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TECHNICAL MEMORANDUM

AN ASSESSMENT ON FINITE-ELEMENT MODELING TECHNIQUES

FOR THICK-SOLID/THIN-SHELL JOINTS ANALYSIS

INTRODUCTION

In many industrial applications, there are three-dimensional (3-D) solid continua with thin

shell-like portions connected to them such as duct flange joints, turbine blades mounted on a shaft,
and shell intersections and branches, as can be seen in the space shuttle main engine (SSME)

(figs. 1 and 2). In general, for finite-element modeling of such structures, the 3-D solid elements as
well as thin-shell elements are employed. The analysis capabilities for the plates, shells, and thick

solid structures have been considerably enhanced with the advances in the curved solid and shell

finite elements. 1 2 The general-purpose finite-element computer programs, 3 4 which have imple-

mented these finite elements, led to their use in the day-to-day design and analysis processes.

However, the modeling of the connections (joints) of shell elements to the solid elements

presents considerable difficulty, since the nodal degrees-of-freedom (DOF) for these types of ele-

ments are incompatible with each other. Attempts to discretize shell-like portions of the structure

with solid elements are not only time consuming and impractical, but may also lead to erroneous

results for thin-shell structures. Therefore, suitable modeling of the connection regions where the
solids connect to the shells is of considerable interest to the modelers, because often these regions

are the weakest regions, and their accurate modeling is necessary for determining correct stresses
and deformations.

For instance, when analyzing welded connections such as tubular joints (fig. 2), 5 intersecting

shells may require solid elements to adequately consider the 3-D stress state and weld geometry at

the shell junctions. However, the use of solid elements for the thin portions of the model is
uneconomical because the need for a reasonable aspect ratio would require an unnecessarily fine

mesh. In addition, curved solid elements introduce extra DOF's in situations for which shell ele-

ments are adequate. Therefore, there is a need for an element that is capable of connecting curved
shell elements to solid elements.

Such elements have been reported for linear 6 and geometrically nonlinear analysis. 7 These

elements use reduced integration to avoid the well-known transverse shear and membrane locking

phenomenon. However, without modification, these elements are unacceptable for general purpose
finite-element codes because the use of reduced integration often leads to the existence of spurious

zero energy modes or mechanisms. Therefore, an accurate shell/solid transition element that does

not require reduced integration is desirable for both general linear and nonlinear analysis. Recently,

Bathe and Dvorkin s and Huang and Hinton 9 recognized that, though locking in shell elements results

from artificial strain energy terms that exist at all points within the element except at reduced inte-

gration sampling points, the actual use of reduced integration leads to spurious mechanisms. The

solution was to use full numerical integration. However, rather than defining strain components

directly from nodal displacements at each integration point, the nodal displacements were obtained

by interpolating (or extrapolating) them from the points at which they are known to be accurately

represented. Also, a similar approach was used by Cofer and Will.l° Although these solid/shell



transitionelementswere reportedin the referencesmentionedabove,they arenot implementedin
thecurrently availablecommercialcodes.Someotherapproachesfor a practicalpurposearecurrently
in use.However, frequently variousassumptionsrestrict their use.Therefore,an assessmentof
suchapproacheshasbeenattemptedin this study throughthe testsso asto give an ideaof which
analysistechniquecanbe ideally suitedfor solid/shelljoint problems,particularly in thecomputer-
aided-design(CAD) environment.

In the next sections,basicthoughtsregardingeachtechniquewill bediscussed,and they will
be concludedwith somesuggestionsbasedon the resultsobtained.

MODELS AND MATERIALS

Each technique was tested to evaluate its performance and compared to the results given in

the reference. 6 Prior to presenting the models considered in this study, it is appropriate to explain the

problems which occur in solid/shell joint modeling.

As a first example, a simple pipe tee I (fig. 3) will be taken. The geometry is prescribed, and

the loading and support locations are indicated. However, there are many different finite-element

models that could be used for just a simple linear static analysis. The joint could be modeled by using

connecting beam elements, connecting straight pipe elements, or a specialty element for pipe tee

joints. However, if a detailed stress distribution is required at the branch to main-run junction, a

totally different model must be used. One detailed model, for example, may use all shell elements

(fig. 4); a second model may use all solid elements (fig. 5); a third possibility is a mixture of solids
and shell elements (fig. 6). Each of these models has a different theoretical basis and potential cost.

The "best" model is the one that accurately answers the questions involved with a minimum of time
and cost.

The most common approach for thin-shell structures uses plate and/or shell elements

throughout the model. The shell model properly represents the loads and deflections throughout, with

the shell elements simulating the shell theory response well. However, in the region of the inter-
section of the shells (fig. 7), there is potential for relatively high error in the stress calculations.

