The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1994, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 11 volumes and consists of 6 sections including: an errata, an addendum (a summary of the SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. This will cover the topics published in all previous editions of the indices, that is, each new index will include all of the information contained in the preceding indices.

1. INTRODUCTION

This second in a series of indices, published as a separate volume in the Sea-viewing Wide Field-of-view (SeaWiFS) Technical Report Series, covers information found in the first 11 volumes of the series. The Report Series is written under the National Aeronautics and Space Administration's (NASA) Technical Memorandum (TM) Number 104566. The volume numbers, authors, and titles are as follows:

Vol. 7 M. Darzi, Cloud Screening for Polar Orbiting Visible and IR Satellite Sensors.

This volume within the series serves as a reference, or guidebook, to the aforementioned volumes. It consists of the four main sections included with the first index published, Volume 6, in the series: a cumulative index to key words and phrases, a glossary of acronyms, a list of symbols used, and a bibliography of all references cited in the series. In addition, starting with this volume, errata and addendum sections have been added to address issues and needed corrections that have come to the editors’ attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it utilizes a unique format since multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project, for example, the mission overview index entry refers to an overview of the SeaWiFS mission. An index entry is composed of a keyword or phrase followed by an entry field which directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a pages identifier, which is always enclosed in parentheses:

keyword, volume(pages).
If an entry is the subject of an entire volume, the volume field is shown in slanted type with no page field:

- keyword, Vol. #.

Figures or tables that provide particularly important summary information are also indicated as separate entries in the pages field. In this case, the figure or table number is given with the page number on which it appears.

2. ERRATA

1. Vol. 5: In Table 1, page 5 under the first section, Primary Optical Measurements, the third item down reads: "Upwelled Spectral Irradiance." It should read: Upwelled Spectral Radiance.

2. Vol. 6: The authorship of this volume was incorrectly printed as: "Stanford B. Hooker and Elaine R. Firestone." It should read: Elaine R. Firestone and Stanford B. Hooker.

3. Vol. 7: The title of this volume was incorrectly printed as: "Cloud Screening for Polar Orbiting and Infrared (IR) Satellite Sensors." The title of this volume should read: "Cloud Screening for Polar Orbiting and IR Satellite Sensors."

4. Note: The expected SeaWiFS launch date has been changed, as of this volume, to 1994.

5. Note: It had been expected that SeaWiFS would utilize the ozone measurement data obtained from the Nimbus Total Ozone Mapping Spectrometer (TOMS). In May 1993, however, this instrument ceased operations. To date, an alternative sensor that will provide equivalent or similar data for the SeaWiFS mission is being investigated.

6. Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, i.e., they have gone from "submitted" or "in press" to printed matter. In other instances, some part (or parts) of the citation has changed, for example, the title or year of publication. Listed below are the references in question as they were originally cited in one or more of the first 11 volumes in the series, along with how they now appear in the references section of this volume.

<table>
<thead>
<tr>
<th>Original Citation</th>
<th>Revised Citation</th>
</tr>
</thead>
</table>
3. ADDENDUM

This section presents a summary of the SeaWiFS Working Group (SWG) Bio-optical Algorithm and Protocols Workshops, written by Charles R. McClain.

3.1 Introduction

The SWG workshops for bio-optical algorithm development and in situ protocols convened a joint meeting at GSFC on May 19–20, 1993. The working group memberships were defined at the January 1993 SWG meeting (Hooker et al. 1993b).

The meeting was held in May because several key team members had cruises in the March–April time frame and could not meet any sooner. The team members and attendance are listed in Table 1. The bio-optics meeting spanned Wednesday and Thursday morning and the protocols meeting was on Thursday afternoon.

Table 1. Team members and invited guests to the SWG Bio-optical Algorithm and Protocols Workshops, held May 19–20, 1993 at GSFC. Attendees are identified with a checkmark (✓).

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Present</th>
<th>Team Members</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Aiken</td>
<td>✓</td>
<td>M. Lewis</td>
<td>✓</td>
</tr>
<tr>
<td>W. Balch</td>
<td></td>
<td>C. McClain</td>
<td>✓</td>
</tr>
<tr>
<td>K. Carder</td>
<td>✓</td>
<td>G. Mitchell</td>
<td>✓</td>
</tr>
<tr>
<td>D. Clark</td>
<td>✓</td>
<td>A. Morel</td>
<td></td>
</tr>
<tr>
<td>C. Davis</td>
<td>✓</td>
<td>J. Mueller</td>
<td>✓</td>
</tr>
<tr>
<td>R. Doerffer</td>
<td>✓</td>
<td>F. Muller-</td>
<td></td>
</tr>
<tr>
<td>W. Esaias</td>
<td>✓</td>
<td>Karger</td>
<td></td>
</tr>
<tr>
<td>H. Gordon</td>
<td>✓</td>
<td>D. Siegel</td>
<td>✓</td>
</tr>
<tr>
<td>F. Hoge</td>
<td>✓</td>
<td>R. Smith</td>
<td></td>
</tr>
<tr>
<td>S. Hooker</td>
<td>✓</td>
<td>C. Trees</td>
<td>✓</td>
</tr>
<tr>
<td>D. Kamykowski</td>
<td>✓</td>
<td>C. Yentsch</td>
<td>✓</td>
</tr>
<tr>
<td>M. Kishino</td>
<td>✓</td>
<td>J. Yoder</td>
<td>✓</td>
</tr>
<tr>
<td>O. Kopelevich</td>
<td>✓</td>
<td>R. Zaneveld</td>
<td></td>
</tr>
<tr>
<td>S. Ackleson</td>
<td></td>
<td>G. Moore</td>
<td></td>
</tr>
<tr>
<td>R. Arnone</td>
<td></td>
<td>J. Morrison</td>
<td></td>
</tr>
<tr>
<td>F. Chavez</td>
<td></td>
<td>R. Stumpf</td>
<td></td>
</tr>
<tr>
<td>H. Fukushima</td>
<td></td>
<td>A. Weidemann</td>
<td></td>
</tr>
<tr>
<td>S. Gallegos</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Bio-optics Chairman ‡Protocols Chairman

3.2 Bio-optical Algorithm Workshop

The objectives of the workshop were as follows:

1. Review existing algorithms: pigment, chlorophyll a, K(490) only.

2. Survey relevant existing bio-optical data sets.

3. Determine critical voids (deficiencies) in data (algorithms) and make recommendations on resolving data voids and algorithm deficiencies.

4. Define strategy for defining and implementing initial algorithms.

5. Review present field program schedule.

6. Set date for an early Fall 1993 meeting.

The agenda was as follows:

1. Workshop Charter

 A. Introduction (C. McClain)

 1) Workshop Objectives

 2) SWG and SeaWiFS Project Responsibilities

 3) Review SWG Recommendations (Vol. 8, sec. 3.5)

 4) Data Processing and Algorithm Refinement Strategies

 B. Algorithm Issues Overview (D. Clark)

 1) Initial Case 1 Algorithm Form(s): CZCS pigment, chlorophyll-like pigment, K(490)

 2) Initial Case 2 Algorithm Form(s): CZCS pigment, chlorophyll-like pigment, K(490)

 3) Algorithm Selection and Switching

 4) Regional Algorithms

 5) Algorithm Seasonality: Impacts of SeaWiFS performance limitations

2. SeaWiFS Instrument Update (W. Esaias)

3. Algorithm Studies and Field Programs

 A. Case 1 Water Presentations (D. Clark, G. Mitchell, D. Siegel, C. Trees, and C. McClain)

 B. Case 2 Water Presentations (K. Carder, M. Kishino, and R. Arnone)

 C. Discussion and Recommendations (D. Clark)

4. Quality Control Flags (C. McClain: Coccolithophores, Sea Ice, Trichodesmium, Turbid Case 2 water, etc.)

5. Cruise Planning (S. Hooker: Present Schedule, Piggyback Opportunities, Bio-optical Data Voids/Deficiencies, Community Field Program Coordination, etc.)

