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Abstract

Complete Exchange requires each of N processors to send a unique

message to each of the remaining N - 1 processors. For a circuit

switched hypercube with N = 2 d processors, the Direct and Standard

algorithms for Complete Exchange are optimal for very large and very

small message sizes, respectively. For intermediate sizes,' a hybrid

Multiphase algorithm is better. This carries out Direct exchanges on

a set of subcubes whose dimensions are a partition of the integer d.

The best such algorithm for a given message size m could hitherto

only be found by enumerating all partitions of d.

The Multiphase algorithm is analyzed assuming a high perfor-

mance communication network. It is proved that only algorithms cor-

responding to equipartitions of d (partitions in which the maximum

and minimum elements differ by at most l) can possibly be optimal.

The run times of these algorithms plotted against m form a hull of

optimality. It is proved that, although there is an exponential number

of partitions, (1) the number of faces oil this hull is @(vfd), (2) the

hull can be found in O(v_) time, and (3) once it has been found, the

optimal algorithm for any given m can be found in O(log d) time.

These results provide a very fast technique for minimizing com-

munication overhead in many important applications, such as matrix

transpose, Fast Fourier transform and ADI.

*Research supported by the National Aeronautics and Space Administration under
NASA contracts NASl-19480 and NASl-18605 while the author was in residence at the

Institute for Computer Applications in Science &: Engineering, Mail Stop 132C, NASA

Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

On a distributed memory parallel computer, the complete exchange or all-

to-all personalized communication pattern requires each of N processors to

send a unique m-byte message to each of the remaining N - 1 processors.

This pattern arises in many important algorithms, such as matrix transpose,

vector-matrix multiply, Fast Fourier transforms, etc. It is also of importance

in its own right since it is the densest communication requirement that can

be imposed on an interconnection network. The time required to carry out

the complete exchange is, thus, a useful measure of the power of a parallel

computer system. Finally, in many applications that require a dense com-

munication pattern that is a subset of the complete exchange, it is usually

beneficial to use'a highly tuned complete exchange routine rather than at-

tempting to write specific code for the required communication.

On circuit switched hypercubes, such as the Intel iPSC-860 and the

nCUBE-2, there are two basic algorithms for obtaining the complete ex-

change. For a hypercube with N = 2 d processors, the Standard exchange

algorithm attempts to minimize the impact of startup time of a message by

combining several messages into one 'super' message and using only d = log N

message transmissions[11]. After each transmission, a shuffle step serves to

route messages towards their correct destinations. This algorithm suffers

from substantial overhead of data permutation.

The Direct algorithm uses N- 1 carefully scheduled 'direct' transmissions,

relying on knowledge of the routing algorithm used by the hardware to avoid

message contention[14, 16, 17]. This algorithm has no data permutation

overhead but suffers from N - 1 message startups. It is demonstrable that

the Standard exchange algorithm is best for very small message sizes, while

the Direct algorithm requires minimum time for very large messages[3].

Multiphase complete exchange is a hybrid algorithm that combines the

features of the Standard exchange and Direct algorithms. It carries out the

complete exchange as a series of 'partial' exchanges on a set of subcubes[2,

4, 9, 10]. It permits a compromise between the message transmission and

permutation overhead of Standard exchange and the message startups of the

Direct algorithm.

The multiphase algorithm has been implemented and shown be useful on

the iPSC-2 and iPSC-860 hypercubes. For a given hypercube dimension d,

the number of possible multiphase algorithms equals the number of partitions



of the integer d. This is an exponential (though slowly growing) number

and hitherto the only way to find the best multiphase algorithm for a given

message size was to enumerate all these partitions.

In this paper we carry out a detailed analysis of the hull of optimality

of all such multiphase algorithms. We make the assumption that the time

to transmit a message from one processor to another is independent of tile

number of communication links traversed. This assumption is valid for most

high-performance circuit-switched machines.

Our analysis reveals that only algorithms corresponding to equipartitions

of d (partitions in which the largest and smallest elements differ by at most

1) can ever be optimal. Furthermore, the number of potentially optimal

algorithms is always between 2v/-d- 1 and 3x/-d. We show that the hull of

optimality can be found in O(x/d) time. Once the hull has been obtained,

the optimal algorithm for a specific value of message size m can be found in

O(log d) time.

This result provides a very fast method of finding the optimal algorithm

for a given message size and thus helps in reducing the communication over-

head in a variety of important parallel applications. The O(log d) time for

finding the optimal algorithm is so fast that it may well be feasible to choose

the algorithm during the course of program execution, based on the dimen-

sion of the hypercube and the size of the message currently being transmitted.

In Section 2 of this paper we discuss the complete exchange communica-

tion pattern and present the three algorithms. Section 3 contains our main

analysis in which we present our notation, properties of equipartitions, main

theorems, and obtain bounds on the number of faces on the hull. We con-

clude with a discussion of the ramifications of our results and suggestions for
future research directions.