First, the thin-shell model connects only the midsurface planes of the elements. Figure 7 shows the

poor representation of shell junctions with midsurface connections. It is just assumed that the nodal

deflections and nodal forces are compatible along the edges. Second, the flat-plate or shell elements
of commercial codes have a different order of displacements for membrane and bending actions. The

membrane (in-plane) displacement functions are linear, bilinear, or incomplete quadratic, while the

bending (lateral) displacements are Usually cubic or incomplete quadratic. When two such elements
are connected, the displacements (hence, forces and stresses) can be highly incompatible along the

edge boundaries. This happens when the elements do not lie in the same plane. Although the coordi-

nate transformations are utilized to avoid this incompatibility, the plate and/or shell models are not

completely satisfactory for intersecting shell structures, but are good if the stresses at the line of

intersection are not important. However, if complete stress patterns, including concentrations, may

be required, the system requires a full 3-D model (fig. 5) or a combined shell and solid model (fig. 6).
A mixture of solid and shell elements has been employed for the SSME structural analyses.

The combination of shell and solid elements requires special modeling techniques. Shells

have six DOF per node--three translations and three rotations. Solids have only three DOF---all

2



translations.Special linear-constraintsequationsmay be imposedon thecommon nodesto couple
rotationof theshell to differential translationof the solid. As mentionedearlier, in complexjunctions
wheredeformationand stressbehaviorarecomplicated,suchan approximationmaylead to unreli-
able results.

Another techniquefor combiningDOF involvesthe useof additional shell elementsacross
the perpendicularfree facesof the solids(fig. 8). Theseshell elementssharethe samenodeswith
the solidsandmustbe very stiff in bending and flexible in membrane to connect to the solids. Thus,

special constraint equations have to be imposed to handle this requirement.

The subject of suitable finite-element modeling for solid/shell connections is very important to

the practicing analysts faced with obtaining accurate results.

With this background for the problem, a cantilever plate, used in reference 6 and shown in

figure 9, was taken in this study to understand the modeling techniques used practically for solving

these joint problems. However, stress calculation was not attempted to assess the performance of

the techniques because of the unavailability of reference data to be compared to the stress results

obtained. In all the cases considered in this study, only the deflection details are provided.

The plate consists of a short, thick metal slab (2 by 1 by 0.7 in) and a very thin long plate

(10 by 1 by 0.1 in) jointed together at the middle plane (z = 0.35 in). The plate is subjected to a

bending load of 3 Ib/in (loading I) and an in-plane load of 12x104 lb/in (loading II) at the free end of

the plate (x = 12 in), respectively. The plate material has a Young's modulus of 30x106 lb/in2 and a
Poisson's ratio of zero. The ANSYS code 3 was used for models. Details of the finite-element

models considered in this study are given as the following.

Model A:

Figure 10 shows a finite-element model used 20 8-node solid elements and 28 4-node shell

elements. Solid elements and shell elements joined together at x = 2 in, without writing any

constraint equations.

Model B."

The 1.95- by 1- by 0.7-inch portion of the plate is modeled with 20 8-node solid elements.

The 10- by 1- by 0.1-inch portion was modeled with 28 4-node shell elements. The 0.1- by 1- by

0.1-inch beam elements were used between solid elements and shell elements without writing any

constraint equations. The details of the model are shown in figure 11.

Model C:

The 2- by 1- by 0.6-inch portion of the plate was modeled with 8 20-node solid elements and

also with 2 8-node shell elements. The 12- by 1- by 0.1-inch portion of the plate was modeled with

seven eight-node shell elements at z = 0.35 in. Model C is illustrated in figure 12.

Model D:

The entire structure was modeled using 17 20-node solid elements. Model D is illustrated in

figure 13.



Model E:

The 1.9- by 1- by 0.7-inch portion of the plate was modeled with 20 8-node elements. The

0.1- by 1- by 0.7-inch portion of the plate was modeled with 10 4-node shell elements which were
attached to the solid, and then 28 4-node shell elements for the 10- by 1- by 0.1-inch portion of the

plate were used. Model E is illustrated in figure 14.

Model F:

The entire plate was modeled using eight-node shell elements. The 2- by 1- by 0.7-inch

portion was modeled with two eight-node shell element (element thickness 0.7 inch), whereas the

remainder of the plate was modeled using seven eight-node shell elements (element thickness = 0.1

in). Model F is illustrated in figure 15.

RESULTS AND DISCUSSIONS

The results of test cases are presented in this section. Only the deflections are compared

with those given in reference 6 for both loading cases shown in figure 9.

