying first-order time differencing. Pulham (1986b) gives
k2 = 0.25 and x4 = 0.01 as typical values for an Euler analysis.

Like the constant coefficient artificial viscosity' model, the nonlinear coefficient model requires special
formulas near boundaries. To apply (8.4) at i = 2, ¢® is needed at i= 1. It is defined as

(a(gz))l = xk,Ar max(e,, o))

With the above definition, applying (8.4) at i=2 and i= N, — 1 requires o at i=1 and i = N,. They are
defined as

)

8 It should be noted that the grid increments A{ and An in these definitions do not appear in the corresponding
formulas presented by Pulliam (1986b). This is because the grids used by Pulliam are constructed such that

Af = An =1, while in Proteus A¢ = 1/(N, — 1) and Ay = 1/(N; — 1). The definitions used here for y, and ¥, re-
sult in an artificial viscosity level equivalent to that described by Pulliam.

Proteus 2-D Analysis Description 8.0 Artificial Viscosity 45

_‘ —Pat4ps—5p + 2p) \

.. =
: Pa+4p3 +3p +2p
=P, —3 T PN, — 2= PN -1 T 2Py,
6 =
i Prny—3 T 4PN —2+ PN -1+ 2Py,

And, finally, applying (8.4) at i=2 and i= N, — 1 requires A;V,A,Q at i=1 and i= N, — 1. There are
numerous formulas that could be used. The ones currently in the Proteus code are

AV:8:Q; = — Qs+ 5Q; —9Q; + 7Q; — 2Q,
AVeAsQu 1= Qp 4= 5Qu —3+9Qn ;= 7Qu, -1 + 2Qn,

46 8.0 Artificial Viscosity Proteus 2-D Analysis Description

9.0 TUCRBULENCE MODELS

As noted briefly in Section 2.0, for turbulent flow the Reynolds stress and turbulent heat flux terms are
modeled using the Boussinesq approach. An effective viscosity is thus defined as p = u,+ u,, where y, is
the laminar, or molecular, viscosity coefficient, and u, is the turbulent viscosity coefficient. Similarly, an
effective second coefficient of viscosity is defined as A = 4, + Z,, and an effective thermal conductivity coef-
ficient is defined as k = &, + k..

The turbulent coefficients must be computed using a turbulence model appropriate for the flow being
computed. In Proteus, turbulence is modeled using either a generalized version of the Baldwin and Lomax
(1978) algebraic eddy viscosity model, or the Chien (1982) low Reynolds number &-¢ model.

9.1 BALDWIN-LOMAX MODEL

For wall-bounded flows, (i.e., boundary layers), the Baldwin-Lomax turbulence model is a two-layer model,
with '

%(#t)inner for y, <y,

b= (9-1)

(Douter for y, >y

where y, is the normal distance from the wall, and y, is the smallest value of y, at which the values of . from

the inner and outer region formulas are equal. For free turbulent flows (i.e., mixing layers, jets, and wakes),
= (U)oueer- In the inner region, in addition to the Baldwin-Lomax model an alternate expressmn first

presented by Spalding (1961), and later by Kleinstein (1967), is also available.

In a simple boundary layer analysis, with only one solid surface, the procedure fcr computing y, is rel-
atively straightforward. In a general Navier-Stokes analysis, however, any or all of the boundaries may be
sohd surfaces. If both boundaries in a given coordinate direction are solid surfaces, the turbulence model
is applied separately for each surface. An averaging procedure is used to combine the resulting two u,
profiles into one. If neither boundary in a given direction is a solid surface, the formulation for free turbulent
flows is used. In addition, values of u, are computed separately for both the ¢ and # directions. This results
in two complete turbulent viscosity fields. Another averaging procedure is then used to compute a single
value of u, at each point in the flow.?

9.1.1 Outer Region

v

The outer region turbulent viscosity at a given & or n station is computed from
(Brouter = KCc PFyiepFwakeRe; (9.2)
where K is the Clauser constant, taken as 0.0168, C,, is a constant taken as 1.6, and p is the static density.

The parameter Fu. is computed from

9 This discussion is for the most general situation. When the flow is expected to be predominantly in one direction,
input parameters in the Proteus code should be used to specify that direction.

Proteus 2-D Analysis Description 9.0 Turbulence Model 47

YmaxFmax for Wall-bounded flows

Foake = (9.3)
e Cok Vﬁ,ﬁ%‘— for free turbulent flows
max
where C.« 1s a constant taken as 0.25, and
Vdé[f: ‘Vlmax— | V|min
where V is the total velocity vector.
The parameter F,, in equation (9.3) is the maximum value of
Yn Ial (l el +) for wall-bounded flows
Fy,) = - (94)

In | Ql for free turbulent flows

and Pmex is the value of y, corresponding to F,..,. It has been found that for wall-bounded flows the function
Fty,) can have two peaks. As noted by Kirtley (1987), using the second peak as the location of F., yields
the best results.

For wall-bounded flows, y, is the normal distance from the wall. For free turbulent flows, two values

Of Fox and p... are computed - one using the location of 17| as an origin for y,, and one using the lo-

cation of l I7| . The origin giving the smaller value of yn is the one finally used for computing p,, Frax,
and Yoo e

In equation (9.4), lﬁl is the magnitude of the total vorticity, defined for two-dimensional planar flow
as »

—_

@ =
The parameter 4+ is the Van Driest damping constant, taken as 26.0. The coordinate y* is defined as

y+ _ Pwl:Vn v TwewRe,

Hy Re, = Hy n

» _ou

5 (9.5)

(9.6)

where u, = +/1./p.Re, is the friction velocity, 7 is the shear stress, and the subscript w indicates a wall value.
In Proteus, . is set equal to waQI]

The function Fyss in equation (9.2) is the Klebanoff intermittency factor. For free turbulent flows,
Fyis = 1. For wall-bounded flows,

-1
Crieon \°
FKIeb = (CKIeb)min +[1- (CKleb)min][l + B(_}ﬁi) (9-7)

This factor accounts for the experimentally observed fact that, as the free stream is approached, the fraction
of time the flow is turbulent decreases. In equation (9.7), B and Cgys are constants taken as 5.5 and 0.3,
respectively. (Ckus)min is @ constant normally equal to 0.0. However, when using the Baldwin-Lomax model
to generate initial turbulent viscosity values for the Chien k-¢ model (discussed in Section 9.2), (Ciies)min 18
set equal to 0.1. This yields a small positive value for y, in the free stream, and has been found to minimize
starting problems with the k- model.

48 9.0 Turbulence Model Proteus 2-D Analysis Description

.9.1 .2 Inner Region

The inner region turbulent viscosity in the Baldwin-Lomax model is

()inner = PlzlalRer (9-8)

where / 15 the mixing length, normally given by

-

I=wp,(1—e 1) 9.9)
and x is the Von Karman constant, taken as 0.4.
A modified form of equation (9.9), proposed by Launder and Priddin (1973), may also be used. This

formula is most useful for flows with steep negative gradients of shear stress normal to the wall, such as
accelerated flows or flows with suction. Their modified formula for /is

I= (1= &7 €T (9.10)
where |
. Al
Tw #WIQ|

and 7 is a constant taken as 1.7.

