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PROTEUSTHREE-DLMENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION 1.0

Volume 3- Programmer's Reference

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the three-dimensional, Reynolds-averaged,
unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this ef-
fort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.
Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-'coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy viscosity model.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be elLrninated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple Cartesian or
cylindrical grids may be generated internally by the program. More complex geometries require an ex-
ternally generated computational coordinate system.

The docun.:ntation is divided into three volumes. Volume 1 is the Analysis Description, at _ presents
the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-
encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's
Guide, and contains information needed to run the program. It describes the program's general" features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-
vern test cases. Volume 3, the currerit volume, is the Programmer's Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989.

Proteus 3-D Programmer's Reference Summary 3





1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-proprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time andeffort in attempting to understand the underbSng
structure of the program if intending to do anything more than run standard test cases with it. The user's
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus three-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kernighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purlSose, input
variables, output variables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into gc eralized nonorthogonal body-fitted coordinates. They are solved by marching in ime using
a fully-coupled ahemating-direction-irnplicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-

gence acceleration, including a locally variable time step and global time step cycling. Simple grids may be
generated internally by the program; more complex geometries require external grid generation, such as that
developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents

the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-

encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's
Guide, and contains information needed to run the program. It describes the program's general features,

the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-

e
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veral test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed in-
formation useful when modifying the program, It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram:

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989 (Towne, Schwab, Benson, and Suresh, 1990).

The authors would like to acknowledge the significant contributions made by their co-workers. Tom
Benson provided part of the original impetus for the development of Proteus, and did the original coding
of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal grid
transformation. Frank Molls has created a separate diagonalized version of the code. Ambady Suresh did
the original coding for the second-order time differencing and for the nonlinear coefficient artificial viscosity
model. These people, along with Dick Cavicchi, Julie CoNey, Jason Solbeck, and Pat Zeman, have also
run many debug,.mng and verification cases.
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2.0 PROGRAM STRUCTURE

2.1 FLOW CHART

In this section, a flow chart is presented showing the overall sequence of tasks performed by the three-
dimensional Proteus computer code. Depending on the various options used in a particular run, of course,
some of the elements in the chart may be skipped.

I I

I Read restart files _ yes _ no _ Get grid & metrics

[Getmemos[ IGetinitial flowfield [

Get initial auxiliary variables

$
I Get initial turbulence parameters ]

$
Set l_int-by-l_intboundary conditions

$
Initialize plot files &

print initial fiowfield

$
Figure 2.1 - Flow chart for the 3-D Proteus computer code.
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$
Icompu,o_mostepsize

Reset boundary conditions [

if time-dependent J

I Add extra data line at N+I I

I

in spatially periodic directions I

I Set up for first sweep I

Compute coefficients

of governing equations

Add boundary conditions

$
Compute residuals withoutartificial viscosity terms

[Add_i_ vis_o_i_]
$

Compute residuals with [

artificial viscosity terms I

] Perform matrix inversion [

t

_ sotu_fo_on_woo_I

Compute coefficientsof governing equations

I l_oun_oo_ons1

I
I Add artificial viscosity ]

!

I Perform matrix inversion I

1

---_ Set up for third sweep [

$
Compute coefficients ]of governing equations

$
I Add boundary conditions ]

Add artificial viscosity

!

[Perform matrix inversion [

$

Figure 2.1 - Continued.
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from first two sweeps

[ U_ateauxiliaryvariables [

I Update turbulence parameters ]

[Gene_teoutput]

I_enerateoutput]

no

Figure 2.1 - Concluded.
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2.2 SUBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the Proteus 3-D code is shown using

a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous sec-

tion. The main program, listed in the fu-st coiu_, caUs the subprograms in the second column, which in
turn call those in the third column, etc. _ Since some Cray library routines are called multiple times, only the

first call from a subprogram is shown for these routines. For any given case, of course, some of the sub-

programs shown will not be used. The subprograms needed for a particular case will depend on the com-
bination of input parameters being used. The individual subprograms are described in detail in Section 4.0.

INITIALIZATION

Read and print input.

_IAIN [INPUT I ISAMAX I I [

Get grid and metric parameters.

MAIN [ GEOM I PAK I CUBIcROBTSMETS OUTPUT PRTOUT

Get initial flow field.

MAIN INITC METSREST
INIT
FTEMP

EQSTAT
TURBBL

KEINIT

YPLUSN

Set point-by-point boundary condition values.

BLOUT

BLIN

TURBBL

YPLUSN
PRODCT
VORTEX

VORTEX
ISRCHFLT
ISRCHFGT
ISAMIN
ISAMAX
WHENFLT
GATHER
ISRCHFGT
VORTEX
BLOUT

BLIN

VORTEX

VORTEX
ISRCHFLT
ISRCttFGT
ISAMIN
ISAMAX
WHENFLT
GATHER
ISRCHFGT
VORTEX

MAIN I BC EW I I I I

Throughout this Programmer's Reference, elements of the Fortran language, such as input variables and subpro-
gram names, are printed in the text using uppercase letters. However, in most implementations, Fortran is case-
insensitive. The Proteus source code itself is written in lowercase.

10 2.2 Subprogram Calling Tree Proteus 3-D Programmer's Reference



Initialize plot files and print initial or restart flow field.

MAIN PLOT
OUTPUT VORTEX

PRTOUT
OUTW

SET UP FOR TIME STEP

Compute time step size.

MAIN TIMSTP ISAMAX

Reset boundary conditions if time-dependent.

MAIN TBC

FILL BLOCK COEFFICIENT MATRIX

Add extra data line at N + 1 if spatially periodic in sweep direction.

MAIN EXEC PERIOD ]

Compute coefficients of governing equations.

MAIN EXEC EQSTAT
COEFC
COEFX
COEFY
COEFZ
COEFE1
COEFE2

Proteus 3-D Programmer's Reference 2.2 Subprogram Calling Tree I i



Add boundar3' conditions.

MAIN EXEC EQSTAT
BCGEN

BCELIM

BCQ

BCUVEL

BCWEL

BCWVEL

BCPRES

BCTEMP

BCDENS

BCNVEL

BCIVEL

BC2VEL

BC3VEL

BCF

ISRCHEQ
BLKOUT
SGEFA
SGESL

BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCVN
BCMET
BCIMET
BCVI
BCMET
BCIMET
BCV2
BCMET
BCIMET
BCV3
BCMET
BCFLIN
BCMET

Compute resi,_ lals without artificial viscosity terms (sweep I only.)

MAIN EXEC RESID SNRM2
ISAMAX
SASUM

Add artificial viscosity.

MAIN EXEC AVISC 1 BLKOUT
AVISC2 BLKOUT

Compute residuals with artificial viscosity terms (sweep 1 only.)

MAIN EXEC REsID SNRM2
ISAMAX
SASUM
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SOLVE DIFFERENCE EQUATIONS

Perform matrix inversion.

MAIN EXEC ADI

UPDATE

Update boundary values from fn'st two sweeps.

MAIN EXEC BVUP

BLKOUT
BLK4P
BLK4

BLK5P
BLK5

FILTER

FILTER

ISAMAX

ISRCHEQ
BLKOUT

ISAMAX
ISRCHEQ
BLKOUT

EQSTAT
BCGEN

SGEFA
SGESL

BCQ

BCUVEL

BC'vWEL

BCWVEL

BCPRES

BCTEMP

BCDENS

BCNVEL

BC1VEL

BC2VEL

BC3VEL

BCF

ISRCHEQ
BLKOUT

BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCVN
BCMET
BCIMET
BCV 1
BCMET
BCIMET
BCV2
BCMET
BCIMET
BCV3
BCMET
BCFLIN
BCMET

FINISH TIME STEP AND CHECK RESULTS

Update auxiliary variables.

MAIN EQSTAT
FTEMP

Proteus 3-D Programmer's Reference 2.2 Subprogram Calling Tree 13



Updateturbulenceparameters.
MAIN TURBBL BLOUT

TURBCH

BLIN

YPLUSN
PRODCT
EXECT

VORTEX
ISRCHFLT
ISRCHFGT
ISAMIN
ISAMAX
WHENFLT
GATHER
ISRCHFGT
VORTEX
VORTEX

PERIOD
SWUP
SWDOWN
UPDTKE

Checkfor convergence,andgetCPUtimeremaining.
MAIN [ CONV ISAMAX

I TREMAIN

GENERATE OUTPL'T

Print flow field output.

MAIN OUTPUT VORTEX
PRTOUT

OUTW

Write plot and restart fries.

MAIN PLOT
REST

Print converg+uce history.

MAIN PRTHST I ]

2.3 PROGRAMMING CON*_'ENTIONS AND NOTES

2.3.1 Computer & Language

At NASA Lewis Research Center, Proteus is normally run on a Cray X-MP or Y-MP computer. With

just three known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CF77
Compiling System, Volume 1: Fortran Reference Manual (Cray Research, Inc., 1990). The first exception
is the use of namelist input. With namelist input, it's relatively easy to create and/or modify input fries, to
read the resulting fries, and to program default values. Since most Fortran compilers allow narnelist input,
its use is not considered a serious problem. The second exception is the use of *CALL statements to in-
clude *COMDECKS, which contain the labeled common blocks, in most of the subprograms. This is a
Cray UPDATE feature, and therefore the source code must be processed by UPDATE to create a frie that
can be compiled? UPDATE is described in the UPDATE Reference Manual (Cray Research, Inc., 1988).
Since using the *CALL statements results in cleaner, more readable code, and since many computer systems
have an analogous feature, the *CALL statements were left in the program. The third exception is the use
of lowercase alphabetic characters in the Fortran source code. This makes the code easier to read, and is
a common extension to Fortran 77.

2 See the example in Section 8.1 of Volume 2.
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Several library subroutines are called by Proteus. SGEFA and SGESL axe Cray versions of LINPACK
routines. SASUM and SNRM2 are Cray Basic Linear Algebra Subprograms (BLAS). GATHER is a Cray
Linear Algebra routine. ISAMAX, ISAMIN, ISRCHEQ, ISRCHFGT, ISRCHFLT, and WHENFLT are
Cray search routines. TREMAIN is a Cray Fortran librar3" routine. All of these routines are described in
detail in Section 4.0 of Volume 3. In addition, SGEFA and SGESL are described in Volume 3." UNICOS
Math and Scientific Library Reference Manual (Cray Research, Inc., 1989b) and by Dongarra, .Moler,
Bunch, and Stewart (1979); SASUM, SNRM2, GATHER, ISAMAX, ISAMIN, ISRCHEQ, ISRCHFGT,
ISRCHFLT, and WHENFLT are described in Volume 3: UNICOS Math and Scientific Library Reference
Manual (Cray Research, Inc., 1989b); and TREMAIN is described in Volume 1: UNICOS Fortran Library
Reference Manual (Cray Research, Inc., 1989a).

The Proteus code is highly vectorized for optimal performance on the Cray. The coefficient generation
is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the equations are
solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be vectorized in the
sweep direction. However, by storing the coefficients and source terms in all three coordinate directions,
the algorithm can be vectorized in one of the non-sweep directions. This increases the storage required by
the program, but greatly decreases the CPU time required for the ADI solution.

2.3.2 Fortran Variables

Variable Names

In developing Proteus, code readability has been emphasized. We have therefore attempted to choose
Fortran variable names that are meaningful. In general, they either match the notation used in the analysis
description in Volume 1, or axe in some way descriptive of the parameter being represented. For example,
RHO, U, V, W, and ET are the Fortran variables representing the density p, the velocities u, v, and w, and
the total energy per unit volume Er.

Real and Integer Variables

In general, the type (real or integer) of the Fortran variables follows standard Fortran convention (i.e.,
those starting with I, J, K, IF, M, or N are integer, and the remainder are real.) There are, however, several
variables that would normally be integer but are explicitly declared to be real. These are noted in the input
description in Section 3.0 of Volume 2, and in the description of common block variables in Section 3.0
of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using dimensioning parameters. These parameters are set in
COMDECK PARAMS 1. This allows the code to be re-dimensioned simply be changing the appropriate
parameters, and then recompiling the entire program. The dimensioning parameters are described in Sec-
tion 6.2 of Volume 2.

Initialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA.
Most of the input variables are initialiTed to their default values directly, but some axe initialized to values
that trigger the setting of default values in subroutine INPUT. On the Cray X-MP and Y-MP at NASA
Lewis, all uninJtialized variables have the value zero. There are no known instances in the Proteus code,
however, in which a variable is used before it is assigned a value.

Nondimensionafization

In general, Fortran variables representing physical quantities, such as RHO, U, etc., are nondimensional.
Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The
factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing
conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity,

temperature, density, viscosity, and thermal conductivity, which ate specified by the user. The normalizing
conditions used in Proteus are listed in Table 3-1 of Volume 2.

Proteus 3-D Programmer's Reference 2.3 Programming Conventions and Notes 15



Note that for some variables, like pressure, the normalizing condition is dictated by the form of the

governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may
not be physically meaningful or convenient for use in setting up input conditions. Therefore, some addi-
tional reference conditions are defined from the six user-suppfied ones. The reference conditions are listed
in Table 3-2 of Volume 2.

Throughout most of the Proteus code, physical _;ariabies are nondimensionalized by the normalizing
conditions. For input and output, however, variables are nondimensionalized by the reference conditions
because they are usually more physically meaningful for the user. The Fortran variables representing the
reference conditions themselves are, of course, dimensional.

One-Dimensional A ddressing_of Three-Dimensional A rrays

In the solution algorithm used in Proteus, there are several instances in which the same steps must be
foUowed in all three ADI sweep directions. An example is the computation, in the COEFC, COEFX,
COEFY, COEFZ, and COEFEI routines, of the submatrices in the block tridiagonal coefficient matrix.
These computations involve various flow variables, such as RHO, U, etc., and metric quantities, such as
XIX, XIY, etc. These are stored as three-dimensional arrays, with the three subscripts representing, in or-
der, the indices in the computational _, _, and _ directions. For the first ADI sweep, values at various
indices are needed at fixed _/ and _ indices. For the second ADI sweep, values at various _/ indices are
needed at fixed _ and _ indices. And for the third ADI sweep, values at various _ indices are needed at fixed

and _ indices. In order to use the same coding for all three sweeps, a scheme for one-dimensional ad-
dressing of a three-dimensional array has been used. 3

In Fortran,-multi-dimen.sional arrays are actually stored in memory as a one-dimensional sequence of
values, with the first subscript incremented over its range ftrst, then the second subscript, etc. We take ad-
vantage of this in Proteus. As a first step, the three-dimensional array is equivalenced to a one-dimensional
array of the same total length. The one-dimensional array name is derived from the three-dimensional array
name by adding a "1". Thus, letting F represent a typical three-dimensional array,

dimension f(nlp,n2p,n3p),fl(ntotp)
equivalence (f(1,1,1),f1(1))

where N1P, N2P, and N3P are dimensioning parameters specifying the dimension size in the ¢, _/, and
directions, and NTOTP is a dimensioning parameter equal to N 1P x N2P x N3P. Next, we define a "step
factor", which dewnds on the ADI sweep, and a "base index" which depends on the indices in tb. _ non-
sweep directions. For the first ADI sweep,

istep = 1
do 1000 i3 = 2,npt3-1
do 1000 i2 = 2,npt2-1
iv = i2
ibase = 1 + (i2-1)_nlp + (i3-1)lnlpln2p

I000 continue

Forthesecond ADIsweep,

istep = nlp
do 2000 i3 = 2,not3-1

An alternative would be to switch the order of the three subscripts in these arrays after each sweep. Since these
arrays are used in many other areas oft_he code, this idea was discarded as being unnecessarily confusing. It should
be noted, however, that there are some arrays in Proteus in which the order of the first two subscripts does switch
between ADI sweeps. These are the A, B, C, and S arrays, which represent the coefficient submatrices and the
source term subvector, and the METX, METY, METZ, and ME'IT arrays, which represent the metric coefficients
in the sweep direction. For these arrays, the first subscript is the index in one of the non-sweep directions (i.e., the
r?direction for the first sweep and the _ direction for the second and third sweeps), and the second is the index in
the sweep direction (i.e., _ for the first sweep,/7 for the second sweep, and _ for the third sweep.)
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do 2000
iv = il
ibase =

il : 2,nptl-1

il + (i3-1)_nlp_nZp

2000 continue

And for the third ADI sweep,

istep = nlp_n2p
do 3000 i2 = 2,npt2-1
do 3000 il = 2,nptl-1
iv = il
ibase = il + (i2-1)_nlp

3000 continue

In all of the above examples, the inner loop is in one of the non-sweep directions and IV therefore represents
an index in one of the non-sweep directions. Nested inside this loop is a third loop, in the sweep direction.
In this innermost loop, we can compute the equivalent one-dimensional address for a location in a three-
dimensional array from the step factor, the base index, and the index in the sweep direction. Thus, for any
of the ADI sweeps, the innermost loop looks like

do 100 i = 2,npts-1
iiml = ibase + istep_(i-2)
ii = ibase + istep_(i-1)
iipl = ibase + istep_i

100 continue

where I represents the index in the sweep direction. With this coding, for the first sweep

fl(iiml) = f(il-l,i2,iS)
fl(ii ) = f(il ,i2,i5)
fl(iipl) = f(il+l,i2,i5)

For the second sweep,

fl(iiml)
fl(ii )
fl(iipl)

= f(il,i2-l,iS)
= f(il,i2 ,i3)
= f(il,i2+l,iS)

And for the third sweep,

fl(iiml) = f(il,i2,i3-1)
fl(ii ) = f(il,i2,i3 )
fl(iipl) = f(il,i2,iS+l)

Two-Level Storage

With the Beam-Warming time differencing scheme used in Proteus, the dependent variables RHO, U,
V, W, and ET must be stored at two time levels. For convenience, T is also stored at two time levels. In
the ADI solution procedure, RHO, U, etc. are at the known time level n. The corresponding variable at
the other time level is denoted by adding an "L" to the variable name. Exactly which time level the "L"

variable is at depends on the stage in the solution procedure. Letting F represent one of these variables, the
time levels for F and FL are listed in the following table for the different stages of the solution procedure.

Recall that * and ** represent the intermediate time levels after the ftrst and second ADI sweeps.
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STAGE IN TIME STEP
FROM LEVEL n TO n + 1

From start to end of sweep 1

From end of sweep 1 to end of sweep 2

From end of sweep 2 to end of sweep 3

From end of sweep 3 to update in EXEC

From update in EXEC to start of next step

TIME LEVEL
FOR F

n

n

n

/7

n+l

TIME LEVEL
FOR FL

n-I
4,

4,4,

n+l

/,/

DUMMY Array

For convenience, a three-dimensional array called DUMMY is stored in common block DUMMY1 and
used as a temporary storage location in several areas of the code. This array is dimensioned N 1P by N2P
by N3P, the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines BLIN,
BLOUT, CONV, and RESID. It is also defined in subroutine YPLUSN for use in subroutines
SWDOWN, SWUP, and KEINIT. And finally, it is defined in subroutine OUTPUT and passed as an
argument into subroutine PRTOUT. Delails on its use are presented in the subroutine descriptions in
Section 4.0.
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3.0 COMMON BLOCKS

Transfer of data between routines in Proteus is primarily accomplished through the use of labeled

common blocks. Each common block contains variables dealing with a particular aspect of the analysis,

and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988). The common block names are
the same as the COMDECK names. These names also correspond to the names of the input namelists.

All the variables in namelist BC are stored in common block BC1, etc. The Fortran variables in each

common block are stored in alphabetical order.

3.1 COMMON BLOCK SUMMARY

Block Name Description

BC1

BC2

DUMMY1

FLOW1

GMTRY1

IC1

101

METR IC 1

NUM1

NUM2

RSTRT1

TIME 1

TITLE 1

TURB 1

TURB20

Boundary condition parameters for the mean flow equations.

Bounda_ry condition parameters for the k-r equations.

Scratch array.

Variables dealing with fluid properties and the flow being com-

puted.

Parameters defining the geometric configuration.

Variables needed for setting up initial conditions.

Parameters dealing with program input/output requirements.

Metrics of the nonorthogonal grid transformation, plus the
Cartesian coordinates of the grid points.

Parameters associated with the numerical method for the mean

flow equations.

Parameters associated with the numerical method for the k-e

equations.

Parameters dealing with the restart option.

Parameters dealing with the time step selection and convergence
determination.

Descriptive title for case being run.

Turbulence parameters.

Parameters and constants associated with the k-, equations.

3.2 COMMON VARIABLES LISTED ALPHABETICALLY

In this section all the Proteus Fortran variables stored in common Mocks are defined, listed alphabet-

ically by variable name. Those marked with an asterisk are input variables. More details on these variables

may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in pa-
rentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the

variable, except for the subscripts I 1, I2, and I3, which are the indices i, j, and k in the _, _/, and _ directions,

respectively, and run from 1 to Na, N2, and N3.
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This list also includes the parameters used as array dimensions. These are not actually stored in a
common block, but are stored in the Cray COMDECK PARAMS 1. More details may be found in Section
6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables foUows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K,

L, M, or N are integer, and the remainder are real.)

Fortran
Variable Symbol Definition

A(IV,IS,J,K) A Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the "vectorized"
direction (i.e., the non-sweep direction in which the "BLK"
routines are vectorized), and runs from 2 to N,- 1. The
subscript J = 1 to Neq, corresponding to the N,q coupled gov-
erning equations, and K = 1 to N,q, corresponding to the N,q
dependent variables. (NUM 1)

* APLUS A ÷ Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURB 1)

B(IV,IS,J,K) B Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the "vectofized"
direction (i.e., the non-sweep direction in which the "BLK"
routines are vectorized), and runs from 2 to N,- 1. The
subscript J = 1 to N,q, corresponding to the N,q coupled gov-
erning equations, and K = 1 to N,_, corresponding to the N,q
dependent variables. (NUM1)

C(IV,ISJ,K) C Sup,erdiagonal submatrix of coefficients in the block
tridiagonal coefficient matrix. IS is the grid index in the sweep
direction, running from 1 to N. IV is the grid index m the
"vectorized" direction (i.e., the non-sweep direction in which
the "BLK" routines are vectorized), and runs from 2 to
N_- I. The subscript J = 1 to Neq, corresponding to the _,%
coupled governing equations, and K = 1 to Nq, corresponding
to the N,q dependent variables. (NUM1)

* CAVS2E(I) e_) or _:2 Second order expficit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I = 1 to N,q, corresponding to
the N,q coupled governing equations. (NUM 1)

* CAVS2I(I) _i Second order impficit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding
to the N,q coupled governing equations. (NUM1)

* CAVS4E(I) e_) or _4 Fourth order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I = 1 to _,_, corresponding to
the N,q coupled governing equations. (NUM 1)

* CB B Constant used in the formula for the Klebanoff intermittency
factor Fx_a in the outer region of the Baldwin-Lomax turbu-
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* CCLAU K

* CCP Cop

CCPI-4 G, ° G_

* CFL(I)

* CFLMAX

* CFLMIN

CHGAVG(I) AQ._z

CHGMAX(I,J) AQ=,x

* CHG1

* CHG2

* CKLEB Cx:,b

* CKMIN (Cr_,b),._.

CK1-2 Ckt- Ga

* CMUR G,

CMU1-2 C.t- Ga

lence model, and in the inner region of the Spalding-

Kleinstein turbulence model. (TURB 1)

Clauser constant used in the outer region of the Baldwin-

Lomax turbulence model. (TURB1)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURB 1)

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

The ratio A'r/A'rc¢7 where A'r is the actual time step used in the
implicit calculation and Azcp is the allowable time step based
on the Courant-Ffiedrichs-Lewy (CFL) criterion for explicit
methods. I is the time step sequence number, and runs from
1 to NTSEQ. (TIME1)

Maximum allowed value of the CFL number. (TIME1)

Minimum allowed value of the CFL number. (TIME1)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps. 4 The sub-
script I = 1 to N,q, corresponding to the N,q dependent
variables. (TIME 1)

Maximum change in absolute value of in the dependent vari-
ames over a single time step. 4 The subscript I -- 1 to N,q, cor-
responding to the N,q dependent variables, and J = 1 to
NITAVG, the number of time steps used in the moving av-

erage option for determining convergence. (TIME1)

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step. 4 (TIME 1)

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step.* (TIME 1)

Constant used in the formula for the Klebanoff intermittency

factor Fxt, b in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

Constant used in the formula for the Klebanoff intermittency

factor Fx_,b in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature. (FLOW1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-, equations. (TURB20)

Constants in empirical formula for laminar viscosity coeffi-
dent as a function of temperature. (FLOWI)

4 For the energy equation, the change in Er is divided by Er, = p,RT, I(y, - 1) + u2,/2, so that it is the same order
of magnitude as the other conservation variables.
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CNL n

CONE Cl

CP(II,I2,I3) cp

CTHREE C3

CTWOR C2,

CV(I 1,I2,I3) c,

CVK K

CWK C_,

DEL A_, Art, or A_

DETA A_

DPDET(I) Op/OEr

DPDRHO(I) OplOp

DPDRU(I) Op/O(pu)

DPDRV(I) OplO(pv)

DPDRW(I) Op/O(pw)

DT(I) At

DTAU(I 1,I2,I3) Ar

DTDET(I) OT]OEr

Exponent in the Launder-Priddin modified mixing len_h
formula for the inner re,on of the Baldwin-Lomax turbulence
model. (TURB 1)

Constant used in the production term of the e equation.
(TURB20)

Specific heat at constant pressure at time level n. (FLOW1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-_ equations. (TURB20)

Constant used to compute C2 in the dissipation term of the
equation. (TURB20)

Specific heat at constant volume at time level n. (FLOW 1)

Von Karman mixing len_h constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURB1)

COnstant used in the formula for F._,, in the outer region of
the Baldwin-Lomax turbulence model. (TURB 1)

Computational grid spacing in the ADI sweep direction.
(NUN1)

Computational grid spacing in the '7 direction. (NUM1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The sub::dpt I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)

The time step size, when specified directly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.
(TIMEI)

Computational time step size. (TIME1)

The derivative of T with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)
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DTDRHO(I) OT/Op

DTDRU(I) aT/d(pu)

DTDRV(I) OT/a(pv)

DTDRW(I) aT]O(pw)

DTF1

DTF2

DTMAX

DTMIN

DUMMY(I 1,I2,I3)

DW(II,I2,I3,I) AVe" or A'v_r"

DXI A_

DZETA A(

E(I 1,I2,I3)

EL(II,I2,I3)

EPS(I)

EP1-2

ER e,

ET(II,I2,I3) Er

ETAT(II,I2,I3) n,

The derivative of T
dimensional array in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T
dimensional array in
therefore runs from I

w_th respect to pu, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of T
dimensional array in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

Factor by which the time s!ep is multiplied if the solution
changes too slowly. (TIME1)

Factor by which the time step is divided if the solution
changes too quickly. (TIME 1)

Maximum value that Ar is allowed to reach, or the maximum
h-: used in the time step cycling procedure. (TIME 1)

Minimum value that A'r is allowed to reach, or the minimum
AT used in the time step cycling procedure. (TIME1)

Dummy array used for temporary storage in several subrou-
tines. (DUMMY1)

Unknown vector in the LU solution of the k-_ equations.
The subscript I = 1 or 2, corresponding to the k and
equations, respectively. (NUM2)

Computational grid spacing in the _ direction. (NUM 1)

Computational grid spacing in the ( direction. (NUM1)

Turbulent dissipation rate at time level n. (TURB20)

Turbulent dissipation rate at previous or intermediate time
level. (TURB20)

Convergence level to be reached. The subscript I = 1 to N,q,
corresponding to the N,q dependent variables. (TIME l)

Parameters used in various parts of the code as minimum and
maximum allowed values. (PARAMS 1)

Dimensional reference energy, p,uL (FLOW1)

Total energy at time level n. (FLOW1)

The derivative of the computational coordinate _/with respect
to untransformed time t. (METRIC1)
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ETAX(I 1,I2,I3)

ETAY(I 1,I2,13)

ETAZ(I 1,I2,I3)

ETL(II,I2,I3)

FBCTI(I2,I3,I,J)

FBCT2(I 1,I3,I,J)

FBCT3(I 1,I2,I,J)

FBC I(I2,13,I,J)

FBC2(II,I3,I,J)

FBC3(II,I2,I,J)

* FPMIN

_Y

_z

ET

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate x. (METRIC1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate z. (METRIC1)

Total energy at previous or intermediate time level. (FLOW1)

Point-by-point values used for boundary conditions for the
k-_ turbulence model on the _ = 0 and ¢ = 1 .boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I = 1 or 2, corresponding to the k and
equations, respectively, and J = 1 or 2, corresponding to the

= 0 and _ = 1 boundaries, respectively. (BC2)

Point-by-point values used for boundary conditions for the
k-e turbulence model on the ,/= 0 and q = 1 boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I = t or 2, corresponding to the k and
equations, respectively, and J = 1 or 2, corresponding to the
'7= 0 and n = 1 boundaries, respectively. (BC2)

Point-by-point values used for boundary conditions for the
k-e turbulence model on the _ = 0 and _ = 1 boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I = 1 or 2, corresponding to the k and
equations, respectively, and J = 1 or 2, corresponding to the

= 0 and _ = 1 boundaries, respectively. (BC2)

Point-by-point values used for steady boundary conditions on
the _ = 0 and _ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N,q, corresponding
to the Nq conditions needed, and J = 1 or 2, corresponding
to the _ = 0 and _ = 1 boundaries, respectively. (BC1)

Point-by-point values used for steady boundary conditions on
the r/= 0 and _r= 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to Neq, corresponding
to the N,q conditions needed, and J = 1 or 2, corresponding
to the r/= 0 and q = 1 boundaries, respectively. (BC1)

Point-by-point values used for steady boundary conditions on
the _ = 0 and £ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N,q, corresponding
to the A% conditions needed, and J = 1 or 2, corresponding
to the _ = 0 and _ = 1 boundaries, respectively. (BC1)

Value used to cut off the search for F,,°, in the outer region

part of the Baldwin-Lomax turbulence model. (TURB 1)
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* GAY, IR

* GBCT l(I.l)

_Tr

* GBCT2(I,J)

* GBCT3(I,J)

* GBCI(I,J)

* GBC2(I,J)

* GBC3(r,J)

GC gc

* GTBC I(K,I,J)

* GTBC2(K,I,J)

Reference ratio of specific heats, cp,lc_r. (FLOW1)

Values used for boundary conditions for the k-_ turbulence
model on the _ = 0 and ¢ = 1 boundaries, when specified for
the entire surface. The subscript I = 1 or 2, corresponding to

the k and t equations, respectively, and J = 1 or 2, corre-
sponding to the ¢ = 0 and _ = 1 boundaries, respectively.
(BC2)

Values used for boundary conditions for the k-_ turbulence
model on the _ = 0 and _/= 1 boundaries, when specified for
the entire surface. The subscript I = 1 or 2, corresponding to
the k and , equations, respectively, and J = 1 or 2, corre-
sponding to the _ = 0 and 17= 1 boundaries, respectively.
(BC2)

Values used for boundary conditions for the k-, turbulence
model on the ( = 0 and _ = 1 boundaries, when specified for
the entire surface. The subscript I = I or 2, corresponding to

the k and _ equations, respectively, and J = 1 or 2, corre-
sponding to the _ = 0 and _ = 1 boundaries, respectively.

(BC2)
w

Values used for steady boundary conditions on the _ = 0 and
= 1 boundafi'es, when specified for the entire surface. I runs

from 1 to N,q, corresponding to the N,q conditions needed, and
J = 1 or 2, corresponding to the _ = 0 and _ = 1 boundaries,
respectively. (BC1)

Values used for steady boundary conditions on the _t = 0 and
q = 1 boundaries, when specified for the entire surface. I runs
from 1 to Pv%,corresponding to the N,, conditions needed, and
J = 1 or 2, corresponding to the _ = 0 and q = 1 boundaries,
respectively. (BC1)

Values used for steady boundary conditions on the " = 0 and
= 1 boundaries, when specified for the entire surface. I runs

from 1 to N,q, corresponding to tile N,_ conditions needed, and
J = 1 or 2, corresponding to the _ = 0 and _ = 1 boundaries,
respectively. (BC 1)

Dimensional proportionality factor in Newton's second law,
either 32.174 lbm-ft]lbr-sec 2, or 1.0 kg-m]N-secL (FLOW1)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the _ = 0 and _ = 1 bound-
aries. I runs from 1 to N_, corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the

= 0 and _ = 1 boundaries, respectively. For general un-
steady boundary conditions, K = 1 to NTBC, corresponding
to the time steps in the array NTBCA, and GTBC1 specifies
the boundary condition value directly. For time-periodic
boundary conditions, K = 1 to 4, and GTBCI specifies the
four coefficients in the equation used to determine the

boundary condition value. (BC1)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the _/= 0 and ,/= 1 bound-
aries. I runs from 1 to N,,, corresponding to the N,q
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* GTBC3(K,I,J)

HSTAG

* HSTAGR

* IAV2E

* IAV2I

* IAV4E

IBASE

IBCELM(LJ)

* IBCTI(I2,I3,Ij)

hr

hrr

conditions needed, and J = 1 or 2, corresponding to the
r/= 0 and 17= 1 boundaries, respectively. For general un-
steady boundary conditions, K = 1 to NTBC, corresponding
to the time steps in the array NTBCA, and GTBC2 specifies
the boundary" condition value directly. For time-periodic
boundary conditions, K = 1 to 4, and GTBC2 specifies the
four coefficients in the equation used to determine the
boundary" condition value. (BC1)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the _ = 0 and _ = 1 bound-
aries. I runs from 1 to ,V,q, corresponding to the N,e
conditions needed, and J = 1 or 2, corresponding to the _ = 0
and _ = 1 boundaries, respectively. For general unsteady
boundary' conditions, K = 1 to NTBC, corresponding to the
time steps in the array NTBCA, and GTBC3 specifies the
boundary" condition value directly. For time-periodic bound-
ary conditions, K = 1 to 4, and GTBC3 specifies the four co-
efficients in the equation used to determine the boundary
condition value. (BCI)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLOW1)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOWl)

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUM1)

Flag for second-order implicit artifidal viscosity; 0 for none,
1 for constant coefficient model. (NUM1)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for Constant coefficient model, 2 for nonlinear coefficient
model. (NUM1)

Base index used with ISTEP to compute one-dimensional
index for three-dimensional array. Then, for example, for any
sweep U(II,I2,I3) = UI(IBASE + ISTEP*(I- 1)) where I is
the grid index in the sweep direction. (NUMI)

Flags for elimination of off-diagonal sub-matrices resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript I = 1, 2,
or 3 corresponding to the sweep direction, and J = 1 or 2
corresponding to the lower or upper boundary in that direc-
tion. (BC1)

Flags specifv4ng, point-by-point, the type of boundary condi-
tions used for the k-_ turbulence model on the _ = 0 and

= 1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I = 1 or 2, corresponding to the k
and e equations, respectively, and J = 1 or 2, corresponding
to the _ = 0 and _ = 1 boundaries, respectively. (BC2)
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* IBCT2(II,I3,Ij)

* IBCT3(I 1,I2,I,J)

* IBC 1(I2,I3,I,J)

* IBC2(II,I3,I,J)

* IBC3(I 1,I2,I,J)

IBVUP(I,J)

* ICHECK

ICONW

* ICTEST

* ICVARS

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-E turbulence model on the ,/= 0 and

,/= 1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I = I or 2, corresponding to the k
and s equations, respectively, and J = 1 or 2, corresponding
to the _ = 0 and q = 1 boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-s turbulence model on the ¢ = 0 and

= 1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I = I or 2, corresponding to the k
and s equations, respectively, and J = 1 or 2, corresponding
to the ¢ = 0 and _ = 1 boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the ¢ = 0 and ¢ = 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1
to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the _ = 0 and _ = 1 boundaries, re-
spectively. (BC I)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the ,/= 0 and _/= 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from I
to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the _/= 0 and r/= 1 boundaries, re-
spectively. (BC1)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the _ = 0 and _ = 1 surfaces. These are
either set in the input, if a point-by-point disL_:bution is
specified by the user, or by the program itself. I runs from 1
to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the _ = 0 and _ = 1 boundaries, re-
spectively. (BC1)

Flags for updating boundary values from the first two sweeps
after the last sweep: 0 if updating is not necessary, 1 if it is.
Updating is required when gradient or extrapolation boundary
conditions are used. The subscript I = 1 or 2 corresponding
to the sweep direction, and J = I or 2 corresponding to the
lower or upper boundary in that direction. (BC1)

Results are checked for convergence every ICHECK'th time
level. (TIME 1)

Convergence flag; 0 if not converged, 1 if converged.
(TIME1)

Flag for convergence criteria to be used. (TIME1)

Parameter specifying which variables are being supplied as
initial conditions by subroutine INIT. (FLOW1)
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* IDEBUG(I)

* IDTAU

* IDTMOD

* IEULER

IGAM

IGINT(I)

IHSTAG

* ILAMV

* ILDAMP

INEG

* INNER

* IPACK(I)

* IPLOT

* IPLT

* IPLTA(I)

* IPRT

* IPRTA(I)

A 20-eiement array of flags specifying various debug options.
(IO1)

Flag for time step selection method. (TIME1)

The time step size is modified every IDTMOD'th time step.
(TIME1)

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculation, 1 for an Euler calculation.
(FLOW1)

Flag set by method used to select GAMR; 0 if GAMR is de-
faulted (and hence cp and c, axe functions of temperature), 1
if GAMR is specified by user (and hence cp and c, are con-
stants). (FLOWl)

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript I = 1
to 3, corresponding to the 4, r/, and _ directions, respectively.
(GMTRY1)

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, I to eliminate the energy equation by as-
suming constant stagnation enthalpy. (FLOW1)

Flag for computation of laminar viscosity and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature. (FLOW1)

Flag for the Launder-Priddin modified mixing length formula
in the inner region of the Baldwin-Lomax turbulence model.
(TUR B I)

Fla_ indicating non-positive values of pressure and/or tem-
pera_ture: 0 for no non-positive values, 1 for some. (FL _W1)

Flag for type of inner region turbulence model. (TURB 1)

Flags for grid packing option; 0 for no packing, 1 to pack
points as specified by the input array SQ. The subscript
I = 1 to 3, corresponding to the _, n, and _ directions, re-
spectively. (NUM 1)

Flag controlling the creation of an auxiliary file, usually called
a "plot file", used for later post-processing. (IO1)

Results are written into the plot file every IPLT time steps.
(iol)

Time levels at which results are written into the plot file. The
subscript I = 1 to 101, the maximum number of time levels
that may be written. (IO 1)

Results are printed eveI3" IPRT time levels. (I01)

Time levels at which results are printed. The subscript I = 1
to 101, the maximum number of time levels that may be
printed. (IO1)
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* IPRT1

* IPRT2

* IPRT3

* IPRTIA(I)

* IPRT2A(I)

* IPRT3A(I)

* IREST

ISTEP

ISWEEP

IT n

ITBEG

ITDBC

ITEND

* ITHIN(I)

ITSEQ

* ITURB

* IUNITS

Results are printed at every IPRTI'th mesh point in the
direction. (IO1)

Results are printe d at every IPRT2'th mesh point in the _7
direction. (IO1)

Results are printed at ever3" IPRT3'th mesh point in the _ di-
rection. (IOl)

indices at which results are printed. The subscript I = I to
a maximum of N1, the number of grid points in the _ direc-

tion. (IO1)

r_ indices at which results are printed. The subscript I = 1 to
a maximum of N2, the number of grid points in the _ direc-
tion. (IO1)

indices at which results are printed. The subscript I = 1 to
a maximum of N3, the number of grid points in the _ direc-
tion. (IO1)

Flag controlling the reading and writing of auxiliary files used
for restarting the calculation in a separate run. (RSTRT1)

Multiplication factor used with IBASE to compute one-
dimensional index for three-dimensional array. (NUM 1)

Flag specifying ADI sweep direction; 1 for _ direction, 2 for
direction, and 3 for ¢ direction. (NUM1)

Current time step number, or known time level. Time step
number n updates the solution from time level n to n + 1.
(TIME1)

The time time step number, or known time level n, at the
beginning of a run. For a non-restart case, I'l lEG = 1.
(TIME1)

Flag for time-dependent boundary conditions; 0 if all bound-
ary conditions are steady, 1 if any general unsteady boundary
conditions are used, 2 if only steady and time-periodic
boundary conditions are used. (BC1)

The final time step number. (TIME 1)

Flag for thin layer option; 0 to include second derivative
viscous terms, 1 to eliminate them. The subscript I = 1 to 3,
corresponding to the _, _, and ( directions, respectively.
(FLOWl)

Current time step sequence number. (TIME1)

Flag for turbulent flow option; 0 for laminar flow, 1 for tur-
bulent flow using the Baldwin-Lomax algebraic turbulence
model, 20 for turbulent flow using the Chien two-equation
k-e turbulence model. (TURB1)

Flag for type of units used to specify reference conditions;
0 for English units, 1 for SI units. (IO1)
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IV

IVOUT(I)

IWALLI(I)

IWALL2(I)

IWALL3(I)

IWOUTI(I)

BVOUT2(I)

IWOUT3(I)

I1

I2

I3

JBCTI(I,J)

* JBCT2(I,J)

i

J

k

Grid point index in the %ectorized" direction (i.e., the non-
sweep direction in which the "BLK" routines are vectorized).
Therefore, IV =j for the first sweep and i for the second and
third sweeps. (NUMI)

A 50-element array specifying which variables are to be
printed. (IO 1)

Flags indicating type of surfaces in the ¢ direction; 0 for a free
boundary, I for a solid wall. The subscript I = 1 or 2, corre-
sponding to the _ =0 and _ = 1 surfaces, respectively.
(TURB 1)

Flags indicating type of surfaces in the r/direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the r/=0 and _/= 1 surfaces, respectively.
(TURBI)

Flags indicating type of surfaces in the _ direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the _ =0 and _ = 1 surfaces, respectively.
(TURB1)

Flags specifying whether or not various parameters are to be
printed along the _ boun .daries; 0 for no printout, 1 for print-
out along the boundary. The subscript I = 1 or 2, corre-
sponding to the ¢ = 0 and _ = 1 boundaries, respectively.
(IO1)

Flags specifying whether or not various parameters are to be
printed along the q boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscript I = 1 or 2, corre-
sponding to the r/= 0 and _/= 1 boundaries, respectively.
(IO1)

Flags specifying whether or not various parameters are to be
printed along the _ boundaries; 0 for no printout, I for print-
out along the boundary. The subscript I = 1 or 2, corre-
sponding to the _ = 0 and _ = 1 boundaries, respectively.
(IOl)

Grid point index in the _ direction. (NUM1)

Grid point index in the _/direction. (NUMI)

Grid point index in the _ direction. (NUM1)

Flags specifying the type of boundary conditions used for the
k-_ turbulence model on the _ = 0 and _ = 1 surfaces, when
specified for the entire surface. The subscript I = I or 2, cor-
responding to the k and t equations, respectively, and J = I
or 2, corresponding to the _ = 0 and _ = 1 boundaries, re-
spectively. (BC2)

Flags specifying the type of boundary conditions used for the
k-r turbulence model on the q = 0 and _/= 1 surfaces, when
specified for the entire surface. The subscript I = 1 or 2, cor-
responding to the k and t equations, respectively, and J = 1
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* JBCT3(I,J)

* JBCI(Ij)

* JBC2(I,J)

* JBC3(I,J)

JI(I 1,I2,I3)

* JTBCI(I,J)

* JTBC2(I,J)

* JTBC3(I,J)

KBCPER(I)

* KBCI(J)

g-1

or 2, corresponding to the q = 0 and r/= 1 boundaries, re-
spectively. (BC2)

Flags specifying the type of boundary conditions used for the
k-_ turbulence model on the £ = 0 and _ = 1 surfaces, when

specified for the entire surface. The subscript I = 1 or 2, cor-
responding to the k and _ equations, respectively, and J = 1
or 2, corresponding to the _ = 0 and _ = 1 boundaries, re-
spectively. (BC2)

Flags specifying the type of steady boundary conditions used
on the _ = 0 and _ = 1 surfaces, when specified for the entire
surface. I runs from 1 to N,_, corresponding to the N,e con-
ditions needed, and J = 1 or 2, corresponding to the _ = 0 and

= 1 boundaries, respectively. (BC1)

Flags specifying the type of steady boundary conditions used
on the _ = 0 and q = 1 surfaces, when specified for the entire
surface. I runs from 1 to N,q, corresponding to the 1_%con-
ditions needed, and J = 1 or 2, corresponding to the _/= 0 and

= 1 boundaries, respectively. (BC1)

Flags specifying the type of steady boundary conditions used
on the _ = 0 and _ = 1 surfaces, -;vhen specified for the entire
surface. I runs from 1 to N,q, corresponding to the N,q con-
ditions needed, and J = l or 2, corresponding to the _ = 0 and

= 1 boundaries, respectively. (BC1)

Inverse Jacobian of the non-orthogon.al grid transformation.
This is a real variable. (METRIC1)

A variable specifying the type of time dependency for the
boundary conditions on the _ = 0 and _ = 1 boundaries. I
runs from 1 to N,,, corresponding to the N,q 9nditions
needed, and J = 1 or 2, corresponding to the _ = 0 and _ = 1
boundaries, respectively. (BC 1)

A variable specifying the type of time dependency for the
boundary conditions on the _/= 0 and _/= 1 boundaries. I
runs from 1 to N,q, corresponding to the N,q conditions
needed, and J = 1 or 2, corresponding to the r/= 0 and q = 1
boundaries, respectively. (BC 1)

A variable specifying the type of time dependency for the
boundary conditions on the (= 0 and ( = 1 boundaries. I
runs from 1 to N,_, corresponding to the N,q conditions
needed, and J = 1 or 2, corresponding to the _ "0 and _ = 1
boundaries, respectively. (BC I)

Flags for spatially periodic boundary conditions: 0 for non-
periodic, I for periodic. The subscript I = 1, 2, or 3, corre-
sponding to the _, n, and ff directions, respectively. (BCI)

Flags for type of boundaries in the _ direction. The subscript
J -_ 1 or 2, corresponding to the _ = 0 and _ = 1 boundaries,

respectively. (BCI)
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* KBC2(J)

* KBC3(J)

KE(I 1,I2,I3) k

KEL(I 1,I2,I3) k

KT(II,I2,I3) k

* KTR k,

LA(I 1,I2,I3) 2

LR L,

LRMAX(I,J,K)

* LWALLI(I2,I3,I)

* LWALL2(I 1,I3,I)

* LWALL3(I 1,I2,I)

LWSET(I)

* MACHR 31/,

Flags for type of boundaries in the _/direction. The subscript
J = 1 or 2, corresponding to the r/= 0 and _ = 1 boundaries,
respectively. (BCI)

Flags for type of boundaries in the _ direction. The subscript
J = 1 or 2, corresponding to the _ = 0 and ff = 1 boundaries,
respectively. (BC 1)

Turbulent kinetic energy at time level n. This is a real vari-
able. (TURB20)

Turbulent "kinetic energy at previous or intermediate time
level. This is a real variable. (TURB20)

Effective thermal conductivity coefficient at time level n. This
is a real variable. (FLOWl)

Dimensional reference thermal conductivity coefficient. This
is a real variable. (FLOWl)

Effective second coefficient of viscosity at time level n (usually
assumed equal to - 2/a/3.) This is a real variable. (FLOW1).

Dimensional reference length.
(FLOWI)

This is a real variable.

The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript I = 1 to
3, corresponding to the _, 7, and ( directions, respectively,
J = 1 to N,q, corresponding to the N,q coupled governing
equations, and K = 1 or 2, corresponding to the residual
computed without and with the artificial viscosity terms.
(TIME1)

Flags .indicating, point-by-point, the type of surfaces in the
direction; 0 for a free boundary, 1 for a solid wall. TI." sub-
script I=l or 2, corresponding to the _=0 and _=1
boundaries, respectively. (TURB I)

Flags indicating, point-by-point, the type of surfaces in the _/
direction; 0 for a free boundary, 1 for a solid wail. The sub-
script I=l or 2, corresponding to the _/=0 and _= 1
boundaries, respectively. (TURB 1)

Flags indicating, point-by-point, the type of surfaces in the
direction; 0 for a free boundary, 1 for a solid wall. The sub-
script I=l or 2, corresponding to the _=0 and _=1
boundaries, respectively. (TURB 1)

Flags specifying how wall locations are determined for the
turbulence model; 0 if wall locations are found automatically
by searching for boundary points where the velocity is zero,
1 if input using the LWALL parameters, 2 if input using the
IWALL parameters. The subscript I = 1 to 6, corresponding
to the _ = 0, _ = 1, 71= 0, r/= I, _ = 0, and _ = 1 boundaries,
respectively. (TURB1)

i

Reference Mach number, u,16,,R T,)t/L This is a real variable.
(FLOW1)
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METT(IV,IS) _,, ,7,, or _,

METX(IV,IS) _, ,7_,or G

METY(IV,IS) _y, ,/y, or £y

METZ(IV,IS) _z, ,12,or Cz

MU(I1,I2,I3) /_

* MUR #,

MUT(I 1,I2,13) /at

MUTL(I 1,I2,I3) /_,

NAMAX

NBC

NC

NDIAGP

* NDTCYC

The derivative of the computational coordinate in the ADI
sweep direction with respect to Untransformed time t. IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x.
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y.
IS is the grid index in the sweep direction, rim_fling from 1 to
N. IV is the grid index in the "vectofized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate z.
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines axe
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at time level n. This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

A dimensioning parameter equal to the maximum number of
time steps allowed in the moving average convergence test (the
ICTEST = 2 option). (PARAMS 1)

A dimensioning parameter equal to the number of boundary
conditions per equation. (PARAMS 1)

Array index associated with the continuity equation.
(NUM1)

Number of diagonals containing interior points in a _-,/plane.
(PARAMS1)

Number of time steps per cycle used in the time step cycling
procedure. (TIME1)
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NEN.

