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TECHNICAL MEMORANDUM 

A SIM:PLISTIC LOOK AT LIMIT STRESSES FROM RANDOM LOADING 

INTRODUCTION 

Since random loads play such an important role in the design, analysis, and testing of most space 
shuttle payload components and experiments, the structures and dynamics community has long desired 
to more fully understand the relationship between the random load environment and the actual stresses 
resulting from that environment. The current philosophy at MSFC for calculation of random load factors 
embraces a statistical philosophy which utilizes Miles' equation: 

where 

Gpk = peak random load factor (limit) 

Q = resonant amplification fa,ctor 

fn = component natural frequency, Hz 

PSD j = input qualification criteria atfn, G2/Hz. 

This equation involves calculation of the loads based on (1) analytical or tested values for significant 
resonant frequencies lfn), (2) an historically based damping value of 5 percent (Q = 10) or component 
measured damping from testing, (3) the magnitude of the maximum expected flight environment at 
resonance (PSDj), and (4) a statistically 30' definition of peak load. If you remove the crest factor of 3 

from the equation, the remaining expression, J!1' Q. in . P SDj , represents the root mean square 
response (Grms) of the component. This assumes that the component is a single degree-of-freedom 
harmonic oscillator driven at all frequencies by a white noise environment at constant PSD level and that 
the component does not affect the input. From a statistical point of view, the Grms response can be set 
equal to the standard deviation (0') by assuming that the realized ensemble of random input time 
histories are best represented by a Gaussian distribution with a mean of zero. Under these conditions the 
Grms response is a 10' response. Multiplying the Grms by the crest factor 3 produces the well known 30' 
response value which has a 99.73-percent probability of being greater than any instantaneous random 
load encountered. In Miles' equation, the other critical probabilistic term is the qualification input 
criteria value (PSDj) at the component's natural frequency lfn)' From the historical data base, a 97.50-
percent probability level is calculated (a 1.960' value). This level then becomes the basis from which the 
actual component criteria is developed (fig. 1). Statistically, the criteria assures the analyst that the flight 
loads have only a 2.5-percent probability of an exceedance. Further confidence in the analytically 
derived criteria is gained from the fact that the criteria is created from straight-line enveloping of the 
data, and from the requirement to hard mount components during vibration testing. 
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From the strength assessment and static test verification arena, the Miles' equation random load 
factors are applied as though they were truly a static loading. Thus, the limit static loads are, by 
definition, equivalent to these limit dynamic loads. The real questions to be answered are (1) is this a 
sound assumption or does the loads derivation process produce unjustifiable results? and (2) is there 
another approach that should be pursued both analytically and empirically? 

Utilizing a simple continuous beam, the author will attempt to show some potential relationships 
between the dynamic and static limit loads and will try to answer the above questions. 

THE CONTINUOUS BEAM 

Analytical structural systems, which have their masses and elastic forces distributed rather than 
lumped together in concentrated masses and springs, belong to the class of vibrations of continuous 
media.! Since these systems have an infinite number of coordinates defining their configuration, they, of 
necessity, also possess an infinite number of natural frequencies and natural modes of vibration. 

Vibration of the continuous beam is governed by the partial differential equation of motion: 

where, 

Y = deflection of beam, in 

x = coordinate along length of beam, in 

a2 = EIglA Y, l/in3 

A = section area, in2 

r= specific weight of beam, Iblin3 

EI = flexural rigidity of beam, Ib-in2 . 

In order to predict the forced response of a structure, it is desirable to define the normal modes 
with this general solution equation. The normal modes obtained from this differential equation can be 
shown as one function: 

Y { . iITX} { . } 
i(x) = Yi sm ---y:- sm ill it , 

where Yi = maximum single amplitude displacement of ilh mode. 

(1) 

Figure 2 depicts the case of the pinned-pinned continuous beam with a mass located at the center. 
In order to calculate the natural frequencies for this potentially mass loaded beam, an equation evaluating 
the energy equilibrium condition must be developed. An examination of the beam as it undergoes vibra
tion reveals that when the deflection is a maximum, all parts of the beam (including the concentrated 
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Figure 2. Continuous beam model. 

mass) are motionless. When this occurs, the energy associated with the vibration has become converted 
into elastic strain energy (S.E.). As the beam then passes through its static equilibrium position, all strain 
energy is in the form of kinetic energy (K.E.). For the conservation of energy, the strain energy in the 
position of maximum deflection must equal the kinetic energy when passing through the static 
equilibrium position. 