The inner region turbulent viscosity may also be computed using an alternate expression first presented
by Spalding (1961), and later by Kleinstein (1967). In this model,

()i =u1<ex eK"+—-l—xu —-L xu 2 (9.11)
tlinner {!)
where

P17

d VTwlpwRe,

Again, in Proteus, 1, is set equal to u. |Q| .

9.1.3 Averaging Procedures for Multiple Boundaries

As noted earlier, if both boundaries in a given coordinate direction are solid surfaces, the turbulence
model equations are applied separately at each surface. It is assumed that the two inner regions do not
overlap. The outer regions, of course, do overlap, and an averaging procedure is used to combine the two
outer region u, profiles into one. For example, if the = 0 and # = 1 boundaries are both solid surfaces,'®
the two values of F,.. at a particular £ station are combined using the following averaging formula:

F = (F wake)lfl + (F wake)2f2
wake - fi + f2

(9.12)

Here (Foi.)1 and (F.u): are the separate values computed for the n = 0 and » = 1 surfaces using equation
(9.3). The parameters f; and f; are defined by

10 An analogous procedure is used for solid surfaces in the ¢ direction.

Proteus 2-D Analysis Description 9.0 Turbulence Model 49

/o 2D\
b (yn)l

AR
fi _—((.Vn)2 >

where 7 is a constant taken as 2.0, (), and (), are the normal distances to the n = 0 and » = 1 surfaces,

respectively, and D, and D, are the normal distances from the two n surfaces to the location of V| . In

addition, the pa/ymex value needed in equation (9.7) for F.s is computed for both 7 surfaces, and thé mini-
murmn is used. These values of F,u. and Fx.s are then used in equation (9.2) to compute ()surer-

The averaging procedure described above computes a single u, profile from the two profiles that are
computed when both boundaries in a given coordinate direction are solid surfaces. We still must average
the two values that result from computing u, separately for both coordinate directions.!! Following
Goldberg and Chakravarthy (1987), this is done using the following formula:

o Do sl Onalih + O
A+ Ui [0+ 0]

Here (u); and (u.), are the separate values computed due to the presence of boundaries at ¢ =0 and
¢ =1, and at n = 0 and » = 1, respectively. If there is only one solid surface in the ¢ direction, (y,); is taken
as the normal distance to that surface. If both ¢ boundaries are solid surfaces, (y.); is taken as the normal
distance to the closest one. If there are no solid surfaces in the ¢ direction, (y.): is the normal distance to

(9.13)

the location of either I I7| or | 17| , as described in Section 9.1.1. Analogous rules are used for (3,)..

9.1.4 Transition Model

After u, has been computed using the procedure described in the previous sections, a transition inter-
mittency factor may be applied to simulate laminar-turbulent transition. The transition model is based on
one given by Cebeci and Bradshaw (1984) for boundary layer analyses, and assumes that a geometnc leading
edge exists at either & = 0 or n = 0. They report that the model is valid for adiabatic flows at Mach numbers
less than 5. In this transition model,

0 for x < x,,
o= (9.14)
Yir bt for x > x,,

where x is the distance from the leading edge, the subscript ¢ indicates a value at the start of the transition
region, and y, is a transition intermittency factor given by

X
yp=1— exp[— G(x— x,,)j uie dx} : - (9.15)
Xer

In equation (9.15), % is the velocity at the edge of the boundary layer. The factor G is given by

3
—a U - 134
G=833x10"" = Rer

v

where Re,,, = (& x/v).Re,, and v is the laminar kinematic viscosity at the edge of the boundary layer.

11 As noted earlier, this discussion is for the most general situation. When the flow is expected to be predominantly
in one direction, input parameters in the Proteus code should be used to specify that direction.

50 9.0 Turbulence Model Proteus 2-D Analysis Description

If we assume that, through the transition region, i« ~ (&), and v 2 v,,, then equation (9.15) may be re-
written as

2
yo=1— expl: —~833x10” 4Rex0'66(% - 1) } (9.16)
4 r

To implement equation (9.16) in Proteus, we replace x/x, with Re,/Re,,, where Re, is defined as

7]

. max
Rey, = ————Re,

is the maximum total velocity magnitude at the current

For flows predommantly m the ¢ direction, | 1%
¢ station, D is the distance from the point where I VI = | Vl to the leading edge at £ =0, and v 1s eval-
. An analogous definition of Re, is used for flows predominantly in

vated at the point where | Vl
the n direction.

9.1.5 Turbulent Values of 2 and &

The turbulent second coefficient of viscosity is simply defined as
h=—2 (9.17)

The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

Cplty

= pr,

pr, (9.18)

where ¢, is the specific heat at constant pressure, and Pr, is the turbulent Prandtl number. In Proteus, the
turbulent Prandtl number may be treated as constant, or as a variable using the following formula (Wassel

and Catton, 1973):
CPr4
1 —exp|. —
Cpr3 sl by

CPﬂPrl < Cp,.z)
l—exp| - —5——

Pr = (9.19)
Priplp

Here Cp.1, Cpr2, Crn, and Cp are constants taken as 0.21, 5.25, 0.20, and 5.0, respectively, and Pr; = c,ufk
is the laminar Prandtl number.

9.2 CHIEN &-¢ TURBULENCE MODEL

9.2.1 k-¢ Equations

The low Reynolds number k-¢ formulation of K. Y. Chien (1982) was chosen because of its reasonable
approximation of the near wall region and because of its numerical stability. Here & and ¢ are the turbulent
kinetic energy and the turbulent dissipation rate, respectively.”? In addition, the Chien k-¢ turbulence model
was frequently used in past Navier-Stokes computations with good results (\uchols 1990, 1991; Patel, Rodi,
and Scheuerer, 1985; Sahu, 1984.) The set of k-¢ equations are lagged in time and solved separately from
the Navier-Stokes equations to allow for code modularity in turbulence modeling. In Cartesian coordinates,
the two-dimensional planar equations for the Chien -z model can be wntten using vector notation as

12 It should be noted that in the Chien model, ¢ is actually the isotropic portion of the turbulent dissipation rate.
Throughout this manual, however, it is referred to as simply the turbulent dissipation rate.