NEQ

NEQP

NEQPM

NET

NGEOM

NGRID

NHIST

NHMAX

NIN

NITAVG

NMAXP

NOUT

NPLOT

NPLOTX

NPNTP

NPRT1

NPRT2

NPRT3

NPTS

NPT1

_req

N

N_ orN_+ 1

NPT2 b3 or 1_½+ 1

Array index associated _th the energy equation. (NUM 1)

The number of coupled governing equations actually being
solved. (NUMI)

A dimensioning parameter equal to the number of coupled
equations allowed. (PARAMS 1)

A dimensioning parameter equal to the maximum number of
coupled equations available. (PARAMS 1)

Array index associated with the dependent variable Er-
(NUM1)

Flag used to specify type of computational coordinates; 1 for
Cartesian (xy,z) coordinates, 2 for cylindrical (r,O,x) coordi-
nates, and 10 to read the coordinates from unit NGRID.
(GMTRY1)

Unit number for reading grid file. (I01)

Unit number for writing convergence history file. (IO 1)

Maximum number of time levels allowed in the printout Of
the convergence history file (not counting the first two, which
axe always printed.) (IOl)

Unit number for reading namefist input. (IO 1)

Number of time steps used in the mo,Ang average convergence
test. (TIME1)

A dimensioning parameter equal to the maximum of NIP,
N2P, and N3P. (PARAMS 1)

Unit number for writing standard output. (IO 1)

Unit number for writing CONTOUR or PLOT3D Q plot fde.
(IO1)

Unit number for writing PLOT3D XYZ plot fde. (I0 I)

Number of interior points in a _-n plane. (PARAMS1)

Total number of indices for printout in the _ direction. (IO 1)

Total number of indices for printout in the n direction. (I01)

Total number of indices for printout in the r direction. (IO 1)

The number of grid points in the sweep direction. (NUMI)

The number of grid points in the _ direction used in com-
puting coefficients: N_ for non-periodic boundary" conditions;
NL+ 1 for spatially periodic boundary conditions. (NUM1)

The number of grid points in the n direction used in corn-
plating coefficients: N2 for non-periodic boundary conditions;
N2 + 1 for spatially periodic boundary conditions. (NUM1)

34 3.2 Common Variables Listed Alphabetically Proteus 3-D Programmer's Reference



NPT3 _ or N3 + 1

NR

* NRQIN

* NRQOUT

NRU

NRV

NRW

* NRXIN

, NRXOUT

* NTBC

* NTBCA(I)

* NTIME(I)

* NTKE

NTOTP

NTP

* NTSEQ

NTSEQP

NV N,

The number of grid points in the _ direction used in comput-
ing coefficients: N3 for non-periodic boundary conditions;
N3 + 1 for spatially periodic boundary conditions. (NUM1)

Array index associated with the dependent variable p.
(_UM 1)

Unit number for reading restart flow field. (RSTRT1)

Unit number for writing restart flow field. (RSTRT1)

Array index associated with the dependent variable pu.
(NUM1)

Array index associated with the dependent variable pv.
(NUM1)

Array index associated with the dependent variable pw.
(NUM.1)

Unit number for reading restart computational mesh.
(RSTRTI)

Unit number for writing restart computational mesh.
(RSTRT1)

Number of values in the tables of GTBC1, GTBC2, and/or
GTBC3 vs. NTBCA for general unsteady boundary condi-
tions. (BCl)

Time step values at which GTBCl, GTBC2, and/or GTBC3
are specified for general unsteady boundary conditions. The
subscript I = 1 to NTBC, corresponding to the NTBC values

in the table. (BC 1)

Maximum number of time steps to march. I runs from 1 to
NTSEQP, corresponding to the time step sequence number.
(TIME1)

Number of k-e iterations per mean flow iteration. (TURB20)

A dimensioning parameter equal to the total storage required
for a sinNe three-dimensional array (i.e., N1P x N2P x N3P).
(PARAMS1)

A dimensioning parameter equal to the maximum number of
entries "m the table of time-dependent boundary condition
values. (PARAMS 1)

The total number of time step sequences being used.

(TIME1)

A dimensioning parameter equal to the maximum number of
time step sequences in the time step sequencing option.
(PARAMS1)

The number of grid points in the "vectorized" direction (i.e.,
the non-sweep direction in which the "BLK" routines are
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NXM

NYM

NZM

N1

N1P

N2

N2P

N3

N3P

N1

N_

N_

V(I t,I2,I3) p

PR p,

PRLR PG

PRR Pr_

PRT Pr,

P0 p0

RER Re,

RESAVG(J,K) R.,,

RESL2(J,K) Rz2

RESMAX(J,K) R,,o,

vectorized). Therefore, NV = ,_ for the first sweep and .Vt for
the second and third sweeps. (NUM1)

Array index associated with the x-momentum equation.
(NLM1)

Array index associated with the y-momentum equation.
(NUMI)

Array index associated with the z-momentum equation.
(NUM1)

The number of grid points in the _ direction. (NUM1)

A dimensioning parameter equal to the maximum number of
grid points in the _ direction. (PARAMS 1)

The number of grid points in the _7direction. (NUMI)

A dimensioning parameter equal to the maximum number of
grid points in the n direction. (PARAMS1)

The number of grid points in the _ direction. (NUM1)

A dimensioning parameter equal to the maximum number of
grid points in the _ direction. (PARAMS1)

Static pressure at time leveI n. (FLOWl)

Dimensional reference static pressure, p,R Tdgc. (FLOWI)

Reference laminar Prandtl number, cprt*,]k,, where
c,, = y,el(y,- 1). (FLOW1)

Reference Prandtl number, u,u_/k,T,. (FLOW1)

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURB 1)

Initial static pressure. (ICl)

Reference Reynolds number, p,u, Ldl_,. (FLOW1)

The average absolute value of the residual for the previous
time step. The subscript J = 1 to /V, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
tidal viscosity terms. (TIME1)

The/-,2 norm of the residual for the previous time step. The
subscript J = 1 to N,q, corresponding to the N,q coupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artifidal viscosity terms.
(TIMEI)

The maximum absolute value of the residual for the previous
time step. The subscript J = 1 to N,_, corresponding to the
N,_ coupled governing equations, and K = 1 or 2, corre-
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m

RG R

RGAS R

RHO(I 1,I2,I3) p

RHOL(II,I2,I3) p

* RHOR pr

* RMAX r_o,

* RMIN r.._.

S(IV,IS,J) S

* SIGE a,

* SIGK a,

* SQ(I,J'

T(I 1,I2,I3) T

TAU(I 1,12,13) r

TFACT

* THC(I) 01, 02

* THE(I) 01, 0z, 03

* THKE(I) 01, 02

* THMAX 0.,°.

sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME1)

Dimensional gas constant. (FLOWI)

Non-dimensional gas constant. (F LOW 1)

Static density at time level n. (FLOW1)

Static density at previous or intermediate time level.
(FLOWI)

Dimensional reference density. (FLOW1)

Maximum r coordinate for cylindrical grid option.

(GMTRY1)

Minimum r coordinate for cylindrical grid option.

(GMTRY1)

Subvector of source terms in the block tridiagonal system of
equations. IS is the grid index in the sweep direction, running
from 1 to N. IV is the grid index in the "vectorized" direction
(i.e., the non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N,- 1. The subscript J = 1
to N,q, corresponding to the N,, coupled governing equations.
(NUM1)

Constant used in the diffusion term of the e equation.

(TURB20)

Constant used in the diffusion term of the k equation.
(TURB20)

An array controlling the packing of grid points "asing the
Roberts transformation. The subscript I = 1 to 3, corre-
sponding to the _, 7, and _ directions, respectively. SQ(I, 1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing. (NUM1)

Static temperature at time level n. (FLOW 1)

Current value of the time marching parameter. (TIME1)

Factor used in computing the k-e time step,
Az,., = TFACT(AT). (TURB20)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the ener_ equation. (NUM1)

A two-element array specifying the time difference centering
parameters used for the k-g equations. (NUM2)

Maximum 0 coordinate in degrees for cylindrical grid option.
(GMTRY1)
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* THMIN O min

* THX(I) 01, 02, 03

* THY(I) OL, 02, 03

* THZ(I) " Ol, 02, 03

* TITLE

TL(I 1,I2,I3)

TLIM

T

* TR T,

* TO To

U(I 1,I2,I3) u

UL(II,I2,I3) u

* UR u,

* U0 uo

V(I 1,I2,I3) v

VL(II,I2,I3) v

VORT(II,I2,i3) Ifil

VORT(I 1,I2,I3) Pk

VO vo

W(I 1,I2,I3) w

WL(II,I2,I3) w

W0 wo

X(I1J2,I3) x

XIT(I 1,I2,13) _,

Minimum 0 coordinate in degrees for cylindrical grid option.
(GMTRY1)

A three-element array spec_'ing the time difference centering
parameters used for the x-momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the y-momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the z-momentum equation. (NUM I)

Title for printed output and CONTOUR plot fde, up to 72
characters long. This is a character variable. (TITLE1)

Static temperature at previous or intermediate time level.
(FLOWI)

When the amount of CPU time remaining for the job drops
below TLIM seconds, the calculation is stopped. (TIME1)

Dimensional reference temperature. (FLOWl)

Initial static temperature. (ICI)

Velocity in the Cartesian x direction at time level n.
(FLOW1)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOWl)

Initial velocity in the Cartesian x direction. (IC 1)

Velocity in the Cartesian y direction at time le,el n.
(FLOW1)

Velocity in the Cartesian y direction at previous or interme-
diate time level. (FLOWI)

Total vorticity magnitude. (TURB 1)

Production rate of turbulent kinetic energy. (TURB 1)

Initial velocity in the Cartesian y direction. (IC1)

Velocity in the Cartesian z direction at time level n. (FLOW1)

Velocity in the Cartesian z direction at previous or intermedi-
ate time level. (FLOW1)

Initial velocity in the Cartesian z direction. (IC1)

Cartesian x coordinate. (METRIC1)

The derivative of the computational coordinate _ with respect
to untransformedtime t. (METRIC1)
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XIX(II,I2,I3) G

XIY(II,I2,I3) {y

XIZ(I 1,I2,I3) G

* XMAX x,._,

* XMIN x,,i,

Y(II,I2,I3) y

YMAX y,,o_

* YMIN y,,i,

YPLUSD(I 1,I2,I3) y+

Z(I 1,I2,I3) z

ZETAT(II,I2,I3) G

ZETAX(II,I2,I3) G

ZETA_'(I 1,I2,I3) (y

ZETAZ(I I,I2,I3) G

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate z. (METRIC 1)

Maximum x coordinate for Cartesian or cylindrical grid op-

tion. (GMTRYI)

Minimum x coordinate for Cartesian or cylindrical grid op-
tion. (GMTRY1)

Cartesian y coordinate. (METRICI)

Maximum y coordinate for Cartesian grid option.
(GMTRYI)

Minimum y coordinate for Cartesian grid option.
(GMTRY1)

Non-dimensional distance from the nearest solid wall.

(TURB20)

Cartesian z coordinate. (METRIC 1)

The derivative of the computational coordinate _ with respect
to untransformed time t. (METRICI)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRIC 1)

The derivative of the computational coordinate _ w..h respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate z.

* ZMAX z,,, Maximum z coordinate
(GMTRYI)

* ZMIN z,.o,

(METRIC1)

for Cartesian grid option.

Minimum z coordinate for Cartesian grid option.

(GMTRY1)

3.3 COMMON VARIABLES LISTED SYMBOLICALLY

In this section many of the Proteus Fortran variables stored in common blocks are defined, listed sym-
bolically. Note that this list does not include those variables without symbolic' representations, such as
various flags, or those whose meaning depends on other parameters, such as the boundary condition values
and sweep direction metrics. The variables marked with an asterisk are input variables. More details on
these may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in
parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with
the variable, except for the subscripts I1, I2, and I3, which are the indices i, j, and k in the _, rl, and ¢ di-
rections, respectively, and run from I to N_, i'_½,and b,q.
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Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

Fortran

S_mbol Variable Definition

, A ÷ APLUS Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURB 1)

A AMAT(IV,IS,J,K) Subdiagonal submatrix of coefficients in the block tridiagonal
coeffÉcient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the "vectorized"
direction (i.e., the non-sweep direction ha which the "BLK"
routines are vectorized), and runs from 2 to N- 1. The
subscript J = 1 to N_q, corresponding to the Neq coupled gov-
erning equations, and K = 1 to Neq, corresponding to the N,q
dependent variables. (NUM 1)

* B CB Constant used in the formula for the Klebanoff intermittency
factor FK_,bin the outer region of the Baldwin-Lomax turbu-
lence model, and in the inner region of the SpaIding-
Kleinstein turbulence model. (TURB 1)

B BMAT(IV, IS,J,K) Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. 1%_ is the grid index in the "vectorized"
direction (i.e., the non-sweep direction in which the "BLK"
routines are vectorized), and runs from 2 to PT,- 1. The
subscript J = 1 to N,q, corresponding to the N,_ coupled gov-
erning equations, and K = I to N,q, corresponding to the N,_
dependent variables. (NUM 1)

cp CP(II,I2,I3) Specific heat at constant pressure at time level n. (FLC VI)

c, CV(I 1,12,13) Specific heat at constant volume at time level n. (FLOWI)

* G CCP Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURB 1)

C,pt - C,_ CCPI-CCP4

C,1 - C,a CK 1-2

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

Constahts in empirical formula for thermal conductivity coef-
fident as a function of temperature.

* CKI.b CKLEB Constant used in the formula for the Klebanoff intermittency
factor Fx_e_in the outer region of the BaldvAn-Lomax turbu-
lence model. (TURB 1)

* (Cxl,,),,_ CKMIN Constant used in the formula for the Klebanoff intermittency
factor F_,, in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

* G, CMUR Constant used to compute C_ in the turbulent viscosity for-
mula for the k-s equations. (TURB20)
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C_I-C_= CMU I-2

Cw_ CWK

Cl CONE

C2, CTWOR

* C3 CTHREE

C CMAT(IV,IS,J,K)

e, ER

Er ET(I I,I2,I3)

Er ETL(II,I2,I3)

g_ GC

fir HSTAG

* hr, HSTAGR

i I1

i, IV

j I2

j- 1 JI(I 1,I2,I3)

k I3

k KT(I 1,I2,I3)

k KE(I 1,I2,I3)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW1)

Constant used in the formula for F..,, in the outer region of
the Baldwin-Lomax turbulence model. (TURB 1)

Constant used in the production term of the e equation.
(TURB20)

Constant used to compute C2 in the dissipation term of the
equation. (TURB20)

Constant used to compute 6". in the turbulent viscosity for-
mula for the k-e equations. (TURB20)

Superdiagonal submatrix of coefficients in the block
tfidiagonal coefficient matrix. IS is the grid index in the sweep
direction, running from 1 to N. IV is the grid index in the
"vectorized" direction (i.e., the non-sweep direction in which
the "BLK" routines are vectorized), and runs from 2 to
N,- 1. The subscript J = 1 to N,_, corresponding to the N,q
coupled governing equations, and K = 1 to N,q, corresponding
to the N,q dependent variables. (NUM1)

Dimensional reference energy, #,u?. (FLOW1)

Total energy at time level n. (FLOW1)

Total energy at previous or intermediate time level. (FLOW 1)

Dimensional proportionality factor in Newton's second law,
either 32.174 lbm-ft]Ibrsec 2, or 1.0 kg-mlN-sec 2. (FLOWI)

Constant stagnation enthalpy used with constant stagnation
enthalpy option. (FLOWl)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Grid point index in the _ direction. (NUM 1)

Grid point index in the "vectorized" direction (i.e., the non-
sweep direction in which the "BLK" routines are vectorized).
Therefore, IV =j for the first sweep and i for the second and
third sweeps. (NUM1)

Grid point index in the _/direction. (NUM1)

Inverse Jacobian of the non-orthogonal grid transformation.
This is a real variable. (METRIC1)

Gridpoint index in the ( direction. (NUM1)

Effective thermal conductivity coefficient at time level n. This
is a real variable. (FLOW1)

Turbulent kinetic energy at time level n. This is a real vari-
able. (TURB20)
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k KEL(I I,I2,I3)

kr KTR

K CCLAU

L_ LR

Mr MACHR

n IT

n CNL

N NPTS

N,q NEQ

N, NV

NI

NI

N1

NPT 1

N1 + 1 NPT1

N2 N2

N2 NPT2

N2 + I NPT2

N3 N3

N3 NPT3

Turbulent kinetic ener_ at previous or intermediate time
level. This is a real variable. (TURB20)

Dimensional reference thermal conductivity coefficient. This
is a real variable. (FLOW1)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURB 1)

Dimensional reference lengh. This is a real variable.
(FLOW1)

D

Reference Mach number, u,l(y,R 7",)_/2. This is a real variable.
(FLOW1)

Current time step number, or known time level. Time step
number n updates the solution from time level n to n + 1.
(TIME1)

Exponent in the Launder-Priddin modified mixing lengh
.formula for the inner region of the Baldwin-Lomax turbulence
model. (TURB 1)

The number of grid points in the sweep direction. (NUM1)

The number of coupled governing equations actually being
solved. (NUM1)

The number of grid points in the %ectorized" direction (i.e.,
the non-sweep direction in which the "BLK" routines are
vectorized). Therefore, _ = N2 for the first sweep and N_ for
the second and third sweeps. (NUM 1)

The number of grid points in the _ direction. (NUM I)

The number of grid points in the _ direction used in com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUM1)

The number of grid points in the _ direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUM1)

The number of grid points in the n direction. (NUM1)

The number of grid points in the _/ direction used in com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUM1)

The number of grid points in the q direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUMI)

The number of grid points in the _ direction. (NUM1)

The number of grid points in the _ direction used in comput-
ing coefficients (only for non-periodic boundary conditions.)
(NUMI)
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_ + 1 NPT3

p P(I 1,I2,I3)

p, PR

p0 P0

Op/OEr DPDET(I)

Op]c3p DPDRHO(I)

Op/O(pu) DPDRU(I)

OplO(pv) DPDRV(I)

Op/O(pw) DPDRW(I)

Pk VORT(II,I2,I3)

Prt, PRLR

Pr, PRR

Pr, PRT

AQ_,_ CHGAVG(I)

AQ,... CHGMAX(I,J)

* r_o, RMAX

The number of grid points in the ¢ direction used in comput-

ing coefficients (only for spatially periodic boundary condi-
tions.) (NUMI)

Static pressure at time level n. (FLOW1)

Dimensional reference static pressure, p,RTdg_. (FLOW1)

Initial static pressure. (IC1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

Production rate of turbulent kinetic energy. (TURB I)

Reference laminar Prandtl number, cprl_rlk,, where

c,, = e,R/(?,-- 1). (FLOW1)

Reference Prandtl number, #,u2,/k,T,. (FLOW1)

Turbulent Prandtl number, or, if non-positive, a flag indicat-

ing the use of a variable turbulent Prandtl number. (TURB 1)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps, s The sub-
script I = I to N,q, corresponding to the N,q dependent
variables. (TIME1)

Maximum change in absolute value of the dependent variables
over a single time step. s The subscript I = 1 to N,q, corre-

sponding to the Ne, dependent variables, and J= 1 to
NITAVG, the number of time steps used in the moving av-

erage option for determining convergence. (TIME1)

Maximum r coordinate coordinate for cylindrical grid option.

(GMTRY1)

s For the energy equation, the change in Er is divided by Err = p,-RTr](_, - 1) + u2,12, so that it is the same order
of magnitude as the other conservation variables.
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r,,_, RMIN

R,,_ RESAVG(J,K)

Rz2 RESL2(J,K)

R_,_ RESMAX(J,K)

I

R RG

R RGAS

Re, RER

S SVECT(IV,IS,J)

At DT(I)

T T(II,I2,I3)

T TL(I 1,I2,I3)

OT]OEr DTDET(I)

OT/Op DTDRHO(I)

OT/O(pu) DTDRU(I)

OT]O(pv) DTDRV(I)

Minimum r coordinate coordinate for cylindrical grid option.
(GMTRY1)

The average absolute value of the residual for the previous
time step. The subscript J = 1 to N,q, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity termS. (TIME1)

The L2 norm of the residual for the previous time step. The
subscript J = 1 to N,_, corresponding to the N,q coupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIME1)

The maximum absolute value of the residual for the previous
time step. The subscript J = 1 to Nee, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME1)

Dimensional gas constant. (FLOW1)

Non-dimensional gas constant. (FLOW1)

Reference Reynolds number, prurL,/tz,. (FLOW1)

Subvector of source terms in the block tridiagonal system of
equations. IS is the grid index in the sweep direction, running
from 1 to N. IV is the grid index in the "vectorized" direction
(i.e., the non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to ?4,- 1. The subscript J = l
to N,q, corresponding to the Neq coupled governing equations.
(NUM1)

The time step size, when specified directly as input. ; is the
time step sequence number, and runs from 1 to NTSEQ.
(TIME1)

Static temperature at time level n. (FLOW1)

Static temperature at previous or intermediate time level.
(FLOW1)

The derivative of T
dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T with respect to p,
dimensional array in the sweep direction.
therefore runs from 1 to N. (FLOWI)

stored as a one-
The subscript I

The derivative of T
dimensional array in
therefore runs from I

with respect to pu, stored as a one-
the sweep direction. The subscript I

to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from i

with respect to pv, stored as a one-
the sweep direction. The subscript I

to N. (FLOW1)
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aTld(pw) DTDRW(I)

7", TR

To TO

u U(I1,I2,I3)

u UL(II,I2,I3)

u, UR

uo U0

v V(I I,I2,I3)

v VL(II,I2,I3)

v0 V0

w W(I1,I2,I3)

w WL(I 1,12,13)

wo W0

^ ^

AW _ or AW' DW(I 1,I2,I3,I)

x X(I 1,I2,I3)

x,.°x XMAX

x_., XMIN

y Y(I 1,I2,I3)

ymo_ YMAX

y_ YMIN

y÷ YPLUSD(I 1,I2,I3)

z Z(II,I2,I3)

The derivative of T with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWl)

Dimensional reference temperature. (FLOW1)

Initial static temperature. (IC 1)

Velocity in the Cartesian x direction at time level n.
(FLOW1)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOWl)

Initial velociW in the Cartesian x direction. (IC1)

Velocity in the Cartesian y direction at time level n.
(FLOW1)

Velocity in the Cartesian y direction at previous or interme-
diate time level. (FLOW1)

Initial velocity in the Cartesian y direction. (IC1)

Velocity in the Cartesian z direction at time level n. (FLOW1)

Velocity in the Cartesian z direction at previous or intermedi-
ate time level. (FLOW1)

Initial velocity in the Cartesian z direction. (IC1)

Unknown vector in the LU solution of the k-_ equations.
The subscript I = 1 or 2, corresponding to the k and
equations, respectively: (NUM2)

Cartesian x coordinate. (METRIC1)

Maximum x coordinate for Cartesian or cylindrical grid op-

tion. (GMTRY1)

Minimum x coordinate for Cartesian or cylindrical grid op-
tion. (GMTRY1)

Cartesian y Coordinate. (METRIC 1)

Maximum y coordinate for
(GMTRY1)

Minimum y coordinate for
(GMTRY1)

Non-dimensional distance from
(TURB20)

Cartesian z coordinate. (METRIC1)

Cartesian grid option.

Cartesian grid option.

the nearest solid wall.
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z_I ZMAX

z_i_ ZMIN

Maximum z coordinate for Cartesian grid option.
(GMTRYI)

Minimum z coordinate for Cartesian grid option.
(GMTRYI)

EPS(I)

E(I1,I2,I3)

EL(II,I2,I3)

e_) CAVS2E(I)

e_ CAVS4E(I)

el CAVS2I(I)

_, ZETAT(I 1,I2, I3)

{, METT(IV,IS)

£x ZETAX(II,I2,I3)

{x METX(IV,IS)

_y ZETAY(I 1,I2,I3)

_y METY(IV,IS)

Convergence level to be reached. The subscript I = 1 to N,_,
corresponding to the N,q dependent variables. (TIME 1)

Turbulent dissipation rate at time level n. (TURB20)

Turbulent dissipation rate at previous or intermediate time
level. (TURB20)

Second order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding
to the _;q coupled governing equations. (NUM 1)

Fourth order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,,, corresponding
to the ,,V,qcoupled governing equations. (NUM1)

Second order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding
to the N,_ coupled governing equations. (NUM1)

The derivative of the computational coordinate _ with respect
to untransformed time t. (METRIC1)

The derivative of the computational coordinate ff with respect
to the Cartesian coordinate t (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK _ routines are
vectorized), and runs from 2 to N, - 1. This is a real va, able.
(METRIC 1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRIC 1)

The derivative of the computational coordinate r with respect
to the Cartesian coordinate x (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the %ectorized" direction (i.e., the
non-sweep direction in which the "BLK _ routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)
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G ZETAZ(I 1,I2,I35

_ METZ(IV,IS)

A_ DEL

A_ DZETA

_/, ETAT(I 1,I2,I3)

_ METT(IV,IS)

n_ ETAX(I 1,I2,I3)

r/x METx(IV,IS)

_/y ETAY(I 1,12,I35

_/y METY(IV,IS)

nz ETAZ(I t,I2,I3)

_ METZ(IV,IS)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate z. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate z (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the %'ectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to ,V_- 1. This is a real variable.
(METRIC1)

.Computational grid spacing in the _ direction (third ADI
sweep only.) (NUM1)

Computational grid spacing in the _ direction. (NUM1)

The derivative of the computational coordinate _/with respect
to untransformed time t. (METRIC1)

The derivative of the computational coordinate r/with respect
to untransformed time t (second ADI sweep only.) IS is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index in the %ectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from 2 to N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate 17with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate '7with respect
to the Cartesian coordinate x (second ADI sweep only.) IS
is the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a re.,' variable.
(METRIC1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate y. (METRIC 15

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate y (second ADI sweep only.5 IS
is the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate '7 with respect
to the Cartesian coordinate z. (METRIC1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate z (second ADI sweep only.) IS
is the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a real variable.
(METRIC1)
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A_ DEL

An DETA

x CVK

x2 CAVS2E(I)

x4 CAVS4E(I)

7, GAMR

2 LA(I 1,I2,I3)

MU(II,I2,I3)

/.it
MUR

_r MUT(II,I2,I3)

/1_ MUTL(I 1,12,13)

XIT(I 1,12,13)

_, METT(IV,IS)

_ XIX(II,I2,I3)

¢_ METX(IV,IS)

_y XIY(I 1,I2,I3)

_, METY(IV,IS)

Computational grid spacing in the _/ direction (second ADI
sweep only.) (NUMI)

Computational grid spacing in the rl direction. (NUM 1)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURB 1)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I = 1 to N,q, corresponding to
the N,q coupled governing equations. (NUM 1)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I = I to N,q, corresponding to
the ?q coupled governing equations. (NUM 1)

Reference ratio of specific heats, %1c,,. (FLOW1)

Effective second coefficient of viscosity at time level n (usually
assumed equal to - 2U13.) This is a real variable. (FLOWl)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at time level n. This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

The derivative of the computational coordinate _ with respect
to untransformed time t. (METRIC1)

The derivative of the computational coordinate _ with respect
to untransformed time t (first ADI sweep only.) IS is the grid
index in the sweep direction, running from 1 to N. IV is the
grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from 2 to N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRIC 1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x (first ADI sweep only.) IS is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from 2 to N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y (first ADI sweep only.) IS is the
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G XIZ(II,I2,I3)

G METZ(IV,IS)

A_ DEL

m'idindexin thesweepdirection,runningfrom 1to N. IV is
the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from 2 to ?q - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate z. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate z (first ADI sweep only.) IS is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from2 to N_ - 1. This is a real variable. (METRICI)

Computational grid spacing in the _ direction (first ADI
sweep only.) (NUM1)

A_ DXI Computational grid spacing in the _ direction. (NUM1)

p RHO(II,I2,I3) Static density at time level n. (FLOW1)

p RHOL(II,I2,I3) Static density at previous or intermediate time level.
(FLOW1)

* p, RHOR

* ak SIGK

* a, sIGE

-r TAU(II,I2,I3)

A-r DTAU(I 1,I2,I3)

0,,_ THMAX

* 0,.., THMIN

* 01, 02 THC(I)

* 01, 02 THKE(I)

* 0,, 02, 03 THE(I)

* 01, 02, 03 THX(I)

* 0t, 02, 03 THY(I)

Dimensional reference density. (FLOWI)

Constant used in the
(TURB20)

diffusion term of the k equation.

Constant used in the diffusion term of the _ equation.
(TURB20)

Current value of the time marching parameter. (TIME1)

Computational time step size. (TIME1)

Maximum 0 coordinate in degrees for cylindrical grid option.
(GMTRY1)

Minimum 0 coordinate in degrees for cylindrical grid option.
(GMTRY1)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM 1)

A two-element array specifying the time difference centering
parameters used for the k-e equations. (NUM2)

A three-element array specifying the time difference centering
parameters used for the energy equation. (NUM 1)

A three-element array specif)ing the time difference centering
parameters used for the x-momentum equation. (NUM1)

A three-element array specifying the time difference centering
parameters used for the y-momentum equation. (NUMI)
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* 01,02,03 THZ(I) A three-element array specifying the time difference centering
parameters used for the z-momentum equation. (NUM 1)

VORT(I 1,I2,I3) Total vorticity magnitude. (TURB 1)
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4.0 PROTEUS SUBPROGRAMS

In this section, each subprogram in Proteus is described, ftrst in summary, then in detail. The summary
is simply a fist of the subprograms with a brief description of the purpose of each one. The detailed de-

scription includes, for each subprogram, a fist of the subprograms that reference it, and a list of the sub-
programs that it references. The Fortran variables that are input to and output from each subprogram are
defined. And finally, details of the computations being done within each subprogram are presented.

4.1 SUBPROGRA.M SU.'51MARY

The following table presents a brief description of the purpose of each subprogram in the Proteus code.

Proteus Subprogram Summary

Subprogram Purpose

ADI

AVISC 1

AVISC2

BCDENS

BCELIM

BCF

BCFLIN

BCG_N

BCGRAD

BCIMET

BCMET

BCNVEL

BCPRES

BCQ
BCSET

BCTEMP

BCLWEL

BCVN

BCVVEL

BCVI

BCV2

BCV3

BCWVEL

BC1VEL

BC2VEL

Manage the block tridiagonal inversion.

Compute constant coefficient artificial viscosity.

Compute nonlinear coefficient artificial viscosity.

Compute density boundary conditions.

Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.

Compute user-written boundary conditions.

User-supplled routine for linearization of user-supplied boundary.
conditions.

Manage computation of boundary conditions.

Compute gradients with respect to _, 7, and _.
Compute inverse metrics at a point in the current sweep direction.

Compute various metric functions for normal gradient boundary
conditions.

Compute normal direction velocity boundary conditions.

Compute pressure boundary conditions.

Compute conservation variable boundary conditions.

Set various boundary condition parameters and flags.

Compute temperature boundary conditions.

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

x-velocity boundary conditions.

velocity normal to a surface.

y-velocity boundary conditions.

-velocity.

_/-velocity.

-velocity.

z-velocity boundary conditions.

_-velocity boundary conditions.

n-velocity boundary conditions.
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Proteus Subprogram Summary

Subprogram Purpose

BC3VEL

BLIN

BLKOUT

BLK4

BLK4P

BLK5

BLK5P

BLOCK DATA

BLOUT

BVUP

COEFC

COEFE1

COEFE2

COEFX

COEFY

COEFZ

CONW

CUBIC

EQSTA'I

EXEC

EXECT

FILTER

FTEMP

GATHER

GEOM

INIT

INITC

INPUT

ISAMAX

ISAMIN

ISRCHEQ

Compute ¢-velodty boundary conditions.

Compute inner layer turbulent viscosity, using the Baldwin-Lomax
model.

Print coefficient blocks at specified indices in the _, _/, and _ di-
rections.

Solve 4 x 4 block tridiagonal system of equations.

Solve 4 x 4 periodic block tridiagonal system of equations.

Solve 5 x 5 block tridiagonal system of equations.

Solve 5 x 5 periodic block tridiagonal system of equations.

Set default values for input parameters, plus a few other parame-
ters.

Compute outer layer turbulent viscosity, using the Baldwin-Lomax
model.

Update ftrst and second sweep boundary values after third sweep.

Compute coefficients and source terms for the continuity equation.

Compute coefficients and source terms for the energy equation.

Compute source terms for the energy equation.

Compute coefficients and source terms for the x-momentum
equation.

Compute coefficients and source terms for the y-momentum
equation.

Compute coefficients and source terms for the z-momentum
equation.

Test computed flow field for convergence.

Interpolation using Ferguson's parametric cubic.

Use equation of state to compute pressure, temperature, and their
derivatives with respect to the dependent variables.

Manage solution of governing equations.

Manage solution of the k-e equations.

Rearrange rows of the boundary condition coefficient submatrices
and the source term subvector to eliminate any zeroes on the di-
agonal.

Compute auxiliary variables that are functions of temperature.

Create a vector containing specified elements of an input vector.
This is a Cray Linear Algebra routine.

Manage computation of grid and metric parameters.
Get user-defined initial flow field.

Set up consistent initial conditions based on data from INIT.

Read and print input, perform various initializations.

Find the first index corresponding to the largest absolute value of
the elements of an vector. This is a Cray search routine.

Find the first index corresponding to the smallest absolute value
of the elements of an vector. This is a Cray search routine.

Find the first index in an array whose element is equal to a speci-
fied value. This is a Cray search routine.
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Proteus Subprogram Summary

Subprogram Purpose

ISRCHFGT

ISRCHFLT

KEINIT

MAIN

METS

OUTPUT

OUTW

PAK

PERIOD

PLOT

PRODCT

PRTHST

PRTOUT

RESID

REST

ROBTS

SASUM

SGEFA

SGESL

SNRM2

SWDOWN

SWUP

TBC

TIMSTP

TREMAIN

TURBBL

TURBCH

UPDATE

UPDTKE

VORTEX

WHENFLT

Find the first index in an array whose element is greater than a
specified value. This is a Cray search routine.

Find the first index in an array whose element is less than a speci-
fied value. This is a Cray search routine.
Get user-defined initial conditions for k and _.

Manage overall solution.

Compute metrics of nonorthogonal grid transformation.

Manage printing of output.

Compute and print parameters at boundaries.

Manage packing and/or interpolation of grid points.

Define extra line of data for use in computing coefficients for spa-
tiaUy periodic boundary conditions.

Write fries for post-processing by CONTOUR or PLOT3D plot-
ting programs.

Compute production term for the k-_ turbulence model.

Print convergence history.

Print output.

Compute residuals and write Convergence history file.

Read and/or write restart file.

Pack points along a line using Roberts transformation.

Compute the sum of the absolute values of the elements of a vec-
tor. This is a Cray BLAS routine.

Factor a matrix using Gaussian elimination. This is a Cray
LINPACK routine.

Solve the matrix equation Ax = B or AXx = B using the factors
computed by SGEFA. This is a Cray LINPACK routine.

Compute the L2 norm of a vector. This is a Cray BLAS routine.

Compute coefficients and source terms, and solve the k-e equations
for the downward LU sweep.

Compute coefficients and source terms, and solve the k-e equations
for the upward LU sweep.

Set time-dependent boundary condition values.

Set computational time step.

Get CPU time remaining for the job. This is a Cray Fortran
routine.

Manage computation of turbulence parameters using Baldwin-
Lomax algebraic model.

Manage computation of turbulence parameters using the Chien
k-_ model.

Update flow variables after each ADI sweep.

Update k and _ after each time step.

Compute magnitude of total vorticity.

Find all indices in an array whose elements are less than a specified
value. This is a Cray search routine.
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Proteus Subprogram Summary

Subprogram Purpose

"_'PLUSN Compute the distance to the nearest solid wall.

4.2 SL'BPROGRAM DETAILS

The subprograms used in Proteus are described in detail in the remainder of this section. A few addi-
tional words are necessary about the input and output descriptions. The description of the input to each
subprogram includes all Fortran variables actually used by the subprogram that are defined outside the
subprogram. Variables defined and used inside the subprogram are not listed as input. In addition, com-
mon block variables that are merely passed through to lower level routines are not listed. Variables marked
with an asterisk are user-specified namelist input variables.

Similarly, the output description includes only those variables computed inside the subprogram and used
outside the subprogram. It does not include common block variables computed by lower level routines.
In general, variables defined inside the subprogram that are used by lower level routines are listed as output,
even if they are not needed after control is returned to the caUing program.

Variables entering or leaving a subprogram through an argument list are defined in detail. However,
most of the Fortran variables listed in the input and output descriptions are contained in common blocks,
and are defined in detail in Section 3.0. For that reason, they are defined only briefly in this section.
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Subroutine ADI

Called by Calls Purpose

EXEC Manage the block tridiagonal inversion.BLKOUT
BLK4
BLK4P
BLK5
BLK5P

* IDEBUG

* IPRTIA, IPRT2A, IPRT3A

ISWEEP

IT

KBCPER

NEQ

* NOUT

NPRTI, NPRT2, NPRT3

None.

Description

Debug flags.

Indices for printout in the _, _/, and _ directions.

Current ADI sweep number.

Current time step number n.

Flags for spatially periodic boundary conditions in the _, _, and
directions; 0 for non-periodic, 1 for periodic.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Total number of indices for printout in the _, _, and _ directions.

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by
the number of ,"quations being solved, and by the presence or absence of spatially periodic boux tary con-
ditions in the sweep direction.

Remarks

1. This subroutine generates the output for the IDEBUG(1), IDEBUG(5), and IDEBUG(6) options.
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Subroutine AVISC 1

C_ed by Calls Purpose

EXEC BLKOUT Compute constant coefficient artificial viscosity.

l.p_m

A,B,C

* CAVS2E, CAVS4E, CAVS2I

DTAU

* IAV2E, IAV4E, IAV2I

IDEBUG

IHSTAG

IPRT1A, IPRT2A, IPRT3A

ISWEEP

IT

I2, I3

JI

NC, NXM, NYM, NZM, NEN

NOUT

NPRTI, NPRT2, NPRT3

NPT1, NPT2, NPT3

NR, NRU, NRV, NRW, NET

RHO, U, V, W, ET

S

A,B,C

S

Description

Coefficient submatrices A, B, and C without artificial viscosity.

Artificial viscosity coefficients _, _, and _l.

Time step A'r.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the _, r/, and _ directions.

Current ADI sweep number.

Current time step number n.

Grid indices j and k, in the _/and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the _, r/, and _ directions.

N1, N_, and N3 for non-periodic boundary conditions, N_ + 1,
N2 + 1, and N3 + 1 for spatially periodic boundary conditions in
_, ,_, and _.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Source term subvector S without artificial viscosity.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

Subroutine AVISC 1 adds explicit and/or implicit artificial viscosity to the governing equations, using the
constant coefficient model of Steger (1978), as pi'esented by PuUiam (1986b). The model is described in
Section 8.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and is added
only during the fu-st ADI sweep. The implicit artificial viscosity is second order, and is added during all
three sweeps.

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as
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_(4)AT

F. i,y, k [(VcA¢)2Qi, j, k + (VnAn)2Qi,j, k + (VcA¢)2Qi,j, k]
Si,j, k = Si,j, k -- Ji,j, k

where i,j, and k vary from 3 to NPT1 - 2, NPT2 - 2, and NPT3 - 2, respectively. At grid points adjacent
to boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced

by second-order differences. Thus, at i= 2 and-at i= NPT1- 1, with j and k var_5_ng from 3 to
NPT2 - 2 and NPT3 - 2,

_(_)A'ri,j, k

Si,j, k = Si,j, k q- Ji,j, k [VcAcQi, j, k -- (Vr/Ar/)2Qi,j, k -- (V_A_)2Qi,j, k]

Similarly, atj = 2 and atj = NPT2 - 1, with i and k vax3"ing from 3 to NPT1 - 1 and NPT3 - 2,

' ' [ -- (V_A_)2Qi,j,k + V_AnQi,j, k -- (V_A_)2Qi,j, k]
S_.,j,k = Si,j, k + J/j, k

And, at k = 2 and at k= NPT3 - 1, with i and j varying from 3 to NPTI - 1 and NPT2 - 2,

e(_)A'ri, j,k

[- (V¢AO2Qi,j,k- (VnAn)2Qi,j,/_+ (VcA¢)Qi,j,k]
Si,j, k = Si,j,k + Ji,j, k

The second-order explicit artificial viscosity is implemented in Fortran by redefmi.ng the source term
subvector as

_'(_)A'ri,j, k

= (V_AcQi j, k + V_TAr/Qi,j, k q- V_A_Qi,j, k)
Si,j, k Si,j, k q" Ji,j, k

where i, j, and k vary from 2 to NPT 1 - 1, NPT2- 1, and NPT3 - 1, respectively.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-
defining the cc :._cient block submatrices as

e'IA"ri, j, k

Ai'j'k = Ai'j'k Ji,j,k Ji- 1,j,k

e'lA'ri,j, k

Bi,j, k = Bi, j, k + 2 Ji, j, k Ji,j, k

_IAri,j, k

= Ji+l,j,k
Ci,j, k Ci, j, k Ji,j, k

where i, j, and k vary from 2 to NPT 1 - 1, NPT2 - 1, and NPT3 - 1, respectively. Similarly, for the sec-
ond sweep,

_lA'ri,j, k

Ji,j- _ k
Ai,j, k = Ai,j, k Ji, j, k

_ lA'r i,j, k

Bi,j, k = Bi,j,k..-b 2 Ji, j,k Ji,j,k

_IA'ri,j, k

Ci'j'k=Ci'j'k "]i,j,k Ji,j+l,k

And, for the third sweep,
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_ tA'c i, j, k

Aid, k A_,j, k Ji,j, k Ji,j, k - 1

_IA'Ci,j, k

Bi, j, k = Bi,j, k + 2 Ji,j,k
Ji,j,k

e lA'r i, j, k

Ci,j, k = Ci,j, k Ji, j, k Ji,j, k + 1

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "ij,k" term in the difference
formula. See Section 8.1 of Volume I for details.

2. The coding to add artificial viscosity to the energy equation is separate from the coding for the re-
maining equations, and is bypassed if it is not being solved. _

3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the
sweep direction. For the first sweep (which includes all the expficit artificial viscosity) the order is thus
(I2,I1), for the second sweep the order is (I1,I2), and for the third sweep the order is (I1,I3).

4. For spatially periodic boundary conditions in the _ direction, fourth-order differences could be used at
i-- 2 and at i = NPTI - 1 ( = N_). A similar situation occurs with spatially periodic boundary condi-
tions in the _ and ( directions. The logic to do this has not been coded, however, and at these points
second-order differences are still used, as described above.

5. This subroutine generates the output for the IDEBUG(2) option.
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Subroutine AVISC2

Called by Calls Purpose

EXEC BLKOUT Compute nonlinear coeffÉcient artificial viscosity.

l.p_m

* CAVS2E, CAVS4E

CP, CV

DTAU

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

* IAV2E, IAV4E

* IDEBUG

* IHSTAG

* IPRT1A, IPRT2A, IPRT3A

ISWEEP

IT

I2, 13

JI

NC, NXM, NYM, NZM, NEN

NOUT

NPRT1, NPRT2, NPRT3

NPT1, NFT2, NPT3

P,T

RGAS

RHO, U; V, W, ET

S

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

User-specified coefficients _2 and _c,.

Specific heats cp and c, at time level n.

Time step Az.

Computational grid spacing A4, An, and A_.

Metric coefficients )/,, )/y, )/2, and )/_.

Flags for second-order and fourth-order explicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the _, r/, and _ directions.

Current ADI sweep number.

Current time step number n.

Grid indices j and k, in the )/and £ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the 4, )/, and _ directions.

N_, N2, and N3 for non-periodic boundary conditio s, NI + 1,
N2 + 1, and N_ + 1 for spatially periodic boundary conditions in
4, ,t, and _.

Static pressure p and temperature T at time level n.

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Source term subvector S without artificial viscosity.

Metric coefficients 4z, 4_, 4z, and 4,-

Metric coefficients _, _y, £_, and _.

S Source term subvector S with artificial viscosity.

Description

Subromine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonfinear co-
efficient model of Jameson, Schmidt, and Turkel (1981), as presented by PuUiam (1986b). The model is
described in Section 8.2 of Volume 1. Implicit artificial viscosity is not normally used in combination with
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the explicit nonlinear coefficient model. The explicit artificial viscosity is added only during the Dst ADI

sweep.

The artificial viscosity in the ¢ direction is computed first, at the _t-indices j = 2 to NPT2- 1 and
_-indices k = 2 to NPT3 - I. The spectral radius term _bs,_,kand the pressure gradient scaling factor o-_,j,,
are computed and stored in local one-dimensional arrays for i = 1 to NPT 1. Special formulas are used to
compute cr near boundaries, as described in Section 8.2 of Volume I.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source
term subvector as

Or, after evaluating the differences,

>,i _,_ )i,j,k(Qi+ 1,),k-- Qi,j,k)
Si'j'k=Si'j'k+ 7 i+l,j,k i,j, kl

- 7 i,j,k i- 1,y,k

where i varies from 2 to NPT1 - 1.

The fourth-order explicit artificial viscosity is added next, and is implemented similarly by redefining the
source term subvector as

Or, after evaluating *he differences,

[<) _ _+ ( _ )i,j, k(Qi + 2,y, k 3Qi + l,y, k + 3Qi,j, k Qi - l,j, k)
Si, j'k=Si'j'k-- 7 i+l,j,k /i,j,k...[

_k + 7 (e_4))i_ l,j, k(Qi + 1,j, k -- 3Qi, L k + 3Qi _ l,y, _: - Qi- 2,y, k)
+ 7 i,j,k " i-- 1,j,k...I

where i varies from 3 to NPTI - 2. Special formulas are used at i = 2 and at i = NPT1 - I, as described
in Section 8.2 of Volume 1.

The expficit artificial viscosity in the r/and _ directions is then implemented in a manner analogous to
that just described for the explicit artificial viscosity in the _ direction.

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "ij,k" term in the difference
formula. See Section 8.1 of Volume 1 for details.

2. The coding to add artificial viscosity to the energy equation is separate from the coding for the re-
maining equations, and is bypassed if it is not being solved.

3. The subscripts on the Fortran variable S may be confusing. The first subscript is the index in one of
the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the sweep direction.
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.

5.

For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I1), for the

second sweep the order is (II,I2), and for the third sweep the order is (I1,I3).

For spatially periodic boundary conditions, the need for special formulas near boundaries could be
eliminated. The logic to do this has not been coded, however.

This subroutine generates the output for the IDEBUG(2) option.
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Subroutine BCDENS (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute density boundary" conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMINI IMAX

ISWEEP

IV

Jl

* NOUT

NR

RHO

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep

direction, specified as IBC(I,J) and FBC(I,J), where I runs from

1 to N,v corresponding to the N,q conditions needed, and J = 1

or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the %'ectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-a.

Unit number for standard output.

Array index associated with the dependent variable p.

Static density p at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCDENS computes coefficients and source terms for density boundary conditions. The

linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular density boundary

conditions in Proteus. _

In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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No Change From Initial Conditions, Ap = 0

^

Applying equation (6.3) of Volume I, and noting that Og/_Q = JOg/OQ, we get simply

An

J_,.:,_ APi, j, k = 0

Specified Static Density, p = f

Applying equation (6.5) of Volume I,

An" ,en + 1 n
Ji,j, k Api,j,k = Ji,j,k -- Pi, j,k

Specified Two-Point Density Gradient in Coordinate Direction, Op[O_ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

-- Jt,j,k APl,j,k + J2,j, kAp2,j,k = k_ltl,j,k + Pl,j,k -- P2,j,k

At the _ = 1 boundary,

An A?2 lhJ_\(t'_ + | D D

-- JN_ - 1,j, k ApN l -- 1,j:k + JN_,j, k APNI,j, k = k_bYl%j, k -k pN 1 _ 1 ,j, k -- PNl,j, k

Analogous equations can easily be written for the )1 and _ boundaries.

Specified Three-Point Densitv Gradient in Coordinate Direction, OplOcb =f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

An A?I A_

-- 3Jl ,j, k Ap 1,j, k + 4J2,), k Ap2,j, k -- "]'3,j, k AP3,j, k =

2:A_cn + 1 n n nk lll,j,k +3Pl,j,k--4P2,j,k+P3,j,k

At the _ = 1 boundary,

A_ A_ A]'/

JN I - 2,j,k ApNI - 2,],k --4JN_-I,j, kAPN,- I,j,k "F 3JN,,./,kApu_,:,I_=

--n+l n n n
2(A_ff_;l,j, k + -- 3P NI,j, k-- P N l - 2,j, k 4P N l- 1,j, k

Analogous equations can easily be written for the )7 and _ boundaries.

_ed Two-Point Density Gradient in Normal Direction, V p • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

where

A/'I A._

-- Jl,j, kAPl,j,k + J2,j, kAP2,j,k :

a¢ V:.+ (¢::+ ¢:y+
m_,j, k m_ ,j, kJl,j,k --

+ P 1,j, k -- P2,j, k

6nPl,j,k mi,L k 6_pl,J, k
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and 6_ and 6_ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,

An AR

-- JN l - 1,j, k ApN l - l,j, k + JNI,j, k ApNI,j, k =

a_ [-: +._ (_::, + _:y + _:zl_v,,j,k .
m,vl,--_,k _N1,J, k -- toNi,j, k 6_PNI.j. k

+ PNI- I,j,k-- PN1,j.k

mN l, j, k

Analogous equations can easily be written for the ,7 and ( boundaries.

Specified Three-Point Density Gradient in Normal Direction, Vp • n =f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

An An A_)

-- 3Jl,j, kAPl,j,k + 4J2,j, kAP2,j,k -- J3,j, kAp3,j,k =

2A.___ re n + 1 -- (_xrlx "t- _yrly + _zrl2)l ,j, k n (_x_x "{- CyCy -at-_z_z)l ,j, k

ml .j. k ml .j, k ml ,j, kJI,j. k 6nP 1.j. k

71 l'l n

+ 3p 1,j. k -- 4P2.j, k + P3,j, k

where

m=#_x2+_y2+_z 2"

and 6. and 6¢ axe the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,

JN1 -- 2,j,k ApnNI - 2.j, 1¢-- 4JN, - 1,l.k ApnN1- 1,;,k + 3JNl.l,k AP%_,I,k =

2_¢ V:. +, (_:_ + ¢:_ + ¢:_)_,.:.* . (¢:_ + ¢:_ + ¢_Z_)N,.j.k " 7
mN l,j, k mN l,j, k raNt,j, k .IF N1,I, k 6nP Nt.j, k 6_P Y_,j, k

R t'2

-- PNt-2,.i,k + 4PN_ - 1,j,k- 3PN_,j,k

Analogous equations can easily be _a-itten for the _ and _ boundaries.

Linear Extrapolation of Static Density

Appb_'ag equation (6.14) of Volume 1 at the _ = 0 boundary,

An A_'I A/I n _ r/

Jl,j, k Apl,j,k _ 2J2,j, k Ap2,j, k W J3,j, k Ap3,j,k = -- Pl,j,k .4- 2P2,j,k -- P3,j,k

At the _ = 1 boundary,

A_ AYl

-- ApNt,j,k ------ PN_ -2,j,k + 2PN, -- l,j,k -- PN_,j,kjNl_2,j, kApNl_2,j, k 2JNl_l,j, kApNl_l,j,k+JNpj, k An _7 lq _t

Analogous equations can easily be written for the _/and £ boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent density boundary condition is
specified.

64 4.0 Proteus Subprograms: BCDENS Proteus 3-D Programmer's Reference



Subroutine BCELIM

Called by Calls Purpose

EXEC SGEFA Eliminate off-diagonal coefficient submatrices resulting from three-
SGESL point boundary- conditions.

