/e

V34
)5/ /S |

NASA Technical Memorandum 106341, .

p 2D

Proteus Three-Dimensional Navier-Stokes
Computer Code—Version 1.0 .

Volume 3-Programmer's Reference =~~~

Charles E. Towne, John R. Schwab, and Trong T. Bui ~

Lewis Research Center R

Cleveland, Ohio

e —— TN

U 4-15865 -
€Y GASA-TM-106341) PROTEUS N9 ,
¥ ryREE-DIMENSIONAL NAVIER-STOKESUME -
"1 CoMPUTER CUDE, VERSION 1.0. VOU unclas
= 3. PROGRAMMER'S REFERENCE (NASA)

October 1993 . 282 P o
=2 63/34 0191156 ~

- ———— e — - — - = - — —_——— = - — - — —— e - —c o
1
]

CONTENTS

SUMMARY vttt iesettssnnnnasasetssessossssesassssenasssasssssensssessssss 3
1.0 INTRODUCTION .ttt ittt vnnneanseeansssassnasasatosarssansssssonesosssans 5
20 PROGRAMSTRUCTURE ccictiiinrintrasmrasensnnesansnrossossasssss s 7
21 FLOW CHART ..ttt ittt it it e e e et e tn i a e s 7

22 SUBPROGRAM CALLINGTREE 10

2.3 PROGRAMMING CONVENTIONS AND NOTES t 14
2.3.1 Computer & Languagec.ovvnnomn i 14

2.32 Fortran Vanmables .. . vt iiieee e nn e iiannm e 15

30 COMMONBLOCKS .ttt vunrerancnaniossansancaneasosansssansosasuasmssssses 19
3.1 COMMON BLOCK SUMMARYttt iniai i inneiamamn e 19

3.2 COMMON VARIABLES LISTED ALPHABETICALLYcovhonnn 19

3.3 COMMON VARIABLES LISTED SYMBOLICALLYcovvvronnnns 39

4.0 PROTEUS SUBPROGRAMSttt titeantrnncnoaescsnaronnsssnesscsnnns 51
4.1 SUBPROGRAM SUMMARYo e e 51

42 SUBPROGRAM DETAILS ... ittt v et tam e e e es 54
Subroutineg ADI ..ttt e e e 55
Subroutine AVISC L .. ittt i e e 56
Subroutine AVISC 2 .. .o i e e e e 59
Subroutine BCDENS L ittt it it e e e 62
Subroutine BCELIM i it it i ittt e 65
SUbrOUHNE BCOFE . ittt it ettt et e e s 66
Subroutine BCFLIN . .ottt i it e e ittt e s 71
Subroutine BCGENttt ittt s 73

Subrc tine BCGRAD ..o ottt et it e .75
Subroutine BCIMETttt e ittt m et 76
Subroutine BCMET .. .o it ittt it tm i e e 77
Subroutine BCNVEL . .. ittt ittt ie e 79
Subroutineg BOPRES . . ottt it e 85
Subroutine BCQ . ..o vttt it i e e 92
Subroutine BCSE T . o oottt it it e e it e 96
Subroutine BCTEM Pt i e it i e s 98
Subroutine BCUVEL . .. ittt it i iiene e st ta e 105
Subrouting BCVN . .ottt ittt e e 109
Subroutine BCVVEL ..ottt it e e et 111
Subrouting BOV L ..ottt it e e e e e e 115
SUBIOUHNE BCV 2 . it it it e it e e e e e 116
Subroutine BCV 3 ... ittt et i e 117
Subrouting BCWVEL . ..o it ittt ce e e et ien e e m e 118
Subroutine BCIVEL ..ottt ittt ca e e e 122
Subroutine BCZVEL ..ottt ittt ittt ettt 127
Subroutine BCAVEL . .ttt it et e e it 132
Subrouting BLIN ..ottt ittt ettt e et e 137
Subroutine BLKOUT .o vi ittt ittt e it e e e s e in e asns 139
Subrouting BLK 4 . ..o ottt it e e e e 140
Subroutine BLEK AP . ..ottt i e e e 142
SUbroutine BLK S oo ittt ittt ettt 144
Subrouting BLK S P ..ttt it et it et e 145

Proteus 3-D Programmer’s Reference Contents 1

REFERENCES

BLOCK DATA
Subroutine BLOUT
Subroutine BVUP
Subroutine COEFC
Subroutine COEFE1
Subroutine COEFE2
Subroutine COEFX
Subroutine COEFY
Subroutine COEFZ
Subroutine CONV
Subroutine CUBIC
Subroutine EQSTAT
Subroutine EXEC
Subroutine EXECT
Subroutine FILTER
Subroutine FTEMP
Function GATHER
Subroutine GEOM
Subroutine INIT
Subroutine INITC
Subroutine INPUT
Function ISAMAX
Function ISAMIN
Function ISRCHEQ
Function ISRCHFGT
Function ISRCHFLT
Subroutine KEINIT
MAIN Program
Subroutine METS
Subroutine OUTPUT
Subroutine OUTW
Subroutine PAK
Subroutine PERIOD
Subroutine PLOT
Subroutine PRODCT
Subrouti: PRTHST
Subroutine PRTOUT
Subroutine RESID
Subroutine REST
Subroutine ROBTS
Function SASUM
Subroutine SGEFA
Subroutine SGESL
Function SNRM2
Subroutine SWDOWN
Subroutine SWUP
Subroutine TBC
Subroutine TIMSTP
Subroutine TREMAIN
Subroutine TURBBL
Subroutine TURBCH
Subroutine UPDATE
Subroutine UPDTKE
Subroutine VORTEX
Subroutine WHENFLT
Subroutine YPLUSN

e

, o

. s

PRy

v

TR

2 Contents

..
..
..

W b e e & 5 B a4 e v s e % E B wowomowomowowowowoeos e s s e ae s e e sy

..
..
..
..
..
..
S N T R R e N I A I IR SR
..
[T T T S I R R T T T I I N IR SR A A L
..
..
..
..
..
..
..
..
..
..
..
..
P T L T T T T R e R R A AL B I
..
..
..
..
..
..
..
..
..
..
..
..
..
..
e s % s e s e s e v s s w e e s s s e s H s s a6 S e 8T e E e s Ty
..
..
...
..
..
..
..
...
..

P I T T T T S I N S R R B R I I B}

--

Proteus 3-D Programmer’s Reference

~ PROTEUS THREE-DIMENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION 1.0

Yolume 3 - Programmer’s Reference

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the three-dimensional, Reynolds-averaged,
unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this ef-
fort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.
Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
‘nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy viscosity model. '

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple Cartesian or
cylindrical grids may be generated internally by the program. More complex geometries require an ex-
ternally generated computational coordinate system.

The docun.-ntation is divided into three volumes. Volume 1 is the Analysis Description, a1 * presents
the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-
encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User’s
Guide, and contains information needed to run the program. It describes the program’s general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer’s Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989. '

Proteus 3-D Programmer’s Reference Summary 3

1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-proprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence. :

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending to do anything more than run standard test cases with it. The user’s
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand. :

The Proteus three-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kernighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, input
variables, output variables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
_ sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into ge -eralized nonorthogonal body-fitted coordinates. They are solved by marching in ime using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beamn and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple gnds may be
generated internally by the program; more complex geometries require external grid generation, such as that
developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-
encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User’s
Guide, and contains information needed to run the program. It describes the program’s general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-

{P‘é":? ﬁ%wﬁ»m. e N Y R AR .
Proteus 3-D Programmer’s Reference / et B ‘”K; 1.0 Introduction 5
PRECEDING PAGE BLANK NOT FH.MED

veral test cases. Volume 3, the current volume, is the Programmer’s Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran vanables
stored in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989 (Towne, Schwab, Benson, and Suresh, 1990). - :

The authors would like to acknowledge the significant contributions made by their co-workers. Tom
Benson provided part of the original impetus for the development of Proteus, and did the ongnal coding
of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal grid
transformation. Frank Molls has created a separate diagonalized version of the code. Ambady Suresh did
the original coding for the second-order time differencing and for the nonlinear coefficient artificial viscosity
model. These people, along with Dick Cavicchi, Julie Conley, Jason Solbeck, and Pat Zeman, have also
run many debugging and verification cases.

6 1.0 Introduction Proteus 3-D Programmer’s Reference

2.1 FLOW CHART

2.0 PROGRAM STRUCTURE

In this section, a flow chart is presented showing the overall sequence of tasks performed by the three-
dimensional Proteus computer code. Depending on the various options used in a particular run, of course,
some of the elements in the chart may be skipped.

Read restart files

Get metrics

>

Read & print input

Get grid & metrics

Get initial flowfield

Get initial auxiliary variables

Get initial turbulence parameters

Set point-by-point
boundary conditions

Initialize plot files &
print initial flowfield

V

Figure 2.1 - Flow chart for the 3-D Proteus computer code.

Proteus 3-D Programmer’s Reference

2.1 Flow Chart 7

l

Compute time step size
Reset boundary conditions
if time-dependent
Add extra data line at N+1
in spatially periodic directions
Set up for first sweep > Set up for second sweep Set up for third sweep
Compute coefficients Compute coefficients Compute coefficients
of governing equations of governing equations of governing equations
Add boundary conditions Add boundary conditions Add boundary conditions
Compute residuals without
artificial viscosity terms
Add artificial viscosity Add artificial viscosity Add artificial viscosity
Compute residuals with
artificial viscosity terms
Perform matrix inversion Peﬁ;m matrix inversion Perform matrix inversion

®

Figure 2.1 - Continued.

8 2.1 Flow Chart Proteus 3-D Programmer’s Reference

|

Update boundary values
from first two sweeps

Update auxiliary variables

Update turbulence pararheters

Generate output

Converged or no

last time step?

Generate output

End

Figure 2.1 - Concluded.

Proteus 3-D Programmer’s Reference

2.1 Flow Chart 9

2.2 SUBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the Proteus 3-D code is shown using
a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous sec-
tion. The main program, listed in the first column, calls the subprograms in the second column, which in
turn call those in the third column, etc.! Since some Cray library routines are called multiple times, only the
first call from a subprogram is shown for these routines. For any given case, of course, some of the sub-
programs shown will not be used. The subprograms needed for a particular case will depend on the com-
bination of input parameters being used. The individual subprograms are described in detail in Section 4.0.

INITIALIZATION
Read and print input.
MAIN] INPUT ISAMAX
Get grid and metric parameters.-
MAIN GEOM PAK ROBTS
CUBIC
METS OUTPUT PRTOUT
Get initial flow field.
MAIN INITC REST METS
INIT
FTEMP
EQSTAT
TURBBL BLOUT =~ | VORTEX
ISRCHFLT
ISRCHFGT
ISAMIN
ISAMAX
WHENFLT
GATHER
BLIN ISRCHFGT
VORTEX
KEINIT TURBBL BLOUT VORTEX
ISRCHFLT
ISRCHFGT
ISAMIN
ISAMAX
WHENFLT
GATHER
BLIN ISRCHFGT
VORTEX
YPLUSN VORTEX
PRODCT
YPLUSN VORTEX
Set point-by-point boundary condition values.
MAIN | BCSET

! Throughout this Programmer’s Reference, elements of the Fortran language, such as input variables and subpro-
gram names, are printed in the text using uppercase letters. However, in most implementations, Fortran is case-
insensitive. The Proteus source code itself is written in lowercase.

10 2.2 Subprogram Calling Tree Proteus 3-D Programmer’s Reference

Initialize plot files and print initial or restart flow field.

MAIN PLOT

OUTPUT VORTEX

PRTOUT

ouTW
SET UP FOR TIME STEP
Compute time step size.
MAIN [TIMSTP [ISAMAX | [i
Reset boundary conditions if time-dependent.
MAIN | TBC | | | |

FILL BLOCK COEFFICIENT MATRIX

Add extra data line at N + | if spatially periodic in sweep direction.
MAIN EXEC | PERIOD |
Compute coefficients of governing equations.

MAIN EXEC EQSTAT
COEFC
COEFX
COEFY
COEFZ
COEFE!
COEFE2

Proteus 3-D Programmer’s Reference 2.2 Subprogram Calling Tree 11

Add boundary conditions.

MAIN EXEC EQSTAT
BCGEN BCQ BCMET
BCGRAD
BCUVEL BCMET
BCGRAD
BCVVEL BCMET
BCGRAD
BCWVEL BCMET
BCGRAD
BCPRES BCMET
BCGRAD
BCTEMP BCMET
BCGRAD
BCDENS BCMET
BCGRAD
BCNVEL BCVN
BCMET
BCIVEL BCIMET
BCV1
BCMET
BC2VEL BCIMET
BCV2
BCMET
BC3VEL BCIMET
BCV3
BCMET
BCF BCFLIN
BCMET
ISRCHEQ
BLKOUT
BCELIM SGEFA
' SGESL
Compute resic 1als without artificial viscosity terms (sweep 1 only.)
MAIN EXEC RESID SNRM2
ISAMAX
SASUM
Add artificial viscosity.
MAIN EXEC AVISCI] BLKOUT
AVISC2 BLKOUT
Compute residuals with artificial viscosity terms (sweep 1 only.)
MAIN EXEC RESID SNRM2
ISAMAX
SASUM

12 2.2 Subprogram Calling Tree

Proteus 3-D Programmer’s Reference

SOLVE DIFFERENCE EQUATIONS
Perform matrix inversion.
MAIN EXEC ADI BLKOUT
BLK4P
BLK4 FILTER ISAMAX
ISRCHEQ
BLKOUT
BLKS5P
BLKS5 FILTER ISAMAX
ISRCHEQ
BLKOUT
UPDATE
Update boundary values from first two sweeps.
MAIN EXEC BVUP EQSTAT
BCGEN BCQ BCMET
) BCGRAD
BCUVEL BCMET
BCGRAD
BCVVEL BCMET
BCGRAD
BCWVEL BCMET
BCGRAD
BCPRES BCMET
BCGRAD
BCTEMP BCMET
BCGRAD
BCDENS BCMET
BCGRAD
BCNVEL BCVN
BCMET
BCIVEL BCIMET
BCV1
BCMET
BC2VEL BCIMET
BCV?2
BCMET
BC3VEL BCIMET
BCV3
BCMET
BCF BCFLIN
BCMET
ISRCHEQ
BLKOUT
SGEFA
SGESL
FINISH TIME STEP AND CHECK RESULTS
Update auxiliary variables.
MAIN EQSTAT
FTEMP

Proteus 3-D Programmer’s Reference

2.2 Subprogram Calling Tree

13

Update turbulence parameters.

MAIN TURBBL BLOUT VORTEX
ISRCHFLT
ISRCHFGT
ISAMIN
ISAMAX
WHENFLT
GATHER
BLIN ISRCHFGT
VORTEX
TURBCH YPLUSN VORTEX
PRODCT
EXECT PERIOD
Swup
SWDOWN
UPDTKE
Check for convergence, and get CPU time remaining.
MAIN CONV ISAMAX
TREMAIN
GENERATE OUTPUT

Print ﬂoW field output.

MAIN OUTPUT VORTEX
PRTOUT

oUrTW

Write plot and restart files.

MAIN PLOT
REST

Print converp~nce history.

MAIN PRTHST |

2.3 PROGRAMMING CONVENTIONS AND NOTES

2.3.1 Computer & Language

At NASA Lewis Research Center, Proteus is normally run on a Cray X-MP or Y-MP computer. With
just three known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CF77
Compiling System, Volume 1: Fortran Reference Manual (Cray Research, Inc., 1990). The first exception
is the use of namelist input. With namelist input, it’s relatively easy to create and/or modify input files, to
read the resulting files, and to program default values. Since most Fortran compilers allow namelist mnput,
its use is not considered a serious problem. The second exception is the use of *CALL statements to in-
clude *COMDECKS, which contain the labeled common blocks, in most of the subprograms. This 1s a
Cray UPDATE feature, and therefore the source code must be processed by UPDATE to create a file that
can be compiled.? UPDATE is described in the UPDATE Reference Manual (Cray Research, Inc., 1988).
Since using the *CALL statements results in cleaner, more readable code, and since many computer systems
have an analogous feature, the *CALL statements were left in the program. The third exception is the use
of lowercase alphabetic characters in the Fortran source code. This makes the code easier to read, and is
a common extension to Fortran 77.

2 See the example in Section 8.1 of Volume 2.

14 2.3 Programming Conventions and Notes Proteus 3-D Programmer’s Reference

Several library subroutines are called by Proteus. SGEFA and SGESL are Cray versions of LINPACK
routines. SASUM and SNRM2 are Cray Basic Linear Algebra Subprograms (BLAS). GATHER is a Cray
Linear Algebra routine. ISAMAX, ISAMIN, ISRCHEQ, ISRCHFGT, ISRCHFLT, and WHENFLT are
Cray search routines. TREMAIN is a Cray Fortran library routine. All of these routines are described in
detail in Section 4.0 of Volume 3. In addition, SGEFA and SGESL are described in Volume 3: UNICOS
Math and Scientific Library Reference Manual (Cray Research, Inc., 1989b) and by Dongarra, Moler,
Bunch, and Stewart (1979); SASUM, SNRM2, GATHER, ISAMAX, ISAMIN, ISRCHEQ, ISRCHFGT,
ISRCHFLT, and WHENFLT are described in Volume 3: UNICOS Math and Scientific Library Reference
Manual (Cray Research, Inc., 1989b); and TREMAIN is described in Volume 1: UNICOS Fortran Library
Reference Manual (Cray Research, Inc., 1989a).

The Proteus code is highly vectorized for optimal performance on the Cray. The coefficient generation
is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the equations are
solved using the Thomas algorithm. This algonthm is recursive, and therefore cannot be vectorized in the
sweep direction. However, by storing the coefficients and source terms in all three coordinate directions,
the algorithm can be vectorized in one of the non-sweep directions. This increases the storage required by
the program, but greatly decreases the CPU time required for the ADI solution.

2.3.2 Foriran Variables

Variable Names

In developing Proteus, code readability has been emphasized. We have therefore attempted to choose
Fortran variable names that are meaningful. In general, they either match the notation used in the analysis
description in Volume 1, or are in some way descriptive of the parameter being represented. For example,
RHO, U, V, W, and ET are the Fortran variables representing the density p, the velocities u, v, and w, and
the total energy per unit volume Er. : :

Real and Integer Variables

In general, the type (real or integer) of the Fortran variables follows standard Fortran convention (i.€.,
those starting with I, J, K, L, M, or N are integer, and the remainder are real.) There are, however, several
variables that would normally be integer but are explicitly declared to be real. These are noted in the input
description in Section 3.0 of Volume 2, and in the description of common block variables in Section 3.0
of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using dimensioning parameters. These parameters are set in
COMDECK PARAMSI. This allows the code to be re-dimensioned simply be changing the appropnate
parameters, and then recompiling the entire program. The dimensioning parameters are described in Sec-
tion 6.2 of Volume 2. o :

Initialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA.
Most of the input variables are initialized to their default values directly, but some are initialized to values
that trigger the setting of default values in subroutine INPUT. On the Cray X-MP and Y-MP at NASA
Lewis, all uninitialized variables have the value zero. There are no known instances in the Proteus code,
however, in which a variable is used before it is assigned a value. '

Nondimensionalization

In general, Fortran variables representing physical quantities, such as RHO, U, etc., are nondimensional.
Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The
factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing
conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity,
temperature, density, viscosity, and thermal conductivity, which are specified by the user. The normalizing
conditions used in Proteus are listed in Table 3-1 of Volume 2.

Proteus 3-D Programmer’s Reference 2.3 Programming Conventions and Notes 15

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the
governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may
not be physically meaningful or convenient for use in setting up input conditions. Therefore, some addi-
tional reference conditions are defined from the six user-supplied ones. The reference conditions are listed
in Table 3-2 of Volume 2.

Throughout most of the Proteus code, physical variables are nondimensionalized by the normalizing
conditions. For input and output, however, vaniables are nondimensionalized by the reference conditions
because they are usually more physically meaningful for the user. The Fortran vanables representing the
reference conditions themselves are, of course, dimensional.

One-Dimensional Addressing of Three-Dimensional Arraps

In the solution algorithm used in Proteus, there are several instances in which the same steps must be
followed in all three ADI sweep directions. An example is the computation, in the COEFC, COEFX,
COEFY, COEFZ, and COEFE! routines, of the submatrices in the block tridiagonal coefficient matrix.
These computations involve various flow variables, such as RHO, U, etc,, and metric quantities, such as
XIX, XIY, etc. These are stored as three-dimensional arrays, with the three subscripts representing, in or-
der, the indices in the computational &, », and ¢ directions. For the first ADI sweep, values at vanous ¢
indices are needed at fixed n and ¢ indices. For the second ADI sweep, values at various # indices are
needed at fixed & and ¢ indices. And for the third ADI sweep, values at various { indices are needed at fixed
& and # indices. In order to use the same coding for all three sweeps, a scheme for one-dimensional ad-
dressing of a three-dimensional array has been used.?

In Fortran,-multi-dimensional arrays are actually stored in memory as a one-dimensional sequence of
values, with the first subscript incremented over its range first, then the second subscnpt, etc. We take ad-
vantage of this in Proteus. As a first step, the three-dimensional array is equivalenced to a one-dimensional
array of the same total length. The one-dimensional array name is derived from the three-dimensional array
name by adding a “1”. Thus, letting F represent a typical three-dimensional array,

dimension f(nlp,n2p,n3p),fl(ntotp)
equivalence (£(1,1,1),f1(1))

where N1P, N2P, and N3P are dimensioning parameters specifying the dimension size in the £, %, and {
directions, and NTOTP is a dimensioning parameter equal to N1P x N2P x N3P. Next, we define a “step
factor”, which dep>nds on the ADI sweep, and a “base index” which depends on the indices in th~ non-
sweep directions. Y-or the first ADI sweep,

istep = 1

do 1000 i3 = 2,npt3-1
do 1000 i2 = 2,npt2-1
iv = 12

ibase = 1 + (i2-1)%nlp + (13-1)%nlp*n2p

1000 continue

For the second ADI sweep,

istep = nlp
do 2000 i3 = 2,npt3-1

3 An alternative would be to switch the order of the three subscripts in these arrays after each sweep. Since these
arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should
be noted, however, that there are some arrays in Proteus in which the order of the first two subscripts does switch
between ADI sweeps. These are the A, B, C, and § arrays, which represent the coefficient submatrices and the
source term subvector, and the METX, METY, METZ, and METT arrays, which represent the metric coeflicients
in the sweep direction. For these arrays, the first subscript is the index in one of the non-sweep directions (i.e., the
n direction for the first sweep and the ¢ direction for the second and third sweeps), and the second is the index in
the sweep direction (i.e., ¢ for the first sweep, for the second sweep, and { for the third sweep.)

16 2.3 Programming Conventions and Notes Proteus 3-D Programmer’s Reference

do 20600 il = 2,nptl-1
iv = 1l
jbase = il + (13-1)*nlp%Xn2p

2000 continue

And for the third ADI sweep,

istep = nlp¥*n2p

do 3000 i2 = 2,npt2-1
do 3000 il = 2,nptl-1
iv = 1l

ibase = il (12-1)*nlp

T s

3000 continue

In all of the above examples, the inner loop is in one of the non-sweep directions and IV therefore represents
an index in one of the non-sweep directions. Nested inside this loop is a third loop, in the sweep direction.
In this innermost loop, we can compute the equivalent one-dimensional address for a location in a three-
dimensional array from the step factor, the base index, and the index in the sweep direction. Thus, for any
of the ADI sweeps, the innermost loop looks like

do 10
iiml
ii
iipl

i = 2,npts-1

ibase + istep¥*(i-2)
ibase + istep¥*(i-1)
ibase + istep¥i

wune

100 continue

where I represents the index in the sweep direction. With this coding, for the first sweep

f1(iiml) = f(il1-1,12,13)
f1(ii) = f(il1 ,i2,1i3)
fl(iipl) = f(il+1,i2,i3)

For the second sweep,

f1(iiml) = f(il1,12-1,13)
f1(ii) = f(il,i2 ,i3)
fl(iipl) = f(3il,1i2+1,13)

And for the third sweep,

f1(iiml) = £(11,1i2,i3-1)
f1{ii) = f(il,i2,i3)
f1l(iipl) = £(i1,i2,13+1)

Two-Level Storage

With the Beam-Warming time differencing scheme used in Proteus, the dependent variables RHO, U,
V, W, and ET must be stored at two time levels. For convenience, T is also stored at two time levels. In
the ADI solution procedure, RHO, U, etc. are at the known time level n. The comresponding vanable at
the other time level is denoted by adding an “L” to the variable name. Exactly which time level the "L”
variable is at depends on the stage in the solution procedure. Letting F represent one of these variables, the
time levels for F and FL are listed in the following table for the different stages of the solution procedure.
Recall that * and ** represent the intermediate time levels after the first and second ADI sweeps.

Proteus 3-D Programmer’s Reference 2.3 Programming Conventions and Notes 17

STAGE IN TIME STEP TIME LEVEL TIME LEVEL
FROM LEVEL n TO n+1 FOR F FOR FL
From start to end of sweep 1 n n—1
From end of sweep 1 to end of sweep 2 n *
From end of sweep 2 to end of sweep 3 n **
From end of sweep 3 to update in EXEC ' n n+1
From update in EXEC to start of next step n+1 n

DUMMY Array

For convernience, a three-dimensional array called DUMMY is stored in common block DUMMY1 and
used as a temporary storage location in several areas of the code. This array is dimensioned N1P by N2P
by N3P, the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines BLIN,
BLOUT, CONV, and RESID. It is also defined in subroutine YPLUSN for use in subroutines
SWDOWN, SWUP, and KEINIT. And finally, it is defined in subroutine OUTPUT and passed as an
argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions in

Section 4.0.

18 2.3 Programming Conventions and Notes

Proteus 3-D Programmer’s Reference

3.0 COMMON BLOCKS

Transfer of data between routines in Proteus is primarily accomplished through the use of labeled
common blocks. Each common block contains varables dealing with a particular aspect of the analysts,
and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988). The common block names are
the same as the COMDECK names. These names also correspond to the names of the input namelists.
All the variables in namelist BC are stored in common block BCI, etc. The Fortran variables in each
common block are stored in alphabetical order.

3.1 _COMMON BLOCK SUMMARY

Block Name Description

BCl1 Boundary condition parameters for the mean flow equations.

BC2 Boundary condition parameters for the k-¢ equations.

DUMMY! Scratch array.

FLOW] Variables dealing with fluid properties and the flow being com-
puted.

GMTRY]1 Parameters defining the geometric configuration.

ICI Variables needed for setting up initial conditions.

101 Parameters dealing with program input/output requirements.
METRIC1 Metrics of the nonorthogonal grid transformation, plus the
Cartesian coordinates of the grid points.

NUM1 Parameters associated with the numerical method for the mean
flow equations.

NUM2 Parameters associated with the numerical method for the k-¢
equations.

RSTRTI Parameters dealing with the restart option.

TIMEI Parameters dealing with the time step selection and convergence
determination.

TITLE1 Descriptive title for case being run.

TURBI Turbulence parameters.

TURB20

Parameters and constants associated with the k-¢ equations.

3.2 COMMON VARIABLES LISTED ALPHABETICALLY

In this section all the Proteus Fortran variables stored in common blocks are defined, listed alphabet-
ically by variable name. Those marked with an asterisk are input variables. More details on these variables
may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in pa-
rentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the
variable, except for the subscripts 11, 12, and I3, which are the indices i, j, and k in the &, », and { directions,
respectively, and run from 1 to Ny, N, and Ns.

Proteus 3-D Programmer’s Reference 3.2 Common Variables Listed Alphabetically 19

This list also includes the parameters used as array dimensions. These are not actually stored in 5
common block, but are stored in the Cray COMDECK PARAMS1. More details may be found in Section

6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
varables follows standard Fortran convention, unless stated otherwise. (l.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

Fortran
Variable

A(IVISJK)

* APLUS

B(IV,1S,J K)

C(IV,IS,J,K)

+ CAVS2E(])

* CAVS2I(D)

+ CAVS4E(D)

20 3.2 Common Variables Listed Alphabetically

Symbol
A

A+

P or x;

£

P or x,

Definition

Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the “vectorized”
direction (i.e., the non-sweep direction in which the "BLK”
routines are vectorized), and runs from 2 to N,—1. The
subscript J = 1 to N, corresponding to the N,, coupled gov-
erning equations, and K = 1 to N,,, corresponding to the N,
dependent vanables. (NUMI)

Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURBI)

Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the “vectorized”
direction (i.e., the non-sweep direction in which the “BLK”
routines are vectorized), and runs from 2 to N,—1. The
subscript J = 1 to N,,, corresponding to the N,, coupled gov-
erning equations, and K = 1 to N,,, corresponding to the N,
dependent variables. (NUMI)

Superdiagonal submatrix of coefficients in the block
tridiagonal coefficient matrix. IS is the grid index in the sweep
direction, running from 1to N. IV is the grid index 1in the
"yvectorized” direction (i.e., the non-sweep direction in which
the “BLK” routines are vectorized), and runs from 2 to
N, ~ 1. The subscript J =1 to N,,, corresponding to the N,
coupled governing equations, and K = 1 to N,,, corresponding
to the N,, dependent vanables. (NUMI)

Second order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I =1 to N, corresponding to
the N,, coupled governing equations. (NUMI)

Second order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I=1 to N,,, corresponding
to the N,, coupled governing equations. (NUM1)

Fourth order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I =1 to N,,, corresponding to
the N,, coupled governing equations. (NUM1)

Constant used in the formula for the Klebanoff intermittency
factor Fx.s in the outer region of the Baldwin-Lomax turbu-

Proteus 3-D Programmer’s Reference

CCLAU

CCP

CCPIl-4

CFL(I)

CFLMAX
CFLMIN
CHGAVG(I)

CHGMAX(L]J)

CHG1

CHG2

CKLEB

CKMIN

CKI-2

CMUR

CMUI-2

Cc 1- Ccp4

P

AQ.,

AQMCZ

CK led

(CKleb)min

Ca - Ca
Cy

r

Cul - CuZ

lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURBI)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

The ratio Ar/At.; where At is the actual time step used in the
implicit calculation and At is the allowable time step based
on the Courant-Friedrichs-Lewy (CFL) criterion for explicit
methods. Iis the time step sequence number, and runs from
1to NTSEQ. (TIMEL)

Maximum allowed value of the CFL number. (TIME]I)
Minimum allowed value of the CFL number. (TIMEI)

Maximum change in absolute value of the dependent van-
ables, averaged over the last NITAVG time steps.* The sub-
script I=1 to N,, corresponding to the N,, dependent
vanables. (TIME1)

Maximum change in absolute value of in the dependent vani-
ables over a single time step.® The subscript I = 1 to N,,, cor-
responding to the N,, dependent variables, and J=1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIME1)

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step.® (TIMEI)

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step.* (TIMEI)

Constant used in the formula for the Klebanoff intermittency
factor Fy.s in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constant used in the formula for the Klebanoff intermittency
factor Fx.s in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constants in empirical formula for thermal conductivity coef-

_ficient as a function of temperature. (FLOW1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOWI)

4 For the energy equation, the change in Eris divided by Er, = 2. RT,|(y- — 1) + 12/2, so that it is the same order
of magnitude as the other conservation variables.

Proteus 3-D Programmer’s Reference 3.2 Common Variables Listed Alphabetically 21

22

CNL

CONE

CP(11,12,13)
CTHREE

CTWOR
CV(I1,12,13)

CVK

CWK

" DEL

DETA
DPDET(])

DPDRHO(I)

DPDRU(I)

DPDRV(I)

DPDRW(I)

DT(I)

DTAU(I1,12,13)

DTDET(I)

G

G

G

r

[

ka
A¢, An, or AL

An

OpldEr

opldp

op[d(pu)

op|d(pv)

op[o(pw)

At

At

oT|OEr

3.2 Common Variables Listed Alphabetically

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model. (TURBI)

Constant used in the production term of the & equation.
(TURB20)

Specific heat at constant pressure at time level n. (FLOWI)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Constant used to compute C; in the dissipation term of the ¢
equation. (TURB20)

Specific heat at constant volume at time level . (FLOW1)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURBI) _

Constant used in the formula for F,e. in the outer region of
the Baldwin-Lomax turbulence model. (TURB1)

Computational grid spacing in the ADI sweep direction.
(NUMD)

Computational grid spacing in the 5 direction. (NUMI)

The derivative of p with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)

The derivative of p with respect to p, stored as a one-
dimensional array in the sweep direction. The sub::ript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pv, stored as a one-
dimensional amray in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1I)

The time step size, when specified directly as input. Iis the
time step sequence number, and runs from 1 to NTSEQ.
(TIME1)

Computational time step size. (TIMEI)

The denvative of T with respect to Er, stored as a one-

dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)

Proteus 3-D Programmer’s Reference

DTDRHO(I) 3T|op
DTDRU(I) aT|d(pu)
DTDRV(]) aT|o(pv)
DTDRW(I) aT|3(pw)

+ DTFI

+ DTF2

+ DTMAX

+ DTMIN

DUMMY(I1,12,13)

DW(ILI2I3]) AW" or AW

DXI A
DZETA AL
E(I1,12,13) £
EL(I1,12,13) £
* EPS(I) £
EP1-2
ER ‘ e
ET(I1,12,13) Er
ETAT(I1,12,13) n:

Proteus 3-D Programmer’s Reference

The derivative of T with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of T with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The dervative of 7 with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of 7 with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

Factor by which the time step is multiplied if the solution
changes too slowly. (TIMEI)

Factor by which the time stép is divided if the solution
changes too quickly. (TIMEI)

Maximum value that At is allowed to reach, or the maximum
Az used in the time step cycling procedure. (TIMEI)

Minimum value that A is allowed to reach, or the minimum
Az used in the time step cycling procedure. (TIMEI)

Dummy array used for temporary storage in several subrou-
tines. (DUMMY1)

Unknown vector in the LU solution of the k-¢ equations.
The subscript I=1 or 2, comresponding to the k and e
equations, respectively. (NUM2)

Computational grid spacing in the ¢ direction. (NUMI)

" Computational grid spacing in the { direction. (NUMI)

Turbulent dissipation rate at time level n. (TURB20)

‘level. (TURB20)

Convergence level to be reached. The subscript I =1 to N,
corresponding to the N,, dependent variables. (TIME1)

Parameters used in various parts of the code as minimum and
maximum allowed values. (PARAMSI)

Dimensional reference energy, p2. (FLOWI)
Total energy at time level n. (FLOWI)

The derivative of the computational coordinate » with respect
to untransformed time ¢. (METRICI)

3.2 Common Variables Listed Alphabetically 23

ETAX(I1,12,13)
ETAY(I1,12,13)
ETAZ(I1,12,13)

ETL(I1,12,13)
FBCTI(12,13,1,])

FBCT2(11,13,LJ)

FBCT3(I11,12,1.3)

FBC1(12,13,L))

FBC(IL,I3,1,7)

FBC3(11,12,1.])