6. Alternative Bio-optical Data Collection Strategies (K. Carder)

7. Workshop Wrap-Up (D. Clark: Summaries, Action Items, Fall Meeting, etc.)

Because this was the first meeting of the bio-optical algorithm working group, the SeaWiFS Project presented an itemization of the responsibilities of the Project and the working group as listed below:

Bio-optical Algorithm Working Group:

- Defines strategy for algorithm development,
- Collects appropriate bio-optical data,
- Develops bio-optical algorithms, and
- Provides SeaWiFS Project with operational algorithms and implementation plan.
SeaWiFS Technical Report Series Cumulative Index: Volumes 1–11

SeaWiFS Project:
- Assists in coordination and support of field programs,
- Supports calibration round-robin and archives the data,
-Archives and distributes field data to the SWG and other collaborating groups,
- Provides independent algorithm evaluations and comparisons, (the SeaWiFS Project does not develop algorithms), and
- Implements SWG approved algorithms in the SeaWiFS operational processing system.

Several decisions and recommendations were made as a result of the presentations and discussions:

1. A concerted effort will be made by the group to provide existing bio-optical data sets to the SeaWiFS Project by August 1 (deadline does not include data from the Spring 1993 cruises mentioned above). Currently, the Project has only the CZCS NIMBUS Experiment Team (NET) data that are suitable for algorithm development. (The Project does have the responsibility to assemble and distribute data to the SWG and other groups collaborating with the Project. The list of bio-optical data to be contributed and their sources appear in Table 2. Other working group members not present who have data of interest for algorithm development include R. Doerffer, D. Kaminsky, A. Morel, and R. Smith. They will be contacted to determine which data sets they have available for inclusion in the archive.

Table 2. Bio-optical data to be contributed and their sources.

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Carder</td>
<td>North Atlantic, Gulf of Mexico</td>
</tr>
<tr>
<td>J. Mueller</td>
<td>North Pacific</td>
</tr>
<tr>
<td>C. Trees</td>
<td>CZCS NET data, MOCE 1, MOCE 2</td>
</tr>
<tr>
<td>D. Clark</td>
<td>Equatorial Pacific, North Atlantic, U.S. West Coast</td>
</tr>
<tr>
<td>C. Davis</td>
<td>Tokyo Bay, Sea of Japan</td>
</tr>
<tr>
<td>M. Kishino</td>
<td>RACER, CalCOFI 1, CalCOFI 2</td>
</tr>
<tr>
<td>G. Mitchell</td>
<td>Gulf of Mexico</td>
</tr>
<tr>
<td>R. Arnone</td>
<td>A. Weidemann</td>
</tr>
<tr>
<td>J. Mueller</td>
<td>D. Siegel</td>
</tr>
</tbody>
</table>

2. It was decided that a semi-analytical algorithm should be used instead of strictly empirical algorithms, such as those used for the CZCS. This approach should allow much more flexibility in handling seasonal and regional variability due to changes in specific absorption and scattering coefficients, and would provide a physically sound foundation from which more advanced algorithms could evolve. The team of H. Gordon, A. Morel, K. Carder, and R. Doerffer have volunteered to define the initial algorithm by the next bio-optical algorithm meeting, now scheduled for late September.

3. The need to develop a cloud mask and quality control flags for level-2 processing was discussed. The distinction between a mask and a flag is that masked pixels do not get processed and flagged pixels do. Flags will be saved as graphic overlays which are distributed with the data. Table 3 shows the suggested contributors for the development of these masks and flags (not restricted to the SWG).

Table 3. Suggested contributors for the development of masks and flags for level-2 processing.

<table>
<thead>
<tr>
<th>Masks or Flags</th>
<th>Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Mask</td>
<td>R. Evans, C. McClain, S. Gallegos, R. Stumpf</td>
</tr>
<tr>
<td>Coccolithophore Flag</td>
<td>H. Gordon, B. Balch, F. Hoge, C. Brown</td>
</tr>
<tr>
<td>Sea Ice Flag</td>
<td>G. Cota, J. Aiken, K. Arrigo, R. Zaneveld, G. Moore</td>
</tr>
<tr>
<td>Trichodesmium Flag</td>
<td>A. Morel, A. Subramaniam</td>
</tr>
<tr>
<td>Bottom Reflection Flag</td>
<td>K. Carder, C. Davis, W. Esaias, R. Arnone</td>
</tr>
<tr>
<td>Land Mask</td>
<td>R. Evans, C. McClain</td>
</tr>
</tbody>
</table>

† Anyone interested in participating in the mask and flag definition development should contact C. McClain.

4. Presentations by C. Trees and R. Arnone on $K(490)$ observations indicate that the Austin-Petzold empirical algorithm holds for a broader range of values and geographic locations than represented in the original data set. Therefore, the working group concurs with the SWG recommendation that the Austin-Petzold algorithm should be used for the initial SeaWiFS $K(490)$ algorithm.
5. It was decided to reconvene the bio-optical algorithm working group this Fall in conjunction with the next MODIS Team meeting. The next MODIS Team meeting has been set for Wednesday–Friday, Sept. 29–Oct. 1, 1993 in the Greenbelt, Maryland area. The SeaWiFS Project is, therefore, suggesting that the working group meet on Monday and Tuesday, Sept. 27–28.

3.3 The Protocols Workshop

The agenda for the meeting was as follows:

1. Workshop Objectives (J. Mueller: goals, summary of first Science Team meeting recommendations, etc.)

2. Issues (Discussion Leader)
 A. Ship Shadowing (D. Siegel)
 B. Instrument Self-Shading (H. Gordon)
 C. Revision of Instrument Specifications for Bio-optical Algorithms (M. Lewis)
 D. Protocols for Case 2 Water Algorithm Development and Validation (R. Arnone)
 E. Aircraft Instrument Specifications and Observation Protocols (F. Hoge and C. Davis)
 F. Data Quality Control (G. Mitchell)
 G. Data Formats (S. Hooker)

3. Second Round-Robin Coordination (J. Mueller)

4. Workshop Wrap-Up (J. Mueller: summaries, action items, Fall meeting, etc.)

All the issues listed were discussed to one degree or another. Key points of discussion on the agenda items are listed below. In a number of cases, subgroups were defined to address specific protocol issues and who would present draft update documents at the next protocols working group meeting.

1. Ship Shadowing: D. Siegel presented data from a ship shadowing experiment he conducted. His conclusion is that for certain situations, the distance between the ship and the instrument can be substantially less than the guideline in the protocols. Therefore, the protocol will be modified.

2. Instrument Self-Shading: The instrument self shading issue has been addressed theoretically, (Gordon and Ding, 1991) but has yet to be verified with observations.

3. Bio-optical Algorithm Instrumentation Specifications: One of the Project's concerns is that too few groups have measurement capabilities that even come close to the present protocol requirements. K. Carder and C. Davis presented an approach based on remote sensing reflectance observations which appears promising. A subgroup including J. Mueller (chairman), K. Carder, C. Davis, G. Mitchell, and R. Arnone will address potential problems with the technique and draft a protocol to be submitted at the next protocols working group meeting.