Input

A,B,C

IBCELM

ISWEEP

IV

NEQ

NEQP

NPTS

S

Coefficient submatrices A, B, and C before eliminating off-
diagonal blocks.

Flags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary conditions in the _ and/or n
directions; 0 if elimination is not necessary, 1 if it is.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Number of coupled equations being solved, N,q.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

Number of grid points in the sweep direction, N.

Source term subvector S before eliminating off-diagonal blocks.

Coefficient submatrices A, B, and C after eliminating off-
diagonal blocks.

Source term subvector S after eliminating off-diagonal blocks.

Description

Subroutine BCELIM eliminates the off-diagonal coefficient subrnatrices that result from the apphcation
of three-point boundary conditions. This is necessary when three-point gradients are specified in the coor-
dinate or normal direction, and when linear extrapolation is used. The procedure is described in Section
7.2.1 of Volume 1.

Remarks

1. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with
NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Fortran se-

quence

call sgefa (a,lda,n,ipvt,info)
do 10 j = 1,ncol
call sgesl (a,lda,n,ipvt,b(1,j),O)

10 continue

computes A- _B, storing the result in B.
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Subroutine BCF (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Calls Purpose

BCFLIN Compute user-written boundary conditions.
BCMET

Called by

BCGEN

l.p.t

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

* IHSTAG

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU, NFV, NRW, NET

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(Ij) and FBC(IJ), where I runs from

1 to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary. _:

Boundary condition'equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, J- L

Unit number for standard output.

Array indices associated with the dependent variables p, _::, pv;

pw, and Er.

S

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Description

Subroutine BCF computes coefficients and source terms for user-written boundary conditions of the

form AF = 0, F =f, 3F/Oc_ =f, and VF. n =f The values of F and its derivatives with respect to the de-

pendent variables must be supplied by the user-written subroutine BCFLIN. The linearized equations for
these types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections ex-

pand these generalized equations in detail. 7

In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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No Change From Initial Conditions, AF = 0

^

Applying equation (6.3) of Volume 1, and noting that 8g/?,Q = JOg/SQ, we get simply

OF A_ + OF .,^. 8F OF ^ + _ AE n =0

Specified Value, F= f

Applying equation (6.5) of Volume 1,

OF OF ^ OF ^ OF ^ OF rn + 1 nJi,j,k
o p utp u) utt., _j _,u-, ,,, _ _ l ijk

Specified Two-Point Gradient in Coordinate Direction, OF]8(o = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing.

F OF A_ + OF ^ OF ..^. OF ^ OF ^_n

V OF o_ ^ OF ^ Or _x(p_)+ o1= ^T]_
+4:k k_ A_+ °(---Y__(p_)+0-_7A(p_)+ _ -$_r_E-- =

, , ..a2,j, k

(A_rn + 1 nl/,,j,k + F,n, Lk- F2,j,k

At the _ = 1 boundary,

I OF .^ OF ^ OF ., ^. OF ^ OF ^r]n-Lye-_,:,_ -V/ "p + o-[_ a(p _)+ o-?i-_''u'_) + o--_-_-A(pw)+-$ET Ae--.,¢,- _,i,k

OF .,, OF ^ OF ., ^,. OF ^ OF ._-]n+ Ju,,j,k -T-saP + _-_-_'_zX(Pu)+ d-_-_-_zatP_)+ _ a(pw) +-_-F- aLr l =
U_T __1Nl.j. k

(A_rn + _ n nIJN_,j,k + F/_ _ l,],k -- F/_,,j.k

Analogous equations can easily be written for the _ and £ boundaries.

Specified Three-Point Gradient in Coordinate Direction, OF]O.d?=f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,
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I OF .^ OF ., ^, OF ^ OF ^ OF ^T[n

"1

-3J_j,kTT"P +°<-ffS_"tP")+a(--bTY_-"(;v)+eT_5-a(Pw)+OE'---_-AE--_,j,k

tP ) 2,j,k

i OF . ^ OF ., ^ . OF ^ + OF ^ OF "TIn- e3,j,k _"0 + o-_ _t;_+ o-_ A(p_)o(p_)A(pw)+ oe---_ae =
3,j,k

2,A_,Cn + 1 3Flnj k -- 4F2nj_l,],k + .... k + F3n,j,k

At the _ = 1 boundary.

I OF ^ OF .,^. OF ^ OF ^rl nJ_,- 2,j,_ -_pa_ + _ A(pu)+ _ ,,tp,,)+ _ _(pw)+ T_r Ae _,N,-2,j,k

F `_'4+ OF .,^. oF ..^. OF ^ oF ^r]"
--4JNl-- l'j'k t.. -_P O--_-_ atPU) + o-_--_ cttPV) + _-_"_ A(pw) +'_T AE --'NI - I,j,I¢

F OFA_+ OF .,^. OF .,^. OF ^ OF ^r]n
+ 3JN>j'k L_ °(-_-_"tPu)+ °(--_ ''w_)+ °(-7_x(pw)+T_r Ae'' " =

= Nl,j, k

2lAUnCh+ I n ' nt Z/NI,j,I_--FNI-2,Lk+4F_VI-t,j,t_--3F_,j,t_

Analogous equations can easily be written for the ,7 and _ boundaries.

Specified Two-Point Gradient in Normal Direction, VF. n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

I OF OF ^ OF ., ^. OF ., ^, OF ^7.1 n

"-I

-- Jl.j.k -_p A_ + O(pu) A(PU) +_ z'xkPV)+_ atPW) W"_T AE _l.j.k

F OFA_+ OF ^ OF ..^. OF ..^- OF ^rl"
+ J2,j,k L _ O--_-_A(pu)+_zakPV)+o-_zxtPw)+-_TAE'! =

--a2,j, k

A¢ F.,-n + I (¢xnx Jr Cyrly "4-_zrlz)l ,j, k ¢5 n (¢x_x 4- _yCy "q- Cz_z)l ,j, k
ml ,j, k ml ,j, k ml ,j, kL-tl,j, k rgFl,j, k 6_Fln, j, k

71 71

+ Ft.j,k-- F2,j.k

where

m= x/¢X2+ ¢_ + ¢_2

and 6, and 6_ are the centered difference operators presented in Section 5.0 of Volume 1.

boundary,

At the _ = I

68 4.0 Proteus Subprograms: BCF Proteus 3-D Programmer's Reference



[- OF.^ OF ^ OF ^ OF ., ^. OF ._"]'7

-J"-"_'" L_'' +o(--_"('_")+o-_"('_)+°(-i_''"w'+°e-;A_%,,._,._._
V OF .^ OF ^ OF .,^, OF ., ^, OF

+ JN,,:,kLTTp"p+O--_77A(pu)+o--_7_"tPv)+O--_7-_"tPw)+-ggTAEr]" =
r A&,j,k

A_ Fen +. 1 (_xrlx -'1-_y_y -}- _zrlz)3,q,j, k n (_x_x + _y_y -t- _z_z)Nl,j ' k (_F,,_I,j ' k]
mN,,j, k V N''j' k mNbj, k (SrgF_rl,j, k mN,,j, k _,1

1l

+ F2,,- ,,j,k- _,,j,k

Analogous equations can easily be written for the ,7 and _ boundaries.

Specified Three-Point Gradient in Normal Direction, VF • 7z= f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

- 3J],j, k

+ 44,z k

OF , ^ OF ^

,.p+ _ A(p.)

OF . ^ OF ^
"P + o(-T_A(p,,)

F OF . ,, OF ^
- 4._.,L-s;/''p+_ A(,,,,)

m"_,,j, k ml,j, kJl,j, k --

+ 3F_l,j,k-aF_2,j,k + F'],j,k

OF ., ^. OF ^ OF ._-]n
+ _ atpv ) + _ A(pw) + _ aCTI

"L'T 1 l,j, k

OF .. ^. OF .., ^. OF ^r]n

• *"J 2 ",J,k

OF ., ^. OF ^ OF ._'-[ n =

6,rFln,j, k -- (¢xCx+ _YCY+m],j, k_Z_Z)]'J'k 6¢Fln,j,k_.]

where

m= x/¢x2+ ¢y2+ ¢2

and 6, and 6¢ are the centered difference operators presented in Section 5.0 of Volume I.
boundary,

OF A_ + OF ^

OF A_ + OF ^o-iTEf,x(p,,)

[ OF ,5_+ OF ^+3:_,,,i,k _-p o(-T_-a(;")

2A_ Vrn +. 1 (_xrlx -t- _yrly Jr _zrlz)Nt j k n

tt ti

- F,v,_2,z, + 4F;,_ ,,:,_- 3F;i,_,_

JN_ - 2,j, k

-- 4JN_ - _,j, k

At _the _ = 1

OF A(pv)+ OF ,,, ^, OF ^T]_+ _-_-Fq o-g_"_"w_+-a-_ Ae _,_ _,_,_

OF ^ OF ^ ^T]n
+-_-_T AE --'N,- _,j,k

OF ^ OF ^ ^T] _+ _ A(,ov)+ _ A(pw) OF+ -_-T AE =
-" N_,y, k

mN_,j, k

Analogous equations can easily be written for the _/and _ boundaries.
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Linear Extrapolation

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

[ OF ,^ OF A OF ^ OF ^. O___FF._ -1nJ1
-_-p ap + O--_ A(pu) + o--_ A(pv) + o-_w_ A(pw) + OE r a rjl,j,/_k

• r or .^ or ^ or ^ or ^ +_a_- _2,j, kL_ ''p + _ A(;_)+ _ A(pv)+ _ A(p_) 2U,k

OF ^r]nF OF ,^ OF ^ OF ^ OF ^' +-_r AE =+ J3j,kL_ ''p + _ A(pu)+ _ A(pv)+ _ a(ow) 3j,

?1 __F?_- r,"u,k+ 2V2u,k 3,j,k

At the _ = 1 boundary,

E OF OF ^ OF ^ OF .,", OF ._"]nJu,-2,],k _ A_+_(---y_-A(pu)+_--_-_-A(p,,)+O(--_-y_-,,tpwJ+OE---T_TJN,_2,j,*

A A AT]nF oi; .^ , OF., ^. oF + _ _x(o.,)+ _ _e_ 2eN,_ _,y,k l__y2,,p ..5?g__ _wu> + o_N__o_a(pv) OF OF
NI-- I,j,R

V OF.^ . OF ,,^. OF ^ OF ^ OF ^ln
+_A(pw) +_AErl =

+ :N,U,kL--_p"p+ O(---(_-_-'_tPu>+ 0-_-_5-A(P_)
ol,p w) °r-'T _INl,j'k

-- F_v,- 2.j,k + 2F_r, _ 1,j, k -- F_v,,j,k

Analogous equations can easily be written for the _ and _ boundaries.

Remarks

1. This subroutil- _ uses one-dimensional addressing of three-dimensional arrays, as described in ." zction
2.3.

2. An error message is generated and execution is stopped if a non-existent user-written boundary condi-
tion is specified.
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SubroutineBCFLIN(IBC,IEQ,IBOUND,IMIN,IMAX,F,DFDRHO,DFDRU,DFDRV,DFDRW,
DFDET,FBCMA,FBCMB,FBCPA,FBCPB,FBC)

Calledby Calls Purpose
BCF User-suppliedroutinefor linearizationof user-suppliedboundarycon-

ditions.

IBASE,ISTEP

IBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP

I1,I2, I3

NIP, N2P

Output

DFDRHO, DFDRU, DFDRV,
DFDRW, -)FDET

F

FBC

FBCMA, FBCPA

FBCMB, FBCPB

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types for current sweep direction,
specified as IBC(I,J), where I runs from 1 to N,_, corresponding
to the A%conditions needed, and J = 1 or 2, corresponding to the
lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Grid indices i, j, and k, ha the _, _/, and _ directions.

Parameters specifying the dimension size in the _ and r/directions.

Three-element arrays, specified as DFDRHO(IW), etc., giving
the values of OF]Op, OF]O(pu), OF1O(pv), OF[O(pw), and _F]OEr.

A three-element array specified as F(IW) gi_fng the value of the
function F at the boundary (IW = 1), at the first point away from
the boundary (IW = 2), and at the second point away from the
boundary (IW = 3). Values at P,V = 3 are not needed for bound-
ary condition types 91, 92, or -92. Values at IW = 2 are not
needed for boundary condition type 91.

Boundary condition values for current sweep direction, specified
as FBC(I,J), where I runs from 1 to N,q, corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the lower and
upper boundaries. This is only needed i/values for GBC1, GBC2,
or GBC3, or FBCI, FBC2, or FBC3, are not specified in the in-

put namelist BC.

Bounda_" condition values on the boundary, at the grid points
"left" and "right" of the current boundary point, in the first non-
sweep direction. These are only needed for boundary condition
types + 93.

Boundary condition values on the boundary, at the grid points
"left" and "right" of the current boundary point, in the second
non-sweep direction. These are only needed for boundary condi-

tion types +__93.
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Description

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCF for user-written
boundm-y conditions of the form AF= 0, F =f, OF[Off =f, and VF. n =f BCFLIN suppfies the values of
F and its derivatives with respect to the dependent variables, which are required for writing the linearized
form of the boundary condition.

The version of BCFLIN suppfied with Proteus makes BCF equivalent to BCTEMP, except for the total
temperature options in BCTEMP. Thus F = T, OF]Op -- OT/Op, etc., where T and its derivatives with re-
spect to the dependent variables are computed using the perfect gas equation of state. (See Section 4.3 of
Volume 1.) This version of BCFLIN is intended as an example for use in coding boundary conditions not
already available.

Remarks

I. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The capability of specifying FBC as an output variable may be useful in writing time-dependent
boundary conditions. It also may be used when specifying boundary conditions involving derivatives
in one of the non-sweep directions. In this case, the derivatives in the non-sweep directions may be
lagged one time step and treated as source terms.
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Subroutine BCGEN

Called by Calls Purpose

Manage computation of boundary conditions.BVUP
EXEC

BCDENS
BCF
BCNVEL
BCPRES
BCQ
BCTEMP
BCUVEL
BCV_'EL
BC'_WEL
BC1VEL
BC2VEL
BC3VEL
BLKOUT
ISRCHEQ

l.p t

* FBC1, FBC2, FBC3

* IBC1, IBC2, IBC3

IDEBUG

IPRT1A, IPRT2A, IPRT3A

ISWEEP

IT

IV

I1, 12, I3

NBC

NEQ

NOUT

NPRT1, NPRT2, NPRT3

NVD, NPTSD

* N1, N2, N3

IBC, FBC

IBOUND

IEQ

Point-by-point mean flow boundary condition values for the _,
_, and _ directions.

Point-by-point mean flow boundary condition types for the _, _t,
and _ directions.

Debug flags.

Indices for printout in the _, n, and ff directions.

Current ADI sweep number.

Current time step number n.

Index in the "vectorized" direction, i,.

Grid indices i, j, and k, in the _, rt, and _ directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Total number of indices for printout in the _, _, and _ directions.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, METZ, and METT.

Number of grid points N_, N_, and _½, in the _, rt, and _ directions.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(LJ), where I runs from
1 to 5%, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number, from 1 to/_%.
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IMIN, IMAX Minimum and maximum indices in the sweep direction.

Description

Subroutine BCGEN manages the computation of coefficients and source terms for the mean flow
boundary conditions. It ftrst loads the NEQ boundary condition types and values from the input arrays
IBC1 and FBC1, IBC2 and FBC2, or IBC3 and FBC3, depending on the ADI sweep, into the arrays IBC
and FBC. This was done so that the BC routines could be non-sweep dependent. Next the coefficient
submatfices and source term subvectors at the two boundaries in the current sweep direction are initialized
to zero. And finally, the appropriate BC routine is called, depending on the input boundary condition type,
for each of the NEQ boundary conditions at each boundary in the sweep direction.

Remarks

I. An error message is generated and execution is stopped if the boundary condition type is less than 0
or greater than 99.

2. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.

3. This subroutine generates the output for the IDEBUG(3) option.
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Subroutine BCGRAD (F,I,DFD1,DFD2,DFD3)

Called by Calls Purpose

Compute gradients with respect to ¢, ,/, and (.BCDENS
BCF
BCPRES

BCQ
BCTEMP

BCLWEL
BCVVEL
BCWVEL

I.put

DXI, DETA, DZETA

F

I

ISWEEP

I 1, I2, I3

* NI, N2, N3

Computational grid spacing A_, A_7, and A(.

A three-dimensional array, specified as F(I,J,K), contaJ_r_g the
function fwhose gradient is to be computed. The subscripts I, J,
and K run from 1 to N_, _, and Na, respectively.

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i, j, and k, in the _, n, and _ directions.

Number of grid points _¢rl, N2, and N3, in the _, ,1, and _ directions.

Output

DFD1, DFD2, DFD3 First derivatives of f with respect to _, r/, and _.

Description

Subroutine BCGRAD computes first derivatives of the function f, with respect to _, ,1, ax. i _, at the
current grid point in the ADI sweep direction. At interior points, the centered difference formula presented
in Section 5.0 of Volume 1 is used. For derivatives with respect to ¢,

(Of) .., fii+l,j.k--fi-l,j,k
_ _,_,k- ,x_

An analogous formula is used for r/and _ derivatives.

At boundary points three-point one-sided formulas are used.

_- 2A--Z( - 3_,_, k + 4A.j, k -A,j, k)
-_ 1,j,k

Of) ,-_ 1 (fNl - 2,j, k -- 4fN, - l,j, k + 3f,%j, k)
T( _¢,,j,k 2zx_

Again, analogous formulas are used for r/and _ derivatives.
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Subroutine BCIMET (I,XXI,XETA,XZETA,YXI,YETA,YZETA,ZXI,ZETA,ZZETA)

Called by

BC1VEL
BC2VEL
BC3VEL

Calls Purpose

Compute inverse metrics at a point in the current sweep direction.

Input

ETAX, ETAY, ETAZ

I

ISWEEP

I1, 12, 13

XIX, XIY, XIZ

ZETA.X, ZETAY, ZETAZ

O.tp.t

XXI, XETA, XZETA

YXI, YETA, YZETA

ZXI, ZETA, ZZETA

Description

Metric coefficients ,/x, _, and _h-

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i, j, and k, in the ¢, n, and _ directions.

Metric coefficients _x, _y, and _z.

Metric coefficients £_, fly, and £,.

Derivatives of x with respect to 4, '/, and _.

Derivatives ofy with respect to _, r/, and (.

Derivatives of z with respect to 4, '/, and _.

Subroutine BCIMET computes the inverse metrics using the following formulas:

1
x¢ = -2-(_fi_ - _gy)

1
Y_= 7 (,7_x- ,7:d_)

z_= _ (_Zy - ny¢_)

x. = -3-(*Ay - _y¢_)

1
Y,7= 7 (_Z_ - _)

I
x¢ = 7 (_yn_- _ny)

Y¢ = } (_z_x - {x_z)

1
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Subroutine BCMET (I,FM0,FM1,FM2,FM3)

Called by Calls Purpose

Compute various metric functions for normal gradient boundary con-
ditions.

BCDENS
BCF
BCNVEL
BCPRES
BCQ
BCTEMP
BCLWEL
BCVVEL
BCWVEL
BC1VEL
BC2VEL
BC3VEL

ETAX, ETAY, ETAZ

I

ISWEEP

11, 12, I3

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

o.to.t

FM0, FM1, FM2, FM3

Metric coefficients _/_,my, and _/z.

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i, j, and k, in the _, r/, and _ directions.

Metric coefficients _,, _y, and _z.

Metric coefficients _x, _,, and _.

Various metric functions used for normal derivative boundary
conditions.

Description

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the

fu'st ADI sweep,

FMI = 0

FM2 = _xnx + _yny + _z'lz

FM3 = *x_x + _y_y + _z_z

For the second sweep,

2 2FM0= _/ +_Ty+_z

FM 1 = _xrlx + _y_ly+ _z_lz

FM2 = 0

FM3 = 'Tx_x + ,lfy + q_z

And for the third sweep,
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FMI = _ + _fiz + _

FM2 = _x_x + rty_y + _z_z

FM3 = 0
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SubroutineBCNVEL(IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Calledby
BCGEN

Calls

BCMET
BCVN

Purpose

Compute normal direction velocity boundary conditions.

DEL

DXI, DETA, DZETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

W

I1, I2, 13

JI

METX, METY, METZ

NOUT

NR, NRU, NRV, NRW

RHO, U, V, W

Computational grid spacing in sweep direction.

Computational grid spacing A_, At/, and A_.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to _%, corresponding to the :\% conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Grid indices i, j, and k, in the _, ,/, and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Derivatives of sweep direciion computational coordinate with re-
spect to x, y, and z.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Description

Subroutine BCNVEL computes coefficients and source terms for normal direction velocity boundary
conditions. The linearized equations for the various general types of boundary conditions are developed in
Section 6.0 of Volume 1. The follovfi_ag sections apply these generalized equations to the particular normal
direction velocity boundary conditions in Proteus. s

s In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
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Specified Normal Velocity, V, =f

The normal velocity is defined as

v.=

where n is the unit vector normal to the boundary. For a _ boundary,

- L,-+--_-_# +--_-n = [---_[ m

where

Therefore, for a _ boundary,

m= ,J x 2+ ¢y2+ ¢]

1
G = --_ (_.u + _yv + _w)

Note that the unit vector _ is in the direction of increasing _. Therefore V. is positive in the direction of

increasing _. Thus, a positive V. at _ = 0 implies flow into the computational domain, and a positive V.

at _ = 1 implies flow out of the computational domain.

where

Similarly, for an r/boundary,

1
V,, = --_ (n_u + nyv + nzw)

m = 4rlx 2 + _iy2 + qz 2

and V. is positive _. the direction of increasing _.

where

And, for a _ boundary,

I
v, = -_ (Gu + (yv + Gw)

m = x//_x 2 + (y2 + _z2

and V. is positive in the direction of increasing {.

Applying equation (6.5) of Volume 1, the linearized boundary condition at a _ boundary becomes

t/

mi, j,k p AP+ _ A(pu)+ r A{Pv)+ =a,j,k
i,j,k

Analogous equations can easily be written for the _ and _ boundaries.

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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Specified Two-Point Normal Velocity Gradient in Coordinate Direction, (9Vv]Odp=f

Applying equation (6.8) of Volume 1 at the _ = 0 bounda-r3", and using two-point one-sided differencing,

J_,j, k V _xU + _yv + _zw

ml ,j, k [ P

JzJ, k V _xu + _yv + _zw

+ m_,j,k L -- P

a_+ 7- A(p_)+ -7 A(p_)+ A(_w)
- l,j,k

zx_+ A(pu)+ 7 A(pv)+ =
P "a2,j, k

(A_rn + 1 n nVl.j,k + (v.)l,j,k - (V,,h,j,k

At the _ = 1 boundary,

JN l - l,j, k F
m-'_ t -- t,j--[-k L

{xu + {yV+ _zw

+ JNI,j, k Im&,j; k p

" G ^ ]"^ ':YA(pv)+ -7- a(pw)
a_+ -_- a(pu)+ -7 ul - _,J,k

n

_x ^ _Y A(p%) .+_ .._.. A(;w) _ =
A_ + -7- A(pzg) + --'fi'-- _NI,j, k

(A_,,rn + 1 n n)Ju,_j,k + (VAN,- ld, k -- (V.)N.j, k

Analogous equations can easily be written for the _/and _ boundaries.

Specified Three-Point Normal Velocity Gradient in Coordinate Direction, OV.lO_a =f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

J1 ,), 1¢ F ' _xu + _yV+ Czw3
ml,), k L P

J2,;,k F _xu + _y_'+ Gw
+ 4-m_,J,k L - p

J3,j, k F _xU + _y'V + _z TM

m3,j, k L p

A_ + --y- a(p_) + 7 ,_(pv)+ 7 a(pw)
l,j, k

Cx ^ ¢, ^ ¢, ^]"
A_ + -'7 A(pu) + "-fi- A(pv) + "7 A(pw) 2,j ' k

A&-+v- (ow) =
3,j,k

21A_xrn + 1 n nZtl,j,k + 3(Vn)7,j,k-4(Vn)2,j,k + (Vn)3,j,k

At the _ = 1 boundary,

Jr..__2 - 2,j,__.__kV _xU + _yV+ _zw

mN 1 -- 2,j,k L P

JN 1- 1,j,k [- _X u + _yV+ _zW

4 my----l -1,j,"-_k L P

+3
Jx, j, _ V Gu + _yv+ _w
m?fi,L k L P

a_ + a(_.) + -7- a(pO + -7-7- a(pw)
_ - _,j, k

N_ -- l,j, k

a,_ + a(2_) + 7 _(pO + -7- a(pw) =
..a NI,J ' k

2zA¢w.n + 1 n -- nZtN,,j,k--(Vn)N_-2,j,1_+4(Vn)nUt-l,j,k 3(Vn)N,,L k
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Analogous equations can easily be written for the _/and _ boundaries.

Specified Two-Point Normal Velocity Gradient in Normal Direction, VV,.-n =f

Applying equation (6.!2a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

_x u + _yv + _z w

P

_l,j,k

?l

J2,y,k

a_ V: + __ (G,7_+ ¢:y + G,1A_,:,k
rn_ ,j, k ml ,y, kJl,j,k

n

+ (vA_,:,k - (vA2,j, k

(qAx "1- _y_y "1- ¢2'_z)1 ,j, k

and 67 and 6¢ axe the centered difference operators presented in Section 5.0 of Volume 1.
boundary,

At the _ = 1

J_',-!,y_k_ V Gu + _yV+ Gw
mN_-- l,j,k m P

J_q,j, k V _xU + _yV + _zw

m,v t,j, k L P

a¢ V:. +._ _ (¢:_ + ¢:y + ¢:_)N,,;, k
mNl,j, k V pct'j' k toNi,j, k

tl

+ (voW,;_ _,s,k- (G)N,,:,k

{x ^ _y ^ G ^ 1 _a_ + -7- a(pu) + --7 a(p_) + 7 a(p_) d
N l -- l,j, k

G ^ _y ^ G ^ 1 _
a_ + -7- a(pu) + -7 a(p_) + -7- a(pw)_ =

J Nl,j, k

6,7( Vn) _¢l,j, k -- mN 1,j, k

Analogous equations can easily be written for the _7and _ boundaries.

Specified Three-Point Normal Velocity Gradient in Normal Direction, VV, • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

J_ J, _ V _xU + _yv + _zTM

--5 m_,j,k L-- P

J2,j, k

+

J3,j,k I
m3,j, k

¢_ a(_w)l"

a_ + a(2_)+ a(#) +-7-a(_w)j2,: '

G.+ ¢:+ ¢: ___ _ ¢' ^]"p A_ + A(P_u) + A(p_v) + -7- A(pw) =
_3,j,k

• (_A_ + _yCy+ _A_I_,y,_ ]2a¢ F:,,+I (¢xrlx + _YrlY'+ ¢'zrlz)l'J'k arl(Vn)lnj, k-
m_ ,j, k ml ,j, k m_ ,j, k

+ 3(Vn)l,j,k -- 4(Vn)_,j, k + (Vn)3,j, k
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and 5, and 6_ are the centered difference operators presented in Section 5.0 of Volume 1.
boundary,

Jwt - 2,j, k V _xU + _yv + _zW

mu_ - 2,j, k k P

JNt -- 1,j, k [- _xu + _yv + _zTM

4 mu---_l--- 1,j,--'--'kk L P

J:¢_,j, k V _xu + _yv + _zw

+ 3 mNl,J,--------_L P

a_ +-_-a(pu) + a(_v) +-_-A(p_)__Nt_2,Z _

A_ +-7 A(ou)+ A(2v)+ -7- _(pw)
Nl.- l,j,k

A_ + --7 A(pu) + A(;v) + --fi- A(pw) =
"aNt,j, k

2A¢ [:+_ (_:_+_:y+_:,)::,,j,k_,(v,,):7-,,:,k-(_Zx+¢yCy+_g,)N,,j,k
toni, j,k LJ Nt'j"k mN t,j,k mNpj, k

-- (Vn)nXt- 2,j,k + 4(Vn)_¢, -I,j,k - 3(Vn)nNt,j,k

Analogous equations can easily be written for the _ and _ boundaries.

At the _ = 1

]
NI, j, k

I

Linear Extrapolation of Normal Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundaa;y,

Jl,j,k [ _xu + _yv q- _zw ___ _Y ^ _z ^ _ nml,j, k p A_ + A(;u) + --7 A(pv) + --7 A(pw)_j l,j, k

Y2,:,_ I _+_y_+_ G., ^, _, ^ G ^ ] _
m2,j,"--- _ p A_) +-'ff- a(PU) +-'ff- A(PV) + -'fi- A(pw)_.J2,j,k

2

J3'J'k [ _xuT _yvW _zw _ k _z ^ In+ m3,j,........._ P A_ + A(;u) + A(;v) + --7 A(pw) =
-a 3,j, k

pl tq 7"1

- (Vn)1,j, k + 2(Vn)2,y,k-(Vn)3,y,k

At the _ = t boundary,

JNt- 2,j,k ImN t - 2,j,k

JN l -- l,:,k

2 _-NNt--i--j-_,k [

JNt'J'R [+ m_,j,--_-[

___ Cy ^ G ^ 1"_._ + Cyv+ _: a_+ A(_) + -7- a(pv) + 7 a(pw)
P N t -- 2,j, k

_xU + _YV + _ZWp + _ --ff-_Y ^ _z ^ In,',_ a(_,u)+ :,(pv) + ,,,(:,w)
Nt -1,.i,_

_xU+_yv+_z w ___ _y ^ _z ^ _np _ + a(_) + -7 :'("_) + --7 a(pw) =
"a Nt,.], k

- (v,)_; _ :,:,_ + 2(v,)Tvt- _,:,_- (v,)_, :,_

Analogous equations can easily be written for the _ and _ boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.
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2. An errormessageis generatedand execution is stopped if a non-existent normal direction velocity
boundar3' condition is specified.
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SubroutineBCPRES(IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Calledby Calls Purpose
BCGEN BCGRAD Computepressureboundaryconditions.

BCMET

l.p=

CP, CV

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

GC

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

* IHSTAG

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU, NRV, NRW, NET

P,T

PR

RGAS

RHO, U, V, W

* RHOR, UR

o._Q. m

A,B,C

Specific heats cp and c_ at time level n.

Computational grid spacing in sweep direction.

Derivatives Op/cgp, Op/O(pu), Op/O(pv), OpJc3(pw), and Op/OEr.

Derivatives OT]cgp, OT]c3(pu), OT]d(pv), OT]O(pw), and OT/OEr.

Proportionality factor g, in Newton's second law.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to Nq, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonaI grid transformation, J- 1.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static pressure p and temperature T at time level n.

Reference pressure p,.

Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Reference density p, and velocity ur.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).
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Description

Subroutine BCPRES computes coefficients and source terms for pressure boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular pressure boundary
conditions in Proteus. 9

No Change From Initial Conditions, Ap = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = JOg/OQ, we get simply

:_,i,k! _p + a(;_) + _(pO+ _(pw)+
L -J4j, k

=0

The derivatives Op/dp, OplO(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 4.3 of Volume 1.

Specified Static Pressure, p = f

Applying equation (6.5) of Volume 1,

4,:,k _°P _x_+ A(fu) + a(p0 + a(_w) + _ Aer ij,
_ ¢.n + 1 Prgc n
-Ji,j,k 2 Pi, j,k

k PrUr

Specified Two-Point Pressure Gradient in Coordinate Direction, Op/O¢ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

+J 'J'L A,+ (-Tg + A&)+ a(;w) =
"-'2,j, k

__ rl 11
n+l Prgc +Pl,j,k--P2,j,k

(h¢_,;,,Pr_]

At the _ = 1 boundary,

E Op Op ^ Ov ^ Ov ^l n

_P ,'4 + A(fu)+ _ A(p_)+ a(_w)+ _ _E =
"+ LVI,j, k _ ...JNl,j,k

n+l Prgc n n
(a_;, j, k -----T + P,_ - 1j, k -- PN_j, k

P rUr

In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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Analogous equations can easily be written for the _ and r boundaries.

Specified Three-Point Pressure Gradient in Coordinate Direction, OplOdp = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

Op A_ + Op ,, a(Ov) + op + _ AErl
-34j, k T# _a(pu)+ 3--_7 a(pw) _..r Jl,j,k

+ 4:2,y, k _ _ A(pu) + _ _T d2,), k

- J3j,k G-pA_+ a(-G-@A(p")+ A(_v)+ a(--G-_-a(PW)+ =
vZ:'T J3,j, k

21A_Cn + I Prgc " n n)J_,y,k y+ 3P_,Y,k--4P_,Y,k + P3,j,k
PrUr

At the _ = 1 boundary,

JNI- 2'j'k W V_T ANl_ 2,j,k

- 4JN, - l,y, k _ _ a(pu) + a(#) + _ _r AN, - 1,y, a

+ 3JN,,y '/_ _ A_ + _ A(pu) + A(pv) + _ A(pw) + =
_r ANI,j, k

21A_cn + 1 Prgc n n nJJNl,j,k 2 PNI--2,j,k +4PNI--I,j,k--3PNt "j'k
P rUr

Analogous equations can easily be written for the _/and _ boundaries.

Specified Two-Point Pressure Gradient in Normal Direction, Vp. -n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

LF°P'"°, =&,;,k "_ ^ Op ^ ol, ^ "+

..a2,j, k

A¢ F¢n+l Prgc (¢xrlx+¢y_ly+#zrlz)_,Y, k n (¢Ax+¢YCY+¢zCz)_,Y, _ n 1

ml ,j, k P rUr I_,j, k 2 m_ ,y, k 6qp_ ,y, k ml j, k 6¢p],y, k

+ P,Tj, _ - P2n,J,

where
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m = _/_x 2 + _y2 + _z2

and 6_ and 6¢ are the centered difference operators presented in Section 5.0 of Volume

boundary,

1. At the _=1

+ Y_;,_,k Tp _p + _ zx(pu)+ A(7_)+ _ _(pw)+ =
V_T I y_,j, k

A_ [ YNI,j, k Prgc ntoNi,j, k PrU2r toNi,j, k 6r_PNl,j, k -- tuNa,j, k
l._

n n

+ PN 1 - i,y, k -- PNv j, k

Analogous equations can easily be written for the _1and ( boundaries.

Specified Three-Point Pressure Gradient in Normal Direction, Vp • -n= f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

^_ 3j,,i,k -T#Ap+ A(pu)+ A(7_)+ a(-_--6Ta(pw)+ Tr AE _,_,Zk

ap ^ ap A_ou)+ zX(_)+ a(_w)+ _ zXE+ 44,j,_ _ Ap+ _ _,J,_

- J_,J,__"_ + a-T_T_(_)+ _(_)+ A(_)+ TT Ae =
_3,j,k

2A{ Fen + _ Prgc (_x_Ix + _yrly + ¢z_lz)_,y, k n

ml ,j, k P rUr__ l,j, k 2 m_,j, k 6nPa 'j' k

n /.i n

+ 3pl,y, _ - 4p2,y, k +P3,j,k

(_/. + CyCy+ _/_)_,y, k n -1

ml ,y, k 6_p_ ,y, 1

where

m = _/¢_ + _7 + ¢_

and 6, and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1.

boundary,

At the _ = 1
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•IN l - 2,j,k

-- 4JN_- l,j,k

+ 3JN_,j,_

2A_

mNi,L k

op a_ + a(p_)+ a([O + a([_,)+ A,}
_"--r J& _ 24, k

Op_ + o; ^ a()) + _(2_)+ ae
U_- _,j, k

Opa_+ o; ^ Op ACov)+ A(}w)+Oe---7_rjN,j,k=-aT _ A(;_)+ o-gg

Fr_ + 1 Pr& (_xr/x q" _yny "+" _zrlz)N,,j, k n (_Ax + ¢y(y + _z_z)N,,j, k

-- L JNl'J'k Pr4 mNl'J'k 6'flU"j'k-- mN"Y'k

pl n n

- P_q . =,],k + 4pN _ _,j,k - 3PN,l,k

Analogous equations can. easily be written for the _ and ( boundaries.

Linear Extrapolation of Static Pressure

Applying equation (6.14) of Volume 1 at the { = 0 boundary,

[Opaa+ Op ^ Op ^ op aCo_)+Op ^r]_-",,j,k _ o(-RT-Ea(p")+o-RTEa(Pv)+o(-G-_3- -gg-T-raE _,,,j,k

Fap^o@pu)^O@pv) Op^ Op^T]n

;"1 ;'7 _'1

Pl ,j, k + 2P_2,j, k- -P3,j,k

At the _ = 1 boundary,

FOp ^ o@_) ^ o@_)A(;,)+ Op ^ Op . _ ]"_ A(..)+ +

FOP ^ a@pu) ^ o@pv) ov ==--:-.OP ^ _-_r^r]"_+ JNI,J, kL'_'-p AP + a(p,,)+ a(_)+ _pw)a(pw)+ ae =
Nt,,], k

-P_¢,- 2,),_ + 2PN,- l,y, k--PN_,j,k

Analogous equations can easily be written for the _ and _ boundaries.
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No Change From Initial Conditions for Total Pressure, Apt = 0

The total pressure is defined as

Y

y--I

Applying equation (6.3) of Volume 1, we get

Opr ^ Opr .. ^. OPT ,, Opr
OPT A_ + + + A(pw) + AE = 0

Ji,j,k _ _ A(pu) _ LMp'g) _ -_T --i,j,k

where

Y 1

- )Op =--Op + p--2 1+ M 2 _-1 OM 20P

OPT

_(pu)

Y 1

O(pu)OP(I+____M2),-,+P2(I+__M2)-y-_ 0(pu)0M2

y 1

__ 0P (l+-_M2)'-' ' ( -_ )= _O(pv) + p--2 1 + M 2 y- l 0(pv)0M2

7 1

+ + _(E_-)0(--_) =_(--_ +PT

y 1

OET OE T + p--_ 1 + M 2 _- I OM 2= _ dE T

The Mach number is defined by

M 2 _
u2+ v2 + w2 (;u)2 + (;v)2 + (;w)2

_RT _Rp2T

The derivatives OM2/Op, etc., can then be derived as

OM 2 _M2(2 lOT)Op = 7 + TOp

OM 2 2u M 2 OT

O(pu) _'P T O(pu)

OM 2 2v M 2 OT

O(p_') _'P T O(pv)

OM 2 2w M 2 OT

O(pw) YP T O(pw)

OM 2 M 20T

dE T TOE r
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Specified Total Pressure, Pr = f

Applying equation (6.5) of Volume 1, we get

f cOpT A_+ opt ^ _A(;v)+ opT "'^" opT AT1 n

J_,j,kL ap a(-77 A(p_)+ _,_,, _,,tpw) + _ AS_ =
"ai,j, k

.. +y-1 M 2 y-i,-n + 1 Prgc n
:i,i, k 2 P,,j, k I 2

PrUr i j, k

where pr, apr/Op, etc., are defined above as part of the description of the Apt = 0 boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent pressure boundary condition
is specified.

3. The multiplying factor p, gc]p,u 2,that appears with specified values of pressure and pressure gradients is
necessar_ because input values of pressure are nondimensionalized by the reference pressure
p, = p,R T,]gc, while internal to the Proteus code itself pressure is nondimensionalized by the normaliz-
ing pressure p,--p,uL (See Section 3.1.1 of Volume 2.)
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Subroutine BCQ (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by

BCGEN

Calls Purpose

BCGRAD Compute conservation variable boundary conditions.
BCMET

i.p t

DEL

DXI, DETA, DZETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

If, I2, I3

JI

NC, NXM, NYM, NZM, NEN

NOUT

RHO, U, V, W, ET

Description

Computational grid spacing in sweep direction.

Computational grid spacing A_, A)/, and A_.

Base index and multipfication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N,_, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the #vectorized" direction,/,.

Grid indices i, j, and k, in the ¢, n, and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations.

Unit number for standard output.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions.
The linearized equations for the various general types of boundary conditions axe developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular conservation vari-

able boundary conditions in Proteus:

l0 In the following description, for the first and second ADI sweeps i_hedependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
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No Change From Initial Conditions, AQ = 0

Applying equation (6.3) of Volume 1, and noting that OglOQ = JOg/OQ, we get simply

Ji,j, kAQ_,j,k = 0

where Q is the element of (_ for which this boundary condition is to be applied.

Specified Conservation Variable, Q =f

Applying equation (6.5) of Volume 1,

An ¢.n + 1 n
Ji,j, k AQi,j, k = Ji,j, k -- Qi,j, k

Specified Two-Point Conservation Variable Gradient in Coordinate Direction, OQ/Oc_ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundar3', and using two-point one-sided differencing,

An An =tA_gn+l n n-- Jl,j, k AQI,j, k + J2,j, k AQ½,j, k _ )Jl,j, k + Q1,j, k - Q2,L k

At the _ = 1 boundary,

_ An IA_rn+l + n _ n
JNl_l,j, kAQ_l_l,j,k + JNl,j, kAQNj,j,k=k IJN,,j,k QNI-I,j,k QNl,j,k

Analogous equations can easily be written for the _/and _ boundaries.

Specified Three-Point Conservation Variable Gradient in Coordinate Direction, OQIOc_ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

A_ A_ A_

-- 3Jl,j, k AQ1,j, k + 4J2,j, k AQ_,j, t_ - JB,), k AQ_,j, k =

n+l " :_n " " n n
2(A_ ,j, k + 3Q1,2, k - 4Q2,j, k + Q3,:, k

At the _ = 1 boundary,

A/_ A_ AFI

JN l - 2,j, k AQN l - 2,j, k -- 4JN l - l,j, k AQN 1 - l,j, k + 3JNt,j, k AQNI,j, k =

2tA_cn + I n n nk )dNl,j, k -- QN 1 - 2,j, k q- 4QN 1 - l,j, k -- 3QNa,j, k

Analogous equations can easily be written for the _/and _ boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, VQ • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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A_

A n A n

- J_,j,kAQ_,y,k + J2,j,kAQ_,j,k=

[-:_+ _ (¢:x + _y_y+ _2nz)_:,k

mt,j,k L-/1,J, k ml,j,k ' 6nQl,j, k - ml,j, k

?1

+ Q_",j,k - Q2j, k

where

and 6_ and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,

A n A n

-- JN_ - I,j, kAQN_ - 1,j,k + J:c,,j, kAQ:v_,],I_ =

toNi,j, k L"/NI''I' k mNl,j, _ ' 6nQt¢_,], k

n

+ Q:v_-_,zk - Q_,,zk

(_x_x+ {y_y+ r 7

mN l,j, k 6¢Q:fi,j, k3

Analogous equations can easily be written for the _ and _ boundaries.

Specified Three-Point Conservation Variable Gradient in Normal Direction, VQ • n = f

Applying equation (6.12a) of Volume l at the _ = 0 boundary, and using three-point one-sided differ-
encing,

2A_

ml ,j, k

A n A_ A n

-- 33"1,), k AQI ,./, k + 4J2,j, k AQ_,), k -- JLj, k AQ3,), k =

__V:n+l (¢xrlx+¢y_Y+¢ZrlZ)l,J, k n " 7
ml,j, k ml ,j, k JLJ l ,j, k 6?Q1 ,j, k 6¢Q_ ,j,

- 4Q2,j, k + Q3,j, k

where

m = N//_X2 + _y2 + _z2

and 6_ and 6_ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,

JY t - 2,j, k AQN t - 2,j, k -- 4JN 1- l,j, k AQN_ - l,j, k + 3JN_,j, k AQN_,j, k =

2A¢ Vc" + _ (¢xnx + Cyny + Cznz):V,,:, _ n (¢x_x + CyCy + ¢i_z):V_,j, _ 6¢Q._fi,j, _]k [: N,,:, - mu,,), 1_ 6?QN' 'j' 1_-- rn,vt,L k
..I

- 2,L _ + 4QN, - _,j, k -- 3QN,,j,

Analogous equations can easily be written for the _7and ¢ boundaries.

Linear Extrapolation of Conservation Variable

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

A/I A_ A/, l /1 /'1

J1 ,j, k AQ1 ,j, k -- 2J2,], k AQ2,j, k + J3,], k AQj,j, k = -- Q_a,j, k + 2Q_,j, k -- Q3,j, k
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At the _ = 1 boundary,

A_}7v ^_ ^_ _J,v,-2,j,, ,- 2,i,k- _v,-1,j,k AQ_,-i,i,k- J,v,,j,kAQ_:,j,k= -0_,_ 2,j,k+ 2Q_; ,j,,- Q,v,,j,k

Analogous equations can easily be written for the _ and _ boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent conservation variable boundary
condition is specified.
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Subroutine BCSET

Called by [ Calls

MAIN [

Purpose

Set various boundary condition parameters and flags.

* GBC1, GBC2, GBC3

* GBCT1, GBCT2, GBCT3

* GTBC1, GTBC2, GTBC3

* IBC1, IBC2, IBC3

* IHSTAG

ITDBC

* ITURB

* JBC1, JBC2, JBC3

* JBCT1, JBCT2, JBCT3

* JTBCI, JTBC2, JTBC3

* KBC1, KBC2 KBC3

NBC

NEQ

* NOUT

* NTBC

* NTBCA

* N1, N2, N3

FBC1, FBC2, FBC3

FBCTI, FBCT2, FBCT3

IBCELM

Surface mean flow boundary condition values for the ¢, n, and
directions.

Surface k-_ boundary condition values for the ¢, _/, and _ di-
rections.

Time-dependent surface mean flow boundary condition values for
the ¢, ,/, and _ directions.

Point-by-point mean flow boundary condition types for the 4, g,
and ¢ directions (if set in input.)

Flag for constant stagnation enthalpy option.

Flag for time-dependent mean flow boundary conditions; 0 if all
boundary conditions are steady, 1 if any general unsteady bound-
ary conditions are used, 2 if only steady and time-periodic
boundary conditions are used.

Flag for turbulent flow option.

Surface mean flow boundary condition types for the ¢, r/, and
directions.

Surface k-e boundary condition types for the ¢, ,/, and _ directions.

Flags for type of time dependency for mean flow boundary con-
ditions in the _, n, and ¢ directions.

Boundary types for the ¢, n, and _ directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid points N_, N2, and Ns, in the _, n, and _ directions.

Point-by-point mean flow boundary condition values for the _,
_/, and _ directions.

Point-by-point k-r boundary condition values for the _, n, and
directions.

Flags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary conditions in the _ and/or _/
directions; 0 if elimination is not necessary, I if it is.
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IBC1, IBC2, IBC3

IBCT1, IBCT2, IBCT3

IBVUP

JBC 1, JBC2, JBC3

KBCPER

NPT1, NPT2, NPT3

Point-by-point mean flow boundax3 condition types for the _, _,
and _ directions.

Point-by-point k-_ boundary condition types for the ¢, ;7, and
directions.

Flags for updating boundary values from first two sweeps after
third sweep; 0 if updating is not necessary, 1 if it is.

Surface mean flow boundary condition types for the _, r/, and
directions (if using the KBC meta flags.)

Flags for spatially periodic boundary conditions in the _, ;7, and
directions; 0 for non-periodic, 1 for periodic.

N_, N2, and N3 for non-periodic boundary" conditions, N1 + 1,
N2 + 1, and N3 + I for spatially periodic boundary conditions in
_, n, and _.

Description

Subroutine BCSET sets various boundary condition parameters and flags. It first sets NPT1, NPT2,
and NPT3, the number of grid points in each ADI sweep direction to be used in computing coefficients and
source terms. For spatially periodic boundary conditions in the _ direction, NPT 1 = N 1 + 1. Similarly, for
spatially periodic boundary conditions in the _/ direction, NPT2 = N2 + 1. And, for spatially periodic
boundary conditions in the _ direction, NPT3 = N3 + 1. This is done in order to use central differences
at the periodic boundary. (See Section 7.2.2 of Volume 1.)

Next, if the boundary types are being specified using the KBC meta flags, the appropriate mean flow
surface boundary condition types are loaded into the JBC arrays. Special flags are set if spatially periodic
boundary conditions are being used. Then, unless the mean flow boundary conditions are being specified
point-by-point using the IBC and FBC parameters, the appropriate IBC and FBC parameters are loaded
with the JBC and GBC values.

If three-point gradient or extrapolation mean flow boundary conditions are being used, a flag is set for
eliminating the resulting off-diagonal coefficient submatrix. If gradient (two-point or three-point) or ex-
trapolation mean flow boundary conditions are used during the first or second sweep, a flag is set for up-
dating the _ and r/boundary values after the third sweep.

Next, for turbulent flow using the k-_ model, if the k-_ boundary conditions are being specified using
the JBCT and GBCT parameters, the appropriate point-by-point boundary condition types and values (the
IBCT and FBCT parameters) are loaded with the JBCT and GBCT values.

And finally, the input boundary condition parameters are then written to the standard output fde.

Remarks

1. An error message is generated and execution is stopped if an invalid boundary type is specified with the
KBC meta flags.
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Subroutine BCTEMP (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute temperature boundary conditions.
BCMET

CP, CV

DEL

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

* IHSTAG

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU, NRV, NRW, NET

P,T

RGAS

RHO, U,V,W

A, B, C

Description

Specific heats cp and c., at time level n.

Computational grid spacing in sweep direction.

Derivatives OT[Op, OT[O(pu), OT]O(pv), OT/O(pw), and OT]OEr.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,I), where I runs from
1 to N,_, corresponding to the 1_%conditions needed, and J-- I
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static pressure p and temperature T at time level n.

Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0
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of Volume 1. The following sections apply these generalized equations to the particular temperature

boundary conditions in ProteusY

No Change From Initial Conditions, AT = 0

^

Applying equation (6.3) of Volume 1, and noting that OglOQ = JOglOQ, we get simply

F OT A_ + OT ^ OT ,,^, OT ^ OT ^rl n
J_,j,kL_ o-R3-g'x(Pu)+_ ,,_pv_+_ A(pw)+_ AE., =0

-Ji,j,k

The derivatives OT/Op, OT[O(pu), etc., depend on the equation of state. They are defined fora perfect gas
in Section 4.3 of Volume 1.

Specified Static Temperature, T = f

AppIsfizag equation (6.5) of Volume 1,

OT A_ + OT OT ^ OT ^ OT A
J_,:,k_ o(-S(y_-A(p'_)+0-_-p_-a(Pv)+_A(P_)+}2-_rzxE =_,j,k-_,_,k

-'a i,j, k

Specified Two-Point Temperature Gradient in Coordinate Direction, aT/aq5 = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing_

r OT .A OT ^ OT ^ OT A OT ^T1 n
-- Jl,j,k L -_P up + _ A(pu) + _ A(pv) + _ A(pw) + OE----rAE__ 1,j,k

[-OT .^ OT ^ OT ^ + OT ACpw)+ OT ^rl n
+4,j,k[_,-'p+o(--yga(p,,)+o-R3Sa(pv)_ _ ,',E_,=

J2,j,k

_,),k + Tl,j,k- ,,

At the _ = 1 boundary,

F OT .^ OT .. ^. OT ^, OT ^ OT ^rl n
-- Ju t- l,j,kL _ _p + _ _t,pU) + _ A(pv) + _ A(pW) + _ AE "-'NI _ ],j,k

A ATlnF OT .^ OT ^ OT ^ OT A(pw)+ OT

Nl,j, k

(A_cn+l + n_N,,j,k T_,- l,i,k- _,,i,k

Analogous equations can easily be written for the _/and _ boundaries.