Proteus 2-D Analysis Description 9.0 Turbulence Model 51

where

and

52 9.0 Turbulence Model

oW dF | 3G

at +-a—x—+—ay—=s+T
k
w=[5]
ok |
Fe puk_Re, Hkox
PR
P R,#‘ ox
ok
vk — =
ve — L, Ot
P Re, He dy
P, — Re,pe
S = 2

=

Py = #; Py — S pkPy

(9.20)

(9.21a)

(9.21b)

(9.21¢)

(9.21d)

(9.21e)

(9.22a)

(9.22b)

(9.22¢)
(9.22d)

(9.22¢)
(9.226)

(9.22g)

(9.22h)

(9.23a)

Proteus 2-D Analysis Description

2 2 2 2
ol (Y () |_2(om, & ou, v
ned (2)(2) |- 3(2-5) «(5+%) 023

_ou O
P, = Ee + R (9.23¢)
The turbulent viscosity is given by
%2
pe=Cpp— (9.24a)
- Cy
¢,=C,(1-e) (9.24b)
Cﬂr =0.09 (9.24¢)
C;=0.0115 (9.24d)

Note that the vectors W, F, G, and S are used in most standard k-¢ formulations (with different con-
stants), and the vector T is unique to the low Reynolds number formulation of Chien. The parameter y,
is the minimumn distance to the nearest solid surface, and y* is computed from y,. The production of tur-
bulent kinetic energy P includes the full Boussinesq approximation for compressible flows. All of the
above equations have been nondimensionalized wusing appropriate normalizing conditions.
Nondimensionalization of mean flow properties is discussed in Section 2.1. The turbulent kinetic energy
k and the turbulent dissipation rate ¢ have been nondimensionalized by «? and p,i/u,, respectively.

Following the procedure of Section 2.3, the following generalized grid transformation is used to trans-
form the k-¢ equations from physical (x, y,) coordinates to computational (£, n,) coordinates.

& =¢(x,y)
7 =n(x,) (9.25)
T=1

Applying the generalized gnid transformation to equation (9.20) yields
W+ F i+ Fne+ Gl + Gy =S+ T (9.26)
Although the above equations can not be put into exact strong conservation law form, the procedure

used to do so for the mean flow equations, described in Section 2.4, 1s nonetheless applied to equation
(9.26). The result is

Ial as
_(3——+3§—+ an =S+T 9.27)
where
v = L[erk
W= 7 [ps] (9.28a)
A A A A
A 1 fxpuk + fypvk
Fo=— [Eopis + Lopve (9.28¢)

Proteus 2-D Analysis Description 9.0 Turbulence Model 53

f‘D=

(9.28d]

11| mEE kK
J Rer | u(Ei+&ey

Fy = (9.28¢)

1 1 Hp(Exnx + fy’ly)kr,
J Re, /Jg(éxrlx + iyny)sq

A1 | nxpuk +mypvk
Ge=- [nxp e + npve (9.28g)

2 2
pi(nx + ny)k
L R« ”] (9.28h)

2 2
Rer | p (nx + m)e,

1 1 m(Exnx + éy'ly)kg
J Re, #E(éxnx + éyrly)Xig

(9.28i)

2 (9.283)

—yn (9281()

Note that in equation (9.28j), the term Py involves derivatives with respect to the Cartesian coordinate
directions (see equations (9.23a-c.) These are evaluated using the chain rule.

9.2.2 Linearization of the k-¢ Equations

Solving equation (9.27) for B\AJV/@-: and substituting the result into the time differencing scheme of Beam
and Warming (1978), given by equation (3.1), for 3(AW")/67 and 6W"/0z yields

n

A A
+ AS + AT)

W =
a 110, 5% T 2z n an n

n

A BA saFy anaF, anF,,) aaGy aaGp AAG
1T<_(CM_(d+(w U8G9 Gy | AAGy)

oF. oF, oFy 8G. 8Gp, 3Gy A &
Az <_ c D M c D, M+S+T>

*1+16, 5t T ot YT T oq T om | on
+—LAW"_1+O (9 1 4 >(AT)2 (A7)} (9-29)
1+86, L7272 ’ :

Equation (9.29) is then linearized using the procedure described in Section 4.0. Let

A N A Fa¥
aF oF G G Q T
A'-:_/\ﬁ.a B=—/\£’ C= /\Cr D=—/\D_’ M= a§ ’ N=—a;fl\‘_ (930)
oW oW oW oW oW oW

54 9.0 Turbulence Model Proteus 2-D Analysis Description

be the Jacobian coefficient matrices, where

Eu+ &y 0 :'
A= y (9.31)
[0 Exu+ &y
1 20 J
T 1+ (5) 0
B=| 7" e , (9.32)
0 The hdE ()
¢
C= ["X“ g Ty 0] (9.33)
NxU + 7V
1 2 2f(J
TRe Milnx + ’Iy)(ra) 0
D= r n (9.34)
1 2, . J
0 TRe- Helrx + ﬂy)(-)
T n
k Py K2 P
ZC# e TI- Cﬂ ?2—' _"‘T Re,
M= P, 2] (9.35)
Cl C[l T + Re,C2 k2 — 2Re,C2 7
2 -
- 2“ 0
N=| #PraRe 5 . (9-36)
‘ 0 K
'P.VrzzRer

The lineanzed form of equation (9.29) can now be written as

Proteus 2-D Analysis Description

9.0 Turbulence Model 55

n

N A A A
ra 6,81 | HAAW) B(BAW) H(CAW) 3(DAW) N
AW+ ': 5 5t o S~ MOW) - NaW) | =

n—1

8,8 [0(F,) 8(AGy)
i+6,| o T o

*T11g, 3 Tar TTar om T am ' om 1+6,

+ o[(a1 -3- 92>(AT)2, (Ar)3:| (9.37)

92.3 ADI Algorithm for k-¢ Equations

A N A A A N
oF oF oF oG oG oG 6 A
At <_ c D M ¢, % TM A “) + 2

Letting LHS(9.37) represent the left hand side of equation (9.37), we can write

LHS(9.37)={I+ 19_1:3; [E(A B)+——(C D) - (M+N):I} AW" (9.38)
2

where I represents the identity matrix. Factoring the term in braces, and neglecting the temporal truncation
and splitting errors, equation (9.37) becomes

O i A—B)—(M+N AL acpn\%fh
+m2—|: ()(+3:| +1+9 [_3;(—)] AW" =

6,A [3(AF) . A(AG,) T_]

oF. ofF, of, 8G. 0Gp, oG §

At C D M C D M 2 ~on—1

_ _ W 9.39
+1+92(a<§+ag+ 3 e + o o +S+T>+1+92A (9.39)

Using the procedure of Douglas and Gunn (1964), as written by Briley and McDonald (1977), equation
(9.39) can be split into the following two-sweep sequence.

Sweep 1 (& direction)

6,At G i a(AF,) Gy
fro e [2o || i - 2] 200, 2620 |

n

n—1

A N N N N
AT 6FC 6FD 6FM aGC 6GD 6GM 92 An—1
—- - 9.40.
+ 1+92< 32 + PE + 3z o + o o +S+T) + H_HZAW" (9.40a)
Sweep 2 (n direction)
o8 [o ol p nA\‘AV" AW 9.40b
e IR = (5.400)

56 9.0 Turbulence Model Proteus 2-D Analysis Description

To approximate spatial partial derivatives, the spatial differencing formulas of Section 5.0 are used in
equations (9.40a) and (9.40b). Following Nichols (1991), the spatial denvatives for the convective terms
are approximated using first-order upwind differencing. A first-order backward difference approximation is
used for the terms with positive eigenvalues, and a first-order forward difference approximation is used for
the terms with negative eigenvalues.