4. Case 2 Water Protocols: The current protocols do not address observations in Case 2 waters to a suitable degree. These protocols should include a section on how to measure dissolved organic matter (DOM). A subgroup composed of K. Carder (chairman), C. Yentsch, R. Doerffer, F. Muller-Karger, C. Davis, W. Essaias, A. Weidemann, R. Arnone, and R. Stumpf will prepare a draft protocol document by the next meeting.

5. Data Quality Control: The discussion on optical data quality control procedures was augmented to include data analysis techniques. The present protocols discuss some analysis techniques, but further enhancement seems desirable. Analysis topics specifically mentioned were the extrapolation of data to the surface, normalization, optical weighting of pigments, and cloud detection. It was generally agreed that one quality assurance test should be the comparison of downward and upward traverses of a cast. As a result, an analysis round-robin was proposed with J. Mueller (chairman), D. Siegel, C. Davis, A. Weidemann, and G. Mitchell participating. Each investigator will submit profiles of upwelling radiance, etc., which will be distributed to all participants. A set of derived products will be computed from each profile by each participant. The results will be compiled and distributed by August 15.

6. Aircraft Protocols: The present protocols do not address aircraft instruments and sampling strategies in much detail. The protocols working group feels that the instrument characterization and calibration protocols should be similar to those for other types of instruments, but should be tailored to the particular instrument and aircraft. A subgroup with C. Davis (chairman), F. Hoge, K. Carder, M. Lewis, and P. Slater was named to draft the protocols. Others who were not in attendance, but who will be approached about participating include P. Abel and T. Vodacek.

7. Data Formats: The format guidelines for data submitted to the SeaWiFS Project are provided in Appendix C in, Proceedings of the First SeaWiFS Science Team Meeting (Hooker et al. 1993b). No formal discussion on formats was held. Questions and comments should be directed to S. Hooker.

8. Second Round-Robin: The next round-robin will be held at CHORS from June 14–25, 1993. The proceedings from the first round-robin are in press as a SeaWiFS TM (Vol. 14) and preprints will be distributed this summer. The first week of the round-robin will be for intercalibrations and definition of near-real time data analysis and archiving procedures among CHORS, GSFC, and the National Institute of Standards and Technology (NIST). NIST will officially deliver the new
SeaWiFS transfer radiometer at that time. Other investigators will participate during the second week.

9. Several small modifications in the present protocols were discussed and will be incorporated into a revision of the protocols.

10. A date for the next meeting was not selected. Ideally, it would be in conjunction with the next bio-optical algorithm working group meeting. However, because that meeting is linked with the MODIS Team meeting, time would be very tight. The protocols working group will need to decide if another meeting this year is necessary. Certainly, much business has been delegated to subgroups and the SeaWiFS Project would expect closure on these topics by this Fall so that a revision of the protocols can be published by the end of the year.

3.4 Invited Colleagues’ Addresses

Science Team members are identified with their Team name(s) shown in slanted type face.

James Aiken
SeaWiFS Science Team
Plymouth Marine Laboratory
Prospect Place
West Hoe
Plymouth, PL1 3DH
UNITED KINGDOM
Voice: 44-752-222772
Fax: 44-752-670637
Omnet: pml.uk
Internet: ja@unixb.nerc-pml.ac.uk

Steve Ackleson
Ocean Optics Program, Code 3233
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
Voice: 703-696-4732
Fax: 703-696-4884
Omnet: s.ackleson

Robert Arnone
NRL/Code 7240
Stennis Space Center, MS 39527
Voice: 601-688-5268
Fax: 601-688-4149
Omnet: r.arnone
Internet: arnone@c51ps2.nrl.navy.mil

William Balch
SeaWiFS Science Team
MBF/RSMAS/U. of Miami
4600 Rickenbacker Cswy
Miami, FL 33149-1098
Voice: 305-361-4653
Fax: 305-361-4600

Kendall Carder
SeaWiFS Science Team
Dept. of Marine Science
Univ. of South Florida
140 Seventh Avenue, South
St. Petersburg, FL 33701-5016

Harry Chavez
SeaWiFS Science Team
Monterey Bay Aquarium Research Institute
160 Central Avenue
Pacific Grove, CA 93950
Voice: 408-647-3709
Fax: 408-649-8587
Omnet: f.chavez
Internet: chfr@mbari.org

Steve Esaias
SeaWiFS Science Team
NASA/GSFC/Code 970.2
Greenbelt, MD 20771
Voice: 301-286-9503
Fax: 301-286-3221
Omnet: w.esaias
Internet: esaias@petrel.gsfc.nasa.gov

Hajime Fukushima
SeaWiFS Science Team
Tokai University
317 Nishino
Numazu, 410-03
JAPAN
Voice: 81-559-68-1211 ext. 4425
Fax: 81-559-68-1155
Omnet: h.fukushima
Internet: hajime@numazugw.cc.u-tokai.ac.jp

Sonia Gallegos
SeaWiFS Science Team
Naval Research Laboratory
Code 7240—Remote Sensing
Stennis Space Center, MS 39529

Kendall Carder
MODIS Science Team

Francisco Chavez
SeaWiFS Science Team
NOAA/NESDIS
E/RA 28, WWB, Rm. 104
Washington, DC 20233
Voice: 301-763-8102
Fax: 301-763-8020
Omnet: d.clark.noaa

Roland Doerffer
SeaWiFS Science Team
GKSS Forschungszentrum Geesthacht
Max-Planck-Strasse
D-2054 Geesthacht
GERMANY
Voice: 49-4152-87-2480
Fax: 49-4152-87-2444
Telex: 0218712
Omnet: w.roenthal
Internet: doerffer@dvmc10.gkss.de
Internet: doerffer_pfsun1.gkss.de

Wayne Esaias
SeaWiFS Science Team
NASA/GSFC/Code 970.2
Greenbelt, MD 20771
Voice: 301-286-9503
Fax: 301-286-3221
Omnet: w.esaias
Internet: esaias@petrel.gsfc.nasa.gov

Hajime Fukushima
SeaWiFS Science Team
Tokai University
317 Nishino
Numazu, 410-03
JAPAN
Voice: 81-559-68-1211 ext. 4425
Fax: 81-559-68-1155
Omnet: h.fukushima
Internet: hajime@numazugw.cc.u-tokai.ac.jp

Sonia Gallegos
SeaWiFS Science Team
Naval Research Laboratory
Code 7240—Remote Sensing
Stennis Space Center, MS 39529

Kendall Carder
MODIS Science Team

Francisco Chavez
SeaWiFS Science Team
NOAA/NESDIS
E/RA 28, WWB, Rm. 104
Washington, DC 20233
Voice: 301-763-8102
Fax: 301-763-8020
Omnet: d.clark.noaa

Roland Doerffer
SeaWiFS Science Team
GKSS Forschungszentrum Geesthacht
Max-Planck-Strasse
D-2054 Geesthacht
GERMANY
Voice: 49-4152-87-2480
Fax: 49-4152-87-2444
Telex: 0218712
Omnet: w.roenthal
Internet: doerffer@dvmc10.gkss.de
Internet: doerffer_pfsun1.gkss.de