Hence: S.E.max = K.E.max = constant 

S.E.max = ~ (Stiffness)(Displacement) 2 , 

and 
K.E. = t (Mass)(Velocity)2 , 

_1 2 2 1 22 l
L 

- 2 mmj 0 Y;(XpX + 2' MmjYj , 

where: 

m = mass per unit length of beam,lb-s2/in2 

llJj = natural frequency (rad/s) of jth mode 

M = concentrated mass, Ib-s2/in2• 

Substituting 
Y { . il1X} { . } 

i(x) = Yj sm L sm mit , 

into the equations for S.E. and K.E. and assuming that the term (sin mit) is equal to 1: 
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2L2 M 22 
K E =mm i Yi miYi 

. . 4 + 2 

Equating these results in a solution for natural frequency, 

which can be rewritten as: 

where Ji = natural frequency (Hz) of jth mode. 

ASSUMPTIONS 

In the development of equations (I) through (4), and in the determination of the input environ
ment and subsequent responses, the following basic assumptions were made: 

1. The continuous beam is constructed of aluminum and has pinned end conditions. 

2. The beam has a variable mass (M) at the midpoint of its length and the mass produces no 
change in the area moment of inertia of the beam. 

3. Air damping and heat dissipation energy are negligible. 

(2) 

(3) 

(4) 

4. The beam is subjected to random excitation of constant magnitude (0.10 G2/Hz) from 20 to 
2,000 Hz. 

5. A constant damping of 5 percent exists for all modes (Q = 10). 

6. Random limit loads are calculated using Miles' equation with a crest factor of 3.0. 

7. Only the fust four modes of the beam (from 20 to 2,000 Hz) will be considered. 

Assumption 2 increases the response and raises the frequencies, while the actual effects of 
assumption 3 are to increase the response and only slightly lower the frequency. While number 4 is 
consistent with Miles' equation development, actual flight input criteria for shuttle hardware shows a 
tapering off of energy in the low and high frequency regimes. Thus, higher responses will be calculated 
using this assumption. Assumption 5 is historically a pretty reasonable value for the predominant mode 
(usually the first mode) of most payload hardware, but the premise that damping will remain constant 
across the frequency domain will produce an increase in responses. It should also be noted that an actual 
pinned-pinned beam would probably have a much smaller damping value, unless the boundaries had an 
inordinate amount of Coulomb damping. 
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CALCULA nON OF BEAM FREQUENCIES 

In order to look at an actual case, specific dimensions and associated properties have been 
selected for this study. These definite beam parameters were chosen such that the first four modes would 
fall in the range of 20 to 2,000 Hz. Those values are listed below: 

where: 

I 
H 

L~ 
L = 38.0 in 
H = 2.0 in 
w= 2.0 in 
m = 0.001036Ib-s2/in2 

E = 1.0x 107 Ib/in2 

p = 0.1 Ib/in3 

1= 1.3333 in4 

M = 0.0 to 0.1l8131b-s2/in. 

Figure 3 depicts a plot of the change in frequency of the odd numbered modes as a function of 
the magnitude of the concentrated mass (M). This occurrence has been dubbed the mass loading effect. 
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Figure 3. Pinned-pinned beam modes 1 to 4. 
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PEAK ACCELERATION FOR EACH MODE 

Additionally, the effect of this concentrated mass can also be seen on the response of the beam to 
the assumed environment through use of the Miles' equation (Gpk)' Figure 4 shows this mass loading 
effect for the odd numbered modes, which has been recognized and utilized in vibration environmental 
prediction techniques for a number of years. These correction factors not only show frequency changes 
but recognize the significant response level decrease that occurs by simply adding mass to a hardware 
system. This "mass damping" phenomena (fig. 5) has been required in the aerospace environmental 
prediction discipline since, in general, large variances in component mass to primary structure are com
mon, and instrumentation programs to define such environments have been limited in the practical num
ber of data acquisition systems that can be installed on flight vehicles. The most practical compromise 
has been to instrument the typical unloaded primary structure, define the environment for the unloaded 
structure, and apply correction factors to account for the mass loading of vehicle components. 
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Figure 5. Mass loading effect on beam. 
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MAXIMUM DISPLACEMENT FOR EACH MODE 

The next step, which is most critical for strength assessment, is the determination of the actual 
displacement equation for each mode. Using the dynamic relation: 

acceleration = rm r ; (r = Yi) 

Gpk(g) = Yi(2Il.t)2 , 

Gpk(g) 
Yi = 4Il2.t2 (5) 

Figure 6 shows the maximum displacement for each mode and how it too is affected by the mass 
loading relationship (appendix). In this example, it is clearly seen that mode 1 is dominant. What can 
also be seen is the fact that the so called "mass damping" effect produces a large increase in the 
maximum displacement of the odd numbered modes. The question now is what will be the resulting 
stresses on the beam, even though the natural frequencies and response accelerations have been 
decreased? 