FPMIN

MNx

Ny

"z

Er

24 3.2 Common Variables Listed Alphabetically

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x. (METRICI)

The denivative of the computational coordinate » with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate z. (METRICI)

Total energy at previous or intermediate time level. (FLOWI)

Point-by-point values used for boundary conditions for the
k-¢ turbulence model on the ¢ =0 and ¢ =] boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I=1 or 2, corresponding to the k and ¢
equations, respectively, and J =1 or 2, corresponding to the
£ =0 and ¢ = | boundaries, respectively. (BC2)

Point-by-point values used for boundary conditions for the
k-¢ turbulence model on the =0 and » =1 boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I=1 or 2, corresponding to the k and ¢
equations, respectively, and J =1 or 2, comresponding to the
n = 0 and » = 1 boundaries, respectively. (BC2)

Point-by-point values used for boundary conditions for the
k-¢ turbulence model on the { =0 and { =1 boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I=1 or 2, corresponding to the k and ¢
equations, respectively, and J =1 or 2, comresponding to the
¢ =0 and ¢ = 1 boundaries, respectively. (BC2)

Point-by-point values used for steady boundary conditions on
the & = 0 and ¢ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from I to N,,, corresponding
to the N,, conditions needed, and J = 1 or 2, corresponding
to the £ = 0 and ¢ = 1 boundaries, respectively. (BCl)

Point-by-point values used for steady boundary conditions on
the n = 0 and n = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runsfrom I to N, corresponding
to the N,, conditions needed, and J=1 or 2, corresponding
to the n = 0 and n = 1 boundaries, respectively. (BCI)

Point-by-point values used for steady boundary conditions on
the ¢ = 0 and ¢ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N, corresponding
to the N., conditions needed, and J =1 or 2, corresponding
to the { = 0 and { = 1 boundaries, respectively. (BCI)

Value used to cut off the search for F,.. in the outer region
part of the Baldwin-Lomax turbulence model. (TURBI)

Proteus 3-D Programmer’s Reference

GAMR ¥
GBCTI(L])

GBCT(L))

GBCT3(L])

GBCI(1.J)

GBC2(L])

GBC3{".J)

GC &

GTBCI(K,L.J)

+ GTBC(K,1J)

Proteus 3-D Programmer’s Reference

Reference ratio of specific heats, ¢, /c,. (FLOWI)

Values used for boundary conditions for the k-¢ turbulence
model on the ¢ = 0 and ¢ = 1 boundaries, when specified for
the entire surface. The subscript I =1 or 2, corresponding to
the k¥ and ¢ equations, respectively, and J=1 or 2, corre-
sponding to the ¢ =0 and ¢ =1 boundaries, respectively.
(BC2)

Values used for boundary conditions for the k-¢ turbulence -
model on the n = 0 and n = 1 boundaries, when specified for
the entire surface. The subscript I =1 or 2, corresponding to
the k and ¢ equations, respectively, and J=1 or 2, corre-
sponding to the # =0 and =1 boundaries, respectively.
(BC2)

Values used for boundary conditions for the k-¢ turbulence
model on the { =0 and { = 1 boundaries, when specified for
the entire surface. The subscript I = 1 or 2, corresponding to
the k¥ and ¢ equations, respectively, and J=1 or 2, corre-
sponding to the { =0 and { =1 boundaries, respectively.
(BC2)

Values used for steady boundary conditions on the ¢ = 0 and

= | boundaries, when specified for the entire surface. I runs
from 1 to N,,, corresponding to the N, conditions needed, and
J=1 or 2, comresponding to the ¢ = 0 and ¢ = 1 boundaries,
respectively. (BCI)

Values used for steady boundary conditions on the = 0 and
n = 1 boundaries, when specified for the entire surface. I runs
from 1 to N,,, corresponding to the N,, conditions needed, and
J =1 or 2, corresponding to the n =0 and » = 1 boundaries,
respectively. (BCl1)

Values used for steady boundary conditions on the | = 0 and
¢ = 1 boundaries, when specified for the entire surface. I runs
from 1 to N,, corresponding to the N,, conditions needed, and
J =1 or 2, corresponding to the { =0 and { = 1 boundaries,
respectively. (BC1) ’

Dimensional proportionality factor in Newton’s second law,
either 32.174 Ib,-ft/lbesec?, or 1.0 kg-m/N-sec2. (FLOWI)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the ¢ = 0 and ¢ = 1 bound-
aries. I runs from 1 to N, comresponding to the N,
conditions needed, and J=1 or 2, comresponding to the
E=0 and ¢ =1 boundaries, respectively. For general un-
steady boundary conditions, K =1 to NTBC, corresponding
to the time steps in the array NTBCA, and GTBCI specifies
the boundary condition value directly. For time-periodic
boundary conditions, K =1 to 4, and GTBCI specifies the
four coefficients in the equation used to determine the
boundary condition value. (BClI)

A variable used to specify the values for unsteady and time-

periodic boundary conditions on the = 0 and n = 1 bound-
aries. I runs from 1 to N, con‘equnding to the N,

3.2 Common Variables Listed Alphabetically 25

+ GTBC3(K,LJ)

HSTAG hy
+ HSTAGR ks,
* JAV2E
+ TAV2I
* JAV4E

IBASE -

IBCELM(L))

+ IBCTI(I2,13,1))

conditions needed, and J=1 or 2, corresponding to the
n =0 and n =1 boundaries, respectively. For general un-
steady boundary conditions, K = 1 to NTBC, corresponding
to the time steps in the array NTBCA, and GTBC2 specifies
the boundary condition value directly. For time-periodic
boundary conditions, K =1 to 4, and GTBC2 specifies the
four coefficients in the equation used to determine the
boundary condition value. (BCI)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the { =0 and { = | bound-
aries. 1 runs from 1 to N, comesponding to the N,
conditions needed, and J = 1 or 2, corresponding to the { =0
and ¢ =1 boundaries, respectively. For general unsteady
boundary conditions, K =1 to NTBC, corresponding to the
time steps in the array NTBCA, and GTBC3 specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K =1 to 4, and GTBC3 specifies the four co-
efficients in the equation used to determine the boundary
condition value. (BCI)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLOW1) o

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOWI)

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUMI)

Flag for second-order implicit artificial viscosity; 0 for none,
1 for constant coefficient model. (NUM1)

Flag for fourth-order explicit artificial viscosity; 0 for nune, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUMI)

Base index used with ISTEP to compute one-dimensional
index for three-dimensional array. Then, for example, for any
sweep U(I1,12,13) = UI(IBASE + ISTEP*(I — 1)) where I is
the grid index in the sweep direction. (NUMI)

Flags for elimination of off-diagonal sub-matrices resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript I =1, 2,
or 3 corresponding to the sweep direction, and J=1 or 2
corresponding to the lower or upper boundary in that direc-
tion. (BCl)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-¢ turbulence model on the ¢ =0 and
¢ =1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I = 1 or 2, comresponding to the k
and ¢ equations, respectively, and J =1 or 2, corresponding
to the £ = 0 and ¢ = 1 boundaries, respectively. (BC2)

26 3.2 Common Variables Listed Alphabetically Proteus 3-D Programmer’s Reference

+ [BCT2(IL,I3,LJ)

* IBCT3(ILI2LJ)

* IBCI(I2,13,L))

*+ IBCX(I1,13,1))

* IBC3(ILI2,LY)

IBVUP(L])
+ ICHECK
ICONV
* ICTEST
+ JCVARS

Proteus 3-D Programmer’s Reference

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-t turbulence model on the » =0 and
n =1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I=1 or 2, corresponding to the &
and ¢ equations, respectively, and J=1 or 2, corresponding
to the n = 0 and » = 1 boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-¢ turbulence model on the { =0 and

= | surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I=1 or 2, corresponding to the k
and ¢ equations, respectively, and J =1 or 2, corresponding
to the ¢ = 0 and { = 1 boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the £ =0 and & = 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1
to N,,, commesponding to the N, conditions needed, and J =1
or 2, corresponding to the £ =0 and {=1 boundaries, re-
spectively. (BC1)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the n =0 and 5 = 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1
to N.,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the n =0 and # = | boundaries, re-
spectively. (BCI)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the { =0 and { = 1 surfaces. These are
either set in the input, if a point-by-point disi..bution is
specified by the user, or by the program itself. I runs from 1
to N,,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the { =0 and { = 1 boundaries, re-
spectively. (BCI)

Flags for updating boundary values from the first two sweeps
after the last sweep: 0 if updating is not necessary, 1 if it is.
Updating is required when gradient or extrapolation boundary
conditions are used. The subscript I =1 or 2 corresponding
to the sweep direction, and J =1 or 2 comresponding to the
lower or upper boundary in that direction. (BC1)

Results are checked for convergence every ICHECK'th time
level. (TIMEI)

Convergence flag; 0 if not converged, 1 if converged.

(TIME1)
Flag for convergence criteria to be used. (TIME1)

Parameter specifying which variables are being supplied as
initial conditions by subroutine INIT. (FLOW1)

3.2 Common Variables Listed Alphabetically 27

* IDEBUG()

+ IDTAU

+ IDTMOD

+ [EULER
IGAM
IGINT(I)

+ IHSTAG

+ ILAMV

+ ILDAMP
INEG

+ INNER

+ IPACK(I)

*+ IPLOT

+ IPLT

+ IPLTA())

+ IPRT

+ IPRTA())

A 20-element array of flags specifying various debug options.
(101)

Flag for time step selection method. (TIMEI)

The time step size is modified every IDTMODth tume step.
(TIME1)

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculation, 1 for an Euler calculation.
(FLOW1D)

Flag set by method used to select GAMR; 0 if GAMR is de-.
faulted (and hence ¢, and ¢, are functions of temperature), 1
if GAMR 1s specified by user (and hence ¢, and ¢, are con-
stants). (FLOW1)

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscnpt I =1
to 3, corresponding to the &, #, and { directions, respectively.
(GMTRY1)

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, 1 to eliminate the energy equation by as-
suming constant stagnation enthalpy. (FLOWI)

Flag for computation of laminar viscosity. and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature. (FLOWI)

Flag for the Launder-Priddin modified mixing length formula
in the inner region of the Baldwin-Lomax turbulence model.
(TURBI)

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, 1 for some. (FL YW1)

Flag for type of inner region turbulence model. (TURBI)

Flags for grid packing option; 0 for no packing, 1 to pack
points as specified by the input array SQ. The subscript
I=1 to 3, corresponding to the ¢, », and { directions, re-
spectively. (NUMI)

Flag controlling the creation of an auxiliary file, usually called
a “plot file”, used for later post-processing. (I01)

Results are written into the plot file every IPLT time steps.
(o0 .

Time levels at which results are written into the plot file. The
subscript I =1 to 101, the maximum number of time levels
that may be wrntten. (I01)

Results are printed every IPRT time levels. (I01)
Time levels at which results are printed. The subscript I =1

to 101, the maximum number of time levels that may be
printed. (IO1)

28 3.2 Common Variables Listed Alphabetically Proteus 3-D Programmer’s Reference

* TPRTI
* IPRT2
* IPRT3

* IPRTIA(D)

+ IPRT2A())

+ IPRT3A(D)

* JREST

ISTEP

ISWEEP

IT n

ITBEG

ITDBC

ITEND
+ ITHINQ)

ITSEQ
* ITURB
* TJUNITS

Proteus 3-D Programmer’s Reference

Results are printed at every IPRT1'th mesh point in the {
direction. (IO1)

Results are printed at every IPRT2'th mesh point in the 7
direction. (I01)

Results are printed at every IPRT3’th mesh point in the { di-
rection. (IO1)

¢ indices at which results are printed. The subscnipt I =1 to
a maximum of N1, the number of grid points in the ¢ direc-
tion. (I01)

» indices at which results are printed. The subscript I=1 to
a maximum of N2, the number of grid points in the » direc-
tion. (I01)

¢ indices at which results are printed. The subscript [=1 to
a maximum of N3, the number of grd points in the { direc-
tion. (IO1)

Flag controlling the reading and writing of auxiliary files used
for restarting the calculation in a separate run. (RSTRTI)

Multiplication factor used with IBASE to compute one-
dimensional index for three-dimensional array. (NUMI)

Flag specifying ADI sweep direction; 1 for £ direction, 2 for
y direction, and 3 for { direction. (NUM]1)

Current time step number, or known time level. Time step
number n updates the solution from time level n to n+ 1.
(TIMEI)

The time time step number, or known time level n, at the
beginning of a run. For a non-restart case, [1 3EG=1.
(TIME1)

Flag for time-dependent boundary conditions; 0 if all bound-
ary conditions are steady, 1 if any general unsteady boundary
conditions are used, 2 if only steady and time-periodic
boundary conditions are used. (BCl)

The final time step number. (TIMEI)

Flag for thin layer option; 0 to include second derivative
viscous terms, 1 to eliminate them. The subscript I =1 to 3,
comresponding to the &, %, and { directions, respectively.
(FLOW1)

Current time step sequence number. (TIMEI)

Flag' for turbulent flow option; 0 for laminar flow, 1 for tur-
bulent flow using the Baldwin-Lomax algebraic turbulence
model, 20 for turbulent flow using the Chien two-equation
k-z turbulence model. (TURBI)

Flag for type of units used to specify reference conditions;
0 for English units, 1 for ST units. (I01)

‘3.2 Common Variables Listed Alphabetically 29

IVOUT(I)

IWALLI(I)

TWALL2(T)

IWALL3(I)

IWOUTI(I)

IWOUT2(I)

IWOUT3(1)

I
I2
I3
JBCTI(L])

JBCT2(L))

30 3.2 Common Variables Listed Alphabetically

Gnd point index in the “vectorized” direction (i.e., the non-
sweep direction in which the "BLK” routines are vectorized).
Therefore, IV = for the first sweep and i for the second and
third sweeps. (NUMI)

A 50-elément array specifying which vanables are to be
printed. (I0O1)

Flags indicating type of surfaces in the ¢ direction; 0 for a free
boundary, 1 for a solid wall. The subscript I =1 or 2, corre-
sponding to the ¢=0 and ¢ =1 surfaces, respectively.
(TURBI)

Flags indicating type of surfaces in the » direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the n=0 and 5 =1 surfaces, respectively.
(TURBY)

Flags indicating type of surfaces in the { direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the {=0 and { =1 surfaces, respectively.
(TURBI)

Flags specifying whether or not various parameters are to be
printed along the ¢ boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscript I=1 or 2, cormre-
sponding to the £ =0 and & =1 boundaries, respectively.
(Ioh

Flags specifying whether or not various parameters are to be
printed along the » boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscript I=1 or 2, corre-
sponding to the =0 and » =1 boundaries, respectively.
(I01)

Flags specifying whether or not various parameters are to be
printed along the { boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscript I=1 or 2, corre-
sponding to the { =0 and { =1 boundaries, respectively.
(I01)

Grid point index in the & direction. (NUMI)
Grid point index in the » direction. (NUM1)
Gnd point index in the { direction. (NUM]I)

Flags specifying the type of boundary conditions used for the
k-¢ turbulence model on the ¢ =0 and ¢ = 1 surfaces, when
specified for the entire surface. The subscript I =1 or 2, cor-
responding to the k and ¢ equations, respectively, and J =1
or 2, corresponding to the ¢ =0 and £ =1 boundanies, re-
spectively. (BC2)

Flags specifying the type of boundary conditions used for the
k-¢ turbulence model on the =0 and » = 1 surfaces, when
specified for the entire surface. The subscript I =1 or 2, cor-
responding to the & and ¢ equations, respectively, and J =1

Proteus 3-D Programmer’s Reference

* JBCT3(1J)

+ JBCI(L)
+ JBC2ALJ)
+ JBC3(LI)
JIIL,I2,13) J-!

* JTBCI{L])

+ JTBC2(LJ)

+ JTBC3(LJ)

KBCPER(I)

+ KBCI()

Proteus 3-D Programmer’s Reference

or 2, corresponding to the n =0 and n = 1 boundaries, re-
spectively. (BC2)

Flags specifying the type of boundary conditions used for the
k-¢ turbulence model on the { =0 and { = 1 surfaces, when
specified for the entire surface. The subscript I =1 or 2, cor-
responding to the k and ¢ equations, respectively, and J =1
or 2, corresponding to the { =0 and { =1 boundaries, re-
spectively. (BC2)

Flags specifying the type of steady boundary conditions used
on the & = 0 and & = 1 surfaces, when specified for the entire
surface. I runs from 1to N, comesponding to the N, con-
ditions needed, and J = 1 or 2, corresponding to the £ = 0 and
¢ = 1 boundaries, respectively. (BC1)

Flags specifying the type of steady boundary conditions used
on the = 0 and » = 1 surfaces, when specified for the entire
surface. I runs from 1to N, corresponding to the N, con-
ditions needed, and J = 1 or 2, corresponding to the n = 0 and
n = 1 boundaries, respectively. (BC1)

Flags specifying the type of steady boundary conditions used
on the ¢ =0 and ¢ = 1 surfaces, when specified for the entire
surface. I runs from 1 to N,,, corresponding to the N,, con-
ditions needed, and J = 1 or 2, corresponding to the { = 0 and
{ = 1 boundaries, respectively. (BC1)

Inverse Jacobian of the non-orthogonal grid transformation.
This is a real variable. (METRICI)

A variable specifying the type of time dependency for the
boundary conditions on the £ =0 and { =1 boundaries. [
runs from 1 to N,, corresponding to the N, onditions
needed, and J = 1 or 2, corresponding to the £ =0 and { =1
boundaries, respectively. (BC1)

A variable specifying the type of time dependency for the
boundary conditions on the n =0 and » = | boundaries. I
runs from 1 to N,, comesponding to the N,, conditions
needed, and J = 1 or 2, corresponding to the = 0 and 5 =1
boundaries, respectively. (BCl)

A variable specifying the type of time dependency for the
boundary conditions on the { =0 and { =1 boundaries.

“tuns from 1 to N, comresponding to the N, conditions

needed, and J = 1 or 2, corresponding to the { =0 and { = |
boundaries, respectively. (BCI)

Flags for spatially periodic boundary conditions: 0 for non-
periodic, 1 for periodic. The subscript I = 1, 2, or 3, corre-
sponding to the &, », and ¢ directions, respectively. (BCl)

Flags for type of boundaries in the ¢ direction. The subscript

J =1 or 2, coresponding to the { =0 and ¢ =1 boundaries,
respectively. (BCI)

3.2 Common Variables Listed Alphabetically 31

KBC2(])

KBC3(J)

KE(I1,12,13)
KEL(I1,12,13)
KT(11,12,13)
KTR
LA(I1,12,13)
LR

LRMAX(IJ)

LWALLI(I2,13,T)

LWALL2(I1,13,1)

LWALL3(IL,I2T)

LWSET(])

MACHR

M,

32 3.2 Common Variables Listed Alphabetically

Flags for type of boundaries in the » direction. The subscript
J=1 or 2, comesponding to the » =0 and » = 1 boundaries,
respectively. (BCl)

Flags for type of boundaries in the { direction. The subscript
J=1 or 2, corresponding to the { = 0 and { = 1 boundaries,
respectively. (BCI)

Turbulent kinetic energy at time level n. This is a real vari-
able. (TURB20)

Turbulent kinetic energy at previous or intermediate tiume
level. This 1s a real vanable. (TURB20)

Effective thermal conductivity coefficient at time level ». This
is a real variable. (FLOWI)

Dimensional reference thermal conductivity coefficient. This
is a real vaniable. (FLOWY)

Effective second coefficient of viscosity at time level # (usually
assumed equal to — 2u/3.) This is a real vanable. (FLOWI1)

Dimensional reference length. This is a real variable.
(FLOWI)

The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript =1 to
3, corresponding to the ¢, n, and { directions, respectively,
J=1 to N,, corresponding to the N,, coupled governing
equations, and K =1 or 2, corresponding to the residual
computed without and with the artificial viscosity terms.
(TIME1)

Flags indicating, point-by-point, the type of surfaces in the {
direction; 0 for a free boundary, 1 for a solid wall. T1. " sub-
script 1=1 or 2, corresponding to the {=0 and & =1
boundaries, respectively. (TURBI)

Flags indicating, point-by-point, the type of surfaces in the %
direction; 0 for a free boundary, 1 for a solid wall. The sub-
script I=1 or 2, corresponding to the n=0 and n=1
boundaries, respectively. (TURBI)

Flags indicating, point-by-point, the type of surfaces in the {
direction; O for a free boundary, 1 for a solid wall. The sub-
script I=1 or 2, corresponding to the { =0 and {=1
boundaries, respectively. (TURBI)

Flags specifying how wall locations are determined for' the
turbulence model; 0 if wall locations are found automatically
by searching for boundary points where the velocity 1s zero,
1 if input using the LWALL parameters, 2 if input using the
IWALL parameters. The subscript I =1 to 6, corresponding
tothe¢=0,¢=1,1=0,9=1,{=0,and { = | boundaries,
respectively. (TURBI)

Reference Mach number, u/(y,R T,)/2. This is a real varable.
(FLOW1) :

Proteus 3-D Programmer’s Reference

METT(IV,IS)

METX(IV,IS)

METY(IV,IS)

METZ(IV,IS)

MU(I1,12,13)

* MUR

MUT(I1,12,13)

MUTL(11,12,13)

NAMAX

NBC

NC

NDIAGP

* NDTCYC

fn Y., OF Cr

Exs N, OT L&

6_)!: r’y; or Cy

&, s 01,

u

e

M

Proteus 3-D Programmer’s Reference

The derivative of the computational coordinate in the ADI
sweep direction with respect to untransformed time ¢. IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grd index in the “vectorized” direction (ie., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2to ¥, — 1. This is a real vanable.
(METRICI)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x.
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2to N, — 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y.
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2to N, — 1. This is a real variable.
(METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate z.
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2to N, — 1. This is a real vanable.
(METRIC1)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOW1) -

Dimensional reference viscosity coefficient. This is a real
variable. (FLOWI)

Turbulent viscosity coefficient at time level . This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

A dimensioning parameter equal to the maximum number of
time steps allowed in the moving average convergence test (the
ICTEST = 2 option). (PARAMSI)

A dimensioning parameter equal to the number of boundary
conditions per equation. (PARAMSI)

Array index associated with the continuity equation.
(NUMID)

Number of diagonals containing interior points in a ¢-» plane.
(PARAMSI)

Number of time steps per cycle used in the time step cycling
procedure. (TIMEI)

3.2 Common Variables Listed Alphabetically 33

NEN.

NEQ Ny
NEQP

NEQPM

NET

NGEOM

NGRID
NHIST
NHMAX

NIN
NITAVG

NMAXP

NOUT
NPLOT

NPLOTX
NPNTP
NPRTI
NPRT2
NPRT3
NPTS N

NPT1 Nyor M+ 1

NPT2 "2 or A’z + 1

34 3.2 Common Variables Listed Alphabetically

Array index associated with the energy equation. (NUM]I)

The number of coupled goveming equations actually being
solved. (NUM)

A dimensioning parameter equal to the number of coupled
equations allowed. (PARAMSI)

A dimensioning parameter equal to the maximum number of

7 coupled equations available. (PARAMSI)

Array index associated with the dependent vanable Er.
(NUMID)

Flag used to specify type of computational coordinates; 1 for
Cartesian (x.»,7) coordinates, 2 for cylindrical (r,6,x) coordi-
nates, and 10 to read the coordinates from unit NGRID.
(GMTRY1)

Unit number for reading gnid file. (IO1)

Unit number for writing convergence history file. (IO1I)
Maximum number of time levels allowed in the printout of
the convergence history file (not counting the first two, which
are always printed.) (IO1)

Unit number for reading namelist input. (I01)

Number of time steps used in the moving average convergence
test. (TIMEI)

A dimensioning parameter equal to the maximum of NIP,
N2P, and N3P. (PARAMSI)

Unit number for writing standard output. (101)

Unit number for writing CONTOUR or PLOT3D Q plot file.
(101)

Unit number for writing PLOT3D XYZ plot file. (IOI)
Number of interior points in a -5 plane. (PARAMSI)

Total number of indices for printout in the ¢ direction. (IO1)

“Total number of indices for printout in the » direction. (I01)

Total number of indices for printout in the { direction. (I01)
The number of gnd points in the sweep direction. (NUMI)
The number of grid points in the ¢ direction used in com-
puting coefficients: N, for non-periodic boundary conditions;
Ny + 1 for spatially periodic boundary conditions. (NUMI)
The number of grid points in the # direction used in com-

puting coefficients: N, for non-periodic boundary conditions;
N> + 1 for spatially periodic boundary conditions. (NUMI)

Proteus 3-D Programmer’s Reference

NPT3 Sor Ns+ 1

NR

NRQIN
NRQOUT

NRU

NRV

NRW

NRXIN

NRXOUT

NTBC

NTBCA(I)

NTIME(])

NTKE
NTOTP

NTP

NTSEQ

NTSEQP

NV N,

Proteus 3-D Programmer’s Reference

The number of grid points in the { direction used in comput-
ing coefficients: N; for non-periodic boundary conditions;
N; + 1 for spatially periodic boundary conditions. (NUMI)

Array index associated with the dependent variable p.
(NUMD)

Unit number for reading restart flow field. (RSTRTI)
Unit number for writing restart flow field. (RSTRTI)

Array index associated with the dependent vanable pu.
(NUMI)

Array index associated with the dependent vanable pv.
(NUMID)

Array index associated with the dependent vanable pw.
(NUMI)

Unit number for reading restart computational mesh.
(RSTRTI)

Unit number for writing restart computational mesh.
(RSTRTI)

Number of values in the tables of GTBC1, GTBC2, and/or
GTBC3 vs. NTBCA for general unsteady boundary condi-
tions. (BCl)

Time step values at which GTBCI1, GTBC2, and/or GTBC3
are specified for general unsteady boundary conditions. The
subscript I = 1 to NTBC, corresponding to the NTBC values

‘in the table. (BCl)

Maximum number of time steps to march. I runs from I to
NTSEQP, corresponding to the time step sequence number.
(TIMEI)

Number of k-¢ iterations per mean flow iteration. (TURB20)
A dimensioning parameter equal to the total storage required
for a single three-dimensional array (i.e., N1P x N2P x N3P).
(PARAMSI)

A dimensioning parameter equal to the maximum number of
entries in the table of time-dependent boundary condition
values. (PARAMSI)

The total number of time step sequences being used.
(TIME1)

A dimensioning parameter equal to the maximum number of
time step sequences in the time step sequencing option.
(PARAMSI)

The number of grid points in the “vectorized” direction (i.e.,
the non-sweep direction in which the “BLK” routines are

3.2 Common Variables Listed Alphabetically 35

NXM

NYM

NZM

NIP

N2P

+ N3
N3P

P(I1,12,13)
PR
*+ PRLR

PRR
* PRT

+ PO
*+ RER
RESAVG(J,K)

RESL2(J,K)

RESMAX(J,K)

36 3.2 Common Variables Listed Alphabetically

M

N,

N;

Pr
Pr,,

Pr.

Pr,

Re,

Ravg

Ry,

Rmex

vectorized). Therefore, NV = N, for the first sweep and N, for
the second and third sweeps. (NUMI)

Array index associated with the x-momentum equation.
(NUMD

Array index associated with the py-momentum equation.
(NUMI)

Array index associated with the z-momentum equation.
(NUMD

The number of grid points in the & direction. (NUMI)

A dimensioning parameter equal to the maximum number of
gnd points in the ¢ direction. (PARAMSI)

The number of grid points in the » direction. (NUMI)

A dimensioning parameter equal to the maximum number of
grid points in the 5 direction. (PARAMSI)

The number of grid points in the ¢ direction. (NUMI)

A dimensioning parameter equal to the maximum number of
grid points in the { direction. {PARAMSI)

Static pressure at time level n. (FLOWI)
Dimensional reference static pressure, p,R T}/g.. (FLOWI)

Reference laminar Prandtl number, ¢, ufk, where
Cp,— = YrR /(}’r - l)- (FLO‘VI)

Reference Prandt]l number, p,u2/k.7,. (FLOWI)

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURBI1)

Initial static pressure. (ICI)
Reference Reynolds number, p,u L, /u,. (FLOWI)

The average absolute value of the residual for the previous
time step. The subscript J =1 to N,,, corresponding to the
N., coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME]L)

The L, norm of the residual for the previous time step. The
subscript J =1 to N,,, corresponding to the N,, coupled gov-
erning equations, and K =1 or 2, comresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIMELI)

The maximum absolute value of the residual for the previous

time step. The subscript J=1 to N,,, corresponding to the
N., coupled governing equations, and K=1 or 2, corre-

Proteus 3-D Programmer’s Reference

RG

RGAS
RHO(I1,12,13)
RHOL(I1,12,13)

RHOR
RMAX

RMIN

S(IV.IS,)

SIGE
SIGK

SQILr

T(11,12,13)
TAU(I1,12,13)

TFACT
THC(I)
THE(I)
THKE(I) |

THMAX

|

©

Pr

rmax

Vmin

g,

917 02

6]) 921 93

01: 62

Bmax

Proteus 3-D Programmer’s Reference

sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

Dimensional gas constant. (FLOWI)
Non-dimensional gas constant. (FLOW1)
Static density at time level n. (FLOW1)

Static density at previous or intermediate time level.
(FLOW1)

Dimensional reference density. (FLOW1)

Maximum r coordinate for cylindrical grid option.
(GMTRY)

Minimum r coordinate for cylindrical grid option.
(GMTRY])

Subvector of source terms in the block tridiagonal system of
equations. IS is the grid index in the sweep direction, running
from 1 to N. IV is the grid index in the “vectorized” direction
(i.e., the non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2 to N, — 1. The subscript J =1
to N.,, corresponding to the N,, coupled governing equations.
(NUMD)

Constant used in the diffusion term of the ¢ equation.
(TURB20)

Constant used in the diffusion term of the k equation.
(TURB20)

An array controlling the packing of grid points -sing the
Roberts transformation. The subscript I=1 to 3, corre-
sponding to the &, #, and ¢ directions, respectively. SQ(I,1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing. (NUMI)

Static temperature at time level n. (FLOWI)

Current value of the time marching parameter. (TIME1)

Factor used in computing the k-¢ time step,
At.. = TFACT(A7). (TURB20)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM1)

A three-element array specifying the time difference centering
parameters used for the energy equation. (NUMI)

A two-element array specifying the time difference centering
parameters used for the k-¢ equations. (NUM2)

Maximum @ coordinate in degrees for cylindrical grid option.

(GMTRY)

3.2 Common Variables Listed Alphabetically 37

THMIN
THX(T)
THY(I)
THZ(I)
TITLE
TL(I1,1213)
TLIM

TR
TO
U1,12,13)

UL(I1,12,13)

UR
U0
V(11,12,13)

VL(I1,12,13)

VORT(I1,12,13)
VORT(11,12,13)

Vo
W(ILI2,I3)

WLILI2I3)

WO
X(11,12,13)
XIT(11,12,13)

61: 92’
91’ 62;

911 82,

U

El
,Pk

Vo

63

65

8

38 3.2 Common Variables Listed Alphabetically

Minimum 8 coordinate in degrees for cylindrical gnd option.
(GMTRY1)

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the y-momentum equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the z-momentum equation. (NUMI)

Title for printed output and CONTOUR plot file, up to 72
characters long. This is a character variable. (TITLE1)

Static temperature at previous or intermediate time level.
(FLOWD

When the amount of CPU time remaining for the job drops

below TLIM seconds, the calculation is stopped. (TIMEI)
Dimensional reference temperature. (FLOWI)
Initial static temperature. (IC1)

Velocity in the Cartesian x direction at time level n.
(FLOW1)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOWI) '

Dimensional reference velocity. (FLOWI)
Initial velocity in the Cartesian x direction. (IC1)

Velocity in the Cartesian y direction at time le.el n.
(FLOW1)

Velocity in the Cartesian p direction at previous or interme-
diate time level. (FLOWI)

Total vorticity magnitude. (TURBI)

Production rate of turbulent kinetic energy. (TURBI)

Initial velocity in the Cartesian y direction. (ICl)

Velocity in the Cartesian z direction at time level n. (FLOW1)

Velocity in the Cartesian z direction at previous or intermedi-
ate time level. (FLOWI)

Initial velocity in the Cartesian z direction. (ICI)
Cartesian x coordinate. (METRIC1)

The derivative of the computational coordinate £ with respect
to untransformed time . (METRICI)

Proteus 3-D Programmer’s Reference

XIX(I1,12,13) & The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate x. (METRICI)

XIY(11,12,13) ¢ The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate y. (METRICI)
XIZ(11,12,13) ¢ The derivative of the computational coordinate & with respect
to the Cartesian coordinate z. (METRICI)
* XMAX Xmax Maximum x coordinate for Cartesian or cylindrical grid op-
tion. (GMTRY1])
* XMIN Xomin Minimum x coordinate for Cartesian or cylindrical grid op-
tion. (GMTRY1)
Y(I1,12,13) y Cartesian y coordinate. (METRICI)
* YMAX Vomex Maximum y coordinate for Cartesian grid option.
(GMTRY])
* YMIN Vrmin Minimum Jp coordinate for Cartesian grid option.
(GMTRY]) -
YPLUSD(11,12,13) y* Non-dimensional distance from the nearest solid wall.
(TURB20) ‘
Z(11,12,13) z Cartesian z coordinate. (METRICI)
ZETAT(I1,12,13) ¢ The derivative of the computational coordinate { with respect
to untransformed time ¢. (METRICI)
ZETAX(I1,12,13) ¢x The derivative of the computational coordinate { with respect
to the Cartesian coordinate x. (METRICI)
ZETA(11,I2,13) g, The derivative of the computational coordinate { w..h respect
to the Cartesian coordinate y. (METRICI)
ZETAZ(11,12,13) L. The derivative of the computational coordinate { with respect
to the Cartesian coordinate z. (METRICI)
* ZMAX Zmex Maximum z coordinate for Cartesian grid option.
(GMTRYY)
* ZMIN Zmin Minimum z coordinate for Cartesian grid option.
‘ (GMTRY))

3.3 COMMON VARIABLES LISTED SYMBOLICALLY

In this section many of the Proteus Fortran variables stored in common blocks are defined, listed sym-
bolically. Note that this list does not include those variables without symbolic representations, such as
various flags, or those whose meaning depends on other parameters, such as the boundary condition values
and sweep direction metrics. The variables marked with an asterisk are input vanables. More details on
these may be found in Section 3.1 of Volume 2. The common block each varable is stored in is given in
parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with
the variable, except for the subscripts 11, 12, and I3, which are the indices i, j, and k in the &, n, and { di-
rections, respectively, and run from 1 to N, N;, and Ns.

Proteus 3-D Programmer’s Reference 3.3 Common Variables Listed Symbolically 39

Unless otherwise noted, all vanables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
vanables follows standard Fortran convention, unless stated otherwise. (l.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

Symbol
g+

A

Cc | Ccpd

?

Ca - Ca

* (CK[eb)min

+ C,

r

40 3.3 Common Variables Listed Symbolically

Fortran
Vanable

APLUS

AMAT(V,IS] K)

CB

BMAT(IV,IS,J K)

CP(I1,12,13)
CV(I1,12,13)
CCP

CCP1-CCP4
CK1-2

CKLEB
CKMIN

CMUR

Definition

Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURBI)

Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the “vectorized”
direction (i.e., the non-sweep direction in which the "BLK”
routines are vectorized), and runs from 2 to N,—1. The
subscript J =1 to N,,, corresponding to the N, coupled gov-
erning equations, and K =1 to N,,, comresponding to the ¥,,
dependent variables. (NUM]1)

Constant used in the formula for the Klebanoff intermittency
factor Fxus in the outer region of the Baldwin-Lomax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. IS is the grid index in the sweep direction,
running from 1 to N. IV is the grd index in the “vectorized”
direction (i.e., the non-sweep direction in which the "BLK”
routines are vectorized), and runs from 2 to N,—1. The
subscript J = 1 to N, corresponding to the N,, coupled gov-
ermning equations, and K =1 to N,,, corresponding to the N,
dependent variables. (NUMI)

Specific heat at constant pressure at time level n. (FLC V1)
Specific heat at constant volume at time level n. (FLOWI)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature.

Constant used in the formula for the Klebanoff intermittency
factor Fx., in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

Constant used in the formula for the Klebanoff intermittency
factor Fx, in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Proteus 3-D Programmer’s Reference

Cul - CuZ

€
Er
Er

&

hr

r

L

CMUI-2

CWK

CONE

CTWOR

CTHREE

CMAT(IV,IS,J.K)

ER
ET(I1,12,13)
ETL(11,12,13)
GC

HSTAG

HSTAGR

I1

12

JI(11,12,13)

I3
KT(11,12,13)

KE(11,12,13)

Proteus 3-D Programmer’s Reference

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOWI)

Constant used in the formula for F,.. in the outer region of
the Baldwin-Lomax turbulence model. (TURBI)

Constant used in the production term of the ¢ equation.
(TURB20)

Constant used to compute C; in the dissipation term of the ¢
equation. (TURB20)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Superdiagonal submatrix of coefficients in the block
tridiagonal coefficient matrix. IS is the grid index in the sweep
direction, running from ! to N. IV is the gnd index in the
"vectorized” direction (i.e., the non-sweep direction in which
the “BLK” routines are vectorized), and runs from 2 to
N,— 1. The subscript J =1 to N,, corresponding to the N,,
coupled governing equations, and K = 1 to N,,, corresponding
to the N,, dependent vanables. (NUMI)

Dimensional reference energy, pu2. (FLOW1)
Total energy at time level n. (FLOWI)
Total energy at previous or intermediate time level. (FLOW1)

Dimensional proportionality factor in Newton’s second law,
either 32.174 Ib,-ft/Ib-sec?, or 1.0 kg-m[N-sec2. (FLOW1I)

Constant stagnation enthalpy used with constant stagnation
enthalpy option. (FLOW1)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Grid point index in the & direction. (NUMI)

Grid point index in the “vectorized” direction (i.e., the non-
sweep direction in which the “BLK” routines are vectorized).
Therefore, IV = for the first sweep and i for the second and
third sweeps. (NUMI)

Grid point index in the n direction. (NUMI1)

Inverse Jacobian of the non-orthogonal grid transformation.
This is a real variable. (METRIC!)