Specified Three-Point Temperature Gradient in Coordinate Direction, OTlOd? = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

In the following description, for the first and second ADI sweeps the dependent variable should have the superscript

* and *', respectively, representing the intermediate solution, and for the third ADI sweep it should have the

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-

scripts on all other variables are correct as written.

Proteus 3-D Programmer's Reference 4.0 Proteus Subprograms: BCTEMP 99



I OT .^ OT ^ OT ^ OT ^ OT ^T1 n- 3:_,j,k _ "P + o-CA-g'x(Pu)+ _ _(pv)+ _ A(p_)+ _ _XE-_,:,,

I OT.^ OT ^ OT A aT ^ Or ^Tln+ 412.i.k _ ". + _ a(p_)+_ a(ev)+_ A(ew)+ _ aE -_2,i.*

• [aT.^ aT ^ aT ^ aT ^ aT ^rln- J3.;, k _ _P + _ A(pu) + _ A(pv) + _ A(pw) + _ AE =
-J3,j,k

At the _ = 1 boundary,

lOT .^ OT ^ OT ^ OT ., ^. OT ^T[n

"31

JAr,- 2,y.k _ Lap+ _ A(pu) + _ A(pv) + _ ,.tpw) + _ AE -'iV,_ 2,y,k

[ ar .^ ar ^ aT ^ aT .,^. OT ^ I"- 4JN,_ ,.i.k -_-p"p + a-_ A(p_)+ a-_ A(p_)+ a-_ "'_pw_+T_-/ A¢ _N,- ,.j,k

lOT.^ aT ^ aT ^ aT ..^. aT ^r]"+ 3JN,,y,k _ zap + _ A(pu) + _ A(pv) + _ zatpw) + _ AE =
-" Na,y,k

n+ , 4TnN, _ 3T_V,,j,k2(A_)f_,,j, k -- _, - 2,j, k + --l,j,k

Analogousequationscan easl]ybe writtenforthe'Iand _ boundaries.

Specified Two-Point Temperature Gradient in Normal Direction, VT. n = f

Applying equation (6.12a) of Volume 1 at the # = 0 boundary, and using two-point one-sided differ-
encing,

where

aT aT .. ^. aT ^ aT .. ^. aT ^y [n

F aT aT ,,.^. aT ^ aT A'_) OT ^T1 n
+ Y2,j,k L -_p a_ + _ atpu ) + _ a(pv) + _ (p + -_T AE__ =

"a2,j, k

a¢ Fcn+l (_x_Ix-{- _y_ly + _zrlz)1,j,k n (¢Ax + _y(y+ ¢gz)',J,I¢a_Tlnj k 1
m_,j, k ml.j, k 1J l,y, k - 6nTl ,j, k - ml,y, k ' '

+ T_,j, nk- T_,j, I,

m=,/¢fl + ¢y2+ ¢2

and 6, and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1.
boundary,

At the _ = 1
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I OT .^ OT ^ OT A OT A OT ATIn- Lye-_a,k _"p + ogYgAO,u)+ e'-&-gA(pv)+ _ ao,w)+_ AE N,-_,i,k

[- OT .^ OT ^ OT A OT ^ OT ^r_ n
"_NI,j,k

A_ F_.n + 1 (_xVlx+ _yrly+ _zrlZ)Nl'j' k

mN_,j, k LJNl'J' k tuNa,j, k

+ TnN,_ ,,j, k -- TnN,,j,k

(_x_x + _y_y+ Czgz):C_,j,k 6eThyl,j, k-]
_rlT_vl,j, k -- toNi, j, k J

Analogous equations can easily be written for the _/and _ boundaries.

Specified Three-Point Temperature Gradient in Normal Direction, VT.-n =f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

- 3Jl,j, k

+ 4J2d, k

OTAS+ OT .. ^.-_p _ atpu)

E OT .,, OT ..^."P+ o--gyg"t""_

or ^ . aT ..^., or AF. "-In

+ _-RTga(,'") "- a--_7"_p") *-a_ "J_,j,k

OT A aT A OT ^rl n+ aR-_ A(pv)+_(-7_A(pw)+TE-;AE 2 :k

lOT .^ OT ^ OT .. ^- 8T A_T[ n =

"1

- 4 a,k _ "'P+ a-D-ga(p_)+_ ,,w_>+_ _(p%)+ _°r
UX'T _.13,j, k

2A_ Frn+ I "(_xr/x+ _yny+ _znz)1,j,1¢ n ({x_x + _y(y+ _Az)l'),t_
m-_,j, k ml,j, k ml ,j, kW_,j, k -- 6nT],j, k

+3_,i,_-4T;,j,_+r;,j,_

where

m= 4¢x 2 + _y2 + ¢2

and 6, and 6¢ are the centered difference
boundary,

JN 1 - 2,], k

- 4J_c__ _,j, _

operators presented in Section 5.0 of Volume 1.

+ 3JN_,j, k

2A_ Fen + ' (_xrlx + _Y_/Y+ _?lz)U,,j, g

At the _ = 1

_ c3T_^ OT ., ^. . OT .,A- OT ^ -_r AET] n+ 0--_ atpu) -e_ L_tpV) + _ A(pw) + __OT ^12.0

NI 2,j,k

I OT.^ OT ^ " OT ..A- OT ^ OT ._-]n
l._p-b _ A(pu) "k"_ ZM,R'V) "I-_ A(pW) + _ ALTJ N1 _ ],j,IC

[ cgT,^ OT ^ 8T ^ OT ^ or ^q n-D-P,v + a-gyga(_,u)+ _ a(p_)+ _ a(_w)+-gg7 ae =
--'N_,LI_

Analogous equations can easily be written for the 1/and _ boundaries.

(_AX "st" _yCy + _z_z)NI,j, k 6(T_l,j ' klImN_,j, k
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Linear Extrapolation of Static Temperature

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

I OT ^T_ nOT .^ OT ^ OT ^ OT ^ + -_T AEJ_,:,k _ "p+ o-_ A(p_)+ o-_ A(pv)+ 0--_A(p_) _,j,k

I OT .^ OT .. ^. OT ^ OT ^ _T ^ n
+ _ A(pw) + _ AETq

- 24s,k _ '>+ o-_ a_P_+ o-_ A(p_)
°tPW) OLT J2,j, k

OT .^ OT ^ OT ^ OT _,^- OT - _ -]n

- T_,j, k + 2T_2,j,k- T_3,i,k

At the _ = 1 boundary,

lOT OT ., ^, OT ^ OT A OT ^7.[ n

•iI I

JNl_ 2,j, k _ A_ -1-_ I.M,pu) -F" O-_T A(pv)'k- O_pw) A(pw) + OE----'TAE_ Nt- 2,j,k

07" 07" A
OT .^ OT ^ OT b(pv) + O(pw) A(pw) + OE r E- 2Ju,-1,j,k 77"P + O-_VgaOu) + 7_ N,-1,],_

_ or .^ . OT ,,^. OT b(pv) + OT ,,^- OT - _ -]n+]N,.],k _Ap"p+ o_"tpu_+ _ o(p----_"w_>+ Of----Ta_rJu,,j,k=

-- r_ 1 -2,],k + 2T_,_ l,j,k-- T_l,j,k

Analogous equations can easily be written for the _ .and ¢ boundaries.

No Change From Initial Conditions for Total Temperature, aTr = 0

The total temperature is defined as

TT=T(I+ 3'- 1_ --T-M 2)

Applying equation (6.3) of Volume 1, we get

f- OTT ^ OTT ^ " OTT A(pv) + OTT ^ OTT ^ -in = 0

where
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"o-_),_(pu) a(pu)

aM 2

OT T

OE T

(3T 1+ M 2 + T O(pw)O(pw)

OT 1 + M 2 +
aET ---7 " -g-_r

The Mach number is defined by

2 w2
M2= u +v2+

(pu)2+ (pv)2+ (pw)2

yRp2T

The derivatives OM2/Op, etc., can then be derived as

OM 2 _M2(2 lOT)Op = 7 + T Op

OM 2 2u M 2 OT

a(pu) YP T 3(pu)

OM 2 2v M 2 OT

O(pv) YP T O(pv)

OM 2 2w M 2 OT

O(pw) YP T O(pw)

OM 2 M 2 OT

OE T TOE T

Specified Total Temperature, Tr = f

Applying equation (6.5) of Volume 1, we get

I OTT A OTT ^ OTT ^ OTT ^ OTT ^ t n
AE T .

J;,:,k _ :'p+_ _(pu)+_ :,(pv)+_ a(p.,)+_ _,;,:,

( l °
Ji, j,k -- T_j,k 1 2 /li,j, k

k

where Tr, OTrlOp, etc., are defined above as part of the description of the ATr = 0 boundary condition.

Remarks

I. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.
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2. An error message is generated and execution is stopped if a non-existent temperature bounda_r3' condi-
tion is specified.
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Subroutine BCUVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute x-velocity boundary conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU

RHO, U

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-

dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep

direction, specified as IBC(I,J) and FBC(I,I), where I runs from

1 to N,_, corresponding to the N,_ conditions needed, and J = I

or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Unit number for standard output.

Array indices associated with the dependent variables p and pu.

Static density p and velocity u at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCUVEL computes coefficients and source terms for x-velocity boundary conditions. The

linearized equations for the various general types of boundary conditions are developed in Section 6.0 of

Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary

conditions in ProteusY

In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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No Change From Initial Conditions, Au = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = JOg/OQ, we get simply

U A_ + _(pu) =0
Ji,y,k -7 i,y,k

Specified x-Velocity, u = f

Appbing equation (6.5) of Volume I,

I A in _,enWl_unu A_ + 1 A(pu) --:i,j, k i,y, k
&,i,k -a- 7 _,j,k

Speci)qed Two-Point x-Velocit F Gradient in CoOrdinate Direction, aula4_ --f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

[ A]" [ ^]"u ^ u ^ 1 A(pu) =--Jl,y,k ---fi-Ap + l A(pu) +J2,Lk ----fi-Ap +7
t,y,k 2,j,k

(A_¢n + l u_ _I/l,j,k + l,j,k u2,y,k

At the _ = 1 boundary,

[ ] [^ n u ^ 1 A(pu) =1 A(pu) + JNbj, k -- -'fi'- Ap + --ff-
-- JN, --1,j,k ---_- A_ +-.fi-- Nt- l,j,k Nl,j,k

):.-n+ 1 _ n n
( A_ ff Nl,j, k -t- UNI _ l,j, k -- UNI,j, k

Analogous equatio:;s can easily be written for the _/and _ boundaries.

Specified Three-Point x-Velocity Gradient in Coordinate Direction, Ou/& k = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

^ n

^ " . ^ 1A(pu)]2,:,k---3Jl,y,k[---_-A_+'_-A(pu)],,j,k+4J2,y,k[----fi-Ap+-y

[ _-- .__ ^ in 2:A{ 'on+' 3U_,y, n n-- "13,j, k - A_ + A(pu) = t 2:l,j, k + k -- 4u'2,j, k + u3,y, k
3,j,k

At the _ = 1 boundary,

[ ] [^ ,7 u ^ 1 A(pu)u A_+ I A(pu) -4JN,_I,L k ---#-Ap+-fi-
YN_- 2,y,k ---_- -if" ,v_- 2,y, k N_- l,y,k

1 A(pu) = t )JN_,j, k -- UN_ - 2,j, k + 4UN l -- 1,j, k 3UN>j, k
+ 3JNl,y, k -- A_ + --#- Nv), k

Analogous equations can easily be written for the _ and _ boundaries.
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Specified Two-Point x-Velocity Gradient in Normal Direction, Vu. n = f

Applying equation (6.12a) of Volume I at the _ = 0 boundary, and using two-point one-sided differ-

encing,

- Jl,j, k - -7- T A(pu) + 4,j, k - 7 7- a(pu)J2,j, k
l,j,k

trh-j, k ml,j, k ml ,j, kJl,j, k - 6,7ul ,j, k

n tl
+ ul,j,k - u2,j, _

where

m= 4¢x 2 + ¢y2 + Cz2

and 6_ and 6¢ are the centered difference operators presented in Section 5.0 of Volume I.
boundary,

At the _ = 1

u 1 ^ -In

- J,v, - _,j,k [ - T a_ + T a(p_)J_¢,_ _,j,k

'_N,,-_,k L_N,,j, k- ,_N,,j,k
/,/ /7

-'1-/2NI _ I, j, k -- UN 1,j, k

[ ^]°1 A(pu)
+ +7

(_Zx + _yCy -I- _z_z)Ni,j, k

6 nUNt, j, k toNi,j, k

Analogous equations can easily be written for the r/and _ boundaries.

Specified Three-Point x-Velocity Gradient in Normal Direction, Vu. "n= f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-

encing,

[ ^in[ 1 zX(pu) + 44,j, k - 7-'a; + --F
-- 3Jl,j, k -- -_- A,_+ -if" l,j,k 2,j,k

u A_+ 1 A(pu) =
-- J3,j, k -- "p- T 3,j,k

2,M 1-,-,,+ 1 (_xnx + _y,ry+ _znAt,j,

ml,j, k Ljl'j'k m,,j,k

+ 3u_,j, k n n-- 4u2,j, k + uS,j, k

(_AX "1" _yCy "b _z)l,j,kPI

6,Tul,j, k -- ml ,j, k

where

m=4_x2+_y2+¢z 2

and 6, and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,
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J:v_- 2,y, k ] [^ n _ u ^ I A(pu)U ^ 1 A(pU) -- 4JN, - l,j, k -if- Ap + T
-- "-P"AP + --P- N_-2,j,k N_-l,y,k

6,Tu_v_,j, k --

[ ^l"u A_+ I _(pu) =
+ 3JN,,j, k -- _ "P- .a N1 ' j, k

mN_,y, k V N_'J'k mN_,j, k

n 1'l i,l

- u_] _ 2,i, k + 4uv_ - 1,y,k -- 3UNvy,k

(tAx + CCy+ Cgz)N,,;,k
mNhj, k

Analogous equations can easily be written for the ,/and ¢ boundaries.

Linear Extrapolation of x-Velocitp

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

] [[ - ^ ^ . _.Y_,j,k - 7- ap + + A(pu) - 24,j, i, T
1,j,k 2,j,k

1 ^ -ln
n n

u ^ =_u_,j,k+2U2,j,k_U3,j, k
+ J3u,k - _ ap + -y a(pu)J3,s,k

At the _ = 1 boundary,

] [I A tl Zg ^u a_+ Ia(p_) --2JN,__,j,_ -Tap+ a(p.)
JN,- 2,j,k ---'fi- _ Nt- 2,j,k N,-- l,j,k

u A_ + A(pu) = - UN,- 2,L k + 2UN_- 1,i, k -- uN_,L k
+ Yu,,y, I, - W N,,j, k

Analogous equations can easily be written for the ,/and _ boundaries.

Remarks

6¢UuvL k

1. This subroutine uses oneidimensional addressing of three-dimensional an'ays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent x-velocity boundary condition
is specified.
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Subroutine BCVN (J1,J2,J3,VN)

Called by

BCNVEL

Calls Purpose

Compute velocity normal to a surface.

ETAX, ETAY, ETAZ

ISWEEP

J1, J2, J3

U,V,W

XlX, XIY, XlZ

ZETAX, ZETAY, ZETAZ

Output

VN

Description

Metric coefficients _7_,r/y, and _/2.

Current ADI sweep number.

Grid indices i, j, and k, in the _, '7, and _ directions.

Velocities u, v, and w, at time level n.

Metric coefficiems _,, _y, and _,.

Metric coefficiems _, _y, and _,.

Velocity normal to sweep direction surface.

Subroutine BCVN computes the velocity normal to a surface in the current sweep direction.
normal velocity is defined as

Vn = ,, rl

where n is the unit vector normal to the surface. For a _ surface,

V¢ 1 djx7+ I ¢y7+ 1 Cz__= iv¢-----T= -_- -_- -_-

m=_/¢x2+_y2+¢z2

where

Therefore, for a _ surface,

I (_xu+ _yV+ Gw)v. = --_-

Note that the unit vector n is in the direction of increasing _.

1
v,, = _ (nxu+ ,b,v+ nW)

m=4qx 2 +_y2 + _z2

increasing _.

Similarly, for an ,/boundary,

where

and V, is positive in the direction of increasing ,7.

The

Therefore V, is positive in the direction of
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And, for a _ boundary,

where

1
v_= -_(Gu+ _7+G_)

,.,,: _/_x2+ c/+ z:_=

and Vn is positive in the direction of increasing _.
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Subroutine BCVVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute y-velocity boundary conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU, NRV

RHO, U, V

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in comPuting one-
dimensional index for three-dimensional array. +

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N,+, corresponding to the N++conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction,/_.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1

Unit number for standard output.

Array indices associated with the dependent variables p, pu, and
pv.

Static density p, and velocities u and v, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

• IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCVVEL computes coefficients and source terms for y-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular y-velocity boundary"
conditions in Proteus) 3

13 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript

and * respectively, representing the intermediate solution, and for the third ADI sweep it should have the

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as wriuen.
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No Change From Initial Conditions, Av = 0

^

Appbfng equation (6.3) of Volume 1, and noting that Og/OQ = J_g/_Q, we get simply

v ,_ + 1 A(pv) =0
J_,:,k -7- 7- _,:,k

Specified y- Velocity, v = f

Applying equation (6.5) of Volume 1,

V ^ ¢.n+ ] n
J/,j, k -- _ Ap + A(pv) =Ji,j, k -- vi,j, k

i,j,k

Specified Two-Point y-Velocity Gradient in Coordinate Direction, Ov]Od? = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

" _ v 1v ^ I _(p_) +J2,:,k ---b-:'_+T
-Jl,.i,k - --_-Ap + --p-- 1,j,k 2,j,k=

n+l n
(zx¢_ j, k + v_',j,k - u2#, k

At the _ = 1 boundary,

I- v A

-- JN l - 1,j, k -- --fi- A o + A(pv) NI _ 1,j, k
[ ^]"1 A(pv) =

(A_ ¢n + 1 n n
11Nl,j,k + VN 1 - 1,j,k -- VNl,j,k

Analogous equatio:"-; can easily be written for the r/and £ boundaries.

Specified Three-Point y-Velocity Gradient in Coordinate Direction, Ov[O(D = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

[ ^]"_ v a_+ 1 a(pv)
-- 3Jl,j, k --fi- "if 1,./, k

v A_+ 1 A(pv)
- J3,:,k-#- 7 3,:,k

At the _ = 1 boundary,

E " A I r/
v ^ 1 A(pv)

+ 4J2,j, k --fi-Ap+--_- 2,j,k

n+l n n n
= 2(A_)fl,j, k + 3vl ,L k -- 4v2,j, k + v3,j, k

[ ] - - [v ^ ^ _ v ,', 1 A(pv)
JN,_2,L k --...ff-Ap+-_--A(pv)N,-2,j,k 4JY, 1,7,k ----fi-Ap+--ff- NI--I,j,/_

v ^ 2:A_-n + 1 n n n+ 3JNi,j,k ----_-Ap+ A(pv) = _ llNl,j,k--VNl_2,j,k+4VNl_l,j,k--3VNt,j,k
Nl,j, k

Analogous equations can easily be written for the rt and _ boundaries.
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Specified Two-Point y- Velocity Gradient in Normal Direction, Vv • -n = ]"

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

[
-- Jl ,j, k -- _ 1,j, k 2,j, k

A_ _r" + l (L,nx + _y.,y+ _:.),.j, k . (_Ax + _fly + 6ZA,,j, k a_n_j,k]
ml ,j-'-,k ml ,j, k lJ I,j, k -- ml,j, k 6'7vl 'j" k

+ vln,j, k n-- V2,j, k

where

m = 4_x 2 + _y2 + _z2

and 6_ and 6_ are the centered difference operators presented in Section 5.0 of Volume 1.
boundary,

At the _ = 1

[ ^]"[ ^]° ^ l,,(,. 0 =v A_ + a(pv) + Ju_,j,k - T Ap +-7-
-- JNt- l'J'k ---P- N_- l.j,k N_,j,k

a_
toni, j, k-- LJU,,j.k - mN,,j, k

n tt

4- VN, _ 1,j, k -- VN,,j, k

6rlV N,,j, k raN1, j, k 6{V Ni, j, k J

Analogous equations can easily be written for the ,I and £ boundaries.

Specified Three-Point y-Velocity Gradient in Normal Direction, Vv. "n= f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

[ ^in _v^l ^-! nv ^ 1 A(pv) + 4J2,j, k -- TAp + T A(pv)|
-- 3Jl,j, k -- --fi-Ap + --fi- 1,j, k -aLL k

v a_+ 1 a(ov) =
-- J3,j, k -- T --fi- 3,j,k

2M V,-.+_ (_,,Tx+_y,ly+_:A_,j,k
m"_,j, k ml ,j, kJ l,j, k --

I'1 l'l

+ 3v_,jl k -- 4V2,j, k + V3,j, k

(_ + CAy+ _/;.),.J,k e:.,j,k]
6,TVln,j, k -- mr,j, k

where

m = 4 Cx_ + _y2 + _z2

and 6, and 6_ are the centered difference operators presented in Section 5.0 of Volume I. At the _ = 1

boundary,
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Linear Extrapolation of y-Velocity

Applying equation (6.14) of Volume I at the _ = 0 boundary,

"P A

1,S,k 2,j,k

?7 Y/
v ^ 1 A(pv) = -- v_,7, k + 2v2,j, k -- v3,j,/_

+Js,;,1, --fi-Ap+ 7- 3,#,k

At the _ = 1 boundary,

[ ] [^ n -- v ^ 1 A(pv)" _x,_+ I a(p_) - 2_N,_ l,s,_ -yap + 7-
J_- m./,k --F 7 ,v_- 2,j, k x_- l,y,k

v A_+ 1 A(pv) " _ n
-- = -- vN, -2,S,k + 2VNl - 1,j,k -- VNl,J,k

+ JN,,j, k _ --_ N,,j, k

Analogous equations can easily be written for the _/and _ boundaries.

Specified Flow Ant_te, tan-_(vlu) = f

This boundary condition can be rewritten as

-_--= tanf

wherefis the specified flow an_e. Multiplying by pu,

( tanf)pu - pv = 0

Applying equation (6.5) of Volume 1 to the above equation, we get

Ji,y,k[( n+l ^ n ^ n n ntan f)i,j, k A(PU)i,j, k -- A(pv)i,j, k] = -- ( tan f)i,j, 1_+ (PV)i,j, k

Remarks

1. This subroutine uses one-dimensional addressing of tb_ree-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent y-velocity boundary condition
is specified.
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Subroutine BCV 1 (J 1.12,J3,VC 1)

Called by Calls Purpose

BC 1VEL Compute C-velocity.

ETAX, ETAY, ETAZ

J 1, J2, J3

U,V,W

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

VC1

Description

Metric coefficients _/x, ny, and _/..

Grid indices i, j, and k, m the ¢, _/, and _ directions.

Velocities u, v, and w, at time level n.

Metric coefficients _, _y, and _.

Metric coefficiems _., _y, and _.

Velocity in the _ direction.

Subroutine BCV 1 computes the velocity in the _ direction. The _-velocity is defined as

V_= V.e_

where _ is the unit vector in the _ direction, given by,

1
v_ = _ (x_u+ ycv+ ztw)

where

Therefore,
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Subroutine BCV2 (J 1,J2,J3,VC2)

Called by Calls -" Purpose

BC2VEL Compute v-velocity.

ETAX, ETAY, ETAZ

J1, J2, J3

U,V,W

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

Output

VC2

Description

Metric coefficients _t_, r/y, and r/z.

Grid indices i, j, and k, in the _, _, and ( directions.

Velocities u, v, and w, at time level n.

Metric coefficients ¢,, Cy, and _,.

Metric coefficients (,, (y, and _,.

Veloci.'ty in the r/direction.

Subroutine BCV2 computes the velocity in the _/direction. The r/-velocity is defined as

Vrt = V . %

where e, is the unit vector in the _7direction, given by,

1 (x,-;+y,7+z,Z)e.=-_

m=4x2+y2+z_

1 (x,7u + Y,7v + z,Tw)v,7= ---_

where

Therefore,
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Subroutine BCV3 (JIj2,J3,VC3)

Called by Calls Purpose

BC3VEL Compute _-velocity.

ETAX, ETAY, ETAZ

J 1, J2, J3

U,V,W

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

VC3

Description

Metric coefficients r/x, _/_, and r/z.

Grid indices i, j, and k, in the _, _/, and _ directions.

Velocities u, v, and w, at time level n.

Metric coefficients _, _y, and _z.

Metric coefficients _, _y, and _z.

Velocity in the _ direction.

Subroutine BCV3 computes the velocity in the _ direction. The _-velocity is defined as

where e¢ is the unit vector in the _ direction, given by,

_=---_ + y_j +

1 (x_u+&v + z_w)v¢ = --_-

where

Therefore,
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SubroutineBCWV'EL(IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Calledby Calls Purpose
BCGEN BCGRAD Computez-velocity boundary conditions.

BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU, NRW

RHO, U, W

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep

direction, specified as IBC(IJ) and FBC(I,J), where I runs from

I to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, and

pW.

Static density p, and velocities u and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCWVEL computes coefficients and source terms for z-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of

Volume 1. The followSng sections apply these generalized equations to the particular z-velocity boundary
conditions in Proteus. _4

14 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simphcity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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No Change From Initial Conditions, Aw = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = JOg]OQ, we get simply

Ji, j,k ----_-ap+ A(Ow) i,j,k

Specified z- Velocitj;, w = f

Appbfng equation (6.5) of Volume 1,

[ W A rn + 1 _ Wn
- =Ji,j, k i,j, kJi,j, k _ a t, + A(pw) _,J,k

Specified Two-Point z-Velocit v Gradient in Coordinate Direction, Ow[Od? =f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

] [[ 1 ^ n w A_+ 1 A(pw) =w A_ + A(pw) + J2,j,k -- 7 7-
- Jl,j, k - 7 _,j, k 2,#, k

(M'"" + 1 w n)Jl,j,k q- 1,j,k--'w2,j,k

At the _ = 1 boundary,

i ^ n "i_ Aw .^ 1 A(pw) d- JNI,j, k -- -7 Ap q- A(pw) ----
-- JN 1 - 1,j, k -- _ _P q- "-fi- N 1 - l,j, k U 1,j, k

n+l "k- n _ n(A_)f#_,j,k WN_- 1,j, k w_q,j, k

Analogous ecf-ations can easily be written for the _/and _ boundaries.

Specified Three-Point z-Velocity Gradient in Coordinate Direction, OwlO5 = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

] [w A_ + A(pw) + 4J2, 7, k -- "-if- A_ + -'_
-- 3J_,j, k -- _ l,j, k 2,j,k

-- J3,j,k --'_'-w A_ q- A(pw) k .Yl'j'k + "_Wl,j,k-- _w2,j,k -t- W3,j,k

At the _ = 1 boundary,

E ^]" [1A(pw) -4JN,_ ,j,k
JNl_2,j, k --7-aP-l--'fi- Nl_2,j,k Nl-l,j,k

w ^ 1 A(pw) = 2(A_)fNl,j, k -- WN l -- 2,j, k + 4w_ _ l,j, k -- 3WNx,j, k
+ 3Jl%j, k ---fi-Ap +--_- N,,Lk

Analogous equations can easily be written for the _ and _ boundaries.
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Specified Two-Point z-Veloci W Gradient in Normal Direction, Vw. _ = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

[_ ÷=, [w ^ +J_,i,_-_-_ +_-A(pw)Jl
,j, k "7 I." t,y, k 2,j, k

A_ Vc, n + I (_x_Ix q- _yrly -I- _zrlz)l,j, k n (_x_x q- _YCY q- #z_z)l ,j, k

ml ,j, k ml ,j_k ml ,j, kJ ] ,j, k 6,Twi,j, k
pl tl

4- w i ,j, k -- w2,j, k

where

,_= x/¢ 2+ ¢y2+ ¢z2

and 6, and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,

] [w A_ + A(pw) + JN_,j, k -- -"if Ap + A(pw) =
-- JNI _ I,j, 1_ ---if- Nl_ l,j,k Nl,j,k

_ [r n -12! (#xrlx d- _yrly d- _zrlz)N,,j, k n (#x_x -I- _y_y + _zt_2)Nl,j, k

mNl,j, k m-'N,,J, k toNi,j, k 6qWNI,], k toNi,j, k

n n

q-WN 1 -- I,j,k -- WNl,j,k

Analogous equations can easily be written for the ,7 and _ boundaries.

Specified Three-Point z- Velocity Gradient in Normal Direction, Vw • "n= f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

[ ^]°w ^ 1 a(pw)
- 3Jl,y, k -- ---fi-Ap + --fi- l,j, k

w ^ 1 A(pw)
--J3,j,k ----y-Ap +-h-- 3,j,k

m-_,j, k m_,j, kJl,j,k --

+ 3w_,j, k n-- 4w2,j, k q- w3n, j, k

[ ^]°w ^ 1 A(pw)
+ 4J2'Y'k --#- aP + W :,j.k

(¢A_ + CyCy+ ¢g_)_,i,_ -1
_qWl?j, ml,j, k b_Wl?j, kk ]

where

m = #_x 2 + _y2 + _z2

and 5_ and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1

boundary,
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JNI - 2,j, k -- AP + A(pw) -- 4JN, - l,j, k -- _ --fi- A(pw)
Nl - 2,j, k N1 - 1,j, k

r ,14,, AA

+ 3J_;,j,kL- T "P

2A#

mN,,j, k

l A 1 rl

+ T a(pw)JN,,y ' k

Fr. +.1 (#xnx + cy,ly + _'b)N_,j, k .
-- LJNI,j, k toNi,j, k 6_TWNI,j, k --

n tl 12

-- WN_ - 2,j, k + 4WNt - 1,j, k -- 3WN_,j, k

(_Ax + _yCy + _'z),%y, k 6¢w#,,y, 9
mN I, j, k ]

Analogous equations can easily be written for the _/and { boundaries.

Linear Extrapolation qf z- Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

,4,i,_ [- TAp + T _(pwlj,,j,k - +_

Tq A _ Wrt ?l r/
-t-J3,j, k ----fi-Ap-t- A(pw) -- 1,y,k+2w½,y,k--W3,y,k

3,j,k

At the _ = 1 boundary,

] [i ^ n 1471 _(pw) - _N,- _,y,k -7- A,_+ a(pw)
JN,- 2,j,k --_A,_ +T N,-2,j,k N,- _,i,k

1 A(pw) = -- WN 1 -- 2,Y, k + 2WN_ - 1,j, k -- WNI,j, k
-l- JN"j'k -- AP-F--P- N,,y,k

Analogous equations can easily be written for the _ and _ boundaries.

Specified Flow Angle, tan- l(wlu) = f

This boundary condition can be rewritten as

w f--=tan
U

wherefis the specified flow angle. Multiplying by pu,

( tan f)pu- pw = 0

Applying equation (6.5) of Volume 1 to the above equation, we get

J_,i,k[( "+_ ^ " ^ "tanf)i,y, kA(pu)i,j, k - &(pw)i,./,k] = -- ( tanf)_,y, k + (pw)i,y,

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section

2.3.

2. An error message is generated and execution is stopped if a non-existent z-velocity boundary condition

is specified.
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Subroutine BC1VEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCIMET Compute _-velocity boundax3 _conditions.
BCMET
BCV1

DEL

DXI, DETA, DZETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

II, 12, I3

JI

NOUT

NR, NRU, NRV, NRW

RHO, U, V, W

A,B,C

Description

Computational grid spacing in sweep direction.

Computational grid spacing A_, A_/, and A_.

Base index and multiplication factor used in computing one-
dimensional index for thxee-dirnensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N,_, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Grid indices i, j, and k, in the _, '7, and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pW.

Static density p, and velocities u, v, and w, at time level n.
i

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only)..

Subroutine BC1VEL computes coefficients and source terms for _-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular _-dixection velocity
boundary conditions in ProteusY

is In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
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Specified _- Velocity, Ve = f

The velocity in the ¢ direction, V¢, is defined as

where e¢ is the unit vector in the _ direction, given by,

where

Therefore,

2 2
m=4x_ W y¢ + z _

1 (x_u+y_v+ z_w)v¢ =-_-

Applying equation (6.5) of Volume 1, the linearized boundary condition at a _ boundary becomes

Ji,j,k [ x¢u + ycv'+ z_w
mi,j,k P

a_ + T a(pu) R ^ -ln _-n+l n

+TA(ow)] =:_,:,k- (v¢)e,:,k
i,j,k

Analogous equations can easily be written for the r/and ( boundaries.

Specified Two-Point _-Velocity Gradient in Coordinate Direction, a v¢/aq_ =f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

Jl,j, k

ml,j, k [

J2,j,k
m2,j,k [

xCu + ycv + zCw x_ ^ z¢ A(pw) +

xcu + ycv + z_w x¢ ^ _ z¢ ^ -! n. a_ + T A(;_) + a(#v)+ 7- a(Pw)l =
"a 2,j, k

n+l n n

(a_):l,:, k + (vO_,j,k - (vO_,_,_

At the _ = 1 boundary,

[
_v,-1,j

[Jl%y, k x_u + y¢v + zCw x_ ^ Y_ A(t_v) + A(pw) =
m,v,,j, k P A_ + T A(pu) +.7- _, Y,,Y,/¢

(A_rn + 1 n n.N,,:,k+ (VOw',- _,:,k- (V¢)N,,:,k

Analogous equations can easily be written for the ,/and _ boundaries.

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.
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Specified Three-Point _- Velocity Gradient in Coordinate Direction, 0 _/0_ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

Jl,j,k F x¢u + y¢v + zcw x¢ ^ y¢ ^ z_ ^ ]_
- 3_ L- P a_+ -7 a(pu)+ 7 A(m,)+.7- ,,,(pw)]+

1,j,k

J2,j,k F x_u + y_v + z_w x_ ^ y_ ^ z_ ^ ]n

4 _ L - P a_ + 7 a (pu)+ -7- aOv) + -7 a(Pw)3 -
2,j,k

J3,j, k xCu + y_v + zCw x_ ^ y¢ ^ z_ A(pw) ----
m3,j, k p A_ + --p-- A(pu) + -7 A(pv) + 7 3,j, k

21Az._¢n + 1 4( n nt'-"_,u1,L_+ 3(V,_)_',j,k- V¢)2,./,k+ (V¢)3,j,k

At the _ = 1 boundary,

JN t -- 2,j, k

J lv I -- l ,j, k F
4

m--_,- i,j,---k L

x_u + y¢v + z_w x¢ ^ y¢ ^ z¢ ^ in
p a_ + 7- a(t,u)+ -7 a(p_)+ -7 a(pw)j -

N l -- 2,j, k

x_uWy_vWz_w _ y_ ^ z_ ^ ] np a_+ a(_u)+ --7a(p_)+ --y-aOw) +
N L-- l,j, k

xcu+y{v+zCw ___ y¢ zcp ^in

"a Nl, j, k

2tAUten + I n nJVNl,j,t_ -- (V_)N 1-2,j,k + 4(Vc)_Vl - 1,j,k -- 3(V_)N,j,/_

Analogous equations can easily be written for the ,I and _ boundaries.

Specified Two-Point _- Velocity Gradient in Normal Direction, V v¢. n =/"

Applying equation (6.12a) of Volume 1 at the _ =0 boundary, and using two-point one-sided differ-

encing,

Jl,j,k Irnl ,j, k

J2,j, k
m2,j.k [

a_
ml,j. k

x_u + y_v + z_w ^ z¢ A(pw) +p a_+ a(_)+ a(_)+-b-
1,j,k

p _ + A(;_)+_/,(p_)+-7 _,],

F.-_+, (_'_ + _n_,+ _n_),,j, _ _.(v¢),.j.k-
-- Lj ,,j, k - m_,j, k m_,j, k

?2 /'/
+ (vo,,]._- (v¢)_.j._

and 6_ and 6¢ axe the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1

boundary,
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Jx_ - 1,j,k F
m-7,7_,,j,---kL

JNl'j'k [mN_,j, k

h_ _c" +. _ (_xn_ + _y'Ty+ G'IAN,,j, k V "
raN,,---),k _N,,_,_-- mN,U,k _,( 0N,U,

+( " ,,V¢)N,_ _,i,_- (v¢)_',u,k

xCu + y_v + z_w z_ A(pw) +p A_+ A(_,u)+ a(;_)+-7
N,-1,j,k

xCu + y_v + z_w x_ y_ ^ z_ ^ -.in

-aNt,j, k

(_A_+ _fiy+ _]:gN,,j,k a(v ,n,j,t,Vu k]jmN_,], k

Analogous equations can easily be written for the '7 and ( boundaries.

Specified Three-Point _-Velocity Gradient in Normal Direction, V V_ . n-= f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

"'q,j, KJl'j'k[ X¢u + y_v + z¢wp _X_ ^ y-_p A z_ A -]n7- ---3_ - Aa+ a(p_)+ /,(p_)+ _(p_)[ +
"-al,j,k

J2,j,k [_ xcu + ycv + z_w xi ^ ^ zi ^ "! n
2,j,k

J3,j, k V xCu + ycv + zCw x¢ ^ y¢ ^ z_ ^ -1n
m3,j, k L p A_ + -7 A(pu) + -.-.if- A(pv) + --fi- A(pw)I =

J3,], k

2A¢ V,,.n + 1 (¢xrtx + Cyrly + Czrlz)l ,J, k n (_AX + _yCy + Cz_z)l ,j, k a;(V¢)7,j, k]ml ,j, k ml ,j, k ml ,j, kL,,,j,_ a,(vow, k
1,1 ?l

_-3(V¢),,], k - 4(V_)_,j,k + (V_)3,j,k

and 6_ and 5¢ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1
boundary,

JN_ - l,j,k F4

xe' +v# + z#,, _ _ ^ T*_ " -I"aa + a(;_)+ a(_) + a(_w)/ -
_1

N, -- 2,j,k

x¢u + ycv + z¢w x¢ ^ y¢ ^ z_ - ^ 7 n

a_+ T a(pu)+ 7- _(pv)+ 7- a(ew)/ +p _1
N 1 -- 1,j,k

JN_,j, k [ x_u + y¢v + zCw x¢ ^ y¢ ^
mN,,j, k _ p A_ + -'-7 A(pu) + 7- A(pv)

2A_ F¢n+. 1 (_xrlx+_Y_'lYq-_z_z)Nl,j,k _)rl(V_)?,j, k

mN_,j, k Lj N_'J' k -- mN_,j, k

-<v& " - "-2,j, k q"4(g_)N_-l,j,k 3(g¢)N_,j,k

z¢ ^ -in
+ T 'XPw)/ =

_ Nl,j,k

(_Zx "b _yCy + _Az)NI,j, k n ]

m_v,,j,_ 6¢(VON _,j,

Analogous equations can easily be written for the '1 and _ boundaries.
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Linear Extrapolation of _- Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

mlJl'j' k,j,k I xcu + ycv + Z_Wp "-'f-X_ ^ --TY_ ^ z_ ^ -1n_ + A(p.)+ ACov)+Ta(pw)/ -
"a l,j,k

J2,j,k[ XcuWycvWZcW X¢ ^ _ Z, ^ -in- p a_ +-7- a(p.) + a(2_)+-y a(ow)/ +
"-=2,j, k

J3,j,k [ X_tt+y_v+Z_w + x_ A(RAU)+_ + 2_ A -in/m3j, k p A_ "--f- A(_v) -7"A(pw)_
"a3,j, k

- (v;)_,i, _ + 2(v_12,i,_ - (v¢)3,j, k

At the _ = 1 boundary,

JN___27_2,j,______k[
mNl -- 2,j, k

eN,_ ,,_,k [2 mN'--_l--__1,j,----_k

JNl'j'k Ire,N, j, k

x¢u + y_v + z¢w x_ ^ y_ ^ z_ ^ 1 n
p A_ + -7 A(pu) + --f A(pv) + --7 A(p_)_l --

N 1 -- 2,j, k

z¢ ^ -in
xCu + ycv + zCw x¢ ^ Y¢ ^ -_- A(pw)] +p A_ + T A(pu) + _ A(pv) +

N_- 1,j,k

x_u + y_v + zCw x_ A Y¢ ^ Z_ ^ -in
'_ +T a(,,_)+ -7 a(,_)+--k a(pw)l =

-a Nl,j,k

- (5)_',- 2,i,k+ 2(v¢)},__,j,k- (v_)7_,,i,k

Analogous equations can easily be written for the n and _ boundaries.

Remarks

1. This subroutin_ uses one-dimensional addressing of three-dimensional arrays, as described in S_ction
2.3.

2. An error message is generated and execution is stopped if a non-existent _-velocity boundary condition
is specified.
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Subroutine BC2VEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCIMET Compute ,7-velocity boundary conditions.
BCMET
BCV2

DEL

DXI, DETA, DZETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

I 1, I2, I3

JI

METX, METY, METZ

NOUT

NR, NRU, NRV, NRW

RHO, U, V, W

Computation_ grid spacing in sweep direction.

Computational grid spacing A_, A_/, and A_.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N,,, corresponding to the N,_ conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Grid indices i, j, and k, in the 4, _, and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, j-l.

Derivatives of sweep direction computational coordinate with re-

spect to x, y, and z.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Description

Subroutine BC2VEL computes coefficients and source terms for _-velocity boundary conditions. The

linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular _/-direction velocity

boundary conditions in Proteus)*

le In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
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Specified _l-Velocity, V_= f

The velocity in the 't direction, V_, is defined as

where 7_is the unit vector in the '1 direction, given by,

where

Therefore,

en =---_l (xnT + ynj + znk )

1 (x,u + y_v + %w)V, = -_

Applying equation (6.5) of Volume 1, the linearized boundary condition at a _ boundary becomes

. _,j, g p A_ + A(p_u)+ A(pv) +-7 A(pw) =aid, k -(Vn)i,j, k
i,j, k

Analogous equations can easily be written for the r1 and ( boundaries.

Specified Two-Point rl- Velocity Gradient in Coordinate Direction, 3VJOd? = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

xnu + ynv + znw _ _ ^ in
"*l,j,k

x,Tu + YnV + znw ^ 1 n

2,j,k
n+l n n

(A_,?,k + (V_)_U,k- (V_h,Zk

At the _ = 1 boundary;

xnu + y,rv + znw x ^ Y,r ^ z,r ^ 1 n
p a_+ 27_ A(pu)+ -7- A(p_)+ 7 a(Pw)A +

Aq- l,j

xnu+ynv+znw __ Yn^Z"^] np a_+ AOC_)+ -7 ,x(p_)+ -7-A(pw) =
-_N_,j, _

Arden+ 1 -t- n n_j_N_,j,k (V_)_ _ ld, k -- (V_)N,,j,k

Analogous equations can easily be written for the _/and _ boundaries.

* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-

Scripts on all Other variables are correct as written.
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Specified Three-Point _l-Velocity Gradient in Coordinate Direction, OV.IO¢ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

Jt,j,k

"]2,j, k I xqu + yptv + z_Twm2,y,------7- P

J3,j, k [- x,lu + Yu v + z, lw

m3,j, k L P

2tAVern + 1 n n nz|,j,k + 3(Vr/)l,j,k -- 4(Vu)2,j,k + (V,7)3,J,k

xuu + y,Tv + Znw x n ^ _ z,, ^ -I np ,'4+-7-A(pu)+ A(2v)+7 A0w)J +
l,j,k

xn ^ Y'7 z,, ^ -In
A_ + "-7 A(pu) + _' A(;v) + 7 A(pw)J --

2,j, k

x,7 ^ _ z'7 ^ 7 __ + -7 _(P_) + a(_) + -F A(pw)| =
-J3,j,k

At the _ = I boundary,

z_ A I n

p _ +-7 +
N 1 -- 2,j, k

JxL - l,y,k F xnu + ynv + znw

4 m-"_, -'1,-_,-k L p

JN_,j, k F x,Tu + ynv + znw

3 mNhj 'k L p

^ ^]". ^ .x_ ^ y7 zu A(pw) +
ap+ --7A(pu)+ -F a(pv)+ _7

N 1-- l,j,k

^]"x,_ ^ Y,r ^ z'7A(pw) =
A_ + --fi'- A(pu) + .--fi- A(pV) "b "-_- "* Ul,J, k

2_A¢_rn + 1 n nt l]Nl,j,k-- (V,7)Nt-2,Lk + 4(Vn)_rl- l,j,k-- 3(V,I)NI,j,k

Analogous equations can easily be written for the r/and _ boundaries.

Specified Two-Point ,7-Velocity Gradient in Normal Direction, VV+.-n =.f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

J1 ,j, k r
m_,j, k

J2,i,_
m2,j,k I

A_ F ?n + 1 (_xnx + _yrly + _zrlz) l,j, k

m_,), k m_ ,j, kl,j,k --

x'y + Y'lV + znwp + _ --TY'r ^ --Y-z'7 ^ l"A_ _(_u)+ A(pO+ A(pw)] +
"a l,j, k

x,lu + y,lv + z, rw z_ ^ 7 _ .

_2,j,k

+.'"w, - (+,;x++/,+ml,j, k

" - (v.h,j,+ (V.h,y,k "

and 6_ and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1.

boundary,

At the _ = 1
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i

J,% - _,j,k Im:% _ l,j,k

[
mN_, j, k

m,,,,U,
n

+ (v.)_; _ _._,k- (v.)N,u. k

xnu + ynv + z_w x_ ^ Y'7 ^ z'l ^ I n
p a_ + _ aOu) + 7 a(p_)+ 7 A(pw)] +

_v,-1.j,k

x,y + ynv + znw xn ^ Yn ^ z_ ^ 1 n
p a_ + 7- a(p_)+ -#- aOv)+ --7 a(pw)j =

_N,,y,k

(¢Ax + _y(y + _._z),v,,j, k

mN t, j, k

Analogous equations can easily be written for the _ and _ boundaries.

Specified Three-Point _l-Velocity Gradient in Normal Direction, VV_. n =,f

Applying equation (6.12a) of Volume t at the _ = 0 boundary-, and using three-point one-sided differ-

encing,

Jl ,j, "k

J2,j,k [
J3,j,k

ms.Y ,k I

2a¢ [_.+_ (¢_..+¢y.y+¢_..),,j,k a,(v,)7.y.k
rth 7, k ml,j,kl,j,k --

+ z'_V77)l,j,k --4(V,1)2,j, k + (V,r)_,j,k

xnu+ynv+z_w _ y. ^ z_ ^ l"p _ + a(_)+ -7 a(pO+ 7 a(pw) +
_l,j,k

xnu+ynv+z,_w-x__.__ Yn^ z,^lnp a_ + a(p_) + 7 A(PO + 7 a(pw) --
.2,j,k

xnu+ynv+z,_w xn,-, Yn^__^] np a_ + -U a(pu) + -_ a(pv) + a(pw) =
3,j, k

ml,j, k

and 6, and 6¢ are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = 1

boundary,

JN_ - l,j, k F
4

m'---N.V,--1,j__-kL

__
JN_,j,k EmN_,j, k

-
- 2,y, k + 4(Vn)N, - l,j, k -- 3(Vr/)Nvj, k

xnu + ynv + z,Tw x n ^ y,_ -^ zn ^ I n _

p AP+--_-A(pu)+-F-A(Pv)+-T-a(pw)Js__:,j, _

a_ + -7 A(p_)+ a(_) + -V _(pw) +
_,- _,j,k

xnu + ynv + ZnWp x,7 ^ _ z,_ ^ I n
tx_+ -_- a(pu)+ A(_) + 7 A(pw)Jx,u 'k

m,v t,j, k

Analogous equations can easily be written for the _ and _ boundaries.
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Linear Extrapolation qf _7"Velocity

Applying equation (6.14) of Volume I at the _ = 0 boundary,

Jl'j'k[ xnu+yrlv+zrlw + _ + Yn^Zn^lnA(pv)+ A(pw)ml,j, k p A_ A(;u) --7 "7
"a l,j, k

J2,j,k [ Xr?u + ytlv W zq TM ^l n
"a 2,j, k

J3,j,k [ XrlU+y_V+ZrlW ^ 1 nm3,J, k p A_ + _ A(;u) +-p--YnA(;v)+ _ A(Ow) =
...a3,j, k

tl n

- (v_)_,j,k + 2(Gh,j, k - (G)'J,zk

At the _ = 1 boundary,

JN_ - 2,j,k
m'_Nl- 2,g,---k[

JN_ - _,j,k [2
mN x - l,j, k L

JN,,], k V
m,v_,j, k L

Zr/ ^ 7 n

x'Tu + YnVp+ z'Tw -Tx_ ^ -7-Y_ ^ -7 A(pW)/dA_ + A(pu)+ A(pv)+
N_- 2,j,k

x,ru + y,Tv + z, tw
P

xnu + Y,rV+ z,rw
P

zq ^ 7 n

N l -- l,j, k

a_ + -7- a(p_)+ _ a_p. + _ a(pw)I =
._1

Nl,j, k

- - 2,j,k + 2(v.)u, - _,],k- (G)},j,k

Analogous equations can easily be written for the _/and ( boundaries.

Remarks

1. This subroutine uses oneidimensional addressing of three-dimensional arrays, as described ,.a Section
2.3.

2. An error message is generated and execution is stopped if a non-existent q-velocity boundary condition
is specified.
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Subroutine BC3VEL (IBCIFBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Pu_ose
i i

BCGEN BCIMET Compute _-velocity bounda_D' conditions.
BCMET
BCV3

DEL

DXI, DETA, DZETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

I1, I2, I3

JI

METX, METY, METZ

NOUT

NR, NRU, NRV, NRW

RHO, U, V, W

Computational grid spacing in sweep direction.

Computational grid spacing A_, An, and A_.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(IJ), where I runs from
1 to N,,, corresponding to the N,, conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, iv.

Grid indices i, j, and k, in the _, n, and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, j-1.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, and z ....

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Description

Subroutine BC3VEL computes coefficients and source terms for _-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular _-direction velocity
boundary conditions in Proteus. t7

17 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript

132 4.0 Proteus Subprograms: BC3VEL Proteus 3-D Programmer's Reference



Specified _- Velocity, V¢ = f

The velocity in the _ direction, V¢, is defined as

where e¢ is the unit vector in the _ direction, given by,

where

Therefore,

I
v¢ = _ (x_u+ y_v+ zw)

Applying equation (6.5) of Volume 1, the linearized boundary condition at a _ boundary becomes

[..+..+z. -i--+,.+w,_ .k

i,j,k

Analogous equations can easily be written for the r/and _ boundaries.