THE STRESS EQUATION 

Substituting the maximum displacement values from equation (5) into equation (1), the simplistic 
modal eigenvalues can be calculated for each of the four modes. Since in the random environment each 
mode from 20 to 2,000 Hz is excited, the true displacement must be- a summation of each mode. 

= ~ Yi sin iIfX . 

Also, knowing that the stresses in a pinned-pinned continuous beam subjected to transverse 
loadings will be predominantly due to bending, we can use the elementary beam bending theory and 
resolve the stress state at any point. These two primary equations are: 

and 
M(x) (If) 

(j (x) = I 

which produce 
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Placing the known constants into the equation, the stress solution for this pinned-pinned beam 
can be expressed as follows: 

(I (x) = ±68,348 Yl sin ~x ± 273,396 Y2 sin 2T 
(8) 

±615,140 Y3 sin 3?: ± 1,093,584 Y4 sin 42X 

The values of Yl, Y2, Y3, and Y4 are derived from equation (5) and were plotted in figure 6. 
Substituting these values into equation (8) and solving for all 16 possible combinations, for any given 
concentrated mass, results in some insight into the state of stress in the beam during the course of the 
random loads environment. Figure 7 relates the stresses from these potential combinations as a function 
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of beam length, with a mass of zero at the center. It additionally shows how they compare to stresses 
produced by typical static tests, first, loaded through the center of gravity and, second, loaded in a 
uniform manner. From this figure, it is evident that most of the possible stress states in the beam are 
enveloped by the proposed point loading case. The uniform loading envelope, however, does not 
encompass the maximum stresses. When a concentrated center mass of three times that of the beam is 
added, the potential stress states are almost completely outside the static test envelopes (fig. 8). This fact 
certainly leads one to conclude that mass damping of some hardware, such as beams, panels, and floor 
structure, will reduce the response frequency and acceleration, but may not result in a corresponding 
reduction in stress. 
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COMPARISON WITH TEST SIMULATION 

From figures 7 and 8, it is apparent that neither the uniform loading envelope nor the point 
loading envelope are truly representative of the calculated multiple mode stress distribution across the 
beam. It is clear, however, that the uniform loading envelope is the best shape fit for the response stress. 
This is to be expected, since the first mode of the beam generally produces the principle eigenvector set, 
and uniform loading is a good approximation of that mode. The bottom line is that the current static test 
loading procedure may not always envelope the response stress from random loading or, in some cases, 
the procedure could overly load some areas of the tested hardware. 

Figure 9 shows the multiple mode stress along the beam, first for no mass at the center and next 
for MlmL = 3.0. These results are compared with the uniform loading envelopes multiplied by a factor 
(l.S, 2.0). In these cases, the proposed static tests would more accurately simulate the calculated random 
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loading response stresses. If we assume that the first mode will actually be dominant and that all other 
modes would be negligible (either through possessing high damping and/or low input criteria at those 
frequencies), then the stress along the beam could be simulated quite nicely by a uniform loading 
envelope whose magnitude is controlled by deflection (fig. 10). This figure shows that when using a 
load controlled uniform envelope, stresses are over predicted for the beam by itself and under predicted 
for the mass loaded beam where MlmL = 3.0. 

Correlation of the stress state for any static test (whether it be hydraulic load line, centrifugal, or 
below resonance sine burst) and the actual dynamic response is dependent upon how well the static test 
deflections simulate the predominant dynamic mode shape. 
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CONCLUSIONS 

Determining the stress distribution generated by random loading on space flight hardware is 
highly dependent upon the participation of each mode in the prescribed frequency domain. Analytically 
this includes: 

• Knowledge of the environment as a function of frequency 

• The magnitude of damping associated with each mode 

• A reasonable definition of each mode shape (eigenvectors) 

• Possessing an adequate strength model and/or having a sufficient set of instrumentation during 
ground testing. 