Grid point index in the { direction. (NUM1)

Effective thermal conductivity coefficient at time level n. This

" is a real varable. (FLOWI)

Turbulent kinetic energy at time level . This is a real van-
able. (TURB20)

3.3 Common Variables Listed Symbolically 41

M

N +1

IVZ

4\72 +1

N

42 3.3 Common Variables Listed Symbolically

KEL(I1,I2,I3)

KTR

CCLAU

LR

MACHR

IT

CNL

NPTS
NEQ

N1

NPT1

NPT1

NPT2

Turbulent kinetic energy at previous or intermediate time
level. This is a real vanable. (TURB20)

Dimensional reference thermal conductivity coefficient. This
is a real variable. (FLOWI)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURBI)

Dimensional reference length. This is a real variable.
(FLOWI)

Reference Mach number, &/(y,R T,)"/2. This is a real variable.
(FLOWI) -

Current time step number, or known time level. Time step
number n updates the solution from time level nto n+ 1.
(TIME1)

Exponent in the Launder-Priddin modified mixing length

-formula for the inner region of the Baldwin-Lomax turbulence

model. (TURBI)
The number of grid points in the sweep direction. (NUMI)

The number of coupled governing equations actually being
solved. (NUMI)

The number of grid points in the “vectorized” direction (ie.,
the non-sweep direction in which the "BLK” routines are
vectorized). Therefore, NV = N; for the first sweep and N, for
the second and third sweeps. (NUMI1)

The number of grd points in the ¢ direction. (NUMI)

The number of grid points in the & direction used in com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUMI)

The number of grid points in the & direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUMI)

The number of grid points in the » direction. (NUM]I)

The number of grid points in the » direction used mn com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUMI)

The number of grid points in the » direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUMI)

The number of grid points in the { direction. (NUMI)

The number of grid points in the ¢ direction used in comput-

ing coefficients (only for non-periodic boundary conditions.)
(NUMI)

Proteus 3-D Programmer’s Reference

N+ 1

P

23

fom

oplOE+

oplop

dp|d(pu)

9p[0(pv)

dp/d(pw)

Py

Pr,

* Pr,

AQavg

AQmax

rmax

NPT3
P(11,12,13)
PR

PO
DPDET(])

DPDRHO(I)
DPDRU(J)
DPDRV(I)
DPDRW(I)

VORT(I1,12,13)

PRLR

PRR
PRT

CHGAVG(I)

CHGMAX(LJ)

RMAX

The number of grid points in the { direction used in comput-
ing coefficients (only for spatially periodic boundary condi-
tions.) (NUMI)

Static pressure at time level n. (FLOWI)
Dimensional reference static pressure, p.RT,/g.. (FLOWI)
Initial static pressure. (ICI)

The derivative of p with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscnpt I
therefore runs from 1 to ¥N. (FLOWI)

The derivative of p with respect to p, stored as a one-°
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

Production rate of turbulent kinetic energy. (TURBI)

Reference laminar Prandtl number, ¢, /k, where
¢, =yR[(y,— 1). (FLOWI)

Reference Prandtl number, pu2/k,.T.. (FLOW1)

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURBI)

Maximum change in absolute value of the dependent van-
ables, averaged over the last NITAVG time steps.® The sub-
scipt I=1 to N,, comesponding to the N, dependent
variables. (TIME1)

Maximum change in absolute value of the dependent variables
over a single time step.S The subscript I=1 to N, corre-
sponding to the N,, dependent varables, and J=1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIME]I)

Maximum 7 coordinate coordinate for cylindrical grid option.
(GMTRY)

5 For the energy equation, the change in E7 is divided by Er, = R T./(y» — 1) + 132, so that it is the same order
of magnitude as the other conservation variables.

Proteus 3-D Programmer’s Reference

3.3 Common Variables Listed Symbolically 43

R.,

Rimax

OT|CEr

aT|dp

0T d(pu)

0T[8(pv)

44 3.3 Common Variables Listed Symbolically

RMIN

RESAVG(J K)

RESL2(J,K)

RESMAX(J,K)

RG

RGAS

RER
SVECT(IV,IS.T)

DT(I)

T(11,12,13)
TL(I1,12,13)

DTDET(I)

DTDRHO(I)

DTDRU(I)

DTDRV(])

Minimum r coordinate coordinate for cylindrical grid option.
(GMTRY)

The average absolute value of the residual for the previous
time step. The subscript J=1 to N, comesponding to the
N,, coupled governing equations, and K=1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

The L; norm of the residual for the previous time step. The
subscript J = 1 to N,,, corresponding to the N,, coupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIME1I)

The maximum absolute value of the residual for the previous
time step. The subscript J =1 to N,,, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-
fictal viscosity terms. (TIMEI)

Dimensional gas constant. (FLOW1I)
Non-dimensional gas constant. (FLOWI)
Reference Reynolds number, p,uL,/u,. (FLOWI)

Subvector of source terms in the block tridiagonal system of
equations. IS is the grid index in the sweep direction, running
from 1to N. IV is the grid index in the “vectonized” direction
(i.e., the non-sweep direction in which the “BLK" routines are
vectorized), and runs from 2 to N, — 1. The subscript J =1
to N.,, corresponding to the N,, coupled governing equations.
(NUMI)

The time step size, when specified directly as input. . is the
time step sequence number, and runs from 1 to NTSEQ.
(TIMED)

Static temperature at time level n. (FLOWI)

Static temperature at previous or intermediate time level.
(FLOW1)

The denivative of T with respect to Er, stored as a one-

* dimensional array in the sweep direction. The subscnpt I

therefore runs from 1to N. (FLOWI)

The derivative of T with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to N. (FLOWI)

The denvative of T with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1to N. (FLOW])

The denvative of T with respect to pv, stored as a one-

dimensional array in the sweep direction. The subscript 1
therefore runs from 1to N. (FLOWI)

Proteus 3-D Programmer’s Reference

aTJ3(ow)

W

AW* or AW

xmax

* Vmex

* ymin

DTDRW(I)

TR
TO
C(I1,12,13)

UL(11,12,13)

UR
U0

V(I1,12,13)
VL(IL,12,13)

Vo
W(I1,I2,I3)

WL(11,12,13)

WO

DW(I1,12,13,])
X(11,12,13)
XMAX
XMIN

Y(11,12,13)
YMAX

YMIN

YPLUSD(I1,12,13)

Z(11,12,13)

Proteus 3-D Programmer’s Reference

The derivative of T with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

Dimensional reference temperature. (FLOWI)

Initial static temperature. (IC1)

Velocity in the Cartesian x direction at time level 7.
(FLOW1)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional 'reference velocity. (FLOW1)
Initial velocity in the Cartesian x direction. (ICI)

Velocity in the Cartesian y direction at time level n.
(FLOW1)

Velocity in the Cartesian y direction at previous or interme-
diate time level. (FLOW1)

Initial velocity in the Cartesian y direction. (IC1)
Velocity in the Cartesian z direction at time level n. (FLOWI)

Velocity in the Cartesian z direction at previous or intermedi-
ate time level. (FLOWI)

Initial velocity in the Cartesian z direction. (ICI)

Unknown vector in the LU solution of the k-¢ equations.
The subscript I=1 or 2, corresponding to the k and ¢
equations, respectively. (NUM2)

Cartesian x coordinate. (METRICI)

Maximum x coordinate for Cartesian or cy]jndrica] grid op-
tion. (GMTRY1)

Minimum x coordinate for Cartesian or cylindrical grid op-
tion. (GMTRY1)

~ Cartesian y coordinate. (METRICI)

Maximum y coordinate for Cartesian grid option.

(GMTRYY)

Minimum y coordinate for Cartesian grid option.

(GMTRY)

Non-dimensional distance from the nearest solid wall.
(TURB20)

Cartesian z coordinate. (METRICI)

3.3 Common Variables Listed Symbolically 45

Zmax

Zmin

&1

L

L

CX

Cx

&

&

46 3.3 Common Variables Listed Symbolically

ZMAX

ZMIN

EPS(I)

E(I1,12,13)
EL(I1,12,13)

CAVS2E(I)

" CAVS4E(I)

CAVS2I(])

ZETAT(11,12,13)

METT(IV,IS)

ZETAX(I1,12,13)

METX(IV,IS)

ZETAY(11,12,13)

METY(IV,IS)

Maximum =z coordinate for Cartesian grid option.
(GMTRYT1)

Minimum z coordinate for Cartesian grid option.
(GMTRY1)

Convergence level to be reached. The subscript I =1 to AN,
corresponding to the N,, dependent vanables. (TIMEI)

Turbulent dissipation rate at time level n. (TURB20)

Turbulent dissipation rate at previpus or intermediate time
level. (TURB20)

Second order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,,, corresponding
to the N,, coupled goveming equations. (NUM1)

Fourth order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I =1 to N,,, corresponding
to the V., coupled governing equations. (NUMI)

Second order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I =1 to N,,, corresponding
to the V,, coupled governing equations. (NUM1)

The dernivative of the computational coordinate { with respect
to untransformed time ¢. (METRICI)

The derivative of the computational coordinate { with respect
to the Cartesian coordinate ¢ (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV 1s the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2 to N, — 1. This is a real va. able.
(METRICYI)

The derivative of the computational coordinate { with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate { with respect
to the Cartesian coordinate x (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2 to N, — 1. This is a real vaniable.
(METRICI)

The derivative of the computational coordinate { with respect
to the Cartesian coordinate y. (METRICI)

The derivative of the computational coordinate { with respect
to the Cartesian coordinate y (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2 to N, — 1. This is a real variable.
(METRIC1)

Proteus 3-D Programmer’s Reference

s

£

AL

AL

n:

"

Mx

Ny

Ny

2

"2

ZETAZ(11,12,13)

METZ(IV,IS)

DEL

DZETA

ETAT(1,12,13)

METT(IV,IS)

ETAX(I1,12,13)

METX(IV,IS)

ETAY(11,12,13)

METY(IV,IS)

ETAZ(I1,12,13)

METZ(IV,IS)

Proteus 3-D Programmer’s Reference

The derivative of the computational coordinate { with respect
to the Cartesian coordinate z. (METRICI)

The derivative of the computational coordinate { with respect
to the Cartesian coordinate z (third ADI sweep only.) IS is
the grid index in the sweep direction, running from 1 to N.
IV is the grd index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2to N, — 1. This is a real vanable.
(METRICI)

Computational grid spacing in the { direction (third ADI

‘sweep only.) (NUMI)

Computational grid spaciﬁg in the { direction. (NUMI1)

The derivative of the computational coordinate » with respect
to untransformed time :. (METRIC1)

The derivative of the computational coordinate » with respect
to untransformed time ¢ (second ADI sweep only.) IS is the
grid index in the sweep direction, running from 1 to N. IV 1s
the grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N, — 1. This is a real variable. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate # with respect
to the Cartesian coordinate x (second ADI sweep only.) IS
is the grid index in the sweep direction, running from 1 to N.
IV is the grd index in the “vectorized” direction (ie., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2 to N, — 1. This is a re'" variable.
(METRIC1)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate y. (METRICI)

The derivative of the computational coordinate # with respect
to the Cartesian coordinate y (second ADI sweep only.) IS
is the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the “vectorized” direction (i.e., the

non-sweep direction in which the "BLK” routines are

vectorized), and runs from 2to N, — 1. Thisisa real vaniable.
(METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate z. _(.\/IETRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate z (second ADI sweep only.) IS
is the grid index in the sweep direction, running from 1 to N.
IV is the grd index in the “vectorized” direction (i.e., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2 to N, — 1. This is a real variable.
(METRICI)

3.3 Common Variables Listed Symbolically 47

Ay

K2

K4

Yr

Hr

&

&

$x

fl

Sy

&y

48 3.3 Common Variables Listed Symbolically

DEL

DETA

CVK
CAVS2E(I)
CAVS4E(D)
GAMR
LA(I1,12,13)
MU(IL,I2,13)
MUR
MUT(11,12,13)
MUTL(I1,12,13)
XIT(11,12,13)

METT(IV,IS)

XIX(11,12,13)

METX(IV,IS)

XIY(11,12,13)

METY(IV,IS)

Computational grid spacing in the » direction (second ADI
sweep only.) (NUMI)

Computational grid spacing in the » direction. (NUMI)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURBI)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I =1 to N,,, corresponding to
the N,, coupled governing equations. (NUMI)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I =1 to N,,, corresponding to
the N,, coupled governing equations. (NUMI)

Reference ratio of specific heats, ¢, /c,,. (FLOWI)

Effective second coefficient of viscosity at time level n (usually
assumed equal to — 2u/3.) This is a real variable. (FLOW1)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOWI)

Dimensional reference viscosity coefficient. This is a real
variable. (FLOWI)

Turbulent viscosity coefficient at time level . This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

The derivative of the computational coordinate £ with respect
to untransformed time ¢. {(METRIC1)

The derivative of the computational coordinate £ with respect
to untransformed time ¢ (first ADI sweep only.) IS is the gnd
index in the sweep direction, running from 1 to N. IV is the
grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N, — 1. This is a real vanable. (METRICI)

The derivative of the computational coordinate £ with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate ¢ with respect
1o the Cartesian coordinate x (first ADI sweep only.) IS is the
grid index in the sweep direction, running from 1to N. IV is
the grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N, — 1. This is a real vardable. (METRICI)

The derivative of the computational coordinate £ with respect
to the Cartesian coordinate y. (METRICI)

The derivative of the computational coordinate £ with respect
to the Cartesian coordinate yp (first ADI sweep only.) IS is the

Proteus 3-D Programmer’s Reference

&

&

ag

A

P

Tk

o,

* 611

* 91:

* 01)

* Bh

6>

0,

921 93

92) 03

02, 03

XIZ(11,12,13)

METZ(IV,IS)

DEL

DXI
RHO(I11,12,13)

RHOL(I1,12,13)

RHOR

SIGK
SIGE

TAU(I1,12,13)
DTAU(1,12,13)

THMAX
THMIN
THC(I)
THKE(I)
THE(I)
THX(I)

THY(I)

Proteus 3-D Programmer’s Reference

grid index in the sweep direction, running from 1to N. IV is
the grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N, — 1. This is a real varable. (METRICI)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate z. (METRICI)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate z (first ADI sweep only.) IS is the
grid index in the sweep direction, running from 1to N. IV 1s
the grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the "BLK” routines are vectorized), and
runs from 2 to N, — 1. This is a real variable. (METRICI)

Computational grid spacing in the ¢ direction (first ADI
sweep only.) (NUMI)

Computational grid spacing in the ¢ direction. (NUMI)
Static density at time level n. (FLOW1)

Static density at previous or intermediate time level.
(FLOWD)

Dimensional reference density. (FLOW1)

Constant used in the diffusion term of the k equation.
(TURB20)

Constant used in the diffusion term of the ¢ equation.
(TURB20)

Current value of the time marching parameter. (TIMEI)
Computational time step size. (TIMEI)

Maximum 8 coordinate in degrees for cylindrical grid option.
(GMTRYY)

Minimum 6 coordinate in degrees for cylindrical grid option.
(GMTRY])

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM1)

A two-element array specifying the time difference centering
parameters used for the k-£ equations. (NUM2)

A three-element array specifying the time difference centering
parameters used for the energy equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the y-momentum equation. (NUMI)

3.3 Common Variables Listed Symbolically 49

* By, 8, 6 THZ(D) A three-element array specifying the time difference centering
parameters used for the z-momentum equation. (NUMI)

]ﬁ] VORT(I1,12,13) Total vorticity magnitude. (TURBI)

50 3.3 Common Variables Listed Symbolically Proteus 3-D Programmer’s Reference

4.0 PROTEUS SUBPROGRAMS

In this section, each subprogram in Proteus is described, first in summary, then in detail. The summary
is simply a list of the subprograms with a bnef description of the purpose of each one. The detailed de-
scription includes, for each subprogram, a list of the subprograms that reference it, and a list of the sub-
programs that it references. The Fortran variables that are input to and output from each subprogram are
defined. And finally, details of the computations being done within each subprogram are presented.

4.1 SUBPROGRAM SUMMARY

The following table presents a brief description of the purpose of each subprogram in the Proteus code.

Proteus Subprogram Summary

Subprogram Purpose

ADI Manage the block tridiagonal inversion.

AVISC1 Compute constant coefficient artificial viscosity.

AVISC2 Compute nonlinear coefficient artificial viscosity.

BCDENS Compute density boundary conditions.

BCELIM Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.

BCF Compute user-written boundary conditions.

BCFLIN User-supplied routine for linearization of user-supplied boundary.
conditions.

BCGLEN Manage computation of boundary conditions.

BCGRAD Compute gradients with respect to £, #, and {.

BCIMET Compute inverse metrics at a point in the current sweep direction.

BCMET Compute various metric functions for normal gradient boundary
conditions. : : :

BCNVEL Compute normial direction velocity boundary conditions.

BCPRES Compute pressure boundary conditions.

BCQ Compute conservation variable boundary conditions.

BCSET Set various boundary condition parameters and flags.

BCTEMP Compute temperature boundary conditions.

BCUVEL Compute x-velocity boundary conditions.

BCVN Compute velocity normal to a surface.

BCVVEL Compute y-velocity boundary conditions.

BCVI Compute &-velocity.

BCV2 Compute y-velocity.

BCV3 Compute {-velocity.

BCWVEL Compute z-velocity boundary conditions.

BCIVEL Compute &-velocity boundary conditions.

BC2VEL Compute %-velocity boundary conditions.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms 51

Proteus Subprogram Summary

Subprogram

Purpose

BC3VEL Compute {-velocity boundary conditions.

BLIN Cox;x;iute inner layer turbulent viscosity, using the Baldwin-Lomax
model.

BLKOUT Prix}t coefficient blocks at specified indices in the &, », and { di-
rections.

BLK4 Solve 4 x 4 block tridiagonal system of equations.

BLK4P Solve 4 x 4 periodic block tridiagonal system of equations.

BLKS5 Solve 5 x 5 block tridiagonal system of equations.

BLKS5P Solve 5 x 5 periodic block tridiagonal system of equations.

BLOCK DATA | Set default values for input parameters, plus a few other parame-
ters.

BLOUT Corcrlu;ute outer layer turbulent viscosity, using the Baldwin-Lomax
model.

BVUP Update first and second sweep boundary values after third sweep.

COEFC Compute coefficients and source terms for the continuity equation.

COEFEI1 Compute coefficients and source terms for the energy equation.

COEFE2 Compute source terms for the energy equation.

COEFX Compute coefficients and source terms for the x-momentum
equation.

COEFY Compute coefficients and source terms for the y-momentum
equation.

COEFZ Compute coefficients and source terms for the z-momentum
equation.

CONV Test computed flow field for convergence.

CUBIC Interpolation using Ferguson’s parametric cubic.

EQSTA1 Use equation of state to compute pressure, temperature, and their
derivatives with respect to the dependent variables.

EXEC Manage solution of governing equations.

EXECT Manage solution of the k-¢ equations.

FILTER Rearrange rows of the boundary condition coefficient submatrices
and the source term subvector to eliminate any zeroes on the di-
agonal.

FTEMP Compute auxiliary variables that are functions of temperature.

GATHER Create a vector containing specified elements of an input vector.
This is a Cray Linear Algebra routine.

GEOM Manage computation of grid and metric parameters.

INIT Get user-defined initial flow field.

INITC Set up consistent initial conditions based on data from INIT.

INPUT Read and print input, perform various initializations.

ISAMAX Find the first index corresponding to the largest absolute value of
the elements of an vector. This is a Cray search routine.

ISAMIN Find the first index corresponding to the smallest absolute value
of the elements of an vector. This is a Cray search routine.

ISRCHEQ Find the first index in an array whose element is equal to a speci-

fied value. This is a Cray search routine.

52 490

Proteus Subprograms

Proteus 3-D Programmer’s Reference

Proteus Subprogram Summary

Subprogram Purpose

ISRCHFGT Find the first index in an array whose element is greater than a
specified value. This is a Cray search routine.

ISRCHFLT Find the first index in an array whose element is less than a speci-

’ fied value. This is a Cray search routine.

KEINIT Get user-defined initial conditions for k and ¢.

MAIN Manage overall solution.

METS Compute metrics of nonorthogonal grid transformation.

OUTPUT Manage printing of output.

OUTW Compute and print parameters at boundaries.

PAK Manage packing and/or interpolation of grid points.

PERIOD Define extra line of data for use in computing coefficients for spa-
tially periodic boundary conditions.

PLOT Write files for post-processing by CONTOUR or PLOT3D plot-
ting programs.

PRODCT Compute production term for the k- turbulence model.

PRTHST Print convergence history.

PRTOUT Print output.

RESID Compute residuals and write convergence history file.

REST Read and/or write restart file.

ROBTS Pack points along a line using Roberts transformation.

SASUM Compute the sum of the absolute values of the elements of a vec-
tor. Thisis a Cray BLAS routine.

SGEFA Factor a matrix using Gaussian elimination. This is a Cray
LINPACK routine.

SGE®FL Solve the matrix equation Ax = B or A™x = B using the factors
computed by SGEFA. This is a Cray LINPACK routine.

SNRM2 Compute the L, norm of a vector. This is a Cray BLAS routine.

SWDOWN Compute coefficients and source terms, and solve the k-¢ equations
for the downward LU sweep.

SWUP Compute coefficients and source terms, and solve the k-¢ equations
for the upward LU sweep.

TBC Set time-dependent boundary condition values.

TIMSTP Set computational time step.

TREMAIN Get CPU time remaining for the job. This is a Cray Fortran
routine.

TURBBL Manage computation of turbulence parameters using Baldwin-
Lomax algebraic model.

TURBCH Manage computation of turbulence parameters using the Chien
k-¢ model. _

UPDATE Update flow variables after each ADI sweep.

UPDTKE Update % and ¢ after each time step.

VORTEX Compute magnitude of total vorticity.

WHENFLT Find all indices in an array whose elements are less than a specified

value. This is a Cray search routine.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms

53

Proteus Subprogram Summary

Subprogram Purpose

YPLUSN Compute the distance to the nearest solid wall.

4.2 SUBPROGRAM DETAILS

The subprograms used in Proteus are described in detail in the remainder of this section. A few addi-
tional words are necessary about the input and output descriptions. The description of the input to each
subprogram includes all Fortran variables actually used by the subprogram that are defined outside the
subprogram. Variables defined and used inside the subprogram are not listed as input. In addition, com-
mon block variables that are merely passed through to lower level routines are not listed. Variables marked
with an asterisk are user-specified namelist input variables.

Similarly, the output description includes only those variables computed inside the subpfogram and used
outside the subprogram. It does not include common block variables computed by lower level routines.
In general, variables defined inside the subprogram that are used by lower level routines are listed as output,
even if they are not needed after control is returned to the calling program.

Variables entering or leaving a subprogram through an argument list are defined in detail. However,

most of the Fortran variables listed in the input and output descriptions are contained in common blocks,
and are defined in detail in Section 3.0. For that reason, they are defined only briefly in this section.

54 4.0 Proteus Subprograms Proteus 3-D Programmer’s Reference

Subroutine ADI

Called by Calls Purpose
EXEC BLKOUT Manage the block tridiagonal inversion.
BLK4
BLKA4P
BLKS5
BLKS5P
Input
* IDEBUG Debug flags.
+ IPRTIA, IPRT2A, IPRT3A Indices for printout in the &, », and { directions.
ISWEEP Current ADI sweep number.
IT Current time step number 7.
KBCPER Flags for spatially periodic boundary conditions in the ¢, #, and ¢
directions; 0 for non-periodic, 1 for periodic.
NEQ Number of coupled equations being solved, N,.
* NOUT Unit number for standard output.

NPRTI, NPRT2, NPRT3

Output

None.

Description ’

Total number of indices for printout in the &, %, and { directions.

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by
the number of - quations being solved, and by the presence or absence of spatially periodic bour lary con-

ditions in the sweep direction.

Remarks

1. This subroutine generates the output for the IDEBUG(1), IDEBUG(S), and IDEBUG(6) options.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: ADI 55

Subroutine AVISC1

Called by Calls Purpose 7
EXEC BLKOUT Compute constant coefficient artificial viscosity.
Input
A B C Coefficient submatrices A, B, and C without artificial viscosity.
CAVS2E, CAVS4E, CAVS2I Artificial viscosity coefficients @, @, and ;.

DTAU
TIAV2E, IAV4E, IAV2]

IDEBUG

IHSTAG

IPRTI1A, IPRT2A, IPRT3A
ISWEEP

IT

12,13

J1

NC, NXM, NYM, NZM, NEN

NOUT

NPRTI, NPRT2, NPRT3
NPTI1, NPT2, NPT3

NR, NRU, NRV, NRW, NET
RHO, U, V, W, ET

S

QOutput

A B, C
S

Time step At.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the &, », and { directions.

Current ADI sweep number.

Current time step number 7.

Gnid indices j and k, in the » and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-!.

Armay indices associated with the continuity, x-momentum,

. y-momentum, z-momentum, and energy equations.

Unit number for standard output.
Total number of indices for printout in the ¢, #, and { directions.

N,, N;, and N; for non-periodic boundary conditions, N, + 1,
N;+ 1, and N; + 1 for spatially periodic boundary conditions in
¢, n, and C.

Array indices associated with the dependent vanables p, pu, pv,
pw, and E7.

Static density p, velocities %, v, and w, and total energy Er at time
level n.

Source term subvector S without artificial viscosity.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

Description

Subroutine AVISC1 adds explicit and/or implicit artificial viscosity to the governing equations, using the
constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model is described in
Section 8.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and is added
only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during all
three sweeps.

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term

subvector as

56 4.0 Proteus Subprograms: AVISCI Proteus 3-D Programmer’s Reference

Dag, .
S, . ,=S5,; __CE_AT‘:!;E[(VA)zQw +(V,A)Q; ; x+ (VA Qs 4]
i, j, kT VL k Jijk g2 MLk n=n) ik {0 Rk

where i, j, and k vary from 3 to NPT1 — 2, NPT2 — 2, and NPT3 — 2, respectively. At grid points adjacent
to boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced
by second-order differences. Thus, at i=2 and at i= NPTl -1, with j and % varying from 3 to
NPT2 -2 and NPT3 -2, ’
4
C(E)A‘ri,j,k V 2 v 2
Sijx=Sijkt ATE Ver Qi gk — (V2) Qi j i — (VB Qi il

Similarly, at j = 2 and at j = NPT2 — 1, with i and k varying from 3 to NPT1 — 1 and NPT3 - 2,
. .
S(IE)ATi,j, k

Sije=Sijkt Tk

[— (V58 Qs p i+ VB, Quj k= (V:8°Qy ;4]

And, at k=2 and at k = NPT3 — 1, with i and j varying from 3 to NPT! —~ 1 and NPT2 ~ 2,
V 4
S(E)A‘[l',j,k

2 2
Sijk=Sijrt— Tk [-(VeA) Qi j k= (VA Qij e + (Ve8)Qs 1]

The second-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as :
s(Ez)At

ij,k
T, Ve Qiat VB Qijk + VA Qi 1)
O

Sijk=Sijkt
where i, j, and k vary from 2 to NPT1 — 1, NPT2 -1, and NPT3 — 1, respectively.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-
defining the cc :fficient block submatrices as

A A SIATi',j,k
L k= AL kT T g Yi-1,j,k
/ / Jijk !
SIATij k
B x=Bx+2—""Jik
»Js »J» Ji,j,k s
“:IATi,j,k

Cz,j,k=C,-,j,k—’——Jij o itk

where i, j, and k vary from 2 to NPT1 -1, NPT2 -1, and NPT3 — 1, respectively. Similarly, for the sec-
ond sweep, . -

A A 81AT2',j,k
k= Ak Y1,k
/ / Jije
SIAT,-J' k
B x=Bijxt2—— ik
s i Tk b
— eAT;j &

C-'k’:C"k——‘—"'- 1. %
iJj, iJ, Jiik Li+1,
And, for the third sweep,

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: AVISC1 57

A 7 A SIATl',j,k

k= A kT T ik

J 5K _]l.’ ik J

51A'rijk

B x=Bijr+t2——Jux
vjy ’j’ Ji,j’k ’j’

C C EI’ATI',]',IC
L kT M kT T i k+
J J j‘ Pk Jie+

23S

Remarks

1.

The sign in front of each artificial viscosity term depends on the sign of the “i,/,k” term in the difference
formula. See Section 8.1 of Volume 1 for details.

The coding to add artificial viscosity to the energy equation is separate from the coding for the re-
maining equations, and is bypassed if it is not being solved.

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the
sweep direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus
(12,11), for the second sweep the order is (I1,12), and for the third sweep the order is (11,13).

For spatially periodic boundary conditions in the ¢ direction, fourth-order differences could be used at
i=2and at i= NPTl —1 (= N,). A similar situation occurs with spatially periodic boundary condi-
tions in the » and { directions. The logic to do this has not been coded, however, and at these points
second-order differences are still used, as described above.

This subroutine generates the output for the IDEBUG(2) option.

58 4.0 Proteus Subprograms: AVISCI Proteus 3-D Programmer’s Reference

Subroutine AVISC2

Called by Calls Purpose
EXEC BLKOUT Compute nonlinear coefficient artificial viscosity.
Input
* CAVS2E, CAVS4E User-specified coefficients 2 and xa.
CP, CV Specific heats ¢, and ¢, at time level .
DTAU Time step At.

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
TAV2E, IAV4E

IDEBUG

IHSTAG

IPRTI1A, IPRT2A, IPRT3A
ISWEEP

IT

12,13

J1

NC, NXM, NYM, NZM, NEN

NOUT
NPRTI1, NPRT2, NPRT3
NPTI, NI'T2, NPT3

P, T
RGAS
RHO, U, V, W, ET

S
XIX, X1Y, XI1Z, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Output

S

Description

Subroutine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonlinear co-
efficient model of Jameson, Schmidt, and Turkel (1981), as presented by Pulliam (1986b). The model 1s
described in Section 8.2 of Volume 1. Implicit artificial viscosity is not normally used in combination with

Proteus 3-D Programmer’s Reference

Computational grid spacing A&, Ay, and A{.

Metric coefficients ., »,, 7., and #..

Flags for second-order and fourth-order explicit artificial viscosity.
Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the &, #, and { directions.

Current ADI sweep number.

Current time step number 7.

Grid indices j and k, in the » and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J~1.

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations.

Unit number for standard output.
Total number of indi_ces for printout in the &, #, and { directions.

N., N, and N; for non-periodic boundary conditio 3, N, + 1,
N+ 1, and N;+ 1 for spatially periodic boundary conditions in
¢, n, and .

Static pressure p and temperature 7T at time level 7.
Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Source term subvector S without artificial viscosity.
Metric coefficients &,, &,, £,, and &..

Metric coefficients ¢, {,, {;, and {..

Source term subvector S with artificial viscosity.

4.0 Proteus Subprograms: AVISC2 59

the explicit nonlinear coefficient model. The explicit artificial viscosity is added only during the first ADI
sweep.

The artificial viscosity in the ¢ direction is computed first, at the y-indices j=2 to NPT2—1 and
¢-indices k = 2 to NPT3 — 1. The spectral radius term ¥, ;, « and the pressure gradient scaling factor o, ;,x
are computed and stored in local one-dimensional arrays for i=1to NPT1. Special formulas are used to
compute ¢ near boundaries, as described in Section 8.2 of Volume 1.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source

termn subvector as
¥ 2
+ (7 ()60, 18:Q),
”w

¥
Sijx=Sijkt+ Ve [(—J‘)
i

Or, after evaluating the differences,

14
S k=Sijkt <7)

i+1,j,k

+ (-g—) (8(52))5,]', k(Qi +1,5,k~ Qi,j, k)

Y 2
+ (-J— (5(5))i-l,j,k(Qi,j,k'_Qi—l,j,k)
k i—-1,/,k

where i varies from 2 to NPT1 — L.

The fourth-order explicit artificial viscosity is added next, and is implemented similarly by redefining the
source term subvector as

4
Si,j,k=si,j,k'_v§ [(7

Or, after evaluating the differences,

[(v v .
Sijk=Sijk~ (7) " (7) () Qe 2,2 = 3 1,2+ 3y = Q1,50
i+ 1,4k Lk

4 4
+ (7 ()0 685V, .
i,j, k

i+1,).k

—

1),

UrE

¥ 4 '
+ (7 (s(g))z— 1 Qi1 = 3Q et 3Qi_y e~ Q2,0
X i—1,jk_|

where i varies from 3 to NPT1 — 2. Special formulas are used at i =2 and at i= NPT1 — 1, as described
in Section 8.2 of Volume 1.

The explicit artificial viscosity in the # and ¢ directions is then implemented in a manner analogous to
that just described for the explicit artificial viscosity in the ¢ direction.

Remarks
1. The sign in front of each artificial viscosity term depends on the sign of the “i,j,k” term in the difference
formula. See Section 8.1 of Volume 1 for details.

2. The coding to add artificial viscosity to the energy equation is separate from the coding for the re-
maining equations, and is bypassed if it is not being solved.

3. The subscripts on the Fortran variable S may be confusing. The first subscript is the index in one of
the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the sweep direction.

60 4.0 Proteus Subprograms: AVISC2 Proteus 3-D Programmer’s Reference

For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I1), for the
second sweep the order is (11,12), and for the third sweep the order is (I1,13).

4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be
eliminated. The logic to do this has not been coded, however.

5. This subroutine generates the output for the IDEBUG(2) option.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: AVISC2 61

Subroutine BCDENS (IBC,FBC,IEQ,IMIN,IMAX IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute density boundary conditions.
' BCMET
Input
'DEL Computational grid spacing in sweep direction.

IBASE, ISTEP

IBC, FBC

IBOUND

1IEQ
IMIN, IMAX
ISWEEP
v
JI
* NOUT
NR
RHO

QOutput
A B, C

Description

’

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I.J) and FBC(LJ), where I runs from
1 to N, comresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Unit number for standard output.

Array index associated with the dependent variable p.

Static density p at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
1IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCDENS computes coefficients and source terms for density boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular density boundary

conditions in Proteus.$

6 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript 7, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as wrilten.

62 4.0 Proteus Subprograms: BCDENS

Proteus 3-D Programmer’s Reference

No Change From Initial Conditions, Ap =10

Applying equation (6.3) of Volume 1, and noting that 8g/@6 = Jog|9Q, we get simply
Jij, 1808, k=0

Specified Static Density, p = f

Applying equation (6.5) of Volume 1,
i +1
Sk BPL k=Fk —Piik

Specified Two-Point Density Gradient in Coordinale Direction, 0p|0¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,
A 1
— D1 kBB kT k885 g k= (AN +PT k= 3k

At the & = 1 boundary,

An AR _Ansntl n n
~ I = 1, kBN — 1 ok Ik BPN k= BN G kT PN 1 kT PNk

Analogous equations can easily be written for the and { boundaries.

Specified Three-Point Density Gradient in Coordinate Direction, 8p[0¢ = [

~ Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

AN AN An
= 31,1801 j ke + A2,k BP2 j i~ 3,5,k BP3, 1=
+1 n
2(A§)fi':j,k + BP?,j,k - 4Pg,j,k + P03,k
At the ¢ = 1 boundary,

AR An An
In =2,k BPN =2 k= M 1, kPN, =1,k 3Nk BPN =
n+1 n n n
2A0fN, k= PN =2k T PN — 1,0k~ 3PN, k
Analogous equations can easily be written for the » and { boundanes.