2 The Complete Exchange

Complete Exchange requires each of N processors of a parallel machine to

send a different message to each of the remaining N - 1 processors. This

pattern arises, for example, when transposing a matrix of N x N blocks that

has been distributed over N processors, with one column per processor. The

transpose requires each processor to send a different block to each of the

remaining processors. The resulting communication pattern is equivalent to
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the completedirectedgraph of N nodes.

The matrix mapping described above is required when using the Alternat-

ing Directions hnplicit (ADI) method for solving partial differential equations

[6, 13]. This method requires access to the matrix by rows and colunms in

successive phases, necessitating heavy use of a transpose. Matrix-matrix and

matrix-vector multiplies have similar requirements. Complete exchanges are

also required in many implementations of the parallel FFT.

The complete exchange, being equivalent to the complete directed graph,

is the densest communication requirement that can be imposed on a network.

The time required by the complete exchange is an upper bound on the time

required by any other pattern and thus provides a useful measure of the

power of a distributed memory parallel system.

2.1 Standard Exchange

The Standard exchange algorithm was presented by Johnsson & Ho[11] and

uses log N transmissions of size N/2 blocks each. All communications are

over single links, therefore no attention needs to be paid to the routing al-

gorithm (in effect, the algorithm does the routing itself). The overheads in

this algorithm are due to shuffling and the long message sizes that need to

be transmitted: Despite this, the algorithm is competitive for small block

sizes, since the total number of messages it transmits is log N as opposed to

N- 1 for the Direct algorithm.

procedure Standard_Exchange;

begin

forj=d-1 downto0do

begin

if (bit j of mynumber = 0) then

message = blocks n/2 to n - 1

else

message = blocks 0 to n/2 - 1;

send_message_to_processor((mynumber) ® (2J));

shuffle blocks;

end;

end;

3



2.2 Direct Algorithm

The Direct algorithm was first reported (in Japanese) by Take [17] and later

by Seidel et al.[14, 16]. In this algorithm each processor sends out N- 1

messages, one to each of the remaining processors. The issue is to schedule

the transmissions such that no edge contention takes place. Assuming the

ahnost universal 'e-cube' routing algorithm, the exclusive-OR schedule de-

scribed below achieves contention-free transmission. This algorithm always

outperforms Standard Exchange for large message sizes.

procedure Direct;

begin
fori= 1 ton-1 do

send_block_to_processor((mynumber ) • ( i) );
end;

2.3 Multiphase Complete Exchange

The multiphase algorithm combines the Standard exchange and the Direct

algorithms into one unified algorithm. It carries out the complete exchange

as a sequence of two or more 'partial' exchanges. This algorithm has been

implemented on the iPSC-2 and iPSC-860 [2, 4, 9, 10]. A complete exchange

on a hypercube of dimension d with n = 26 processors and block size rn is

done using a set of partial exchanges D = {dl,d2,...,dk}, on k subcubes,

where each di specifies the dimension of the kth. subcube. Obviously IDI = k,

1 < k, and _-ldl = d. Each partial exchange is called a phase.

The jth partial exchange is done on the set of subcubes determined by bits
J

Y_=ldi - dj to Zi=ldi of the hypercube node labels. In the partial exchange

for the ith phase, 2 d-a' blocks of m bytes each are transmitted, to each of

26' - 1 processors. The effective block size is thus m2 d-d'.

procedure Multiphase;

{ d: dimension of the hypercube

n: number of phases (subcubes) in partition D

di: dimension of the ith subcube in partition 7)

start:starting bit of subcub(- label

stop: ending bit of subcube label }
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begin

start=d-i;
fori=l tondo

{Partial exchange}

begin

stop = start - di + l;

compute effective blocksize;

for j = 1 to (2 st_rt-s_°p+l - 1) do

send_effective_block_to_processor((mynumber) • (j2st°P));

shuffle blocks di times;

start = stop- l;

end;

end;

In the above algorithm, when k = d, all dis are 1. In this case the outer i

loop is executed k times with start = stop = d- 1,d-2,..., 1,0. The inner

j loop is executed only once for each i. In this case Multiphase degenerates

into Standard exchange. When k = 1 and therefore dl= d, the outer loop is

executed only once. stop always equals 0 and, in the inner loop, j takes on

the values 1,2,...,2 d - 1 and thus Multiphase becomes Direct.

In our analysis, we have assumed that the complete exchange corresponds

exactly to a transpose. Thus not only do blocks have to be transmitted among

processors but each block needs to be placed in memory in the destination

processor in its 'correct' transposed position. This accounts for the shuffle

at the end of the last partial exchange. When there is only one phase, i.e.

the algorithm corresponds to Direct exchange, the last set of d shuffles is

equivalent to the identity permutation and is redundant. In the interest of

simplicity, this has not been excluded from our analysis.