Wayne Esaias
SeaWiFS Science Team
NASA/GSFC/Code 970.2
Greenbelt, MD 20771
Voice: 301-286-9503
Fax: 301-286-3221
Omnet: w.esaias
Internet: esaias@petrel.gsfc.nasa.gov

Hajime Fukushima
SeaWiFS Science Team
Tokai University
317 Nishino
Numazu, 410-03
JAPAN
Voice: 81-559-68-1211 ext. 4425
Fax: 81-559-68-1155
Omnet: h.fukushima
Internet: hajime@numazugw.cc.u-tokai.ac.jp

Sonia Gallegos
SeaWiFS Science Team
Naval Research Laboratory
Code 7240—Remote Sensing
Stennis Space Center, MS 39529
E.R. Firestone and S.B. Hooker

Voice: 601-688-4867
Fax: 601-688-4149
Omnet: s.gallegos
Internet: gallegos@snaps.nrlssc.navy.mil

Howard Gordon
SeaWiFS Science Team
UM/Dept. of Physics
Coral Gables, FL 33124
Voice: 305-284-2323
Fax: 305-284-4222
Omnet: h.gordon
Internet: gordon@phyvax.ir.miami.edu

Frank Hoge
SeaWiFS Science Team
NASA/GSFC/WFF
Wallops Island, VA 23337
Voice: 804-824-1567
Fax: 804-824-2343
Fax: 804-824-1036
Omnet: f.hoge

Stanford Hooker
SeaWiFS Project
NASA/GSFC/Code 970.2
Greenbelt, MD 20771
Voice: 301-286-9503
Fax: 301-286-3221
Omnet: s.hooker
Internet: stan@ardbeg.gsfc.nasa.gov

Daniel Kamykowski
SeaWiFS Science Team
NCSU/MEAS/Box 8208
Raleigh, NC 27695
Voice: 919-515-7894
Fax: 919-515-7802
Omnet: d.kamykowski

Motoaki Kishino
SeaWiFS Science Team
Hirosawa 2-1
Wako-shi, Saitama, 351-01
JAPAN
Voice: 81-48-462-1111 ext. 3635
Fax: 81-48-462-1449
Internet: kishino@rkan50.riken.go.jp
Span: rik835:<in%"kishino@rkan50.riken.go.jp"

Oleg Kopelevich
SeaWiFS Science Team
P.P. Shirshov Inst. of Oceanology
23 Krasikova St.
Moscow, 117218
RUSSIA
Voice: 7-095-124-7583
Fax: 7-095-292-6511
Telex: 411968 Okean SU
Omnet: p.shirshov

Marlon Lewis
SeaWiFS Science Team
Department of Oceanography
Dalhousie University
Halifax, Nova Scotia B3H 4J1
Voice: 902-492-4780
Fax: 902-492-4781
Omnet: m.lewis
Internet: marlon@predator.ocean.dal.ca

Charles McClain
SeaWiFS Science Team
NASA/GSFC/Code 971
Greenbelt, MD 20771
Voice: 301-286-5377
Fax: 301-286-2717
Omnet: c.mcclain
Internet: mcclain_ocean1.gsfc.nasa.gov

Greg Mitchell
SeaWiFS Science Team
UCSD/MRD 0218
LaJolla, CA 92039-0218
Voice: 619-534-2687
Fax: 619-534-2997
Omnet: g.mitchell@ucsd.edu

Gerald Moore
Plymouth Marine Laboratory
Prospect Place
West Hoe
Plymouth, PL1 3DH
UNITED KINGDOM
Voice: 44-752-222772
Fax: 44-752-670637
Omnet: pml.uk
Internet: gfm@unixb.nerc-pml.ac.uk

André Morel
SeaWiFS Science Team
Lab de Physique a Chimie Marines
Université Pierre et Marie Curie
BP 08, 06230 Villefranche Sur Mer
FRANCE
Voice: 33-93-76-37-11
Fax: 33-93-76-37-39
Omnet: a.morel

John Morrison
North Carolina State University
Dept. of Marine, Earth, and Atmospheric Sciences
Jordan Hall, Room 1125
Box 8208
Raleigh, NC 27695-8208
Voice: 919-515-7449
Fax: 919-515-7802
Omnet: j.morrison/science
Internet: morrison@meajmm.nrrc.ncsu.edu

James Mueller
SeaWiFS Science Team
SDSU/CHORS
6505 Alvarado Road, Suite 206
San Diego, CA 92120-5005
Voice: 619-594-2230
Fax: 619-594-4570
Omnet: j.mueller

Frank Muller-Karger
SeaWiFS Science Team
NASA HQ/Code SEP
Washington, DC 20546
Voice: 202-358-0238
Fax: 202-358-3098
Omnet: f.muller.karger
Internet: carib@carbon.marine.usf.edu
E.R. Firestone and S.B. Hooker

Cumulative Index

Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project, for example, the mission overview index entry refers to an overview of the SeaWiFS mission.

A

Advanced Very High Resolution Radiometer:
see AVHRR.

airborne spectral radiometry, 5(7-8).

aircraft calibration technique, 3(Fig. 19 p. 27).

algorithms, 1(3, 17); 4(2).

atmospheric correction, 3(1-2, Fig. 4 p. 5, 16, 23, 27-28, 31, 32-34); 8(4, Table 1 p. 14, 17, Table 4 p. 21).

bio-optical, Vol. 5.

data, 9(1).

database development, 3(28).

derived products, 3(27-28).

development, 1(5); 3(23, 27-35, Fig. 22 p. 33); 5(Table 4 p. 11); 8(4, 10).

field studies, 3(30-32, Fig. 22 p. 33, 34-35).

linearity and stability, 5(12).

optical measurements, Vol. 5.

validation of, 1(3); 8(16, Table 4 p. 21).

see also GAC.

along-track, 3(38).

see also propagation model.

ancillary measurements, 5(8, 27-28, 30).

ascending node, Vol. 2.

computation methods, 2(1-2).

tilt strategy, 2(Table 1 p. 2).

atmospheric conditions, 9(6-7).

atmospheric contributions, 9(4-6).

atmospheric measurements, 5(2, 28-29).

AVHRR:

deriving vegetation index, 7(2).

GAC data, 7(3-4).

LAC data, 7(2-4).

LDTNLR test, 7(4).

nighttime IR data, 7(5).

thermal IR channels, 7(1).

azimuth:

angles at equinox, 2(2, 10, 16).

angles at solstice, 2(Fig. 5 p. 7, 10, 16).

solar angle, 2(2, 16); 7(1).

spacecraft angle, 2(2, Fig. 6 p. 8, 16).

relative angle, 2(2, Fig. 7 p. 9, 10, Fig. 10 p. 13, 16).

baselines cont.

data products, 8(12-13).

data quality and acceptance, 8(7-8).

detector failure contingency, 8(11).

equator crossing contingency, 8(12).

ground station support, 8(11).

in situ data policy, 8(13).

launch slip contingency, 8(11).

level-3 binning, 8(8, 16).

loss of tilt contingency, 8(11).

navigation accuracy contingency, 8(11).

optical protocols, 8(12).

orbit contingency, 8(12).

orbital altitude contingency, 8(11).

power limitation contingency, 8(11).

products, 3(27-28); 5(1).

real-time data access, 8(12).

recommendations, 8(13-19).

see also data.

basin-scale processes, 1(4, 6-7).

biogeochemical, 1(2, 19); 8(1).

properties, 5(6-7).

see also Science Team Meeting, Abstracts.

bio-optics, 1(3, 5, 7, 19); 8(10).

algorithms, 1(19); 3(8, 13, Fig. 20 p. 29, 29); 5(3); 8(10).

algorithm working group members, 8(Table 1 p. 14).

see also algorithm development.