Specified Two-Point Density Gradient in Normal Direction, Vp » n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing, N

— Tk DPY jkta k BP k=
A¢ [n+1 (‘fx’?x + éy"ly + 'fz’?z)],j,k 507 (5x€x + &yCy + :zgz)l,_j,k 5,07]

mLLk LLk - mLLk ﬂphﬂk mLLk CPLLk

n n
t P,k P2,k

where

m=~JEL+E +E)

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCDENS 63

and 6, and ¢, are the centered difference operators presented in Section 5.0 of Volume 1. At the £ =1
boundary,

An An
- JN —1,/, k8PN <1,k T JNl,j,kAPNl,j.k =

A [f” +1 (fxrlx + 5y’1y + fzﬂz)Nl,j, k n (fxcx + §yCy + gzcz)Nl‘j, k n }

M Sk NyJok ™ me,./",k nP Ny jik = mN],J',k ‘:p‘vl’j'k
n n

T PN -1,k T PN K

Analogous equations can easily be written for the # and { boundanes.

Specified Three-Point Density Gradient in Normal Dz’rection, Voo E =/

Applymo equation (6 12a) of Volume 1 at the ¢ = 0 boundary, and usmg three-point one-sided differ-
encing,
— 315k BPT j k+ Mo, k8P k= 3,k B3 j k=
2A¢ f,, +1_ (Exmx + éy’ly + ﬁznz)l,j,k 507 (ExLx+ ﬁycy + ‘fzgz)l,j,k 5.0
1 LP1,Jj,

Mk ™k nP)k Mk

n n n
+3p1, 56— %02,k P3,)k

=Jelveteek

and 6, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the £ =1
boundary,

where

AR AR AR
IN 2,5,k 3PN, 2,5k~ VN -1,k BPN 1,5kt 3N,k BPN, k=
ZAf [fn +1 (gx’?x + gy"’y + éznz)Nl,j,k n _ (fxc): + 6)»{}; + ézcz)Nl,j, k n —‘

le ik Nk My .k nPN,,-j,k oy PNk

n n n
— PN —2, 5kt 30N 1),k 30N,)k
Analogous equations can easily be written for the » and { boundaries.

Linear Extrapolation of Static Density

Applying equation (6.14) of Volume 1 at the £ = 0 boundary,
A
Tk BPT 2y kAP T3k APY k= P1j kF 202,k = P3,j k
At the ¢ = 1 boundary,

An An An _ n n n
IN =2, kBPN, =2, k= 2N, = 1,5,k BPN =1, kT INL R BPN, k=T PN, =2,k T 2PN =1, kT PN

Analogous equations can easily be wrtten for the » and { boundaries.
Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent density boundary condition is
specified.

64 4.0 Proteus Subprograms: BCDENS Proteus 3-D Programmer’s Reference

Subroutine BCE LIM

Called by Calls Purpose
EXEC SGEFA Eliminate off-diagonal coefficient submatrices resulting from three-
SGESL point boundary conditions.
Input

A B, C Coefficient submatnices A, B, and C before eliminating off-
diagonal blocks.

IBCELM "Flags for elimination of off-diagonal coefficient submatnces re-
sulting from three-point boundary conditions in the ¢ and/or n
directions; O if elimination is not necessary, 1 if it is.

ISWEEP Current ADI sweep number.

v Index in the “vectorized” direction, i,.

NEQ Number of coupled equations being solved, N,,.

NEQP Dimensioning parameter specifying maximum number of coupled
equations allowed.

NPTS Number of grid points in the sweep direction, N.

S Source term subvector S before eliminating off-diagonal blocks.

Qutput

A B C Coefficient submatrces A, B, and C after eliminating off-
diagonal blocks.

S Source term subvector S after eliminating off-diagonal blocks.

Description

Subroutine BCELIM eliminates the off-diagonal coefficient submatrices that result from the application
of three-point boundary conditions. This is necessary when three-point gradients are specified in the coor-
dinate or normal direction, and when linear extrapolation is used. The procedure is described in Section
7.2.1 of Volume 1.

Remarks

1. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with
NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Fortran se-

quence

10

call sgefa (a,lda,n,ipvt,info)

do 10 3 = 1,ncol

call sgesl (a,lda,n,ipvt,b(1,3),0)
continue ’

computes A~ !B, storing the result in B.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BCELIM 65

Subroutine BCF (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCFLIN Compute user-written boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.

IBASE, ISTEP

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

IBC, FBC Mean flow boundary condition types and values for current sweep
direction, specified as IBC(LJ) and FBC(1,J), where I runs from
1 to N, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.- - -

IEQ Boundary condition’equation number.

IHSTAG Flag for constant stagnation enthalpy option. -

IMIN, IMAX Minimum and maximum indices in the sweep direction.

ISWEEP Current ADI sweep number.

v Index in the “vectorized” direction, i,.

J Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

NOUT Unit number for standard output.

NR, NRU, NFV, NRW, NET

Array indices associated with the dependent vanables p, ¢, pV;
pw, and Er.

Output
A B, C Coefficient submatrices A, B, and C at boundary IBOUND (row
1EQ only).
S Source term subvector S at boundary IBOUND (element IEQ
only). :
Description

Subroutine BCF computes coefficients and source terms for user-written boundary conditions of the
form AF=0, F=f, 3F|0¢ =f, and VF n = f. The values of F and its derivatives with respect to the de-
pendent variables must be supplied by the user-written subroutine BCFLIN. The linearized equations for
these types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections ex-
pand these generalized equations in detail.”

7 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript 7 is used. The super-
scripts on all other variables are correct as written.

66 4.0 Proteus Subprograms: BCF Proteus 3-D Programmer’s Reference

No Change From Initial Conditions, AF =0

Applying equation (6.3) of Volume 1, and noting that agléf) = J9g/éQ, we get simply

n
6F F aF , »~
Jij Ap +—— W)+~ 8p) + 3 W) + = AE =0
Specified Value, F=f
Applying equation (6.5) of Volume 1,
n
OF oF oF oF oF _ .n_+1 _rn
Ji,j,k[ap A + = a(u) A()+ () A(})+ (P) A(p)+ AET:I[_fl.,_],k E,j,k

'j)k

Specified Two-Point Gradient in Coordinate Direction, 0Fj0¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

—Juk[g]; Ap + 6(6;54) A(PAU)*"ﬁA(pv) + (aF) A(p w) + aé:r AI%T]
1,j,k

n
oF oF OF 4 A OF , Ao OF A _
+12,jk[a Ap + =2 o A(pu) + S AP+ Gy AW + 5 AET:L =

(Afmn+1+Fljk—F2jk

At the ¢ = 1 boundary,

oF oF A d
—JN,—l,j,k[Ap +—— A(u) + a()A(pv)+ a(F

n
3F
Alow) + 2L AET]
ap a(pu) dEr M1k

. - n

oF OF o Dy OF A OF o OF 4P =

+ 5., k[5 Ap + %) Alpu) +) A(pv) + o) A(pw) + 3E; AET:IN ; .
1

+1
BN kT FNl-—l k= Fr ik
Analogous equations can easily be written for the # and { boundaries.

Specified Three-Point Gradient in Coordinate Direction, 0F|0¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCF 67

[OF A, OF OF _pno(OF jinn o OF pp]
3jl,j,k 50 M+ 0o)A(P+ 505)A(pv)+ 2wy 2P+ BES AET_ Uik
T OF A F ’\' _OF
[AF . A oF oF OF |
— S| T-AR+ Alpd) + =~ A(pv) + W)+ g A N
3.0k Tap P T o) (e + 5() a) &pw) Ale) OEr ~ 43,5,k
2AA T+ 3F o= 4F + FY
At the ¢ = | boundary,
[~ aF aF n a T
Y a() A(p2) + ()A(P+ By MM+ e, AET_ .
— 7
i 8F A _QF__ oF " _.aL £
-4y 1k | 5 Ap +) A(pu) + o) Ap) + A(pw) Alew) + OET AET_ No— 1.k
R 1 — L/
~ —-n
OF . oF oF A oF n 5F - =
N R 7 Alpd) + 3ov) 2+ Gy AP+ G AET_N e
1/

+1 :
2085 k= Fu 2,5,k t 4Fn gk~ 3Kk
Analogous equations can easily be written for the # and { boundaries.

Specified Two-Point Gradient in Normal Direction, VF«n = f

Applying equation (6.122) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

[OF A, OF
k| 5 8+ 30a O0 + 3

n
oF Ao JF
A(pw) AET]
dpw) OEr Lk
[oF oF

oF A oF oF 21
+Jz,j,k_TA TP el)+0()A(pv)+5(PW) A)+FE—AElek=

()()+

A
ml,j,k 'fl»j:k T ml,j’k Lik™ ml,j’k

B Enx + + &M <+ + &L
n+1 (x’? gyny 52'1)l,j,k éy’Fn (6XC fycy EZC)1,J,k 5CFlnj kj|

n n
+F ek
where
;2. ;2 2
= éx +§_y +§z

and 6, and &; are the centered difference operators presented in Section 5.0 of Volume 1. At the { =1

boundary,

68 4.0 Proteus Subprograms: BCF) Proteus 3-D Programmer’s Reference

n
OF \n _OF ,. ") N
—Jn -1k 2p Ap + o EPD) A(pw) + 5(A(v) + () Alpw) + 3E; AET:] .
- - =N -1,4k
aF A oF ~ oF oF . A B
+ Nk Ap +—— o0 Alpu) + 6((v) + 3w)A(p W)+ ——— 3E; AET:I =
- N.J &
Aé i ,3+] _ (fx’bc + 6y11y + f2’72)1’\,’1,_]',k no_ (gxcx + &yCy + ézCz)‘.Vl,j’k s F
Nk | Nu k My ik NyJ k P ok (E'NL Lk

n n
+Fyn 10— FNk
Analogous equations can easily be written for the # and { boundanes.

Specified Three-Point Gradient in Normal Direction, VF « n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-

encing,

[~ OF , A F Ao dF
[OF A, OF oF OF ., Ao 3F A
#4508+ Gy AP+ gy BN+ iy M+ AET-z,-k
— —
OF . A oF oF A 8F A _
_J3’j'k_5p Ap+a()A()+5()A(pv) + 3w)A(pW)+aETAET_3jk—
2A¢ frz+1 (Exnx'i"fy'ly"'fz’lz)l,j,k 5 o (5x5x+§yé’y+6252),,j,k S.EM
my ik ! m ik Lk m ik 1,k

+3ff,j,k—4fg,j,k+f?,j,k

where

- /¢x2+§y2+§22

and 6, and §; are the centered difference operators presented in Section 5.0 of Volume 1. At the {=1
boundary,
[OF ,n A OF . A oF _OF
JN, — 2,/ k i ap Ap + a(pu) A(pu) + a(pv) A(pV) + = a() A() aE AET— gk
[OF A, OF . " n)
Wn 1,k | 5 Ap +——————a(pu) Alpu) + 6() A(v) + 6() (pw)+—aET AET_N .
)Jvk
— n
OF , A oF 8F . A T
+3Jy ; ——Ap + A + A w +—=——AF =
Nl'f’k_ap £ a(u) () () () () () aE T__JN -
]:.]:
2Af n+1 (Ex’br + éyrly + 62’72)N1,j,k (fxCx + éyc_y + ézcz)Nl’j’ k F
My, j k fv, kT N,k n NG kT TNk OcFn ik
"F,G,—z,j,k“*‘ 4Fan—1,j,k— 3Flgx,j,k

Analogous equations can easily be written for the n and { boundaries.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BCF 69

Linear Extrapolation

Applying equation (6.14) of Volume I at the ¢ = 0 boundary,

—n

" AF OF éF " SF
Ji “Ap+ TP + 3w Al AE
Lik| p a(u) Api) + B(pv) () aew ™" BEr ik
r- an
—zjz’j,k‘_‘aAPJf' a(A()+a(‘) ()+ () ()+6E AET—zjk
aF OF " F shy+-ZEabr| =
3 k| 25+ 3o Alpu) + 6(v) A(pY) + B)A(PW)-I- 3E; AET_”k—
- Fl',’j,k + 25— B3k
At the & = 1 boundary,
I —aixl =— 0 +—=—A(pr) + Alpy) + A *t2ES AE
Mi=25k| T3 2P T 3(0u) (o 3w~ Fow (" T—N —2,j,k
" OF ., _OF oF o
— 2 1| =Ap+ Alpw) + =~ A * P, AE
M=Lik| 3 “F 7 3o Z a() A + opw o T—N—ljk
an
" oF OF oF oL
7y | Eapy Alpr) + 5 Mev) + 57 Mpw) + 55— AE N
Mjk| Tap dpu) (4 () (i d(pw) (¥) 7] Ny d ke

n n n
—Fy 2kt 2N~k FN b
Analogous equations can easily be written for the # and { boundanes.
Remarks

1. This subroutis : uses one-dimensional addressing of three-dimensional arrays, as described in I :ction
2.3.

2. An error message is generated and execution is stopped if a non-existent user-written boundary condi-
tion 1s specified.

70 4.0 Proteus Subprograms: BCF Proteus 3-D Programmer’s Reference

Subroutine BCFLIN (IBC,IEQ,IBOUND,IMIN,IMAX,F,DFDRHO,DFDRU,DFDRV,DFDRW,

DFDET,FBCMA,FBCMB,FBCPA,FBCPB,FBC)

Called by Calls Purpose . ,
BCF User-supplied routine for linearization of user-supplied boundary con-
ditions.
Input

IBASE, ISTEP

IBC

IBOUND

IEQ

IMIN, IMAX
ISWEEP
11,12, 13
NIP, N2P

Qutput
DFDRHO, DFDRU, DFDRY,

DFDRW, DFDET
F

FBC

FBCMA, FBCPA

FBCMB, FBCPB

Proteus 3-D Programmer’s Reference

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types for current sweep direction,
specified as IBC(1,J), where 1 runs from 1 to N.,, corresponding
to the N,, conditions needed, and J = | or 2, corresponding to the
lower and upper boundaries. '

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Grid indices i, j, and k, in the &, #, and { directions.

Parameters specifying the dimension size in the ¢ and » directions.

Three-element arrays, specified as DFDRHO(IW), etc., giving
the values of F|dp, 0F|d(pu), OF|8(pv), OF|0(pw), and F|OEr.

A three-element array specified as F(IW) giving the value of the
function F at the boundary (IW = 1), at the first point away from
the boundary (IW = 2), and at the second point away from the
boundary (IW = 3). Values at IW = 3 are not needed for bound-
ary condition types 91, 92, or —92. Values at IW = 2 are not
needed for boundary condition type 91.

Boundary condition values for current sweep direction, specified
as FBC(1,J), where I runs from 1 to N,,, corresponding to the N,,
conditions needed, and J = 1 or 2, corresponding to the lower and
upper boundaries. This is only needed if values for GBC1, GBC2,
or GBC3, or FBCI, FBC2, or FBC3, are not specified in the in-
put namelist BC.

Boundary condition values on the boundary, at the grid points
“eft” and “right” of the current boundary point, in the first non-
sweep direction. These are only needed for boundary condition
types + 93.

Boundary condition values on the boundary, at the grid points
“eft” and “right” of the current boundary point, in the second
non-sweep direction. These are only needed for boundary condi-
tion types + 93.

4.0 Proteus Subprograms: BCFLIN 71

Description

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCF for user-written
boundary conditions of the form AF =0, F= f, 8F/d¢ =f, and VF« n = f. BCFLIN supplies the values of
F and its derivatives with respect to the dependent variables, which are required for writing the linearized
form of the boundary condition.

The version of BCFLIN supplied with Proteus makes BCF equivalent to BCTEMP, except for the total
temperature options in BCTEMP. Thus F=T, 0F}dp = 8T|dp, etc., where T and its derivatives with re-
spect to the dependent variables are computed using the perfect gas equation of state. (See Section 4.3 of
Volume 1.) This version of BCFLIN is intended as an example for use in coding boundary conditions not
already available.

Remarks
1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section

2.3.

2. The capability of specifying FBC as an output variable may be useful in wrnting time-dependent
boundary conditions. It also may be used when specifying boundary conditions involving derivatives
in one of the non-sweep directions. In this case, the derivatives in the non-sweep directions may be
lagged one time step and treated as source terms.

72 4.0 Proteus Subprograms: BCFLIN Proteus 3-D Programmer’s Reference

Subroutine BCGEN

Called by

Calls

Purpose

BVUP
EXEC

BCDENS
BCF

Manage computation of boundary conditions.

BCNVEL
BCPRES
BCQ
BCTEMP
BCUVEL
BCVVEL
BCWVEL
BCIVEL
BC2VEL
BC3VEL
BLKOUT
ISRCHEQ

Input

*

*

FBCI, FBC2, FBC3
IBC1, IBC2, IBC3

IDEBUG ,
IPRTIA, IPRT2A, IPRT3A
ISWEEP

IT

v

11, 12, 13

NBC

NEQ

NOUT

NPRTI, NPRT2, NPRT3
NVD, NPTSD

N1, N2, N3

Output

IBC, FBC

IBOUND

IEQ

Proteus 3-D Programmer’s Reference

Point-by-point mean flow boundary condition values for the ¢,
n, and { directions.

Point-by-point mean flow boundary condition types for the &, »,
and { directions.

Debug flags.

Indices for printout in the &, », and { directions.
Current ADI sweep number.

Current time step number 7.

Index in the "vectorized” direction, i,.

Grd indices i, j, and &, in the £, , and { directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,,. -
Unit number for standard output.
Total number of indices for printout in the &, 5, and { directions.

Leading two dimensions for the arrays A, B, C, §, \IETX
METY, METZ, and METT.

Number of grid points Ny, N;, and Nj, in the £, », and { directions.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(1,J), where I runs from
1 to N, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number, from 1 to N.,.

4.0 Proteus Subprograms: BCGEN 73

IMIN, IMAX Minimum and maximum indices in the sweep direction.

Description

Subroutine BCGEN manages the computation of coefficients and source terms for the mean flow
boundary conditions. It first loads the NEQ boundary condition types and values from the input arrays
IBC1 and FBCI, IBC2 and FBC2, or IBC3 and FBC3, depending on the ADI sweep, into the arrays IBC
and FBC. This was done so that the BC routines could be non-sweep dependent. Next the coefficient
submatrices and source terrn subvectors at the two boundaries in the current sweep direction are initialized
to zero. And finally, the appropriate BC routine is called, depending on the input boundary condition type,
for each of the NEQ boundary conditions at each boundary in the sweep direction.

Remarks

1. An error message is generated and execution is stopped if the boundary condition type is less than 0
or greater than 99. ,
2. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.

3. This subroutine generates the output for the IDEBUG(3) option.

74 4.0 Proteus Subprograms: BCGEN Proteus 3-D Programmer’s Reference

Subroutine BCGRAD (F,1,DFD1,DFD2,DFD3)

Called by Calls Purpose

BCDENS Compute gradients with respect to £, 1, and {.
BCF -
BCPRES
BCQ
BCTEMP
BCUVEL
BCVVEL
BCWVEL

Input

DXI, DETA, DZETA Computational grid spacing A&, Ay, and AL.

F A three-dimensional array, specified as F(IJ,K), containing the
function f whose gradient is to be computed. The subscripts I, J,
and K run from 1 to N, N, and N, respectively.

I Current grid point index in the current sweep direction.
ISWEEP Current ADI sweep number.
11,12, 13 Grid indices i, j, and k, in the &, , and { directions.
* NI, N2, N3 Number of grid points Ny, N2, and N3, in the &, 5, and { directions.
Output
DFD1, DFD2, DFD3 First derivatives of f with respect to &, », and {.
Description

Subroutine BCGRAD computes first derivatives of the function f, with respect to g n,ari ¢, at the
current grid point in the ADI sweep direction. At interior points, the centered difference formula presented
in Section 5.0 of Volume 1 is used. For derivatives with respect to ¢, :

o 5 fivrjk—tic1jk
ot) T . Ag

i,j, k
An analogous formula is used for » and { derivatives.

At boundary points three-point one-sided formulas are used.

of
(‘as_) ~ 3;{?(—3ﬁ,j,kf4fz.j,k—f3,j,k)
1,/,k ’

o 1
(7{) = 2A¢ (fo"l,j,k—4fN1—1,j,k+3f:Vl,j,k)
Nh./,

Again, analogous formulas are used for » and { derivatives.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCGRAD 75

Subroutine BCIMET (I, XXI,XETA,XZETA,YXL,YETA,YZETA,ZXI,ZETA ZZETA)

Called by Calls

Purpose

BCIVEL
BC2VEL
BC3VEL

Compute inverse metrics at a point in the current sweep direction.

Input

ETAX, ETAY, ETAZ

1

ISWEEP

11,12, 13

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

Output

XXI, XETA, XZETA
YXI, YETA, YZETA
ZXI, ZETA, ZZETA

Description

Metric coefficients #, 7y, and #..

Current grid point index in the current sweep direction.

Current ADI sweep number.
Gnd indices i, j, and k, in the ¢, », and { directions.
Metnc coefficients &,, &, and £..

Metric coefficients {,, {,, and {..

Derivatives of x with respect to &, n, and {.
Derivatives of y with respect to £, », and {.
Derivatives of z with respect to &, 5, and {.

Subroutine BCIMET computes the inverse metrics using the following formulas:

76 4.0 Proteus Subprograms: BCIMET

% =3 00, = nity)

Ve = (k= md)
§=%(’1x£y 78
x, = &4y = &L
Yy = ke = £
7= 1 (G- &)
xg=%(2= $My)
y;=%(x — $xMz)
% =3 Gty = £

Proteus 3-D Programmer’s Reference

Subroutine BCMET (I,FMO0,FM1,FM2,FM3)

Called by

Calls

Purpose

BCDENS
BCF
BCNVEL
BCPRES
BCQ
BCTEMP
BCUVEL
BCVVEL
BCWVEL
BCIVEL
BC2VEL
BC3VEL

Compute various metric functions for normal gradient boundary con-
ditions. '

Input

ETAX, ETAY, ETAZ

I
ISWEEP
I1, 12,13

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

Qutput

FMO0, FM1, FM2, FM3

Description

Metric coefficients »,, 1y, and 7,.

Current grid point index in the current sweep direction.
Current ADI sweep number.

Grid indices i, j, and k, in the &, 5, and { directions.
Metric coefficients &,, &, and &..

Metric coefficients {,, {,, and {..

Various metric functions used for normal derivative boundary
conditions.

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the

first ADI sweep,

For the second sweep,

And for the third sweep,

Proteus 3-D Programmer’s Reference

FMO=+/&+ &+ &

FMI1=0
FM2= ¢+ Emy, + Em2

FM3=¢ L + {8, + ¢4,

FMO = /7 + 1 + 15
FMI1 =, + iy”ly + &,
FM2=0

FM3 =9yl + ’TyCy +nL;

4.0 Proteus Subprograms: BCMET 77

FMO=+/C2+ {3+
FMI = &L, + &0, + &
FM2=n{x+mly + 1k,
FM3 =0

78 4.0 Proteus Subprograms: BCMET Proteus 3-D Programmer’s Reference

Subroutine BCNVEL (IBC,FBC,IEQ,IMIN, IMAX,IJBOUND)

Called by Calls Purpose .
BCGEN BCMET Compute normal direction velocity boundary conditions.
BCVN
Input
DEL Computational grid spacing in sweep direction.

DXI, DETA, DZETA
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

v

11,12, I3

J

METX, METY, METZ

NOUT
NR, NRU, NRV, NRW

RHO, U, V, W

QOutput

A, B, C

S

Description

Computational grid spacing A¢, An, and AL.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,]), where I runs from
1 to N,,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the “vectorized” direction, i,.

Grid indices i, j, and %, in the &, n, and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J~1. '

Derivatives of sweep direction computational coordinate with re-
spect to x, y, and z.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Static density p, and velocities «, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only). '

Subroutine BCNVEL computes coefficients and source terms for normal direction velocity boundary

conditions. The linearized equations for the various general types of boundary conditions are developed in

Section 6.0 of Volume 1. The following sections apply these generalized equations to the particular normal

direction velocity boundary conditions in Proteus.?

¢ In the following description, for the first and second ADI sweeps the dependent variable should have the superscript

* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BCNVEL 79

Specified Normal Velocity, Vo.=f

The normal velocity is defined as
Vio=Ven

where 7 is the unit vector normal to the boundary. For a ¢ boundary,

where

Therefore, for a ¢ boundary,

Vi = (Egti+ &y + EW)

Note that the unit vector 7 is in the direction of increasing ¢. Therefore V, is positive in the direction of
increasing ¢. Thus, a positive V, at ¢ = 0 implies flow into the computational domain, and a positive V;,
at ¢ = 1 implies flow out of the computational domain.
Similarly, for an » boundary,
v =L

7 =5 (M + v+ n,W)

where
[2 2 2

m=~/ny +tm +mn;

and V, is positive . the direction of increasing ».

And, for a { boundary,
V= o Gt + Ly + L)
where
m=Jii+¢}+¢}
and V, is positive in the direction of increasing .

Applying equation (6.5) of Volume 1, the linearized boundary condition at a £ boundary becomes

n

Ji : Eut+éEv+ f W ¢ | A & A & A

Sk X y z ¥ +1

o [— 5 13,3+—;,X—A(Pu)+TA(PV)+TzA(PW):|‘ 'k=fz:,nj,k — (Vi k
b/,

Analogous equations can easily be written for the » and { boundares.

superscript 7, representing the final solution. For simplicity, however, only the superscript 7 is used. The super-
scripts on all other variables are correct as written.

80 4.0 Proteus Subprograms: BCNVEL Proteu§ 3-D Programmer’s Reference

Specified Two-Point Normal Velocity Gradient in Coordinate Direction, 8V,[0¢ = [

Applying equation (6.8) of Volume 1 at the £ =0 boundary, and using two-point one-sided differencing,

At the ¢ = | boundary,

n

Jl,v,k éxu+§yv+§w & é ¢,
—ml’.k [— ——Ap+ "A(pu)+—A(pv)+—A(pw)]
r./r N lrj)k
I Eu+ Ev+Ew & A "
ik [STy i Sx g A+ SR a6 | =
2,/, K 14 P .
2,/ k
AR + V) = Vaajk
In —1,j,k ¢u+éy+Liw ¢ gy ¢,
m§_1j~k[‘ — b+ *A(pu)+——A(pv>+—A(pw>]
f s N -1,j,k
Tk Eu+Ey+Ew £ "
ptL [— TP TNy S A(pu)+—A(pv)+——A(pw>] =
N k P i
N k
AR5+ Vv — 1= VN sk

Analogous equations can easily be written for the » and { boundanes.

Specified Three-Point Normal Velocity Gradient in Coordinate Direction, 3V,[0¢ = =

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-

ing,

Jl,j,k B §Xu+§yv+§zw
T | P
4 JZ,j,k s éxu'*"fyv'*'ézw
+ —-—
Mgk | P
J3,j,k [~ §Xu+§yv+§zw
Tomk | 2

At the & = 1 boundary,

—4

Jt

Ap +

A

Ap +

Ap +

-fx Sy ¢,
=X Apu) + A(PV) +— A(pW)

¢,
5* X AQpw) + 2 A(pv) + i Apw)

fx

& . A
=X Alprd) + - Alov) + —f,— A(pw)

AAOR T+ 30V = 4V ke + (Vi ik

vi—2.k [Sautiy+iw
My -2,k | P P
JNI—I,j,k —_ {Xu-f-&yv-i-fzw n
My~ 1,5k | P

‘]N],j,k —— fxu+§yv+§zw A

Nk L P Pt
n+1
208/ 5 (

Proteus 3-D Programmer’s Reference

n n
Vv -2,k Vol — 1,56~

5—)‘ A(p u)

fx Sy ¢,
A(pu) +—> A(P") +-== A(m»)

éx gy ¢,
A(pu) +—- A(PV) +— A(pW)

3(Vn)rIIV], ik

¢ A ¢, P
+ —pi AlpY) + —- Alpw)

4.0 Proteus Subprograms: BCNVEL

81

Analogous equations can easily be written for the # and { boundaries.

Specified Two-Point Normal Velocity Gradient in Normal Direction, VV,en=f

Applying equation (6.12a) of Volume 1 at the ¢ =0 boundary, and using two-point one-sided differ-
encing,

Nje [&utipy+iw 5 N " .
Sk X y 5z A i l <
T | P - Ap + - Apw) + - Apv) + A(pW)]
- 1)k
Sk T Saut &+ Ew ¢ ¢, 3 n
myik | 2 Ap+ “iA(Pu)+—A(pV)+—A(pw)] =
2,5, & .
- 2,7,k
A& n+1 (fx"lx‘f"fy”y""fz’lz)],j,k 5 (VT (gxl:x_*_fycy"":zcz)l,j,k s
"k fl ™ 0,,(n)l,j,k_ Mk 64 n)l,j,k

+ V= Vda gk

and &, and &; are the centered difference operators presented in Section 5.0 of Volume 1. At the é=1
boundary,

Sy -1 - Lutéy+iw ¢ A ¢ A 14 AT
1 — Lk x y ¥ A * y R
T My ik - P Ap + 7 Alpu) + 'R A(pv) + —'p—A(pw)
1)y .
- Ny =14k
In i [Exutéytiw & £ :, n
PRk SR T T AR =K Ale) + 2 AleY) + - Alw) -
1V1,j,k P .
- , Nk
Al nat _ Gxlx oMy F SNk s (Edx+ &8 + LIk 5
le,j,k f Nid kT My, k ()Nx LET oy g()Nl Lk

n
+Van — 1,5k~ Vg k
Analogous equations can easily be written for the » and { boundanes.

Specified Three-Point Normal Velocity Gradient in Normal Direction, VV,« n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

I - fu+éEv+Ew n f 7
R ey V 51A<pu)+—A(pv)+é—A(pw)
ml,j’k p ;
_ Lk
hiw T Eatép+éw ¢ & oA
20k | XY T AL " A(pu)+—A(pV)+~—A(pW)
mz",,k P ;
L —2ik
i [Eu+év+Ew 5 T
m3,j’k P ;
n =3,k
2A¢ ne1 Catxt &my+ &M xbx + &y + ¢4k
m j k Mope— ™ ik SnlVn W™ ™)k i ik

+ 3(Vn)?,j, =X Vn)g,j, kt (Vn)g,.f’ k

82 4.0 Proteus Subprograms: BCNVEL Proteus 3-D Programmer’s Reference

and &, and §; are the centered difference operators presented in Section 3.0 of Volume 1. At the E=1

boundary,
Ty a1k [Eutiptéw ¢ & & oo
A B il A+JNM+ Mm+—MW) :
Vl—'z,j,k L P - 2,j
-2/, k
Iv—1je [Gut&y+Ew ¢ & ¢, T
Bl R 85 + =5 (5 + - A(p¥) + 5 B(pw)
M-Lix | N - Lk
Tk Exu+ &y + & ¢ ¢ T
+ 3 l’./j _ X y r4 AS + C_XA(pAu) + .l A(F;\V) + i A(p,;v) =
le,j,k) P P P .
L~ —Nl’Jik
2AE - (Exne + éy"y + ézﬂz)Nl,j,k (&L + §yCy + fzcz)Nl,j,k yn
T"E—k— fVl Ll — o So(VadN, k= ik S(VIN,j k
()1’\(—2_/k+4()N—]Jk 3(Vn)’;/1,j,k

Analogous ‘equations can easily be written for the » and { boundaries.

Linear Extrapolation of Normal Velocity

Applying equation (6.14) of Volume 1 at the { =0 boundafy,

Sk Eutév+Ew & é &,
Lhk | 20 T T AR+ Apd) + A(pv)+—A(pw)
Mk P .
L =1,/ k
AR Eu+Ev+Ew & 3"
_a gk [SEESTREN pp B L) + S
gk .
| -2,/ k
g [&+ v+ Ew & & g, 7"
.Y R A(pu)+—A(pv)+——A(pw) =
my jk P .
-3,/ k
~ Wl e+ 2V k= Va3 k
At the ¢ = 1 boundary,
JN—2,j,k [fxu+§v+§w - é f f A "
|~ ST AP+ SR Al + - AV + - Alpw)
1= 2., —N -2,k
Iy 1k [&utév+iw & gy 7"
e I (R A(pv)+iA(pw)
Ny -1,/ k .
N -1,k
JAr ik [~ E u+f v+ 6 W E f é 71"
Nk | DT b+ =R A+)+ Apw) | =
N, J K ;
—Nl,j)k
-V)N—2jk+2(V Ny =15,k (VN, k

Analogous equations can easily be written for the # and { boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section

2.3.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BCNVEL 83

2. An error message is generated and execution is stopped if a non-existent normal direction velocity
boundary condition is specified.

84 4.0 Proteus Subprograms: BCNVEL Proteus 3-D Programmer’s Reference

Subroutine BCPRES (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose :
BCGEN BCGRAD Compute pressure boundary conditions.
BCMET
Input
CP, CV Specific heats ¢, and ¢, at time level n.
DEL Computational grid spacing in sweep direction.

*

DPDRHO, DPDRU, DPDRY,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRYV,
DTDRW, DTDET

GC
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IHSTAG

IMIN, IMAX

ISWEEP

v

JI

NOUT

NR, NRU, NRV, NRW, NET

P, T

PR

RGAS

RHO, U, V, W
RHOR, UR

Output

A/B,C

Proteus 3-D Programmer’s Reference

Denivatives dp/dp, dp|3(pu), dpld(pv), 8p|d(pw), and Op/OET.
Derivatives 87/dp, T|&(pu), 8T|3(pv), 8T|3(pw), and OT/OLT.

Proportionality factor g, in Newton’s second law.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(LJ), where I runs from
1 to N,,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i.

Inverse Jacobian of the nonorthogonal grid transformation, J-'.
Unit number for standard output.

Array indices associated with the dependent vanables p, pu, pv,
PW, and ET.

Static pressufe p and temperature 7 at time level n.
Reference pressure p,.

Gas constant R.

Static density p, and velocities «, v, and w, at time level n.

Reference density p, and velocity .

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

4.0 Proteus Subprograms: BCPRES 85

Description

Subroutine BCPRES computes coefficients and source terms for pressure boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular pressure boundary
conditions in Proteus.’

No Change From Initial Conditions, Ap=10

Applying equation (6.3) of Volume 1, and noting that 6g/6(§ = Jdg/0Q), we get simply

5p op 5p A op I op A "
Jiiwl =—ap + A + A(pv) + ——A(pw) + == AF =0
The derivatives dp/dp, dp/d(pu), etc., depend on the equation of state. They are defined for a perfect gas

in Section 4.3 of Volume 1.

Specified Static Pressure, p=f

Applying equation (6.5) of Volume 1,

op op ap ap A a ol] 28 »
Ji,j,k[a Ap +—=— a(u) () + a(V) (P) + = () A(pW) + FE_T AET . f prurz pi,j,k
&,

Specified Two-Point Pressure Gradient in Coordinate Direction, 3p[d¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n

d 3 A dp ap ap
‘Jx,j,k[pAP (ff;) A(eu) v)A(pv) + Fow) A(p W)+ = 3E; AEr]

1,7,k

op 3 A 3 AT
k| 5 Ap+a(5 Alp:)+a(5 A(p) + (p)A(pw)-i-FPT_AET:'z.k:
2

At the & = | boundary,

F) ap op ap ap 7T
_JNl—I,j,k[ap Ap + 0w Alprd) + oY) (P) + o) A(PW)+ gT AET:I
Ny -1,k

n
dp op p . n op A o A
vy ,,k[- 0h + g M) + 5y W) + g M) + 2= MEp | =
Nl J k
1 P&
(A{)f(‘]"; k ru; +P§'1—1,j,k_Px'l,j,k
P

r-r

9 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.

86 4.0 Proteus Subprograms: BCPRES Proteus 3-D Programmer’s Reference

Analogous equations can easily be written for the » and { boundaries.