2.4 Implementation

A detailed evaluation of the performance of the Standard Exchange and Di-

rect algorithms appears in [3]. The multiphase algorithm has been evaluated

in [2, 4], wherein it has been shown that this approach can improve perfor-

mance by as much as a factor of 2.



3 Analysis of the Multiphase Algorithm

The performance parameters characterizing a typical hypercube architecture

are given in Table 1. r is the time to transmit one byte while p the time to

move a byte from one memory location to another, on the same processor.

is the startup time, the time that elapses from issuance of a transmit

request to initiation of transmission of the first byte. (5 is the distance impact,

that is the time required for a message to travel across the communication

network of the processor. We assume this to be independent of the number

of communication links traversed.

We omit the overhead of processor synchronization from our analysis.

Each phase of our algorithm takes a precise amount of time. If all processors

keep their clocks synchronized, there is no need for a global synchronization

operation between phases, as the time to start a new phase can be com-

puted by each processor independently. The issue of clock synchronization

on hypercubes is discussed in [7].

Table 1: Performance parameters of a hypercube

Description Units ]

r transmission time per byte

p data permutation time per byte

)_ startup (latency) time per message

(5 distance impact time per message

The time taken for a message of size m bytes is rm + _ +,5. The Standard

Exchange algorithm requires d transmissions of m2 d-1 bytes each, and d

shuffles on 2 d blocks of m bytes. This leads to

tstandard = d(rm2 d-1 + )_ + ,5) + dp2am

= d[(2+ P)2 dm +()_ +,5)].

The Direct algorithm needs 2 d - 1 transmissions of m bytes each, giving

US

tdirect : (2 d- 1)[rm + (A + 6)].
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A Multiphase algorithm, with n phases of size di each, requires for the ith

phase 2 d_ - 1 transmissions of m2 d-d_ bytes each, followed by a permutation

of 2 d bytes. Thus

td,di = (2 d' - 1)()_ + rm2 a-d' + 8) + pm2 d

1

= {(1 - _-_-)-r + p}2drn + (2 d'- 1)(A + 6).
(1)

Since _i_1 di = d, tlle total time required by the Multiphase algorithm is

?l

tmultiphase = Z td,di

i=1

= _{(1-2d ' +p}2em+(2 6'-1)(1+6).
i=l

(2)

3.1 Finding the best Multiphase algorithm

In our presentation of the multiphase algorithm, we have not stated which

of the many possible partitions of the integer d is best in terms of total time.

The total number of partitions of the integer d is approximated by: [1, 8]

p(d) ,., 4x_d _

which is a slowly growing exponential, with p(20) = 627. It is feasible, though

neither efficient nor elegant, to enumerate all partitions of d to find the best

algorithm using the expression for tmultlphase (2). Furthermore, tm_tlph_e is

not convex for n = 2. It is therefore not possible to find the best partition

by recursively halving d.

The objective of this paper is to carry out a detailed investigation of the

multiphase algorithm. We shall be concerned with the hull of optimality

formed by the straight lines that describe the run times of all possible multi-

phase algorithms on a hypercube of dimension d plotted against the message

size m. We shall show that a large class of algorithms can never be optimal.

Of the remaining algorithms, a large fraction are optimal only at vertices of

the hull of optimality and can be ignored. These results permit us to obtain

a bound of O(v/-d) on the number of optimal algorithms.
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3.2 Notation

Let [nl,al][n2, a2][na, a_].., denote the sequence made up of nl al's, followed

by n2 a2's, etc. Thus [3,2][4,3][2,5] denotes the sequence {222333355}. The

elements of a sequence shall always be enumerated in non-decreasing order.

Let the calligraphic letter .Ad,,_ denote an arbitrary partition of tile integer

d with cardinality n. Tile elements of this partition are denoted by the

lowercase letters ai. We shall omit subscripts when they are irrelevant to

the discussion. Example: two of many possible cardinality 6 partitions of

the integer 30 are {224679} and {115788}. Table 2 shows the partitions of

d = 5. Define an equipartition of the integer d to be a partition in which

Table 2: Partitions of the integer 5.
5

1

1 1

1 4

2 3

1 1 3

1 2 2

1 1 2

1 1 1

the largest and smallest elements differ by at most 1. All equipartition of d

In Table 2 thewith cardinality n is denoted £d,,_. By definition, ga,1 = d.

cardinality 3 equipartition is {122}.

It is straightforward to verify that

(3)

For example g_9,s = {22222333} = [5, 2][3, 3]. Since the cardinality n equipar-

tition of an integer d is unique, there are d unique equipartitions of the integer
d.

The time taken by a set of partial exchanges corresponding to a partition

of the integer e _< d, 3.4_,,_ {ml,rn2,...,m,,} on a dimension d hypercube



is

td,_., = _ ta,m,. (4)
i=1

In the case e < d, .h4_,,_ is not a partition of d and the resultant data move-

ment is not a complete exchange. Nevertheless this definition is important

for subsequent analysis. When e = d, .M_,,_ is a partition of d, and the set of

partial exchanges corresponding to Ad_,n constitutes a multiphase algorithm

for complete exchange, as described above. We shall use the terms 'algo-

rithm' and 'partition' interchangeably, so that when we say 'time required

by a partition', we mean the 'time required by a set of partial exchanges

corresponding to that partition'.