The analyses for the models. A, B, and E were terminated due to the negative equation solver
pivot terms. To give a better understanding of this error, it is appropriate to describe the Gauss

elimination solution of equations (or wave-front equation solver). Using standard abbreviations, the

stiffness equation is {K} [D] = {R}, where {K} is the stiffness matrix, [D] is the displacement

vector, and {R} is the load vector. The first equation is symbolically solved for D1, then substituted

into the subsequent equations. The second equation is similarly treated, then the third, and so on.

This forward-reduction process alters {R} and changes {K} to upper triangular form, with l's on the

diagonal. Finally, unknowns are found by back-substitution, so that the numerical value of D1 is

found last. This simple approach is acceptable because pivot terms are not small unless the structure

is nearly unstable or badly modeled. A warning message can be printed if pivot terms are uncomfort-

ably small, and execution can be terminated if pivot terms are unacceptably small. If pivot terms are

negative, the structure is unstable. 2

In order to prevent the analysis termination due to negative equation solver pivot terms in

models A, B, and E, constraint equations may be used to relate the displacements of selected nodal

points between the dissimilar elements. However, such approximations may lead to unreliable

results as mentioned above. Therefore, the finite-element modeling techniques that have been con-

sidered for solid-shell connections using the techniques of models A, B, and E would not be practi-
cal.

No constraint equations were imposed on the models in this study. Thus, comparisons were

made only with the results from models C, D, and F and with those given in reference 6. The
deformed shapes on the undeformed shapes of models C, D, and F are shown in figures 16 to 18 for

horizontal loads and in figures 19 to 21 for vertical loads, respectively.

Figure 22 shows a plot of the deflections in the x-direction along the length of the plate for

each model under horizontal (in-plane) load. A plot of the deflections in the z-direction along the
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lengthof the plate undervertical (out-of-plane)load is shownin figure 23. As canbe seen,models
C, D, and F showquite goodagreementwith the resultsgiven in reference6.

Figures24 and 25 showthedeflectionsin the z-direction under vertical load and the deflec-
tions in the x-direction under horizontal load along the plate length from x = 0.0 inch to x = 2.25

inches. The purpose of this plot was to show the sharp change in deflection from x = 2.0 inches to x =
2.25 inches. This was expected since the selection at x = 2.0 inches has stress singularity due to

sudden change in thickness. In figure 24, it was observed that though the result from model C is
close to the results from the other cases, models D and F indicate better agreement with the values

given in reference 6. However, it was indicated in figure 25 that models C and D yield better

agreement with the values given in reference 6.

Figures 26 and 27, 28 and 29, and 30 and 31 show the deflections in the x-direction along the

depth of the beam at x = 2.0 inches, x = 1.75 inches, and x = 1.5 inches for each model under vertical
and horizontal loads, respectively. As shown, model F failed to capture the correct deflections

because it was a plate model. In figure 26, model C showed quite different results from those of
model D and reference 6. This figure also indicates that model D does not show good agreement

along the depth of the beam at 0.2 inch < z < 0.35 inch with the values given in reference 6. One

possibility for this discrepancy could be due to the coarseness of model D mesh or the poorly defined
transition element used in reference 6. Also, as observed in figure 27 for the horizontal loading

cases, it was shown that the results from model C and D did not correlate well with those given by

reference 6. In figures 28 and 29 at x = 1.75 inches and figures 30 and 31 at x = 1.5 inches, similar

responses were indicated as those observed at x = 2.0 in shown in figures 26 and 27. However, at

the locations away from the region of stress singularity (x = 2.0 inches) the increasing correlation in

the results can be observed. An interesting point was also observed in figure 31 showing that the

result given in reference 6 shows quite different results when compared to those from models C and
D. Consequently, although model C might be an acceptable technique to predict the deflections in a

practical sense, care must be given in using the technique of model C. Furthermore, the important

thing to be mentioned here is that though model C displays practically predictive capability in
deflections, the variations of stresses and strains are of higher order than displacements within the

elements. Therefore, a model which gives a good displacement solution may not give a good solution

in stress.

In general, the constant-stress element is the most basic element and satisfies the basic

convergence criteria for elements. As a mesh is refined, the solution converges, but because stress

in each element is constant, equilibrium cannot be satisfied between elements except in regions

where stress does not actually vary. Therefore, for problems with high-stress gradients, an excep-

tionally fine mesh is required for an accurate solution. Also, elements with quadratic and higher-

order stress fields require cubic or higher-order displacement functions, and they have either more

nodes per element or more DOF per node, which makes them inherently more expensive elements.

Besides, complex structures require relatively fine meshes to model the geometry and stress dis-

continuity properly. As a result of the limitations in the modeling techniques described above,

alternate approaches would be desired.