9.2.4 Matrix Inversion Procedure for k-¢ Equations

Non-Periodic Boundary Conditions

Explicit boundary conditions are used for ease of implementation and modification. The complete set
of algebraic equations for the first ADI sweep with non-periodic boundary conditions can be written in the
following block matnx form.

r i 1T T
B, C, aw, RHS,— A,AW]
A, By C AW; RHS;
A, B, C, AW, RHS,
a L] -
. - . = . ©.41)
Ay-3 Byos Cyos AWy, -3 RHSy _3
Am-2 By—2 Cp 2| 8Wy RHSy, _
Avi-1 By || AWy 1 RHSy _1—Cy, - 1AWN,

In the above matrix, A, B, and C; are the 2 x 2 coefficient matnces in front of AVAV,’_,, AVAV,-', and

AVAV'+ 1, respectively, and they should not be confused with the Jacobian coefficient matrices 4, B, and C
defined in equations (9.30). The above block tridiagonal coefficient matrix is solved using the Thomas al-
gorithm discussed in Section 7.2.1. An analogous procedure is used for the second ADI sweep.

Spatially Periodic Boundary Conditions

A spatially peniodic boundary condition in the ¢ direction may be represented as shown in Flgure 7.1

Following Section 7.2.2, an additional set of grid points is added at i= N, + 1, setting WN, = Wz This
allows us to use central differencing in the £ direction at i = N,
Since W, = VAVN, and Wz = WN, +1, equation (9.41) can be rewnitten as:
_ " N _ -
B, G, A, AW, RHS,
A, By G AW; RHS,
A, B, C; AW, RHS,
. . . = . (9.42)
- A : -
Ay —2 By -2 Cy_» AVAVNl 2| [RHSN
Ay -1 By Cy 1 |[8Wx 1| [RHSy _;
Cy, An, By, AWy RHSy,
Proteus 2-D Analysis Description 9.0 Turbulence Model 57

To solve the above system, the algorithm described in Section 7.2.2 is used. An analogous procedure
is used for the second ADI sweep.

9.2.5 Updating Boundary Values for k-¢ Equations

For easy modification and easy accommodation of complicated boundary conditions for k and ¢, non-
periodic boundary conditions are treated explicitly in the solver. After the k and ¢ values at the interior
points are advanced in time, the values at the boundaries are simply computed from the new intenior values
using the specified boundary conditions.

Spatially periodic boundary conditions in either sweep direction are treated implicitly, as described in the

previous section. For a periodic boundary condition in the ¢ direction, the & and ¢ values at i = 1 are easily

updated by setting WI = Wm- An analogous procedure is used for periodic boundary conditions in the »
direction.

9.2.6 Turbulent Values of 2 and &

The turbulent second coefficient of viscosity 4, and the turbulent thermal conductivity coefficient k, are
defined as described previously in Section 9.1.5. :

58 9.0 Turbulence Model Proteus 2-D Analysis Description

APPENDIX A - EXPANSION OF VISCOUS TERMS

In Section 4.2, the viscous terms in the governing equations are linearized. To do this, the elements of

Ey and Fy, given in equations (2.17d) and (2.17¢) must first be rewritten in terms of the dependent variables,
and with derivatives in the Cartesian directions transformed to derlvauves in the computational directions

using the chain rule. The non-cross derivative terms, involving Eyl and F v, are then linearized using Taylor

series expansion. The cross derivative terms, involving Ey, and Fy,, are simply lagged one time level. This
Appendix presents the fully expanded viscous terms required in the linearization procedure.

The viscous term l::y is given by equation (2.17d), which is repeated here.
0
] Taxéx T Tly
7 Re, | Tofxt
ﬁxéx + ﬂyéy

E, = (A1)

where
Tex = 2puy + AU +)

vy = 20V, + AUy +)

Ty = /J-(uy + vx)

1
ﬁxzmxx*'v"xy_?;qx

1
ﬂy:mxy*""’yy_—[?qy
4x=— kT,
gy =—KT,

The chain rule is used to transform derivatives in the Cartesian directions into derivatives in the com-
putational directions, resulting in

Txx = (2)“' +)-)(éxug + ’1xur,) +)-(f),v§ + ﬂyV,,)
Tyy = (2# + 'J-)(éyvg +"’yvp7) + 'l(fxug + "xur,)
Txy = [..L(éyU§ + nyu’, + §XV§ + "xvr,)
Bx = Qu+ A)Extayy + niaar) + A(Euvy + nyuv,,)

+ u(€yvuy + mpvu, + vy + myw,) + 5 P (6xTy +nxT,)

ﬁy = (21“ + A)(éywﬁ + 'IyVV,,) + 'J"(g_xvug + 'lx"u)

+ P‘-(éyuug + ’7y + éxuv§ + ’7x) + (éyTg + ny r])

Proteus 2-D Analysis Description A. Expansion of Viscous Terms 59

The above expressions for the z’s and $’s are next substituted into equatlon (A.D.

The & denvative

terms become elements of Eyl, and the x derivative terms become elements of Evz The resulting four ele-

ments of Eyl (excluding the 1/JRe, coefficient) are

(ﬁVl)l =0
(Ev)s = 2ulug + 1,(E + &) + nEy (G + E,3)
(ﬁv,)3 = 2#53*’; + A& &y + Eyve) + Sy + $xve)

(f:Vl)A = 2#({&11115 + &iw;) + léx(fxuu§ + ftu§) +).fy(éxvu; + éyvv:)

+ Péx(éyvug + Cxwf) + #Cy(éyuug + €XW§) + (éx + fy)Tx

For linearization it is convenient to rewrite the last element as

A 2u+ Ay |
(Ep)s = (—“;—l (6307 + G0 + (e + DExg ()

" % (207 + £26),] +‘—i,"r—r (&2 +)T,

The elements of fTV, have exactly the same form as those of ﬁy,, but with ¢ rei)laced by 7.

The four elements of fiyz (again excluding the 1/J/Re, coefficient) are
a
(Ep) =0
(Ep)y = 2ué i, + A4 (nxtty + myvy) + 080y + nv,)
(EV2)3 = 2#5);'7);",7 + 'léy("lxur, + ']yvr,) + #ﬁx(nyur, + ﬂxvﬂ)

(Ey)a = 2u(Exmusy + Enywvy) + A (nat, + myvy) + ﬂfy(nxvu + nyv,)

+ #E_x("yvur, + 7]1) + Héy("ly + 'lxuv) + P (f):rlx + Eyrly)T

The elements of Fy2 have exactly the same form as those of Evz, but with ¢ replaced by
by &.

(A.2a)

(A.2b)

(A.2)

(A.2d)

(A.2)

(A.3a)

(A.3b)

(A.3c)

(A.3d)

n and 5 replaced

60 A. Expansion of Viscous Terms Proteus 2-D Analysis Description

APPENDIX B - AXISYMMETRIC ANALYSIS

The analysis used in Proteus for axisymmetric flow is essentially the same as for two-dimensional planar
flow, described in the main body of this report. However, there are some additional terms in the
axisymmetric equations that complicate things somewhat. For that reason, the axisymmetric analysis is
described separately in this appendix.