Of particular interest to the ensuing discussion is the time required by an

equipartition, which is obtained by combining (3) and (4):

td,E_.,, = (n -- d mod n)td,[.}] + (d mod n)td, r_1 (5)

For a partition .A_,,_ = {al,a2,...,an}, we have

7_

td,A_,_ = E td,a_

i=1

= [(1-2-"')r+p]2arn+(2_'-l)(_+5)+

[(1 - 2-a2)r + p] 2am + (2 _2 - 1)(_ + 5)+

.o ,

[(1 - 2-_")T + p] 2am + (2 _" - 1)(A + g)

= [(n_ 2-_, - 2 -_'2 ..... 2-_'.)r+np]2dm+

(2°' + 2°2+ ... + +

This prompts us to define, for the partition .Aa,,_

2-ao,,, = 2_ + 2 _2 + ... + 2 _"

and

2--ao.,, = 2-_ + 2 -_2 + ... + 2 -_-

which then leads to the compact expression

t_,_o,° = [(n - 2-_°'°)_ + rip] 2_m + (2 _°'° - n)(_ + 5). (6)

9



Since every element of ..4 is at least 1, the coefficient of m in the above

expression is > 0 as is the coefficient of (._ + 5). Thus when td,.4 is plotted

against m we obtain a line with positive slope and intercept.

For an equipartition we have

td, o..= [(n- +np]2din+ o- + 5). (7)

3.3 Properties of Equipartitions

Several properties of 2E_," and 2 -C_," shall be useful in the ensuing discussion

and are presented in this Section. In understanding these properties, it is

useful to refer to Table 3 which lists A_,,, 2"a'," and 2 -_t'," for all partitions of

e = 7. The last column of this table indicates if an entry is an equipartition.

n

1 128

2 66 0.515625

2 36 0.281250

2 24 0.187500

3 36 1.031250

3 22 0.812500

3 18 0.75OOOO

3 16 0.625000

4 22 1.562500

4 16 1.375000

4 14 1.250000

5 16 2.125000

5 14 2.000000

6 14 2.750000

7 14 3.500000

Table 3: Partitions of the integer e = 7.

2"aT'" 2 -'aT'" AT,,,

0.007812 7

1

2

3

1

1

1

2

1

1

1

1

1

1

1

6

5

4

1 5

2 4

3 3

2 3

1 1

1 2

2 2

1 1

1 1

1 1

1 1

4

3

2

1 3

2 2

1 1 2

1 1 1

_7,1

'_7,2

_7,3

_7,4

_¢'7,5

£7,6

_'7,7

The first three properties arise from the theory of Schur-convexity[12]
which we summarize as follows.
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1. Given X,Y CIR'_,with _=1 xi = _i_1 Yi. Let x[d , V[i] be the ith largest

component of X,Y, respectively.

J J

We say X -..<Y if _ x[i] = _ y[i]
i=1 i=1

for all j = 1,2,..-n.

2. • :IR '_ _ IR is called Schur-convex if, whenever X -.< Y, then (I)(X) <

¢(Y).

3. If g: IR _ IR is convex then @(X) = E_, g(x_) is Schur-convex. Exam-

ples of such functions are gi(x) = 2=,g2(x) = 1/2 =.

Property 1 For anyl <n<e

(a) 2 E'," < 2 a',"

(b) 2 -_ = 2 -e¢,' < 2 -A_," < _.

Property 2

(a) 2 -Ed,2 < 2 -Ada

(b) 2e", _ < 2"4_a.

Property 3 2 e°," _ 2 e.... _.

Property 4 2 -e .... 2 -e .... _ _ 3/4.

Proof. £_,,_-1 can always be obtained by deleting the smallest element of

£'¢,,_ and distributing it over the remaining elements of E_,,_. Suppose

and that for some k < n,

E_,,_= {el, e2,'", e,,}

el = el,1 4- el,2 4- "'" 4- el,k

all of which are greater than zero. Then

2-g,,,_ _ 2 -C .... _ _.

2-_(1 _ 2-_,,) + 2-e3(1 _ 2-_,,2) + ...2-"k+'(1 _ 2-,,,k) +

2-_k+ _ + -.. + 2 -_".

ll



This is a positivequantity that achievesa maximumwhen k = 1 and e1,1 = 1,
in which case it is

2 -1 + 2-1(1 - 2 -1 ) = 3/4.

We have mentioned earlier that the time for a partition, when plotted

against m, leads to a line with positive slope and intercept. The lines corre-

sponding to the run times of equipartitions are of critical importance in this

discussion.