Specified Three-Point Pressure Gradient in Coordinate Direction, dp|0$ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-

ing,
_ n
P gy 42 op P _ g + -2 A
37, .| 2= AD+ W+ 5 Ao V) + 5 Alpw + 55— AE
p A op
+47, 0| == AP+ A(pid) + ApY) + 5 A(P)+ AET
HL dp ((v) A(pw) bk
B an
ap 5 ap p A op op
Y A —— Alpt) + — ApV) + ——— N =
3,J,k— ap a(u) () () (P) a(p) (P) E T—3j .
Pr&
AADTE 437 k= 405+ P
P,-u,

At the ¢ = 1 boundary,

-n

p A ap (?p ap op
Iy 0 ixl =—Ap+ Alp? W+ 55 AV + 3 A + AE
1" 2/
[ap A a ap a ap A "
4Ty 1 i pl — AP+ ————Alpr) + +———A w+ AE
Nl l,j,k_ ap P a(p) (P) (p) (p) () () T T—N ik
1— L,
v | Poas = Ay + =2 A + =P Aoy + 2 s -
sk B 88 + iy B+ 5y APV + W) + v
L N,
1 P& '
2880 5k 'uc =P — 2kt 4PN, — 1,k 3PNk
Prir

Analogous equations can easily be written for the » and { boundanes.

Specified Two-Point Pressure Gradient in Normal Direction, Vp - n=f

Applying equation (6.12a) of Volume | at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n

5o 2Pan 2P Ay + = Ay + 2 M) + = AE]
Lik| Bp %0 T aow 3 T dlew) Er =T
[op . dp A ap A 6p ap :In
+J,5 ; —Ap + Alpu) + ——— A(pV) + ——A W + AE =
A& [n+1 Pr8c (gxnx+§yny+§z’lz)l,j,k n (fxCx+§yCy+§zCz)l,j,k 5.
m]’j,k f],j,k 2 ml’j,k 6’?plrjrk— ml,j,k Cpl»j:k
| _ rur
+P1r,'j,k—P2’,'j,k
where

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCPRES 87

2 "
m=J&l+&+&]

and §, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the {=1
boundary,

J apA+ A +apAA+apA“+a”A§n
L N1
[op dp op A ap A ap n
5| gy P+ g AP+ Sy ANy MO+ G AETL o
~ 1>
'——Aé fn + 1 prgc _ (‘fxﬂx + éyn)’ + 52"2)1\"1,]’1(5. p _ (fxcx + 5)’{}’ + 52C2)N1J»k S.pl .
mN;,j,k Vl j» rur mN"j’k R ﬂle,_],k le,j,k Cle Fi k

n
+PN1 — 1L kT PN,k
Analogous equations can easily be written for the n and { boundarnes.

Specified Three-Point Pressure Gradient in Normal Direction, Vp » n=f

Applying equation (6.122) of Volume 1 at the { = 0 boundary, and using three-point one-sided differ-
encing,

— -n

op .~ _0P op op ap
_3J1,j,kbap Ap + i)A(pU) + o) (p)+ How)A(p W)+ = 3E, AET_ljk
[op ap J AT
+4h | AP+ Alpu) + ApY) + =2 A(pd W)+ p AETT
| < %) () 3pw) BT
- ,J,k
i p . A Op ap 8 1"
=35k 3, AP A(p V) + 5o Bpw) + 35 AE =
Sk
248 ne1 P& (xxt Gmy Ik 5 p" (Exbx + &8y + 8L,k 5.0
ml,j,k f‘],j:k rurz - m],j,k l}pl,j,k- m],j,l(;pl] k

n n n
+3p1, .k~ 42, kT P3 K
where

m=«/§X2+§y2+§22

and 8, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the £ =1
boundary

‘88 4.0 Proteus Subprograms: BCPRES Proteus 3-D Programmer’s Reference

n

i ap A QD ap ap A
N =2,/ k p+ = A(U +——— (P v) + (PW) +—7—AEr
! 3 o(p u) 8(pv) 3(pw) 3Er Mok
[n
op . A /4 A ap A op ap
— 4N 1)k EO—AP-F o0 Alpu) + 3ov) Alpv) + 3w) A(pW) + —o— 3E; AET |
- N‘—l,j,k
[~ V n
p A~ Op ap ap _
| By NP 4 g S s+ 5ok -
- N.jk
2A% fn+1 Pg: _ Exnxt &y + e o p o Gt S+ LMk
My, k] My ik nPNLJ k Nk (PN, J k

n n
-PNl —2,,k T PN, — 1,5,k 3PNk
Analogous equations can easily be written for the n and { boundaries.

Linear Extrapolation of Static Pressure

Applying equation (6.14) of Volume [at the ¢ = 0 boundary,

6p dp dp
Ty sok| e BB + iy Aot + 5 AV 5o (& W+ £ Akr
. —1|j’k
_ —_ N
d A 6p 0p o
-2/, ; —A +——— + A + A w + AE
— o n 5p op a qQn
+Jyi .| —Ap+ A + + A + AE =
—Pln,j,k"'ng,j,k'_p;,j.k
At the ¢ = 1 boundary,
" op ap op ap a T
JN,—z,j,k 6 A +5ﬁA(Uy +) A(p)+ Ao)A(p)+ AET
- -]_ij!k
i op A dp P op P A T
~m-1k| By % 50w T AP+ Sy BV + oy A+ G i N
1— L./
_ e 1
op AL _op a ap n
- —Nlrjvk

n n
—PN, -2kt 2PN, -1,k — PN,k

Analogous equations can easily be written for the » and { boundaries.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCPRES 89

No Change From Initial Conditions for Total Pressure, Apr =0

The total pressure is defined as

¥
S =T
pT=P(l +”—2—1M2>y

Applying equation (6.3) of Volume 1, we get

J %P A\ A a e -
iJ,

where

2 2
y 1

d 8 -1 -1 - -1

9r __P (H_? Mz)Y +pl(1+7 le)Y M

, v 1
0 %) -1 -1 -1 —1 2
Pr =_£_(1+ Y Mz)’ +p_¥_<1+ L4 Mz))’ M

opr op y—1 2\r! ¥ y—1 2\ oM
Apv) - opv) (1 5 M try It M (oY)

¥ 1 5
opr _ op y—1 2\ ¥ y—1 2\r1 oM
2ow) . 3ew) (1 teoM trp\M T M o)

pr _ op y=1 2\r1_ ¥ y=1 2\r1 am?
3E; ~ oE; (” 7 M trop\lIt M 3E,
The Mach number is defined by

2 e wt (el + () + (o)
yRT pr2T

The denivatives dM?/dp, etc., can then be derived as

90 4.0 Proteus Subprograms: BCPRES Proteus 3-D Programmer’s Reference

Specified Total Pressure, pr=f

Applying equation (6.5) of Volume 1, we get

n

opr A, OPT . opr . ° or .~ oPr .2

J: Ap + Alpu) + Alpv) + Alpw) + —— AE =
l,J,k[ap P a(pu) (P) a(pv) (P) a(pw) (P) aET T ik

7 y n 3

P&, y—1 y=1
S =5~ Pl <1+ M2>
2
- P ik
"J’

where pr, dpr/dp, etc., are defined above as part of the description of the Apr = 0 boundary condition.
Remarks
1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section

2.3

2. An error message is generated and execution is stopped if a non-existent pressure boundary condition
is specified.

3. The multiplying factor p.g./p.u? that appears with specified values of pressure and pressure gradients is
necessary because input values of pressure are nondimensionalized by the reference pressure
p. = p.RT,|g., while intemal to the Proteus code itself pressure is nondimensionalized by the normaliz-
ing pressure p, = p,u2. (See Section 3.1.1 of Volume 2.)

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCPRES 91

Subroutine BCQ (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute conservation variable boundary conditions.
BCMET ’
Input
DEL Compﬁtational gnd spacing in sweep direction.

DXI, DETA, DZETA
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

v

I1, 12,13

JI

Computational grid spacing A¢, An, and A{.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(1,J) and FBC(LJ), where I runs from
1 to N, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary. :

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Grid indices i, j, and k, in the &, #, and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

NC, NXM, NYM, NZM, NEN Array indices associated with the continuity, x-momentum,

* NOUT

RHO, U, V, W, ET

Qutput
A B C

S

Description

y-momentum, z-momentum, and energy equations.
Unit number for standard output.

Static density p, velocities &, v, and w, and total energy Er at time
level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular conservation vari-
able boundary conditions in Proteus.!®

19 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the

92 4.0 Proteus Subprograms: BCQ

Proteus 3-D Programmer’s Reference

No Change From Initial Conditions, AQ =0

Applying equation (6.3) of Volume 1, and noting that 5g/56_ = Jog/6Q, we get simply
A’l
i k88, x=0
where Q is the element of Q for which this boundary condition is to be appled.

Specified Conservation Variable, Q = f

Applying equation (6.5) of Volume 1,
A 1
Tk AL k=S — Qi

Specified Two-Point Conservation Variable Gradient in Coordinate Direction, 30/6¢ =f

Applying equation (6.8) of Volume 1 at the £ = 0 boundary, and using two-point one-sided differencing,
—J1)k Aé?,j,k +,k Aé;,j,k =B+ Ok Ok
At the ¢ = 1 boundary,
—JIN 14k Aéz’xlrl -1,jkt JN,,j,kAét’\zl,,j, k= (Af)an,j,zc + 0N 1k~ Ok
Analogous equations can easily be written for the » and { boundaries.

Specified Three-Point Conservation Variable Gradient in Coordinate Direction, 8Q[8¢ =f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing, '
An An An
=371 kBt M2,k ALk — 3,k B ke =
: :
2AON e +300 k= 400k sk
At the ¢ = 1 boundary,
An An An
In =2, kB0, =2,)k~ N =1,k AON, — 1,k T 3N,k AON, k=
+1
28N k=N 2kt 4080 _1j k= 308,k

Analogous equations can easily be written for the n and { boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, VQ«n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

superscript #, representing the final solution. For simplicity, however, only the supersctipt n is used. The super-
scripts on all other variables are correct as written.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCQ 93

AT An
=1 kB et kA0 k=
Af [n+1 (gxnx+§y’7y+éz’12)l,j,k n (fxcx'*"fyé’y'i'ézcz)l.j,k 5 Qn]
=1,/

Lk~ oy 0, j,x— 2y
+ Ok~ Dk
where]
_/ éxz + fyz + Cfzz

and 6, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the { =1
boundary,

n An
— I 1, kBN, — 1T INL kBON, k=
AE n4l (éx’b: + fy'ly + éznz)N,,j,k n (CLx+ éy‘:y + fzcz)N,,j, k n
V) 5cOn,J,

gk | TNk N, j, k n<Ny g k N, k
n n
+On — 1,5,k — QN) &
Analogous equations can easily be written for the and { boundaries.

Specified Three-Point Conservation Variable Gradient in Normal Direction, VQ«n = f

Applymg equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and usmg three-point one-sided differ-
encing,

~n ~n n
=31, kA0 k+ A4k ADs k— T3,k 893,k =

2A¢ n+1 (§X”x+§y’7y+éz’72)l,j,k s n (fxCx+§yCy+ ‘szz)l,j,k 5 n
m e Tk m ok 7@ j k™~ My ik ,;,

n n n
+3Q0 k=40 k05 5k

_ /§¥2+§y2+§22

and §, and §; are the centered difference operators presented in Section 5.0 of Volume 1. At the { =1
boundary, ,

where

/\n I\n /\’z
In =25 kBN 2,5 k= N — 1,k BON, — 1.,k T 3N,k BON, ke
2A§ lifn +1 (6x"lx + 5y’1y + fz’?z)N,,j,k 5 n (fxCx + ‘fy{y + ‘fzcz)Nl,j,k

ml .] k N];./: mN],j,k n ij;k— mlvl,j,k CQN],J:ICJ

n n V44
—On =2,k TA0N, 1, k= 30N, k

Analogous equations can easily be written for the 5 and { boundaries.

Linear Extrapolation of Conservation Variable

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

An An An n n
T kD01 k=225 k805 k+ I3,k A05 k=~ Dk + 205 6~ O3k

94 4.0 Proteus Subprograms: BCQ Proteus 3-D Programmer’s Reference

At the ¢ = 1 boundary,

J AQ" 2J AQ” Tn i AOY == 207 7

N =2,k AON, = 2,5,k — 2= 1,7,k BN, — 1)k = IN kBON, k=~ Oy = 2,0,k F 208, — 1)k~ Dk
Analogous equations can easily be written for the # and { boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent conservation varable boundary
condition is specified.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCQ 95

Subroutine BCSET

Called by Calls Purpose
MAIN Set various boundary condition parameters and flags.
Input

*

*,

GBCl, GBC2, GBC3

GBCTI, GBCT?, GBCT3

GTBCI1, GTBC2, GTBC3

IBC1, IBC2, IBC3

IHSTAG
ITDBC

ITURB
JBC1, JBC2, JBC3

JBCT]1, JBCT?2, JBCT3
JTBCI, JTBC2, JTBC3

KBCl, KBC2 KBC3
NBC

NEQ
NOUT
NTBC
NTBCA

N1, N2, N3

Output

96 4.0 Proteus Subprograms: BCSET

FBCI1, FBC2, FBC3
FBCTI, FBCT2, FBCT3

IBCELM

Surface mean flow boundary condition values for the &, », and {
directions. :

Surface k-¢ boundary condition values for the ¢, 5, and { di-
rections.

Time-dependent surface mean flow boundary condition values for
the &, », and { directions.

Point-by-point mean flow boundary condition types for the £, »,
and ¢ directions (if set in input.)

Flag for constant stagnation enthalpy option.

Flag for time-dependent mean flow boundary conditions; 0 if all
boundary conditions are steady, 1 if any general unsteady bound-
ary conditions are used, 2 if only steady and time-periodic
boundary conditions are used.

. Flag for turbulent flow option.

Surface mean flow boundary condition types for the &, », and {
directions.

Surface k-: boundary condition types for the &, n, and { directions.

Flags for type of time dependency for mean flow boundary con-
ditions in the &, », and { directions.

Boundary types for the &, n, and { directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N..
Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid pohxts Ni, N,, and N, in the &, #, and { directions.

Point-by-point mean flow boundary condition values for the ¢,
y, and ¢ directions.

Point-by-point k-¢ boundary condition values for the £, #, and {
directions.

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and/or %
directions; 0 if elimination is not necessary, 1 if 1t 1s.

Proteus 3-D Programmer’s Reference

IBC1, IBC2, IBC3 V Point-by-point mean flow boundary condition types for the ¢, »,
and { directions.

IBCT1, IBCT?2, IBCT3 Point-by-point k-¢ boundary condition types for the &, », and {

directions.

IBVUP Flags for updating boundary values from first two sweeps after

7 third sweep; 0 if updating is not necessary, 1if it is.

JBC], JBC2, IBC3 Surface mean flow boundary condition types for the &, n, and {
directions (if using the KBC meta flags.)

KBCPER Flags for spatially periodic boundary conditions in the £, n, and {
directions; 0 for non-periodic, 1 for periodic.

NPT, NPT2, NPT3 Ni, M., and N; for non-periodic boundary"conditions, N+ 1,
N:+ 1, and N; + | for spatially periodic boundary conditions in
¢, n,and .

Description

Subroutine BCSET sets various boundary condition parameters and flags. It first sets NPT1, NPT2,
and NPT3, the number of grid points in each ADI sweep direction to be used in computing coefficients and
source terms. For spatially periodic boundary conditions in the ¢ direction, NPT1= N1+ L. Similarly, for
spatially periodic boundary conditions in the » direction, NPT2=N2+ 1. And, for spatially periodic
boundary conditions in the ¢ direction, NPT3 = N3 + 1. This is done in order to use central differences
at the periodic boundary. (See Section 7.2.2 of Volume 1.)

Next, if the boundary types are being specified using the KBC meta flags, the appropriate mean flow
surface boundary condition types are loaded into the JBC arrays. Special flags are set if spatially perniodic
boundary conditions are being used. Then, unless the mean flow boundary conditions are being specified
point-by-point using the IBC and FBC parameters, the appropriate IBC and FBC parameters are loaded
with the JBC and GBC values.

If three-point gradient or extrapolation mean flow boundary conditions are being used, a flag is set for
eliminating the resulting off-diagonal coefficient submatrix. If gradient (two-point or three-point) or ex-
trapolation mean flow boundary conditions are used during the first or second sweep, a flag is set for up-
dating the ¢ and » boundary values after the third sweep.

Next, for turbulent flow using the k-¢ model, if the k-¢ boundary conditions are being specified using
the JBCT and GBCT parameters, the appropriate point-by-point boundary condition types and values (the
IBCT and FBCT parameters) are loaded with the JBCT and GBCT values.

And finally, the input boundary condition parameters are then written to the standard output file.
Remarks

1. An error message is generated and execution is stopped if an invalid boundary type is specified with the
KBC meta flags.

Proteus 3-D Programmer’s Reference 0 Q 4.0 Proteus Subprograms: BCSET 97

Subroutine BCTEMP (IBC,FBC,IEQ,IMIN,IMAX, IBOUND)

Called by Calls Purpose
BCGEN - BCGRAD Compute temperature boundary conditions.
BCMET
Input
CP,CV Specific heats ¢, and ¢, at time level n.
DEL Computational grid spacing in sweep direction.

DTDRHO, DTDRU, DTDRYV, Derivatives 87/3p, 8T]3(pu), 3T|0(pv), 8T|(pw), and 8T/OET.
DTDRW, DTDET

IBASE, ISTEP Base index and fnultiplication factor used in computing one-
dimensional index for three-dimensional array.

IBC, FBC Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(1,J), where I runs from
1 to N, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundanies.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.
IEQ Boundary condition equation number.
* IHSTAG Flag for constant stagnation enthalpy option.
IMIN, IMAX Minimum and maximum indices in the sweep direction.
ISWEEP Current ADI sweep number.
v Index in the “vectorized” direction, i,.
JI o Inverse Jacobian of the nonorthogonal grid transformation, J-!.
* NOUT Unit number for standard output.
NR, NRU, NRV, NRW, NET Array indices associated with the dependent variables p, pu, pv,
ow, and Er.
P, T Static pressure p and temperature T at time level n.
RGAS Gas constant R.
RHO,U,V, W Static density p, and velocities «, v, and w, at time level n.
Qutput
AB,C Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).
S Source term subvector S at boundary IBOUND (element IEQ
only).
Description

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0

98 4.0 Proteus Subprograms: BCTEMP Proteus 3-D Programmer’s Reference

of Volume 1. The following sections appfy these generalized equations to the particular temperature
boundary conditions in Proteus.!!

No Change From Initial Conditions, AT =0

Applying equation (6.3) of Volume 1, and noting that 6g/66 = Jog|dQ, we get simply

n
8T \n, OT Ay, T Ay OT oy 0T 4p | _
Ji,j»k[dp AP+ 50w Alpx) + 8(pv) A+ Sow Alew + Ofr AET:Iij . ’

The derivatives 3T8p, dT|3(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 4.3 of Volume 1.

Specified Static Termnperature, T = f

Applying equation (6.5) of Volume 1,

oT

A(pv) + 5o

Ji,j,k[-QLAS+—91—A(Ju)+

n
)+ 2L AL — g+l
dp o(pu) Alpw) + oEr AET]‘_J_ k‘fw,k ik

oT
O(pv)

Specified Two-Point Temperature Gradient in Coordinate Direction, 8T|d¢ =f

Applying equation (6.8) of Volume 1 at the { = 0 boundary, and using two-point one-sided differencing,

n
T \n, T , Ay 8T Ay T "~y 0T ,p
-7 LLAp + =2 A(pu) + = A(pV) + —— Alpw) + 21— AE
‘*“‘[ap P+ Bpmy A By M) T Biomy A k7 T]l-k
n
8T an T Ay 8T Ao 8T , A~y 8T 4P
+dy x| S-06+ Alpu) + o A(pv) + Alpw) + -~ AE =
m[50 2% * oy A9+ Gy AP iy AW TE, Tl .
QO + T = To ik
At the & = | boundary,
n
T \n 0T Ay 8T T A~ 8T ,p
T 1o T+ Alpt) + —— A(pV) + —— A(pw) + 57— AE
N 1,1,k[ap P 8(pu) (b4 d(pv) & dpw) (ow) OEr T]Nx-—ljk

n

AT n . 8T A T o nv, 0T\ hy 8T ,p -

+JIn, 5, k[% Ap +_a(pu) Alpu) + Hov) Alpv) + 3ow) Alpw) + 3E; AEr]N } k_
14

n+1 n
AR5 e+ Th =15k~ Thyj &
Analogous equations can easily be written for the # and { boundaries.

Specified Three;Point Temperature Gradient in Coordinate Direction, 8T|0¢ = [

~ Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

11 n the following description, for the first and second AD] sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript 7, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCTEMP 99

[T » a LT
+45,5.k EAA*’ (u) + A(v) + or Ap w)+ 6T Aﬁr
d(pu) () pw) .
- -2,/ k
—-n
- [et oT oT T _
=ik 5 8+ Gy ”6(AN + 50y 86w + 5=k Jigx
28 M+ 3T = AT e+ Ts
At the ¢ = | boundary,
[~ —n
3T . aT T aT
- - N -2,/ &
8T \n, 0T T, ° aT oT
= G 05 sy 8+ 5 s+ S+ Fabe|
- - N -1,k
" aT oT aT oT 2 1
+ 3N,k -a—A P+ () Alp:)+a()A(pv) + 3ow) (W)+6E AET =
- —N,j &
208w 5 e = Th — 2 e+ 4T =15k~ 3T W)k

Analogous equations can easily be written for the # and { boundaries.

Specified Two-Point Temperature Gradient in Normal Direction, VT «n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

— n
OT 5 T 6 or ¢
— n
oT n . T A T oT. _
Aé fn+1 (éxnx'*'fy’ly"}'ézrlz)],j,k 5 Tn _ (éxCx+§yCy+§zCz)l,j,k s Tn
ml,j,k 1 ml,j,k n Lik m]’j’k C'LLK

7T
+ Tk~ T2k
where
2 2 2
= Jel g e

and &, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the {=1
boundary,

100 4.0 Proteus Subprograms: BCTEMP Proteus 3-D Programmer’s Reference

~ n
oT n . T oT or
—Jv 4 ——Ap + A + A +3E; AF
wi-vik| 3 P a(p) (u) + () (p) o) (p w) OEr T]Nl-ljk
_ n
OT aT oT -
k| gy MY 6() Mg + a()A() E Somy 2 P g OFr AET]NJIZ—
10>
Aé f"+1 (fxrlx+ éyr’y'i" éznz)NpJ'»k n (éxcx-*- fyCy+ ézcz}er’j’kré T’5 ;
le,j,k ml\’]»j»k n Nl’j,k le’j'k C A/l’j,k
+TN‘_1’j,k—T1’\lfl,j,k

Analogous equétions can easily be written for the » and { boundaries.

Specified Three-Point Temperature Gradient in Normal Direction, VTi.n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-

encing,

-3k ﬁAp+ T4 u)+ Alp)+ A(w)+ aT AET
SR Bp d(pu) -ljk
[0T \n T _ a2 aT aT
+4JQ_,j,k; %9 Ap +—=—— a() Ao + 3oy)A(pv)+ o A(W)+ AET 1,
[AT \n, 0T A T AooaT oA
—J5; —Ap + A(pu) + A V) + ———— A(pw) + —— AE =
288 [i1 _“(ixnx+£yny+éznz)1,,-,k s Exlx+ &Ly + LDk 5 f"
my ok |70k ™k n 1k ik I, j k

where

+3T7 = 4T3k + T3)k

_ /§x2+¢y2+§zz

and &, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the {=1
boundary,
aT aT T
N =2,jk
— n
OT A oT > oT n oT aT
— 4y 1k | % Ap + o) A(pu)+ o) Afpv) + o) (w)+ -7 3E; AET_N i
s T
[oT 6T AL 0T _
l
2A¢ f,, 1 (Exnx + éy’]y + 62’72)1\/'1,},1{ STH (Exlx + éycy + gzcz)Nl,j,k S.Th .
TS)k n Mgk TN, J.k Tk
— T -2,k T 4TN =15~ 3T ok

Analogous equations can easily be written for the # and { boundaries.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BCTEMP

101

Linear Extrapolation of Static Temperature

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

[oT \n aT oT
Tkl 5, 80 +a(” Afpu)+a()A(pv) + (pw)A(Pw)-t-aE AET _
2 —1L)k
—n
" oT oT oT or T AE
le,jkha Ap +a()A(P+ 5O y A v)+a(pw) (W)+aE AET”k
6T T A oT oT]
+J5 Ap +—=— Alpu) + ApY) + 52 Aow) + S AE =
3,11:_5 d(pu) (p)_ (pv) (K 5() (p) Okt T3jk
T e+2T0 T3k
At the ¢ =1 boundary,
oT AT AL aT o
JNl—z,J.k_—a—A +a() Alp)+6()A(pv)+5(PW) Ao+ ok, AET—N 2.,k
17— “Js
B —n
oT . n T oT n T &
20y | Las+ + 3 Ao T 5o Mlew) + G AE
Wimt | Gy 8B By S0+ gy AN G e g M|
T AT T A T A | -
+JNl,j’k_ o Ap+a(” Alp:)+a(" Alpy) + 3w)A(pW)+_aETAET_Njk_
12>

Y
- TN1—2,j,k+2T1’\zr,—1,j,k— Tz’:/,,j,k

Analogous equations can easily be written for the # and { boundanes.

No Change From Initial Conditions for Total Temperature, AT; =0

The total temperature is defined as

-1
- Ty= T<1+ r > Mz)
Applying equation (6.3) of Volume 1, we get
' OTr \a, OTr y oo, 0T oTr
Ji s Ap Alpr) + ——=—A(p¥) + ==
'J"‘[P R A PO R 72

where

102 4.0 Proteus Subprograms: BCTEMP

A d
Alpw) +

n
TT N
i,j, k

Proteus 3-D Programmer’s Reference

) ~1 -1 M2
T aT(H_y M2)+y2 Tagz

Tr T y=1 .2\ v=1_ oM
= <l+ A‘/[)-i- 2 TW

Ty aT y—=1 o\ v—1_ am?
- (1+ M)+ T 509

Tr aT (y—1 2) y—1 .. aMm?
= 1+ M)+ T
Apw) O(pw) 2 " a(ew)

oTr aT y=1 o\ v—1. au?
= (1+ M)+ > TaET

The Mach number is defined by

2 2 2
W+ w? (e + (pv) + (pW)

M? = =
yRT przT

The denvatives dM?/dp, etc., can then be derived as

Specified Total Temperature, Tr={f

Applying equation (6.5) of Volume 1, we get

; OTr o, 0T7 o~ 01\~ Oy nn 97T Ap "
Lik| Tap 8P T oy AP0 F iy APt Gy MO e BF| - T
i/, K

n
y—1
fi = zﬂk(‘ +—2—‘M2>
i,j, k
where T, 8T7/dp, etc., are defined above as part of the description of the ATy = 0 boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCTEMP 103

2. An error message is generated and execution is stopped if a non-existent temperature boundary condi-
tion is specified. ,

104 4.0 Proteus Subprograms: BCTEMP Proteus 3-D Programmer’s Reference

Subroutine BCUVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD
BCMET

Compute x-velocity boundary conditions.

Input

DEL
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX
ISWEEP

v

J1

NOUT

NR, NRU
RHO, U

Output

A B C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to_N.,, corresponding to the N., conditions needed, and J =1
or 2, comresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Unit number for standard output.

Array indices associated with the dependent variables p and pu.

Static density p and velocity u at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCUVEL computes coefficients and source terms for x-velocity boundary conditions. The

linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary

conditions in Proteus.!?

12 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript 7, representing the final solution. For simplicity, however, only the superscript 1 is used. The super-
scripts on all other variables are correct as written.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BCUVEL 105

No Change From Initial Conditions, Au= 10

Applying equation (6.3) of Volume 1, and noting that 5g/56 = J8z/8Q, we get simply

U AN 1 A "
J,,j,k[—jAp+—p—A(pu)] 'k=0
l’j)

Specified x-Velocity, u= f

Applying equation (6.5) of Volume 1,
sl —tapetagy] =gn -
k| =5 Bp + 5 Alpw) ._k_fz:,j,k — Uk
b J,

Specified Two-Point x-Velocity Gradient in Coordinate Direction, dulé¢ = [

. Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

‘Ju,k[- 86+ A(pu)] +Jz,j,k[= Ap +—A(pu)]

1/, k 2jk

1
BOR T+ =k

Atthe é=1 boundai'y,

n

u u N 1 n
“IN -1k +“‘A(P") N k| — 5 Ap + 5 Alpy) =
A 1,/ k ! P P Niuj k
- Isd»

n+1
(BEN,. 7, k+u1v,—1 Jok— YNk
Analogous equatio::s can easily be written for the # and { boundarnes.

Specified Three-Point x- Velocity Gradient in Coordinate Direction, duld¢ = f

Applying equation (6.8) of Volume I at the & = 0 boundary, and using three-point one-sided differenc-
ing,

n

u 1 u 1 N
—3']1,]',1([_7 3 ?A(Pu)]ljk+4~]2’j,k[—7A6+7A(pu)]
u 1 AT 1
—J3’j’k[“‘p—A£+7A(pu)]3jk'—'Z(Aélfln-F +3uljk 47"2]k+u3jk

2,j,k

At the £ = | boundary,

n n

1 A u 1 %
JNI—Z,j,k[_%AS‘f'?A(PU)] —4JNl_1’j’k|:—7A£+7A(pu)]
V—2,j,k N—-1j%
+ 3N,k AP+ - Apy) = 2A8/N 5 =t gkt Ay e Uk
»J Nk Ny.J, 1 sJ» 1 3Js 1/
1

Analogous equations can easily be written for the » and { boundarnes.

106 4.0 Proteus Subprograms: BCUVEL Proteus 3-D Programmer’s Reference

Specified Two-Point x-Velocity Gradient in Normal Direction, Vu » n=f

Applying equation (6.12a) of Volume 1 at the { =0 boundary, and using two-point one-sided differ-
encing,

Ta) R .
— 1k —iA;\H‘iA(PU) +J2,j,k AP +—A(Pu)
/ P P 1,/,k 2_1k

n+1 (Exﬂx"' ‘Eyrly'*'éznz)l,j,k 5.ul (Ext:x‘*' éysy"' szz)l K 5
mljk fi ml,j,k ﬂul'jrk ml’j,k gul.] k

n n
‘U e,k
where

m=JEE+EE+E

and &, and &; are the centered difference operators presented in Section 5.0 of Volume 1. At the =1

boundary,

1, ~T
SV Y)] - “apetagn]

N1k Ny
A fakt, (Gt Gy + EMINLiE | g Cxlxt &by + LNk . 5
u M . i u .
mN _] k le,j,k n Nl:],k) le,j,k § Nl,j,k

n n
tTUN 1,k T YNGR
Analogous equations can easily be written for the n and { boundaries.

Specified Three-Point x-Velocity Gradient in Normal Direction, Vusn={

Applying equation (6.12a) of Volume 1 at the £ =0 boundary, and using three-point one-sided differ-
encing,

3J s Loyl +as an e LacnT
- Lj,k_—p P+p (pw) 1jk+ 25k| =P p+P (pu) ik

20¢ [n41
my ok fl'j’k' -

(éxnx + Eyr,y + éznz)l,j,k 5 n (‘fxgx + Eycy + éz‘:z)l,j,k 5 n
m],j,k ﬂul’jik— mllj,k (ul J k

n n n
+3uy =Y kT Wk
where
2 2 . 2
m=~¢{+ 8+ &

and &, and &; are the centered difference operators presented in Section 5.0 of Volume 1. At the {=1

boundary,

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCUVEL 107

C u oA, 1 AT u a1 AT
JN]—2,j,k —7Ap+?A(pu)] —4JN1—1,j,k[——p_Ap+7A(pu)]
L Ny =2,k M-Lik
_ n
u 1 A
+3/5 5kl — 5 Ap + - A(pu)] =
— Nl,j,k
2A¢E f,, +1 (gxhx + fy'fy + 52’72)1\/1,], k W (Cxlxt ‘fycy + §zcz)Nl,j,k n
le,j,k Nl»./: le,j,k n va./’k le,j,k J.k

n
- uivl —2,jk + 4u‘vl -1,/ ' 3ulvl,j,
Analogous equations can easily be written for the » and { boundaries.

Linear Extrapolation of x-Velocity

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

n

1 n
Do - ebeagu] [-paegen]

u n n 7
+J3)k [—p Mty A(pu)]3 ==t Bh kT Wk
J’

At the ¢ = 1 boundary,

n

A 1 n
I -2,k [— 585+ FA(P")] -2y, - l,j,k[- Ap +——A(pu)]

N[_zj,k Nl—lj)

n n n
+Jvljk Ap+ A(pu) —uN!_z,j’k+2uN_l’j,k—uNl,j'k
Ny, J, k !
s

Analogous equations can easily be written for the # and { boundanes.
Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent x-velocity boundary condition
is specified.

108 4.0 Proteus Subprograms: BCUVEL Proteus 3-D Programmer’s Reference

Subroutine BCVN (J1,J2,J3,VN)

Called by Calls Purpose
BCNVEL Compute velocity normal to a surface.
Input
ETAX, ETAY, ETAZ Metric coefficients #,, n,, and 7,.
ISWEEP Current ADI sweep number.’
J1,J2,J3 Gnd indices i, j, and k, in the ¢, , and { directions.
UV, W Velocities u, v, and w, at time level n.
XIX, X1Y, X1Z Metric coefficients &,, ¢,, and &,.
ZETAX, ZETAY, ZETAZ Metric coefficients ¢,, ¢,, and {,.
Output
VN Velocity no-xmal to sweep direction surface.
Description

Subroutine BCVN computes the velocity normal to a surface in the current sweep direction. The
normal velocity 1s defined as :

V,=Va.n
where 7 is the unit vector normal to the surface. For a ¢ surface,

V¢

n=

where

Therefore, for a & surface,
V= Gt £y + Ew)

Note that the unit vector 7 is in the direction of increasing &. Therefore ¥, is positive in the direction of
increasing &.

Similarly, for an » boundary,
' 1
Vy= m (nxu+ nyv + nW)

where

[2 2 2
m=+/ny +n, tn;

and V, is positive in the direction of increasing 7.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCVN 109

And, for a { boundary,
V= (Gt + Ly + L w)

where
m=\J02+, +¢}

and V, is positive in the direction of increasing {.

110 4.0 Proteus Subprograms: BCVN

Proteus 3-D Programmer’s Reference

Subroutine BCVVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute p-velocity boundary conditions.
BCMET
Input
DEL Computational gnd spacing in sweep direction.

IBASE, ISTEP

IBC, FBC

IBOUND-

IEQ
IMIN, IMAX
ISWEEP
v
I
+ NOUT
NR, NRU, NRV

RHO, U,V
Output

A, B, C

S
Description

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(LJ), where I runs from
1 to N, comresponding to the N,, conditions needed, and J=1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i.

Inverse Jacobian of the nonorthogonal grid transformation, /- 1.
Unit number for standard output.

Array indices associated with the dependent vanables p, pu, and
pv.
Static density p, and velocities w and v, at time level n.

Cocfficient submatrices A, B, and C at boundary IBOUND (row
, IEQ only).

Source term subvector S at boundary IBOUND (element 1EQ
only).

Subroutine BCVVEL computes coefficients and source terms for y-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular y-velocity boundary

conditions in Proteus.!?

13 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript 7, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCVVEL 111

No Change From Initial Conditions, Av =0

Applying equation (6.3) of Volume 1, and noting that 8g/66 = Jdg/oQ, we get simply

‘v A 1 ~
I’J’

- Specified y-Velocity, v={f

Applying equation (6.5) of Volume 1,
J v AAV IA A " _pn+1 n
Lik| — 5 8p + 5 AlpY) __k—fi,j.k —Vijk
l’]’

Specified Two-Point y-Velocity Gradient in Coordinate Direction, &v|0¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,
VoA 1 AT
—Jijk| =5 Bp+ 5 Alpy) + 2k AP+—A(PV)
1,7,k 2,5,k
OO+ =16k
At the ¢ = 1 boundary,

n

1 A
—JN,-x,j,k[-—;-A3+7A(pV)] +JN,,,-,k[—Ap +—A(pv)]

Ny =17k

n+1
(AGYR Tk Vi — 1),k "Nk

h] .]1

Analogous equatior 3 can easily be written for the » and { boundaries.