Brouwer-Lyddane model, 11(2-5, 11, 15-16, Figs. 5-8 pp. 8-9, Fig. 13 p. 12).

see also models.

buoy:

see MOBY.

see optical buoy.

see optical mooring.

C

calibration, 5(2); 10(Table 1-2 p. 4, Fig. 3 p. 6, Fig. 20 p. 23, Fig. 21 p. 24).

background on, 10(2-3).

initialization, 5(4-6).

lunar, 1(11, 18); 3(Fig. 15 p. 22); 10(1-3, 7, 10, Table 3 p. 10, Fig. 9 p. 11, Figs. 12-15 pp. 14-17, Fig. 16 p. 20, Fig. 19 p. 22, Table 4-5 p. 19, 25).

onboard, 3(21); 5(2-3); 10(1-2).

pigment, 5(24).

quality control, 10(25).

round-robin, 8(4, 17, Table 4 p. 21).

sensor, 1(11); 5(2-3).

solar, 1(11, 18); 3(24); 10(1-7, Fig. 2 p. 5, Fig. 4 p. 6, Figs. 5-8 pp. 8-9, Figs. 10-11 pp. 12-13, 18).

solar diffuser, 10(3-5, 7).

spectral, 5(24).

sun photometers, 5(24).

trend analysis, 10(25).

vicarious, 5(2-4); 8(10-11).

working group members, 8(Table 1 p. 14).
calibration cont.

see also round-robin.

see also SeaStar.
calibration and validation, 1(3, 8, 14, 18-22); Vol. 3.
baselines, 3(17); 8(3); see also baselines.
field deployment, 8(17, Table 2 p. 18, Table 4 p. 20).
on board, 3(21-23).
post-launch, 3(23-27).
prelaunch program, 3(17-21).
program milestones, 3(Fig. 12 p. 18, Table 4 p. 20).
program schematic, 3(Fig. 11 p. 14).
see also calibration.
see also initialization.
characterization:
collector cosine response, 5(18-19).
immersion factors, 5(19-20).
pressure effects, 5(21).
radiance field-of-view, 5(18).
radiometric, 5(15-17).
spectral bandpass, 5(15).
temperature, 5(20-21).
temporal response, 5(17).
cloud detection, 7(1, 5).
MODIS, 7(1).
see also MODIS-N.
cloud screening, Vol. 7.
determining thresholds, 7(2-3).
direct thresholds, 7(1-4).
evaluating methods, 7(5-6).
more complex methods, 7(4-5).
spatial coherence, 7(3-4).
see also AVHRR GAC data.
Coastal Zone Color Scanner, see CZCS.
commercial applications, 1(7).
contingencies:
detector failure, 8(11).
equator crossing, 8(12).
launch slip, 8(11).
loss of tilt, 8(11).
navigation accuracy, 8(11).
orbit, 8(12).
orbital altitude, 8(11).
power limitation, 8(11).
cross-track:
see propagation model.
CZCS, 1(1, 5, 6-7, 19); 3(1).
algorithms, 3(1-11, 23).
application of data, 9(7-9).
channels, 7(1, 5).
data collection, 9(6, Fig. 5 p. 5, 21, 30), 7(1).
global sampling, 3(Fig. 9 p. 10).
level-2 products, 4(1).
level-2 processing parameters, 4(Table 2 p. 2).
modeling compared to SeaWiFS, 3(Fig. 4 p. 5).
orbital characteristics, 9(Table 2 p. 3).

CZCS cont.
parameters and characteristics, 1(Table 2 p. 5), 3(Table 1 p. 1).
pigment concentration, 1(5-6); 3(1-2, 8, 27).
quality control, 3(Fig. 7 p. 8, Fig. 8 p. 9, 32, 35).
sensor, 1(5); 3(8).
sensor degradation, 3(23).
time of launch, 2(1).
vicarious calibration, 3(Fig. 6 p. 7, 11, 23, 24-27); 5(3-4).

D

data:
ancillary, 8(7).
archive and delivery, 5(2); 8(9-10).
collection, 3(24); 8(4).
distribution, 1(16); 8(2, 4, 16, 17).
format, 8(43-44).
management, 1(3, 11-18); 3(32).
policy, 3(37-38); 8(13, Table 4 p. 21, 41-42).
processing, 1(3, Fig. 2 p. 4, 11-16, Fig. 10 p. 20, 22); 3(13, 32); 7(5); 8(4, 8-9).
products, 8(12-13, 15-17, Table 4 pp. 20-21, 42-43).
quality and acceptance, 8(7-8).
real-time access of, 8(12).
requirements, 5(4-6).
subsampling, 4(1).
using SEAPAK with, 4(1-2).
data set, 1(3); Vol. 9.
atmospheric conditions, 9(6-7).
atmospheric contributions, 9(4-6).
availability of, 9(9-13).
code for simulating, 9(13-15).
methods for simulating, 9(2-7).
normalized water-leaving radiances, 9(2-3).
orbit model, 9(3-4).
simulated total radiances, 9(Figs. 2-4 pp. 10-12).
start and stop times, 9(Table 6 p. 9).
ten-bit words and data structures, 9(7).
viewing and solar geometries, 9(4-6).
descending node, Vol. 2.
see also ascending node.
detector failure contingency:
see contingencies.

E

equator crossing time, 2(10, 16); 9(Tables 6-7 p. 9).
contingency, 8(12).
equinox:
see azimuth.
see sun glint.
see zenith.

F

field deployment, see calibration and validation.
field program:
instrumentation, 3(34-35).
computing network, 3(Fig 21 p. 31).
Prelaunch Science Working Group:
see SPSWG.

primary productivity, 1(1); 5(7).
primary productivity cont.
working group members, 8(Table 1 p. 14).

proceedings:
Science Team Meeting, Vol. 8. see also Science Team Meeting.

Project, 1(3); 3(1, 13, 16, 23–24, 32, 34, 38).
goals, 1(2–3).
objectives, 1(3).
organization and personnel, 1(Table 4 p. 22); 3(Fig 13 p. 15).
presentations, 8(3–5).
schematic, 1(Fig. 8 p. 12, Fig. 9 p. 13).
structure, 3(13–16).

propagation model:
along-track, 11(5, Figs. 1–8 pp. 6–9, Fig. 11 p. 11, Figs. 12–14 pp. 12–13, Fig. 16 p. 14).
cross-track, 11(5, Fig. 9 p. 10, Fig. 15 p. 13, Fig. 17 p. 14).
orbit, Vol. 11.
radial, 11(4, 5, Fig. 10 p. 10).

-quality control, 3(29–30, 35–36); 10(Fig. 20 p. 23).
level-1 screening, 3(35).
level-2 product screening, 3(35–36).
level-3 product screening, 3(36).
level-2 quality control, 3(35); 8(4).

-radial:
see propagation model.

radiometric profiles, 5(33–39).
radiometric specifications, 3(36–37, Table A-1 p. 36); 8(4).
research:
applications, 1(3–5).
cruises, 3(30–32).
round-robin:
calibration, 8(4, 17, Table 4 p. 21).
protocols working group, 8(Table 1 p. 14).