Property 5 Consider the straight lines corresponding to the two equiparti-

tions Se,n and $_,,_-1, plotted against m. Then

(1) ta,c.,, has greater slope than te.,._,, and

(2) td,c_., has smaller intercept than tE .... 1.

Proof. We have from (7)

td,e,,, = [(n -- 2-E"'")r + rip] 2din + (2 e.... n)(A + 6)

ta,e .... , = [(n--l--2 -e .... ')r+(n--1)p]2dm+(2 E.... '-n+l)(A+(_)

slope(te.,.) - stope(t_ .... ,) =

intercept ( t E.,. ) - intercept ( t E.... ,) =

2 -C .... ' - 2 -e_''' + 1

> 0 by Property 4

2_.... 2 E.... ' - 1

< 0 by Property 3

The times taken by equipartitions thus form a hull in which the leftmost

face corresponds to a partition with maximum cardinality, while the right-

most face corresponds to a partition of minimum cardinality. Faces of de-

creasing cardinality lie between these extreme faces. Figure 1(a) shows plots

of the run times of all partitions (not necessarily equipartitions) of d = 4

on a hypercube of dimension 4. We can see that the hull of optimality is

formed by equipartitions { 1111 },{22} and {4}. The non-equipartition { 13}

does not touch the hull. The equipartition {112} touches the hull but does

not contribute a face (it passes through the point of intersection of {l 11] }

and {22}). Figure l(b) shows the times for all partitions of d = 6 on a hy-

percube of dimension 6. In this case the hull is formed by the equipartitions

12



4.0

3.5

..-.. 3.0
d
©
m 2.5

.t--I

2.0

1.5

1.0
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d=4 d=6
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{11111

I22}

25

2O

15

i0

{24}
{6}

5

{33}

I I
0.0 0 ,

0 15 30 0 20 40 60

Message Size (byLes) Message Size (bytes)

(a) (b)

Figure 1: Run times for d = 4,6. In this particular example, A = 100,5 =

l0 (#sec.) and T = 2, p = 1 (ttsec./byte). Circle indicates the point of

intersection of all partitions of cardinality 2:{33},{24} and {15}

{111111}, {222}, {33} and {6}. Onlyafew of the remaining partitions_ are

labeled to avoid a congested plot, but we can see that out of the 11 partitions

of the integer 6, only the abovementioned 4 equipartitions contribute a face
to the hull.

We now prove Properties 6 and 7 which are also illustrated in Figure 1.

Property 6 For any d,

(a) Sd,1 always lies on the hull, and

(b) $d,d always lies on the hull.

13



Proof..Ad,,_ represents an arbitrary partition of cardinality n. From (6) and

(7) we have

t4,.ad,.= [(n- 2"a",")r+ np]2am+ (2_n,"--n)()_+ 5)

ta,&_= [(1- 2cd,')'r-p]2am-t-(2ed''- 1)(A-4-5)

t.,_,,..,= [(,t- s_,,,,)r- ,tp]2_m+ (2_.,,,_- a)(_+ 5)

(a) The expression

td,Aa,. -- td,$a,i

= [(n--l--2-Ad,.+2-cd,,)r+(n--i)p)]+(2_,.--2&_--n+l)($+g)

[(2 + 2-a--1)-r + (n--1)p] 2am + (2 "ad,'- 2Ed,l--n+ 1)(.X + 5)_>

(by Property l(b))

which is always positive for sufficiently large m and n > 1 (for n = 1, .Aa,,_ =

£d,l and the property hold vacuously). Thus Cd,1 lies below any Md,,_ for

sufficiently large m.

(b) At m = 0, the expression

ta,a.,. - ta,ed,a = (2 Ad'" - 2E"'a - n + d)(_ + (_)

is greater than zero, since 2"aa," > 2e". _ (by Property l(a)), and d > n). Thus,

£_,a lies below Aa,_, for m = 0. •

The partition Ea,1 corresponds to the Direct algorithm, while ga,d is equiv-

alent to the Standard exchange. These two algorithms are extreme cases of

the Multiphase algorithm. Property 6 tells us that the Direct algorithm is

always optimal for large values of rn, while Standard exchange is always best

for very small values.

Property 7 Of all partitions of cardinality 2, only £a,2 can lie on the hull.

Proof. Consider the two partitions g'u,2 = {e, d - e} and .Ad,2 = {a, d - a}.
We have

= [(2- 2Ed,')r + 2p] 2'_m + (2e"a)(._ + 6)

= [(2 - 2"a'_a)'r + 2p] 2ara + (2"ad,2)(.k + 6)

14



Solving for td,$aa = td,Ad,2

m _--

we obtain

(2ad, _
(2-&a - 2-Ed,_)r2 d

(2&, 2 - 2e'_,_)()_ + 5)

(2-" + 2 -d+" - 2 -_ - 2-d+_)r2 d

- + 6)
(2 a-" + 2 '_ _ 2d-_ _ 2_)r

(2ad, - + 6)
(2.ada - 2ed,2)r

A+3
F

T

which is independent of Ed,2 and Ada.

intersect at a point.