Specified Three-Point y-Velocity Gradient in Coordinate Direction, 8v|0¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,
v 1 AT v RN
— 3J1,j,k[—7A3 +7)—A(pv)]1 ; k+4J2’j'k[-?A6 +7A(pv)j|
—h =2 Lagn] =288t 30, - 60, o+
3,j,1(P P P (p) 3k_ (1 vljk V2,j'k v3,j,k
W

2,/.k

At the & = | boundary,

Ni~2,/,k [Ap +-5 A(f”)] 4-][\/'1 —1,jk [Ap + — A(pv)]

N—2jk N—1,),k
1
+3/y k[—Ap+— A(pv)] —2(A§)f"+ Vi N =), k+4vN]_1 I 3&'1"\71’ ik
N,k

Analogous equations can easily be written for the » and { boundaries.

112 4.0 Proteus Subprograms: BCVVEL Proteus 3-D Programmer’s Reference

Specified Two-Point y-Velocity Gradient in Normal Direction, Vven=f

Applying equatién (6.122) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n n

L, n L A
—Jl,j.k[_%A‘A”L'P-A(pv)]l j k+12’j’k[_%A£+7A(pV)]zj k

A& l:,H_] (fx’?x"'fy’fy'*'fz"z)l,j,k P (‘fxcx'i"zycy'*'ézcz)],j,k P]
kT V1, k

ml'jyk lv.llk ml’j’k n l,j,k ml'j-’k

n n
TV kT Y2,k

where

m= &2+ &+ &}

and 8, and §; are the centered difference operators presented in Section 5.0 of Volume 1. At the £ =1

boundary,

n n

1 A L 1 A
-Jy 1 .k[-—V—A£+—A(pv)] +Jy ~k[——Ap+-—-A(pV)]
1 Iy p p N] _ llj,k l).l: p p Nl,j’k

Aé |:fn +1 >(fx'1x + ’fy"ly + 'fz’lz)Nl,j,k s n (fxcx+ 5y§y + ‘Ezgz)Nl,j,k s n j|

N];j,k le,j,k nvN],j,k - ’ le,j,k Cvaj,k

,n n
TN -1k T Nk
Analogous equations can easily be written for the » and { boundaries.

Specified Three-Point y-Velocity Gradient in Normal Direction, Vv « n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

n n

i 1 A 1 A
~3] 2 abedaem] san [T asrtam]
- 1,j, k 2, .,k
. 3,/ k .
2A§ i n+41 (fxnx + éyny + éz”z)l,j,k 5 n (fxCx + éyCy -+ fzgz),)j, k n
™k frik = ™k nh kT 2y S,) k

n - n n
+ 35— M2,k T3,k

where

m=e2+E +¢)

and &, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the { =1

boundary,

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCVVEL 113

i v /\
JNI—-Z,_/',IC —? P A(py)] - 4JN1—],j,k [Ap +— A(pV)]
= N =2,/ k N -1,/ k
+ 3N,k “—AP +—A(PV)]
- N.j k
T__2A§ o + 1 (:an +'§yr,y + Cz’lz)N,,j,k S vt 7. _ (Cxkx + fycy + fi.'cz)l\«'l,j,l‘f v
Nuj k| Mol N, s k UL Nk YNk

n n
— V% =2kt W -1k SNk
Analogous equations can easily be written for the » and { boundaries.

Linear Extrapolation of y-Velocity

Applying equation (6.14) of Volume 1 at the & = 0 boundary,

A 1 e
Jl,],k[-_;'AP"’—p—A(pv)] ; _2.]2’]‘,&[Ap +—A(pV)]2
2k

+J3,j,k[—Ap + = A(PV)] == ikt =Yk
3./, k

At the ¢ =1 boundary,

Iy =2,k [- Ap + A(PV)] — 2N 1k [—Ap +— A(pv)]

N -2,k N—-1jk

n n n

+JN,,j,k[A/"F—‘A(f”’)] ==VN 2.kt N 1,5, kT YNk
. - Nk T

Analogous equations can easily be written for the # and { boundaries.

7

Specified Flow Angte, tan~'(v/u) = f

This boundary condition can be rewritten as
v
= tan f
where f'is the specified flow angle. Multiplying by pu,
(tan f)pu—pv=0
Applying equation (6.5) of Volume 1 to the above equation, we get
. 1 al N
i k[t)] F e AW j k= AV j i) = — (tan) ik + (V)
Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. An error message is generated and execution is stopped if a non-existent y-velocity boundary condition
1s specified.

114 4.0 Proteus Subprograms: BCVVEL Proteus 3-D Programmer’s Reference

10

Subroutine BCV1 (J1,J2,J3,VCI)

Called by Calls Purpose
BCIVEL Compute é-velocity.
Input
ETAX, ETAY, ETAZ Metnc coefficients »., 1,, and ..
J1,32, 13 Grid indices i, j, and k, in the &, %, and { directions.
UV, w Velocities w, v, and w, at time level n.
XIX, XIY, XIZ Metric coefficients &,, ¢,, and £..
ZETAX, ZETAY, ZETAZ Metric coefficients £, {,, and £..
Output
VCl1 Velocity in the & direction.
Description

Subroutine BCV1 computes the velocity in the & direction. The ¢-velocity is defined as

—_

V§= V'G{

where 'e} is the unit vector in the ¢ direction, given by,

where

Therefore,

Proteus 3-D Programmer’s Reference

—_

1 = - s
2 2 2
m=,/x§ +y§+z§

1
Ve=g (xgu+ygv + ?gw)

4.0 Proteus Subprograms: BCV1

115

Subroutine BCV?2 (J1,J2,J3,VC2)

Called by Caﬂs Purpose
BC2VEL Compute #-velocity.
Input
ETAX, ETAY, ETAZ Metric coefficients 7., 7,, and 7.
J1,7J2, 13 Gnd indices i, j, and k, in the &, , and { directions.
U V,w Velocities u, v, and w, at time level n.
XIX, X1Y, X1Z Metric coefficients £&,, £,, and &..
ZETAX, ZETAY, ZETAZ Metric coefficients {,, {,, and {..
Output
vC2 Velocity in the # direction.
Description

Subroutine BCV?2 computes the velocity in the x direction. The n-velocity is defined as
V,7 =V e,

where ¢, is the unit vector in the # direction, given by,
- 1 = = -
&= (xnl +y,,j +Z’1k)
where
(22, 2
m=~/X, +y, +2,
Therefore,

_1
Vo= et +yv + z,w)

116 4.0 Proteus Subprograms: BCV2 Proteus 3-D Programmer’s Reference

Subroutine BCV3 (J1J2,J3,VC3)

Called by Calls Purpose
BC3VEL Compute {-velocity.
Input
ETAX, ETAY, ETAZ Metric coefficients #,, »,, and #..
J1, 732,13 Grid indices i, j, and k, in the £, , and { directions.
UV, W Velocities u, v, and w, at time level n.
XIX, X1Y, XiZ Metrc coefficients &,, £,, and £..
ZETAX, ZETAY, ZETAZ Metric coefficients £, ¢, and ..
Output
VC3 Velocity in the { direction.
Description

Subroutine BCV3 computes the velocity in the { direction. The {-velocity is defined as

V§= V'eg

where _e} is the unit vector in the £ direction, given by,

where

Therefore,

Proteus 3-D Programmer’s Reference

—

1 = = -
/.2 2 2

i

4.0 Proteus Subprograms: BCV3

117

Subroutine BCWVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute z-velocity boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.
IBASE, ISTEP Base index and multiplication factor used in computing one-

dimensional index for three-dimensional array.

IBC, FBC Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(1,J), where I runs from
I to N,,, corresponding to the ¥,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundares.

IBOUND Flag specifying boundary; | for lower boundary, 2 for upper
boundary.

IEQ Boundary condition equation number.

IMIN, IMAX Minimum and maximum indices in the sweep direction.

ISWEEP Current ADI sweep number.

v Index in the “vectorized” direction, i,.

JI Inverse Jacobian of the nonorthogonal grid transformation, /-1

NOUT Unit number for standard output.

NR, NRU, NRW

Array indices associated with the dependent vanables p, pu, and
pW.

RHO, U, W Static density p, and velocities u and w, at time level 7.
Output
A B, C Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).
S Source term subvector S at boundary IBOUND (element 1EQ
only). '
Description

Subroutine BCWVEL computes coefficients and source terms for z-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular z-velocity boundary
conditions in Proteus.’

14 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written. i

118 4.0 Proteus Subprograms: BCWVEL Proteus 3-D Programmer’s Reference

No Change From Initial Conditions, Aw =0

Applying equation (6.3) of Volume 1, and noting that ag/a() = J3g]dQ, we get simply

w oA,] N
Ji’j'k[—?Ap-*-—p_A(Pw)ljk:O

Specified z-Velocity, w = f

Applying equation (6.5) of Volume 1,

w 1, AT t1
D e aen] = -
i,j.k

Specified Two-Point z-Velocity Gradient in Coordinate Direction, dw[d¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

W A 1 N W A 1 AT
~Njk| Mt 8w [+ k| —p Bt AW | =
1,/,k 2,j,k
+1
BOR" T +wl j =Wk

At the & = 1 boundary,

II

—Jy N, —1.J, k[—Ap+— A(pw)] +‘]N1,j,k|: —Ap +—A(pw)]

MN-LJk NuJ k

n+ 1
(A‘f)f Ny J» k+WN,——l Y le_/ k
Analogous eq-1ations can easily be written for the » and { boundaries.

Specified Three-Point z-Velocity Gradient in Coordinate Direction, dw[8¢ = [

Applying equation (6.8) of Volume 1 at the £ = 0 boundary, and using three-point one-sided differenc-

ing,
n

1 1 A
_3‘]]_11([%AS ?A(PW)] +4J2’j,k|:—-%A;;+7A(pw)]

1L,J, k 2,/ k
_J3,j,k[~%-Ap +— A(pW)] = Z(Aé)fl’jj—fkl +3w1",j,k—4w§’j’k+w§’,j'k
3,/ k ’
At the ¢ = 1 boundary,
V W o, A 1 N
I —2k [W oAp 4+ A(pw)] —4ly 1k [~ X Ap+ A(pw)]
N —2,).k N—-Ljk
1
+ 3N,k [= Ap + 5 A(PW)] i = 2(A5)fn1-; k— le —2,jk T 4W1r:/, -1k~ 3W1’\z/1,1', k
¥y,]

Analogous equations can easily be written for the » and { boundaries.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCWVEL

119

Specified Two-Point z-Velocity Gradient in Normal Direction, Vw = n={f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n

1 " " 1 A
Jl,j,k[—%AB'i"l)‘A(pW)]l Jk+J2,j,k|:_%A£+"p—A(pW)] =

2,/ k
Aé n+1 (&anx + éyﬂy + éz’lz)l,j,k P (ELx+ fycy + gzgz)l,j,k P
e | TR T ™k Wij k™ ™k W)k

n n
t W kT W5k

where

_ /¢X2+€y2+622

and &, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the £=1

boundary,

N —-1./.k NuLJ k
Aé f,, +] (‘fx’?x + éy’fy + ‘fz”’z)Nl,j,k n ($Lx+ fycy + ‘fzcz)Nl,j, k "
— w - —— w
My gk N, k MLk My j CNLS K

n n
TWN -1 kT N
Analogous equations can easily be written for the and { boundaries.

Specified Three-Point z-Velocity Gradient in Normal Direction, Vw « n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

— A n
VN Y N L T e Y Lo |
L 7 P 1,j,k 2,),k
—Jy k| — 5 AP +—‘A(PW):L L
- J»

2A¢
m ok

f-ln-f-l

(Exnx + 'fy”ly + ‘52'72)1,],1(Swl. - (xbxt+ éyt)’ + &Lk W
ml,j’k '7 l)j’k ml,j’k g l:J’k
n n
-+ 3wl,j,k —_— 4W2,j,k + W3,j,k
where

_ /§x2+5y2+§22

and §, and &, are the centered difference operators presented in Section 5.0 of Volume 1. Atthe {=1

boundary,

120 4.0 Proteus Subprograms: BCWVEL Proteus 3-D Programmer’s Reference

n

w 1 ~ " W A A 1 A
JN1—2,j,k b—'FAB'*'?A(PW)]V —4JN1—1,j,k["7;'AP +7A(pw)]

1\~ 2,/ k N -1k
— n
A
+3y 5| > 8p +iA(pw)] -
12> P P ,
- Nni k
2A¢ —fn+1 _ Exnx + Sy + S M,k wh .- Cxlx+ 4L+ LN ik Swl .
le,j,k i N.J k le,j,k nNL k mN],j,k YNk

n n n
~ Wy, —2,j kTN 1k SNk
Analogous equations can easily be written for the » and { boundaries.

Linear Extrapolation of z-Velocity

Applying equation (6.14) of Volume 1 at the { = 0 boundary,

W A 1 r T W A 1 AT
J],j,kl:—TAP +7A(PW):|1 .k_y2,j,k[-_p"AP+TA(PW)]2 .
. L s
+Jz,j,k[‘l;‘A3+7,—A(PW):Ljk=—Wf,j,k+2W§,j,k—W§',j,k

At the ¢ = 1 boundary,

n n

w 1\ r w 1 ., 2
JN1—2,j,k[—_p-AB+—p_A(pw):| _le—l,j,k[~TA2+7)—A(Pw)]
N =2,/ k : Ny—1,j.k
w N 1 N n n n n
+JN1J'“[_'P_AP+7A(‘OW)]N ; k=—WN1—2,J',IC+2le—l,j,k—wN1,j,k
A

Analogous equations can easily be written for the » and { boundaries.

Specified Flow Angle, tan~(w[w) = f

This boundary condition can be rewritten as

w

- =tan f
where f'is the specified flow angle. Multiplying by pu,

(tanf)pu—pw=0
Applying equation (6.5) of Volume 1 10 the above equation, we get
1 A Al
Ji j x[(an)] f xAGpu)] = Alew);, K= - (tan)7 &+ (Wl j &

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3

2. An error message is generated and execution is stopped if a non-existent z-velocity boundary condition
is specified.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCWVEL 121

Subroutine BCIVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCIMET Compute ¢-velocity boundary conditions.
BCMET
BCV1
Input
DEL Computational grid spacing in sweep direction.

DXI, DETA, DZETA
IBASE, ISTEP

IBC, FBC

IBOUND

1IEQ

IMIN, IMAX

ISWEEP

v

11,12, 13

1

* NOUT

NR, NRU, NRV, NRW

RHO,U,V, W

Output

A B, C

S

Description

Computational grid spacing A&, Ay, and AL.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(1,J) and FBC(L,J), where I runs from
1 to N,,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Grid indices i, j, and k, in the £, », and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J=1.
Unit number for standard output.

Array indices associated with the dependent vanables p, pu, pv,
and pw.

Static density p, and velocities u, v, and w, at time level 7.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).
Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BC1VEL computes coefficients and source terms for £-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular ¢-direction velocity

boundary conditions in Proteus.’®

15 n the following description, for the first and second ADI sweeps the dependent variable should have the superscript
* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the

122 4.0 Proteus Subprograms: BCIVEL

Proteus 3-D Programmer’s Reference

Specified é-Velocity, Vi = f

The velocity in the ¢ direction, V7, is defined as
V{ = V L] e§

where é} is the unit vector in the ¢ direction, given by,

—_

1 - - -
where
m=~rlx§2 -1—y§2 + z?
Therefore,
1
Ve =47 (Xgu+ygv + ZgW)

Applying equation (6.5) of Volume 1, the linearized boundary condition at a £ boundary becomes

n

Tk [XUty +nw X DA B +1
oy [— p Bp -+ Blow) + 5 AlpY) + 3 A(pw)]' .k=f,v,”,-,k - (Voijk
L

Analogous equations can easily be written for the # and { boundaries.

Specified Two-Point &-Velocity Gradient in Coordinate Direction, V;[d¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,
L VIO IV v
Ap + ra Apu) + wE Apv) + v A(pw) +
1L,k

- jl,j,k X§u+y§V+Z§W
myj k p

J2,j, k x;u +y§V + Zgw X§ A yf A Z: A n
[- Ap + > Alpu) + ' Alpv) + > A(pw)] =

my P
2,/, K 2k
A+ V= (Vo2 sk
At the ¢ = 1 boundary,
Iv 1 Xpu + yev + Zpw x ¥ z n

=Lk { g ¢ A g n ¢ n ¢ A

— —— [_) Ap -+--p—A(pu)+T./3(pv)+—p-13(pw)]V 1 '+
. Ny — 1,7

n

JN,,j,k [Xgu + PV + zw

A xf A A Y§ A Zg A
My, k p B3 + -5~ Mpw) + - A(pY) + 7~ B(ew)

Nl,j,k
1
BN e+ VN — 16— VN, ok

Analogous equations can easily be written for the » and { boundanes.

superscript n, representing the final solution. For simplicity, however, only the superscript 7 is used. The super-
scripts on all other variables are correct as written.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BCIVEL 123

Specified Three-Point ¢-Velocity Gradient in Coordinate Direction, 8V[0¢ = f

Applying equation (6.8) of Volume 1 at the £ = 0 boundary, and using three-point one-sided differenc-
ing,

N [Xu+yy+zw s o
T | T Ap +—A(pu)+ A(pv)+—A(pw) +
1,7,k P |

] =1/ k
Y XU+ PV + Zw x A y A 5 an
.k ¢ P4 4 N & s .
Y| T P Ap + 5 Blp) + - Bl + 5 Aew) | =
~ —12,j.k
J3 ik Xpl + PV + ZW x n y A 2 .
sJs § § { A : g f
my e | T P AP+ Mpuw+ 5 A + 5 Aew) | =
) =3,/ k
1
At the ¢ =] boundary,
IN ik [Xeu+yv+zw x » 2 _n
1 A4 (4 ¢ (3 A 4 A 3 A ¥ A
My 2k | P Ap +— Alp) + - A(pv) + 5~ Alpw) -
_ =N -2,k
Inv v ik T xutpv+ 2w x y z n
1)J:k : § § A g A § A g A
4mN1—l,j,k B 2 Ap +—— Alpu) + -~ A(pv) + - Alpw) o
~ =N, -1,k
Iy ix T Xpu+pv+ zew x N y 2 o
lr./,k 'f § é A § 5 A ; 3
my k| 2 8p +— Alpu) + 5~ Alpv) + 5~ Alpw) N
y — Nl

i .
2AA N k= Veln =2, e+ 4V =1, 6= 3V N,k
Analogous equations can easily be written for the n and { boundarnes.

Specified Two-Point &-Velocity Gradient in Normal Direction, VVi . 7'5 =f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-

encing,

S [Xgutyv+zw | Xp A Ve o z AT
Mgk | p Ap +— Alpr) + 5 Alpv) + - A(pw):' +

~ 1Ljk

J2,_j, k[Xgtrpytaw X A Ve A Zy AT

Mk | P AP + - Alpw) + 5~ A(pY) + A(pW):] T
- 2,k

= f" 1 Gt S sk o o et B B

Tk ok (Dk My k (Vo k

+ (V56— (V2

and &, and 6, are the centered difference operators presented in Section 5.0 of Volume 1.

boundary

124 4.0 Proteus Subprograms: BC1VEL

At the £=1

Proteus 3-D Programmer’s Reference

Inv—1jx [Xty +2zw x y ,
1= Lk ¢ ¢ 4 A E A £ oA x "
Ty gk |l P AB + 5 Alpw) + 5~ A(p¥) + -5~ Alpw)
1 vJ> L
1. k 4 g ¢ A 4 A & s
e p Ap + 5= Alpw) + 7~ AlpV) + 5~ A(pw)]
A¢ [n+1 (Exnx + fy'}y + ‘fznz)Nl,j, k 5 (V!
My, k Sagie= My ik nVeln, ik~

(fxcx + gycy + fzCz)N,,j, k

n

+
Nl - l)jvk

N[rjok

+ (Ve — 1., 6= VN k

Analogous equations can easily be written for the » and { boundaries.

Specified Three-Point ¢-Velocity Gradient in Normal Direction, VV n=f

My, k

5§(Vg)’;\ll,j, k]

Applying equation (6.12a) of Volume | at the & = 0 boundary, and using three-point one-sided differ-

encing,
S [XU+ +ow T
o/ g ¢ ¢ A 4 14 £

Uy | P Ap +— Apw) + -~ Bpv) + -~ B(pw)
Jz,j,k [XUt yvtzw X n e R 2 S
M™.ik | - P Ap + —p_A(Pu) +>5 Alpv) + 5 A(pw)
B [Xutyyv+zw | X A Vg Z AT
m k| . P Ap + —p—A(pu) +2 Apv) + - A(pw)

zAé i n+1 (cxnx + fy"y + 52’12)],_/', k n

ol [™k 3Vt je— .

(ngx + fycy + ézzz)l,j,k

2,/,k
n

3,k

F3Vl e — X Ve, ikt (V)3 jx

5 (Vol ;. k]

K

and &, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the ¢ =1

boundary,
S ik T Xsu4yev+ Zgw x y 2 _
1= 2., WA W X oA Y oA %A
My 2.k | P Ap +—5-Alpw) + 5 Alp¥) + A(pw)—
In 1k [Xsu+yev+zw x y 2z _
1= L)k ¢ 3 ¢ A [V¢ £ 0 A
4 My 1k | P Ap +—5 Bl + 5 AlpV) + 5 A(pw)—
Iy iz [X4y +zw x 5 Az A
175 § § f A § A g :
Tk | P 85+ Blow) + - Alpv) + 5~ Alpw)
_28¢ —f"+.1 _ (Exx + Sty + SMIN,J & SV e
My, Gk | Ml k Mk Ve, j ke

(fxcx + éyCy + gzcz)Nl,j,k

N -2,k
n

+
N -1,k
n .
N].j,k

- (Vg)’;v, it UV —1 e 3Ven,)ik

Analogous equations can easily be written for the » and { boundaries.

Proteus 3-D Programmer’s Reference

My, jk

4.0 Proteus Subprograms: BCIVEL

(V. k]

125

Linear Extrapolation of &é-Velocity

Applying equation (6.14) of Volume 1 at the £ =0 boundary,

Jisx T Xputyey+zpw X A y N z .
Sk gUT IV T 2w A £ :
ok | p AP+ Bl + 5 AV + 5 AW [—
- =1,/ k
J2‘ i Xg+ Ygv + 2w x N ¥y " Z, A 1"
1J,k § § § A § g g
m ik - p Ap + P A(P“)"‘TA(pV)-‘FTA(pw) ' +
- —2,j,k
J3 . [xu+y v+ Z:.w x A y R 2 A T"
., K 4 ¢ $ A 4 14 3) _
Mk | 2 b +—5- Blpw) + 5 Alpv) + 5~ Alpw) —

L —3.,j.k
— (VT je+ 2Vt ju— (Vo3 j &

At the ¢ = 1 boundary,

Iy —2 ik [Xeutysv+2zw x N ¥ . 2 —
ml J 1 ¢ 4 A2+-'§—A(pu)+—§A(pv)+—§—A(pw) B
N, —2,), k P ? P) ‘
i —N -2,k
JN—1-k'— XpU+ pev + Zew x N y . 2 —
¥ vl T D+ Alp) + 2 AV + - Alew) +
MLk p p P p _
} —“nM-1jk
In [~ XU+ Py + 2w x y N 2 -
l’.}-k § § § A ; N § g A 3
Mgk | 5 8p + 5~ Alpr) + 5~ A(pY) + 5 Alew) -

L —N.J k
— (Vo =2k T 2VN 16— VNk

Analogous equations can easily be written for the » and { boundaries.

Remarks

1. This subroutin. uses one-dimensional addressing of three-dimensional arrays, as described in $.ction
2.3.

2. An error message is generated and execution is stopped if a non-existent £-velocity boundary condition
is specified.

126 4.0 Proteus Subprograms: BCIVEL Proteus 3-D Programmer’s Reference

Subroutine BC2VEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCIMET Compute n-velocity boundary conditions.
BCMET
BCV2
Input
DEL Computational grid spacing in sweep direction.

DXI, DETA, DZETA
IBASE, ISTEP

IBC, FBC

IBOUND

1IEQ

IMIN, IMAX

ISWEEP

v

I1, 12, 13

JI

METX, METY, METZ

* NOUT

NR, NRU, NRV, NRW

RHO, U, V, W

Output

A, B, C

S

Description

Computational grid spacing A&, An, and AL.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(1,J) and FBC(IJ), where I runs from
1 to N, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Grid indices i, j, and k, in the ¢, », and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-!.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, and z.

Unit number for standard output.

Array indices associated with the dependent vanables p, pu, pv,
and pw.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only). .

Subroutine BC2VEL computes coefficients and source terms for -velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular n-direction velocity

boundary conditions in Proteus.!®

16 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BC2VEL 127

Specified n-Velocity, V.= f

The velocity in the » direction, V), is defined as
V,7 =V e,
where e, is the unit vector in the » direction, given by,

e‘”=711— (x{f +y,,}" +z,7;)

where
22 2
m=+/x, + B
Therefore,

_ 1
V,7 = Cou+yy+ z,,w)

Applying equation (6.5) of Volume 1, the linearized boundary condition at a ¢ boundary becomes

X, Y, A 4 A "
n " n n 1
A + == Alpw) + =5~ Alpv) + =5~ Alpw) =i — Voiik
i,k

Jijk _ TIy W
- ik p

Analogous equations can easily be written for the and { boundaries.

Specified Two-Point n-Velocity Gradient in Coordinate Direction, 3V, |d¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n

J1,j X u+yv+zw X N y A z R
N 4 n n n A n n A
Tmy g [— P AP+—5—A(PU)+TA(pv)+TA(pw)] +
| 1,j,k
J2 . i X A 37 A Z, A n
:J,k n n n N n n 7 - _
m & [_ P Ap + P Alpu) + 3 A(pv) + 2 A(pw)] =
2,j,k
+1
A + V1= Vol
At the ¢ = 1 boundary,
In -1, x U+ pv+zw x ¥y 2 n
1= Lk " n n A) A w A a A
Y [_ G Ap+5 A(P“)‘*'TA(PV)‘*',TA(PW)] +
Nl_lrj
Iy, j xu+yv+zw X y Z n
L)k k n n A o n N n A
N, k [— P Ap + - Blpt) + 5 Alpv) + 5~ B(pw) Nk
1/

+1
Bk Vo= 1= Vv, ok

Analogous equations can easily be wrntten for the » and { boundaries.

* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript #z, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.

128 4.0 Proteus Subprograms: BC2VEL Proteus 3-D Programmer’s Reference

N

Specified Three-Point n-Velocity Gradient in Coordinate Direction, oV jod=f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing, ,

Sk [X+ i+ W %,
> mox | p Ap +—5- A(PU) +'—A(pv)+—A(pw) +
Jik L I
SHie [xutypv+zw x A ¥ R 2 o
2L T T AL — n n
Mok | P AP+ Alpr) + - Alpy) + 5 Blow) |
~ 2,/ k
Ji xu+yv+zw X, A ¥y R 2 "Tz
. K i N A2 n " =
mor| 2 BB+ M)+ 5 M) + 5 AW | =
R —3,/,k
1
N AR UM T (A AT
At the ¢ = | boundary,
In—2 ik [XTIyt W PV -n
mA; —2,jjk - Z - AP+—A(pu)+ A(pv)+ 7 A(pw) -
T ' N -2,k
In 1k [Xptypytaw X I an
N j - Ap+—- A(pu) +—A(pv)+-—-A(pw) +
N;"],j,k p .
N —1,/,k
JN j - x u+yv+zw x » z R _n
1Ak n n n A n A n A ' _
|~ s A + A Al | =
—Npds

1
2809fn 5= Vh, 2,71+ 4 Vv =1, 3V N,k
Analogous equations can easily be written for the » and { boundaries.

Specified Two-Point n-Velocity Gradient in Normal Direction, VV,sn=f

Applying equation (6.12a) of Volume 1 at the { =0 boundary, and using two-point one-sided differ-
encing, . i

Jl,j,k [~ xnu+y,71f+znw
T ? Ap+— A(Pu)+—A(pV)+—A(pW):I ik

J2,j, X [~ x,lu +yﬂv + Zr,W A xﬂ A yrl A Z', A n .
ik L— 3 Ap +’p—A(pu) +TA(pV) +—p—-A(pw):] =

»J 2k

A G+ Emy+ Em jk (§”+EC+5ZC),',1<

3 fn+1 xix T Byly 2121, 5(V)‘ xXox T Sy5y 2N1,j 5(V)n-k
ULWR: L.k ik ok my ok (A LY

+ (Vq)l,j,k - (Vn)g,j,k

and 6, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the (=1

boundary,

Proteus 3-D Programmer’s Reference 40 Proteus Subprograms: BC2VEL 129

JN] -1,/ k x"ll +,V,1V + zﬂw x
T x| Ap +—- A(pu) L2 A(pv) il A(pw) +
N - Lk P
) Nl - l)J:
Iv ik [Xpu+yy+zw x P ; n
MoJ " 1 n A ol AV n A
my gk | 2 Ap + - Alpw) + 5 ApY) + 5 A(pw)] -
_ N]’j;k
_Ac [ner _ Gttt Sy + S 5 (VA Clx+ &8+ LN,)k SV
le:j,k N],j,k - mlvlyj.k 1V],,/,k le,j,k g(r’)lvl,j’k
n n
+ (Vn)Nl -Lik™ (Vr])Nl,j,k

Analogous equations can easily be written for the » and { boundaries.

Specified Three-Point n-Velocity Gradient in Normal Direction, VV, e n = f

Applying equation (6.12a) of Volume 1 at the { = 0 boundary, and using three-point one-sided differ-

encing,
Sk [Xut+yyv+zw X, A y A Z o
oJi & i n i A 1 n n
SHiv [T xutypvtzw . x A Y, A Z AT
W K n n n A n n n
4 e | 2 Ap + 5 Alpu) + 2 Alpv) +] A(pw) - —
- 4
Jiiw [Xutyyv+zw Q%
m;j | - ————4p 2 A(pu) + 2 A(pv) il A(pw) =
o =3,k
2A¢ f,, +1_ (&nx+ gy"y + é:z'lz)l,j, k 5.V),, (Exlx+ fycy + gzcz)l,j, k
ml’j’k]:.’: ml,j,k ’7 nlrJ»k ml,j’k
; n
=y q)l Lk 4(Vrl)g,j,k+ (Vr])3,j,k
and 4, and &, are the centered difference operators presented in Section 5.0 of Volume 1.
kKl 4 % p
boundary,
Iy _a; xu+yyv+zw X Y, Z 7"
\— 2.4k n n i A L n o n ¢
iy 2% - 5 Ap + 2 Alpu) + 2 A{py) + -ﬁ—A(pw)_ . —
Iv 1k [xu+yyv+zw X, y F4 T
1 — Lk n n i A n N no A n A
iy 1k | — 2 Ap + 5 Alpu) + 5 A(pv) + > A(pw)_ A +
— P
Iv,ik Xl + gV + ZyW *n In
T - 7 Ap +—- A(/Ju) + -5 A(;OV) + - A(PW) =
Nl’.’)k - AN j k
. 12/
2A¢ fn +1 (éxnx + éyrly + fz’?z)N],j,k s (V)n (Extx + ‘:ycy + fz/:z)Nl,j,k
Nk |k MNj, k mowl gk My, k

- (V,,)N, —2,j, kTt "'(Vy,)';\r1 -1k~ 3(V,,)7vl,j, X

Analogous equations can easily be written for the » and { boundanes.

130 4.0 Proteus Subprograms: BC2VEL

6;(Vrl)’;,j, k}

At the £¢=1

S(Vhi.J, k]

Proteus 3-D Programmer’s Reference

Linear Extrapolation of n-Velocity

Applying equation (6.14) of Volume 1 at the & = 0 boundary,

J; X u+yyv+zw X, A Yo ~ Z AT
ok n n Y A 7 n n
owl 7] Ap + 5= Apw) + 5 Alpv) + 5 A(pW)] o
» 1,j,k
Liv [xut+yytzw Yy n
g 2bk | T TN A +-——A(pu) +—A(pv)+ LAEw) |+
mQ,j,k P R
L - 2/,k
SLie P xutyy+zw
T B .Y +—A(pu) +—A(pv)+—~A(pw)
3.,k L P 3.5,k
-Vl et 2V 26— V)3, k
At the ¢ = 1 boundary,
v aix [xut+yv+zw Vn "
| - Ap +—A(pu)+—A(pv)+ ™ A(pw) -
Ny -2,/ k P .
| N -2}k
In—1jk [Xty tzw T :
o - - Ap + A(pu)+——A(pv)+—A(pw) +
N - 1,5k P ,
| —_Nl—l,j,k
vk [X+ yy+z,w X, Py 71"
iy 7 - 2 Ap+— A(pu) +——A(pV)+—A(pW) =
Nuh kL Nk
1)

n n n
- (V,,)Nl —2,j, kT 2(V,7)Nl -1k~ (Vn)NpJ'.k
Analogous equations can easily be written for the and { boundaries.
Remarks

1. This subroatine uses one-dimensional addressing of three-dimensional arrays, as described .a Section
2.3.

2. An error message is generated and execution is stopped if a non-existent n-velocity boundary condition
is specified. ‘

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BC2VEL 131

Subroutine BC3VEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCIMET Compute {-velocity boundary conditions.
BCMET
BCV3
Input
DEL Computational grid spacing in sweep direction.

DXI, DETA, DZETA
IBASE, ISTEP

Computational grid spacing A, An, and A(.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

IBC, FBC Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(1J), where I runs from
1 to N, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary. . ' B '

IEQ Boundary condition equation number.

IMIN, IMAX Minimum and maximum indices in the sweep direction.

ISWEEP Current ADI sweep number.

v Index in the “vectorized” direction, i,.

I1, 12,13 Grid indices i, j, and %, in the &, », and { directions.

JI Inverse Jacobian of the nonorthogonal grid transformation, J-1.

METX, METY, METZ

NOUT
NR, NRU, NRV, NRW

Derivatives of sweep direction computational coordinate with re-
spect to x, y, and z.

Unit number for standard output.

Array indices associated with the dependent vanables p, pu, pv,
and pw.

RHO,U,V, W Static density p, and velocities », v, and w, at time level 7.
Output
A B, C Coefficient submatrices A, B, and C at boundary IBOUND (row
1EQ only).
S Source term subvector S at boundary IBOUND (element IEQ
only). '
Description

Subroutine BC3VEL computes coefficients and source terms for ¢-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular {-direction velocity
boundary conditions in Proteus.'”

17 In the following description, for the first and second ADI sweeps the dependent variable should have the superscript

132 4.0 Proteus Subprograms: BC3VEL Proteus 3-D Programmer’s Reference

Specified {-Velocity, Vy = f

The velocity in the { direction, V;, is defined as

—_

VC = V L e;
where ¢; is the unit vector in the { direction, given by,
- _1 = n n
&= (x i+ +2k)

where

1.2 2 2
m= x€'+yg+Z§

Therefore,
1
Vo= (xputypv + 2w)

Applying equation (6.5) of Volume 1, the linearized boundary condition at a { boundary becomes

AL X A Yr A 4 A n4l n

‘]i,j, k [xcu +y§v + ch n
iLjk

Analogous equations can easily be written for the and { boundares.

Specified Two-Point {-Velocity Gradient in Coordinate Direction, 0V;[d¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n

hj XU+ yov+ zw x n ¥ A z R o
Sk S 4 ¢ A ; C e
Y [" p Ap +—- Alpy) + 5 Alp¥) + A(pw)] +
1/, k
Dok Xu+yv+Hzw XA Vo o z L
..k [" P AP+TA(P">+7A<pV>+7A<pw)] T
2,/,k
. 1
(Ag)fi’,zjfk + (Vc)?,j, k— (Vg)g,j, k
At the £ = | boundary,
N -1,) XU+ ypv+ Zw x y . n
1 —Lik ¢ ¢ 4 A 14 A 4 A . n
Lk [_ p Ao+ M)+ A(Pv)+7A(pw>] +
i ‘ - Nl—lij
Ini XU+ yv+ zew X) z n
A 4 ¢ 4 A 4 A r A 4 A _
My),k [— P Bp + 5 Apw) + 5 AlpV) + 3 A(pw)]hv "
],],

1
(AQan,j‘,k + (Vg);/, = VN k

Analogous equations can easily be written for the » and { boundares.

