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1 Introduction

Our work focused on two areas in machine learning: representation for inductive learn-

ing and how to apply concept learning techniques to learning state preferences, which can

represent search control knowledge for problem solving. Specifically, in the first area we

addressed the issues of the effect of representation on learning, on how learning formalisms

are biased, and how concept learning can benefit from the use of a hybrid formalism. In the

second area we examined the issues of developing an agent to learn search control knowledge

from the relative values of states, of the source of that qualitative information, and of the

ability to use both quantitative and qualitative information in order to develop an effective

problem-solving policy.

2 Representation for Inductive Learning

The focus of our work in representation was on illustrating the benefits of hybrid concept

representations (or formalisms) and on how to determine a good one automatically. Our

research was motivated by the following two observations. Firstly, because an algorithm's

concept representation space defines the space of possible generalizations, not even an ex-

haustive search strategy can overcome a poor choice of representation. In addition, for many

data set, no one formalism will be best for the entire data set; one can do better by forming

a hybrid representation.

Our work on hybrid formalisms commenced with an extension to the perceptron tree

algorithm (Utgoff, 1989), which first tried a simple perceptron as the test; if it was doing

poorly, it was replaced by a single variable test. Perceptron trees were designed to draw

on the strengths of both decision trees and perceptrons thereby forming a more powerflfl

representation language. However, perceptron trees permit perceptrons only at the leaves of

the tree; all internal nodes are univariate symbolic tests. Our first extension to the perceptron

tree algorithm was to create an incremental multivariate decision tree algorithm, PT2, that

allows perceptrons at any node of the tree (Utgoff & Brodley, 1990). Each node in the tree

is a linear threshold unit based on one or more features that describe each instance of the

data. From this starting point, our research then split into two complementary directions •

of research: the first was an in-depth exploration of the issues in constructing multivariate

decision trees and the second was a more general exploration of the strengths of hybrid

formalisms and automatic algorithm selection.

We developed several multivariate decision tree methods to address the issues for con-

structing nmltivariate decision trees: representing a multivariate test, including symbolic

and numeric features, learning the coefficients of a nmltivariate test, selecting the features

to include in a test, and pruning of multivariate decision trees (Utgoff & Brodley, 1991a;

Brodley & Utgoff, 1992). We performed an extensive empirical evaluation of our new meth-

ods and several well-known methods across a variety of learning tasks (Brodley & Utgoff,

to appear). Our results demonstrated that some multivariate methods are generally more



effectivethan others under reasonableassumptions. In addition, the experimentsconfirm
that allowingmultivariate testsgenerallyimprovesthe accuracyof the resultingdecisiontree
overa univariate tree.

The seconddirection of our work on representationwasmotivated by the observation
that eachinductive learning algorithm hasa bias that may or may not be appropriate for
a givenlearning task. The results of empirical comparisonsof existing learning algorithms
illustrate that each algorithm has a selective superiority; it is best for some but not all

tasks. Given a data set, it is often not clear beforehand which algorithm will yield the

best performance. Therefore we concluded that in such cases one must search the space of

available algorithms to find that produces the best classifier. We developed an approach

that applies knowledge about the representational biases of a set of learning algorithms to

conduct this search automatically. In addition, the approach permits the model classes of

the available algorithms to be mixed in a recursive tree-structured hybrid.

We implemented the approach in a system called the Model Class Selection System

(MCS), which performs a heuristic best-first search for the best hybrid classifier for a set

of data. Currently, MCS forms recursive hybrid classifiers using three primitive formalisms:

decision trees, linear combination tests and instance-based classifiers. An empirical compari-

son of MCS to each of its primitive learning algorithms, and to the computationally intensive

method of cross-validation, illustrated that automatic selection of learning algorithms using

knowledge does indeed provide a solution to the selective superiority problem (Brodley &

Utgoff, 1993; Brodley, 1993).

This research project is now funded by the National Science Foundation.

3 Learning State Preferences

In the second research area, we focused on the types of training information available

to a learning agent in a problem-solving framework. In performing search, an agent need

only determine the relative worth of competing states to decide which state to expand next.

Equivalently, the agent need only know the state preferences in order to function effectively

as a problem-solving agent. While developing methods to allow an agent to learn the state

preferences, we observed that there are at least two types of training information available

to the agent. Furthermore, these two types of information are not competitive, but comple-

mentary. The first form of information we call 'quantitative' because it helps tp establish

the exact values of states. The other, because it specifies the relative preference of certain

states over others, is called 'qualitative'.

Our work began with the development of evaluation flmctions for search control, employ-

ing both quantitative and qualitative information (Utgoff £: Clouse, 1991b). The learning

agent performed best-first search and employed quantitative information received from a

form of temperal-difference (TD) learning in order to associate with each state the length of

the shortest path to the goal.

The qualitative information was provided to the learning agent by an expert on the

task, implemented as a complete search of the problem space. The expert would specify

to the learning agent the proper state to expand in any given situation, thus providing a

relative ordering of state preferences. At first we only compared the use of qualitative ver._us
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quantitative information. Then, we observedthat the two types of information could be
meldedinto an integrated learning method.

In the integrated learning method, the learning agent usedboth forms of training in-
formation. The learner relied mostly on the quantitative information, but when certain
conditions aroseindicating that the agent was not benefiting from that information, the
expert wasinvoked to providean instanceof qualitative information. In comparing the two
sourcesseparatelyand then together, we found that being able to take advantageof both
forms of information alloweda learning agent to learn to perform the task morequickly in
combinationthan with either singlesourcealone.

Although the combinationof the two sourcesof information allowedthe learnerto develop
an appropriate searchstrategy more quickly than if it had only seenone of the forms of
information, providing qualitative information through a completesearchof the spaceis not
feasiblefor most problems. Therefore,we focusedon finding a better sourcefor qualitative
information.

This led to a method that allowsa human to provide qualitative information to a learning

agent (Clouse & Utgoff, 1992). As the agent is learning to perform a task and is relying

on a reinforcement learning method to provide it with quantitative information, a truman

observes the performance of the learning agent on the task. The goal of the human is to

teach the learning agent by providing the agent with qualitative information in the form of

an action that the agent should take at a particular time.

At each time step, the learning agent learns either from the qualitative information

provided by the human or from the quantitative information provided by the reinforcement

method. Deciding which form of information to use is based solely on the presence of that

information: if the human has specified an action to take, the learning agent uses that action

and learns that that action is the appropriate one in the situation in which it was given.

If the human has not provided any qualitative information, the agent relies only on the

reinforcement method for training information.

In experiments with the classic cart-pole task, the agent that employed both forms of

information was able to learn to balance the pole in two orders of magnitude fewer trials than

an agent using only the quantitative information. In another more complicated task, the

number of trials needed to achieve success was reduced by more than one order of magnitude.

Thus, we have found that allowing a learning agent to employ both quantitative and

qualitative information about its task is advantageous. In a proposal submitted to the

AFOSR, we have proposed to address several of the central issues raised by this conclusion.

For example, we want to determine analytically why the integration of the two forms of

information produces better learners, and we want to develop new methods for obtaining

qualitative information from human experts. Also, given an understanding of the integration,

we will become able to build learning systems that take better advantage of the synergy of
the two forms of information.
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