Specified Two-Point _- Velocity Gradient in Coordinate Direction, OVd&k = f

Applying equation (6.8) of Volume I at the _ = 0 boundary, and using two-point one-sided differencing,

[ 1"Jl..i,k xCu + ycv + zCw x¢ ^ + _ A(pv) + _ A(pw) +m_,j,k p A_ + -7-- zX(pu)
"a l,j, k

J2'y'k[ xCu÷y;v÷zCw A_ _ y_ z¢°^ ^ in. . + + :+v)+ :<.w)
-'a2,j,k

,__ _.. z.lt + 1 11 rt

v&a, k (v;)2,:.k_a_)l_,l, _ + (

At the _ = 1 boundary,

J&-_l,j__:,k_ I-- xcu+ ycv+ zCwmNa - 1,],k P

J_'_,j, k V xcu + ycv + zcw

mN_,j, k L P

x ^ z¢ ^ 7 _

,v_- _,j

x¢ ^ y¢ z¢ ^7"+ -7- a(pu) + _, A(_) + -7- A(pw)[ =A_

rt

"A_"'_ + _ " (voN,,j, k_, ]JNI,j,k + (VONI-- I,j,k -

Analogous equations can easily be written for the r/and _ boundaries.

* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the

superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-

scripts on all other variables are correct as written.
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Specified Three-Point _-Velocity Gradient in Coordinate Direction, O V,/O4_ =f

Applying equation (6.8) of Volume 1 at the ¢ = 0 bounda_', and using three-point one-sided differenc-

ing,

-3 Jl,j,k I-xCu+&i+zCw x¢ ^ z¢ ^ -I n
l,j,k

J2,j,k [ Xcu + y_v + zgw X¢ A _ Z_ /x "] n __
4-_--_-77,k __- p a_ + 7- a(pu) + A(_0 + 7- _(pw)J2u,k

m3,.i,J3"J'k[ x¢u + yCv + zCwl<p 7-xc ^ Y_CP ^ 7z¢ ^ ] nA_ + _(pu) + A(p_)+ zX(pw) =
3,j,k

2:A_¢n + 1 + (V._ (V,) (V,)nn nk lll,j.k 3.-_.l,j,k--4._..2.j,k+. _,-3,j,k

At the _ = 1 boundary,

JN], j,k

3 raN1,/, k

E x_u+yc+z W x¢ ^ z_ ^ -!"p
N 1 -- 2,j, k

E xcu+ycv+z W z_ ^ -f'
N 1 -- 1,j, k

p ,_+ -7 a(p_)+ _(_)+ 7-_X(pw)l =
J Nl,j, k

2 n+l V n _ n(A_)fNl,j,l¢-- ( ¢)Ni- 2,J,k + 4(V¢)% l- _,j,k 3(V¢)Nl,j,k

Analogous equations can easily be written for the _/and _ boundaries.

Specified Two-Point _-Velocity Gradient in Normal Direction, VVr •n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided diaffer-

encing,

m|,j, k -- - P A,_ + -7 A(pu) + A(;v) + A(pw) +
t,j, k

J=,j,k [ _¢u + Y¢v+ zwt, 7-x¢ ^ 7-z_ ^ q"
m2,j, k

A¢ Fen+ 1 (_xrlx+_y_ly+_zrlz)l,j,k n (_x_x+_yCY+_Z_z)l,J, k

m_ ,j, k m_ ,.i, k m_,j, k

+ (v&u,_ -(v&u,_

and 6_ and 6g are the centered difference operators presented in Section 5.0 of Volume 1. At the _ = I

boundary,
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+

Analogous equations can easily be written for the _/and ( boundaries.

Specified Three-Point C" Velocity Gradient in Normal Direction, VV c • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

Jl,j,k F x_u + y;v + z¢w x¢ ^

J2,j, k [ XcU "4-flCv q- ZcW

"I3,y, k F x¢u + y¢v + z;w " x¢ ^m3,:,k p ,'4+ -7- A(p_)

2A_

m],j, k L:Id, k ml,j, k

-_-3(vo]',z k - 4(V_)_,), k + (vo_,j,t_

^ z¢ ^ ]n+ A(p_)+-7- A(pw)I +
_l,j,k

^ z¢ ^ -1n+ A(pv)+ -7 a(pw)| -
...s2,j, k

+ A,..,+ _(pw) =
J3,j,k

m_ .j,/_

and 6, and 6_ axe the centered difference operators presented in Section 5.0 of Volume 1.

boundary',

JNhj'k [mN_d,

2A¢ Fen +.i (#xrlx-l-¢yrly-F-¢zrlz)Nl,J,k (_rt(V{)?,j,k_

mNl,j---_, k VNI,J,k-- mNl,j,k

- (V{)_,_ 2,y,k + 4(Vc)_, _ l,j,k -- 3(V{)_%:, k

[ _+y:+_: x_ ^ __ ^]"p ,9+-7,"(pu)+ _(_C,,)+_,,,(pw) -
N_- 2,y,k

[ xcu + ycv + zW x¢ ^ z; A(pw) +
N_- l,j,k

x¢u + yCv + zCw x¢ ^ z¢ A(pw) =
p a_+-V-a(p_)+ a(_)+ 7- _,,j,_

(_X_X q- _yCy "Jr_z_z)NI,j 'k

m?fi,L k

Analogous equations can easily be written for the r/and _ boundaries.

At the _ = 1
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Linear Extrapolation of _- Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

J,,],k[xcu+YcV+zcw^xc^Y_p^ z¢^7 _rnlu,k p ap + -7 a(pu) + a(pv) +-7 A(pwlJ -
1,j,k

" ^ Z_ ^ 7 n
2_,), k P A_ +--fi--A(pu) --'2,j,k

JLj, k [ xcu + yCv + z¢ TM x¢ ^ Ycp ^ z¢ ^ -] nm3,:,k p a_ + -7 a(pu) + a(pv) + 7 a(pw)] =
"--a3,j, k

tl 1'l n

- (vo_u,_ + 2(v&u,k - (v&u,k

At the _ = 1 boundary,

JN--"[z2'J--"Ik [mNl -- 2,], k

JNi- l,j, k V
2 L

toNi, j, k

xcu + yCv + zcw x¢ ^ y¢ ^ z¢ ^ --I"

a_ + 7 a(p_) + 7 a(p_) + -7- a(pw)j_,p
2,], k

xCu + y¢v + zCw
P

xCu + yCv + zCw

X_ ^ Z_ ^ 7 n

•'_1 -- 1,j, k

X¢ ^ y¢ z¢ ^ -'] na_ + -7 a(pu) + _, a(_v) + 7 a(pw)[ =
"a Nl, ], k

_(vo%- 2,j, k + 2(vo_,, -_,j,k - (v¢)N,,:,k

Analogous equations can easily be written for the ,7 and _ boundaries.

Remarks

1. This subroutir._ uses one-dimensional addressing of three-dimensional arrays, as described in £ _ction
2.3.

2. An error message is generated and execution is stopped if a non-existent _-velocity boundary condition

is specified.
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Subroutine BLIN

Called by Calls Purpose

TURBBL ISRCHFGT Compute inner layer turbulent viscosity.
VORTEX

* APLUS

* CB

* CNL

CVK

EP1, EP2

ILDAMP

INNER

LWALL1, LWALL2, LWALL3

MU

MUT

NTOTP

N1, N2, N'_

RER

RHO, U, V, W

X,Y,Z

MUT

Description

Van Driest damping constant A +.

Constant B in the Spalding-Kleinstein inner layer model.

Exponent n in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Minimum and maximum allowable numerical values.

Flag for Launder-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.

Flags specifying wall locations for _, ,7, and _ boundaries.

Laminar coefficient of viscosity _z.

Outer layer turbulent viscosity coefficient (tZ,)out,,.

Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., NIP x N2P x N3P).

Number of grid points N_, N2, and/_½, in the _, '7, and _ ,_irections.

Reference Reynolds number Rer.

Static density p, and velocities u, v, and w.

Cartesian coordinates x, y, and z.

Turbulent viscosity coefficient _,.

Subroutine BLIN computes the inner layer turbulent viscosity coefficient (gJ ..... For each grid point,
subroutine BLIN first sets the variable DUMMY equal to a number from 1.0 to 6.0 as a flag specifying the
nearest solid wall. If none of the three grid lines through the point intersect a solid wall, the point is a wake
point and DUMMY = - 1. If there are no solid walls, control is returned _o the calling program. Other-
wise, subroutine VORTEX is called to get the vorticity magnitude at each point.

The inner layer turbulent viscosity coefficient (/a,)_,,, is then computed based on the nearest wall, and
it is assumed that the inner regions do not overlap. Three different inner re,on models are available - the
model of Baldwin and Lomax (1978), with and without the modified mixing length formula of Launder and
Priddin, and the model of Spalding (1961) and Kleinstein (1967). These are described in Section 9.1 of
Volume 1.
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BLIN thensetsthefinalturbulentviscositycoefficientequal to the minimum of the inner and outer

region values. Thus,

_t = minC(_,t)i_er, (_t)o_er]

Remarks

1. To avoid the possibility of floating point errors, the value of [_1, used to compute _r*and u_ is set to
a minimum of 10-10.
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Subroutine BLKOUT (I 1PT,I2PT,I3PT)

Called by Calls Purpose

Print coefficient blocks at specified indices in the _, _/, and _ directions.ADI
AVISC 1
AVISC2
BCGEN
FILTER

A,B,C

* IHSTAG

ISWEEP

I1PT, I2PT, I3PT

NC, NXM, NYM, NZM, NEN

NEQ

* NOUT

S

o._m 

None.

Description

Coefficient submatrices A, B, and C

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Indices for printout in the _, _/,and _ directions.

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Source term subvector S.

Subroutine BLKOUT prints the coefficient block submatfices A, B, and C, and the source term sub-
vector S at tht. grid points specified by I1PT, I2PT, and I3PT. This is the routine that actuall) prints the
output for the IDEBUG(1) through IDEBUG(4) options.
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Subroutine BLK4

Called by Calls

ADI FILTER

Purpose

Solve 4 × 4 block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "veetorized" direction,/_.

Source term subvector S.

Output

S Computed solution subvector.

Description

Subroutine BLK4 solves a block tridiagonal system of equations with 4 x 4 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A(_'. In Fortran, however, we can save storage by overwriting B, C, and S. The

follo_51ag table relates the algorithm as implemented in Fortran to the notation used in Volume I, for the
first ADI sweep. An exactly analogous procedure is followed for the second and third sweeps.

Step

1

2a

2b

2c

3a

3b

3c

3d

3e

In Fortran In Volume 1 Notation

Dl = Bl

LU decompose B_, storing result in B_

Solve BIE_ = C_ for E_ using LU decomposition of
B_, storing result in Ct

^ ^

Solve BtAQ] = St for AQ] using LU decomposition
of B_, storing result in $1

For i = 2 to Nt,

Compute Bi - AiCi_ 1, storing result in B_

Compute S, - AiSi_ 1, storing result in Si

LU decompose Bj, storing result in B,

Solve B,Ei = C_ for Ei using LU decomposition of B,
storing result in C_

^ ^

Solve B_AQ_ = S, for AQ_ using LU decomposition
of B, storing result in S_

LU decomposition of D_

Et = Di- 1CI

^p

AQI = Dr 1SL

Di = Bi - A,Ei_ 1
^

S_ - A,AQ',._ 1

LU decomposition of D,

Ei = D? ICi

^ ^

AQ_ = D? _(S, - A,AQ__ t )

^ ^

AQ.vl = AQ_I

Fori=Nt-lto I,
^ ^ ^

Compute S_ - C,S,.. 1, storing result in S_ AQ_ = AQ[ - E,AQ_,. 1
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Remarks

°

2.

The notation used in the comments in BLK4 is consistent with the notation used in the description of

the algorithm in Volume I.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution.
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Subroutine BLK4P

Called by

ADI

Calls Purpose

Solve 4 x 4 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Source term subvector S.

Output

S Computed solution subvector.

Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4 x 4 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, F, G, and A(_'. In Fortran, however, we can save storage by overwriting A, B, C, and
S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1,
for the fn-st ADI sweep. An exactly analogous procedure is followed for the second and third sweeps.

Step

la
lb

2a
2b

2c

2d

In Fortran In Volume 1 Notation

D2 = 132

F2= C_,l

LU decompose B2, storing result in B2
Solve B2_ = C2 for E2 using LU decomposition of
132,storing result in C2
Solve B2G2 = A2 for G2 using LU decomposition of
Be, storing result in A2

m^t _ ^tSolve 112 Q2 $2 for AQ2 using LU decomposition
of B2, storing result in $2

LU decomposition of D,

E2 = D_ 1C2

G2 = D_ 'A2

AQ_ = D_-_$2
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Step

3a

3b

3c

3d

3e

3f

3g

3h

3i

3i
4a

4b

4c

4d

4e

4f

In Fortran In Volume 1 Notation

For i= 3 to NL-- 1,

Compute B, - A, Ci_ i, storing result in Bi

Compute S, - A,S__ 1, storing result in S_

Compute - A, Ai_ i, storing result in A,

LU decompose B. storing result in B_

Solve B,E_ = C for E, using LU decomposition of B.
storing result in C,

Solve B,Gs = A, for G, using LU decomposition of B,,
storing result in A_

^ ^

Solve B_AQ,' = S, for AQ_ using LU decomposition
of B, storing result in Si

Compute B_q - C2vlAi_ 1, storing result in Blvl

Compute S_,I - Ct¢IS,_ 1, storing result in S_.l

Compute - C_rlCi_ 1, storing result in C2vl

Compute

Compute

Compute

A_rl - 1 + C_¢1- _, storing result in A_¢l _

A_,_ + Clvl, storing result in C2vl

B_q - C_IA2v__ 1, storing result in Bey1

Compute SNa - C2vtS2vt- 1, storing result in S_ 1

LU decompose B_q, storing result in BN1 ,

Solve BvtA(_l = S_ L for A(_'_ 1 using LU decompos-
ition of Blvl, storing result in S2vt

D, = B,- AiEi_ i
^

S, - A,AQ'_ 1

- A, Gi_ l

LU decomposition of D_

E_ = D7 tC_

G_ = D. 1A,G,_ I

^ ^

AQ_ = D? 1(S, - A,AQ'_ _ t )

i-1

B_1 - S'. F_Gj
j=2

. i-I ,,,

S_t Z E AQI
,(=2

Fi _.-.:-- Fi- IEi- I

Gv_- t = D__ 1(C_ 1_ _ - A/¢ 1 -iGv_ -2)

F_r1_ _ = A_v_-- Fev_- 2E2vl - 2-

/(1-1

DNI = B._1 -- _ F,Gi

i=2

NI - I ^

S_rl- _ F, AQ_
_--2

LU decomposition of D_ 1

^ N 1 - 1 ^ .

AQ_I =Dx,_(S_,-_- X F,AQ:)
/=2

^ ^ t

AQs t = AQ _1

^ ^ _ ^

Compute S_ 1_ _ - A_, 1_ _S_, storing result in Ss I _ 1 AQtq - _= AQ _ _ _ - G_ 1_ _AQ_1

For i = NI - 2 to 2,
^ ^ ^ ^

Compute S,- A_S_,_- CS_+ _, storing result in S, AQ, = AQ_ - G,AQ_- EiAQ,+
^ ^

Set S_ = S_ AQ_ = AQt¢_

Remarks

.

2.

The notation used in the comments in BLK4P is consistent with the notation used in the description

of the algorithm in Volume 1.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an

ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution.
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Subroutine BLK5

Called by Calls

ADI FIL:FER

Purpo se

Solve 5 x 5 block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Source term subvector S.

Output

S Computed solution subvector.

Description

Subroutine BLK5 solves a block tridiagonal system of equation_s with 5 x 5 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A(_'. In Fortran, however, storage is saved by overwriting B, C, and S. The al-
gorithm is identical to that used in subroutine BLK4. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

I.

2.

The notation used in the comments in BLK5 is consistent with the notation used in the description of

the algorithm in Volume 1.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution.
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Subroutine BLK5P

Called by Calls

ADI

Purpose

Solve 5 x 5 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Source term subvector S.

Output

S Computed solution subvector.

Description

Subroutine BLK5P solves a periodic block tridiagonal system of equations with 5 x 5 blocks. An effi-

cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume I. For clarity, that description involves additional

"new" matrices D, E, F, G, and A0'. In Fortran, however, storage is saved by overwriting A, B, C, and
S. The algorithm is identical to that used in subrouthae BLK4P. See the description of that subroutine for
a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK5P is consistent with the notation used in the description

of the algorithm in Volume 1.

2. The soluti n algorithm is recursive and therefore cannot be vectorized in the sweep direct. :,n. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the ftrst, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the

ADI solution.
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BLOCK DATA Subprogram

Called by Calls Purpose

Set default values for input parameters, plus a few other parameters.

i...t

None.

All namelist input parameters, plus:

CCPI, CCP2, CCP3, CCP4

CK 1, CK2

CMU1, CMU2

GC

IBCELM

IBVUP

ICONV

IGINT

ITBEG

KBCPER

NC, NXM, NYM, NZM, NEN

NIN

NR, NRU, NRV, NRW, NET

TAU

Constants in formula for specific heat. (8.53 × 103, 3.12 x 104,
2.065 x I06, 7.83 x 108)TM

Constants in formula for laminar thermal conductivity coefficient.
(7.4907 x 10-3, 350.0) *s

Constants in formula for laminar viscosity coefficient. (
7.3035 x 10-r, 198.6) l'

Proportionality factor g_ in Newton's second law. (32.174) TM

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the _ and/or ,i
directions; 0 if elimination is not necessary, 1 if it is. (2*0,2*0)

Flags for updating boundary values from fixst two sweeps after
third sweep; 0 if updating is not necessary, 1 if it is. (0,0,0)

Convergence flag; 1 if converged, 0 if not. (0)

Flags for grid interpolation requirement for the _, _/, and _ di-
rections; 0 if interpolation is not necessary, 1 if it is. (0,0,0)

The time level n at the beginning of a run. (I)

Flags for spatially periodic boundary conditions in the _, n, and
directions; 0 for non-periodic, 1 for periodic. (0,0,0)

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations. (1,2,3,4,5)

Unit number for standard input. (5)

Array indices associated with the dependent variables p, pu, pv,
pw, and Er. (1,2,3,4,5)

Initial time value z. (NTOTP*0.0)

Description

The BLOCK DATA routine is used to set default values for all the input parameters, plus various other
parameters and constants. The defaults for all the input parameters are given as part of the standard input
description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK
DATA are given in parentheses in the above output description. Note that some of these values assume

xs These values are for reference conditions specified in English units. Values for SI units are set in subroutine IN-
PUT.
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English units are being used to specify reference conditions. If SI units are being used, these values are re-
defined in subroutine INPUT.

Remarks

1. Most of the default values are defined directly, but some, like the reference viscosity MUR, are set equal
to zero and defined in subroutine INPUT if not specified by the user.
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SubroutineBLOUT

Calledby
TURBBL

Calls
GATHER
ISAMAX
ISAMIN
ISRCHFGT
ISRCHFLT
VORTEX
WHENFLT

Computetheouterlayerturbulentviscosity,usingthealgebraic
Baldwin-Lomaxmodel.

* APLUS
* CB
* CCLAU
* CCP
* CKLEB,CKMIN
* CWK

EP1,EP2
* FPMIN
* LWALL1,LWALL2,LWALL3

MU
NTOTP

N1,N2,N3
NIP, N2P

RER

RHO,U, V, W
X,Y,Z

Output

MUT

Description

Van Driest damping constant A ÷.

Constant B in the Klebanoff intermittency factor.

Clauser constant K in the Baldwin-Lomax outer region model.

Constant Copin the Baidwin-Lomax outer region model.

Constants CK_aand (CK_,_),,_in the Klebanoff intermittency factor.

Constant C,_ in the Baldwin-Lomax outer region model.

Minimum and maximum allowable numerical values.

Value used to cut off the search for Fm°x.

Flags specifying wall locations for _, _, and _ boundaries.

Laminar coefficient of viscosity/_t.

Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., NIP x N2P x N3P).

Number of grid points N,, N2, and Ns, in the _, _/,and _ directions.

Parameters specifying the dimension sizes in the _ and ,7 di-
rections.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w.

Cartesian coordinates x, y, and z.

Outer layer turbulent viscosity coefficient (t_,)o_,,,.

Subroutine BLOUT computes the outer layer turbulent viscosity coefficient (_Z,)o_,,rusing the algebraic
eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 9.1 of Volume h
The steps performed in BLOUT are as follows:

1. Initialize the array DUMMY to zero.

2. For each grid point, set the variable DUMMY equal to a number from 1.0 to 6.0 as a flag specifying
the nearest sofid wall. If none of the three grid lines through the point intersect a solid wall, the point
is a wake point and DUMMY = - 1.

3. Call VORTEX to compute the vorticity magnitude at each grid point.
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4. If there are no wall-bounded points, skip ahead to step 9.

5. Along each grid line that intersects a solid wall, compute

where y_ is the distance to the wall. For each line, search outward from the wall for the first peak in
F, calling it's value FPEAK. Keep searching outward, cutting off the search when F drops below
FPMIN*FPEAK. (FPMIN is an input parameter with a default value of 0.9.). FPEAK is then the
value of F_, for the current wall and grid line. Store the index corresponding to F,_oxin the LWALL

parameter for the current wall and grid line.

6. At each wall-bounded grid point, compute

(_ t)outer = RerK CcppFkM"Fwake

In this formula,

F_ake = Y,_,_._'Fmax

where F_oz is the appropriate value from step 5 for the nearest solid wall, and y.a_ is the corresponding
value of y,. F_:_ is the Klebanoff intermittency factor, given by

The Re, in the formula for _, causes (_,)o,ro, to be nondimensionalized by/_,.

7. The LWALL parameters used to store the indices corresponding to F_°x are then reset to 1.

8. If there are no wake points, the calculation is finished, so skip ahead and return to the calling program.

9. For each wake point, set the variable DUMMY equal to a number from - 1.0 to - 6.0 as a flag spec-
ifying the nearest boundary.

I0. At each grid point, compute the total velocity magnitude ] VI' storing it in U. The sign is set equal to
the origina: sign of the x-velocity, for later use when U is reset to the x-velocity.

11. For each grid line, get the indices corresponding to I andI
12. For each wake point, along the grid line that intersects the nearest boundary, compute

F,= O'n),n[

where (y_), is the distance to the point where IVI = I V[,_, and (Y_)2 is the distance to the point where

[Pl = IPly°; the twovaluesof f arestoredin MUTandVORT,respectively.

13. For each grid line in the _ direction that contains wake points, get the locations of (F_),,°, and (F2)....
Since a grid line mar have both wall-bounded and wake points, the F values are first gathered into a
one-dimensional array containing only the wake point values. This array is then searched for the lo-
cation of F_,_, and the resulting index is converted to the proper index along the original grid line.
Then, for each wake point along the grid line whose nearest boundary is at _ = 0 or _ = 1, compute
(y_)_o_and (Y2).... where (y_),o_is the value of (y_)_ corresponding to (F_).... etc. Finally, compute

(_ t)outer= K CcppFwal_eRer

where
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Fwake = C, V 2 Ymax

1;"mox-I;"

In the computation of F,,k,, Y,_,x= min[_0 .... (p:),_,=], and F,,°x is the corresponding (F1)_,o_or (F2)....
The Re, in the formula for/z, causes (tt,)o_,,, to be nondimensionalized by/z,. The (tt,)o_,,, values are
stored in DUMMY so the loop will vectorize. They are flagged as wake point values by making them

negative.

14. Repeat step 13 for grid lines in the _ and _ directions.

15. For each wake grid point, move (_)o_,,, from DUMMY into MUT, making it positive.

16. Reset U to the value of the x-velocity.

Remarks

1. To avoid the possibility of floating point errors, the values of [ _'_,_=1' I _'1' and F_o, are set to a
mAnJmum of 10-10
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Subroutine BVUP

Called by Calls Purpose

EXEC BCGEN Update ftrst and second sweep boundary values after third sweep.
EQSTAT
SGEFA
SGESL

DXI, DETA

ETAX, ETAY, ETAZ, ETAT

IBVUP

IHSTAG

JI

KBCPER

NEQ

NEQP

NPT1, NPT2, NPT3

NR, NRU, NRV, NRW, NET

* N1, N2, I':.",

N1P, N2P

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

XIX, XIY, XIZ, XIT

DEL

IBASE, ISTEP

ISWEEP

IV

METX, METY, METZ, METT

NPTS

Computational grid spacing A_ and Art.

Metric coefficients _, _/,, _/,, and r/f.

Flags for updating boundary values from ftrst two sweeps after
third sweep; 0 if updating is not necessary, 1 if it is.

Flag for constant stagnation enthalpy option.

Inverse Jacobian of the nonorthogonal grid transformation, J-L

Flags for spatially periodic boundary conditions in the _, _/, and
directions; 0 for non-periodic, 1 for periodic.

Number of coupled equations being solved, N,q.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

N_, N2, and N3 for non-periodic boundary conditions, N_ + 1,
172+ 1, and N3 + 1 for spatially periodic boundary condition in _,
n, andS.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Number of grid points N, N2, and N3, in the _, _/,and _ tirections.

Parameters specifying the dimension sizes in the _ and r/ di-
rections.

Static density p, velocities u, v, and w, and total energy Er at time
level n at all grid points.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1 at all interior grid points.

Metric coefficients G, G, G, and G-

Computational grid spacing for the sweep direction being updated.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

ADI sweep number for sweep direction being updated.

Index in the "vectorized" direction,/_.

Derivatives of computational coordinate, for the sweep direction
being updated, with respect to x, y, z, and t.

Number of grid points N in the sweep direction being updated.
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NV

RHOL, UL, VL, WL, ETL

Number of grid points in the "vectorized" direction, N,.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1 at boundary points from first and second sweep.

Description

Subroutine BVUP updates boundary values from the first andsecond, or _ and ,7, sweeps after the third,
or _, sweep. In generaI, this is necessary when gradient or extrapolation bounda_,5- conditions are used in
the _ or ,7 direction. Some updating is also necessary when spatially periodic boundary conditions are used.
The procedure for non-periodic boundary conditions is described in Section 7.3 of Volume 1.

Updating boundary values is compficated somewhat when spatially periodic boundary conditions are
used.

[]

[] _ 0 Sweep 1
/ / [] Sweep 2

0 0 J _ _ El- A Sweep3

[]

Figure 4.1 - Updating boundary values for periodic boundar)' conditions in the { direction.

The situation for a periodic boundary condition in the _ direction but not in the _/or _ directions is
shown in Figure 4.1. In the figure, a 4 x 4 x 4 grid is shown in computational space for a three-dimensional
problem. The circles and squares represent grid points at which intermediate values are computed during
the first two ADI sweeps, and the trian_es represent grid points at which final values are computed during
the third ADI sweep. The intermediate values at ,7 = 0 and at _/= 1 are updated first. This is done using
the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume 1, but for
i = 2 to N1 instead of Na- 1, where i is the index in the _ direction. The values on the _-; edges (i.e., the

four lines of intersection between the ,7 and ; boundary planes) are also updated over the same _ indices

using the procedure described in Section 7.3 of Volume 1. Finally, the values in the _ = 0 plane are updated

by setting t_a = (_q at every point in the plane.
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.. "-- El-- E]-

I

D J_ C) Sweep 1
" [] Sweep 2

0 0 / .._ .__ A Sweep 3
.s

© 0

Figure 4.2 - Updating boundary Values for periodic boundary conditions in the _/direction.

The situation for a periodic boundary condition in the r/ direction but not in the _ or _ directions is
shown in Figure 4.2. In this case, the intermediate values at _ = 0 and at _ = 1 axe updated first. This is
done using the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume
1, but for j = 2 to N2 instead of N2 - 1, where j is the index in the _/direction. The values on the _-_ edges
(i.e., the four lines of intersection between the _ and ( boundary planes) axe also updated over the same _/
indices using the procedure described in Section 7.3 of Volume 1. Finally, the values in the _/= 0 plane axe

updated by sett, qg O, = 1_2 at every point in the plane.
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1 0 0

¢¢ _/ (:l I=1 _ ill / 0 Sweep1

I ', . .-" / E] Sweep 2

o o .

Figure 4.3 - Updating boundary values for periodic boundary conditions in the _ direction.

The situation for a periodic boundary condition in the _ direction but not in the _ or ,7 directions is

shown in Figure 4.3. In this case, the intermediate values at _ = 0, ¢ = 1, _/= 0, and n = t are updated ftrst.

This is done using the same procedure as for non-periodic boundary conditions, described in Section 7.3
of Volume 1, but for k = 2 to N3 instead of N3 -- 1, where k is the index in the ( direction. The values on

the _-_ edges (i.e., the four lines of intersection between the _ and '7 boundary planes) are also updated over
the same ( indices using the procedure described in Section 7.3 of Volume 1. Finally, the values in the

^ ^

= 0 plane are upuated by setting Qt = Q_v3 at every point in the plane.
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0 _ 0 Sweep 1
" [] Sweep 2

A Sweep 3

Figure 4.4 - Updating boundary values for periodic boundaD' conditions in the _ and _/directions.

The situation for periodic boundary conditions in the _ and ,7 directions but not in the _ direction is
shown in Figure 4.4. In this case, the only action needed is to update the values in the _ = 0 and ,7 = 0

^ ^ ^

planes, by setting (_t = Q_ at every point in the _ = 0 plane, and Q1 = Q_,_ at every point in the ,1 = 0 plane.

O O

[] _" O Sweep 1
.... "" [] Sweep 2

11_ "E3- E]- A Sweep 3

Figure 4.5 - Updating boundary values for periodic boundary conditions in the _ and _ directions.
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The situation for periodic boundary conditions in the _ and r directions but not in the _ direction is
shown in Figure 4.5. In this ease, the intermediate values at _ = 0 and at n = 1 are updated ftrst. This is
done using the same procedure as for non-periodic boundary conditions, described in Section 7.3 qf Volume
1, but for i = 2 to N_ instead of N_ - 1, and for k = 2 to ,¥3 instead of N3 - I, where i and k are the indices

in the _ and _ directions. The values in the _ = 0 plane are then updated by setting Q_ = (_¢1 at every point

in the plane except for the points (1,j, 1). Finally, the remaining points in the _ = 0 plane are updated by
^

setting Q_ = Qz¢3.

O O

I_ _ O Sweep 1
.. " [] Sweep 2

) t "j d _ _]- A Sweep 3

© O

Figure 4.6 Updating boundary values for periodic boundary conditions in the y/and ff directions.

The situation for periodic boundary conditions in the n and _ directions but not in the _ direction is
shown in Figure 4.6. In this case, the intermediate values at ff = 0 and at _ = 1 are updated first. This is
done using the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume
1, but for j = 2 to N2 instead of N2 - I, and for k = 2 to N3 instead of N3 - 1, where j and k are the indices

in the r/and _ directions. The values in the _/= 0 plane are then updated by setting (_l = (_2 at every point
in the plane except for the points (i, 1, 1). Finally, the remaining points in the _ = 0 plane are updated by

setting Q1 = 1_z¢3-
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[]

Figure 4.7 - Updating boundary values for periodic boundary conditions in all three directions.

The situation for periodic boundary conditions in all three coorffanate directions is shown in Figure 4.7.
In this case, the only action needed is to update the v/dues in the ¢ = 0 and n = 0 planes, by setting

1= Q_q in the _ = 0 plane and QI = Q_¢2in the n = 0 plane.

Remarks

I. The comer values of p and Er are updated by linearly extrapolating from the two adjacent points in the
_, _/, and _ directions, and averaging the three results. Note that this extrapolation is done .-, compu-
tational space. Grid packing in any direction is thus not taken into account. The comer values of the
velocities are updated by doing the same type of extrapolation. Instead of averaging, however, the ex-
trapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct
inlets and exits.

2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and S represent A and S, where A is a square N by N matrix and S is a vector with N elements, and
if the leading dimension of the Fortran array A is LDA, then the Fortran sequence

call sgefa (a,lda,n,ipvt,info)
call sgesl (a,lda,n,2pvt,s,O)

computes A- _S, storing the result in S.
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Subroutine COEFC

Called by Calls

EXEC

Purpose ..

Compute coefficients and source term for the continuity equation.

Input

DEL

DTAU

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

IBASE, ISTEP

* IHSTAG

ISWEEP

IV

I2, 13

JI

METX, METY, METZ, METT

NC

NPTS

NR, NRU, NRV, NRW, NET

RHO, U, V, W

RHOL

* THC

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Computational grid spacing in sweep direction.

Time step Ar.

Computational grid spacing A_, An, and A_.

Metric coefficients _, _y, _z, and r/,.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Index in the _vectorized" direction,/,.

Grid indices j and k, in the _/and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- L

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and t.

Array index associated with the continuity equation.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static density p, and velocities u, v, and w, at time level n.

Static density p from previous ADI sweep.

Parameters 01 and 02 determining type of time differencing for the
continuity equation.

Metric coefficients _x, _y, _z, and ¢,.

Metric coefficients _, _,, _, and _,.

o tp t

A,B,C Coefficient submatrices A, B, and C at interior points (row NC

only).

Source term subvector S at interior points (element NC only).

Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations

(7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the three ADI

sweeps. The elements of the inviscid flux vectors 1_, _', and G are given in Section 2.0 of Volume 1, and

the elements of the viscous flux vectors l_v_, l_v2, etc., are given in Appendix A of Volume I. The Jacobian
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^ ^

coefficient matrices OEIOQ, OEm/OQ, etc., are given in Section 4.0 of Volume 1. Using all of these

equations, the differenced form of the continuity equation may be written for the three ADI sweeps as _9

Sweep 1 (_ direction)

^. 01A, ,,6;+1- a6;-1 =
APi + (1+02)2A_ L\ OQ i+1 \ OQ i-1

A'F ^ A 02 , An --1

1..{..{.02 (_ E1 +_qrl + _Gl)n-'{- 1"-i"-_'_22"22/--xp

Sweep 2 (q direction)

0lAw

(1 + 02)2An E(/nAi)IA0F 1 ^ ** OF1 ^ ** ^*

a6 o6
j+1 7-1

.Sweep 3 (_ direction)

01At

A_7'+ (I+ 02)2AC
0GI An O 1 An

0----_ AQk+ 1 __ _ AQk_l =A_**
k+l k--I

In the above equations, the subscripts i, j, and k represent grid point indices in the _, _, and _ directions.
For notational convenience, terms without an explicitly written i, j, or k subscript axe understood to be at

i,j, ork.

The vector of dependent variables is

1
(_=7 [p pu.m, pw er] r

The appropriate elements of the flux vectors are given by

^ 1

^ 1
F: = 7 [punx+ t_Vny+ #wnz + pnt]

^ 1
Gi = 7 [pUgx + pv_y + pw[ z + P_t]

The elements of the Jacobian coefficient matrix 0E/01_ for the continuity equation are

These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy ET would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.
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A

OE_

OQ
O]

^ ^ ^ ^ ^ A

The Jacobian coefficient matrices 0F1/0Q and OGI/0Q have the same form as OEd0Q, but with _ re-

placed by _ and _, respectively.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. This is the second element of Q, so using the second element in 0E_/OQ we
get

A(W,I,NC,NRU) =
01 (A-r)i.j, k

(1 + 02)2A_ (_x)i- 1,), k

B(W,I,NC,NRU) = 0

01 (Az)i,j, k

C(IV,I,NC,NRU) - (1 + 02)2A_ (_x)i+ x,y,k

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the ftrst sweep, but with _ replaced
by q and _, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The source term, or right hand side, for the first sweep is defined next..The difference formulas used to
compute the source term are the same as those used for the implicit terms, and are presented in Section 5.0
of Volume 1. riffs is followed by the coding for the source term for the second and third sweeps, which
consists only of A_;* or At;**.

Remarks

.

2.

This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

The subscripts "n the Fortran variables A, B, C, and S may be confusing. The first subscript s the
index in one of the non-sweep (i.e., "vectorized') directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (I2,II), for the second sweep the order is (I1,I2),
and for the third sweep the order is (11,I3). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the ftrst two subscripts are written as (IV,I). For sections of the code that apply
only to the ftrst sweep, the first two subscripts are written as (12,11). For sections that apply to the
second and third sweeps, they are written as (I1,I). The third subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.
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Subroutine COEFE1

Called by Calls Purpose

EXEC Compute coefficients and first-sweep source term, except for cross-
derivative viscous terms, for the energy equation.

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

ETL

IBASE, ISTEP

* IEULER

ISWEEP

* ITHIN

IV

I2, 13

JI

METX, METY, METZ, METT

MU, LA, KT

NEN

NPTS

NR, NRU, NRV, NRW, NET

P,T

PRR

RER

RHO, U, V, W, ET

* THE

XIX, XIY, XIZ, XIT

Computational grid spacing in sweep direction.

Derivatives 3p/dp, Op/3(pu), c?p]c?(pv), Op]O(pw), and Op/cgEr.

Time step Az.

Derivatives OT]Op, OT]O(pu), OT]O(pv), OT/O(pw), and OT]OEr.

Computational grid spacing A_, An, and A_.

Metric coefficients qx, q_, q2, and _/,.

Total energy Er from previous ADI sweep.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flags for thin-layer option.

Index in the "*ectorized" direction,/,.

Grid indices j and k, in the q and _ directions.

Inverse Jacobian of the nonorthogonal grid transforma on, J- x.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and t.

Effective coefficient of viscosity/_, effective second coefficient of

viscosity 2, and effective coefficient of thermal conductivity k at
time level n.

Array index associated with the energy equation.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static pressure p and temperature T at time level n.

Reference Prandtl number Pr,.

Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Parameters 01, 02, and 0z determining type of time differencing for
the energy equation.

Metric coefficiems _, _y, _z, and _,.
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ZETAX, ZETAY, ZETAZ,
ZETAT

Metric coefficients G, G, G, and G.

S

Coefficient submatrices A, B, and C at interior points (row NEN

only).

First-sweep source term subvector S at interior points, except for
the cross-derivative viscous terms (element NEN only).

Description

Subroutine COEFE 1 computes the coefficients and starts the computation of the first-sweep source term
for the energy equation. The cross-derivative viscous terms are added to the first-sweep source term in
subroutine COEFE2. Equations (7.5a-c) in Volume 1 represent, in vector form, the five governing differ-

ence equations for the three ADI sweeps. The elements of the inviscid flux vectors 1_, F, and (_ are given

in Section 2.0 of Volume 1, and the elements of the viscous flux vectors l_vl, l_v2,etc., are given in Appendix

A of Volume 1. The Jacobian coefficient matrices OE/O(_, OEm/O(_, etc., are given in Section 4.0 of Volume

1. Using all of these equations, the differenced form of the energy equation may be written for the three

ADI sweeps as

Sweep 1 (_ direction)

A s

A(ET)i+ [l t ],'67+,- "67-
(1 + 02)2A_ \ OQ i+ I \ OQ //i- 1

01a'r [(f/-l + :'"Yi)g/-I" aX*_i-i- (f/-1 + 2f/+f/+ _)"giaQi""* +(£+ f/+l)"gi+n ,AQi+ 1]="*
(1 + 02)2,±_) 2

A A _ A A /7

1 + 02 1 + 02

A A A ?7

+ (iI-I-+0203)Az[6¢(Ev2)5+ 6n(Fv_)s+ 6¢(Gv_)s]

+_
1 +02

A A m r/

oBa [6 (rv,ls+ 6 (Fv )5+ 6 (Gv ls]-'
1 +02

Sweep 2 (n direction)

(1 + 02)2A,/ \ OQ ,]i+ 1 \ OQ -J-1

A A** __ n n A** AA**

(1 + 02)2(Art) 2 -

A_

AET
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Sweep 3 (_ direction)

a_5 ^ n-- AQk - 1
^ A6 +, \-&-Q/kA(Er)_+ (1 +02)2A_ \ 0Q k+l -1

^n +2j_+fk+ .n n__n n n ^n0_A, [(A- 1+ A)"g_- _aQk i (A-- - - 1) gkta_'/k + (_+ fk+ 1) gk+ lAQk+ 1] =

(1 + 02)2(A_) 2

AE r

In the above equations, the subscripts i, j, and k represent grid point indices in the _, r/, and _ directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at

i,j, or k. On the left hand side, f is the coefficient of alO_ (or Ola_ or aloe, depending on the sweep) in the
^ ^ ^ ^ ^ ^

OEv_lOQ (or OFv_/OQ or OGv,/OQ) Jacobian coeffident matrix. Similarly, g is the term in the parentheses

following O/O_ (or O/On or aloe) in the OEv,/OQ (or OFv,IOQ or OGv_/OQ) Jacobian coefficient matrix.

The vector of dependent variables is

^ 1
Q=7Lo pu pv pw ET] r

The appropriate elements of the inviscid flux vectors are given by

^ 1
E5 = 7 [(ET + P)U_x + (Er + p)v_y . (E r + p)w_ z + E r _t]

Fs =̂ 71 [(Er+ p)U_x + (Er+ p)Vny + (Er+ p)W.qz + Ernt ]

Gs^=71 [(Er+ p)u_x + (Er+ p)v_y + (Er+ p)w_ z + Er_t]

The appropLate elements of the non-cross derivative viscous flux vectors are

A 1 1 { (2U + 2) [_2x(U2)_ + _y2(V2)¢+ _2z(W2)¢] + (U + 'I)[_X_y(UV)_+ _X_z(UW)¢+ _y_z(VW)¢](Ev,)s- J Re r 2

k (_
+-_-

^ 11{(Fv_)_ - j Re r

(2/,+2) 2 2 2 2 2 2
2 [nx(U )'7 + _y(v ),_+ qz(W ),_] + (u + ,_.)[_x,b,(Uv),_+ _x_z(UW),_+ n_nz(VW),_]

/_ 2 2 2 2 2 2 k , 2 , 2 2 _.
+ [_.(v J,_y(u + rlz(u +-T ,ly+ w2),+ + w2), + _2),] t._x* + n_)T,

^ 1 1 { (2/i + 2) [{_x(U2)¢ + 2 v2(Gv_)5 = T R'---_r " 2 _Y( )¢ + _z2(w2)¢]+ (U + )-)[ffx{y(uv)¢ + £_z(UW)¢ + _y_z(VW)¢]

' 2+ ¢=,)r_}+5-

The terms involving ]_v2, l:v2, and C;v2 are the cross derivative viscous source terms, and are computed
in subroutine COEFE2.
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The elements of the Jacobian coefficient matrix 01_[00 for the inviscid terms in the energy equation are

^ [ (f2 ap) 3p 3p f2_z+fl 3p0Es:,- -fl ---_-p f2_x+fl a(pu) :'2"_x+f_a(p_) o(:w)
OQ

Op

where f = u_, + v_ + w_, and J_ = (Er + p)/p.

^ ^

The elements of the Jacobian coefficient matrix OEvJOQ for the viscous terms are

1 52 53 54

where

0 l

0Q ) -- O u 2 0 d

51

( )O 3 v += O(:u)

52

OEv_ O u 0 0 OT

OQ O(pv)
53

aQ O(pv)
54

O_yy = iz_x 2 + (2/.t h- ).)_y2 q,_/Z_z2

C_zz= u_x 9-+ U_y2 + (2U + 2)_z2

_y = (_'+ "_)_Ay

_xz = (_ + 2)_x_z

k

no= _(¢2 + ¢y2+ ¢2)

^ ^ _7 O^ ^ ^The Jacobian coefficient matrices OFs/OQ and O( v_)s] Q have the same form as dF_,s[c3Qand 6(Evl)s/OQ,
^ ^ ^ ^

but with _ replaced by r/. Similarly, the Jacobian coefficient matrices OGs/OQ and O(Gvl)s/OQ have the same

^ 0 ^form as O_]O0. and O(Ev_)s/ Q, but with _ replaced by _.
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As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of (_, so using the second element in 0_/00 we

get for the inviscid term

A(IV,I,NEN,NRU) =

B(IV,I,NEN,NRU) = 0

[ 0,] }i + (uCx+ v_y+ w_z) _ ,J,¢_) l,j,k
-- i-1 k

C(IV,I,NEN,NRU) =.(1 + 02)2A_ P _ + (u_x + V_y + w_z) Op
i+l,j,k i+ 1,j,k

^ ^

For the viscous terms on the left hand side, we use the second element in O(Evt)slOQ, which is

Re r ax-x"_- ( -_- ) + exY-_- ( -_'- ) + exz --_" ( -'_- ) +a0 O(pu)

There are four terms in that element. Thus, in turn, f= o_JRe,, o_xy/Re,, o_,=/Re,, and o_dRe,, and g = u[p,
v/p, w/p, and OT/O(pu). To add the viscous contribution to this part. of the A coefficiertt submatrix, we
therefore set

A(IV,I,NEN,NRU) = A(IV,I,NEN,NRU)

- { _(1 + 02)2(A_)2Rer

<) }w + [(_o)i- 1,y,k + (_Xo)i,j,_] a(pu) i- 1,j, k+ [(_)i - _,j,/_+ (*'x_)_,j,I,] -_- i- 1,y,,_

Similar equations may be written for the B and C coefficient submatrices.

In COEFE,, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the ftrst sweep, but with _ replaced
by _/and _, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The non-cross-derivative part of the source term, or right hand side, for the fLrst sweep is defined next.
The difference formulas used to compute the source term are the same as those used for the implicit terms,

and are presented in Section 5.0 of Volume 1.

Remarks

.

This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (I2,I1), for the second sweep the order is (I1,I2),
and for the third sweep the order is (11,13). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the first sweep, the ftrst two subscripts are written as (I2,I1). For sections that apply to the
second and third sweeps, they are v,xitten as (I1,I). The third subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.
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3. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms.

4. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.

5. The computation of the ftrst-sweep source term was split in two to keep the energy equation subroutine
from being even longer than it already is.
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Subroutine COEFE2

Called by Calls Purpose

EXEC Compute cross-derivative part of first-sweep source term, plus second-
and third-sweep source terms, for the energy equation.

DTAU

DXI, DETA, DZETA

ETAX, ETAY, ETAZ

IBASE, ISTEP

* IEULER

ISWEEP

* ITHIN

I2, I3

JI

MU, LA, KT

NEN

NPTS

T

PRR

* RER

S

* THE

TL

U, V, W, ET

UL, VL, WL, ETL

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

o t_.umm

S

Description

Time step Ax.

Computational grid spacing A_, A_7,and A_.

Metric coeffÉcients _/_, _b, and rh.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flags for thin-layer option.

Grid indices j and k, in the 1/and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- '

Effective coefficient of viscosity/_, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k at
time level n.

Array index associated with the energy equation.

Number of grid points in the sweep direction, N.

Static temperature T at time level n.

Reference Prandtl number Pr,.

Reference Reynolds number Re,.

First-sweep source term subvector S at interior points, except for
the cross-derivative viscous terms (element NEN only).

Parameters 01, 02, and 03 determining type of time differencing for
the energy" equation.

Static temperature T from previous ADI sweep.

Velocities u, v, and w, and total energy Er at time le;cel n.

Velocities u, v, and w, and total energy Er from previous ADI
sweep.

Metric coefficients _, _, and _.

Metric coefficients _, _, and _,.

Source term subvector S at interior points (element NEN only).

Subroutine COEFE2 finishes the computation of the first-sweep source term for the energy equation
by adding the cross-derivative terms. It also computes the second- and third-sweep source terms. The
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differenced form of the energy equation for the three ADI sweeps is presented in the description of sub-
routine COEFE 1.

The appropriate elements of the cross derivative viscous flux vectors are

(r_)s = 7

+ ;.{_(n#% + ,Tyuvn + n.-uw,7+ ¢_uu_+ Cyuv_+ ¢#w_)

+ ,_G(nxwu,7+ nywv,7+ nWwn + Gwu¢ + CyWV¢+ Gww_)

+ uG(,Tyvu,7+ ,1,,w,7+ nzw% + n_ww,7+ _y-_U_+ Gwc + Gwu_ + Gww_)

"Jr 12_y(nyU'Url + vlxl, tVrl + rlz'WVr l -[- ny'WWr I + _yZtl2 c + _xZ_ c + _z'tCV¢ -_- ffy'W'W¢)

+/Cz(,buu n + ,IxUWn+ rlzw,7 + ,lyvw n + _zuu¢ + _#w_ + _zw¢ + _yvw¢)

k k ¢ CyCy+¢z_z)T¢l f

1 _2_[nx(#xUU¢ + _xuu¢) + ny(_yw¢ + _yw¢) + rlz(_zWW¢+ (zww¢)]Re r

+ ).nz(#xwu_ + _ywv¢ + _zWW_+ _xwu¢ + (ywv_ + (zww¢)

+ s,n,_(_yVU¢+ _,:_ + Gwu¢ + Gww_ + ¢7,u_ + Gw_ + Gwu¢ + Gww_)

+ _ny(_yu_+ _,:,_ + G_¢ + _yWW¢+ _,u_ + _:,_ + G_¢ + _Ww¢)

+ _,n_(Guu_ + _v_ + Gw¢ + ¢yVW_+ (_,_ + Guw_ + G_; + _yvw:)

+ _ (nxCx + nyCy + nzCz)r_ + _ (,lx_x + nyCy + ni_z)T¢_
Prr Prr 3

1 1 {2_z _xUU¢)+ _y(rlyw,_+ _yW¢) + _z(nzWW,7+ CzWW_)]

+ ;4y(n_vun + nW,_ + n:wn + _,,vu¢+ _y_ + Gvw_)

+ 2_(,Txwun + nyWVn + nWwn + G:wu_+ _ywv_+ #Ww_)

+ s_G(nyV% + nx_',_+ n_w% + n:_wwn + _yvu¢+ _¢ + Gwu_ + L_ww¢)

+ _y(nyuu n + n.d% + nWvn + n_wwn + _yUU¢+ Gu_¢ + Gwv_ + gyWW¢)

+ _,_z(n#u n + n,,uwn + ,rzwn + nyvwn + G_,u_+ _:_w_ + _zw¢ + ¢7w_)

_yrly + _zrlz)Tr I + _ (_x_x + _y¢y + 'Z_Z)T_}

k
+ _ (Gn_+

The cross-derivative part of the first-sweep source term is computed fn-st. The difference formulas used
to compute the source term are the same as those used for the implicit terms, and are presented in Section
5.0 of Volume 1. This is followed by the coding for the source term for the second and third sweeps, which

consists only of A_r or A_r .
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Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variable S may be confusing. The first subscript is the index in one of
the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the sweep direction.
For the f_rst sweep the order is thus (I2,I1), for the second sweep the order is (II,I2), and for the third
sweep the order is (I 1,I3). For sections of the code that apply only to the first sweep, the first two
subscripts are written as (I2,I 1). For sections that apply to the second and third sweeps, they are written
as (I l,I). The third subscript on S corresponds to the equation.

The Euler option is implemented simply by skipping the calculation of the source terms for the viscous
and heat conduction terms.

The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.

.