B.1 GOVERNING EQUATIONS

In cylindrical coordinates, the governing equations for axisymmetric flow, with swirl, can be written
using vector notation as

(rQ) O(rE) &rF) orEy) A(rFy)
6t+6x+6r+H= 6x+ 6r+

H, (B.1)

where

Q=[p pu pv pw Ef)" (B.22)
e

pui +p
E=]| pw (B.2b)

F=| p*+p (B.2¢)

H=|-p-p?| (B.2d)

E,=—| (B.2¢)

Proteus 2-D Analysis Description B. Axisymmetric Analysis 61

FV= Re, Trr (B.2f)

1
Hy, = — Tgg (B.2g)
Trg

Equation (B.1) thus represents, in order, the continuity, x-momentum, r-momentum, §-momentum (swirl),
and energy equations, with dependent variables p, pu, pv, pw, and Er. Note that the additional terms in
these axisymmetric equations destroy the strong conservation law form of the two-dimensional planar
equations presented in Section 2.1. Unfortunately, the axisymmetric form of the equations cannot be put
into strong conservation law form (Vinokur, 1974.)

The shear stresses and heat fluxes are given by

0 v
Tx,=y(—z:+-5;) (B.3)
ow
Tx0=/"_a—;
ow w
me(32)
- _ 9T
x k ox
—_ 9T
r k or

In these equations, X, r, and @ represent the axial, radial, and circumferential directions, respectively; and
u, v, and w represent the velocities in those directions. The remaining symbols are the same as those in the
two-dimensional equations described in Section 2.1.

For turbulent flow, y, 4, and k represent effective coefficients. The turbulence model is described in

Section 9.0. The only modification to the model for axisymmetric flow is the definition of !fl|, the mag-
nitude of the total vorticity. For axisymmetric flow,

62 B. Axisymmetric Analysis Proteus 2-D Analysis Description

2

S w 2 ow o o]
=| (v ¥ oW Loy _ ou
|Q|—[(6r+’) +(6x) +(0x ar):|
When the generalized gnd transformation of Section 2.3 (with y replaced by r), 1s applied to equation
(B.1) the result is
(rQ), + (r Qg + r Qe+ T E)o + PE) e+ r gty + ¢ P, + H

- (rEV)féx - (rEV)q’lx - (rFV)gér —(r FV)q'Ir —-Hy=0 (B.4)

Although this axisymmetric equation cannot be put into exact strong conservation law form, the pro-
cedure used to do so for the two-dimensional equation, described in Section 2.4, is nonetheless applied to
equation (B.4). The result is

owQ ok Ak o k) orky o

ot o& on a¢ on 4 (B.5)
where
A Q
Q="
A1
E= 7 (E¢&, + FE, + Q&)
A | .
F= T (Enx + Fﬂr + Qn))
~ H
H=7
) 1
Ey=7Ey:+Fy <)
a 1
Fy=—7Eync+Fyn,)
~ Hy
Hy=—7"
Using equations (B.2a) through (B.2g) these can be expanded as
AN | T
Q==[p pu pv pw Er] (B.6a)

pusx +pvé, + pl;
(¥ +P)ex + puve, + pul, |
pwl + (pV + P)E, + pvE, (B.6b)
puwy + pywl, + pw¢,
| (Er+ pyulx+ (Ep+pVe, + Ep 8,

>
Il
<[

Proteus 2-D Analysis Description B. Axisymmetric Analysis 63

puny + p¥n, + pn;
(ot + Pyix + puovm, + pum,
pwr + (pV° + P, + pvi, (B.6c)
puwn, + pywn, + pwi,
-(ET+p)w1x + (ET+P)V77r + ET"I!‘

>
Il
|

o op
Il

—p—pw (B.6d)

|-

~ 1 Texbx + Txrdr
E,= 7 Re, Terbx + Treds (B.6e)
Tx0éx + T8y
L Bxgx + ﬂrir |

0
n 1 Toxlx + TxMr
F,= N Re, Txfx + Ty (B.6f)
TxoMx T TrMy
anx +Bm,

[0]
0
Re’ —1.'00 (B6g)

>
<
il

=

where

1
ﬁx = UTey + Vg + WThg — Pr, dx

(B.7)

1
B,=uty, +vr, +wry— Prr,qr

B.2 LINEARIZATION

Solving equation (B.5) for 66/61 (assuming r is not a function of time) and substituting the result into the

time differencing scheme of Beam and Warming, given by equation (3.1), for 6(A(A}")[6r and 66"/61 yields

64 B. Axisymmetric Analysis Proteus 2-D Analysis Description

A, 9.0t | [orAEY) a(rAFY A Ar 1 [0CEY arFY .
AU =1 v\ T Tt T T\ e T T

A N A N
6,atr | [&rAE,)") 8(rAF,") A Ar 1 [8CESY B8(rF)Sy A,
+1+927< w tT o MMt T e tHY
6, An—1 1 2 3
+ T e AQ +0[(91 -3 —02)(Ar) , (A7) (B.8)

This equation must be linearized using the procedure described in Section 4.0.

B.2.1 Inviscid Terms

For the inviscid terms the Jacobian coefficient matrix JE/0Q is

s £x g, 0 0
—g%h—uf} §,+j]+u§,+a—(i%)—§x “5#’%5, _é%’w_)gx ‘:ELTL
:§= 24— R ARV Ao Lo SRR < <X ©9)
~vh Wi w, L+, 0
fl(fz'aa%) AR Fhthaey e g'”‘(”%)

where fi = ué, + v¢, and f; = (Er + p)/p. The Jacobian matrix oF /66 has the same form as 61::/66, but with
¢ replaced by .]

For the additional term ﬁ, the linearization procedure gives

0 0 0 0 0
0 0 0 0 0
oH p ap ap p |
_|_op 2 _ _ —ow -2 B.10
% | % Wb T Fe T Oew % F10
- W 0 w v 0
0 0 0 0 0]

B.2.2 Viscous Terms

To linearize the viscous terms, Ey,, Ey,, etc., must first be rewritten in terms of the dependent vanables,
and with denvatives in the cylindrical coordinate directions transformed to derivatives in the computational
directions using the chain rule. The shear stress and heat flux terms, given by equations (B.3) and (B.7),
become

Proteus 2-D Analysis Description B. Axisymmetric Analysis 65

= (20 + D)ty + mgtty) + - [E(0)y + 1))

. . 2
Tpr = 2;1(§,V§ + r],v") + /-(fxug + ”xur,) +F [ir(rv)g + 'Tr(rv)y,]
. Aory
Tog = 2u ';' + A(§x1‘§ + ﬂxu,,) +-+ [gr(rv)g + 'Ir(rv)n]
Ty = (&l + Mty + Evp + 0,,)

Txp = #(ExWy + 1)

T = p(EWg + mw,) — 1
Bx = Qu + A&y + naan) +)7 [Epdrv)g + nadrv),]
+ u(&vuy +nvu, + S + v + p(& wwy + n ww,)

k
+ —P—;r_ (‘fng + 'bcTy,)
A
ﬁr = 2#(§rW§ + 'Irwr,) + N2 [érv(rv)g + rlrv(rv)r,]
+ p(aaty + npuy + &y +) + p(Ewws + nww,)
2
; w k
+ A(CXVIJ; + nxvu,,) —p—F+ -ﬁ; (é,Tg + n,Tr,)
The above expressions for the shear stress and heat flux terms are substituted into equations (B.6e)
through (B.6g). As in the two-dimensional planar case, the cross derivative terms are separated from the

non-cross derivative terms. In addition, for the axisymmetric case the non-derivative terms are included
with the cross derivatives.