-satellite remote sensing, 7(1).
saturation radiances, 3(Tables A-2 through A-4 pp. 36–37).
scanning characteristics, 9(1).
science mission goals, 3(12–13).
Science Team Meeting, Vol. 8.
abstracts, 8(22–41).
agenda, 8(5–6).
attendees, 8(51–59).
executive committee, 8(22).
invited presentations, 8(1–3).
questionnaire, 8(19–22, 44–51).
SEAPAK, 4(1–2, 20).

SeaStar, 1(1, 3, 8); 2(1–2); 3(21); 10(3,7).
launch sequence, 1(Fig. 4 p. 9).
on-solar irradiance measurements, 3(Fig 16 p. 22).
SBSWG, 1(1); 3(Table 5 p. 16, 27–28).
sun glint, 1(18); 2(1, 10, 14); 3(6).
at equinox, 2(10).
at solstice, 2(10, 16).
radiance distribution, 2(Fig. 8 p. 11, Fig. 11 p. 14).

validation:
algorithm, 8(16).
product, 8(10, 16).
sampling, 5(2, 31–33).
see also algorithms.
viewing and solar geometries, 9(4-6).
visible radiometers, 7(1).
 see also AVHRR.
 see also CZCS.
 see also MODIS.
 see also SeaWiFS instrument.

- Z -
zenith, 2(10).
 angles at equinox, 2(2, 16).
 angles at solstice, 2(10, 16).
solar angle, 2(2, Fig. 3 p. 5, 10, Fig. 9 p. 12, Fig. 12 p. 15,
 Table 3 p. 16, 16); 3(2, 8, 23); 7(1, 4); 9(Table 6 p. 9).
spacecraft angle, 2(2, Fig. 4 p. 6, 10, 16).
Glossary

- A -

ACC Antarctic Circumpolar Current
ACRIM Active Cavity Radiometer Irradiance Monitor
ACS Attitude Control System
A/D Analog-to-Digital
ADEOS Advanced Earth Observation Satellite (Japan)
AE Ångström Exponent
ALSCAT ALPHA and Scattering Meter (Note: the symbol α corresponds to c(λ), the beam attenuation coefficient, in present usage).
AOCI Airborne Ocean Color Imager
AOL Airborne Oceanographic Lidar
AOP Apparent Optical Property
AOS/LOS Acquisition of Signal/Loss of Signal
ARGOS Not an acronym, the name given to the data collection and location system on the NOAA Operational Satellites
ARI Accelerated Research Initiative
ASCII American Standard Code for Information Interchange
ASI Italian Space Agency
AT Along-Track
AVHRR Advanced Very High Resolution Radiometer
AVIRIS Advanced Visible and Infrared Imaging Spectrometer

- B -

BAS British Antarctic Survey
BATS Bermuda Atlantic Time-Series Station
BBOP Bermuda Bio-Optical Profiler
BBR Band-to-Band Registration
BCRS Dutch Remote Sensing Board
BEP Benguela Ecology Programme
BER Bit Error Rate
BMFT Minister for Research and Technology (Germany)
BOMS Bio-Optical Moored Systems
bpi bits per inch
BRDF Bidirectional Reflectance Distribution Function
BUV Backscatter Ultraviolet Spectrometer
BWI Baltimore-Washington International (airport)

- C -

CalCoFI California Cooperative Fisheries Institute
Cal/Val Calibration and Validation
CALVAL Calibration/Validation
Case 1 Water whose reflectance is determined solely by absorption.
Case 2 Water whose reflectance is significantly influenced by scattering.
CCPO Center for Coastal Physical Oceanography (Old Dominion University)
CD-ROM Compact Disk-Read Only Memory
CDOM Colored Dissolved Organic Material
CDR Critical Design Review
CHORS Center for Hydro-Optics and Remote Sensing (San Diego State University)
CICESE Centro de Investigación Científica y de Educación Superior de Ensenada (Mexico)
COOP Coastal Ocean Optics Program

- D -

COTS Commercial Off-The-Shelf (software)
CPR Continuous Plankton Recorder
cpu Central Processing Unit
CRM Contrast Reduction Meter
CRN Italian Research Council
CRSEO Center for Remote Sensing and Environmental Optics (University of California at Santa Barbara)
CRT Calibrated Radiance Tapes; or Cathode Ray Tube.
CSL Computer Systems Laboratory
CT Cross-Track
CTD Conductivity, Temperature, and Depth
CVT Calibration/Validation Team
CW Continuous Wave
CZCS Coastal Zone Color Scanner

- E -

DAAC Distributed Active Archive Center
DAT Digital Audio Tape
DC Direct Current
DCF Data Capture Facility
DCOM Dissolved Colored Organic Material
DCP Data Collection Platform
DEC Digital Equipment Corporation
DOC Dissolved Organic Carbon
DOM Dissolved Organic Matter
DOS Disk Operating System
DSP Not an acronym, an image display and analysis package developed at RSMAS University of Miami.

- E -

ECMWF European Centre for Medium Range Weather Forecasts
ECT Equator Crossing Time
EEZ Exclusive Economic Zone
EOS Earth Observing Satellite
EOSAT Earth Observation Satellite Company
EOSDIS Earth Observing Satellite Data Information System
ERBE Earth Radiation Budget Experiment
ERBS Earth Radiation Budget Sensor
ER-2 Earth Resources-2
EPA Environmental Protection Agency
ERS Earth Resources Satellite
ESA European Space Agency
EUVE Extreme Ultraviolet Explorer