4.
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Subroutine COEFX

Called by Calls

EXEC

Purpose

Compute coefficients and source term for the x-momentum equation.

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

IBASE, ISTEP

IEULER

IHSTAG

ISWEEP

ITHIN

IV

I2, I3

JI

METX, METY, METZ, METT

MU, LA

NPTS

NR, NRU, NRV, NRW, NET

NXM

P

RER

RHO, U, V, W

RHOL, UL, VL, WL

* THX

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Computational grid spacing in sweep direction.

Derivatives OplOp, OplO(pu), Op/O(pv), Op/O(pw), and OplOEr.

Time step At.

Computational grid spacing A_, A_t, and A(.

Metric coefficients r/,, _b, _z, and _/t.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index in the "vectorized" direction,/,.

Grid indices j and k, in the n and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-_.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and t.

Effective coefficient of viscosity/_ and effective second coefficient
of viscosity 2 at time level n.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Array index associated with the x-momentum equation.

Static pressure p at time level n.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w at time level n.

Static density p, and velocities u, v, and w from previous ADI

sweep.

Parameters 01, 02, and 03 determining type of time differencing for
the x-momentum equation.

Metric coefficients _,, _y, _z, and _.

Metric coefficients _,, fly, _z, and _,.
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Coefficient submatrices A, B, and C at interior points (row

NXM only).

Source term subvector S at interior points (element NXM only).

Description

Subroutine COEFX computes the coefficients and source term for the x-momentum equation.

Equations (7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the

three ADI sweeps. The elements of the inviscid flux vectors 1_, F, and _; are given in Section 2.0 of Volume

1, and the elements of the viscous flux vectors l_vj, i_v2, etc., are given in Appendix A of Volume 1. The

Jacobian coefficient matrices dE/d0, OEv_/OQ, etc., are given in Section 4.0 of Volume 1. Using all of these

equations, the differenced form of the x-momentum equation may be written for the three ADI sweeps

as 20

Sweep 1 (_ direction)

+

"67.,-
(1 + 02)2A¢ \ aQ i+ 1 i- 1

o_a_ [(__, + :,)"e;__,',_;_,-(f,-, + 2_+f_ -" °-_* " " ^*+0 g/av, +(£+ £+0 &+ tAQi+_] =
(1 + 0=)2(a_)=

A A_" A A A _1

1+0 2

^ A A n 83Ax ^ A (5 "1_ , "In -- 1(1+ o3)a_ [ae(EQ2+ a,(vv.)2+ a_(Gv.)2] [a¢(rv_):+ a,(vv_)=+ _t v):
1 + _2 1 + 0 2

o2 ,a(;,_)"-
1 +8 2

Sweep 2 (r/ direction)

01Ar OF 2 ^ ** 0F 2

(1+ o_)2a, o_ /,% +, o_ a
- y+l j-I

?l ?l ^** /7 KI

o_a_ [(.fj_, + g)g:_ la%_. (4
(1 + 02)2(An)2

a(;_,)*

These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.
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Sweep 3 (_ direction)

OlA'r OG2 ^ n ^ n

A(P_U)_+ (1 + 02)2A¢ d(_ aQk + 1- aQk -
k+l \ 0Q k-1

A /./ "._/7 n_aA/'_ /'1 /l A /7

_ O_&r [(__1+fk)ng__lAQk_l_(fk_l+2_+fj+l)gka,,lk+(fk+f_+l) gk. _AQk +1 ]
(1 + 02)2(aC)2

a(du)'"

In the above equations, the subscripts i, j, and k represent grid point indices in the _, r/, and _ directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at

i, j, or k. On the left hand side, fis the coefficient of 3]0_ (or 313 _ or 3]0_, depending on the sweep) in the
A ^ a ^ ^ ^

OEv,/0Q (or 3Fv,]OQ or OGvl]0Q) Jacobian coeftident matrix. Similarly, g is the term in the parentheses
^ ^ ^ ^ ^ A

following 3]0_ (or d/&l or 3]0_) in the OEvl]OQ (or OFvl/OQ or OGvdOQ) Jacobian coefficient matrix.

The vector of dependent variables is

1

The appropriate elements of the inviscid flux vectors are given by

E2= 19-[(pu2+?)G + puvCx+ puwG + eu_t]

^ I
F2 = -j-[(Pu2 + P)nx + puwly + puw% + punt]

^ I
G2= 7 [(p_+P)G + p_Cy+ pUWCz+ pKfl

The appropriate elements of the non-cross derivative viscous flux vectors are

(_ . 1 1
Lv,)2 =-)--_-e_ [2u_u_ + ,_G(Gu_+ _y,,_+ Gw_)+ u_y(_y,q+ G"0 + u_/Gu_ + Gw¢)]

(_. 1 l 2
rv,)2 = --f _ [2/aqxUn + ;.rlxOlxU,7 + rlyv, r + %w n) + I.Zrly(rlyUq+ nxVrl) + t.trlz(rlzbIrl + rlxWrl) ]

^ 1 1
(Gv,)2- j Rer [2/_C2xU¢+ ).Cx(CxUC+ CyV¢+ CzWC)+ tz_y(Cyu¢+ CxV¢)+ u_z(_zUc+ CxW¢)]

And the appropriate elements of the cross derivative viscous flux vectors are

(Ev_)2A _ J1 Rerl [2_x(r/xU n + CxU¢) + 2_x(rlxu n + rlyv,_ + nzWn + CxUc + Cyv¢+ CzWc)

+ _,_y(,Tyu,7+ n_v,7+ CyU¢+ C=,_,¢)+ u¢_(,7_, + ,_,w,_+ C.._c+ Gw¢)]

^ I

(Fv2)2- j l [2Urlx(_xU_ + CxU¢)+ 2_x(_xU¢ + _yv¢+ _zW¢ + CxUc + _yv¢+ Czw¢)
Rer

+ u,b,(_yU_+ Gv¢+ C_u¢+ GvC)+ u,b(Gu_+ Gw¢ + C..uC+ Gwc)]
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(Gv2)2=")1 R_rl [2uCx(,7xU,7+ ¢xU_) + _L,(nxU,7+ ,_yV,7+ ,7_w,+ ¢xU_+ CyV_+ ¢_w:)

+ u¢y(,_yU,_+ ,7:,_+ ¢yu_+ ¢:,v0 + u_A,7_u,7+ ,7:,w,_+ _ + ¢:_)]

The elements of the Jacobian coefficient matrix al_/O(_ for the inviscid terms in the x-momentum

equation are

O__= __p _x_Uf l _t+fl+U_x+d_pu)_ x U_y+o.._._ x U_z+ ¢x dE T

where f = u_, + v_y + w_.

^ ^

The elements of the Jacobian coefficient matrix OEv_/OQ for the viscous terms are

__ 0 1 d
a 1 _-_- 7- _-_- oO(Ev_ )2 1 OEv_ c_xx-_ - To6 = R-Z;

21

where

(A)
21

_,_ = (2t_+ ,l)_x_ + u_y_+ M__-

a= = (_ + 2)_Az
^ ^ ^ ^

_70 ^ ^ ^The Jacobian ,,-.efficient matrices O _] Q and O(Fv_)2/dQ have the same form as dE2/OQ and dlEv_)_]OQ,
^ ^ A ^

but with _ replaced by _/. Similarly, the Jacobian coefficient matrices 0G_/0Q and 0(Gv_)_]0Q have the same

form as Ol_]OQ and 0(l_v_)_]O{_, but with ¢ replaced by ¢.

As an example of how these equations are translated into Fortran, consider the A(pulJ) term on the left

hand Side for the fn-st sweep. This is the second element of (_, so using the second element in dl_]O(_, and

including the A(p_u)_ term, we get for the inviscid term

A(IV,I,NXM,NRU) = (1 + 02)2A_ (_t)i-l'i'k+(U_x+V_'+w_z)i-hj'k+(U_x)i-l'j'k+ 0-_'_ i-Lj, k

B(IV,I,NXM,NRU) = 1

C(IV,I,NXM,NRU) =
Ol(A'r)i,j, k

(1 + 02)2A_

^ ^

For the viscous terms on the left hand side, we use the second element in O(Ev_)_/OQ, which is

,Re r c_x-x'o-_
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Thus f= axx/Rer and g = 1/p. To add the viscous contribution to this part of the A coeffÉcient submatrix,
we therefore set

A(IV,I,NXM,NRU) = A(IV,I,NXM,NRU) -
01 (A'r)i, j,k

Similar equations may be written for the B and C coefficient submatrices.

In COEFX, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with _ replaced
by _ and _, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms, and are presented in Section 5.0
of Volume 1. This is followed by the coding for the source term for the second and third sweeps, which
consists only of A(p_u)* or A_u)**. "

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the
sweep direction. For the ftrst sweep the order is thus (I2,11), for the second sweep the order is (I 1,I2),
and for the third sweep the order is (I1,I3). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the ftrst sweep, the first two subscripts are written as (I2,11). For sections that apply to the
second and third sweeps, they are written as (I1,I). Thethird subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.

3. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

4. The thin-layer ,ption is implemented by skipping the calculation of the coefficients and source erms
for the viscous terms containing derivatives in the specified direction.
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Subroutine COEFY

Called by Calls Purpose

EXEC Compute coefficients and source term for the y-momentum equation.

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

IBASE, ISTEP

IEULER

IHSTAG

ISWEEP

ITHIN

IV

I2, 13

JI

METX, METY, METZ, METT

MU, LA

NPTS

NR, NRU, NRV, NRW, NET

NYM

P

RER

RHO, U, V, W

RHOL, UL, VL, WL

* THY

XIX, XIY, X_,XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Computational grid spacing in sweep direction.

Derivatives OplOp, Op/O(pu), Op/O(pv), Op[O(pw), and Op/OEr.

Time step A,.

Computational grid spacing At, An, and A[.

Metric coefficients _h, _b, _/z,and _/,.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index in the "vectorized" direction, L.

Grid indices j and k, in the _/and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and t.

Effective coefficient of viscosity t_ and effective second coefficient
of viscosity 2 at time level n.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Array inde x associated with the y-momentum equation.

Static pressure p at time level n.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w at time level n.

Static density p, and velocities u, v, and w from previous ADI

sweep.

Parameters 01, 02, and 03 determining type of time differencing for

the y-momentum equation.

Metric coefficients _, _y, _z, and _,.

Metric coefficients _x, _y, _z, and _t.
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O_tput

A, B, C Coefficient submatrices A, B, and C at interior points (row
NYM only).

S Source term subvector S at interior points (element NYM only).

Description

Subroutine COEFY computes the coefficients and source term for the y-momentum equation.
Equations (7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the

three ADI sweeps. The elements of the inviscid flux vectors !_, F, and G ate given in Section 2.0 of Volume
^ ^

1, and the elements of the viscous flux vectors Evl, Ev2, etc., ate given in Appendix A of Volume 1. The
^ ^ A ^

Jacobian coefficient matrices 0E/dQ, dEm/a Q, etc., are given in Section 4.0 of Volume I. Using all of these
equations, the differenced form of the y-momentum equation may be written for the three ADI sweeps
as2_

Sweep 1 (_ direction)

^. or3 "67_
01At AQi+ 1 - 0---_ 1

(1 + 02)2A_ \ 0Q i+1 i-1

o,a /7) gL,, hL _(f,_, + g,aQ, +(/,+
(l + 02)2(a_)2

A_ ^ ^ a1__02 [ ^ ^ ^1-I-02 (6¢E3-I-6nF 3 + 6cC,a)n -I- di_(Ee_)3+ 6n(Fv_)3+ 6c(Gv_)s]

A ^ A n 83A'r ^ A ^ n

I+ a2 I+192

1 +02

+

Sweep 2 (_/direction)

(1 + 02)2at / 1 \ 3Q - I

/_lA't A** n n A,. A,, :

a(A)"

2_ These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,

the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have

only four elements.

176 4.0 Proteus Subl_rograms: COEFY Proteus 3-D Programmer's Reference



Sweep 3 (_ direction)

01Ax _ ^n

+ + ''Q*+'-

/'l n J1 n--_An 7/ n A /I

e,,,,_ [G ,+.,¢)g_ ,'(_]-,-(S-,+2_+_+,_gk"_._+(-&+%+,)g,'+'<"Qk+'] =
(1 + 02)2(A_) 2 -

a(pv)

In the above equations, the subscripts i, j, and k represent grid point indices in the _, _/, and _ directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at

i, j, or k. On the left hand side, fis the coefficient of c3/3_ (or O/3n or d/0¢, depending on the sweep) in the
^ ^ ^ ^ ^ ^

ÙEvJOQ (or 0FvJOQ or dGvl/OQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
^ ^

following 0/3_ (or 3/&l or 0[3_) in the 3E.vt/3Q (or 3F'vt/_Q or 3Gv_/OQ) Jacobian coefficient matrix.

The vector of dependent variables is

1
h =7 [;' ,,u ,,v pw Er]r

The appropriate elements of the inviscid flux vectors are given by

^ I
E3 = 7 [pUV_x + (pv2 + p)_y + pVW_z + pv_t]

^ 1
= 7 [Pzm)lx + (fly2 + P))Ty + PVW)Tz+ P_'qt]F3

^ 1
G3 = 7 [PUVCx "4- (pV 2 + P)Cy -'k pvwC z + pvCt]

The appropriate elements of the non-cross derivative viscous flux vectors are

^ I
(Ev,)3- j

^ 1
(Fv,)3- j

^ 1
(g, V,h- S

l 2

1 [2_,n_v_+ ;%(nx% + nyV_+ n_w,,)+ _,n_(nyu,7+ n,#,7)+ unz(n_v,_+ nyw,)]
Re_

1 [2u¢_,,_+ ,_¢y(GU_+ Cyv¢+ Gw0 + uG(¢yU¢ + G"0 + "G(G'_ + Cyw0]
Bet

And the appropriate elements of the cross derivative viscous flux vectors are

1 [2la_y(rlyVn + CyV_)+ 2_y(rlxU_ + rlyVrt+ ffzWn + (xU_ + (yv_ + _zW¢)
Rer

+ _.G(_yU, + n_. + ¢_u¢+ G_O + ,G(n_v, + n_w_+ G_¢ + CyW¢)]

+ _,n;c(_yU_+ Gv¢ + Cyu¢+ Gv0 + unz(Gv¢ + _yw¢+ G_,¢+ CyW¢)]
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The elements of the Jacobian coefficient matrix aE/,gQ for the invisdd terms in the y-momentum

equation are

where f = u_ + v_ + w_z.

^ ^

The elements of the Jacobian coefficient matrix OEv,/OQ for the viscous terms are

i(._ o o
cgQ Rer OQ 31

where

^ ) u d
31

Otyy _. U{X 2 "q- (2 u -I- _.)_y2 q_ /_z2

^ ^ ^ ^ ^ ^

The Jacobian coeff_dent matrices _'_/_(_ and 0(Fv_)_/0Q have the same form as 0E_/0Q and 0(Ev_s_/0Q,
^ ^ ^ ^

but with _ replaced by _. ShT_larly, the Jacobian coefficient matrices dG_/_Q and 0(Gv_)_/0Q have the same
^ ^

form as _I_/_(_ and 0(Ev0_/0Q, but with _ replaced by _.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. This is the second dement of Q, so using the second element in 0E3ISQ, we
get for the _n_sdd term

(o,) ]A(W,I,NYM,NRU)= (1+0=)2A_ (V_x)i- _'J'_ + _-_'_ {Y i- _,j,_

B(W,I,NYM,NRU) = 0

C(W,I,NYM,NRU) =
(1+02)2A_ " " _Y i+_,Lk

^ ^

For the viscous terms on the left hand side, we use the second element in O(Evt)3/OQ, which is

1 0
Re r _XxY'-_(_ - )
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Thus f= c_y/Rer and g =l/p. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(IV,I,NYM,NRU) = A(IV,I,NYM,NRU) o_(a,)t,j,k [(_/)_-1,j,k + (_,,)_,j, k](1) 1,j,k
(1 + 02)2(A_)2Rer i-

Similar equations may be written for the B and C coefficient submatrices.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with _ replaced
by n and ¢, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding ca_. be used for all three sweeps.

The source term, or right hand side, for the ftrst sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms, and are presented in Section 5.0
of Volume 1. This is followed by the coding for the source term for the second and third sweeps, which
consists only of A(pv) or A(pv) .

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the
sweep, direction. For the first sweep the order is thus (I2,I 1), for the second sweep the order is (I 1,I2),
and for the third sweep the order is (I 1,I3). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the ftrst two subscripts are written as (IV,l). For sections of the code that apply
only to the firsf sweep, the first two subscripts are written as (12,11). For sections that apply to the
second and third sweeps, they are written as (I 1,I). The third subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.

3. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

4. The thin-i, yer option is implemented by skipping the calculation of the coefficients and st ,rce terms
for the viscous terms containing derivatives in the specified direction.
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Subroutine COEFZ

Called by

EXEC

Calls Purpose

Compute coefficients and source term for the z-momentum equation.

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

IBASE, ISTEP

IEULER

IHSTAG

ISWEEP

ITHIN

IV

12, I3

JI

METX, METY, METZ, METT

MU, LA

NPTS

NR, NRU, NRV, NRW, NET

NZM

P

RER

RHO, U, V, W

RHOL, UL, VL, WL

* THZ

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Computational grid spacing in sweep direction.

Derivatives Op/Op, Op]O(pu), Op/O(pv), Op/O(pw), and Op/OEr.

Time step A_.

Computational grid spacing A_, AT, and A_.

Metric coeffÉcients _, _,, _z, and _,.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index in the "vectorized" direction,/,.

Grid indices j and k, in the n and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-1

Derivatives of sweep direction computational coordinate with re-

spect to x, y, z, and t.

Effective coefficient of viscosity/_ and effective second coefficient
of viscosity 2 at time level n.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Array" iaadex associated with the z-momentum equation.

Static pressure p at time level n.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w at time level n.

Static density p, and velocities u, v, and w from previous ADI
sweep.

Parameters 0, 02, and 03 determining type of time differencing for

the z-momentum equation.

Metric coefficients _x, _, _, and _,.

Metric coefficients _, _,, _x, and _.
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S

Coefficient submatrices A, B, and C at interior points (row NZM

only).

Source term subvector S at interior points (element NZM only).

Description

Subroutine COEFZ computes the coefficients and source term for the z-momentum equation.
Equations (7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the

three ADI sweeps. The elements of the inviscid flux vectors I_, _7,and 1_ are given in Section 2.0 of Volume

1, and the elements of the viscous flux vectors Evl, l_v2, etc., are given in Appendix A of Volume 1. The
^ ^

Jacobian coefficient matrices _E/OQ, 3En/OQ, etc., are given in Section 4.0 of Volume 1. Using all of these

equations, the differenced form of the z-momentum equation may be written for the three ADI sweeps
as 22

Sweep 1 (_ direction)

Sweep 2 (r/ direction)

^,, OF4 ^,,
OlA'r AQj-I -- C3(_ AQj +1

(1 +02)2A,7 \ OQ y-] J+

n R A** n n A** r/ /7 A**

+ =
(I + 02)2(At/) 2

A

a(pw)

z_ These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.
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Sweep 3 (_ direction)

[( ( Y 1a - AQk + 1

(1+02)2A¢ OQ Jk-I OQ Jk+{

0,a [(fk-1+ A "" " " ^"
(1 + 02)2(A,_) 2 j - I -- (A-1 + 2fk +A+ 1) gk/"_j + (fk + fk+ 1) gk+ 1AQk+ I] ;

a(/w)'"

In the above equations, the subscripts i, j, and k represent grid point indices in the _, ,/, and ( directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at
i,j, or k. On the left hand side,f is the coefficient of O/O_ (or 0/0,/or O/O(, depending on the sweep) in the

^ ^ ^ ^ ^ ,_

OEvfiOQ (or OFvJ_Q or OGv_/OQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
^ ^ A ^ ^ ^

following O/O_ (or 0/Oft or OlO_) in the OEvflOQ (or OFvflOQ or OGvllOQ) Jacobian coefficient matrix.

The vector of dependent variables is

1
_=7-[p pu p_, pw Er] r

The appropriate elements of the in_fiscid flux vectors axe given by

^ 1
E4 = 7 [Ph'W_x -I- pVW_y q- (pW 2 q- P)_z q- PW_t]

^ I
F4= 7 Louwnx+ pV_y + (pw2 + p)nz + pwnd

G4^= 71 [P_(x q- pVW(y q- (pW 2 "F P)(z -t- PW_t]

The appropriate elements of the non-cross derivative viscous flux vectors are

^ 1 1
(Eva)4 = 7 R'--'_r[2U_2zW¢+ )'_z(_'xU_+ _yv¢+ _zW¢)+ U_x(_zU_ + _xW¢)+ l_y(_zV_ + _yw_)]

^ 1 1 2
(Fv_)4 - j Re r [2U'IzW'7+ 2,lz(,lxU,7+ rlyV,7+ nzWn) + mlx(_zU,7 + ,lxW,7)+ I.Zlqy(qzV_ Jr VlyWrl)]

^ 1 1 r2
(Gvx)4 _ J Rer [21ZszW¢+ ).(z((xUg + (yV¢+ (zWO + _(x((zU¢ + (xW¢) + U_y((zV_ q- (yWg)]

And the appropriate elements of the cross derivative viscous flux vectors are

1 [21_zOlzWn + _zW¢) + 2{eQlxUn + ,lyv,7 + ,Tzw,7+ _xU£+ _yV¢+ _zW¢)
Re_

+ _._(n_u, + n_w, + G_¢+ _x*¢)+ uCe(n:, + n_, + ¢:_ + CyW¢)]

+ u,_:,(Gu_+ _,_w_+ t:,_ + Gw 0 + u,r_(_:¢ + _yw_+ Gv¢+ Cyw_)]
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(Gv_h=_)_^ 1 ge.1 [2u(z(nzw,+ _.w0 + "_fAnxN + heY.7+ ._.w._+ _ + _yV_+ _.w_)

+ uL.(.izu.7+ .7_w.7+ _:.u¢+ L.w_)+ #(y(n?.7+ 'TyW.7+ _.v_+ _yw0]

The elements of the Jacobian coefficient matrix Ol_/0(_ for the inviscid terms in the z-momentum
equation are

where f = u_, + v_y + w_=.

^ ^

The elements of the Jacobian coefficient matrix OEvJOQ for the viscous terms are

_(Ev_ )4 1 OEv_ 0 O 1 0

41

where

(^)
OEu_ O u 0 0 w

-)
al

_x_ = (u + ,Z)_x_

_z = uG 2 + u_y2 + Qu + _)_2

The Jacobian coefficient matrices dl:,/00 and O(FF_),IOQ have the same form as c3Fr__]O0and b(F, vt),dc?(_,

but with _ replaced by _/. Similarly, the Jacobian _oem_ent matrices a_;./_ and _(t_).lO(_ have the same

form as OL/O(_ and O(F,v_),[30, but with ¢ replaced by ¢.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. This is the second element of Q, so using the second element in cOEa/OQ,we

01 (A'r)i,j, k

(I + 02)2A_

get for the inviscid term

A(IV,I,NZM,NRU) =

B(IV,I,NZM,NRU) = 0

[(w_x)i-l,j,k+( O_p_) _g)i_l,j,'R]

C(IV,I,NZM,NRU)= (1 +02)2A _ (W_x) + l']'k + O-_-'_ _z i + l,j,k

^ ^

For the viscous terms on the left hand side, we use the second element in O(Evl),/OQ, which is

1 0
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Thus f= a_]Re, and g = lip. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(W,I,NZM,NRU) = A(IV,I,NZM,NRU)
0_ (A'0id, k (1)

(1 + 02)2(A_)2Rer [(axz)i- 1,j,k q- (Ctxe)i,j,k] "-_ i--1,j,k

Similar equations may be written for the B and C coefficient submatrices.

In COEFZ, the coefficients of the left hand fide, or impficit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with _ replaced
by 17and _, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as th_se used for the implicit terms, and are presented in Section 5.0
of Volume I. This is followed by the coding for the source term for the second and third sweeps, which

, ^ . ^ _*

conslsts only of A(pw) or A(pw) .

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., "vectorized") directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (12,11), for the second sweep the order is (I1,I2),
and for the third sweep the order is (I 1,I3). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply to the
second and third sweeps, they are written as (I1,I). The third subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.

3. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

4. The thin-layer _ption is implemented by skipping the calculation of the coefficients and source erms
for the viscous terms containing derivatives in the specified direction.
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Subroutine CO_-V

Called by Calls Purpose

MAIN ISAMAX Test computed flow field for convergence.

CHGMAX

DUMMY

* EPS

* GAMR

* IAV2E, IAV4E

* ICTEST

* IHSTAG

IT

NEQ

* NITAVG

* NOUT

NR, NRU, NRV, NRW, NET

NTOTP

* N1, N2, N3

RESAVG

RESL2

RESMAX

RGAS

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

CHGAVG

CHGMAX

ICONV

Maximum change in absolute value of the dependent variables
from time level n- I to n (or over the previous NITAVG- 1
time steps if ICTEST = 2), AQ ....

A three-dimensional scratch array.

Convergence level to be reached, _.

Reference ratio of specific heats, _r.

Flags for second- and fourth-order explicit implicit artificial
viscosity.

Flag for convergence criteria to be used.

Flag for constant stagnation enthalpy option.

Current time step number n.

Number of coupled equations being solved, N,_.

Number of time steps in mo_Sng average convergence test.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., N1P x N2P x N3P).

Number of grid points N_, N2, and N3, in the _, '1, and £ directions.

The average absolute value of the residual at time level n, R,. z.

The/-a norm of the residual at time level n, RL2.

The maximum absolute value of the residual at time level n,
Rm_x •

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, _¢,and w, and total energy Er at time
level n.

Maximum change in absolute value of the dependent variables,
averaged over the last NITAVG time steps, AQo,s.

Maximum change in absolute value of the dependent variables
from time level n to n + 1 (or over the previous NITAVG time
steps if ICTEST = 2), AQ ....

Convergence flag; 1 if converged, 0 if not.
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Description

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1)
the absolute value of the maximum change in the dependent variables over the previous time step; (2) the
absolute value of the maximum change in the dependent variables, averaged over the last NITAVG time
steps; (3) the/..2 norm of the residual for each equation; (4) the average residual for each equation; or (5)
the maximum residual for each equation. These parameters are defined in Section 4.1.6 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTEST
and EPS. Each dependent variable or equation is checked separately, and convergence is declared when the
specified level is reached for all of the variables or equations. The same criteria is used for each one, but
different levels may be specified.

Subroutine CONV first computes AQ .... the absolute value of the maximum change in each dependent
variable over all the grid points for the most recent time step. These values are stored in
CHGMAX(IVAR,1), where IVAR varies from 1 to NEQ, the number of dependent variables. If
ICTEST = 2 (the so-called "moving average n convergence test), CHG3,LAX(IVAR,2) contains the maxi-
mum change for the previous time step, etc.

Then, depending on the value of ICTEST, the chosen convergence criteria is compared with the level
to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

Remarks

, For ICTEST = 1 or 2, the change in Er is divided by RIO,, - I) + 112.
the dimensional value Er by

ETr= Yr---1 _ 2

This is equivalent to dividing

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. For ICTEST = 1 or 2, the convergence test is based on (or includes) the change in dependent variables
from time level n to n + I. For ICTEST = 3, 4, or 5, convergence is based on the residual at time level
n, not n + 1. This is because the residuals at time level n + 1 are not computed until the marching step
from n + 1 to ;_+ 2 is taken.

3. For cases run with artificial viscosity, the residuals are computed and printed both with and without the
artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced
by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms
included.

4. The Cray search routine ISAMAX is used in computing the absolute value of the maximum change in
dependent variables.

5. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
change in dependent variables for use by ISAMAX.

6. A warning message is generated if an illegal convergence criteria is specified. ICTEST is reset to 3
(convergence based on the L_ norm of the residual), and the calculation will continue.
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Subroutine CUBIC (IDIR,T,G,NOLD,TINT,GINT)

Called by Calls Purpose

PAK Interpolation using Ferguson's parametric cubic.

G

IDIR

II, I2, I3

NOLD

* N1, N2, N3

T

TINT

A three-dimensional array containing
NOLD1 x NOLD2 x NOLD3 values of the function g(t) to be

interpolated.

Direction flag; 1 if frrst subscript in G varies, 2 if second subscript
varies, 3 if third subscript varies.

Grid indices i, j, and k, in the _, _/, and [ directions.

Number of values in direction IDIR in array G (i.e., NOLD1,
NOLD2, or NOLD3.)

Number of grid points N_, N2, and N3, in the _, t/, and _ directions.

A one-dimensional array containing NOLD values of the inde-
pendent variable t.

A one-dimensional array containing N1, N2, or N3 (depending
on IDIR) values of the independent variable t = t,,, at which in-
terpolated values g_, = g(t_,) are desired.

GINT A one-dimensional array containing N1, N2, or N3 (depending
on IDIR) interpolated values g_, = g(t_t).

Description

Subroutine CUBIC performs interpolation using Ferguson's parametric cubic polynomial (Faux and
Pratt, 1979). Given the function g(t) and a value G,, CUBIC computes g_, = g(t_,).

The function g(t) is specified by the Fortran arrays G and T. For a general value t, let

where t_< t __ t_. (I.e., t, and te are the two elements of the array T that bracket t.)

Between t_ and te, assume g can be described by a cubic polynomial in t/, as follows:

g = a 1 + a2_+ a3_ 2 + a4(r3

Differentiating,

ag 3a,7=
g"= = a2+ 2, 3 +

Noting that t; = 0 at t = t_, and 1 at t = td, we get
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Solving for a_ throu_h o4,

gu=al

_=a2

gd= al + a2 + a3 + a4

g'a = °'2 + 2a3 + 3a4

al =gu

a2= g'_,

a3 = 3(gd -- gu) -- 2g'_ -- g'd

a4= 2(gu -- gd) + g'u + g'd

Plugo_ng these into the cubic polynomial for fand rearranging,

g = gu(1 - 392 + 2¢) + ga(3¢ - 2¢)

This is the form of the equation used to compute g_,.

Remarks '

1. At interior points in the array g,. the derivatives g'_ and g_ are computed using a second-order central
difference formula. At the end points, second-order one-sided difference formulas axe used.

2. The Fortran variable TINT is actually a one-dimensional array containing Nl, N2, or N3 input values

of t,_,. Similarly, GINT is a one-dimensional array containing N_, N2, or N3 output values ofg_,.

3. The Fortran array G that specifies the input values of g(t) is actually a three-dimensional array. Within
CUBIC, however, only one of the subscripts varies. The input flag IDIR specifies which one.
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Subroutine EQSTAT (ICALL)

Called by Calls

BVUP
EXEC
INITC
MAIN"

Pul'pose

Use equation of state to compute pressure, temperature, and their de-
rivatives with respect to the dependent variables.

l.p_m

CP, CV

* HSTAG

IBASE, ISTEP

ICALL

IHSTAG

NPTS

N1, N2, N3

RGAS

RHO, U, V, W, ET

Specific heats 6 and c,.

Stagnation enthalpy hr used with constant stagnation enthalpy
option.

Base index and multipfication factor used in computing one-
dimensional index for three-dimensional array.

0 to get p and T, 1 to get derivatives of p and T with respect to
dependent variables.

Flag for constant stagnation enthalpy option.

Number of grid points in the sweep direction, N.

Number of grid points N_, N2, and N3, in the _, ,/, and _ directions.

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er.

OuW t

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTDRHG, DTDRU, DTDRV,
DTDRW, DTDET

ET

INEG

P,T

Derivatives Op/Op, OplO(pu), OplO(pv), OplO(pw), and OplOEr.

Derivatives OTlOp, OT/O(pu), OTlO(pv), OTlO(pw), and c YlOEr.

Total energy (consiant stagnation enthalpy option only.)

Flag for non-positive pressure and/or temperature; 0 K positive, 1
if non-positive.

Static pressure p and temperature T.

Description

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It
actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program,
with the input parameter ICALL = 0, to compute the static pressure p and temperature T from the initial
or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used
it also computes a value for the total energy Er. And second, it is called from subroutines BVUP and
EXEC, with ICALL = 1, to compute the derivatives ofp and T with respect to the dependent variables3 3

The equation of state currently built into Proteus is for a perfect gas. The formulas used to compute
p, T, and their derivatives with respect to the dependent variables are presented in Section 4.3 of Volume
1.

23 These are needed for linearization of the governing equations. See Section 4.1 ofVotume 1 for details.
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Remarks

1. When used to compute p and T (ICALL = 0), this subroutine is called from outside any loops in the
_, r/, or _ directions. When used to compute Op/Op, etc., (ICALL = 1), it is called for each ADI sweep
from inside a loop in the non-sweep direction.

2. When computing Op/Op, etc., this subroutine uses one-dimensional addressing of three-dimensional
arrays, as described in Section 2.3.
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Subroutine EXEC

Called by Calls Purpose

MAIN Manage solution of governing equations.ADI
AVISC 1
AVISC2
BCELIM
BCGEN
BVUP
COEFC
COEFE1
COEFE2
COEFX
COEFY
COEFZ
EQSTAT
PERIOD
RESID
UPDATE

DXI, DETA, DZETA

ETAX, ETAY, ETAZ, ETAT

* IAV2E, IAV4E, IAV2I

IBCELM

* ICHECK

* IHSTAG

IT

ITBEG

* ITHIN

KBCPER

NEQP

NMAXP

NPT1, NPT2, NPT3

N1, N2, N3

N1P, N2P

XIX, XIY, XIZ, XIT

Computational grid spacing A_, An, and A_.

Metric coefficients _7_,_/y, _, and m-

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the _ and/or
directions; 0 if elimination is not necessary, 1 if it is.

Convergence checking interval.

Flag for constant stagnation enthalpy option.

Current time step number n.

The time level n at the beginning o_fa run.

Flags for thin-layer option.

Flags for spatially periodic boundary conditions in the _, _/, and
directions; 0 for non-periodic, 1 for periodic.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

A dimensioning parameter equal to the maximum of N 1P, N2P,
and N3P.

N,, 3[2, and /_%for non-periodic boundary conditions, N_ + 1,
3,½+ 1, and N3 + I for spatially periodic boundary conditions in
_, ,/, and _.

Number of grid points N_, N2, and N3, in the _, _/, and _ directions.

Parameters specifying the dimension sizes in the _ and _ di-
rections.

Metric coe_qcients _, _, _z, and _,.
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ZETAX, ZETAY, ZETAZ,
ZETAT

DEL

IBASE, ISTEP

ISWEEP

IV

I1, I2, I3

METX, METY, METZ, METT

NPTS

N¥

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

Description

Metric coefficients G, _y, _=, and _,.

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Current ADI sweep number.

Index in the %ectofized" direction,/,.

Grid indices i, j, and k, in the _, n, and _ directions.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and t.

Number of grid points in the sweep direction, N.

Number of grid points in the %ectorized" direction, ?_;.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static temperature T at time level n.

Subroutine EXEC manages the solution of the governing equations. It is called by the MAIN program
during each marching step from time level n to n + 1. The steps involved in EXEC are described below.

Preliminary Steps

1. If this is the first time step, temporarily set the thin-layer flags to zero.

2. Initialize the coefficient submatrices A, B, and C, and the source term subvector S, to zero.

3. If spatially periodic boundary conditions are being used in any direction, call PERIOD to add the ap-
propriate extra line(s) of data.

First A DI sweep, _ direction

4. Set various sweep-dependent parameters, as follows:

isweep = 1

istep = 1

de1 = A_
nv = N2 or N2+ l

5. Begin loop in non-sweep (£) direction over interior points (k = 13 = 2 to NPT3 - 1).

6. Set

npts = N_ or N_ + I
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.

.

9.

10.

11.

12.

13.

]4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Set metrics in sweep (_) direction at all grid points as follows:

metx(i2,il) = (_)_,j,k

mety(i2,il) = (_y)i,j,k

metz(i2,il) = (_=)i,_,*

mett(i2,il) = (_e)i,j,k

Begin loop innon-sweep (_) direction over interior points (/= I2 = 2 to NPT2 - 1).

Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current

_/-_ line at all _ grid points.

Call the COEF routines to compute the coefficients and source terms for the governing

equations along the current _/-C line at all interior _ grid points.

End of loop in non-sweep (7) direction.

For non-spatially periodic boundary conditions in the _ direction, begin loop in non-sweep (_) di-

rection over interior points (j = I2 '-- 2 tO NPT2 I).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current

_-_ line at all _ grid points.

Call BCGEN to compute the coefficients and source terms for the boundary condition

equations at the end points (i = 11 = 1 and N_) of the current _-£ line.

If three-point boundary conditions were used at either boundary, call BCELIM to eliminate
the resulting off-diagonal coefficient submatrices.

End of loop in non-sweep (7) direction.

Every ICHECK time steps, call RESID to compute residuals at time level n without the artificial

viscosity terms, and to update the convergence history file.

If artificial viscosity is being used, call AVISC1 or AVISC2 to add the appropriate terms to the
coefficient submatrices and/or the source term subvectors at all interior grid points.

Every ICHECK time steps, if artificial viscosity is being used, call RESID to compute residuals at
time le_ :1 n with the artificial viscosity terms, and to update the convergence history file.

If spatially periodic boundary conditions are being used in the _ direction, reset NPTS = N_.

Call ADI to solve the system of difference equations.

Begin loop in non-sweep (n) direction over interior points (j = I2 = 2 to NPT2 - 1).

Call UPDATE to compute the primitive flow variables, Q*, from the newly computed con-

servation variables in delta form, AO*, along the current n-_ line at all _ grid points.

24. End of loop in non-sweep (7) direction.

25. End of loop in non-sweep (£) direction.

Second ADI sweep, _I direction

26. Set various sweep-dependent parameters, as follows:

isweep = 2

istep = nlp

del = A_/

nv = N_ or N_ + 1

27. Begin loop in non-sweep (;) direction over interior points (k = 13 = 2 to NPT3 - 1).
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28. Set

npts = N2 or N2 + 1

29. Set metrics in sweep (7) direction at all grid points as follows:

metx(il,i2) = (q,)i,i,k
mety(il,i2) = (_)e,_,
metz(il,i2) = (_i,j,,
mett(il,i2) = (_Oi,j,*

30. Begin loop in non-sweep (_) direction over interior points (i= II = 2 to NPT1 - I).

31. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current
_-_ line at all _ grid points.

32. Call the COEF routines to compute the coefficients and source terms for the governing
equations along the current _-_ line at all interior rt grid points.

33. End of loop in non-sweep (_) direction.

34. For non-spatially periodic boundary conditions in the _/direction, begin loop in non-sweep (_) di-
rection over interior points (i = I1 = 2 to NPT1 - 1).

35. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current
_-_ line at all rt grid points.

36. Call BCGEN to compute the coefficients and source terms for the boundary condition
equations at the end points (j = 12 = I and N_) of the current _-_ line.

37. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate
the resulting off-diagonal coefficient submatrices.

38. End of loop in non-sweep (¢) direction.

39. If impficlt artificial viscosity is being used. call AVISC 1 to add the appropriate terms to the coeffi-
cient submatrices at all interior grid points.

40. If spatially periodic boundary conditions are being used in the _ direction, reset NPTS = N2.

41. Call ADI to solve the system of difference equations.

42. Begin loop in non-sweep (_) direction over interior points (i = I1 = 2 to NPT1 - 1).

43. Call UPDATE to compute the primitive flow variables, Q**, from the newly computed con-

servation variables in delta form, AQ'*, along the current _-_ line at all q grid points.

44. End of loop in non-sweep (_) direction.

45. End of loop in non-sweep (_) direction.

Third ADI sweep, _ direction

46. Set various sweep-dependent parameters, as follows:

isweep = 3

istep = nlp_nZp

del _ = A_

nv = N_ or Nl + 1

47. Begin loopinnon-sweep (q) dire_ion over interior points q= 12 = 2 to NPT2 - 1).

48. Set

np_:s = N3 or :V3+ 1
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49. Set metrics in sweep (_) direction at all grid points as follows:

metx(il,i3) = (_)i,_,k
mety(il,iS) = (_y)i,y,k
metzCil,i3) = (_2),.j,k
mett(il,i3) = (_)i,j,k

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Begin loop in non-sweep (_) direction over interior points (i = I1 = 2 to NPT1 - 1).

Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current
_-_ line at all _ grid points.

Call the COEF routines to compute the coefficients and source terms for the governing
equations along the current _-i/line at all interior _ grid points.

End of loop in non-sweep (_) direction.

For non-spatially periodic boundary conditions in the _ direction, begin loop in non-sweep (_) di-
rection over interior points (i = I1 = 2 to NPT1 - 1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current
_-_/line at all _ grid points.

Call BCGEN to compute the coefficients and source terms for the boundary condition

equations at the end points (k = I3 = I and N3) of the current _-_ line.

If three-point boundary conditions were used at either boundary, call BCELIM to eliminate
the resulting off-diagonal coefficient submatrices.

End of loop in non-sweep (_)direction.

If implicit artificial viscosity is being used, call AVISC1 to add the appropriate terms to the coeffi-
cient submatrices at all interior grid points.

If spatially periodic boundary conditions are being used in the _ direction, reset NPTS = N3.

Call ADI to solve the system of difference equations.

Begin loop in non-sweep (_).direction over interior points (i = I1 = 2 to NPTI - 1).

Call UPDATE to compute the primitive flow variables, On + _, from the newly computed con-

ser. ation variables in delta form, A(_, along the current _-_ line at all _ grid points.

64. End of loop in non-sweep (_) direction.

65. End of loop in non-sweep (_/) direction.

Finishing Steps

66. If this is the first time step, reset the thin-layer flags back to their input value.

67. Call BVUP to update the _ and r/boundary values, if necessary.

68. For all grid points, shift RHO and RHOL so that RHO = p"+ _ and RHOL = p_: Similarly, shift the
Fortran variables for u, v, w, and Er. Finally, set TL = T _.
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Subroutine EXECT

Called by Calls

TURBCH PERIOD
SWDOWN
SWUP
UPDTKE

Purpose

Manage solution of the k-_ equations.

I._p_u!

* CMUR

* CTHREE

E

KBCPER

KE

MUT

NPT1, NPT2, NPT3

RHO

YPLUSD

o.w.t

EL

KEL

MUT, MUTL

Description

Constant C,, in formula for C_.

Constant C3 in formula for C_.

Turbulent dissipationrate e at time level n.

Flags for spatially periodic boundary conditions in the _ and
directions; 0 for non-periodic, 1 for periodic.

Turbulent kinetic energy k at time level n.

Turbulent viscosity _z, at time level n.

N1, N2, and N3 for non-periodic boundary conditions, N_ + 1,
N2 + 1, and N3 + 1 for spatially periodic boundary conditions in
_, n, and £.

Static density p at time level n.

Nondimensional distance y+ from the nearest solid wall.

Turbulent dissipation rate e at time level n.

Turbulent kinetic energy k at time level n.

Turbulent viscosity gt at time levels n + 1 and n.

Subroutine EXECT manages the solution of the k-c equations. It is called by subroutine TURBCH,
NTKE times per mean flow iteration. The steps involved in EXECT are described below.

1. If spatially periodic boundary conditions are being used in any direction, call PERIOD to add the ap-
propriate extra line(s) of data.

2. Call SWUP to compute the coefficients and source terms for k-_ equations for the upward LU sweep,
and to perform the sweep itself.

3. Call SWDOWN to compute the coefficients and source terms for k-e equations for the downward LU
sweep, and to perform the sweep itself.

4. For all grid points, set KEL = k_ and EL = e'.
^

5. Call UPDTKE to compute the primitive flow variables k" +1 and _n+ i from AW ", the newly computed
conservation variables in delta form.

6. Compute the turbulent viscosity at each grid point, storing/_ _ 1 and/_7 in MUT and MUTL, respec-
tively.
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Subroutine FILTER

Called by Calls Purpose

BLK4 BLKOUT Rearrange rows of the boundary condition coefficient submatrices and
BLK5 ISAMAX the source term subvector to eliminate any zeroes on the diagonal.

ISRCHEQ

A,B,C

* IDEBUG

* IPRT1A, IPRT2A, IPRT3A

ISWEEP

IT

IV

NEQ

NMAXP

NOUT

NPRT1, NPRT2, NPRT3

NPTS

S

Coefficient submatrices A, B, and C before rearrangement.

Debug flags.

Indices for printout in the _, n, and _ directions.

Current ADI sweep number.

Current time step number n.

Index in the "vectorized" direction,/,.

Number of coupled equations being solved, N,q.

A dimensioning parameter equal to the maximum of NIP, N2P,
and N3P.

Unit number for standard output.

Total number of indices for printout in the _, 7, and _ directions.

Number of grid points in the sweep direction, N.

Source term subvector S before rearrangement.

Output

A,B,C

S

Coefficient submatrices A, B, and C after rearrangemc..t.

Source term subvector S after rearrangement.

Description

Subroutine FILTER rearranges rows of the coeffÉcient block submatrices and the source term subvector,
at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diag-
onal of the submatrix B. These zero values may occur when mean flow boundary conditions are specified
using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the
boundary conditions.

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere
in the flow field, the perfect gas equation of state yields:

Er= pcvT

p = (y - 1)Er

Op Op Op cgp

0--7- o(pu) = a(pv) - O(pw)

ap
OEr = y - 1

=0
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OT Er

Op cvp2

OT OT OT

o(pu) oCov) o(pw)

OT 1

=0

OET cwP

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure p =f, no-slip
x-, y-, and z-velocity u= v = w = 0, and specified temperature T=f, then the linearization of the boundary
conditions leads to the follov,ing B coefficient submatrix for that boundary:

I 0 0 0 0 J(_ i 1)]

0 Jlp 0 0 .
B= 0 0 J/p 0

0 0 0 J/p

- JET_C_p2 0 0 0 Jl_p J

The zero on the diagonal will lead to a divide-by-zero error in subroutine BLK5, even though this is not a
singular matrix.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element Bm searches
column 1 for the largest element in absolute value (in this case - JErlc, p2), and adds that row to the row
with the zero on the diagonal. Of course, the corresponding rows of A, C, and S must also be added to-
gether. The new B submatrix would be:

JET[q,p 2 0 0 0 J(y - 1) + J/two

. 0 JIp 0 0 0
B 0 0 JIP 0 0

0 0 0 JIp 0
- JET[q,p 2 0 0 0 Jlcvp

Remarks

1. If a column with a zero on the diagonal has no other elements greater than 10-10, then it is assumed that
the matrix B is singular, which means the specified boundary conditions axe not independent of one
another. An error message is printed and the calculation is stopped.

2. It's probably sufficient to only call this subroutine for the ftrst time step. After the ftrst step, the chances
of u, v, and w all being exactly zero at the same interior grid point are slim. Nevertheless, in the current
version of Proteus, FILTER is called at every time step.

3. The Cray search routine ISAMAX is used in finding the largest element in any column corresponding
to a zero on the matrix diagonal. The Cray search routine ISRCHEQ is used in determining the grid
locations for debug printout.

4. This subroutine generates the output for the IDEBUG(4) option.
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Subroutine FTEMP

CaUed by Calls Purpose

INITC Compute auxiliary variables that are functions of temperature.
MAIN

CCP1, CCP2, CCP3, CCP4

CK1, CK2

CMU1, CMU2

* GAMR

IGAM

* ILAMV

* NOUT

* N1, N2, N3

RGAS

T

* TR, UR, MUR, KTR

Constants in formula for specific heat.

Constants in formula for laminar thermal conductivity coefficient.

Constants in formula for laminar viscosity coefficient.

Reference ratio of specific heats, r,.

Flag for constant or variable cp, co, and r; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

Flag for computation of laminar viscosity and thermal
conductivity.

Unit number for standard output.

Number of grid points N_, N2, and N3, in the _, n, and _ directions.

Gas constant R.

Static temperature T.

Reference temperature T,, velocity u,, viscosity #,, and thermal
conductivity k,.

CP, CV

MU, LA, KT

Specific heats cp and co.

Laminar coefficieni of "fiscosity #_, laminar second coefficient of
viscosity 2_, and laminar coefficient of thermal conductivity k_.

Description

Subroutine FTEMP computes the auxiliary variables #_, 2l, k_, cp, and co. For the laminar viscosities #_
and 2z, and the laminar thermal conductivity kt, there are two options currently available.

If the input parameter ILAMV = 0 (the default), FTEMP sets the n0ndimensional values as:

#l = 1

2z = - 2/3

kt= 1

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at their reference
values. These reference values may be specified by the user, or computed from the reference temperature.
The laminar second coefficient of viscosity ,_ is set equal to - 2#/]3.

If ILAMV = 1, #_ and kt are computed as functions of temperature using Sutherland's formula (White,
1974). The formula for the laminar viscosity coefficient #_ is
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u; Tr+G2(T) 3:2

where the overbar indicates a dimensional value, and I_', is the laminar viscosity coefficient at T = T,, given

by

Depending on the namelist input values of MUR and RER, /_ may or may not be equal to _L,. These
formulas are valid for air for temperatures from 300 to 3420 °R (167 to 1900 K). The value of the constants

C#_ and C_ depend on whether reference values are being specified by the user in English units
(IUNITS = 0) or SI units (IUNITS = I). The values are presented in Table 4-1. The laminar second co-
efficient of viscosity 2_is set equal to - 2#d3. The formula for the laminar thermal conductivity coefficient

k_ is

where the overbar indicates a dimensional value, and k" is the laminar thermal conductivity coefficient at

T = T,, given by

Depending on the namelist input values of KTR and PRLR, k' may or may not be equal to k,. These
formulas are valid for air for temperatures from 300 to 1800 °R (167 to 1000 K). The value of the constants
C,_ and C,2 depend on whether reference values are being specified by the user in English units

(IUNITS = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1.

There are also two options available'for the specific heat coefficients cp and _. If the flag IGAM = 1, a
value of the specific heat ratio _ has been specified by the user. In this case cp and c, are treated as constants,
and computed from

R

7-1

cp=q,+R

If IGAM = 0, the user did not specify a value of y. In this case, the specific heat coefficient cp is computed
as a function of temperature from the empirical formula of Hesse and Mumford (1964), and e, is computed
from that value assuming a thermally perfect gas. The ratio y = cp/c, will then vary with temperature. The

equations for cp and c, are:

=-r(%,- %:+ %:)
Ur

cv= cp- R

This formula is valid for air for temperatures from 540 to 9000 °R (300 to 5000 K). The values of the

constants C,pl through C,: are presented in Table 4-1.
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TABLE4-1. - EMPIRICAL CONSTANTS FOR/_, kt, AND cp

CONSTANT

C_l

C_
C,2

co,,

ENGLISH

UNITS

7.3035 x 10 -7

198.6

7.4907 x 10-3

350.0

8.53 x 103
3.12 x 103

2.065 x 103

7.83 x 108

SI UNITS

1.4582 x 10-6

110.3

1.8641 x 10-3

194.4

1.4264 x 103

3.8888 x 103

1.9184 x l0s

4.0413 x 107

Remarks

1. The formulas used with the ILAMV = 1 option are for air. For other fluids, different formulas should
be used to compute/z_, _l_,and k_. These could easily be programmed as additional ILAMV options.
Or, if the flow being computed is such that _ and k_ may be considered constant, simply set
ILAMV = 0 and read in the appropriate values for/_, and kr. Note, however, that the ILAMV = 0
option still sets 2_= - 2t_d3.