The resulting five elements of fZV, (excluding the 1/J/Re, coefficient) are

(fiVl)l =0 (B.11a)
- 2 ¢ 1
(Ey)y = 2ud5u; + Acx[éxug + 5,(rv)§] + g (& + Exve) (B.11b)
/ 2 . 1 ¢
(Ep)s = 2ud;ve + lcr[fxug +- of,(rV);] + (& + &) (B.11c)
(fz,,l)4 = p&iw + yéfw,, (B.11d)

(Ey,)s = 2u(E2aay + &) + Aéx[ixuug +1 f,u(rv);] + zg,[ngug +1 §,v(rv)§:|

(G vty + Exvvy + Exwwy) + ud (E ity + Extvg + Zowwg) + 'Pkr_, 22+ T, (Blle)

For linearization it is convenient to rewrite the last element as

(2u

A + 2 Ty
(Ey)s = —Tl [E00); + E07);]+ (1 + DEE), + A~ (" + Ea0)

+ (207 Wiy + 868 W)+ G)T (B.11f)

66 B. Axisymmetric Analysis Proteus 2-D Analysis Description

The elements of f’vl have exactly the same form as those of ﬁvl, but with ¢ replaced by ».

The five elements of tyz (again excluding the 1/JRe, coefficient) are

(Ep) =0 (B.12a)

(By,)s = 2uEan,dty + 28] matty + 4 mlr), | + bty +) (B.12b)
EBr)s = 268, + 28] nathy +), | + ualrty + mev,) (B.120)
(Ev)s = nExrawy + nEpw, = ut, = (B.12d)

A p . 1 1
(Ev,)s = 2u(Entag, + Empwy) + 3] mataty + 4 maur), | + 28 neviey + - mptm), |

+ ulx(nyy, + nwv, + nww,) + ué(npad, + 1, + nww,)
2
k
— b T+ G+ €T, (B.12)
r

The last element can be rewritten as

A
N 4
(EV2)5 = 2[-‘(5;’1;”",7 + frﬂrwy,) + 'léx(nxuur] + ﬂruv,,) +)'ér(rlxvur, + 'IrVV,,) + ANy (éxu + f,v)rn
+ #fx("rv,un + v, + fleW,,) + #fr(’huu,, + v, + ﬂrWW,,)

2
k
- #ér_u_;_'*‘P_rr(éx'lx'*' ér’lr)Tr, (B.12f)

The elements of f’vz have exactly the same form as those of fiyz, but with ¢ replaced by n and » replaced
by &. ’

The five elements of H, are

(H,), =0 (B.13a)

(Hy), =0 (B.13b)

| (Hy)y = — 20 % — ity + mity) + 2 [+ (), (B.13c),
(Hy, _ (Ewy + nw,) — - (B.13d)

(Hy)s=0 (B.130)

Proteus 2-D Analysis Description B. Axisymmetric Analysis 67

Performing the linearization, the Jacobian coeffictent matrix 0E,/3Q 1s

4] 0 0 0]
aEy, 3 (1 3 (1 .
< 661> a,xg(?) ‘"E —ﬁ-)+a,, 7’4 0 0
. R 21
aEVx 1 aEVl d 1 3 1 1
A = A al.’_ r a’f_ o + a’rr —-r 0 0 (B'14)
20 Re,(aQ) ag(ﬂ) ag(p) P
(aé"l > 3 1
0 0 o, — | = 0
: = (%)
2Q
A 4l A A A
aEVl aEyl aEVl aEyl 101 (—a_z-—>
3Q 2Q aQ 2Q o \ %7
| st 52 53 54 l
where
=(2 1 2 2
axx = (2u + A& + ué,
oy = pll + u+ g’
%z = P‘éxz + #grz"
Axy = (I-L + l)éxér
, A
Exr = F $xéy
, A .2
&y =5 ¢r
k 2 2
0= "p, Ex +&7)
oE, 5
u d 14 ,
) =g () mmegs () -
aQ 21
oE,
u d 14 '
/\] Xxr ER (7)'—“” 9 (7) Err pr§
aQ 31
~ 22
50 ¢ ‘ p

68 B. Axisymmetric Analysis Proteus 2-D Analysis Description

A A

aEyl _ 6EV1 + g —@_ (aT)
aé . 66 N 0¢ d(pu)

aﬁVl aéVl v 0 (oT)

= - + oy, =TI+ ey 35
A A 14 0
3Q 3Q Toe ¢ 9(pv)
53 31

Bv N\ __[Fn HOL(L)
Q 54 Q 41 55_ o

The Jacobian coefficient matrix for the remaining non-cross derivative viscous terms, dFy,/3Q, has the

same form as 6fiy1 /66, but with ¢ replaced by »#.

And finally, linearizing ﬁy, the Jacobian coefficient matnx 6l:ly/66 is

0 0 0 0 0
0 0 0 0 0
A A A N
0@ Re |\ 50 2Q 2Q
31 32 33
oH,, 0 0 oHy,
3Q 3Q
a1 a4
0 0 0 0 0
where
A
oHy 0 u 0 v u
A =i§xa—§<7)+l§' ET: (7,-)+,1ar (?)

31
. 1 d
+ 20+ 2 + nrrr,)]—;_%+ lma(%)

A

cHy . a<1) a<1)
=—it Z({=)-in, L (=

6Q For\w)T\
32

Proteus 2-D Analysis Description B. Axisymmetric Analysis 69

oHy 3 (1) 1 1 3 {1

SP SRy G0 W Y WA TP g T e | _(_)
66 ér 65 P [o3 (érrg 'Ir’q)] rp Nr an P

33

A

cHy 8 W How w

66 =—#sra—§'(7)+77—#nra‘(7)

a1
5ﬁv d (1) o1 < 1)
— — —{ — _——_—— _— =

B.2.3 Equation Of State

The equation of state given in Section 4.3 must be modified slightly to add the swirl velocity w. Thus,

p=(y— 1)[57-—%p(u2 +v 4+ w2)] (B.16)
or, in terms of temperature,
A 12, 2,..0]
T—cvl: 5~y @+ +w)] (B.17)

The derivatives arising from the linearization are the same as those presented in Section 4.3, except for

_gf= e (B.18a)
5(?:;) =T (B.18b)
%g-=_%[%r——%(u2fv2+w2)} (B.18c)
a(a:;) = —'cl:;; (B.18d)

If constant stagnation enthalpy can be assumed, the appropriate equation of state 1s