- F -

FDDI Fiber Data Distribution Interface
FLUPAC (Geochemical) Fluxes in the Pacific (Ocean)
FNOC Fleet Numerical Oceanography Center
FORTRAN Formula Translation (computer language)
FOV Field-of-View
FRD Federal Republic of Deutschland (Germany)
FTP File Transfer Protocol
FWHM Full-Width at Half-Maximum
GAC Global Area Coverage, coarse resolution satellite data with a nominal ground resolution of approximately 4 km.
GASM General Angle Scattering Meter
GFF Glass Fiber Filter by Whatman
GIN Greenland, Iceland, and Norwegian Seas
GISS Goddard Institute for Space Studies
GLI Global Imager
GLOBEC Global Ocean Ecosystems dynamics
GMT Greenwich Mean Time
GOES Geosynchronous Orbital Environmental Satellite
GOFS Global Ocean Flux Study
GPM General Perturbations Model
GPS Global Positioning System
GRGS Groupe de Recherche de Geodesie Spatial
GSO Graduate School of Oceanography (University of Rhode Island)
G/T System Gain/Total System Noise Temperature
GUI Graphical User Interface
HDF Hierarchical Data Format
HeNe Helium-Neon
HOTS Hawaiian Optical Time Series
HP Hewlett-Packard
HPLC High Performance Liquid Chromatography
HQ Headquarters
HRPT High Resolution Picture Transmission
HYDRA Hydrographic Data Reduction and Analysis
IAPSO International Association for the Physical Sciences of the Ocean
IAU International Astrophysical Union
IBM International Business Machines
ICES International Council on Exploration of the Seas
IDL Interface Design Language
IFOV Instantaneous Field-of-View
IMS Information Management System
I/O Input/Output
IOP Inherent Optical Property
IR Infrared
ISCCP International Satellite Cloud Climatology Project
IUE International Ultraviolet Explorer
JAM JYACC Application Manager
JGOFS Joint Global Ocean Flux Study
JOI Joint Oceanographic Institute
JPL Jet Propulsion Laboratory
LAC Local Area Coverage, fine resolution satellite data with a nominal ground resolution of approximately 1 km.
LANDSAT Land Resources Satellite
LDGO Lamon-Doherty Geological Observatory (Columbia University)
LDTNLR Local Dynamic Threshold Nonlinear Raleigh Level-0 Raw data.
Level-1 Calibrated radiances.
Level-2 Derived products.
Level-3 Gridded and averaged derived products.
LMCE Laboratoire de Modélisation du climat et de l'Environnement (France)
LODYC Laboratoire d'Océanographie et de Dynamique du climat (France)
LOICZ Land Ocean Interaction in the Coastal Zone
LPCM Laboratoire de Physique et Chimie Marines (France)
LRER Long-Range Ecological Research
MAREX Marine Resources Experiment Program
MARS Multispectral Airborne Radiometer System
MASSS Multi-Agency Ship-Scheduling for SeaWiFS
MBARI Monterey Bay Aquarium Research Institute
MERIS Medium Resolution Imaging Spectrometer
MEM Maximum Entropy Method
METEOSAT Meteorological Satellite
MF Major Frame
mF Minor Frame
MIPS Millions of Instructions Per Second
MLE Maximum Likelihood Estimator
MOBY Marine Optical Buoy
MOCE Marine Optical Characterization Experiment
MODIS Moderate Resolution Imaging Spectrometer
MODIS-N Moderate Resolution Imaging Spectrometer-Nadir
MODIS-T Moderate Resolution Imaging Spectrometer-Tilt
MTF Modulation Transfer Function
NAS National Academy of Science
NASA National Aeronautics and Space Administration
NASCOM NASA Communications
NASDA National Space Development Agency (Japan)
NASIC NASA Aircraft/Satellite Instrument Calibration
NAVSPASUR Naval Space Surface Surveillance
NCDS National Climate Data System
NCSA National Center for Supercomputing Applications
NCSU North Carolina State University
NEΔT Noise Equivalent Delta Temperature
NEΔL Noise Equivalent delta Radiance
NER Noise Equivalent Radiance
NERC Natural Environment Research Council
NESDIS National Environmental Satellite Data Information Service
NET NIMBUS Experiment Team
NIMBUS Not an acronym, a series of NASA experimental weather satellites containing a wide variety of atmosphere, ice, and ocean sensors.
E.R. Firestone and S.B. Hooker

UIM/X User Interface Management/X-Windows
UM University of Miami
UNESCO United Nations Educational, Scientific, and Cultural Organizations
UPS Uninterruptable Power System
URI University of Rhode Island
USC University of Southern California
USF University of South Florida
UVB Ultraviolet-B
UWG User Working Group

V0 Version 0
V1 Version 1

VAX Virtual Address Extension
VHF Very High Frequency
VI Virtual Instrument
VISLAB Visibility Laboratory (Scripps Institution of Oceanography)
VISNIR Visible and Near Infrared
VMS Virtual Memory System

-W, X, Y, Z-

WFF Wallops Flight Facility
WHOI Woods Hole Oceanographic Institute
WMO World Meteorological Organization
WOCE World Ocean Circulation Experiment
WORM Write Once Read Many (times)
SYMBOLS

- **A**
 - a The semi-major axis of the Earth's orbit or a constant equal to 0.983 (depending on usage).
 - $a(z, \lambda)$ Spectral absorption coefficient.
 - aox Coefficient for oxygen absorption.
 - ao_λ Coefficient for ozone absorption.
 - a_{sv} Coefficient for water vapor absorption.
 - $A(\lambda)$ Coefficient for calculating $b_\lambda(\lambda)$.
 - A_i The intersection area.

- **B**
 - $b(z, \lambda)$ Total scattering coefficient.
 - $b(\theta, z, \lambda)$ Volume scattering coefficient.
 - $b_{bs}(z, \lambda)$ Spectral backscattering coefficient.
 - $b_{bs}(\lambda)$ Spectral backscattering coefficient for phytoplankton.
 - $b_r(\lambda)$ Total Raman scattering coefficient.
 - $b_w(\lambda)$ Total scattering coefficient for pure seawater.
 - $B(\lambda)$ Coefficient for calculating $b_\lambda(\lambda)$.

- **C**
 - $c(z, \lambda)$ Spectral beam attenuation coefficient.
 - $c(z, 660)$ Red beam attenuation (at 660 nm).
 - $[\text{chl. } a]/K$ Concentration of chlorophyll a over K, the diffuse attenuation coefficient.
 - C_{ref} Reference chlorophyll value (0.5).

- **D**
 - D Sequential day of the year.
 - D_t Orbit position difference vector.
 - D_{at} Along-track position difference.
 - D_{ct} Cross-track position difference.
 - D_{rad} Radial position difference.
 - DC_{10} Digital counts at 10-bit digitization.

- **E**
 - e Orbit eccentricity of the Earth.
 - $E_{a}(\lambda)$ Irradiance in air.
 - E_{cal} Calibration source irradiance.
 - $E_{d}(0, \lambda)$ Downwelled spectral irradiance.
 - $E_{s}(\lambda)$ Surface irradiance.
 - $E_{sky}(\lambda)$ Spectral sky irradiance distribution.
 - $E_{sun}(\lambda)$ Spectral sun irradiance distribution.
 - $E_u(z, \lambda)$ Upwelled spectral irradiance.
 - $E_w(z, \lambda)$ Irradiance in water.

- **F**
 - f-ratio The ratio of new to total production.
 - F_0 Extraterrestrial irradiance corrected for Earth-sun distance.
 - F_0 Mean solar irradiance.
 - F_0 Extraterrestrial irradiance corrected for the atmosphere.
 - $F_0(\lambda)$ Mean extraterrestrial irradiance.
 - F_a Forward scattering probability of the aerosol.

- **G**
 - g_1 A constant equal to 0.82.
 - g_2 A constant equal to -0.55.
 - G_e Gravitational constant of the Earth (398,600.5 km3 s$^{-2}$).

- **H**
 - H_{GMT} GMT in hours.
 - H_s Altitude of the spacecraft (for SeaStar 705 km).

- **I**
 - i Inclination angle.
 - i' Inclination angle minus 90°.
 - I Rayleigh intensity.
 - I_0 Surface downwelling irradiance.

- **J**
 - J_2 The J_2 gravity field term (0.0010863).
 - J_3 The J_3 gravity field term (-0.0000254).
 - J_4 The J_4 gravity field term (-0.0000161).
 - J_5 The J_5 gravity field term.

- **K**
 - $k_c(\lambda)$ Spectral fit coefficient weighted over the SeaWiFS bands; $k_c(\lambda)$ also used.
 - $K(z, \lambda)$ Diffuse attenuation coefficient.
 - $K_0(\lambda)$ Diffuse attenuation coefficient at $z = 0$.
 - $K_{ph}(\lambda)$ Attenuation coefficients for phytoplankton.
 - $K_E(\lambda)$ Attenuation coefficient downwelled irradiance.
 - $K_{gel}(\lambda)$ Attenuation coefficients for Gelbstoff.
 - $K_L(z, \lambda)$ Attenuation coefficient upwelled radiance.
 - $K_w(\lambda)$ Attenuation coefficients for pure seawater.