2. The formula used to compute c,, when a value of _; is not specified by the user, is for air. For other
gases, a different formula should be programmed. Or, if ep and c.,may be considered constant, a value
of _ should be read in.

3. An error message is generated and execution is stopped if an illegal value is specified for ILAMV.
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Subroutine GATHER (N,VOUT,VIN,INDEX)

Called by

BLOUT

Calls Purpose

Create a vector containing specified elements of an input vector.

N

VIN

INDEX

Number of elements in the input vectors VIN and INDEX.

Input vector.

Vector of indices specifying which elements of VIN are to be
stored in VOUT.

Output vector containing elements of VIN specified by INDEX.

Description

Subroutine GATHER gathers a set of specified elements from an input vector and returns them in an
output vector. The operation °f GATHER is equivalent to the following Fortran code:

do 10 i = 1,n
vout(i) : vin(index(i))

lO continue

Remarks

1. GATHER is a Cray Linear Algebra routine (Cray Research, Inc., 1989b).
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Subroutine GEOM

Called by Calls Purpose

MAIN METS Manage computation of grid and metric parameters.
PAK

* IPACK

* NGEOM

* NGRID

* NOUT

* N1, N2, N3

N1P, N2P, N3P

* RMIN, RMAX

* THMIN, THMAX

* XMIN, XMAX

* YMIN, YMAX

* ZMIN, ZMAX

DXI, DE'i .\, DZETA

X,Y,Z

Description

Flags for grid packing option.

Flag for type of computational coordinates.

Unit number for input mesh file.

Unit number for standard output.

Number of grid points N_, N2, and N3, in the _, n, and _ directions.

Parameters specifying the dimension sizes in the 4, _/, and £ di-
rections.

Minimum and maximum r-coordinates for cylindrical grid.

Minimum and maximum 0-coordinates for cylindrical grid.

Minimum and maximum x-coordinates for Cartesian or cylindri-
cal grid.

Minimum and maximum y-coordinates for Cartesian grid.

Minimum and maximum z-coordinates for Cartesian grid.

Computational grid spacing A_, A,7, and A(.

Cartesian coordinates x, y, and z.

Subroutine GEOM manages the computation of the grid and metric parameters. There are currently
three coordinate system options built into Proteus, as follows:

NGEOM Computational Coordinates

1 Cartesian (x-y-z)
2 Cylindrical (r-O-x)
I0 .... ReacI fr-rm separate file.

Subroutine GEOM first computes the grid spacing in computational space in the _, _, and _ directions

as A¢ = 1/(N1 - 1), An = 1/(N2 - 1), and Aft = 1/(N3 - I). Note that grid points in computational space are
always evenly distributed along the (_-_/-ff) coordinate lines.

Cartesian (x-y-z) Coordinates (NGEOM = 1)

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian (x-y-z) coordinates are
related to the computational (_-_/-_) coordinates by

Proteus 3-D Programmer's Reference 4.0 Proteus Subprograms: GEOM 203



x = xmi,_ + (xm_- xmi_)_

Y = Yrnin+ _max -- Ymin) rl

Z = gmin 4- (gmax -- Zrnin)_

If grid packing is used, subroutine PAK is called to redistribute these points according to the packing pa-
rameters specified by the user, and to interpolate to get the new physical Cartesian (x-y-z) coordinates in
the computational mesh. Subroutine METS is then called to numerically compute the grid transformation
metrics and Jacobian.

Cylindrical (r-O-x) Coordinates (NGEOM = 2)

For the cylindrical coordinate option, an evenly spaced set of physical cylindrical (r-O-x) coordinates axe
related to the computational (_-rt-_) coordinates by

0 = Orni,_+ (Omax - Omin)_

r = rmin + (rmax -- rrnm)tt

X = Xmin + (Xmax -- Xmin)_

The Cartesian (x-y-z) coordinates are simply given by

9c_--x

y= r sin O

Z_ rcosO

As in the NGEOM = 1 option,lf grid packing is used, subroutine PAK is called to redistribute these points
according to the packing parameters specified by the user, and to interpolate to get the new physical
Cartesian (x-y-z) coordinates in the computational mesh. Subroutine METS is then called to numerically
compute the grid transformation metrics and Jacobian.

Coordinates Read From Separate File (NGEOM = 10)

The third option for specifying the computational coordinate system is to read it from a separate file,
as described in Section 3.2 of Volume 2. The computational (_-rt-_) coordinate system is determined by a
set of NG_× N_2 x P,_ points whose physical Cartesian (x-y-z) coordinates are specified. Here Nc_, Na2, and
A% are the number of points in the _, _/, and _ directions used to specify the computational coordinate
system. Note that they do not have to be equal to N_, N2, and N3, the number of points in the computa-
tional mesh used for the finite-difference method. 2. Note also that the points do not have to be equally

distributed in physical space along the _, _/, and _ coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute N_ x N2 x _\q computational mesh
points in physical space according to the packing parameters SQ specified by the user, and to interpolate
among the N_a x N_ x N6-3points in the input computational coordinate system to get the new physical
Cartesian coordinates of the points in the computational mesh.

If grid packing is not being used, but Nc_, N_, and N_ axe not equal to N_, N2, and N3 respectively, then
subroutine PAK is still called. In this case, however, PAK distributes the N_ × N2 × N3 computational mesh

points evenly in physical space and then interpolates among the Ar x _"_ x N_ points in the input com-
putational coordinate system to get the new physical Cartesian coordinates of the points in the computa-
tional mesh.

In either case, subroutine METS is then called to numerically compute the grid transformation metrics

and Jacobian.

2a The distinction between the computational coordinate system and the computational mesh is described in Section
2.2 of Volume 2.
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Remarks

1. An error message is generated and execution is stopped if an illegal coordinate system option is sped-
fled.

2. With the NGEOM = 10 option, an error message is generated and execution is stopped if Nal, N_,
and/or Nm are greater than the dimensioning parameters NIP, N2P, and/or N3P.
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Subroutine INIT

Called by Calls Purpose

INITC Get user-defined initial flow field.

Input

* ICVARS

NIN

* NOUT

* N1, N2, N3

Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

Unit number for namelist input.

Unit number for standard output.

Number of grid points N_, N2, and N3, in the _, _/,and _ directions.

P, T, U, V,W Initial flow field values of static pressure p, static temperature T,
and velocities u, v, and w.

Description

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored
to the problem being solved, and supplied by the user. Details on the variables to be supplied by INIT are
presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with Proteus that specifies uniform flow with constant properties
everywhere in the flow field. The above list of input and output Fortran variables are for the default version
of INIT. The default version assumes ICVARS = 2 (the default value), and reads values of p0, u0, v0, w0,
and To from namelist IC. The defaults for these parameters _are1.0, 0.0, 0.0, 0.0, and 1.0, respectively, re-
suiting in an initial flow field with ff = p,, u = v = w = 0, and T = 7",.

Remarks

1. If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS
is reset to 2.

2. Subroutine INIT is a convenient place to specify point-by-point boundary condition types and values.
It's often easier to do this using Fortran coding rather than entering each value into the namelist input
fde.
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Subroutine INITC

Called by Calls Purpose

MAIN Set up consistent initial conditions based on data from IN1T.EQSTAT
FTEMP
INIT
KEINIT
REST
TURBBL
YPLUSN

* CMUR

CP

* CTHREE

EP1

* GAMR

GC

* HSTAG

* ICVARS

* IHSTAG

* IREST

ITBEG

* ITURB

* KBCI, KBC2, KBC3

LWSET

MU, LA, KT

* NI, N2, N3

PR

PRR

* PRT

RGAS

RHOR, UR

INITIAL FLOW FIELD

Constant Cur in formula for C,.

Specific heat cp.

Constant Q in formula for C,.

Minimum allowable numerical value.

Reference ratio of specific heats, yr.

Proportionality factor gc in Newton's second law.

Stagnation enthalpy hr used with constant stagnation enthalpy
option.

Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

Flag for constant stagnation enthalpy option.

Flag for reading/writing restart file.

The time level n at the beginning of a run.

Flag for turbulent flow option.

Boundary types for the _, )7, and _ directions.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations axe to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Laminar coefficient of viscosity _, laminar second coefficient of
viscosity )._,and laminar coefficient of thermal conductivity k_.

Number of grid points N1, N2, and N3, in the _, n, and _ directions.

Reference pressure p,

Reference Prandtl number Prr.

Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

Gas constant R.

Reference density p, and velocity u,

From the user=suppled or default version-of subroutine INIT.
The combination of variables supplied by INIT is specified by
ICVARS. See Section 5.0 of Volume 2 for details.
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LWALLI, LWALL2, LWALL3

MU, LA, KT

MUT, MUTL

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

Flags specifying wall locations for _, n, and _ boundaries, if not
set m input.

Effective coefficient of viscosity _, effective second coefficient of
viscosity )., and effective coefficient of thermal conductivity k.

Turbulent viscosity/_, at time levels n and n - 1.

Initial flow field values of static density p, velocities u, v, and w,

and total energy Er at time level n.

Initial flow field values of static density p, velocities u, v, and w,

and total energy Er at time level n - 1.

Static temperature T at time level n - 1.

Description

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by sub-
routine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial
flow field. Otherwise, the data supplied by INIT are used to obtain the density p, the velocities u, v, and
w, and the temperature 7".m It then calls FTEMP to compute the laminar viscosity coefficients _ and 2_, the
laminar thermal conductivity coefficient k_, and the specific heat coefficients cp and c,. EQSTAT is called
next to compute the pressure p and to recompute the temperature T. _ For turbulent flow, the appropriate
subroutines are called to compute the effective viscosity and thermal conductivity coefficients using the
turbulence model specified by the user. And finally, for non-restart cases, the values of the dependent var-
iables at time level n - 1 are set equal to the values at level 1.

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The
calculation of p, u, v, w, and T is described below for the different values of ICVARS. In all of the equations
below, the specific heats are defined by

R
Cv_--

)_r-- 1

cp=R+q,

where ?, is either specified by the user or computed from the reference temperature Tr.

ICVARS = I

With this option, the density p, the momentum components pu, pv, and pw, and if IHSTAG = 0 the
total energy Er, are suppfied by INIT. Thus, the velocity components are simply

pu
U__-_-m

P

V--
P

p'W

P

If the energy equation is being solved (IHSTAG = 0), the temperature is computed from

The calculation of T at this point may be approximate. See Remark 1.

See Remark 1.
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1 (u 2+v2+w2)]2

If the ener_" equation is being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the

temperature is computed from

T= 1--LIhT-l (u2 + v2 + w2)lCp

ICVARS = 2

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy

equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

T= l.J_[hT 1 2 v 2 w2)]cp -T( u + +

The density is then given by

and the total energy is

1 (u2+v2 w2)]ET= p[cvT + "-_ +

ICVARS = 3

With this option, the density p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-

nated by assuming constant stagnation enthalpy (IHSTAG 1), the temperature is computed from

I 1 (u 2+v 2+w2)]r = [hr- 7

The total energy is then

1 (u 2+v 2+w2)]E r = p [cvT + -_

ICVARS = 4

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy

equation is being solved (IHSTAG = 0), the density p is also supplied by INIT. If it is being eliminated
by assuming constant stagnation enthalpy (IHSTAG = I), this option is the same as the ICVARS = 2 op-

tion. If the en6rgy equation is being solved, then, the temperature is

The total energy is then

ET= p[cwT + l (u2 + v2 + w2)]
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ICVARS = 5

With this option, the static pressure coefficient cp and the velocities u, v, and w are supplied by INIT.
If the energy equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

1 [hT--+(u2+v2+w2)lT =

The pressure coefficient is defined by

(P - Pr)gc
cp= 2

prUr /2

The nondimensionalized pressure p = _gc/p,u_ is thus

cp Prgc
p =-5- +-----T

p rUr

or, since p, = prRT, lgo and the nondimensionalized gas constant R = R T,/uL

The density is then

P
P- RT

and the total energy is

1 , 2. 2 w2)]ET=p[_T+-_(u +v +

ICVARS = 6

With this option, the pressure p, Mach number M, and flow angles _ and a, are supplied by INIT. If
the energy equation is being solved (IIqSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

where Tr = hr/q. The density is

P
RT

The flow angles are defined by _v= tan: l(vlu) and _, = tan- l(wlu). The Mach number is defined by

u V2 w 2 ) 112
M= + +

yrRT

Solving for u,
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u= MI yrRT 11121 + (v/u) 2 + (w/u) 2

where (v/u) 2 = tan2_, and (w/u) 2 = tan2_,. The remaining velocities are simply

v= U taIR Ocv

w= u tan _ w

The total energy is

ET= p[C_.vT +--_ (u2 + v 2 +w2)]

Remarks

1. If T is not supplied by INIT, it must be computed from the equation of state. The equation of state
contains a specific heat coefficient (either cp or c,, depending on whether the stagnation enthalpy is as-
sumed constant or not.) The first time T is computed in INITC, a constant value of specific heat is
used, consistent with the reference temperature T,. If the user specified constant specific heat (i.e., a
value for y, was read in), this is not a problem. However, if the temperature-dependent specific heat
option is being used (i.e., a value for _, was not read in), the equation of state and the empirical equation
for specific heat are coupled. For this reason T is recomputed in EQSTAT after the specific heats are
computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and

EQSTAT. This is not currently done in Proteus, however.

2. For options in which the pressure p is specified (ICVARS = 2, 4, and 6), the value supplied by INIT
is redefined as follows:

,

4.

.

6.

Pl'g¢ .

P=P- 2
prUr

This is necessary because input and output values ofp are nondimensionalized by the reference pressure

p, = p,RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p, = p,u2,. ;'ee Section 3.1.! of Volume 2 for a discussion of the distinction between referem and nor-

malizing conditions.

With the ICVARS = 6 option, the initial velocity u will be limited to non-negative values.

If non-positive pressures or temperatures were computed in EQSTAT, the Fortran variable INEG will
be positive. An error message will be printed, including a table showing the location of the non-positive
values. The calculation will stop in INITC.

An error message is generated and execution is stopped if an illegal value is specified for ICVARS.

An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.
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Subroutine INPUT

Called by Calls

MAIN ISAMAX

Purpose

Read and print input, perform various initializations.

NIN

NTP

NTSEQP

NIP, N2P, N3P

CKMIN

GAMR

HSTAG, HSTAGR

IGAM

* IPRTIA, IPRT2A, IPRT3A

ITDBC

LWALL1, LWALL2, LWALL3

LWSET

MACHR

MUR, KTR

NEQ

NPRT1, NPRT2, NPRT3

PR

PRLR

RER, PRR

RGAS

UR

Unit number for narnelist input.

Dimensioning parameter specifying the maximum number of en-
tries in the table of time-dependent boundary condition values.

Dimensioning parameter specifying the maximum number of time
step sequences for the time step sequencing option.

Parameters specifying the dimension sizes in the _, _/, and _ di-
rections.

Constant (Cr_)m_ in the Klebanoff interrnittency factor.

Reference ratio of specific heats, _,,.

Dimensionless and dimensional stagnation enthalpy hr for the
constant stagnation enthalpy option.

Flag for constant or variable G, c,, and _,; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

Indices for printout in the _, _/, and ( directions.

Flag for time-dependent boundary conditions; 0 if all boundary
conditions are steady, 1 if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundar3 con-
ditions are used.

Flags specifying wall locations for ¢, 7, and _ boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the I_VALL

parameters.

Reference Mach number Mr.

Reference viscosity coefficient/_, and thermal conductivity coeffi-
cient k,.

Number of coupled equations being solved, A_.

Total number of indices for printout in the _, ,/, and _ directions.

Reference pressure p,.

Reference laminar Prandtl number Prt r.

Reference Reynolds number Re, and Prandtl number Pr,.

Gas constant R.

Reference velocity u,.
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Description

Subroutine INPUT performs various input and initialization functions. It first reads the title and
namelist input from the standard input file. Namelist RSTRT is read first, followed by namelist IO. If
IUNITS = 1, indicating reference conditions will be specified in SI units, various default values and con-
stants are redefined to be consistent with SI units. The remaining namelists are then read.

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if
necessary, to be consistent with each other. The number of equations being solved is then determined based
on the values of IHSTAG. A flag is set if time-dependent boundary conditions are being used. The
LWSET flags, which specify how wall locations are to be determined for the turbuler_e model, are defined
based on the default and input values of the LWALL and IWALL parameters. If the user did not specify

a value for (C,_,_)m_, it is set to the default value, which depends on the turbulence model being used.

Next, if frequency of printout in the _, r/, and _ directions is being set by the input arrays IPRT 1,
IPRT2, and IPRT3, the corresponding grid indices are stored in arrays IPRT1A, IPRT2A, and IPRT3A.

The total number of printout locations in each direction is also determined.

A header is then written to the standard output file, followed by the input namelists. Note that, for

variables not specified by the user in the input namelists, the values in this printout will be the default val-

ues.

Various checks are made for inconsistent or invalid input, and appropriate error or warning messages
are written. These are described in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and

normalizing conditions are then written to the standard output file, with the appropriate units. See Section
3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

Remarks

I. The Cray search routine ISAMAX is used in the input consistency check to determine whether any

implicit artificial viscosity coefficients are non-zero.
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Function ISAMAX (N,V,INC)

Called by Calls Purpose

BLOUT
CONV
FILTER
INPUT
RESID
TIMSTP

F'md the first index corresponding to the largest absolute value of the
elements of a Fortran vector.

N Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector length)/2 if INC = 2,
etc.).

V Vector to be searched.

INC Skip distance between elements of V. For contiguous elements,
INC = 1.

ISAMAX First index corresponding to the largest absolute value of the ele-
ments of V that were searched.

Description

Function ISAMAX finds the ftrst index corresponding to the largest absolute value of the elements of
a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,

imax = isamax(np,v,1)

sets IMAX equal to the index I corresponding to the maximum value of V(I) for I = 1 to NP.

A starting location can be specified, as in

imax = _ + isamax(np-_,v(5),l)

which sets IMAX equal to the index I corresponding to the maximum value of V(I) for I = 5 to NP.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIMI by NDIM2 by NDIM3, then

imax = isamax(ndiml_ndim2_ndim3,a,l)

sets IMAX equal to the one-dimensional index corresponding to the maximum value of A(I,J,K) for all I,
J, and K. The maximum value of A can then be referenced as A(IMAX, 1,1).

One dimension at a time can also be searched. For example,

imax : isamax(ndiml,a(1,5,1),l)

sets IMAX equal to the index I corresponding to the maximum value of A(I,5,1) for I varying from 1 to
NDIM1. Similarly, by specifying a skip increment,
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jmax = isamax(ndim2,a(5,j,1),ndiml)

sets JMAX equal to the index J corresponding to the maximum value of A(5,J,1) for J varying from 1 to
NDIM2.

Remarks

1. ISAMAX is a Cray search routine (Cray Research, Inc., 1989b).
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Function ISAMIN (N,V,INC)

Called by Calls

BLOUT
OUTPUT
TIMSTP

Purpose

Find the first index corresponding to the smallest absolute value of the
elements of a Fortran vector.

N

V

INC

ISAMIN

Description

Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector length)/2 if INC = 2,
etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC = 1.

First index corresponding to the smallest absolute value of the el-
ements of V that were searched.

Function ISAMIN finds the first index corresponding to the smallest absolute value of the elements of
a vector. It is used in exactly the same way as ISAMAX.

Remarks

1. ISAMIN is a Cray search routine (Cray Research, Inc., 1989b).
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Function ISRCHEQ (N,V,INC,VALUE)

Called by Calls Purpose

BCGEN Find the first index in a vector whose element is equal to a specified

FILTER value.

N

V

INC

VALUE

Number Of elements to process in the vector (i.e.,
N = vector length ff INC = 1, N = (vector len_h)]2 if INC = 2,

etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC = 1.

Value to be searched for in the vector V.

First index, of the elements of V that were searched, whose ele-
ment is equal to the value V. If the value V is not found, the re-
turned value will be N + 1.

Description

Function ISRCHEQ finds the first index in a vector whose element is equal to a specified value. For
a one-dimensional vector, the use of ISRCHEQ is straightforward. For example,

ival = isrcheq(np,v, 1,val)

searches V(I), for I = 1 to NP, for the value VAL, and sets IVAL equal to the first index I for which
V(I) = VAL. _7 the value VAL is not found, IVAL will be equal to NP + 1.

A starting location can be specified, as in

ival = 4 + isrcheq(np-4,v(5),l,val)

which searches V(I), for I = 5 to NP, for the value VAL.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIMI by NDIM2 by NDIM3, then

ival = isrcheq(ndiml*ndimZ_ndim3, a, 1, val)

searches A(I,J,K), for all I, J, and K, for the value VAL, and sets IVAL equal to the corresponding one-
dimensional index. The desired indices in A can then be recovered from

i = mod(ival-l,ndiml) + 1
j = mod(ival-l,ndiml_ndim2)/ndiml + 1
k = (ival-1)/(ndiml_ndim2) + I

One dimension atatimecanalso besearched. Forexample,

ival = isPcheq(ndiml,a(1,5,1),l,val)
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searches A(I,5,1), for I = 1 to NDIM1, for the value VAL. _"Similarly, by specif3'ing a skip increment,

jval = isrcheq(ndim2,a(5, j, 1) ,ndiml, val)

searches A(5,J, 1), for J = 1 to NDIM2, for the value VAL.

Remarks

1. ISRCHEQ is a Cray search routine (Cray Research, Inc., 1989b).
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Function ISRCHFGT (N,V,INC,VALUE)

Called by Calls Purpose

BLIN Find the first index in an array whose element is greater than a specified
BLOUT value.

N

V

INC

VALUE

Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector lengh)]2 if INC = 2,
etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC = 1.

Value to be searched for in the vector V.

Output

ISRCHFGT First index, of the elements of V that were searched, whose ele-
ment is greater than the value V. If the value V is not found, the
returned value will be N + 1.

Description

Function ISRCHFGT finds the first index in a vector whose element is greater than a specified value.

It is used in exactly the same way as ISRCHEQ.

Remarks

1. ISRCHFGT is a Cray search routine (Cray Research, Inc., 1989b).
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Function ISRCHFLT (N,V,INC,VALUE)

Called by Calls Purpose

BLOUT Find the first index in an array whose element is less than a specified
value.

N

V

INC

VALUE

Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector length)/2 if INC = 2,
etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC = 1.

Value to be searched for in the vector V.

Output

ISRCHFLT First index, of the elements of V that were searched, whose ele-
ment is less than the value V. If the value V is not found, the re-
turned value will be N + 1.

Description

Function ISRCHFLT finds the frrst index in a vector whose element is less than a specified value. It
is used in exactly the same way as ISRCHEQ.

Remarks

1. ISRCHFLT is a Cray search routine (Cray Research, Inc., 1989b).
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Subroutine KEINIT

Called by Calls PulZpose

INITC PRODCT Get user-defined initial conditions for k and _.
TURBBL
YPLUSN

* CMUR

* CTHREE

* N1, N2, N3

* RER

RHO

O.tp.t

E, EL

KE, KEL

MUTL

Description

Constant C,,, in formula for C,.

Constant C3 in formula for C,.

Number of grid points N_, N2, and N3, in the _, ,/, and _ directions.

Reference Reynolds number Re,.

Static density p at time level n.

Turbulent dissipation rate _ at time levels n and n - 1.

Turbulent kinetic energy k at time levels n and n - 1.

Turbulent viscosity _, at time level n- 1.

Subroutine KEINIT supplies the user-defined initial values of the turbulent kinetic energy k and the
turbulent dissipation rate ,. In general, this subroutine will be tailored to the problem being solved, and
suppfied by user. Details on the variables to be supplied by KEINIT are presented in Section 5.1 of Volume
2.

A default v¢.'sion of KEINIT is suppfied with Proteus that computes the initial values of k a..d t using
the assumption of local equilibrium (dissipation equals production.) The above list of input and output
Fortran variables are for the default version of KEINIT.

The steps involved in the default version of KEINIT are described below.

1. Irtitialize k and e to zero.

2. Call TURBBL to compute turbulent viscosity values and to locate solid walls in the computational
domain.

3. Call YPLUSN to compute y+ and the minimum distance to the nearest solid wall.

4. Call PRODCT to compute the production rate of turbulent kinetic energy.

5. Compute k and _ using

Cu=Cu,(1-e c_÷)

k= C_p
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6. Setthe values of k, _, and #, at time level n - 1 equal to their values at time level n.

Remarks

1. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
distance to the nearest wall. The array is filled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURB 1, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.
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Program MAIN

Called by Calls Purpose

Manage overall solution.BCSET
CONV
EQSTAT
EXEC
FTEMP
GEOM
INITC
INPUT
OUTPUT
OUTW
PLOT
PRTHST
REST
TBC
TIMSTP
TREMAIN
TURBBL
TURBCH

None.

IT

ITEND

ITSEQ

TAU

Description

Current time step number n.

Final time step number.

Current time step sequence number.

Current time value z.

The MAIN program is used to manage the overall solution. The steps involved are described below.

Preliminary Steps
I

1. Call INPUT to read and print the input, and perform various initialization procedures.

2. Unless this is a restart case, call GEOM to get the computational coordinates and metric data.

3. Call INITC to get the initial flow field.

4. Call BCSET to set various boundary condition parameters and flags, and to print the input boundary

condition types and values.

5. Initialize the plot file, 27and, if requested by the user, wTite the initial or restart flow field into the plot
file.

6. ff requested by the user, print the initial or restart flow field.

2TThe initialization procedure depends on the type of plot fde being written. See the description of subroutine PLOT.
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. Compute NTSUM, the maximum total number of marching steps to be taken, and ITEND, the cor-
responding final index on the time marching loop. Set the initial values of ITSEQ, the time step se-
quence number, and ITSWCH, the time index for switching to the next sequence, both to zero.

Time marching loop

8. Begin the time marching loop. The loop index IT corresponds to the known time level n. Each iter-
ation of the loop thus corresponds to a step from time level n to n + 1.

9. If at the end of a time step sequence, update ITSEQ, the time step sequence number, and
ITSWCH, the time index for switching to the next sequence.

10. For ihe first time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new
time step At. For every time step update the time value r.

11. If time-dependent boundary conditions are being used, call TBC to set the boundary condition
values.

12. Call EXEC to solve the equations.

13. Call EQSTAT to compute the pressure p and temperature T from the equation of state. If either
is non-positive, indicating a non-physical solution, skip forward to step 17.

14. Call FTEMP to compute the laminar viscosities U, and 2,, the laminar thermal conductivity k,, and
the specific heats cp and _.

15. For turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal
conductivity coefficients using the turbulence model specified by the user.

16. Every ICHECK time levels, call CON'V to check for convergence.

17. Call TREMAIN to fred out how much CPU time remains.

18. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, or if the job is near the CPU time limit, print the flow field at time level
n+l.

19. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, or if the job is near the CPU time limit, write the flow field at time level
n + 1 into the plot file.

20. If non-posx:_ve pressures or temperatures were computed, write an error message showing t-.e lo-
cation of the non-positive values and skip forward to step 25, ending the calculation.

21. If the calculation is converged, print a message and skip forward to step 24, ending the calculation.

22_ If the job is near the CPU time limit, print a message and skip forward to step 24, ending the cal-
culation.

23. End of time marching loop. Print a message indicating the calculation did not converge.

Final Steps

24. If requested by the user, call REST to write the restart fde.

25. If first-order time differencing and steady boundary conditions were used, call PRTHST to print the
convergence history.

Remarks

1. The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG = 1, and thus
the initial starting flow field is at time level 1. For a restart case ITBEG = n, where n is the time level
stored in the restart fde, and thus the starting flow field is the previously computed flow field at time
level n.

2. The ending index for the time marching loop is ITEND = ITBEG + NTSUM - 1, where NTSUM is
the total number of time steps to be taken. For a non-restart case, then, the time marches from level
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1 to level 1 + NTSUM. For a restart case, the time marches from level ITBEG to level
ITBEG + NTSUM.

3. The logic involving NTSUM, ITSEQ, and ITSWCH is used to implement the time step sequencing
option. This allows one CFL number or time increment to be used for a specified number of steps,
followed by another CFL number or time increment for another specified number of steps, etc. 2s If this
option is not used, NTSUM is simply equal to NTIME(1) and ITSEQ is always I.

4. An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

5. Although the calculation will stop ifp or T< 0, as noted above in step 19, the standard output and plot
fde will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT
input parameters in namelist IO. The restart file will not be written.

See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.
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Subroutine METS

Called by Calls Purpose

GEOM OUTPUT Compute metrics of n0northogonal grid transformation.
REST -

DXI, DETA, DZETA

* IDEBUG

* IVOUT

* NOUT

* NI, N2, N3

X,Y,Z

ETAX, ETAY, ETAZ, ETAT

IVOUT

JI

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Description

Computational grid spacing A_, AT, and A(.

Debug flags.

Flags specifying variables to be printed.

Unit number for standard output.

Number of grid points NI, N2, and N3, in the _, _7,and _ directions.

Cartesian coordinates x, y, and z.

Metric coefficients q,, qy, r/s, and ,/,.

Flags specifying variables to be printed (temporarily redefined for
debug output of metrics.)

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Metric coefficients _, _y, _z, and _,.

Metric coefficients _x, _,, _, and (t.

Subroutine METS computes the metric coeffÉcients and the Jacobian for the generalized nonorthogonal
coordinate transformation. The metric coefficients are defined in terms of the known (x-y-z) coordinates

of the computational mesh as:

_y= J[(x_z),7- (%z)_]

_ = J[(xny)_- (_¢y).]

,r_= _0,¢z)_ - (v_z)¢]

'b, = J[(xcz)_- (xcz)¢]

,7_= J[(x_y)_- (x_y)_]

¢:,= J[(v:z),7- 0',ff),d

Cy= J[(x.z){ - (x{z),7]

Ct= - x,G - Y,¢y - z,¢z

226 4.0 Proteus Subprograms: METS Proteus 3-D Programmer's Reference



qt = - x¢_lx - Y¢_ly - zzqz

where J is the Jacobian of the transformation, given by

g_ 1 = [x_(y,Tz¢ - y¢z,7)+ x,7(vcz_ - y¢z0 + x¢(v_z,_- y_z¢)]-
j-i

The derivatives of x, y, and z with respect to the computational coordinates are computed numerically
using the same difference formulas as used for the governing equations. At interior points the centered
difference formula presented in Section 5.0 of Volume 1 is used. At boundaries three-point one-sided dif-
ferencing is used. For _-derivatives at the _ = 0 and _ = 1 boundaries,

af -3f_ + 4f_± _-fw±2
o--T-_ + 2a_

where w represents the i-index at the boundary (i.e., either 1 or N1). Where a +_ sign appears, the + sign
is used at the _ = 0 boundary, and the - sign is used at the _ = 1 boundary. An analogous formula is used
for _-derivatives at the ,I = 0 and _/= 1 boundaries, and for _-derivatives at the _ = 0 and _ = 1 boundaries.

Remarks

1. Several local three-dimensional Fortran arrays (XXI, XETA, etc.), are used in METS to store the de-
rivatives x¢, x_, etc. These arrays are equivalenced to flow variables from common block FLOW1,
which, at the point METS is called, have not yet been assigned values. These flow variables are set
equal to zero at the end of METS.

2. Since the current version of Proteus is limited to meshes that do not vary with time, the derivatives x,,

y_, and z, are set equal to zero.

3. This subroutine generates the output for the IDEBUG(7) option..

4. An error message is generated and execution is stopped if the grid transformation Jacobian J changes
sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid
lines. The error message is foUowed by a printout of the Cartesian coordinates, the Jacobian, and the
metric coefficients.
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Subroutine OUTPUT (LEVEL)

Called by Calls Purpose

MAIN ISAMIN Manage printing of output.
METS PRTOUT

VORTEX

CP, CV

DTAU

DUMMY

DXI, DETA, DZETA

E, KE

ETAX, ETAY, ETAZ, ETAT

* GAMR

GC

* IVOUT

JI

LEVEL

LWALL1, LWALL2, LWALL3

* MACHR

MU, LA, KT

MUT

* NOUT

* N1, N2, N3

P,T

PR

PRR

* PRT

RGAS

RHO, U, V, W, ET

* RHOR, TR, UR

TAU

X,Y,Z

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Specific heats cp and cv.

Time step Az.

A three-dimensional scratch array.

Computational grid spacing At, An, and A_.

Turbulent dissipation rate e and kinetic energy k.

Metric coefficients _/x,rb, rh, and 11,.

Reference ratio of specific heats, y,.

Proportionality factor gc in Newton's second law.

Flags specifying variables to be printed.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Time level to be printed.

Flags specifying wall locations for _, _/, and _ boundaries.

Reference Mach number 34,.

Effective coefficient of viscosity _z, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity 2.

Turbulent viscosity coefficient _z,.

Unit number for standard output.

Number of grid points N_,/_, and 1_, in the _, n, and ( directions.

Static pressure p and temperature T.

Reference pressure p,.

Reference Prandtl number Prr.

Turbulent Prandtl number Pr,.

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er.

Reference density pr, temperature Tr, and velocity ur.

Time value z.

Cartesian coordinates x, y, and z.

Metric coefficients _, _, _, and _.

Metric coefficients _, (y, (,, and _.
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ATITLE

DUMMY

A 20-character title for variable being printed.

A three-dimensional array containing the variable to be printed.

Description

Subroutine OUTPUT manages the printing of the standard output. The variables available for printing
are listed and defined in Table 3-3 of Volume 2. The user-specified array WOUT controls which variables

are printed.

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block
DUMMY1. The title printed vdth the Variable is stored in the character array ATITLE. Subroutine
PRTOUT is then called to execute the actual write statements.

Remarks

1. A warning message is printed if a non-existent output variable is requested. The printout will continue
with the next requested output variable.

2. For output options 30, 31, 34, and 35, involving the pressure p, the value stored internally in the
Proteus code is redefined as follows:

2
prUr

P = P Prgc

This is necessary because input and output values ofp are nondimensionalized by the reference pressure
pr = p,-RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p, = pruL See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-

malizing conditions.

3. The definitions of k_ and k, (IVOUT = 92 and 102) assume a constant turbulent Prandtl number is
being specified in namelist TURB. If the input value of PRT < 0, indicating the use of a variable tur-
bulent Prandtl number, the printed values of k_ and k, will be incorrect.
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Subroutine OUTW (LEVEL)

Called by

_,IAIN

Calls Purpose

Compute and print parameters at boundaries.

CP

DXI, DETA, DZETA

ETAX, ETAY, ETAZ

GC

* IPRTIA, IPRT2A, IPRT3A

* IWOUT1, IWOUT2, P,VOUT3

LEVEL

MU, KT

* NOUT

NPRT1, NPRT2, NPRT3

* N1, N2, N3

P,T

PR

PRR

* RER

* RHOR, UR

U,V,W

X,Y,Z

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

None.

Description

Specific heat cp.

Computational grid spacing A_, An, and A_r.

Metric coefficients _/x, _y, and 772.

Proportionality factor gc in Newton's second law.

Indices for printout in the _, _/, and _ directions.

Flags specifying for which boundaries parameters are to be
printed.

Time level being printed.

Effective coefficients of viscosity ta, and thermal conductivity k.

Unit number for standard output.

Total number of indices for printout in the _, _, and _ directions.

Number of grid points N_, N2, and N3, in the _, r/, and _ directions.

Static pressure p and temperature T.

Reference pressure p,.

Reference Prandtl number Pr,.

Reference Reynolds number Rer.

Reference density pr, and velocity u,.

Velocities u, v, and w.

Cartesian coordinates x, y, and z.

Metric coefficients _x, _, and _z.

Metric coefficients _, _y, and _,.

Subroutine OUTW computes and prints various parameters along the computational boundaries. The
variables available for printing are listed and defined in Table 3-3 of Volume 2. The user-specified arrays
IWOUTI, IWOUT2, and IWOUT3 specify" at which boundaries parameters are printed, and whether
normal derivatives are to be computed using two-point or three-point one-sided differencing.

The parameters printed are the Cartesian coordinates x, y, and z, the static pressure p, the skin friction
coefficient c/, the shear stress r,, the static temperature T, the heat transfer coefficient h, the heat flux q,,
and the Stanton number St. Note that some of these are meaningful only if the boundary is a solid wall.

The skin friction coefficient is defined as
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_f_

__Vt

1 2 = Re---_l_ On

where the overbar denotes a dimensional quantity_ In this equation OG/On represents the normal derivative
of the tangential velocity, with the normal vector n directed into the flow field.

For a ¢ boundary, the tangential velocity is

v,

where V, and V_ are the velocities in the _/and
and BCV3,

directions. From the descriptions of subroutines BCV2

x(u + y_v + z_w

,/_ +_ +_
Using the equations in Section 6.4 of Volume 1, OVdOn for a _ boundary is thus computed as

OVt 1 F Ogt 2 2 2" OVt OFt " 'q

= "F _ k _ (¢x "F Cy q- Cz) "1"-_ (_xrlx t- Cyrly -I- _znz) + _ (¢x_x -F _yCy -F _z'_Jz)

where

,.=,/4 +¢_+¢3
The + sign is used at the _ = 0 boundary, and the - sign is used at the _ = 1 boundary.

For an _/Ix, andary, the tangential velocity is

From the description of subroutine BCV1,

x¢u + y¢v + z¢w
v_

4x_+d +z_

Thus, for an r/boundary,

Fay, " or,.2 2 2 o1,', ]___J¢-

where

J 2 2 2rn= _ix+ _y + _e

For an _/boundary, the tangential velocity is
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Thus,for a¢boundary,

cgVr 1 [ OVt OVt OVt 2 2 1o----;= + -_ _ (_A_+ _y_y+ _A_)+ _ (_nx + _y_y+ _:_) + _ (_ + _y+ _)

where

The shear stress z, is defined as

z_ is thus nondimensionalized by I_mdL,.

The heat flux q_ is defined as

where OT[On represents the normal derivative of the temperature. For a _ boundary,

OT 1 [ OT (_2 2 c3T OT ]

where

m= 4_2x + _y2+ _z2

For an n boundary,

OT 1 [- OT
-i

+,Tfiy+nA_)+_T 2 2 2 +____0T
..A

where

2 2 2m = _/x+ _/y+ _/z

And for a _ boundary,

7n = + _ (¢_ + OT c3T r2 2

where

q. is thus nondimensionalized by k_T,/_.

The heat transfer coefficient h is defined as

qw

T-I

k c3T
On

T-1

This is the nondimensional form of the equation
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T-T_

h is thus nondimensionalized by k,/L.

The Stanton number St is defined as

_- c_T

T- T_

m

st= h_ =h l
prurCp cp RerPrr
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Subroutine PAK (IDIR,NOLD1,NOLD2,NOLD3)

Called by Calls Purpose

GEOM CUBIC Manage packing and/or interpolation of grid points.
ROBTS

* IPACK

NOLD1, NOLD2, NOLD3

* NOUT

* N1, N2, N3

* SQ

X,Y,Z

Direction flag; 1 if grid points are being redistributed in the _ di-
rection, 2 if in the n direction, 3 if in the _ direction.

Flags for grid packing option.

Number of grid points in the _, 17,and ( directions in the original
grid.

Unit number for standard output.

Number of grid points N_, N2, and N3, in the _, n, and ( directions.

An array specifying the location and amount of packing.

Cartesian coordinates x, y, and z in the old grid.

Cartesian coordinates x, y, and z in the new grid.

Description

Subroutine PAK manages the redistribution of the user-specified points in the computational coordinate
system. It is called whenever grid packing is used. It is also called when interpolation is necessary because
the computational coordinates are specified by reading them from a separate file (the NGEOM = 10 option
in subroutine GEOM), and the number of points in the fde is different from the number of points "o be
used in the calculataon. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clarity, this discussion assumes
IDIR = 1 (i.e., we are redistributing points in the _ direction.) An exactly analogous procedure is used for
IDIR = 2 and 3.

,

2.

Set NNEW and NOLD equal to the index limits in the _ direction for the new and old grids. Also set
NOPP1 and NOPP2 equal to the index limits in the r/and _ directions for the old grid.

Get (ap),, the normalized physical arc length along a coordinate line in the _ direction, from the begin-
ning of the line to each grid point in the new grid. The normalizing distance is the total arc length of
the line, and thus these arc lengths apply to any coordinate line in the _ direction. If the points are not
being packed in the _ direction, but only interpolated, then

i-I
(at')i = NNEW- 1

.

for i = 1 to NNEW. In the new grid, the points will thus be evenly distributed in physical space along
each coordinate line in the ¢ direction. If the grid points are being packed in the _ direction, subroutine
ROBTS is called to compute (a_,), from the packing parameters specified by the user.

Begin double loop from IOPPI = 1 to NOPP1 and from IOPP2 = 1 to NOPP2. This double loop thus
runs over the points in the r? and _ directions in the old grid. We will be redistributing points in the
direction for each n and _ value in the old grid.
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f

. Get (avp). the normalized physical arc length along a coordinate line in the _ direction, from the
beginning of the line to each grid point in the old grid. These values are found by fu-st computing
the non-normalized arc lengths, as follows:

(aueh -- 0

(aup)i = (aup)i - I + N/(xi,j, k -- xi - 1,j, k) 2 + (Yi,j, k -- Yi - l,j, k) 2

for i= 2 to NOLDI. These values are normalized by setting

(aup)l

(ave)i- (aUP)NOLD1

for i = 1 to NOLD1. To eliminate any problems with roundoff error, (aUP)NOLDI is explicitly set

equal to 1.

5. Given x and avp for the old grid, and ap for the new grid, call CUBIC to interpolate for x in the

new grid. Similarly interpolate for y and z.

6. Redefine the Fortran variables X, Y, and Z as the x, y, and z coordinates in the new grid.

7. End of double loop over the points in the ,7 and _ directions in the old grid.

Remarks

- 1. In the Fortran code, the comments sometimes refer to the "packing" direction. This terminology ac-
tually means the direction in which grid points are being redistributed, even if they are not being packed
but only interpolated. Similarly, references to the "packed" and "unpacked" grid actually mean the new
and old grids.

2. An error message is generated and execution is stopped if an invalid grid packing option is requested.
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Subroutine PERIOD

Called by Calls Purpose

EXEC Define extra line of data for use in computing coefficients for spatially
EXECT periodic boundax3" conditions.

CP, CV

E, EL

ETAX, ETAY, ETAZ, ETAT

JI

KBCPER

KE, KEL

MU, LA, KT

MUT, MUTL

NPT1, NPT2, NPT3

N1, N2, N3

P,T

RHO, U, V, W, ET

RHOL, UL, VT,, WL, ETL

TL

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Specific heats cp and c_ at time level n.

Turbulent dissipation rate e at time levels n and n - 1.

Metric coefficients fix, rh,, rl_,and _.

Inverse Jacobian of the nonorthogonal grid transformation, J- I.

Flags for spatially periodic boundary conditions in the _, _?, and
directions; 0 for non-periodic, 1 for periodic.

Turbulent kinetic energy k at time levels n and n- 1.

Effective coefficient of viscosity t_, effective second coefficient of
viscosity 2, and effective coefficient of thermal Conductivity k.

Turbulent viscosity #, at time levels n and n - 1.

N_, N2, and N_ for non-periodic boundary conditions, or N_ + 1,
N2 + I, and N3 + 1 for spatially periodic boundary conditions, in
_, 7, and _, respectively.

Number of grid points N_, N:, and N3, in the _, _/,and _ directions.

Static pressure p and temperature T at time level n.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static density p, velocities u, v, and w, and total energy E: from
previous ADI sweep.

Static temperature T from previous ADI sweep.

Metric coefficients _, _y, _, and _,.

Metric coefficients _x, (y, _, and _,.

Outer

All of the flow and metric-related input parameters listed above, at i = N_ + 1 for periodic boundary
conditions in the _ direction, at j = N2 + 1 for periodic boundary conditions in the r/direction, and at
k = Ns + 1 for periodic boundary conditions in the _ direction.

Description

Subroutine PERIOD adds, in effect, an additional set of points at i = N_ + 1 for periodic boundary
conditions in the _ direction, at j = N2 + 1 for periodic boundary conditions in the r/ direction, and at
k = A_+ 1 for periodic boundary conditions in the _ direction. This allows us to use central differencing
in the periodic direction, at i = Nt, j = N2, and/or k = _q, computing the coefficient submatrices and source
term subvector in the same way as at the interior points.29

29 See Section 7.2.2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.
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Forperiodicboundary conditions in the _ direction, the extra points are added by setting

f.'¢_+ Id, k =_d, k

where j = 1 to 6½ and k = I to N3, and f represents one of the flow variables or metrics. Similarly, extra
points are added at (i, N2 + 1, k) for periodic bounda_ conditions in the n direction, and at (i, j, N3 + 1) for
periodic boundary conditions in the ( direction.
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SubroutinePLOT(LEVEL)

Calledby
MAIN

Calls Purpose
Writefilesfor post-processingby CONTOURor PLOT3Dplotting
programs.

CP,CV
ETAX,ETAY,ETAZ

* GAMR
GC

* IPLOT
LEVEL

* LR, UR, RHOR,TR
* MACHR
* NOUT
* NPLOT
* NPLOTX

* N1,N2,N3
P,T
PR

* RER
* RG

RGAS

RHO,U, V,W, ET
TAU

* TITLE

X,Y,Z
XIX, XIY, XIZ
ZETAX,ZETAY, ZETAZ

None.

Description

Specific heats G and c,.

Metric coefficients _/x,_/y, and _/z.

Reference ratio of specific heats, y,.

Proportionality factor gc in Newton's second law.

Flag specifying type of plot file to be written.

Time level to be written into the file (0 for initialization,)

Reference len_h L,, velocity u,, density p,, and temperature Tr.

Reference Mach number M,.

Unit number for standard output.

Unit number for writing CONTOUR file, or PLOT3D Q file.

Unit number for writing PLOT3D XYZ file.

Number of grid points N,, N2, and N3, in the _, _/, and _ directions.

Static pressure p and temperature T.

Reference pressure p,.

Reference Reynolds number Re,.

Dimensional gas constant R.

Dimensionless gas constant R.

Static density p, velocities u, v, and w, and total energy Er.

Current time value _r.

Case title.

Cartesian coordinates x, y, and z.

Metric coefficients _, _y, and _.

Metric coefficients G, (y, and G-

Subroutine PLOT writes a file or files, commonly called plot files, for post-processing by the CON-
TOUR or PLOT3D plotting programs. The type of files written is controlled by the user-specified pa-
rameter IPLOT. The format and contents of the different types of plot files are described in detail in Section
4.2 of Volume 2. They are therefore described only briefly here.
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CONTOUR Plot File (IPLOT = 1)

If IPLOT = 1, a CONTOUR plot file is written with the title and reference conditions included at each
time level. The value of n is written into the header for each time level, but -r, the time itself, is not written
into the ftle. No initialization step is necessary.

PLOT3DWHOLE Plot Files (IPLOT= 2)

If IPLOT = 2, XYZ and Q fdes are written in PLOT3D/WHOLE format. The XYZ f_le is written only
during the initialization step. The Q fde is written at each time level requested by the user. The Q fde will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
"r1,1,_is written into the header for each set of data in the Q file.

PLOT3D/PLANES Plot Files (IPLOT = 3)

If IPLOT = 3, XYZ and Q fries are written in PLOT3D/PLANES format. The XYZ fde is written only
during the initialization step. The Q frie is written at each time level requested by the user. The Q fde will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
-ci._._is written into the header for each set of data in the Q frie.

Remarks

In defining the pressure to be written into the CONTOUR plot frie, the value stored internally in the
Proteus code is redefined as follows:

2
prUr

P = P Prgc

This is necessary because input and output values ofp are nondimensionalized by the reference pressure
pr = p,-RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p, = p,uL See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
realizing conditions.

2. The current version of PLOT3D does not work for multiple time levels, although future versions might.
Thus the IPLOT = 2 and 3 options, while containing multiple time levels, cannot easily be used to
create plo*_ showing the time development of the flow.

3. Note that the time _1._._written into the Q frie header with the IPLOT = 2 and 3 options is the time
at the point _ = 17= £ = 0. If the input variable IDTAU = 5 or 6, -c will vary in space and therefore
Ti, j, k _ Tl,I,I-

4. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound a, = (_,RT,) 1/_,
and that ener_ is nondimensionalized by p,aL In Proteus these variables are nondimensionalized by
u, and p,_. That is why the reference Mach number Mr, appears in the definitions of the Q variables
written into the plot frie.

6. An error message is generated and execution is stopped if an illegal plot frie option is requested.
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Subroutine PRODCT

Called by Calls

KEINIT
TURBCH

Purpose

Compute production term for the k-_ turbulence model.

DXI, DETA, DZETA

ETAX, ETAY, ETAZ

KE

MUT

* N1, N2, N3

* RER

RHO, U, V, W

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

Output

VORT

Description

Computational grid spacing A_, An, and A(.

Metric coefficients r/x, qy, and )/,.

Turbulent kinetic energy k at time level n.

Turbulent viscosity/.t, at time level n.

Number of grid points N1, N2, and Ns, in the _, )/, and _ directions.

Reference Reynolds number Re,.

Density p, and velocities u, _', and w at time level n.

.Metric coefficients _x, _y, and _,.

Metric coefficients _x, _y, and _,.

Production rate of turbulent kinetic energy.

Subroutine PRODCT computes the turbulent kinetic energy production rate using

l_t p 2 pkP2
ek=-yffe_ 1--y

where

P' W -@ +

Ou Ov Ow
e2 = 7-£ +-_-y+ _--;

To evaluate the spatial derivatives, the centered difference formulas presented in Section 5.0 of Volume 1
are used at interior points, and second-order one-sided difference formulas are used at boundary points.

Remarks

To save storage space, this subroutine uses the Fortran variable VORT to store the turbulent kinetic
energy production rate. Care must be taken when this subroutine is used together with subroutine
VORTEX.
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Subroutine PRTHST

Called by Calls

MAIN

Purpose

Print convergence history.

ICHECK

IREST

IT

ITBEG

NC, NXM, NYM, NZM, NEN

NEQ

NHIST

NHMAX

NOUT

Convergenc e checking interval.

Flag for reading/writing restart file.

Last computed time step number n.

The time level n at the beginning of a run.

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations.

Number of coupled equations being solved, N,_.

Unit number for convergence history file.

Maximum number of time levels allowed in the printout of the
?

convergence history file (not counting the first two, which are al-
ways printed.)

Unit number for standard output.

Output

None.