-1
p=- _ p[hr——;—(u2+v2+w2)] (B.19)

and the temperature becomes

1
C

T=— [hT—%(f +v° +w2)] (B.20)

Again, the derivatives arising from the linearization are the same as in Section 4.3, except for

p y—1] 1,2, .2, .2]
—ap =3 [h7-+ > W +v +w) (B.21a)
p y—1
Gow -7 (B.21b)

70 B. Axisymmetric Analysis Proteus 2-D Analysis Description

—g% = 'cpl—p (u2 v+ wz) (B.2lc)
aT w
3ow) =— &P (B.21d)
B.2.4 Linearized Governing Equation
The linearized form of equation (B.8) can now be written as
B A n A n N n
A 2.A
AQ" + 11 ; —1— —aa— r[£) AQ +~§— Al 2E) a0 [+ 2L) a7
+8; < 3Q ! aQ 3Q
B A n A n A n
8,4 oE oF A oH A
-7 . ; —lr— —ag— r ,\Vl A(,\)'z +-aa— r :/l aQ” |+ 2 1 AQ" » =
+0, ¢ 2Q " 2Q oQ
£ 2 g oty ok, A\
orE 1, A rey rky A
AT 1 (r)+ ("F)+H n Ar 1 vy 1 +H,
1+0, 7 o0& on 1+, 7 o¢ on
A A . n) A A n—1
(1+83)87 | (rEy) . orFy) _ 6Ar ArEy) . o(rFy)
1+06, ' ¢ an 146, 7 3¢ o
(B.22)

6, A
*Tya 8T+ 0[(" =g 02)(Af)2, 63 — 0,)(A7)7, (Arf]

B.3_SOLUTION PROCEDURE

Letting LHS(B.22) represent the left hand side of equation (B.22), we can write
s OE A OF)
LHS(B22) = < K + —22 I - Y] Py S W B R (L S S AQ" (B.23a)
146, 214 80 8Q an 5Q 20

9,4 N oH
K=1+—— L 77V (B.23b)
T+ 6, 0 00

where

and I represents the identity matrix. The term in braces in equation (B.23a) can be factored to give

n n

9.A £ 9Ey _y 0,A F oF A

LHS(B22) = x+—%}—a§- P2E P ‘o pd L T A i W I Y

1+6; ¢ 8Q 2Q 1+6, on 2Q 20 .

A Py n
2 A A
68 \' 1 o] o, En o [o %Fn ||, (B.24)
- - r7 Gv eyl il N ey Q
1462/ 7 2@ 9@ [\ @ 8Q

The last term represents the splitting error.

Proteus 2-D Analysis Description B. Axisymmetric Analysis 71

Equation (B.22) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation
and splitting error terms, becomes

n n
9,A al JEy, N 8.A & oF,. R
K-'}-———1 : ; —l——aa— BIE -r Al (K ‘)" K+———1 : ; —}.—ai r——al: —r—A] AQ =
+0; 4 30 0Q +6; n 2Q 30Q
A A n A A n
A 1 (B WP a) a1 o(rEy) . o Fy) TR
1+6, 7 a¢ an 146, 7 FL; an v
A A n A A n~1
& E orF z rE ArF n
(1+8987 ¢ [%rEp) . Fv) N 680 (rEv,) . (r Fy,) . 6, Ag ! 8.25)
1+6, 7 oz an 1+6, * Eq an 1+6,

Using the procedure of Douglas and Gunn (1964), as written by Brley and McDonald (1977), equation
(B.25) can be split into the following two-sweep sequence.

Sweep 1 (& direction)

8,A £ aﬁ Ae
s0r 1 0 f OE _ —H AQ =
146, 7 %\ 5 20

A A n A A
&rE)y &rF) =~ 8rEy) OCFy) .
_AT+<<r)+(r)+H)+AT+()

n

1+6, ¢ on 1+6, o¢ on
A A n A A n-1
3(rE o(rF 8 E orF R
. (1 +8;5)At 1 (Vz) . (Vz) _ 6;A1 1 (V2) + ("z) + 6, AQ™ ! (B.26a)
1+6, T 3E an 1+6, 7 ER on 1+ 6,
Sweep 2 (n direction)
0,A s oF, ~ A

Ky—2r L. 6, eF 71 AQ™ = K'AQ (B.26b)

Or, expanding K and rearranging,

Sweep 1 (& direction)

n IS n N n
e G0 £ A 6,A CEy, Ao 6,A Y OH A
P A i W Y G S I (LA S Y (i R ('Y N e LS B . SRR LA O
1+6, © 82 20 1+6, T & 20 1+6; 20 20

A A n
3rE) 3rF) A & Ey) OrFy) .
ax 1T<(r)+(r)+H>+Af+(ALY

T1+6, EX; on C 1486, ak an
A A n A A n—1
(1+69A7 1 [O Ey) A Fy) 9:8c | [OCEy) ArFy) 6 \on-t (B.272)
T+8, 7 FrR ~“Tie, T %t o + 17, 4¢

72 B. Axisymmetric Analysis Proteus 2-D Analysis Description

Sweep 2 (n direction)

A 6,4t 1 3 af?
AQ" + - r -
148, 7 o9 20

2 A n n n
A6n _ G’A‘t l—a- ; aFVl Aén + 01A1 L oH _ aHy Aén -
1+6, T on 20 146, "\ 36 20

e 887 i oM .
AQ 4+ L H TV Y 4AQ (B.27%)
1+6, 20 20

Applying the spatial differencing formulas of Section 5.0 results in

Sweep 1 (& direction)

n n
. 0,80t o A 3E A
AQ + m'r_ (' 36 AQ, |7 36 AQ;_,
i+1

i-1

——ZLM—Z%'[(’.-_M_;+’.'f.-)"8."—1‘36:—1'(' iy U St T S VEIAQ + i 1 S) °:+1AQA+I]

1+ 6)2(A%)

A a

6,87 1 [e 8Hy \ A Ar_ 1 A A A AT 1] A A A

tire T\ AT | A== Ty F6 By +6,rFy+H + T+ + [6:r Ev)) + 6,0 Fy) + Hy)
2Q 2Q
(1+63)41 4 A A BT A A -l 62 L an-1 (B.282)
v + (6 Ev) + 8,0 Fyp] — 5~ e + 6+ F I+ 5o, A

Sweep 2 (n direction)

n n
n olAT 1 ai; n a?‘ n
AQj+m-r—|:(r 36 AQj+l— r 36 AQj_]
i+l i=1

elAT L[n_n AAn 2 A n n AAn
e [S LA = o 2 1 S VO + (1 '8 18]
(1 +62)2(An)
n A n
6,az q on 6,at § oH e
e LY) aQr =40+ Y +{ ZL-=F)ad (B.28b)
2 Q aQ 2 2Q aQ

These equations are solved using the same matrix inverston procedure described in Section 7.2.