- **L**
 - $L(z, \theta, \phi)$ Submerged upwelled radiance distribution.
 - L_a Aerosol radiance.
 - L_{cal} Calibration source radiance.
 - $L_g(\lambda)$ Sun glint radiance.
 - $L_{ner}(\lambda)$ Noise equivalent radiance.
 - $L_r(\lambda)$ Rayleigh radiance.
 - $L_{sat}(\lambda)$ Saturation radiance for the sensor.
 - $L_{sky}(\lambda)$ Spectral sky radiance distribution.
 - $L_{tot}(\lambda)$ Total radiance at the sensor.
 - $L_u(z, \lambda)$ Upwelled spectral radiance.
 - $L_W(\lambda)$ Water-leaving radiance.
 - $L_{WN}(\lambda)$ Normalized water-leaving radiance.

- **M**
 - M Path length through the atmosphere.
 - M_{0} The corrected mean orbit anomaly of the Earth, which is a function of date, and refers to an imaginary moon in a circular orbit.
 - M_{oz} Path length for ozone transmittance.

- **N**
 - n Index of refraction or mean orbital motion in revolutions per day (depending on usage).
 - $n_w(\lambda)$ Index of refraction of water.
 - N The total number of something.

- **O**
 - \mathcal{O} $\mathcal{P} \times \mathcal{V}$.

18
E.R. Firestone and S.B. Hooker

- **P**
 - p_0 A factor to account for the probability of scattering to the spacecraft for three different paths from the sun.
 - p_{Φ} The probability of seeing sun glitter in the direction Φ given the sun in position θ_0, Φ_0 as a function of wind speed (W).
 - P Nodal period.
 - \vec{P} Orbit position vector.
 - $P(\theta^+)$ Phase function for forward scattering.
 - $P(\theta^-)$ Phase function for backward scattering.
 - P_α Probability of scattering to the spacecraft.

- **Q**
 - $Q(\lambda)$ $L_u(0^-, \lambda)$ to $E_u(0^-, \lambda)$ relation factor (theoretically equal to π).

- **R**
 - r Water-air reflectance for totally diffuse irradiance.
 - r_1 The radius of circle one.
 - r_2 The radius of circle two.
 - $R(0^-, \lambda)$ Irradiance reflectance just below the sea surface.
 - R_e Mean Earth radius (6,378.137 km).
 - $R_L(z, \lambda)$ Spectral reflectance.
 - R_s Sunspot number.

- **S**
 - $s(\lambda)$ Slope for the range 0–1,023.
 - S Solar constant.

- **T, U**
 - t Time variable.
 - t_0 Initial time.
 - t_{aa} Aerosol transmittance after absorption.
 - t_{sa} Aerosol transmittance after scattering.
 - t_d Direct component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
 - t_e Time difference in hours between present position and most recent equator crossing.
 - t_{EC} Equator crossing time.
 - t_{oa} Transmittance after absorption by ozone.
 - t_r Transmittance after Rayleigh scattering.
 - t_s Diffuse component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
 - t_{sv} Transmittance after absorption by water vapor.
 - $T_s(\lambda)$ Transmittance through the surface.
 - $T(\lambda, \theta)$ Total transmittance (direct plus diffuse) from the ocean through the atmosphere to the spacecraft along the path determined by the spacecraft zenith angle θ.
 - $T_0(\lambda, \theta_0)$ Total downward transmittance of irradiance.
 - T_e Equation of time.
 - T_∞ Transmittance of oxygen (O_2).
 - T_{oa} Transmittance of ozone (O_3).
 - $T_s(\lambda)$ Transmittance through the surface.
 - $T_w(\lambda)$ Transmittance through a water path.
 - T_{sv} Transmittance of water vapor (H_2O).

- **V**
 - \vec{V} Orbit velocity vector.

- **W**
 - W Wind speed.
 - W_d Direct irradiance divided by the total irradiance at the surface.
 - W_s Diffuse irradiance divided by the total irradiance.

- **X, Y, Z**
 - x Abscissa or longitudinal coordinate, or the pixel number within a scan line depending on usage.
 - y Ordinate or meridional coordinate.

- **GREEK**
 - α The power constant in the Ångström formulation.
 - $\beta(\lambda, \theta)$ Spectral volume scattering function.
 - δ Great circle distance from $\Psi_s(t_0)$ to $\Psi_s(t - t_0)$.
 - ΔP The difference in successive pixels.
 - Δp_{CO_2} Partial pressure difference of CO$_2$ between air and sea water.
 - Δt Time difference.
 - $\Delta \omega$ The longitude difference from the sub-satellite point to the pixel.
 - $\Delta \omega_s$ Longitude difference.
 - η Bearing from the sub-satellite point to the pixel along the direction of motion of the satellite.
 - θ Spacecraft zenith angle.
 - θ_1 The intersection angle of circle one.
 - θ_2 The intersection angle of circle two.
 - θ_0 Solar zenith angle.
 - θ_N The angle with respect to nadir that the sea surface slopes to produce a reflection angle to the spacecraft.
 - θ_s Scan angle of sensor.
 - θ_s' Scan angle of sensor adjusted for tilt.
 - λ Wavelength of light.
 - $\bar{\mu}_d(0^+, \lambda)$ Spectral mean cosine for downwelling radiance at the sea surface.
 - ξ_{EM} The distance between the Earth and the moon.
 - ρ Weighted direct plus diffuse reflectance.
 - $\rho(\theta)$ Fresnel reflectance for viewing geometry.
 - $\rho(\theta_0)$ Fresnel reflectance for solar geometry.
 - ρ_s Sea surface reflectance for direct irradiance at normal incidence for a flat sea.
 - ρ_N Reflectance for diffuse irradiance.
 - σ Standard deviation of a set of data values.
 - $\tau(z, \lambda)$ Spectral optical depth.
 - τ_a Aerosol optical thickness.
 - τ_r Rayleigh optical thickness.
 - $\tau_s(\lambda)$ Spectral solar atmospheric transmission.
 - Φ Spacecraft azimuth angle.
 - Φ_0 Solar azimuth angle.
 - Ψ Pixel latitude.
 - Ψ_d Solar declination latitude.
 - $\Psi_s(t)$ Sub-satellite latitude as a function of time.
\(\omega \) Longitude variable.
\(\omega_0 \) Old longitude value.
\(\omega_s \) Single scattering albedo of the aerosol.

\(\omega_e \) Equator crossing longitude.
\(\omega_p \) Longitude variable.
\(\Omega \) Solar hour angle.
REFERENCES

Abel, P., G.R. Smith, R.H. Levin, and H. Jacobowitz, 1988: Results from aircraft measurements over White Sands, New Mexico, to calibrate the visible channels of spacecraft instruments. SPIE, 924, 208–214.

E.R. Firestone and S.B. Hooker

---, H.

E.R. Firestone and S.B. Hooker

National Aeronautics and Space Administration, 1982: The marine resources experiment program (MAREX). Report

— P, Q —

Phulpin, T., M. Derrien, and A. Brard, 1983: A two-dimensional histogram procedure to analyze cloud cover from NOAA satellite high-resolution imagery. *J. Climate Appl. Meteor., 22* 1,332–1,345.

— R —

— S —

E.R. Firestone and S.B. Hooker

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an 8-year mission. SeaWiFS is expected to be launched in 1994, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the *SeaWiFS Technical Report Series*, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 11 volumes and consists of 6 sections including: an errata, an addendum (a summary of the SeaWiFS Working Group Bi-optical Algorithm and Protocols Subgroups Workshops), an index to keywords and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors’ intention to publish a cumulative index of this type after every five volumes in the series. This will cover the topics published in all previous editions of the indices, that is, each new index will include all of the information contained in the preceding indices.