* and **, respectively, representing the intermediate solution, and for the third ADI sweep it should have the
superscript 71, representing the final solution. For simplicity, however, only the superscript n is used. The super-
scripts on all other variables are correct as written.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BC3VEL 133

Specified Three-Point {-Velocity Gradient in Coordinate Direction, OV [0¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

Nie [Xut+yyv+zw: x A Y .z o
’j’k ¢ ¢ 4 A 4 [4 é’
=3 my ik - P Ap + D A(pu) + o A(1017)+—p-A(,ow) +
B : —1,/,k
Do [Xutyy+aw X oA yooa g oA
mk | P Ap + 5 Bl + 5 A + 5 Aew) | -
- -2,/ k
Jix [Xu+yy+zw e o
m,j? 24 +—A(pu)+——A(pv)+ E Alpw) =
3,7, k P .
- —3,j.k
1
200475 + 30V e~ 4(VC)2J kit (V03
At the ¢ =1 boundary,
In —2,j ~ XU+ YV W Xr ¥ Z —n
1)J:k C C c A (4 A g A g A
My a2k | 2 P+ Alpw) + 5 Alpv) + 5 Alpw) -
} HN =2,k
Inv ik [Xput+yv+zw x —n
MmN, —1,/,k I |
} =N -1,jik
In,.j XU+ yv+ Zew X ~ ¥ A z —_n
L S AP S 4 ¢ A _
My gk | P Ap + 4~ Alpw) + 5 ApY) + 5 B(pW)) .k_
i —Npds

7—(A51f13 t k= V-2t AVON -1k~ 3V, k
Analogous equations can easily be written for the # and { boundares.

Specified Two-Point {-Velocity Gradient in Normal Direction, VV; » n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n

Jl,j, k » xgu +_VCV+ ZCW n xg A y; A ZC IS
— o E -) Ap + - Alpu) + o Apv) + 7 A(pw):]1 . +
- s
Dok [Xut It aw
™k __ P Ap +—A(P”)+_A(PV)+—A(PW):LJ
A;v n + 1_ (Ex"x + 5y'1y + ‘fznz)l,j, k n (éxCx + éygy + ‘szz)],j,k n
™k f‘ ™k 6, (VO jok— oy SV, j ke

+(Vg)1,j,k"(Vg)’22,j,k

and &, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the { =1

boundary,

134 4.0 Proteus Subprograms: BC3VEL Proteus 3-D Programmer’s Reference

JNl_lrj’k i X§u+yCV+ZCW

A} Xt A Yr A A 44 A e
Ty ik | P P+ Blpw) + 5~ Alpy) + 4~ Alpw) o+
N-1k

In ok [Xu+yp+zw x ¥ z n

Nnj k I4 4 9 A 4 A C A c A _
My x| P Ap + - Alpu) + 'p—A(pv) +>5 A(pw)] =

P Npjk

A¢ ne1 Canxt&my+ MmN ok " Elxt &L+ ELIN ik .

le,j,k fN),,I, le,j,k - n ;)Nl,j,k - le,j',k g(C)Nlrj»k

+ (V¥ -1k~ (VDN
Analogous equations can easily be written for the # and { boundarnes.

Specified Three-Point {-Velocity Gradient in Normal Direction, V¥V, « n=f

Applying equation (6.12a) of Volume I at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

Nk [x§u+y€v+ ch .
TTmy Ap + _A(P“) + —A(pv) + — A(pw) +
1,j,k P .
- 1,/, %
Srix [Xu+yv+zw X, A ¥ R 2 o n
2L HIIT AW N 4 ¢
Mk | P AP+ M) + 5 M) + 5 Bew) | -
2,/ k
e [Xu+yv+zw o X oA Yo A Z A an
My | P AP+ 5 Bew) + T AV + 5 ApwW) | =
B 3,/ k
288 [1 Caixt Sy + Em)k ELx+ &L+ L jk .
Tk fw’ gk S VO m jk oc(Voh,)k

IV = V% V3. k

and 6, and &, are the centered difference operators presented in Section 5.0 of Volume 1. At the £=1
boundary, ’

I 2k [Xutyy+gw AL X ¥ A " _n
Ny —2,),k - P Pt 5 P (Pu)+— (pV)+ (pw) | -
~ _Nl—l,j,k
Iy —1jx [Xut+yov+zw X 2 n
J K uryy+rzw X oA VoA T
4—— - AD 8 A Yy %,
TN =Lk L P Pt M)+ 5 AP+ (pW)—Nl-ljk-i-
Iv ik T Xeutypv+zw x : y 2 _n
1 C C ; A C A C IS C A
MLk | 2 P+ Blpw) + 5 AlpY) + 5 (pW)lejk
__2_‘_3_5_ aa1 Gt Sy SN,k . (Elxt+ &8+ ELIN)k s
My, k fM,j, oy VO, k= PNk (V% ik

~ (VP — 2kt MV, =1, = 3V, ok

Analogous equations can easily be written for the # and { boundanes.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BC3VEL 135

Linear Extrapolation of {-Velocity

Applying equation (6.14) of Volume 1 at the & = 0 boundary,

J],j,k B xCu+y§V+Z§W
mk | P

5 D [Xut+yy+zw
Mk | P
J3,jk [~ x€u+y€v+ZCW
moe | P

L

P STV (TP SOV
AB +—- Alpu) + - AlpY) + -~ Alpw)

A X A b/4 A Zr A]
Ap + > Alpu) + o Alpv) + v A(pw)

U TPV SV SN
Ap + > Apu) + - A(pv) + ' A(pw)

— (VN e+ 20008 = (V3 ke

At the ¢ = 1 boundary,

‘]Nl—2,j,k -_x€u+ycv+zCW
My -2,k | p
Inv—rgk [XUty +zw
2 —_—
M =15k | P
lel)j>k —-XCU+yCV+Z§W
myLik | P

U TV T S S
Ap + r Alpuw) + ' Apv) + 7 Alpw)

—

I SV SV N S
Ap + > Alpu) + v Alpv) + - A(pw)

—

A e aons Yoo A
Ap+—p—A(pu)+7A(pV)+TA(pw)

— (VN -2.j,k* 2AVn, 1,56~ VM. jk

Analogous equations can easily be written for the # and { boundares.

Remarks

1. This subroutin.: uses one-dimensional addressing of three-dimensional arrays, as described in L _ction

2.3.

is specified.

136 4.0 Proteus Subprograms: BC3VEL

An error message is generated and execution is stopped if a non-existent {-velocity boundary condition

Proteus 3-D Programmer’s Reference

Subroutine BLIN

Called by Calls Purpose
TURBBL ISRCHFGT | Compute inner layer turbulent viscosity.
VORTEX

Input

* APLUS Van Driest damping constant 4*.

* CB _ Constant B in the Spalding-Kleinstein inner layer model.

* CNL Exponent 7 in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

* CVK Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

EP1, EP2 Minimum and maximum allowable numerical values.
* JLDAMP Flag for Launder-Priddin modified mixing length formula in the
' Baldwin-Lomax inner region model.
* INNER Flag for type of inner region model.
* LWALLI], LWALL2, LWALL3 Flags specifying wall locations for &, », and { boundanes.
MU Laminar coefficient of viscosity p,.
MUT Outer layer turbulent viscosity coefficient (i:)ourer-
NTOTP Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., N1P x N2P x N3P).
* NI, N2, N? Number of grid points Ny, Nz, and Ns, in the &, », and { directions.
* RER Reference Reynolds number Re,.
RHO, U, V, W Static density p, and velocities u, v, and w.
X, Y, Z Cartesian coordinates x, y, and z.
Output
MUT Turbulent viscosity coefficient u,.
Description

Subroutine BLIN computes the inner layer turbulent viscosity coefficient (uJim.-. For each grid point,
subroutine BLIN first sets the variable DUMMY equal to a number from 1.0 to 6.0 as a flag specifying the
nearest solid wall. If none of the three grid lines through the point intersect a solid wall, the point is a wake
point and DUMMY = — 1. If there are no solid walls, control is returned to the calling program. Other-
wise, subroutine VORTEX is called to get the vorticity magnitude at each point.

The inner layer turbulent viscosity coefficient (i)me is then computed based on the nearest wall, and
it is assumed that the inner regions do not overlap. Three different inner region models are available - the
model of Baldwin and Lomax (1978), with and without the modified mixing length formula of Launder and
Priddin, and the model of Spalding (1961) and Kleinstein (1967). These are described in Section 9.1 of
Volume 1.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BLIN 137

BLIN then sets the final turbulent viscosity coefficient equal to the minimum of the inner and outer
region values. Thus,

_i‘r = min[(4)inner: (#Douter])
Remarks

1. To avoid the possibility of floating point errors, the value of IEZ| used to compute 7+ and u* 1s set to
a minimum of 10-1°. *

138 4.0 Proteus Subprograms: BLIN Proteus 3-D Programmer’s Reference

Subroutine BLKOUT (I1PT,I2PT,I3PT)
Called by Calls Purpose . ,
ADI Print coefficient blocks at specified indices in the &, », and { directions.
AVISCI
AVISC2
BCGEN
FILTER
Input
A B, C Coefficient submatrices A, B, and C
* JHSTAG Flag for constant stagnation enthalpy option.
ISWEEP Current ADI sweep number.

I11PT, I2PT, I3PT
NC, NXM, NYM, NZM, NEN Array indices associated with the continuity, X-momenturm,

NEQ

* NOUT

S

Output

None.

Description

Indices for printout in the £, n, and ¢ directions.

y-momentum, z-momentum, and energy equations.
Number of coupled equations being solved, N,,.
Unit number for standard output.

Source term subvector S.

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term sub-
vector S at the grid points specified by 11PT, I2PT, and I3PT. This is the routine that actually prints the
output for the IDEBUG(1) through IDEBUG(4) options.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BLKOUT 139

Subroutine BLK4

Called by Calls Purpose
ADI FILTER Solve 4 x 4 block tridiagonal system of equations.
Input
A B C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK4 solves a block tridiagonal system of equations with 4 x 4 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial

conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, and Aé’. In Fortran, however, we can save storage by overwriting B, C, and S. The
following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the

first ADI sweep. An exactly analogous procedure is followed for the second and third sweeps.

Step In Fortran In Volume 1 Notation
1 D, =B
2a LU decompose B, storing result in B, LU decomposition of D,
2b Solve B,E, = C, for E, using LU decomposition of E, =DriC,
B,, storing result in C,;
2c Solve B;Aéi =S, for Aéi using LU decomposition A()i =Dy 1§,
of B,, storing result in S,
Fori=2to N,
3a Compute B, — AC,_,, storing result in B; D.=B.—AE _;
3b Compute S; — AS; _,, storing result in S; S - A‘A(i)','_.
3c LU decompose B, storing result in B, LU decomposition of D;
3d Solve BE; = C, for E; using LU decomposition of B, E.=D;!C;
storing result in C; .
3e Solve B,A(A): =S, for Aé,’ using LU decomposition A(:)j =Dr (S — A‘A(A)’,-_ 1)
of B, storing result in S,
4 A(A)Nx = Aé'm
Fori=N,~1to 1,
5 Compute S; - CS, ., storing result in S, A(i),» = A(): - E,Aé,,l

140 4.0 Proteus Subprograms: BLK4

Proteus 3-D Programmer’s Reference

Remarks

1. The notation used in the comments in BLK4 is consistent with the notation used in the description of
the algonthm in Volume 1.

2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectonzation of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution. ’

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BLK4 141

Subroutine BLK4P

. Called by Calls Purpose
ADI Solve 4 x 4 periodic block tridiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of gnd points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, ¥,.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4 x 4 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, F, G, and Aé’. In Fortran, however, we can save storage by overwnting A, B, C, and
S. The following table relates the algorithm as implemented in Fortran to the notation used m Volume 1,
for the first ADI sweep. An exactly analogous procedure is followed for the second and third sweeps.

Step In Fortran In Volume 1 Notation
la Dz = Bz
lb F 2= CNl
2a LU decompose By, storing result in B, LU decomposition of D,

2b Solve B,E, = C; for E; using LU decomposition of E,=D;'C;
B,, storing result in C,
2c Solve B,G; = A, for G, using LU decomposition of G:=Ds1A;
B., storing result in A,
2d Solve B,AQj; =S, for AQ; using LU decomposition | AQ; = D3!S,
of By, storing result in S;

142 4.0 Proteus Subprograms: BLK4P Proteus 3-D Programmer’s Reference

Step In Fortran In Volume 1 Notation
Fori=3to N, — 1,
3a Compute B,— AC,_,, storing result in B; D.=B-AE,_,
3b Compute S, — AS,_,, storing result in S, S, — AAQ
3c Compute — A/A;_,, storing result in A, - AG,_,
3d LU decompose B, storing result in B; LU decomposition of D,
3e Solve BE, = C; for E; using LU decomposition of B, E:=D;1C;
storing result in C,
3f Solve B,G, = A, for G; using LU decomposition of B, | G:=D;'AG;_,
storing result in A,
3g Solve BAQ! =S, for AQ! using LU decomposition AQ! =D Y(S: — AAQ)
of B, storing result in S; .
3h Compute By, — Cy A, _, storing result in By, By, — Y FG;
i=2
. Ci-1 A
3 Compute Sy; — Cx, S, -y, storing result in Sy, Sy — 2 FAQ;
j=2
3 Compute — Cy,C, _,, storing result in Cy, F.=—F,_E .,
4a Compute AN[—I + CNl—lr storing result in AN}—I GN]—I = D;;ll_ I(CNj-l - ANI—IGNI-Z)
4b Compute Ay, + Cy,, storing result in Cy, Fy,o1=Anx — Fy2Ex 2>
Bp-1
4c Compute By, — Cy, Ay, -1, storing result in By, - Dy, =By, — > FG;
i=2
Ny -1 A
4d Compute Sy, — Cx, Sy, -1, storing result in Sy, Sv— X FAQ!
i=2
de LU decompose By,, storing result in By, LU decomposition of Dy,
A A A Ni-1 A -
4f Solve By AQ'y, = Sy, for AQ’, using LU decompos- | AQ', = Dx(Sw — X F.AQ:)
 ition of By,, storing result in Sy, i=2
5 AQw = AQy
6 Compute SN; -1 AN] - 1S‘v1, StO!‘iﬂg result in SN1 -1 AéNl 1= Aé’N] -1 — GN] - IA(A)NI
Fori=N,—-2t0 2,
7 Compute S, — ASy, — CS;,,, storing result in S, AQ,=AQ! — GAQy, —EAQ..,
8 | Sets, =Sy, AQ =AQw,
Remarks

1. The notation used in the comments in
of the algonthm in Volume 1.

BLKA4P is consistent with the notation used in the description

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: BLK4P

143

Subroutine BLK5

Called by Calls Purpose
ADI FILTER Solve 5 x 5 block tridiagonal system of equations.
Input
A B, C ‘ Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLKS solves a block tridiagonal system of equations with 5 x 5 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clanty, that description involves additional

“new” matrces D, E, and Af)’. In Fortran, however, storage is saved by overwriting B, C, and S. The al-
gorithm is identical to that used in subroutine BLK4. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLKS is consistent with the notation used in the description of
the algorithm in Volume 1.

2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That 1s the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution.

144 4.0 Proteus Subprograms: BLKS Proteus 3-D Programmer’s Reference

Subroutine BLK5P

Called by Calls Purpose)
ADI Solve 5 x 5 periodic block tridiagonal system of equations.
Input
A, B, C ' Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
S Source term subvector S.
Qutput
S Computed solution subvector.
Description

Subroutine BLKSP solves a periodic block tridiagonal system of equations with 5 x 5 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

“new” matrices D,E, F, G, and Aé’. In Fortran, however, storage is saved by overwriting A, B, C, and
S. The algorithm is identical to that used in subroutine BLK4P. See the description of that subroutine for
a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLKSP is consistent with the notation used in the description
of the algorithm in Volume 1.

2. The soluti n algorithm is recursive and therefore cannot be vectorized in the sweep direct. »n. In an
ADI procedure, however, if the coefficients and source terms are stored in all three directions, the al-
gorithm can be vectorized in one of the non-sweep directions. That is the reason for the first, or IV,
subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines.
This increases the storage required by the program, but greatly decreases the CPU time required for the
ADI solution. '

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BLKSP 145

BLOCK DATA Subprogram

Called by Calls Purpose
Set default values for input parameters, plus a few other parameters.
Input
None.
Output

All namelist input parameters, plus:

CCPl1, CCP2, CCP3, CCP4 Constants in formula for specific heat. (8.53 x 103, 3.12 x 10?,

2.065 x 106, 7.83 x 10%)®

CK]1, CK2 Constants in formula for laminar thermal conductivity coefficient.
(7.4907 x 103, 350.0)

CMU1, CMU2 Constants in formula for laminar viscosity coefficient. (

7 7.3035 x 10-7, 198.6)'¢ '

GC Proportionality factor g, in Newton's second law. (32.174)®

IBCELM Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and/or x
directions; 0 if elimination is not necessary, 1 if it is. (2*0,2*0)

IBVUP Flags for updating boundary values from first two sweeps after
third sweep; 0 if updating is not necessary, 1 if it is. (0,0,0)

ICONV Convergence flag; 1 if converged, 0 if not. (0) ’

IGINT Flags for grid interpolation requirement for the ¢, », and { di-
rections; 0 if interpolation is not necessary, 1 if it is. (0,0,0}

ITBEG The time level n at the beginning of a run. (I)

KBCPER Flags for spatially periodic boundary conditions in the £, 5, and

NC, NXM, NYM, NZM, NEN

NIN
NR, NRU, NRV, NRW, NET

directions; 0 for non-penodic, 1 for periodic. (0,0,0)

Array indices associated with the continuity, x-momentum,
y-momentum, z-momentum, and energy equations. (1,2,3,4,5)

Unit number for standard input. (5)

Array indices associated with the dependent vanables p, pu, pv,

PW, and ET- (1,2,37415)

TAU Initial time value =. (NTOTP*0.0)

Description

The BLOCK DATA routine is used to set default values for all the input parameters, plus various other
parameters and constants. The defaults for all the input parameters are given as part of the standard input
description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK
DATA are given in parentheses in the above output description. Note that some of these values assume

18 These values are for reference conditions specified in English units. Values for SI units are set in subroutine IN-
PUT.

146 4.0 Proteus Subprograms: BLOCK DATA Proteus 3-D Programmer’s Reference

English units are being used to specify reference conditions. If SI units are being used, these values are re-
defined in subroutine INPUT.

Remarks

1. Most of the default values are defined directly, but some, like the reference viscosity MUR, are set equal
to zero and defined in subroutine INPUT if not specified by the user.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BLOCK DATA 147

Subroutine BLOUT
Called by Calls Purpose
TURBBL GATHER Compute the outer layer turbulent viscosity, using the algebraic
ISAMAX Baldwin-Lomax model.
ISAMIN
ISRCHFGT
ISRCHFLT
VORTEX
WHENFLT
Input
* APLUS Van Driest damping constant 4+.
* CB Constant B in the Klebanoff intermittency factor.
* CCLAU Clauser constant X in the Baldwin-Lomax outer region model.
* CCP Constant C,, in the Baldwin-Lomax outer region model.
* CKLEB, CKMIN Constants Cxus and (Cxies)min in the Klebanoff intermittency factor.
* CWK Constant C,, in the Baldwin-Lomax outer region model.
EP], EP2 Minimum and maximum allowable numerical values.
* FPMIN Value used to cut off the search for F,.
* LWALLL, LWALL2 LWALL3 Flags specifying wall locations for &, , and { boundaries.
MU Laminar coefficient of viscosity u,.
NTOTP Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., N1P x N2P x N3P).]
* N1, N2, N3 Number of grid points N;, N;, and Nj, in the &, n, and { directions.
NI1P, N2P Parameters specifying the dimension sizes in the ¢ and n di-
rections. .
* RER Reference Reynolds number Re,.
RHO, U, V, W Static density p, and velocities «, v, and w.
XY, Z Cartesian coordinates x, y, and z.
Output
MUT Outer layer turbulent viscosity coefficient (i1)outer.
Description

148 4.0 Proteus Subprograms: BLOUT

Subroutine BLOUT computes the outer layer turbulent viscosity coefficient (p)oure using the algebraic
eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 9.1 of Volume 1.
The steps performed in BLOUT are as follows:

Initialize the array DUMMY to zero.

For each grid point, set the variable DUMMY equal to a number from 1.0 to 6.0 as a flag specifying
the nearest solid wall. If none of the three grid lines through the point intersect a solid wall, the point
is a wake point and DUMMY = — L.

Call VORTEX to compute the vorticity magnitude at each grid point.

Proteus 3-D Programmer’s Reference

4. If there are no wall-bounded points, skip ahead to step 9.
Along each grid line that intersects a solid wall, compute

Fey|@](1- 1)

where 3, is the distance to the wall. For each line, search outward from the wall for the first peak in
F, calling it’s value FPEAK. Keep searching outward, cutting off the search when F drops below
FPMIN*EPEAK. (FPMIN is an input parameter with a default value of 0.9.). FPEAK is then the
value of F,,, for the current wall and grid line. Store the index corresponding to Frex in the LWALL
parameter for the current wall and gnd line.

6. At each wall-bounded grid point, compute
(D ourer = ReK CcpPF klebFwake
In this formula,

F, wake = ymaxF max

where F,., is the appropriate value from step 5 for the nearest solid wall, and yYn. is the corresponding
value of y,. Frus is the Klebanoff intermittency factor, given by

Ymax

Kleb CK[eb min +| I — (¢ ‘] B Klebyn |
() L (Kleb)min] ('—_—)

The Re, in the formula for y. causes (i o to be nondimensionalized by u,.

The LWALL parameters used to store the indices corresponding to Fr.x are then reset to 1.

If there are no wake points, the calculation is finished, so skip ahead and retum to the calling program.
For each wake point, set the variable DUMMY equal to a number from — 1.0 to — 6.0 as a flag spec-
ifying the nearest boundary.

10. At each grid point, compute the total velocity fnagnitude | l_}l , storing it in U. The sign is set equal to
the origina: sign of the x-velocity, for later use when U 1s reset to the x-velocity.

11. For each grid line, get the indices comresponding to l 17] ~and | v

max

12. For each wake point, along the grid line that intersects the nearest boundary, compute

Fi =0 |Ql
Fy= (0 2|
where (y.) is the distance to the point where l I7| = l I-/-'I i and (y,). is the distance to the point where

! V‘ = ‘ vV s’ The two values of F are stored in MUT and VORT, respectively.

13. For each grid line in the ¢ direction that contains wake points, get the locations of (F)max and (F2)mex-
Since a grid line may have both wall-bounded and wake points, the F values are first gathered into a
one-dimensional array containing only the wake point values. This array is then searched for the lo-
cation of F., and the resulting index is converted to the proper index along the original gnd Line.
Then, for each wake point along the grid line whose nearest boundary is at § = 0 or £ =1, compute
(")max A0 (P2)mexy WhETE (J1)mex is the value of (y.)y corresponding to (F)mex, €tc. Finally, compute

(MDouter = chppF wakeRer

where

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BLOUT 149

2 VYmax

Fuake= Cuk Vdijff F__
max

-1V
min

In the computation of Fueke, Ymae = MInL(71)maxs (P2)mex), aNd Frnge is the corresponding (Fi)mex OF (F2)mex-
The Re, in the formula for p, causes (u)our to be nondimensionalized by u,. The (koo values are
stored in DUMMY so the loop will vectorize. They are flagged as wake point values by making them
negative. ,

14. Repeat step 13 for grid lines in the » and { directions. ,

15. For each wake grid point, move (i:)ourer from DUMMY into MUT, making 1t positive.

16. Reset U to the value of the x-velocity.

Var=|

max

Remarks

, II—/-',,,,,,], and F,.. are set to a

1. To avoid the possibility of floating point errors, the values of II_},,,,,
minimum of 10-1°.

150 4.0 Proteus Subprograms: BLOUT Proteus 3-D Programmer’s Reference

Subroutine BVUP

Called by Calls Purpose
EXEC BCGEN Update first and second sweep boundary values after third sweep.
EQSTAT
SGEFA
SGESL
Input
DXI, DETA Computational grid spacing A¢ and An.

ETAX, ETAY, ETAZ, ETAT
IBVUP

* IHSTAG
JI
KBCPER

NEQ
NEQP

NPT1, NPT2, NPT3

NR, NRU, NRV, NRW, NET

* NI, N2, M-
NI1P, N2P

RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL
XIX, X1Y, XIZ, XIT

QOutput

DEL
IBASE, ISTEP

ISWEEP
Iv
METX, METY, METZ, METT

NPTS

Proteus 3-D Programmer’s Reference

Metric coefficients #;, 1,, %, and n..

Flags for updating boundary values from first two sweeps after
third sweep; 0 if updating is not necessary, 1 if it is.

Flag for constant stagnation enthalpy option.
Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Flags for spatially periodic boundary conditions in the &, », and {
directions; 0 for non-periodic, 1 for periodic.

Number of coupled equations being solved, N,,.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

Ni, N;, and N; for non-periodic boundary conditions, N, + 1,
»+ 1, and N; + | for spatially periodic boundary condition in ¢,
y, and .

Array indices associated with the dependent varables p, pu, pv,
pw, and Er.

Number of grid points Ny, Nz, and N, in the £, », and { lirections.

Parameters specifying the dimension sizes in the ¢ and #n di-
rections.

Static density p, velocities u, v, and w, and total energy Er at time
level 7 at all grid points.

Static density p, velocities u, v, and w, and total energy Er at time
level 7+ 1 at all interior grid points.

Metric coefficients &,, &,, &, and ¢,

Computational grid spacing for the sweep direction being updated.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

ADI sweep number for sweep direction being updated.
Index in the “vectorized” direction, .

Derivatives of computational coordinate, for the sweep direction
being updated, with respect to x, y, z, and &.

Number of grid points N in the sweep direction being updated.

4.0 Proteus Subprograms: BVUP 151

NV Number of grid points in the “vectorized” direction, N,.

RHOL, UL, VL, WL, ETL Static density p, velocities «, v, and w, and total energy Er at time
level n+ 1 at boundary points from first and second sweep.

Description

Subroutine BVUP updates boundary values from the first and second, or & and 5, sweeps after the third,
or ¢, sweep. In general, this is necessary when gradient or extrapolation boundary conditions are used in
the & or direction. Some updating is also necessary when spatially periodic boundary conditions are used.
The procedure for non-periodic boundary conditions is described in Section 7.3 of Volume 1.

Updating boundary values is complicated somewhat when spatially periodic boundary conditions are
used.

| s IS s |

=

A

. A BB

Aam 4 a8
é ﬂ’/ O Sweep 1
-7 [J Sweep 2
O O ,/'-f-El—El— A Sweep 3
A o e/"
7§
T

Figure 4.1 - Updating boundary values for periodic boundary conditions in the £ direction.

The situation for a periodic boundary condition in the ¢ direction but not in the # or { directions is
shown in Figure 4.1. In the figure, a 4 x 4 x 4 grid is shown in computational space for a three-dimensional
problem. The circles and squares represent grid points at which intermediate values are computed dunng
the first two ADI sweeps, and the triangles represent grid points at which final values are computed during
the third ADI sweep. The intermediate values at n = 0 and at 4 = 1 are updated first. This is done using
the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume 1, but for
i=2to N, instead of N, — 1, where i is the index in the ¢ direction. The values on the 5-{ edges (i.e., the
four lines of intersection between the » and { boundary planes) are also updated over the same ¢ indices
using the procedure described in Section 7.3 of Volume 1. Finally, the values in the ¢ = 0 plane are updated

by setting Q, = (A)N, at every point in the plane.

152 4.0 Proteus Subprograms: BVUP Proteus 3-D Programmer’s Reference

)

e — A\ — —

O
LI b
A n @’
Aen g B8
o—O 4 g O Sweep 1
| P [0 Sweep 2
O O |_ -8 8- A Sweep 3
n/\ o e’/
&3
i3

-

Figure 4.2 - Updating boundary values for periodic boundary conditions in the » direction.

The situation for a periodic boundary condition in the » direction but not in the ¢ or { directions is
shown in Figure 4.2. In this case, the intermediate values at { =0 and at £ =1 are updated first. This is
done using the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume
1, but for j = 2 to N, instead of N; — 1, where j is the index in the » direction. The values on the £-{ edges
(i.e., the four lines of intersection between the ¢ and { boundary planes) are also updated over the same 7
indices using the procedure described in Section 7.3 of Volume 1. Finally, the values in the n = 0 plane are

updated by settng 61 = ()Nz at every point in the plane.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BVUP 153

O O
4 A
A BB’
4 O //I/—/ - £1-
4 B oo O Sweep1
| g , O Sweep2
O O O_-<8- 8- - A Sweep3
"™ o e 0
7§
i

Figure 4.3 - Updating boundary values for periodic boundary conditions in the { direction.

The situation for a periodic boundary condition in the { direction but not in the ¢ or n directions is
shown in Figure 4.3. In this case, the intermediate values at ¢ =0, £ =1,y =0, and # = | are updated first.
This is done using the same procedure as for non-periodic boundary conditions, described in Section 7.3
of Volume 1, but for k = 2 to N; instead of N3 — 1, where & is the index in the { direction. The values on
the ¢-n edges (i.e., the four lines of intersection between the ¢ and » boundary planes) are also updated over
the same ¢ indices using the procedure described in Section 7.3 of Volume 1. Finally, the values in the

{ = 0 plane are upuated by setting (A)x = 6N3 at every point in the plane.

154 4.0 Proteus Subprograms: BVUP Proteus 3-D Programmer’s Reference

ben 4 g8
o0—O 4 o>’ O Sweep 1
: P O Sweep 2
O O |_-“8 8= A Sweep 3
Tl/\ O e’/
>§
g

Figure 4.4 - Updating boundary values for periodic boundary conditions in the £ and 5 directions.

The situation for periodic boundary concitions in the & and # directions but not in the { direction is
shown in Figure 4.4. In this case, the only action needed is to update the values in the £ =0 and =0

planes, by setting Qx QN; at every point in the ¢ = 0 plane, and Ql QN2 at every point in the » = 0 plane.

A B3

A oo
A emon l-o- 8-
A o B’
Aenm.-"8-8
4 ﬂ’/ O Sweep 1
| P O Sweep 2
O O ¢_-<8-8 A Sweep 3
" o_ e o
43
7t

Figure 4.5 - Updating boundary values for periodic boundary conditions in the £ and { directions.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BYUP

155

The situation for periodic boundary conditions in the £ and { directions but not in the » direction is
shown in Figure 4.5. In this case, the intermediate values at n = 0 and at » = 1 are updated first. This is
done using the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume
1, but for i= 2 to N, instead of N, — 1, and for k= 2 to A instead of N5 — 1, where i and k are the indices

in the ¢ and ¢ directions. The values in the ¢ = 0 plane are then updated by setting 6, = (A)N, at every point
m the pla.ne except for the points (1,/, 1). Finally, the remaining points in the { = 0 plane are updated by

setting Q, QN3

|
, o)
oo
é JAmm-es
4 BB~
L et a6 o
0—0—4§ éﬂﬂ’/ O Sweep 1
| -7 [0 Sweep2
O 0o ¢ -84 A Sweep 3
"W o_ e b
/&
T

Figure 4.6 - Updating boundary values for periodic boundary conditions in the y and { directions.

The situation for periodic boundary conditions in the » and { directions but not in the ¢ direction is
shown in Figure 4.6. In this case, the intermediate values at £ =0 and at ¢ = 1 are updated first. This is
done using the same procedure as for non-periodic boundary conditions, described in Section 7.3 of Volume
1, but for j = 2 to N, instead of N; — 1, and for k =2 to N, instead of N3 — 1, where j and k are the indices

in the » and ¢ directions. The values in the » = 0 plane are then updated by setting 6, = QNZ at every point
in the pla.ne except for the points (i, 1, 1). Finally, the remaining points in the { = 0 plane are updated by

setting Ql QN3

156 4.0 Proteus Subprograms: BVUP Proteus 3-D Programmer’s Reference

'S - N] -
OCuéﬂ’/ O Sweep 1
: e [0 Sweep 2
©C 0 O_-<8 8- A Sweep 3
n /’
N o e o
78
i

Figure 4.7 - Updating boundary values for periodic boundary conditions in all three directions.

The situation for periodic boundary conditions in all three coordinate directions is shown in Figure 4.7.
In this case, the only action needed is to update the values in the ¢ =0 and 5 = 0 planes, by setting

Q. = Qu, in the ¢ = 0 plane and Q, = Qy, in the # = 0 plane.
Remarks

1. The comer values of p and £r are updated by linearly extrapolating from the two adjacent points in the
&, n, and { Jirections, and averaging the three results. Note that this extrapolation is done ... compu-
tational space. Grid packing in any direction is thus not taken into account. The corner values of the
velocities are updated by doing the same type of extrapolation. Instead of averaging, however, the ex-
trapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct
inlets and exits.

2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and S represent A and S, where A is a square N by N matrix and S is a vector with N elements, and
if the leading dimension of the Fortran array A is LDA, then the Fortran sequence

call sgefa (a,lda,n,ipvt,info)
call sgesl (a,lda,n,ipvt,s,0)

computes A~'S, storing the result in S.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: BVUP 157

Subroutine COEFC

Called by Calls Purpose
EXEC Compute coefficients and source term for the continuity equation.
Input
DEL Computational grid spacing in sweep direction.
DTAU Time step Ar.

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
IBASE, ISTEP

IHSTAG

ISWEEP

v

12,13

J

METX, METY, METZ, METT

NC
NPTS
NR, NRU, NRV, NRW, NET

RHO,U,V, W
RHOL
THC

XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Computational gnid spacing A, Az, and AL.
Metric coefficients 5, 7y, 1z, and #..

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Index in the “vectorized” direction, i.

Grid indices j and X, in the » and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and 1.

Array index associated with the continuity equation.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pW, and ET.

Static density p, and velocities , v, and w, at time level n.
Static density p from previous ADI sweep.

Parameters 6, and' 0, determining type of time differencing for the
continuity equation.

Metric coefficients &,, &, &., and &..

Metric coefficients £, ¢, {;, and (..

Output
A B C Coefficient submatrices A, B, and C at interior points (fow NC
only).
S Source term subvector S at interior points (element NC only).
.Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations
(7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the three ADI

A

sweeps. The elements of the inviscid flux vectors ﬁ, F, and é are given in Section 2.0 of Volume 1, and
the elements of the viscous flux vectors Ey,;, Ey,, etc., are given in Appendix A of Volume 1. The Jacobian

158 4.0 Proteus Subprograms: COEFC Proteus 3-D Programmer’s Reference

coefficient matrices 6]%/0(2, 6ﬁy1/56, etc., are given in Section 4.0 of Volume 1. Using all of these
equations, the differenced form of the continuity equation may be written for the three ADI sweeps as”

Sweep 1 (£ direction)

n n
A
A,\: 91A1 s ai\':, Ax 0E1 Aé‘
p; + (1+92)2A§ 66 P+1 A i—1 -
i+1 i—1
At A 2 ARRY 2 An =1
- 1_‘*‘72— (5§E1 + 5,1F1 + 6401) + —m? A
Sweep 2 (n direction)
A n N n
A/\:: ¥ elAT 0Fl Aé*t aFl AA" _ A,\t
e |\ 5o 17\ 5 I
J+1 Jj-1
Sweep 3 (¢ direction)
0,4 o6\ &\
T A N 'S 3
Al\n+ 1 1 A n _ 1 A n— =AA
PET 1+ 8,248 20 k+1 30 Q-1 P
k+1 k-1

In the above equations, the subscripts i, j, and k represent grid point indices in the ¢, », and { directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at
i,j,ork.

The vector of dependent vanables is
N 1 T
Q=—[p pu pv pw Ef]

The appropriate elements of the flux vectors are given by

A]
E; = [pulx + pvdy + oWl + 0]
A]
Fy = [punx + pvmy + pwnz + pnil
A1
Gy =F [t pvly+ pwl, + 14

The clements of the Jacobian coefficient matrix dE/8Q for the continuity equation are

19 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFC 159

oF,
—=[& & gy & 0]
0Q

The Jacobian coefficient matrices 61'\71/56 and éé;/@é have the same form as 6ﬁ1/66, but with ¢ re-
placed by # and {, respectively.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
hand side for the first sweep. This is the second element of Q, so using the second element in JE,/0Q we
get :

01(AT); 5,k 7
— oo Exic 1,k

(1+ B)2A¢ b
B(IV,I,LNC,NRU)=0

0,(AT); ke
T A enr (Sxi+1,),k
(1 + 6,)2A¢

A(IVINCNRU) =

C(IVINC,NRU) =

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with ¢ replaced
by # and {, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The source term, or right hand side, for the first sweep is defined next. -The difference formulas used to
compute the source term are the same as those used for the implicit terms, and are presented in Section 5.0
of Volume 1. This is followed by the coding for the source term for the second and third sweeps, which
consists only of Ap* or Ap*".