B.4 CHIEN k-: TURBULENCE MODEL

The axisymmetric k-¢ equations for the Chien model can be written using vector notation as

orwW) a(rF) 6(rG) :
=t o =nS+T) (B.29)

where W, F, G, S, and T are the same as the correspondmg terms in the two-dimensional planar equations
with the coordinate y replaced by r, and

Pl-z[<,z;:> +<%>2+<%>2}—1<%—+%+%>2

(B.30a)

Proteus 2-D Analysis Description B. Axisvmmetric Analysis 73

_ou v v
Py=——-+o-+7 (B.30b)

The analysis for the axisymmetric k-¢ equations is the same as for the two-dimensional planar k-¢ equations,
described in the main body of this report.

74 B. Axisymmetric Analysis Proteus 2-D Analysis Description

REFERENCES

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. (1984) Computational Fluid Mechanics and Heat
Transfer, Hemisphere Publishing Corporation, McGraw-Hill Book Company, New York.

Baldwin, B. S., and Lomax, H. (1978) “Thin Layer Approximation and Algebraic Model for Separated
Turbulent Flows AIAA Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) "An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations,” AIAA Joumal, Vol. 16, No. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977) “Solution of the Multidimensional Compressible Navier-Stokes
Equations by a Generalized Implicit Method,” Journal of Computational Physics, Vol. 24, pp. 373-397.

Briley, W. R., and McDonald, H. (1980) “On the Structure and Use of Linearized Block Implicit Schemes,”
Journal of Computanonal Physics, Vol. 34, No. 1, pp. 54-73.

Cebeci, T and Bradshaw, P. (1984) Physical and Computanonal Aspects of Convective Heat Transfer,
Springer- Verlag, New York.

Cebeci, T., and Smith, A. M. O. (1974) Analysis of Turbulent Boundary Layers, Academic Press, New York.

Chen, S. C,, and Schwab, J. R. (1988) “Three-Dimensional Elliptic Grid Generation Technique with Ap-
plication to Turbomachinery Cascades,” NASA TM 101330,

Chien, K. Y. (1982) “Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number
Turbulence Model,” AIAA Joumnal, Vol. 20, No. 1, pp. 33-38.

Dcuglas, J., and Gunn, J. E. (1964) “A General Formulation of Alternating Directinn Methods. Part I -
Parabolic and Hyperbolic Problems,” Numersche Mathematik, Vol. 6, pp. 428-453.

Goldberg, U. C., and Chakravarthy, S. R. (1987) “A New Computational Capability for Ramjet
Projectiles,” AIAA Paper 87-2411.

Hughes, W. F., and Gaylord, E. W. (1964) Basic Equations of Engineering Science, Schaum'’s Outline Series,
McGraw-Hill Book Company, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) “Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81-1259.

Kemighan, B. W, and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book
Company, New York.

Kirtley, K. R. (1987) “A Coupled, Parabolic- Ma.rching Method for the Prediction of Three-Dimensional
Viscous Incompressible Turbomachinery Flows,” Ph. D. Thesis, Pennsylvania State University.

Klemstem G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers,”
AIAA Joumnal, Vol. 5, No. 8, pp. 1402-1407.

Kom, G. A., and Kom, T. M. (1968) Mathematical Handbook for Scientists and Engineers, McGraw-Hill
Book Company, New York.

Proteus 2-D Analysis Description References 75

Launder, B. E., and Priddin, C. H. (1973) “A Comparison of Some Proposals for the Mixing Length Near
a Wall,” International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Nichols, R. H. (1990) “Two-Equation Model for Compressible Flows,” AIAA Paper 90-0494.
Nichols, R. H. (1991) “Calculation of the Flow in a Circular S-Duct Inlet,” AIAA Paper 91-0174.

Patel, V. C., Rodi W., and Scheuerer, G. (1985) “Turbulent Models for Near-Wall and Low Reynolds
Number Flows: A Review,” AIAA Joumal, Vol. 23, No. 9, pp. 1308-1319.

Pulliam, T. H. (1986a) “Efficient Solution Methods for the Navier-Stokes Equations,” Numerical Tech-
niques for Viscous Flow Calculations in Turbomachinery Bladings, Lecture Series 1986-02, Von Karman
Institute for Fluid Dynamics, Brussels, Belgium.

Pulliam, T. H. (1986b) “Artificial Dissipation Models for the Euler Equations,” AIAA Journal, Vol. 24,
No. 12, pp. 1931-1940.

Sahu, J. (1984) “Navier-Stokes Computational Study of Axisymmetric Transonic Turbulent Flows with a
Two-Equation Model of Turbulence,” Ph. D. Thesis, University of Delaware.

Schlichting, H. (1968) Boundary-Layer Theory, McGraw-Hill Book Company, New York.

Spalding, D. B. (1961) “A Single Formula for the Law of the Wall,” Journal of Applied Mechanics, Vol.
28, pp. 455-457. ’

Steger, J. L. (1978) “Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Ge-
ometres,” AIAA Joumal, Vol. 16, No. 7, pp. 679-686.

Towne, C. E., Schwab, J. R., Benson, T. J., and Suresh, A. (1990) "PROTEUS Two-Dimensional
Navier-Stokes Computer Code - Version 1.0, Volumes 1-3,” NASA TM’s 102551-3.

Vinokur, M. (1974) “Conservation Equations of Gasdynamics in Curvilinear Coordinate Systems,” Journal
of Computational Physics, Vol. 14, pp. 105-125.

Wassel, A. T., and Catton, 1. (1973) “Calculation of Turbulent Boundary Layers Over Flat Plates With
Different Phenomenological Theories of Turbulence and Variable Turbulent Prandtl Number,” Interna-
tional Journal of Heat and Mass Transfer, Vol. 16, pp. 1547-1563.

White, F. M. (1974) Viscous Fluid Flow, McGraw-Hill Book Company, New York.

76 References Proteus 2-D Analysis Description

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188
Public reporting burden tor this eolleunon of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and r ving the data , and completing and g the colk v of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including sugg] estions for reducmg this burden, lo Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington, VA 22202-4302, and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1993 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Proteus Two-Dimensional Navier-Stokes Computer Code—Version 2.0
Volume 1-Analysis Description

5. AUTHOR(S) WU-505-62-52
Charles E.Towne, John R. Schwab, and Trong T. Bui
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
National Aeronautics and Space Administration
Lewis Research Center E-8105
Cleveland, Ohio 44135-3191
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Washington, D.C. 205460001 NASA TM-106336
11. SUPPLEMENTARY NOTES
Responsible person, Charles E. Towne, (216) 433-53851.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 34

13. ABSTRACT (Maximum 200 words)

A computer code called Proteus 2D has been developed to solve the two-dimensional planar or axisymmertric,
Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in
this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.
Code readability, modularity, and documentation have been emphasized. The governing equations are solved in
generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution proce-
dure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscos-
ity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options
are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis
Description, and presents the equations and solution procedure. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formu-
las, the ADI solution procedure, and the artificial viscosity models.

14. SUBJECT TERMS 15. NUMBER OF PAGES
78
Navier-Stokes; Computational fluid dynamics; Viscous flow; Compressible flow 16. PRICE Cl?g?
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