A global/local modeling approach, with relatively coarse global-response models and detailed
local models, could be considered. The global model ensures that the load path simulates overall

response and provides adequate stress results away from the discontinuity. A local model, on the

other hand, provides detailed maximum stresses in the region of discontinuities.



Thereare two basicmethodsfor detailedlocal modelingof stressesnearregionswith dis-
continuity. The first involvesusing a refinedmeshso that thepeak stressesat the discontinuity can
be computed.This entails severaltransitionsof analyses,therebycomplicatingthe total analysis.
Usually themeshmust be refinedseveraltimesnearthediscontinuity to proveconvergenceof the
solutions,a processwhich canbe expensiveandtime-consuming.The secondmethodlo modelsthe
structurefor anaccurateprimary stresspatternimmediatelyoutsidetheregion of discontinuity. In
the computationof the maximum-stressstate,the stress-concentrationfactor Kt should be applied

to the primary stress. The primary stress value should include all gross structural effects, but should
not include any local effects from the discontinuity. Thus, the choice is between creating a refined

mesh at the discontinuity or applying a stress concentration factor to stresses from a linearized

solution in order to obtain the good predictive stresses in the problems with high-stress gradients.

CONCLUSION

An important and large application area for shell/solid analysis will be the CAD environment.
In this area, linear and nonlinear shell/solid analysis will be conducted in routine applications using

the CAD system. Therefore, the analysis capabilities must be versatile, robust and above all things

for all possible analysis conditions.

In this study, some practical finite-element modeling techniques currently used for the thick-

solid/thin-shell connections analysis, especially using the CAD systems, have been tested in order

to determine which technique is the most ideally suited for CAD environments. As a result of this

study, two basic approaches are suggested for determining correct stresses and deformations of the

thick-solid/thin-shell joint problems.

The first technique is to use global/local modeling. Local modeling involves the evaluation of

the system using a model which provides the correct total response and a correct representation of

stresses away from any discontinuities. Therefore, the global models can be relatively coarse, and

total-response analysis is cost-effective. Only the local regions have refined meshes, and these
models include only displacement boundary effects computed from the total response. The global

analysis would use the shell elements, while the local model would use only the 3-D solid elements.
The shell displacement field is imposed on the solid-model boundaries. As in other special tech-

niques, this local model should be created sufficiently away from the region of interest for stress.

Local modeling can then be used for the local stress calculations. This method also needs special

techniques (i.e., interpolation or extrapolation techniques) for the interfaces between the global

model and the local model, as is usually required in order to satisfy compatibility.

The second technique is to develop transition elements which are currently not available in

the commercial codes. In the analysis of an actual shell structure, it is desirable to model shell
intersections and shell-to-solid transitions effectively (without writing unreliable constraint

equations) using transition elements. However, in development of the transition elements, the

following requirements should be satisfied to render the elements widely applicable in routine

applications using the CAD system:

(1) The element should be applicable to any solid/shell situation.

(2) The element should not contain any spurious zero energy modes.

6



(3) The elementshouldbesimpleandinexpensiveto usewith any solid/shellelements.

(4) The elementshouldbe insensitiveto elementdistortions.

(5) Any restrictions/fictitiousconditionsshouldnot be imposed.

(6) The elementcanbe usedfor thin to thick shellstructures.

(7) The elementshouldbeusedfor eithermaterialor geometricalnonlinearities.

(8) Sincetransition elementsarea connectinglink betweensolids and shells, the stressand
straincharacteristicsof theseelementsshouldbesuchthat aswe move from the solid
elementface toward the shell elementface, the stressesand strainsshouldalso makea
transition from thoselike solidsto thoselike shells.

7
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Figure5. 3-D solid modelfor a pipetee.
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solid/Inserted plate for horizontal loads

Figure 16. Top view of model C.

I I IL_ II ,I ,

entire solid for horizontal loads

Figure 17. Top view of model D.

17



L I I _ [_ i i i l i

entire plate for horlzontal loads

Figure 18. Top view of model F.
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solid/Inserted plate for vertical loads

Figure 19. Front view of model C.
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entire solid for vertical loads

Figure 20. Front view of model D.

J

entire plates for vertlcal loads

Figure 21. Front view of model F.
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Figure 22. Deflection U along length of model under horizontal load.
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Figure 23. Deflection W along length of model under vertical load.
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Figure 26. Deflection U along depth of model at x = 2.0 in under vertical load.
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Figure 28. Deflection U along depth of model at x = 1.75 in under vertical load.
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Figure 30. Deflection U along depth of model at x = 1.5 in under vertical load.
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Figure 31. Deflection U along depth of model at x = 1.5 in under horizontal load.
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