The results of this study seem to indicate, at least for the simplistic beam case, that the stress 
state always has the potential to be of greater magnitUde than a typically proposed static test. This fact is 
especially evident in structural support members not directly attached to a concentrated mass in the 
component. The study says, for instance, that we can probably predict the local loads where the mass is 
attached, but we may significantly miss them on structural members further away from the mass. An 
example of this may exist on hardware such as the atmospheric emission photometric imager (AEPI) 
shown in figure 11. In this case, the support structure weighed about 125 lb, while the actual experiment 
weight was some 244 lb. The random loads developed for this component were ±3.6 g's, ±2.7 g's, and 
±5.l g's in the x, y, and z axes, respectively.2 Sixteen triaxial strain gauges were placed around the base 
of the AEPI during static loading (fig. 12). The unanswered question is, if the AEPI were subjected to 
random loading, would the static load testing prove to be too conservative, unconservative, or an exact 
prediction? The answer is, of course, dependent upon the similarity between the static deflections and 
the actual deflected shape which occurs during vibration. A test of this nature will be planned for the 
AEPI as soon as its reflight status is determined. 

As stated previously, the premise under which most random loads (and subsequent static tests) 
are developed is that one (generally the first) mode will dominate. Historically, this is true when 
observing the acceleration of components, but may not always be so when examining the stress 
distribution of that component's support structure. As with the beam, we saw significantly higher 
stresses existing in areas away from the mass. The normal static test setup did not always envelope them 
until we multiplied the uniform load cases by some arbitrary factor (fig. 9). The point here is, that if we 
know enough about the predominant mode, we may be able to closely simulate it by altering the static 
test loading. 

Another finding of this study was to show that the so called "mass damping" effect does indeed 
reduce the response acceleration of the hardware, but it additionally reduces the natural frequencies and 
subsequently may result in higher stresses than the original "undamped" condition. Again, this effect is 
simply due to an increase in the magnitude of the displacements. Expanding on the acceleration
displacement relationship (equation (5)) for a specific frequency, we find it reduces to: 
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Unless there are drastic changes in the damping and input criteria magnitudes, displacement will be 
greatly reduced with increase in the flrst resonant frequency. This fact is in contrast to traditional static 
test deflections which increase with higher frequency because the predicted response acceleration 
increases per the Miles' equation. 

In summary, we have assumed that the Miles' equation is a reasonable technique to estimate 
response.3 That response, however, is used primarily to develoll the peak response acceleration for space 
flight hardware. This qualifies the technique as a force equation, since it is applied statically to the 
hardware center of gravity for strength analyses and verification testing. It is apparent from the study 
that this may not always be the best way to determine the resulting stress state. This is especially true for 
components that do indeed have some clearly predictable resonant frequencies, mode shapes, and 
masses (i.e.; not electronic packages). Those accomplishing a strength assessment need to know not only 
the predicted peak acceleration responses of major masses, but also there needs to be some 
understanding of the mode shape for the dominant hardware resonances. Utilizing the general shape of 
the predominant mode and the peak response accelerations at each major mass, a tailored enforced 
displacement loading may prove to more accurately replicate random environment stresses on flight 
hardware. For accomplishing strength analyses and associated verification testing, the process involved 
in determining the limit stresses from such an environment would be greatly improved. 
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APPENDIX 

CALCULA TED DATA FOR MODAL PLOTS 

* Ii (Hz) t Gpk+ Yj§ I M/mL 
--------- --.------- -------- -----------

1 0 123.39 41.7 0.026779 
1 0.25 100.74 37.7 0.036321 
1 0.50 87.25 35.1 0.045082 
1 0.75 78.04 33.2 0.053300 

~ ~ 

1 1.00 71.24 31.7 0.061071 l-
1 1.50 61.69 29.5 0.075791 
1 2.00 55.18 27.9 0.089591 
1 2.50 50.37 26.7 0.102890 
1 3.00 46.63 25.6 0.115110 

2 0-3.00 493.57 83.5 0.0033513 ~ 

i 

3 0 1,110.5 125.3 0.0009934 . 
3 0.25 906.73 113.2 0.0013462 1) 

3 0.50 785.25 105.3 0.0016697 
3 0.75 702.25 99.6 0.0019741 
3 1.00 641.16 95.2 0.0022642 
3 1.50 555.26 88.6 0.0028097 
3 2.00 496.64 83.8 0.0033219 
3 2.50 453.37 80.0 0.0038055 
3 3.00 419.73 77.0 0.0042734 

4 0-3.00 1,974.27 167.0 0.0004189 

... mL = 0.39378 Ib-s2/in 

.2n2 EI t /;=T 
2L

3
(M+'2

L
) 

:j: G pk = 3 .j ~ . Q . /; . P SDj 

Gpk(g) 
§ Yi = 4n2/;2 
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