Description

Subroutine PRTHST prints the convergence history as part of the standard output. The information
is obtained fro a the unformatted convergence history file written in subroutine RESID. The. arameters
printed are described in Section 4.1.6 of Volume 2, and the unformatted convergence history file is described
in Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at
an interval that limits the printout to NHMAX time levels. As described in Section 4.1.6 of Volume 2,
however, they are always printed at the first two time levels.

Proteus 3-D Programmer's Reference 4.0 Proteus Subprograms: PRTHST 241



Subroutine PRTOUT (ATITLE,LEVEL,AVAR)

Called by Call_ Purpose

OUTPUT Print output.

ATITLE

AVAR

DTAU

* IDTAU

* IPRT1A,.IPRT2A, IPRT3A

LEVEL

* LR, UR

* NOUT

NPRT1, NPRT2, NPRT3

TAU

A 20-character title for variable being printed.

A three-dimensional array containing the vm-iable to be printed.

Time step A-r.

Flag for time step selection method.

Indices for printout in the 4, _, and _ directions.

Time level to be printed.

Reference length L and velocity u,.

Unit number for standard output.

Total number of indices for printout in the 4, _/, and _ directions.

Current time value z.

Output

None.

Description

Subroutine PRTOUT performs the actual printing of the standard output file. It prints the variable
AVAR, with the title ATITLE. The output is printed in blocks, with each block corresponding to a _ lo-
cation. Within'each _ block, the output is printed in columns running in the q direction. The rows run in
the _ direction. It :he results at every grid point axe printed, there will be a total of N3 blocks, each _lock
with Nt columns, and each column with N2 rows. Within each _ block, the columns are grouped in super-

rows of up to 10 columns each.

The steps involved are as follows:

1. Set the total number of blocks, columns, and rows per super-row.

2. Redeirme AVAR, the input array containing the variable to be printed, including only the elements re-

quested.

3. Determine the number of super-rows. If NCOL is not exactly divisible by 10, the last super-row in each
block will have less than 10 columns.

4. Begin loop over the number of _ blocks.

5. Print the title for the variable, and the ( index. If the time step is constant in space, the dimensional
time t and time step At are printed with the title.

6. Begin loop over the number of super-rows.

7. Set NC 1 and NC2 equal to the number of the first and last column in this super-row. (I.e, for
the first super-row NCI and NC2 will be 1 and 10, for the second they will be 11 and 20, etc.
For the last super-row, NC2 v,ill be NCOL.)

8. Print the heading for the super-row, labeling each column with the proper _ index.

9. Print the super-row itself, labeling each row with the proper rt index.
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10. End of loop over the number of super-rows.

I 1. End of loop over the number of _ blocks.
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Subroutine RESID (IAVR)

Called by

EXEC

Calls:

ISAMAX
SASUM
SNRM2

Purpose

Compute residuals and write convergence history file.

CHGAVG

CHGMAX

DTAU

DUMMY

EPS

IAVR

* IAV2E, IAV4E

* ICHECK

* ICTEST

* IDTAU

* IHSTAG

IT

ITBEG

I3

* LR, UR

LRMAX

NEQ

* NHIST

* NITAVG

NPT1, NPT2, NPT3

* N1, N2, N3

N1P, N2P

RESAVG

RESL2

Maximum change in absolute value of the dependent variables,
averaged over the last NITAVG time steps, AQ_.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG-1 time steps if
ICTEST = 2), AQ ....

Time step Az.

A three-dimensional scratch array.

Convergence level to be reached, _.

Flag specifying whether residual is computed without or with the
artificial viscosity terms; 1 for without, 2 for with.

Flags for second- and fourth-order explicit artificial viscosity.

Convergence checking interval.

Flag for convergence criteria to be used.

Flag for time step selection method.

Flag for constant stagnation enthalpy option.

Current time step number n.

The time level n at the beginning of a run.

Grid index k in the _ direction.

Reference length L and velocity u,.

Grid indices i, j, and k, in the _, n, and _ directions, corresponding
to the location of RESMAX.

Number of coupled equations being solved, N,v

Unit number for convergence history file.

Number of time steps in moving average convergence test.

NI, N2, and N3 for non-periodic boundary conditions, N_ + 1,
,¥2+ 1, and N3 + 1 for spatially periodic boundary conditions in
_, n, and _.

Number of grid points N1, A'_, and N3, in the _, _/, and _ directions.

Parameters specifying the dimension sizes in the _ and _ di-
rections.

The sum of the absolute values of the residual through the _ index
13- 1.

The sum of the squares of the residual through the _ index
I3- 1.
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RESMAX

S

TAU

The maximum absolute value of the residual, R .... through the
index I3- 1.

Source term subvector S for first ADI sweep.

Current time value -r.

RESAVG

RESL2

RESMAX

Grid indices i, j, and k, in the 4, r/, and ( directions, corresponding
to the location of RESMAX.

The sum of the absolute values of the residual through the ¢ index
13, or, if I3 = NPT3 - 1, the average absolute value of the resi-
dual, R_ s.

The sum of the squares of the residual through the _ index I3, or,
if I3 = NPT3 - 1, the/-.2 norm of the residual, Rz.2.

The maximum absolute value of the residual, R .... through the
index.I3.

Description

Subroutine RESID computes various measures of the residual, and writes the convergence history file.

For problems without artificial viscosity, the steady-state form of the governing partial differential
equations can be written as

A A A

0(. 0Ev ore 0oe
o- a4 an a¢ _-_T-+-_--_ + o_

The residual is defined as the number resulting from evaluating the right hand side of the above equation.
For ftrst-order time differencing, this is simply the source term for the first ADI sweep, divided by the time
step Az. s° The residual at a specific grid point and time level is thus

R_,j, k = Sn,,j, W(A,)_,j, k

where S is the source term for the fa-st ADI sweep. Separate residuals are computed for each governing
equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the dif-
ference equations actually correspond to the following differential equations at steady state, sx

0_

A A A

OE OI: OG OEe OFv OGv

04 on o¢ +-TU +--SU_ + a--(-

_(2) F 2 A 2 A 2 A l

+ o +(A,f-oo, + ood(SQ)]
j (A_)4 a4(JQ) + (An) a Oa(JQ.___._) f(JQ)a_----T- an4 + (A_)4 a---z--

s0 See equation (7.5a) in Volume 1. For first-order time differencing, 02 = 0s = 0.

sl These equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient
model is more complicated, but the same principle applies.
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For cases run with artificial viscosity, therefore, the residual should include the explicit artifici_ viscosity

terms. The implicit terms do not appear, since they difference AO, and in the steady form of the equations

A(_ = O. Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep,
they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the/-a norm of the residual,
the average absolute value of the residual, and the maximum absolute value of the residual. In addition,
the (_,n,£) indices corresponding to the location of the maximum residual are saved. The L2 norm of the
residual is defined as

/x----a \1/2

In computing the residuals, the summations, maximums, and averages are over all interior grid points, plus
points on spatially periodic boundaries. RESID is called from inside a loop in the _ direction. The calcu-
lation of the residual is thus not complete until the last time through this loop, when the _ index
I3 = NPT3- 1.

For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the
artificial viscosity terms have been added to the equations. The residuals are thus computed both with and
without the artificial viscosity terms. This may provide some estimate of the overall error in the solution
introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity
terms included.

In addition to computing the residuals, subroutine RESID writes the convergence history file.
contents and format of this file are described in detail in Section 4.3 of Volume 2.

Remarks

1.

.

The

The Cray BLAS routines SNRM2 and SASUM are used in computing the La norm of the residual and
the average absolute value of the residual, respectively. The Cray search routine ISAMAX is used in
computing the maximum absolute value of the residual.

The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
residual at eack grid point.
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Subroutine REST (IOPT)

Called by Calls Purpose

INITC METS Read and/or write restart fde.
MAIN

Input _,_en Reading the Restart File

* GAMR

* HSTAG

* IHSTAG

IOPT

* ITURB

* NRQIN

* NRXIN

RGAS

Input When "Writing the Restart File

E, KE

EL, KEL

IOPT

IT

* ITURB

* MACHR

* NRQOUT

* NRXOUT

* N1, N2, N3

* RER

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

X,Y,Z

Output _hen Reading the Restart File

DXI, DETA, DZETA

E, KE

EL, KEL

Reference ratio of specific heats, _,.

Stagnation enthalpy hr used with constant stagnation enthalpy
option.

Flag for constant stagnation enthalpy option.

Flag specifying I/O operation; 1 to read, 2 to write.

Flag for turbulent flow option.

Unit number for reading the restart flow field.

Unit number for reading the restart computational mesh.

Dimensionless gas constant R.

Turbulent dissipation rate _ and kinetic energy k at time level
n+l.

Turbulent dissipation rate e and kinetic energy k at time level n.

Flag specifying I/O operation; I to read, 2 to write.

Current time step number n.

Flag for turbulent flow option.

Reference Mach number M,.

Unit number for writing the restart flow field.

Unit number for writing the restart computational mesh.

Number of grid points N1, N2, and N3, in the _, _, and _ directions.

Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Cartesian coordinates x, y, and z.

Computational grid spacing A_, A_/, and A_.

Turbulent dissipation rate _ and kinetic energy k at time level
ITBEG.

Turbulent dissipation rate e and kinetic energy k at time level
ITBEG- 1.
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ITBEG

MACHR

N1, N2, N3

RER

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

The time level n at the beginning of the new run.

Reference Mach number M,.

Number of grid points iVy,N2, and A_, in the _, _/,and _ directions.

Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energy Er at time
level ITBEG.

Static density p, velocities u, v, and w, and total energy Er at time
level ITBEG- 1.

Static temperature T at time levels ITBEG and ITBEG - 1.

Cartesian coordinates x, y, and z.

Output When Writing the Restart File

None.

Description

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted
files - one containing the computational mesh and one containing the-flow field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit
NRXIN. The grid increments A_, A_, and A_ are then set, and subroutine METS is called to compute the
metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time
levels that were computed during the previous run. If only one level is present in the file, however, the re-
suits at level n - 1 are set equal to those at level n. If the previous run used the two-equation turbulence
model, the turbulence variables are also read from the file. The beginning time level for the time marching
loop is set equal to the level stored in the restart fide. The flow field variables in the restart file are the
conservation variables Q, nondimensionaliTed as in the plotting program PLOT3D. 32They therefore must
be converted into the primitive variables used in Proteus. The temperature is then computed from the
perfect gas equatiG._ of state, with cp and c, defined using the input reference conditions.

When writing the restart files, the file containing the computational mesh is written onto unit
NRXOUT. The primitive flow variables are then redefined as conservation variables and
nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT. If the current run used
the two-equation turbulence model, the turbulence variables are also written into the file.

Remarks

1. If, in the input namellst RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN,
respectively, the output restart files will overwrite the input restart files.

2. Except for the turbulence variables and the variables at time level n - 1, the restart files have the same
format as the XYZ and Q ftles created using the IPLOT = 3 option. These restart files can thus also
be used as XYZ and Q files for the PLOT3D plotting program. The turbulence variables and the
variables at time level n - 1 will not be read by PLOT3D.

3. The temperature T is computed using the equation of state, which contains a specific heat-coeffident
(either cp or c,, depending on whether the stagnation enthalpy is assumed constant or not.) In sub-
routine REST, a constant value of specific heat is used, consistent with the reference temperature T,.
If the user specified constant specific heat (i.e., a value for y, was read in), this is not a problem.
However, if the temperature-dependent specific heat option is being used (i.e., a value for y, was not

32 See Sections 4.2.3 and 4.4 of Volume 2.
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read in), the equation of state and the empirical equation for specific heat are coupled. For this reason,
in INITC (the routine that calls REST), T is recomputed by calling EQSTAT after the specific heats
have been computed in FTEMP. Ideally, this coupling would be handled by iteration between
FTEMP and EQSTAT. This is not currently done in Proteus, however.
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Subroutine ROBTS (NP,A,B,XP)

--Called by Calls Purpose

PAK Pack points along a line using Roberts transformation.

B

NP

Parameter a in Roberts transformation formula specifying lo-
cation of packing: 0.0 to pack near XP = 1 only, 1.0 to pack near
XP = 0 only, and 0.5 to pack equally at XP = 0 and 1.0.

Parameter fl in Roberts transformation formula specifying amount
of packing. A value approaching 1.0 from above gives denser
packing.

Number of grid points along the line.

XP Coordinates of packed gid points along the line.

Description

Subroutine ROBTS packs points along a line of length one using a transformation due to Roberts
(1971). The basic transformation is given by

+ - +
Xp =

(2,, + 1)(1 +/_r#')

where

fl+l
fir= fl_|

and xp and xuv are the packed and unpacked (i.e., evenly spaced) coordinates along the line. The parameter
determines the packing location. For _ = 0, the points will be packed only near xv = 1, and for = = 1/2

the points will be packed equally near xv = 0 and xv = 1. The packing parameter/_ determines the amount
of packing. It is a number greater than I, but generally 1.1 or below. The closer fl is to 1, the tighter the
packing will be.

It may seem logical to set a = I to pack points near xv = O. With the basic transformation, however,
this doesn't work. In Proteus we get around this problem by replacing = in the above transformation with
,,, where a, = a ff, = 0 or 1/2, and _, = 0 ff a = 1. If _ = 0 or 1/2, no further action is necessary. If

= I, however, we must invert the resulting xv values and re-order the indices. I.e., for i = 1 to NP, we set

(xet)i = 1 - (Xp)i

After this operation, the array xel will run from I to 0, packed near 1. To re-order the indices, for i = 1 to
NP we set

(Xp)Np--i+ I=(XPI)i

After this operation, xv will run from 0 to I, packed near 0.
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Finally, to ensure round-off error doesn't affect the endpoint values, we set (xp)t = 0 and (x.,)._-p= 1.

Remark

. The namelist input variable SQ(IDIR,1), which is used to specify the packing location in direction
IDIR, is actually equal to 1 - _. Therefore, setting SQ(IDIR,1) = 0 results in packing near the _, )/,
or _ = 0 boundary, and SQ(IDIR, 1) = 1 results in packing near the _, )/, or _ = 1 boundary.
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Function SASUM (N,V,INC)

Called by Calls Purpose

_RESID Compute the sum of the absolute values of the elements of a vector.

Input

N

V

INC

Number of elements in the vector to be summed.

Vector to be summed.

Skip distance between elements of V. For contiguous elements,
INC = 1.

Output

SASUM Sum of the absolute values of the elements of V.

Description

Function SASUM computes the sum of the absolute values of the elements of a vector.
dimensional vector, the use of SASUM is straiojatforward. For example,

np

sasum(np,v,1) =Z_
i=I

For a one-

A starting location can be specified, as in

np

sasum(np-6,v(5),l) = Z Vi
i=5

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM 1 by NDIM2 by NDIM3, then

ndiml ndim2 ndim3

sasum(ndiml_ndimZ'ndirn3,a,1)= Z Z Z Ai, j,k

i=l j=l k=l

One dimension at a time can also be summed. For example,

ndiml

sasum(ndiml,a(1,5,2),l) = Z Ai,5,2

Similarly, by specifying a skip increment,
ndim2

sasum(ndim2,a(B,1,2),ndiral) = Z A5,j'2

j=t

Remarks

1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).

252 4.0 Proteus Subprograms: SASUM Proteus 3-D Programmer's Reference



Subroutine SGEFA (A,LDA,N,IPVT,INFO)

Called by Calls Purpose

BCELIM ISAMAX Factor a matrix using Gaussian elimination.
BVUP

A

LDA

N

An array containing the matrix A to be factored, dimensioned as
A(LDA,N). '

The leading dimension of the array A.

The order of the matrix A.

A

IPVT

INFO

An upper triangular matrix and the multipliers which were used
to obtain it. The factorization can be written as A = LU, where

L is a product of permutation and unit lower triangular matrices,
and U is upper triangular.

A vector of length N containing pivot indices.

An error flag: 0 for normal operation, k if U** = 0.

Description

Subroutine SGEFA is used in combination with subroutine SGESL to solve the matrix equation
Ax = B. If the Fortran arrays A and B represent A and B, where A is a square N by N matrix and B is a
matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then
the Fortran sequence

10

call sgefa (a,lda,n,2pvt,2nfo)
do 10 j = 1,ncol
call sgesl (a,lda,n,2pvt,b(1,_),O)
continue

computes A- 1B, storing the result in B.

Remarks

1. SGEFA is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979).
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T_

Subroutine SGESL (A,LDA,N,IPVT,B,JOB)

Called by Calls Purpose

BCELIM Solve the matrix equation Ax = B or Arx = B Using the factors com-
BVUP puted by SGEFA.

A

B

IPVT

JOB

LDA

N

Output

B

Description

Subroutine

The two-dimensional output array A from SGEFA containing the
factorization of matrix A.

The fight-hand side vector B.

The output array IPVT of pivot indices from SGEFA.

Flag specifying type of matrix equation: 0 to solve Ax = B; non-
zero to solve ATX = B.

The leading dimension of the array A.

The order of the matrix A.

The solution vector x.

SGESL is used in combination with subroutine SGEFA to solve the matrix equation

Ax = B. See the description of subroutine SGEFA for details.

Remarks

1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979)
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Function SNRM2 (N,V,INC)

Called by Calls Purpose

RESID Compute the L2 norm of a vector.

N

V

INC

The number of elements in the vector V.

The vector whose norm is to be computed.

Skip distance between elements of V. For contigaaous elements,
INC = 1.

o t tt

SNRM2 The/-.2 norm of the vector V.

Description

Function SNRM2 computes the L_ norm of a vector. For a one-dimensional vector, the use of SNRM2
is straightforward. For example,

112

np t
snrmZ(np,v, 1) = (E V/2

ki---1

A starting location can be specified, as in

snrm2(np-q,v(5),l) =

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2 by NDIM3, then

snrm2(ndimlWndim2_ndim3,a,l) =

112

\i=i s=l /

One dimension at a time can also be summed. For example,

snrm2(ndiml,a(1,5,2),l)=

_12

i=I

Similarly, by specifying a skip increment,
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U2

snrm2 ( ndim2, a ( 5, l, 2), ndiml ) = A5,j, 2

Remarks

1. SNRM2 is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).
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Subroutine SWDOWN

Called by Calls Purpose

EXECT Compute coefficients and source terms, and solve the k-_ equations for
the downward LU sweep.

* CMUR

* CONE

* CTHREE

* CTWOR

DTAU

DUMMY

DW

DXI, DETA, DZETA

E

ETAX, ETAY, ETAZ

JI

KE

MU

MUT

NPT1, NI''2, NPT3

* RER

RHO, U, V, W

* SIGE, SIGK

* TFACT

* THKE

VORT

XIX, XIY, XIZ

YPLUSD

ZETAX, ZETAY, ZETAZ

DW

Constant C_r in formula for (7..

Constant 6'1 in the production term of the, equation.

Constant C3 in formula for C,.

Constant Q. in formula for C2.

Time step Az.

Distance to the nearest solid wall.

Dependent variable subvector AW* from upward LU sweep.

Computational grid spacing A_, A_/, and A_.

Turbulent dissipation rate _ at time level n.

Metric coefficients q_, _/y,and _/z.

Inverse Jacobian of the nonorthogonal grid transformation, J-_.

Turbulent kinetic energy k at time level n.

I.aminar viscosity/al at time level n.

Turbulent viscosity/a, at time level n.

N_, N2, and N3 for non-periodic boundary conditioz :, N_ + 1,
N2 + 1, and N3 + 1 for spatially periodic boundary conditions in
_, n, and _.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.

Constants o, and _rkused in the diffusion term of the _ equation
and k equations, respectively.

Factor used in computing the k-e time step.

Parameters 01 and 02 determining type of time differencing for the
k-_ equations.

Production rate of turbulent kinetic energy.

Metric coefficients _, _, and _.

Nondimensional distance y+ from the nearest solid wall.

Metric coefficients _,, _,, and G.

^

Dependent variable subvector AW" from downward LU sweep.
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Description

Subroutine SWDOWN performs the downward LU sweep to solve for the final values of the unknown

vector A_ r" in the k-_ equations. The equation used for the downward sweep is

T
O,A_ [6+A_+6+C-+6-_E-_(a¢B)+_(anD)+_(6¢F)+ (M+N)] A_rn=A_ *I+ 1 +0"--"_

The Jacobian coefficient matrices B, D, and F are made up of terms of the form fOglO_, fOglO_, and

fOg/dE, respectively. The terms (6_B) ÷, (609) +, and (6_F) + are the forward difference parts of the central

differences 6eB, 6,rD, and 6¢F, respectively. Thus

(f 8g ) _+1 +)¢_(gi+l -gi)-_i+fi-1)(gi-gi-l)

(6¢B)+ = _+ ] +J_(gi+ 1 --gi)
2(AO2

Analogous expressions can be derived for D and F. Expanding the difference terms in the downward sweep

equation, we thus get

{ 01A'r lAb+I-A[- CT+I-CZ +E_+_-E-k [(fi+_+J_(gi+l-gi)] BI + f 7 _ A_ + A,7 A_ 2(A_) 2

[_+ I +_(g; + f- gy)]D [(fk + ' + f_)(gk + I - gk)]F (M+N) A_Cn = A"v_¢*

- 2(A,/)2 - 2(A¢)2

where the superscripts B, D, and F denote the terms belonging to the Jacobian coefficient matrices B, D,

and F, respectively.

This equation _, '.ust be solved for the final unknown vector AVv"nat (i,j, k). It can be seen that ti • right
hand side of this equation is at the intermediate time level *, and that the coefficients on the left hand side
are at time level n, and thus known. In addition, the conditions in the planes (N_,j, k), (i, N_, k), and

(i,j, N3) at time level n + 1 are known, because they are the upper boundaries of the computational domain,
and the boundary conditions are being treated explicitly.

The marching procedure and the addressing scheme used in this subroutine is analogous to those dis-
cussed in the description of subroutine SWUP.
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Subroutine SWUP

Called by Calls Purpose

EXECT Compute coefficients and source terms, and solve the k-r equations for
the upward LU sweep.

i._p_m

* CONE

* CTWOR

DTAU

DUMMY

DW

DXI, DETA, DZETA

E, EL

ETAX, ETAY, ETAZ

JI

KE, KEL

MU

MUT, MUTL

NPTI, NPT2, NPT3

* RER

RHO, U, ., W

RHOL

* SIGE, SIGK

* TFACT

* THKE

VORT

XlX, XIY, XIZ

YPLUSD

ZETAX, ZETAY, ZETAZ

DW

Description

Constant Ct in the production term of the _ equation.

Constant C2r in formula for C2.

Time step AT.

Distance to the nearest solid wall.

Dependent variable subvector A_V_-1 from previous time step.

Computational grid spacing A_, A_/, and A¢.

Turbulent dissipation rate _ at time levels n and n - 1.

Metric coefficients rh, _%,and g_.

Inverse Jacobian of the nonorthogonal grid transformation, J-k

Turbulent kinetic energy k at time levels n and n - I.

Laminar viscosity #_ at time level n.

Turbulent viscosity #, at time levels n and n - 1.

N_, N2, and N3 for non-periodic boundary conditions, N_ + 1,
N2 + 1, and N_ + I for spatially periodic boundary conditions in
_, n, and _.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time levei _.

Static density p at time level n- 1.

Constants a, and ak used in the diffusion term of the _ equation.

Factor used in computing the k-_ time step.

Parameters 01 and 02 determining type of time differencing for the
k-r equations.

Production rate of turbu!ertt kinetic energy.

Metric coefficients _, _y, and _.

Nondimensional distance y+ from the nearest solid wall.

Metric coefficients _, _, and _.

^

Dependent variable subvector AW* from upward LU sweep.

Subroutine SWUP performs the upward LU sweep to solve for the intermediate values of the unknown

vector A_ r* in the k-_ equations. The equation used for the upward sweep is
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t"l
01z_T [6-_A + + 6_C + + 6-_E + (6_B)- (6,1D)- - (6¢F) ] AW = RHS(9.34)

I-t 1+02

where RHS(9.34) represents the right hand side of equation (9.34) in Volume 1. The Jacobian coefficient
matrices B, D, and F are made up of terms of the form fOg/3_, .fOg/O_1, and fOg/O_, respectively. The terms

(6_B)-, (6gD)-, and (6¢F)- are the backward difference parts of the central differences 6¢B, 6,,D, and 6¢F, re-
spectively. Thus

(fOg) (fii+ l + J_)(gi + l - gi) - (fii + fi-1)(gi- gi-1)`5_B=,5¢ -_- - 2(a_)2

(6¢B)- = - 2(A_)2

Analogous expressions can be derived for D and F. Expanding the difference terms in the upward sweep

equation, we thus get

o,A, F A:-A?_,
l + T-gY[ L + a,7

E_ +f] -- l)(gj -- # -- 1)] D

+ 2(An)2

- E+k- - - - O]8
+ +

-A¢ 2(A_) 2

+ [Ct_ +fk- 1)(gk -gk- 0] F A_¢* = RHS(9.34)

2(A¢) 2

where the superscripts B, D, and F denote the terms belonging to the Jacobian coefficient matrices B, D,

and F, respectively.

This equation must be solved for the intermediate unknown vector A_r¢* at (i,j, k). It can be seen that
the right hand side of this equation, and the coefficients on the left hand side, are at time level n, and thus
known. In addition, the conditions in the planes (l,j, k), (i, 1, k), and (i,j, 1) at time level * are known,
because they are tho lower boundaries of the computational domain, and the boundary conditions are being
treated explicitly, qnerefore, it is possible to solve this equation by marching point by point from point (2,
2, 2) to point (N_ - 1, N2- I, N3- 1). The conditions in the planes (Nt, j, k), (i, N2, k), and (i, j, N3) are
known because they are the upper boundaries of the computational domain.

The marching order is unimportant, as long as the march is from the point (2, 2, 2) to point (N, - 1,
N2 - 1, N3 - 1). For example, this could be accomplished using the following pseudo-code:

I0

do 10 il = 2,nl-1
do 10 i2 = 2,n2-1
do 10 i3 = 3,n3-1
dw(il,i2,iS) = _n_ionof q(il,i2,i3), dw(il-l,i2,i3),

dw(il,i2-1,iS), and dw(il,i2,i$-l)
continue

where Q represents the flow field properties and DW is the unknown vector. The Fortran indices II, I2,
and 13 correspond to the grid indices i, j, and k, respectively.

The coding above is correct, but it does not take full advantage of the Cray's vectorization capability.
Because it contains two nested do loops, only the innermost loop is vectorized. However, if the marching
is _lone in the direction normal to the diagonal planes of constant i +j + k, then the code can be constructed

with only one nested do loop, taking better advantage of the Cray's vectorization capability. I.e.,

do 10 iplane = 1,nplane
do 10 ipoint = 1,npoint
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dw(ipoint,iplane) = function of q(ipoint,iplane) and d_(ipoint,iplane)
10 continue

where NPLANE is the number of diagonal planes in the 3-D computational domain, and NPOINT is the
number of interior grid points contained within a diagonal plane. Note that NPOINT varies from plane
to plane. It turns out that the points (I1 - 1, I2, I3), (I1, I2 - 1, I3), and (I1, I2, 13 - 1) are all located in
the plane IPLANE- 1, and they are known. As the result, the inner loop in the above code can be
vectorized over every point in a diagonal plane.

An addressing scheme is needed to translate the indices (IPOINT, IPLANE) to (I1, I2, I3) so that flow
properties at (I1,I2,I3) can be recalled in the marching process. There are many ways that this can be ac-
complished, and in subroutine SWUP a scheme has been devised to compute the I1, I2, and 13 indices from
the do loop indices IPOINT and IPLANE. This scheme does not require any special machine-specific
routines, and will work for any FORTRAN 77 compiler. Basically, this scheme works as follows:

1. The I1 index of every point in a diagonal plane is stored in the array ILOC(IPOINT).

2. The diagonal line index of ever)" point in a diagonal plane is computed and stored in the array
LINE(IPOINT).

3. Inside the nested inner loop, the I1, 12, and 13 indices are then computed from the ILOC(IPOINT) and
the LINE(IPOINT) arrays as follows:

il = iloc(ipoint)
i2 = -il + line(ipoint) + 3
i5 = iplane - il - i2+ 5

Proteus 3-D Programmer's Reference 4.0 Proteus Subprograms: SW-u'P 261



Subroutine TBC

Called by Calls

MAIN

Purpose

Set time-dependent boundary condition values.

* GTBC1, GTBC2, GTBC3

IT

ITBEG

ITEND

JBC1, JBC2, JBC3

JTBC1, JTBC2, JTBC3

NBC

NEQ

* NOUT

* NTBC

* NTBCA

* NI, N2, N3

Time-dependent surface mean flow boundary condition values for
the _, n, and _ directions.

Current time step number n.

The time level n at the l_e_fiaag of a run.

Final time step number.

Surface mean flow boundary condition types for the _, rt, and
directions.

Flags for type of time dependency for mean flow boundary con-
ditions in the _, n, and _ directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,_.

Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are

specified.

Number of grid points N_, N_, and N3, in the _, ,/, and _ directions.

FBC1, FBC2, FBC3

GBC1, GBC2, GBC3

Point-by-point mean flow boundary condition values for the _,
_, and _ directions.

Surface mean flow boundary condition values for the ¢, _/, and
directions.

Description

Subroutine TBC sets time-dependent mean flow boundary condition values. Two types of time de-

pendency are allowed - general and periodic.

General Time-Dependent Boundary Conditions

General time-dependent boundary conditions are set using linear interpolation on an input table of

boundary condition values vs. time level. Thus, the boundary condition value is

i
n+ 1 -n t i+l i

gn+l=g[+ i+l -_ (gt -gt)
n t nt

Here n is the current known time level in the time marching scheme, g, and n, represent the input table of
boundary condition values vs. time level, and i is the index in the table for which
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i i+I
nt<n+ 1 <n t

If n + 1 < nl, then g_* t is set equal to the first value in the table, g}. Similarly, if n + I > n_, ,*'here N is the
index of the last entry" in the table, then g_* _ is set equal to the last value in the table, g_.

In Fortran, g= GBC1, GBC2, or GBC3, g,= GTBC1, GTBC2, or GTBC3, n_= NTBCA, and
N = NTBC.

Time-Periodic Boundary Conditions

Time-periodic boundary conditions (not to be confused with spatially periodic boundary conditions) are
of the form

,g =gt +gt

where g_ through _ are given by the fn-st four elements of GTBC1, GTBC2, or GTBC3.

Remarks

1. An error message is generated and execution is stopped if an invalid type of unsteadiness is requested
for the boundary values.
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Subroutine TIMSTP

,T

Called by Calls Purpose
,m,

MAIN ISAMAX Set computational time step.
ISAMIN

* CFL

* CFLMIN, CFLMAX

CHGMAX

* CHG1, CHG2

CP, CV

* DT

DTAU

* DTF1, DTF2

DTMIN, DTMAX

DXI, DETA, DZETA

EP2

ETAX, ETA_, ETAZ, ETAT

* IDTAU

IT

ITSEQ

MU

* NDTCYC

NEQ

* NOUT

NTOTP

N1, N2, N3

RER

RGAS

RHO, U, V, W

T

XIX, XIY, XIZ, XIT

CFL number in IDTAU = 1, 2, 5, 6, 8, and 9 options.

Minimum and maximum CFL numbers allowed in IDTAU = 2

and 6 options.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG-1 time steps if
ICTEST = 2), AQ ....

Minimum and maximum change, in absolute value, that is al-
lowed in any dependent variable before increasing or decreasing
Ar in IDTAU = 2, 4, and 6 options.

Specific heats cp and c, at time level n.

Time step A'r in IDTAU -- 3 and 4 options.

Old computational time step A-r.

Factors multiplying or dividing AT if solution changes too slowly
or quickly in IDTAU = 2, 4, and 6 options.

Minimum and maximum Ax allowed in iDTAU = 4 option, or
used in IDTAU = 7 option.

Computational grid spacing A_, An, and A_.

Maximum allowable numerical value.

Metric coefficients rt_, rb, */_,and _/t.

Flag for time step selection method.

Current time step number n.

Current time step sequence number.

Effective coefficient of viscosity/_ at time level n.

Number of time steps per cycle for IDTAU = 7 option.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., NIP x N2P x N3P).

Number of grid points N1, N2, and N3, in the _, n, and _ directions.

Reference Reynolds number .Rer.

Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Static temperature T at time level n.

Metric coefficients _, _, ¢_, and _,.
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ZETAX, ZETAY, ZETAZ,
ZETAT

Metric Coefficients _x, _y, _z, and _,.

CFL

DTAU

New CFL number in IDTAU = 2 and 6 options.

New computational time step A-c.

Description

Subroutine TIMSTP computes the time step size At. The following sections describe the various
methods currently available for setting and/or modifying Az.

IDTA U = 1

This option sets a global (i.e., constant in space) time step Ar equal to the minimum of the values at
each grid point computed from the input parameter CFL(ITSEQ). I.e.,

A-r = (CFL) min(ArctT)
i,j,k _-

where A'rcpis the inviscid CFL limit, given in generalized coordinates as (Shang, 1984).

--1
2_.11/2" _ -

+ +

Here U = _, + _,u + _yv + _zw, V = _, + _/xu+ _/yv+ _/2w, ag.d_i_ W= _, + _u + _v + _',w are the
contravariant velocities without metric normalization, and a = _/_,RT is the speed of sound.

IDTA U = 2

For the first time step, this option is identical to the IDTAU = I option. After the first time step,
however, CFL is modified to keep AQ.... the maximum change in absolute value of the dependent vari-
ables, within user-specified limits. The rules used to increase or decrease CFL may be summarized as fol-
lows:

AQmax < CHG1

AQmax > CHG2

AQmax > O. 15

=_ CFL= min[(DTF1)(CFL), CFLMAX]

=_ CFL=max[CFL/DTF2, CFLMIN]

=_ CFL=CFL/2

The time step Ar is then set using the same formulas as in the IDTAU = I option.

IDTA U = 3

This option sets a global (i.e., constant in space) time step Az equal to the input parameter DT(ITSEQ).

IDTAU = 4

For the first time step, this option is identical to the IDTAU = 3 option. After the first time step,
however, Ax is modified to keep AQ .... the maximum change in absolute value of the dependent variables,
within user-specified limits. The rules used to increase or decrease Az may be summarized as follows:
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AQmax < CHG 1

AQmax > CHG2

AQmax > O. 15

=:, Az = min[(DTF 1)Az, DTMAX]

=_ a-r = max[ATI(DTF2), DTMIN]

=_ A-r = At/2

IDTAU = 5

This option sets a local (i.e., varying in space) time step Az computed at each grid point from the input

parameter CFL(ITSEQ). I.e., at each grid point,

A_ = (CFL)A_cfl

where Arcp is given above in the description of the IDTAU = 1 option.

IDTAU = 6

For the fu'st time step, this option is identical to the IDTAU = 5 option. After the ftrst time step,
however, CFL is modified to keep AQ,,_, the maximum change in absolute value of the dependent vari-
ables, within user-specified limits. The rules used to increase or decrease CFL axe the same as in the

IDTAU = 2 option.

IDTAU = 7

This option sets a global (i.e., constant in space) time step Az with logarithmic cycling. The formula
used is

A'r = A'rmin A.rmin

where N = mod(n - l, N, yc) and n is the current known time level. The time step Az is thus cycled repeat-
edly between A'rm_ and A'r,_o_every N_, time steps. The values of A'rm_, A-r.... and Ncy, are given by the

input parameters DTMIN, DTMAX, and NDTCYC.

tDTAU = 8

This option sets a local (i.e., varying in space) time step Az computed at each grid point using the pro-
cedure of Kni_at and Choi (1989). The inviscid CFL limit Az<_ is fLrst computed separately for each

computational coordinate direction. Thus, at each grid point,

-1

(A-ccfl),7 = _ + a ArI

Here U = _, + Gu + Gv + Gw, V = _/, + _hu + r6v -_-'z_-, and W = (, + Gu + Gv + Gw axe the contravariant
velocities without metric normalization, and a = .,/eRT is the speed of sound.

A preliminary value of Az is then defined at each grid point using the input parameter CFL(ITSEQ).
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ATo = (CFL) min[(A:cfl)_, (A%fl), v (Az¢fl)_]

The final value of 6z is then defined at each grid point as

a, =

Knight and Choi found that using this definition for Az, rather than simply setting h-c = Az0, resulted in
faster convergence for problems with refined grid regions. This formulation assumes that flow is generally
in the _ direction.

IDTA U = 9

This option is similar to the IDTAU = 8 option. The only difference is a viscous correction added to
the definitions of the inviscid CFL limits, similar to that used by Cooper (1987). The inviscid CFL limits
are now defined at each grid point as:

[I IV #_/x + _y + _/z 2 I*

(A'rcf/)r/= _ "l'- a _ -I- _r p

2 2 2 --]-
_/x + _/y + _/z J(a,7)2

(A%fl)_ = + a # + Ar _ iA- _

The rest of the procedure for computing A-c is the same as in the IDTAU = 8 option.

Remarks

I. In AQ .... "ased in the IDTAU = 2, 4, and 6 options, the chang_ in Er has been c"'Aded by
R/(_, - 1) + 1/2. This is equivalent to dividing the dimensional value Er by

Pr-R Zr PrU2r

ET'= Yr--I + 2

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. An error message is generated and execution is stopped if an illegal time step selection option is re-
quested.

3. A warning message is printed with the IDTAU = 2, 4, and 6 options if A_r or the CFL number is cut
in half because AQ,_,_ > 0.15.

4. The Cray search routine ISAMAX is used in computing the maximum value of AQ,_,_ for all the
equations.
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Subroutine TREMAIN (CPUREM)

Called by Calls Purpose

--.MAIN Get CPU time remaining for the lob.

l,_p_m

None.

Output

CPUREM

Description

Amount of CPU time remaining, in seconds.

Subroutine TREMAIN computes the amount of CPU time remaining for the current job, in seconds.

Remarks

1. TREMAIN is a Cray Fortran hbrary routine (Cray Research, Inc., 1989a).
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Subroutine TURBBL

Called by Calls Purpose

INITC BLIN Manage computation of turbulence parameters using Baldwin-I__max
KEINIT BLOL'T algebraic model.
MAIN

CP

EP1

KBC1, KBC2, KBC3

LWSET

MU, LA, KT

N1, N2, N3

PRR

PRT

U,V,W

Specific heat G-

Minimum allowable numerical value.

Boundary types for the _, ,/, and ¢ directions.

Flags specifying how wall locations are to be determined for the
"turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Laminar coefficient of viscosity _, laminar second coefficient of
viscosity ,t_,and laminar coefficient of thermal conductivity k_.

Number of grid points N1, N2, and N3, in the _, _/, and _ directions.

Reference Prandtl number Pr,.

Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

Velocities u, v, and w.

LWALLI, LWALL2, LWALL3

MU, LA, KT

Flags specifying wall locations for _, _, and _ bounda-:es, if not
set in input.

Effective coefficient of viscosity #, effective second coefficient of
yiscosity 2, and effective coefficient of thermal conductivity k.

Description

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of
Baldwin and Lomax (1978). It is called from MAIN atthe end of each step from time level n to n + 1, after
the governing flow equations have been solved. The Fortran variables RHO, U, etc., are thus at the n + 1
level. The effective viscosity coefficient to be computed will therefore also be at the n + 1 level. This, of
course, becomes the known n level for the next time step.

The steps involved in computing the effective coefficients are as follows:

1. Initialize the array for storing the turbulent viscosity #, to zero.

2. Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are
user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified
using the KBC parameters.

3. Call BLOUT to compute (_,)o_,,, at each interior grid point.

4. Call BLIN to compute (#,)_,,, at each interior grid point. BLIN then sets #, = min[(#t),,_,,. (#t)o_,,,].
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.

.

Define the necessary effective coefficients as follows:

I_ = ILl + lit

2 = )'l + 2t

k = k t + k t

where 2_= - 2t_d3, and k, is computed using Reynolds analogy as

utcp

k t =

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using

equation (9.17) of Volume 1.

Remarks

In the Fortran equation for the effective thermal conductivity, the factor PRR = Pr, is necessary for

proper nondimensionalization of k,.

270 4.0 Proteus Subprograms: TUqRBBL Proteus 3-D Programmer's Reference



Subroutine TURBCH

Called by Calls Purpose

MAIN EXECT Manage computation of turbulence parameters using the Chien k-r
PRODCT model.
YPLUSN

CP

EP1

KBCI, KBC2, KBC3

LWSET

MU, LA, KT

NTKE

N1, N2, N3

PRR

PRT

U,V,W

Specific heat c,.

Minimum allowable numerical value.

Boundary types for the _, _/, and _ directions.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Laminar coefficient of viscosity or, laminar second coefficient of
viscosity ,lt, and laminar coefficient of thermal conductivity kt.

Number of k-_ iterations per mean flow iteration.

Number Of grid points N1, N2, and N3, in the _, n, and _ directions.

Reference Prandtl number Pr,.

Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

Velocities u, v, and w at time level n.

LWALL1, LWALL2, LWALL3

MU, LA, KT

Flags specifying wall locations for _, n, and _ boundaries, if not
set in input.

Effective coefficient of viscosity _, effective second coefficient of
viscosity ,_, and effective coefficient of thermal conductivity k.

Description

Subroutine TURBCH manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the low Reynolds number k-_ two-equation
turbulence model of Chien (1982). The k-_ equations are uncoupled from the mean flow equations, lagged
in time and solved separately. This allows maximum modularity in turbulence modeling.

For each step from time level n to n + 1, the mean flow equations are solved fa'st, using a time step
AT. The k-s equations are then solved, using NTKE time steps with a time step size of TFACT(A'r).

The steps involved in computing the effective coefficients are as follows:

l. Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are
user-specified via the input LWALL or I_VALL parameters, or unless boundary types are specified
using the KBC parameters.

2. Call YPLUSN to compute the distance to the nearest solid wall and y+. To save storage, the distance
is returned in the Fortran variable DUMMY.
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3. Call PRODCT to compute the production rate of turbulent kinetic energy. To save storage space, the

production rate is returned in the Fortran variable VORT.

4. Call EXECT to advance the k-_ equations in time using a time step of TFACT(Az).

5. Repeat steps 2-4 NTKE times.

6. Define the necessary effective coefficients as follows:

I2 = !_l + l.tt

)_= )-t + 2t

k= kt + k t

where 2_= - 2_,/3, and k, is computed using Reynold's analogy as

t_rcp
k t - pr t Prr

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using

equation (9.17) of Volume 1.

Remarks

1. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
distance to the nearest wall. The array is filled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURB t, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.

3. For equal mean flow and k-_ time steps, use TFACT = 1/NTKE.
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Subroutine UPDATE

Called by Calls Purpose

EXEC Update flow variables after each ADI sweep.

IBASE, ISTEP

IHSTAG

IV

JI

NPTS

NR, NRU, NRV, NRW, NET

RHO, U, V, W, ET

Base index and multiplication factor used in computing one-

dimensional index for three-dimensional array.

Flag for constant stagnation enthalpy option.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformatio.q, J-1.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,

pw, and Er.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Computed solution subvector, A0.

Output

RHOL, UL, VL, WL, ETL Static density p, velocities u, v, and w, and total energy Er at end

of current ADI sweep.

Description

^

Subroutine UPDATE computes the primitive flow variables from the dependent variables AQ after each
ADI sweep. For the first sweep the formulas are

w_ =,,°+JAil;

u = pnun + JAQ;)

P

, 1( ^,v = p%" + JAQ3)
P

P
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^ ^

where AQI throu_h AQ5 are the dependent variables in delta form for the five governing equations? 3 For the

second ADI sweep, the superscript * should be changed to ** on p, u, v, w, Er, and AQ. For the third ADI

sweep, the superscript * should be changed to n + 1 on p, u, v, w, and Er, and to n on AQ.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section

2.3.

33 These formulas are written for non-constant stagnation enthalpy. If constant stagnation enthalpy is assumed, there

will be only four equations.
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Subroutine UPDTKE

Called by Calls Purpose

EXECT Update k and e after each ADI sweep.

DW

DXI, DETA, DZETA

E

FBCT1, FBCT2, FBCT3

IBCT1, IBCT2, IBCT3

JI

KBCPER

KE

NPT1, NPT2, NPT3

N1, N2, N3

RHO

^

Dependent variable subvector AW _ from downward LU sweep.

Computational grid spacing A_, A_/, and A(.

Turbulent dissipation rate _ at time level n.

Point-by-point k-e boundary condition values for the _, _/, and
directions.

Point-by-point k-e boundary condition types for the _, _/, and (
directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- t.

Flags for spatially periodic boundary conditions in the _, ,1, and
directions; 0 for non-periodic, 1 for periodic.

Turbulent kinetic energy k at time level n.

N1, N_, and N3 for non-periodic boundary conditions, N_ + 1,
N2 + 1, and N3 + 1 for spatially periodic boundary conditions in

_, n, and _.

Number of grid points N_, N2, and N3, in the _, _/, and _ directions.

Static density p at time level n.

E

KE

Turbulent dissipation rate r at time level n + 1. and n.

Turbulent kinetic energy k at time level n + 1.

Description

Subroutine UPDTKE computes the primitive flow variables k and r from the dependent variables

A'v_¢_after a complete time step. The formulas are

k n + 1 = _ (pn + lkn + jAI_I )
n+l

P

n+ 1 1 z +In
= n+l _pn +jA,,2)

p

^ ^

where AWl and AW2 are the dependent variables in delta form for the k-, equations.

Subroutine UPDTKE also explicitly computes the k and e values on the computational boundaries

using the specified boundary conditions, as described below.
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No Change From Initial Conditions, Ak = 0 and�or As = 0

Values for k and _ are simply not updated. Therefore, their values on the boundaries remain the same
as their initial or restart values.

Specified values, k = f and/or _ = f

Values of k and _ are simply set equal to the specified values.

Specified Two-Point Gradient in Coordinate Direction, Ok/Off = f and/or Oe[O_ = f

Applying Ok/Off =fat the _ = 0 boundary, and using two-point one-sided differencing, gives

kl,j, k= k2,j, k - fzx_

At the _ = 1 boundary,

kNi,j,k = kt¢ 1 - l,i,k +fA_

Analogous equations can easily be written for the n and ( boundaries, and for OelOqb =f

Specified Three-Point Gradient in Coordinate Direction. Ok/Ocb =land�or OelOck =f

Applying Ok]Off =fat the _ = 0 boundary, and using three-point one-sided differencing, gives

(4k2,j, k -- k3,j, k - 2fA_)

kl ,j, k - 3

At the ¢ = i boundary,

(kN_ - 1,L k - kN_ - 2,/, k + 2fA_)

kNL,j, k = 3

Analogous equations can easily be written for the n and _ boundaries, and for Os/Ock =f

Linear Extrapolati n

Linearly extrapolating from the interior points for k at the _ = 0 boundary gives

kl ,j, k = 2k2,j, k -- k3,j, k

At the _ = 1 boundary,

kNl,j,k = 2kN 1- 1,j,k- kN l -- 2,j,k

Analogous equations can easily be written for the _/and _ boundaries, and for linear extrapolation of _.

Remarks

1. The "no change from initial conditions _ boundary condition is applied simply by non-execution of the

other boundary conditions.

2. Periodic boundary conditions are updated by setting the values of k and _ at the lower boundary equal

to the corresponding values at the upper boundary.

3. When a specified gradient or linear extrapolation boundary condition is used, k and/or _ at the bound-
ary is forced to be positive by using the absolute value. This is done to avoid unphysical negative values
that could result from poor initial proftles for k and/or _.
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Subroutine VORTEX

Called by Calls Purpose

BLIN Compute mamlitude of total vorticity.
BLOUT
OUTPUT
YPLUSN

DXI, DETA, DZETA

ETAX, ETAY, ETAZ

* N1, N2, N3

U,V,W

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

VORT

Description

Computational grid spacing A_, An, and A[.

Metric coefficients nx, ny, and _/z.

Number of grid points N1, N2, and Ns, in the ¢, 7, and _ directions.

Velocities u, v, and w.

Metric coefficients _, _y, and _z.

Metric coefficients _, _y, and G.

Total vorticity magnitude.

Subroutine VORTEX computes the magnitude of the total vorticity vector. This is defined as

_,:[(++_+_+;+(+z_++_x;+(_x+_)_1''_
Using the chain rule, these can be rewritten in generalized nonorthogonal coordinates as

+ [(?_u¢+ ,7_. + ¢,u¢)- (¢_w_+ ,7_%+ Gw_)]2
2) _I2

+ [(_v+ + _+ + ¢_v_)- (_,_ + ,Ty_+ _:,_¢)]

At interior points, the centered difference formula presented in Section 5.0 of Volume 1 is used to nu-
merically compute the derivatives in the above equations. At boundary points, second-order one-sided
difference formulas are used.
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SubroutineWHENFLT(N,V,INC,VALUE:INDEX,NVAL)

Calledby
BLOUT

Calls Purpose
Findall indicesinanarraywhoseelementsarelessthana specified
value.

N

V
INC

VALUE

Number of elementsto process in the vector (i.e.,
N = vectorlengthif INC= 1, N = (vectorlength)/2if INC= 2,
etc.).
Vectorto besearched.
Skipdistancebetweenelementsof V. For contiguouselements,
INC= 1.
Valueto besearchedfor in thevectorV.

Output

INDEX

NWAL

Vector of indices specifying which elements of V are less than
VALUE.

Number of values in V that are less than VALUE.

Description

Subroutine WHENFLT finds all indices in an array whose elements are less than a specified value.

Remarks

1. WHENFLT is a Cray search routine (Cray Research, Inc., 1989b).
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Subroutine YPLUSN

Called by Calls Purpose

INITC VORTEX Compute the distance to the nearest sofid wall,

KEINIT
TURBCH

l._p_m

* LWALL1, LWALL2, LWALL3

MU

* N1, N2, N3

* RER

RHO

X,Y,Z

DUMMY

YPLUSD

Flags specifying wall locations for _, _/, and _ boundaries.

Effective coefficient of viscosity t_-

Number of grid points N_, N2, and N3, in the _, n, and _ directions.

Reference Reynolds number Re,.

Static densityp at time level n.

Cartesian coordinates x, y, and z.

Distance to the nearest solid wall.

Nondimensional distance y+ from the nearest solid wall.

Description

Subroutine YPLUSN computes the minimum distance to the nearest solid wall and y÷ for every grid

point in the computational domain. The steps involved are as followed:

1. Call VORTEX to compute total vorticity magnitude .

2. For every grid point in the computational domain,

3. Compute the distance to each sofid wall, and the corresponding wall values of the totai vorticity
magnitude, laminar viscosity, and density.

4. Identify the nearest solid wall and select the corresponding distance to the wall y_, the wall total
vorticity magnitude If_w,ul, the wall laminar viscosity/_,,u, and the wall density p,,a_.

5. Compute y÷ using

Rer I _'_wall[ P wallY+ = Yn lXwall

Remarks

1. The scratch array DUMMY, from the common block DUMMY1, is used to store the distance to the
nearest solid wall.

2. This subroutine will return very large values for YPLUSD and DUMMY if none of the boundaries are
solid walls.
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