Thus all partitions of cardinality 2

Since 2-e< _ < 2 -'ad,2 and 2ee,2 < 2 "ada (by Property 2), ted._ has greater

slope and lesser intercept than t.ada. Therefore only teda can lie on the hull

for m < (_ + 6)/r.

At m = (/_ + 5)/r we have

td,ga,2 -- td,£a,_

= [(1 - 2 -e<2 + 2 -e''' )r + p] 2a(A---7---++ 6) (2ed a - 2en,' - 1)(A + 6)

= [(1 - 2 -"- 2 -a-" + 2-d)2 d + (2 e + 2 d-_- 2 d- 1) + p2d/r] ()_ + 6)

p2d( + 6)
T

which is always positive. This means that the line ted,1 always passes below

the common point of intersection of all cardinality 2 partitions. We have

already shown that of all cardinality 2 partitions, only £d,2 can lie on the hull

below this point. Hence of all cardinality 2 partitions only ga,2 can lie on the

hull. •

In the following, we shall prove that a non-equipartition cannot contribute

a face to the hull of optimality and further that a large number of equipar-

titions can at most touch the hull at a vertex. Therefore, although there is

an exponential number of partitions of an integer d, we shall prove that the

number of faces on the hull of optimality is O(v/-d).
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3.4 Main Theorems

The properties proved above permit us to determine the maximum number

of faces on the hull of optimality. Table 4 lists all partitions of the integers

1-..7.

Table 4: Partitions of the integers 1 ... 7.

,Ad,n

7 6 5 4 3

m

2

3

ml
2

22

_ 1 1

1222

111112

_1111

1Illl

7.

6

5

4

5

4

3

3

4

3

2 1

3

2

2

1

1

1

1 1

1 1

1

2

3

11

12

22

11

12

11

11

6

5

4

3

4

3

2 1

3

2

2

1

1

1

1 1

1 1

5

1 4

2 3

1 3

2 2

1 2

1 1

1

1 1

4

1 3

2 2

1,2

1 1

3

12

111

Turning our attention to the partitions of 7, we see that if we select all

those partitions that have a 'l' ill them (these are boxed in the table) and

then delete a 'l' from each of these, we obtain the partitions of 6, which

are given in the next column. Similarly, selecting all partitions of 7 that

have a '2' in them and then deleting a '2' from each of these will result in

the partitions of the integer 5 and so on. It is thus clear that the set of all

partitions of the integer d is composed of the union of the sets of all partitions

of the integers d - a, 1 < a < d, each augmented by a and the integer d. For

16



a specificpartition wehave

Ak,., = Ak-o,m + {a}

where we take the '+' operation to mean the addition of an element to a

partition. The following property is evident.

Property 8 td,.ak,,,, = td,.ak .... + td,{a}.

It follows that the straight lines describing the run times of all partitions of

an integer d can be obtained by adding td,{a} to the run times of all partitions

of the integer d- a, and then adding the line ted.,. This permits us to prove

the following Theorem.

Theorem 1 A non-equipartition cannot touch the hull of optimality.

Proof. By induction on the partitions of integers _< d.

Basis step: The smallest integer that has a non-equipartition is 4, which

has only one: {13}. As the basis step of our induction, we shall prove that

td,{13} can never touch the hull.

The equations for the 5 partitions of 4 are, from (1),

15r)td,{4 } = 15 A + 15 a + 2 d m P + --]--6-]

td,{13} = 8_+8a+2dm 2p+_

td,{22) = 6A+6a+2dm (2p+3--f)

td,{,_2} = 5/k + 5a + 2dm (3p+ 7--f-ff)

td,0111} = 4)_+4a+2 dm (4p+2r)

The point of intersection of Q,{4} and td,{22) is

712
144 (A + a)

2 6 (16p + 9r)"

At this value of m we have

td,{4 } -- td,{13} =
-32p (,k + a)

16p+9T

17



m

At this value of m we have

which is always negative.

The lines td,(22), td,(a22} and td,{ml} intersect at a single point which

occurs at

2 d (4 p + T)"

-((_ + a)(16p + 3r))

td,{llll} -- td,{,3} = 2 (4 p + r)

which is also always negative. Thus the partition {13} can never touch the

hull of optimality.

Induction: Suppose the theorem is true for all partitions of the integer

k < d. Partitions of the integer k + 1 can be obtained by adding 1,2,..., k

to the partitions of the integers k, k - 1,..., 1, and then adding £k,1 = k

as discussed above. The corresponding run times are obtained by adding

td,l,td,2,''' ,td,k to run times of all the constituent partitions, as stated in

Property 8. Each time we add td,a to all the partitions of a certain integer

we raise the hull of optimality and all other lines by a linear amount. The

resultant hull of optimality of cardinality k + 1 will be the intersection of the

hulls of cardinality 1,2,. • , k. A line that did not touch one of the constituent

hulls cannot touch the intersected hull.

When a partition is augmented, a new non-equipartition of cardinality k

can be created by augmenting (1) a non-equipartition of cardinality j or (2)

an equipartition of cardinality j. In the first case our hypothesis continues

to hold since a non-equipartition not touching the hull is transformed into

an non-equipartition that still does not touch the hull.

The second case requires careful analysis. When an existing equipartition

of cardinality j, £d,j, that by hypothesis must touch the hull, is transformed

into a non-equipartition £d,j + {k - j} we have two possibilities

k >__3 Consider the partition obtained by deleting one of the original ele-

ments, m E _ed,j from Sd,j + {k -j}. This new partition must be a

non-equipartition of cardinality d - m. In the hull for d- m it could

not have touched the hull, being 'masked' by equipartitions of cardi-

nality d- m, and therefore it can now also not touch the hull after

augmentation.

18



k = 2 In this case Property 7 states that only the equipartition of cardinality

2 can lie on the hull.

Therefore no non-equipartition can touch the new augmented hull of op-

timality for k + 1. We have proved that if the theorem is true for k is is also

true for k + 1. We have already shown that it is true for k = 2, 3, 4. Thus it

is true for all k. •

An important consequence of Theorem 1 is the fact that even though

there is an exponential number of partitions of d, the total number of faces

on the hull of optimality cannot exceed d, the number of equipartitions. We

shall continue with further investigations into the properties of equipartitions.

These will permit us to improve the bound on the number of faces to O(yrd).

At this point we prove a theorem that shall permit us to place a lower bound

on the number of faces on the hull.

Theorem 2 Every equipartition must touch the hull of optimality.

Proof. By induction on d.

Basis step: The theorem is true for d = 2, since by Property 6, both { 11}

and {2} must lie on the hull.
Induction: Assume the theorem is true for d = n. Then the hull of optimal-

ity is touched by all equipartitions g',,,_, 1 < i < n. The set of equipartitions

of the integer n + 1, that is g'_+l,i, can be formed from the set of equiparti-

tions of the integer n, by adding 1 to the smallest element of each £',_,i, and

then adding the new equipartition g',_+1,,_+1•

Turning to the corresponding run times, this operation is equivalent to

adding
1

td,m = (_r + P) 2din + (_ + (5)

to each of t&,,, 1 < i < n (see equation (1)). Since the same linear expression

is added to each t&.,, the relationships between these lines is undisturbed and

the augmented hull is touched by all of the augmented equipartitions. Now

consider te,+_.,+, ; this must touch the hull because of Property 6(b). Thus

the hull of optimality of the integer n + 1 is touched by all equipartitions of

n+l.

We have proved the theorem to be true for d = 3. We have shown that if

it is true for d = n it is also true for d = n + 1. It is therefore true for all d. •
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An equipartition £d,_ can only have two distinct elements: [d/nJ and

[d/n]. In some cases sequences of several different equipartitlons have the

same two distinct elements. For example, in Table 4, E6,6 = [6, 1], £6,s =

[5,1][1,2], g6,4 = [2,1][2,2] and $6,3 = [3,2]. All these partitions are com-

posed of l's and 2's exclusively. Similarly, the following equipartitions of the

integer 19,

$,9,7 = {2233333}

$,9,s = {22222333}

$,9,9 = {222222223}

are all composed of 2's and 3's exclusively. We call such equipartitions indis-

tinct. It is clear that indistinct partitions always have successive cardinality

values.

Theorem 3 The run time functions of indistinct equipartitions are linearly

dependent.

Proof. Consider three indistinct equipartitions of cardinality p, p + 1 and

p - 1 that are composed of the elements f_ and f_ + 1. Then for some a,/3, 7

_'d,p = [a, _] [P--a, n+l]

£d,p+, = [/3, n] [p+l--/3, n+l]

_cd,p-, ['7, _t] [p-l-% _+11

The times for these equipartitionsare

t d,p = c td, + (p - (s)

t_d,p+l = /Jtd,_ "q- (p "3[- 1 -- /3)td,_-]dl- 1 (9)

t_d,p_l = _ttd,_" _ "_- (p -- 1 - 7)td,n+, (10)

Since we are dealing with equipartitions of the integer d,

d = c_n+(p-o_)(n+ 1)

= flft+(p+l-fl)(12+l)

= 7f't + (p- 1 - 7)(f_ + 1)

These yield the following relations

/3 = 1-{-c_+_l (11)

7 = -l+o_-n (12)
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Substituting (11) and (12) in (9) and (10) weobtain the system

tEa,p = (_td,a + (p -- cr)td,n+l (13)

tEa,p+1 = (1 + oz + f2)td,a -I- (p -4-_ -- _)td,a+l (14)

tEa,p_, = (--1 + c_ -- f't)Q,a + (p -- O_+ Ft)Q,a+l (15)

Adding (14) and (15) we obtain

te_,p+_ + te<p_, = 2cd_,a + 2(p - ce)td,a+a

= 2te<p

Hence the system is linearly dependent. •

Theorem 3 assures us that all members of a set of indistinct equipartitions

intersect at a single point. Therefore only two of these can contribute faces

to the hull of optimality, since they have successively decreasing slopes and

increasing intercepts (Property 5). For example, in the hull for d = 4 (Figure

1), we can see that the equipartitions {1111}, {112} and {22} intersect at a

point and only {1111} and {22} contribute faces to the hull.

3.5 Faces on the Hull

From the foregoing discussion we can see that all equipartitions touch the

hull. Each distinct equipartition contributes a single face to the hull while

each set of indistinct equipartitions contributes two faces. To find a bound

on the number of faces on the hull, refer to Figure 2 which plots [d/nJ,

and [d/n] versus n for d = l l and 16. In each of these plots, the dashed

curve represents the the continuous function din. The values of [d/n], and

[d/n] are indicated by heaVy dots. When [d/n] < [d/n], there is a vertical

line joining these dots. In the plot for d = 11 we have enumerated all the

equipartitions in full, while in the plot for d = 16 we have used the compact

notation (3). The lines marked with '+'s are tangents, with slope -1, at the

point [v/-dJ, [v/-d].

Over the range 1 _< n _< v_ the slope of these hyperbolas is less than

-I and therefore no two consecutive equipartitions can have an element in

common. All equipartitions in this range are distinct and their number is

equal to the nmnber of integers in this range, which is [v/dJ. This equals the

number of '+'s on the tangent between n = 1 and n = [vQ].
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Figure 2: Plots of [d/nJ, [d/n] for d = II and 16.

Indistinct equipartitions can only occur over the range x/_ < n < d.

The number sets of in distinct equlpartitions is no more than the number of

distinct values of [d/nj, which is the number of '+'s on the tangent between

v_ and d, and is again [V_

In the range 1 < n _< x/d, there are no indistinct equipartitions, so one

face is contributed to the hull by each equipartition, giving us a total of [v_J

faces. In the range v/-d < n < d there may be up to [V"dJ sets of indistinct

equipartitions, each contributing at most 2 faces and at least one face to the

hull. An upper bound on the total number of faces on the hull is therefore

3 [x/'dj. To obtain a lower bound note that the hyperbola is symmetric about

the line n = d/n (the line through the origin with slope 1). If the point
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[x/-dJ, J._x/-dJ lies on this line the number of distinct levels is 2 [v/-dJ - 1 and

is 2 [v'dJ otherwise. Each level must contribute at least one face to the hull.

Thus the lower bound oil the number of faces is 2 [v/-dJ - 1.

The equipartitions that contribute to the hull can be found by visiting

all @(v_) points on the tangent. For 1 < n < [vQJ, each point corresponds

to the equipartition _;d,,_. For each n in the range [v/-dJ ... 2[v/dJ there is a

sequence of indistinct equipartitions extending from [d/(n + 1)] to [d/nj.

We need consider only the first and last members of these sequences. Thus

all partitions contributing to the hull can be found in O(v_) time. Once

these partitions have been found, the vertices of the hull can be discovered

by computing the intersection points of adjacent partitions, again in O(x/-d)

time. The intersection points will be computed in order and, once they have

been stored, the optimal algorithm for any value of m can be found using a

binary search in O(log d) time.

4 Conclusions

We have analyzed the multiphase complete exchange algorithm and shown

that the total number of optimal algorithms lies between 2v_- 1 and 3v/'d.

This holds under the assumption that the time for transmitting a message is

independent of the number of communication links traversed. High perfor-

mance parallel machines satisfy this assumption.

In addition to its theoretical interest, this result is of considerable prac-

tical importance. It allows us to compute the optimal algorithm for any

given values of hypercube performance parameters and message length very

quickly. When dealing with an application where the performance parame-

ters (Table 1) are fixed and the message lengths for complete exchange vary

from time to time, the values of message length rn at which vertices of the

hull of optimality occur can be computed ahead of time and stored in a sorted

list. During the course of program execution, a fast binary search will locate

the optimal algorithm for the current message size.

When the performance parameters vary with time, as would happen if

the communication network were shared among several subcubes, our results

provide a fast method for computing the optimal algorithm from scratch.

A related situation is where the same application is run on hypercubes of
different sizes.
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Among the future directions of this research, the foremost issue is an ex-

tension to 2 and 3 dimensional meshes. Preliminary results on 2-dimensional

meshes appear in [5]. Since the time required for 'direct' complete exchanges

on N-processor 2 and 3-d meshes is o(g 3/2) and o(g 4/3) respectively[15],

compared to the hypercube's O(N), any improvements will be especially
welcome.
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