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts ‘n the Fortran variables A, B, C, and S may be confusing. The first subscript s the
index in one of the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (I2,I1), for the second sweep the order is (11,12),
and for the third sweep the order is (I1,13). For sections of the code that apply to all three sweeps (i€,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the first sweep, the first two subscripts are written as (I12,I1). For sections that apply to the
second and third sweeps, they are written as (I1,I). The third subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent vanable for
which A, B, or C is a coefficient. ‘

160 4.0 Proteus Subprograms: COEFC Proteus 3-D Programmer’s Reference

Subroutine COEFEI1

Called by Calls Purpose
EXEC Compute coefficients and first-sweep source term, except for cross-
derivative viscous terms, for the energy equation.
Input
DEL Computational grid spacing in sweep direction.

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTAU

DTDRHO, DTDRU, DTDRY,
DTDRW, DTDET

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
ETL

IBASE, ISTEP

IEULER

ISWEEP

ITHIN

v

12,13

]

METX, METY, METZ, METT

MU, LA, KT

NEN
NPTS
NR, NRU, NRV, NRW, NET

P, T
PRR
RER

RHO,U,V,W,ET

THE

XIX, X1Y, XI1Z, XIT

Proteus 3-D Programmer’s Reference

Derivatives dp/dp, 8p|d(pt), dp|X(pv), Op/8(pw), and 8p|OEr.

Time step Az.
Derivatives 8T/8p, 8T|d{pu), 8T|3(pv), 8T|3(pw), and T(IEr.

Computational grid spacing A&, A», and A{.
Metric coefficients #y, 1y, 7., and #..
Total energy Er from previous ADI sweep.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.
Current ADI sweep number.
Flags for thin-layer option.
Index in the “vectorized” direction, i,.

Gnd indices j and k, in the » and { directions.

Inverse Jacobian of the nonorthogonal gnd transforma. on, J-1.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, z, and &.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity & at
time level n.

Array index associated with the energy equation.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static pressure p and temperature T at time level n.
Reference Prandtl number Pr,.
Reference Reynolds number Re,.

Static density p, velocities , v, and w, and total energy Er at time
level n. -

Parameters ,, §,, and 0; determining type of time differencing for
the energy equation.

Metric coefficients &, &, &;, and &,

4.0 Proteus Subprograms: COEFEl 161

ZETAX, ZETAY, ZETAZ, Metnic coefficients ¢, {,, £, and {..

ZETAT
Output
A B, C Coefficient submatrices A, B, and C at interior points (row NEN
only).)
S First-sweep source term subvector S at interior points, except for
the cross-derivative viscous terms (element NEN only).
Description

Subroutine COEFE1 computes the coefficients and starts the computation of the first-sweep source term
for the energy equation. The cross-derivative viscous terms are added to the first-sweep source term in
subroutine COEFE2. Equations (7.5a-c) in Volume 1 represent, in vector form, the five govemning differ-

ence equations for the three ADI sweeps. The elements of the inviscid flux vectors E, F, and G are given
in Section 2.0 of Volume 1, and the elements of the viscous flux vectors Ey,, E,, etc., are given in Appendix

A of Volume 1. The Jacobian coefficient matrices af:/a(), 5]::;,1 /66, eic., are given in Section 4.0 of Volume
1. Using all of these equations, the differenced form of the energy equation may be written for the three
ADI sweeps as

Sweep 1 (& direction)

n n
Pl A
A(EA'):+ GIAT 6E5 Aés aEs Aét
)i A iv1 7\ T~ i—1
(1 + 6,)24¢ 5 P
Q i+1 Q i—1
6,At n_n A n . n_n Ar
-) [+ A8 18Qio — (i + 20+ 4) & 8Q + (it fir) &t AQ; 4] =
(1+09)2A8)" .
A A A A A A A A
- +102 (8;Es + 6,Fs + 6,Gs)" + T ;02 [6:(Ep)s + 8,(Fy)s + 8:(Gy,)s]"
(1+0y)Ax A A A 0;A7 A A oA -1
“ 176, [55(EV,)5 +6,(Fy)s + 5g(GV2)S]n “T1+6, [5§(EV2)5 +6,(Fy)s + og(GVz)S]n

6, Sn—1
+——-1 6, AETF

Sweep 2 (» direction)

n) n
A(é\')ur + BIAT 6%5 Aéux 6%5 Aétt
TIT (14 6,)289 20 J+1 30 =1 _
j+1 Jj—1
BIAT nn A xx nn Axx nn A xx -
‘mﬂff—wm&-IAQJ-_I—UH+2f;+f;-+1>&-AQ,- G+ fe)'gdQ] =
2 n
AE;

162 4.0 Proteus Subprograms: COEFEI Proteus 3-D Programmer’s Reference

Sweep 3 (¢ direction)

n : n
A A
A 6,47 9Gs A 9Gs A
A(ET)Z + oA —_— A Z = —= AQ%L _
(1+ 6,)2A7 P -+ jy:
Q k+1 Q k-1
01A1 : nn A n non in non A
- (1+6)2(AC)2 [(f,;c_] +-f}() gk—lAQk—] _(f]'{—l +2f1'(+-f}¢!+l) gkAQk+(ﬁ(+ -fl.(-{-l) gk+1AQk+l]=
2 .
AEy

In the above equations, the subscripts i, j, and k represent grid point indices in the ¢, %, and ¢ directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at
i, j, or k. On the left hand side, fis the coefficient of 0/8¢ (or 9/0n or /8¢, depending on the sweep) in the

6ﬁy,/66 {or 3i7y,/66 or 86”66) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
following 8/d¢ (or 8/dn or 8/8() in the JE,/3Q (or F,/0Q or 3Gy,/3Q) Jacobian coefficient matrix.

The vector of dependent variables is
Q=7Flp pu pv pw 7}

The appropriate elements of the inviscid flux vectors are given by

Es = _}_ [(Er+ p)uéx# (Er+pWe, + (Er+pwé, + Er &)
Fs = [(Er+ puang+ (Er+ pyomy + (Er+ p)wn; + Erndl
és = % [Er+ P+ (Ep+ppey + (Er+ pwi: + Erli]

The approp:.ate elements of the non-cross derivative viscous flux vectors are

A 2 A
E1)s =572 {(“;’ L0220, + 80D + S0+ (1 + DLEL, () + Exm)y + §,80W);]

+ L1807 + WDy + 50wy + e + W21+ —PkT, E+8+ :ﬁ)?}}

2u+ i
1 { (2u ;—) [nad), + 20, + naw?),]+ (1 + DDy @), + nan,(w)y, + 10 0w)y]

2,2 2 3,7 2 2,2, .2 k . 2 2, .2
+ 5 [nx(" + W), + oy 4w Iy T+)q]+7);7(’7x+’7y+’72)T,7}

L2020, + 207, + 20D + (s + DISL,0); + Ll (ww) + 88 0%)]

1 @Cu+?)
2

45 (307 W + G+ + e+ + ?kr_, G+ + cﬁ)Tg}

The terms involving Ey,, Fy,, and Gy, are the cross derivative viscous source terms, and are computed
in subroutine COEFE2.

Proteus 3-D Programmer’s Reference 40 Proteus Subprograms: COEFE1 _ 163

The elements of the Jacobian coefficient matrix JE/3Q for the inviscid terms in the energy equation are

6E é d d d
5" [fl(fz) Wathgty Hthaay Rithige é,+ﬁ(1+a—£;)]

where fi = ué, + v&, + w¢, and f; = (Er + p)/p.

The elements of the Jacobian coefficient matrix JEy,/dQ for the viscous terms are

A A A A A
oEy)s aEy \ oEy, oEy, oE,, i (ST)
20 Re B 20 30 3Q ¢ \ 9Er
51) 52 53 54

o)
(Z) ~erde)k (B on (3o (5
)

oF ‘ '
(2w (2o () () (5
54

a = Qu+ D+ u8} + ud)

ayy = &L + (2u + DE + ut)

wp=n&l + g+ (2u+ DE}
ag, = (u+ éxéy
= (1 + 1)Exé;
ay,=(u+ A,

d0= &+ + &)
The Jacobian coefficient matrices 61%/56 and 6(f7yl)5/66 have the same form as ai:s/a() and 6(ﬁy1)5/66

but with f replaced by - Sumlarly, the Jacobian coefficient matrices 6G5/ 6Q and G(Gyl)s / 6Q have the same
form as 5E5/6Q and 0(Ey1)5/6Q but with ¢ replaced by {.

164 4.0 Proteus Subprograms: COEFE1 Proteus 3-D Programmer’s Reference

As an example of how these equations are translated into Fortran, consider the A(px/J) term on the left

hand side for the first sweep. This is the second element of 6, so using the second element in 61'\-15/06 we
get for the inviscid term

0(AT) E +
A(IVLNEN,NRU) = — bk {(r+p

. o
_ ; + + Ve, + W)
s 92)2A§ ? ¢)i- Lk [(ugx Véy ’W'fz) a(Pu) i|i_ . k}

B(IV,I,NEN,NRU) =0

6(A) ik) (Er+p | o
CAV.ILNENNRU) =77 5,207 {(5 éx>_+1 e + [(uf,c vy +wl) 5 Lk
i A ! o)

For the viscous terms on the left hand side, we use the second element in 6(ﬁpl)5/66, which is
1 8 (u a (v a (w a oT
Re, [“H R (5)+o a¢ (F)+ o 2% () += T ((p1))il

There are four terms in that element. Thus, in tumn, f= a../Re,, ¢/ Re;, a.u/Re,, and ag/Re,, and g = ufp,
vjp, wip, and 8T/d(pu). To add the viscous contribution to this part of the A coefficient submatrix, we
therefore set

A(IV,L,NEN NRU) = A(IV,LNEN,NRU)
01(A7) ;&
(1 + 0,)2(A%) Re,

{[(axx)i— Likt (axx)i,j,k](—g‘)i_ 1 ik + [og)i— 1,5, &+ (@), k](—;—)i— Lk

+ Lo — 1, 1+ (@x2di, j, 2] %‘ IS o (C RS S C Y o
1,/ k Hpw) =1k

Similar equations may be written for the B and C coefficient submatrices.

In COEFE,, the coefficients of the left hand side, or implicit, terms are defined first. The impucit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with ¢ replaced
by # and £, respectively. By defining DEL, METX, METY, METZ, and METT as the gnd spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The non-cross-derivative part of the source term, or right hand side, for the first sweep is defined next.
The difference formulas used to compute the source term are the same as those used for the implicit terms,
and are presented in Section 5.0 of Volume 1.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript 1s the
index in one of the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (I2,11), for the second sweep the order is (11,12),
and for the third sweep the order is (I1,I3). For sections of the code that apply to all three sweeps (i.¢.,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the first sweep, the first two subscripts are written as (I12,11). For sections that apply to the
second and third sweeps, they are written as (I1,I). The third subscript on A, B, C, and § corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFEL 165

The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms.

The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing denvatives in the specified direction.

The computation of the first-sweep source term was split in two to keep the energy equation subroutine
from being even longer than it already is.

166 4.0 Proteus Subprograms: COEFEI Proteus 3-D Programmer’s Reference

Subroutine COEFE2

Called by Calls Purpose

EXEC Compute cross-derivative part of first-sweep source term, plus second-
and third-sweep source terms, for the energy equation.

Input

DTAU

DXI, DETA, DZETA
ETAX, ETAY, ETAZ
IBASE, ISTEP

* [EULER
ISWEEP
* JTHIN
12,13
J1
MU, LA, KT

NEN
NPTS
T
PRR
* RER

* THE

TL
U,V, W, ET
UL, VL, WL, ETL

XIX, X1Y, XI1Z
ZETAX, ZETAY, ZETAZ

Output
S

Description

Time step Az.
Computational grid spacing A, Ay, and A{.
Metric coefficients #,, 7,, and »..

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flags for thin-layer option.

Gnid indices j and k, in the n and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, /- 1.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity & at
time level 7. :

Array index associated with the energy equation.
Number of grid points in the sweep direction, N.
Static temperature 7 at time level n. '
Reference Prandtl number Pr,.

Reference Reynolds number Re,.

First-sweep source term subvector S at interior points, except for
the cross-derivative viscous terms (element NEN only).

Parameters 8,, 8,, and 65 determining type of time differencing for
the energy equation.

Static temperature 7 from previous ADI sweep.
Velocities u, v, and w, and total energy Er at time level n.

Velocities %, v, and w, and total energy Er from previous ADI
sweep. '

Metric coefficients &,, &, and &..

Metric coefficients {., ¢,, and {..

Source term subvector S at interior points (element NEN only).

Subroutine COEFE2 finishes the computation of the first-sweep source term for the energy equation
by adding the cross-derivative terms. It also computes the second- and third-sweep source terms. The

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: COEFE2 167

differenced form of the energy equation for the three ADI sweeps is presented in the description of sub-
routine COEFEL.

The appropriate elements of the cross derivative viscous flux vectors are

(f:Vz)S = % 'ﬁlz;' {2“[€x(nxuun + cxuug) + fy(ﬂyw,, + Cng) + fz(ﬂzW,, + Czwwg)]

+ A& n e, + vy, + npw, + {y + L + L uwe)

+ A& (nxvig, + mpwv, + nvw, + Cxvup + v + Lwy)

+ A& (Wi, + nywv, + nww, + {owuy + {wv + L wwy)

+ u&(nyvu, + nyw, + Wy, + nww, + Ev + Lo + Eow + £ wwy)
+ p& (a1t + nv, + 0wy, + nww, + L + Lang + Ewve + [ww)
+ 10 0t + nwy + 0y + W, + Laan + Cxowe + v+ L)

b Gt by b £y ¥ Bt By + ST

(%VZ)S = -17 Rler {zu[nx(zxuug + CXWC) + ny(fng + C}'WC) + nz(ézwwg + CZWW§)]

+ A&y + Ly + Lpowg + C i + Eyuvy + L wy)

+ }-ﬂy(fxvu; + ‘fng + fszg + vaug + ":ng + szwg)

+ I (Ewutg + Ewvg + Eww; + {wnp + {wv + (wwy)

+ (&g + Evvy + Ewuy + Sewwy + Ly + Lo + Lwi + (wwy)
+ uny(Eyuny + £ + Ewve + Eww + Eprar + Ly + Cwop + (wwy)
+ pn A&ty + Exwg + E vy + Eywy + Laup + xaawy + (v + Lvwy)

k k
+ P_I’, (nxéx+ 'lyéy + ﬂzéz)Tg + —P; (<l + nycy + 'lzcz)Tg}

Cr)s= T e {2u[cx(nxuu,, Eaa) + Ly, + Eve) + Llnww, + Eww)]

+ A x(n sty + v, + n 1wy, + ¢ty + Suvy + & uwe)

+ Ay, + nyvv, + W, + Evuy + Ly + Lvwy)

+ 2L (Wi, + mywv, + naww, + Ewitg + Suwvy + Ewwy)

+ w8 nyvid, + 1,0, + Wi, + o wwy, + Eyvuy + & + & Wity + & wws)
+ pl (nyraad, + mv, + W, + nww, + St + vy + Ewvs + & wws)
+ B Atk + Wy Wy Wy + Sty + LWy + Evg + W)

+ -15-7, (erlx + Cy’ly + Czﬂz)Trl + -ﬁk; (CX(;:X M Cyfy * €Z§2)T§}

The cross-derivative part of the first-sweep source term is computed first. The difference formulas used
to compute the source term are the same as those used for the implicit terms, and are presented in Section
5.0 of Volume 1. This is followed by the coding for the source term for the second and third sweeps, which

consists only of AE: or AES".

168 4.0 Proteus Subprograms: COEFE2 Proteus 3-D Programmer’s Reference

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variable S may be confusing. The first subscript is the index in one of
the non-sweep (i.e., “vectorized”) directions, and the second subscript is the mdex in the sweep direction.
For the first sweep the order is thus (12,11), for the second sweep the order is (I11,12), and for the third
sweep the order is (I1,I3). For sections of the code that apply only to the first sweep, the first two
subscripts are written as (12,11). For sections that apply to the second and third sweeps, they are written
as (I1,]). The third subscript on S corresponds to the equation. '

3. The Euler option is implemented simply by skipping the calculation of the source terms for the viscous
and heat conduction terms. :

4. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFE2 169

Subroutine COEFX

Called by Calls Purpose
EXEC Compute coefficients and source term for the x-momentum equation.
Input
DEL Computational grid spacing in sweep direction.

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTAU

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
IBASE, ISTEP

* JEULER
* THSTAG
ISWEEP
* ITHIN
v
12,13
JI
METX, METY, METZ, METT

MU, LA

NPTS
NR, NRU, NRV, NRW, NET

NXM
P
* RER
RHO, U, V,W
RHOL, UL, VL, WL

* THX
XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Derivatives dp/dp, dp[d(pw), dp/d(pVv), dpld(pw), and dp[dErT.

Time step Az.
Computational gnd spacing A¢, An, and A{.
Metric coefficients »., 1,, 7z, and ..

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index in the “vectorized” direction, i,.

Grid indices j and %, in the » and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, /-1

Derivatives of sweep direction computational coordinate with re-
spect to x, », z, and ¢.

Effective coefficient of viscosity u and effective second coefficient
of viscosity 4 at time level n.

. Number of gnid points in the sweep direction, N.

Array indices associated with the dependent varables p, pu, pv,
PW, and Er.

Array index associated with the x-momentum equation.
Static pressure p at time level n.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w at time level n.

Static density p, and velocities &, v, and w from previous ADI
sweep.

Parameters 8,, 6,, and 8; determining type of time differencing for
the x-momentum equation,

Metric coefficients &,, &, &;, and ¢,

Metric coefficients {,, {,, {;, and {..

170 4.0 Proteus Subprograms: COEFX Proteus 3-D Programmer’s Reference

Output

A, B,C Coefficient submatrices A, B, and C at interior points (row
NXM only).
S Source term subvector S at interior points (element NXM only).
Description

Subroutine COEFX computes the coefficients and source term for the x-momentum equation.
Equations (7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the

three ADI sweeps. The elements of the inviscid flux vectors ﬁl, l’:", and é are given in Section 2.0 of Volume
1, and the elements of the viscous flux vectors ﬁyl, 1'::;’2, etc., are given in Appendix A of Volume 1. The

Jacobian coefficient matrices ai:/aé, 6122;,1 /66, etc., are given in Section 4.0 of Volume 1. Using all of these
equations, the differenced form of the x-momentum equation may be written for the three ADI sweeps
as?

Sweep 1 (¢ direction)

n n
A A
. x elAT aEQ A x aFfz AR
A(pAu)i + (1 + 02)2A§ 06 AQi+1 - E AQi—]
i+1 i—=1
elAT

—W[(ﬁ-l A AQ_ — (fimy +2fz+ﬁ+1)"ng6; +(fit+ fir)E s 1A6:+1]=
2

A A A A A A A A
T (8,E, + 5,F, + 8,G,)" + I_-F—E(Z [6:(Ey), +6,(Fy), + 5§(GVl)2]n

T 1+6, _
{1+ 93)A‘r A A A 33A‘r A A A -1
T [3sErr + 6 Fu) + 6 G — i (8B + 6, F)+ 5((Gyy): "
62 An—1
* 1y, 4FY

Sweep 2 (n direction)

n n

A(A)tt " BIAT 0%2 Aéu af‘z AI** :
PU, T+ 624 A i+1 7\ A -1
2] F! o
Q Jj+1 Q j—=1
6,Ax n_n A+ nna At n_n AL L
'm[(ﬁ—ﬁfj)%—lmj—l—(ﬁ—l+2fj+f§+1)&'AQj + i+ 408 18Q 1] =
2
AW

2 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFX 171

Sweep 3 (¢ direction)

A n Al n
N 6,At G, A 0G, A
A(P“)Z‘*‘ (1 + 8,)2AL A AQ2+1— A AQZ—I
2 oQ aQ
k+1 k-1

8,A7 n n An n on,An nn An :
_—————(1 PRIV [(J}c-] + fi)V '8 18Q 1 — S + 2+ i 1) 8BQ + (i + Sy 1) ngAQHl]:

2 :
Ay

In the above equations, the subscripts i, j, and k represent grid point indices in the £, », and { directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at
i, j, or k. On the left hand side, fis the coefficient of /3¢ (or 8/3n or 8/8(, depending on the sweep) in the

6f3y, /66 (or aﬁl /6(:)_ or 6éy, /66) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
following /3¢ (or &]dn or /L) in the 3E4,/aQ (or 8Fy,/3Q or 3G1,/aQ) Jacobian coefficient matrix.

The vector of dependent variables is

T
lp pu pv pw Er]"

[

6=r

The appropriate elements of the inviscid flux vectors are given by

f':2 = % [(Pu2 +p)x + pwré, + puwl, + pul,]
F,= % [(pt? + pnx+ puvmy, + puwn, + pn,]
Gy = [(orl + Pt + prorl, + prowl, + p1il]

The appropriate elements of the non-cross derivative viscous flux vectors are

(EVI)2 = Tll— Rle, [zluéfcug + ’léx(fxug + éyvg + EZW§) + F’-fy(fyug + &XV§) + ‘ufz(fzug + éxwg)]
L 1
(FV1)2 = % Re, [zﬂﬂ_zxun + 2’7_):(’1):”;7 + r’yvn + ﬂzwr,) + ,u.r]y(nyu,, + 'ler]) + l‘"’z(nzur’ + 'war,)]
N 1 1 .
Grr=7F 7 (2082, + ALy + Ly + Eowp) + 8y Gyt + L)) + i AL ag + Eowp)]
T

And the appropriate elements of the cross derivative viscous flux vectors are

A 1 1 r ' '
Ep)r =5 %o (2008 (1514, + Cxttg) + 2Ex(nctty + my¥yy + MWy + Lt + Ly + Lw)
T

+ F‘fy(’?yuq + v, + cy“g + ngg) + F“fz(’lzur, +n,w, + Czug + ixwg)]

2 1 1
Fy)r= 7 Re [2yr1x(§xu§ + Cup) + Ang(Exity + Eve + Ewyp + Lo + Evp + Ewp)
r

+ P’"y(&yug + éxvg + Cyug + vag) + ﬂ’lz(fzug + fxwg + Czug + C.xwg)]

172 4.0 Proteus Subprograms: COEFX Proteus 3-D Programmer’s Reference

A 1 1
(GV2)2 = 7 Re-, {:2"‘Cx('lxur, + &xug) + }'Cx('lxun + NyVy + Wy + fxug + fyvg + 'fzwg)

+ Ly (nytdy, + ng¥, + Eyttp + Exv) + u(n by + MWy + S + 5xW;)]

The elements of the Jacobian coefficient matrix JE/&Q for the inviscid terms in the x-momentum
equation are

E, [o ap P _ o op
00 [73? Gmuh Ltfitubet gl Wyt gin e et G B, ‘:x]

d(pu)
where f; = wé, + v¢, + wi..

The elements of the Jacobian coefficient matrix JEy,/0Q for the viscous terms are

N A
o] (Z0) n2(2) wd(3) () o
0 Re, 20 x g \p gz \ P xz2 g \ P
21
where
a3
OEy,
1 . 0 uN_ 0 (v_, 0 (w
20 = “xxag(p) “Xyag(p) “xzaf(p)
21

ape= 2 + DEE + ug)? + g
Tyy = (0 + A)fxfy -
2= (1 +)L,

The Jacobian . .-efficient matrices 8F2/6Q and 6(Fy,)2 aQ have the same form as 6E2/6Q and é ;yl)zlaQ
but with E replaced by 7. Sumlarly, the Jacobian coefficient matrices 6G2/6Q and 6(Gyl);/ 6Q have the same
form as aEz/éQ and 6(Eyl)2/6Q, but with ¢ replaced by £.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
hand side for the ﬁrst sweep. This is the second element of Q so using the second element in 6E2/6Q and
including the A(pw); term, we get for the inviscid term

01(A7); ;&

FTNXM N op

A(IV 7],NXM’1 RU) = — W [(ét)i— Lk + (ufx + v;,, + sz)l'— Lk + (ufx)i— Lik + (m éx)]
. i-Lk

B(IV,INXMNRU) =1

. . 0189k |, ap
C(IV,I,\X\A,\RU):W (‘t)i+1,j,k+(u51+v§y+wéz)i-*-l,j,k+(u§x)i+l,j,k+ a_(pJEx .
i+1,j

For the viscous terms on the left hand side, we use the second element in a(éyl)zla(“), which is
B S (L)
Re, ™ o\ P

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFX 173

Thus = a./Re, and g = 1/p. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(IV,INXM,NRU) = A(IV,INXM,NRU) -

6,(A7); ;&
(14 6)2(A8)Re,

(o) — 1-,j, ket (@i j, “](-;_)

s lvjrk

Similar equations may be written for the B and C coefficient submatrices.

In COEFX, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms

for the second and third ADI sweeps have exactly the same form as for the first sweep, but with ¢ replaced
by n and ¢, respectively. By defining DEL, METX, METY, METZ, and METT as the grid spacing and"
metric coefficients in the sweep direction, the same coding can be used for all three sweeps. -

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to

compute the source term are the same as those used for the implicit terms, and are presented in Section 5.0
of Volume 1. Thishis followefi by the coding for the source term for the second and third sweeps, which
consists only of A(pw)* or Alpw)™. -

Remarks

1.

This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (12,11), for the second sweep the order is (I1,12),
and for the third sweep the order is (I1,I3). For sections of the code that apply to all three sweeps (i.c.,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply to the
second and third sweeps, they are written as (I1,I). The third subscript on A, B, C, and S cormresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient.

The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

The thin-layer .ption is implemented by skipping the calculation of the coefficients and source erms
for the viscous terms containing denivatives in the specified direction.

174 4.0 Proteus Subprograms: COEFX Proteus 3-D Programmer’s Reference

[N}

Subroutine COEFY

" Called by Calls Purpose '
EXEC Compute coefficients and source term for the y-momentum equation.
Input
DEL Computational grid spacing in sweep direction.

DPDRHO, DPDRU, DPDRY,
DPDRW, DPDET

DTAU

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
IBASE, ISTEP

* JEULER
* ITHSTAG
ISWEEP
* ITHIN
v
12,13
J1
METX, METY, METZ, METT

MU, LA

NPTS
NR, NRU, NRV, NRW, NET

NYM
P
* RER
RHO, U, V, W
RHOL, UL, VL, WL

* THY
XIX, X1Y, X1Z, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Proteus 3-D Programmer’s Reference

Derivatives dp/dp, dp/d(pu), dpld(pv), dp|d{pw), and Op[OLT.

Time step At.
Computational grid spacing A&, Ay, and AL.
Metric coefficients #,, #y, 72, and 7.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation. ‘

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index in the “vectorized” direction, .

Grid indices j and %, in the » and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J~!.

Derivatives of sweep direction computational coordinate with re-
spect to x, y, 2, and £

Effective coefficient of viscosity u and effective second coefficient
of viscosity A at time level 7.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent vanables p, pu, pv,
pw, and Er.

Array index associated with the y-momentum equation.
Static pressure p at time level .

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w at time level n.

Static density p, and velocities ¥, v, and w from previous ADI
sweep.

Parameters 8,, 8, and 65 determining type of time differencing for
the y-momentum equation.

Metric coefficients &,, ¢;, &, and &.

Metric coefficients {,, ¢, {., and ..

4.0 Proteus Subprograms: COEFY 175

Output

A B, C Coefficient submatrices A, B, and C at interor points (row
NYM only).
S Source term subvector S at interior points (element NYM only).
Description

Subroutine COEFY computes the coefficients and source term for the y-momentum equation.
Equations (7.5a-¢) in Volume 1 represent, in vector form, the five governing difference equations for the

three ADI sweeps. The elements of the inviscid flux vectors I::, IA", and é are given in Section 2.0 of Volume
1, and the elements of the viscous flux vectors ﬁyl, nyz, etc., are given in Appendix A of Volume 1. The

Jacobian coefficient matrices 5f3/ 06 61:3;/, /66 etc., are given in Section 4.0 of Volume 1. Using all of these
equations, the differenced form of the y-momentum equation may be written for the three ADI sweeps
aSZI

Sweep 1 (¢ direction)

A()+ BIAT 5i\33 Aéx 6},\33 Al\t

Vv); ; — —_— :

PV} (1+02)2A§ 66 i+1 66 P—1
i+1 i—1

6, A* n naA* n.n A*
m[(ﬁ—l'*'ﬁ)n&'n—]AQi—l(ft:—l+2ﬁ+fz:+l) & AQ; + (fi+ fix) gi+1AQi+1]=
2

A A A A
~ gy (o ool e 58" 2 [o®in + B + G]

(1 +83)A7 A A A . 03A
—Tra, [0 + 8, (F i)+ 6(Gus) — - —[6e(Ey)s + 6,(F1)s + 6:Gy)s]" ™
2 An—1
*11g, A6V

Sweep 2 (n direction)

n n

A(A)t* " 91AT 6%3 A/\tt af?:; AA"
v. i - e F o
PYi T ¥ 6,)2An 20 J+1 0 S =1
J+1 Jj=1
0,A7 n_nma A** n n AR
—m[(f VAV BQ L = (o1 + 2+ 4)G+ i+ 4018 5] =
2
A

21 These equations are written assurxiing the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have

only four elements.

176 4.0 Proteus Subprograms: COEFY Proteus 3-D Programmer’s Reference

oA

Sweep 3 (£ direction)

. 8, A7 G n G A
A(pv)] + W "8—6‘3‘ 1™ —3;33' AQ%_
K+ k-1
8,Ar 2 n
-m[(ﬁc_l'*ﬁc)gk—]AQ-1—(ﬁ<—1+2fk+ﬁc+1) kAQ + (et fea) k+lAQk+1]=
AW

In the above equanons the subscripts i, j, and k represent grid point indices in the £, », and { directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at
i, j, or k. On the left hand side, fis the coefficient of /8¢ (or 8/dy or 8/3(, depending on the sweep) in the

6ﬁy,/66 (or aﬁy,/aé or 6éyl/66) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
following 8/8& (or 3/dn or 8j3%) in the JE,,/0Q (or 6Fy,/8Q or 6Gy,/6Q) Jacobian coefficient matrix.

The vector of dependent variables is
AT T
Q=7Flp pu pv pw Er]

The appropriate elements of the inviscid flux vectors are given by

Fal

By = [owd, + (o + P, + pvwls + pVE])
A 1

F3 =5 [pwv, + oV + Py + pvwn, + pwn,]
N

Gy = (ol + (0" + PG, + Pyl + p¥L,]

The appropriate elements of the non-cross derivative viscous flux vectors are

(f;Vl)3 = % Vg + Aéy(éxug + éyvg + ézwg) + ﬂéx(é u; + EXV§) + }léz(éz'Vg + fng)]
(%V1)3 = } yn + Ay (i, + nyVy + n W) + pn(nyiy + nxvy) + pnglnvy, +m, w,)]
(&Vl)3 - .1] +)"cy(C;(u; + Cyvg + Czwg) + PCx(Cyug + C_xvg) + P'CZ(szg + Cng)]

And the appropriate elements of the cross derivative viscous flux vectors are

fal
(EV2)3 =7 R [2[1.&},(}1},17 + Cyvg) + }‘fy(rlxuq + ’7qu + ’1ng + Cxug + Cyvg + Czwg)

+ ulxlnyi, + v, + Gup + Lovp) + nl(nyy + nyw, + 8 + Cywc)]

(Fy)s = L [2my (g +) + Any Gty + &y + g+ Lo + Ly + Eaw)

+ P’]X(gyl% + ngf + Cyug + va;) + ,ur]z(sz§ + :ng + cva + Cng)]

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFY 177

\

2~ 1 1 .
G1)i=7 Re (268, (nyv,, + &yve) + A0, (nxty + myPy + mowy + Sty + Eyve + W)
r

+ ul(nyu, + nyv, + Sy + Exve) + ul(nv, + myw, + Eve + Eng)]

The elements of the Jacobian coefficient matrix JE/Q for the inviscid terms in the y-momentum
equation are

ok, [ap ap o op ap
[Fp' ¢, —vh v£x+———a(pu) & &N +véy+——a(pv) g vé+ o) & 3E; ﬁy]

=
Q
where f; = ué, +v&, + wé..

The elements of the Jacobian coefficient matrix 0Ey,/0Q for the viscous terms are

AEy) oEy,
el () wE) wEG) 2 G
where
oE
a(“: =‘°‘xya%(%)‘“yya%(%)"“ﬂ%(%‘)
31
=+ D)Exéy

Ayy = ufxz + (2!"' + A)éyz + I‘&zz
2=+ 1)&ye;

The Jacobian coefficient matrices 6F3/6Q and 8(Fy,)3/aQ have the same fozm as 6E3/6Q and 6(Ey, ,3/6Q
but with f replaced by 7. Sumlarly, the Jacobian coefficient matrices 6G3/ 6Q and 6(Gy,)3/6Q have the same
form as 8E3/6Q and 8(Eyl)3/BQ, but with ¢ replaced by £.

As an example of how these equations are translated into Fortran consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of Q so using the second element in 6E3/6Q we
get for the inviscid term :

o 0,(Av), 3
A(IV,LNYMNRU) = — H’Jre—z);é— [(vfx),-_ Lkt (7(57) fy) J
7 i—-1,j,k

B(IV,LNYM,NRU) =0
. 0,(A1); ; x op
C(IV,I,I\YM,\IRU) = W (fo)i +1,),k + (W fy>
i+1,),k
For the viscous terms on the left hand side, we use the second element in 6(ﬁv1)3/66, which is
L2 (L)
Re, @ 3¢\ P

178 4.0 Proteus Subprograms: COEFY Proteus 3-D Programmer’s Reference

Thus f= a,,/Re, and g = 1/p. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

0,(AT); 5k

A(IV,LNYM,NRU) = A(IV,LNYM,NRU) — .
(1+ 6)2(A8) Re,

[lagdi—1,j, &+ (@i, k](';—)

i—-1,7,k
Similar equations may be written for the B and C coefficient submatrices.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with & replaced
by n and {, respectively. By defiming DEL, METX, METY, METZ, and METT as the grid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms, and are presented in Section 5.0
of Volume 1. This is followed by the coding for the source term for the second and third sweeps, which
consists only of A(g¥)* or A(p¥)*".

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the
sweep. direction. For the first sweep the order is thus (12,11), for the second sweep the order is (I1,12),
and for the third sweep the order is (I1,13). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the first two subscripts are written as (IV,]I). For sections of the code that apply
only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply to the
second and third sweeps, they are written as (I11,I). The third subscript on A, B, C, and S corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient. : ,

3. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

4. The thin-i yer option is implemented by skipping the calculation of the coefficients and sc ‘rce terms
for the viscous terms containing derivatives in the specified direction.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFY 179

Subroutine COEFZ

Called by Calls Purpose -
EXEC Compute coefficients and source term for the z-momentum equation.
Input
DEL Computational grid spacing in sweep direction.

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTAU

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
IBASE, ISTEP

JEULER

IHSTAG

ISWEEP

ITHIN

v

12, 13

J1

METX, METY, METZ, METT

MU, LA

NPTS
NR, NRU, NRV, NRW, NET

NZM

P

RER

RHO,U,V, W
RHOL, UL, VL, WL

THZ
XIX, XIY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

180 4.0 Proteus Subprograms: COEFZ

Derivatives 8p/dp, dp/é(pu), Op/d(pv), Op/d(pw), and 8p/dET.

Time step Ar.
Computational grid spacing AZ, An, and A(.
Metric coefficients 7., 7y, 72, and 7.

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index 1n the “vectorized” direction, i,.

Grid indices j and k, in the » and { directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Derivatives of sweep direction computational coordinate with re-
spect to X, y, z, and .

Effective coefficient of viscosity u and effective second coefficient
of viscosity 1 at time level n.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Array index associated with the z-momentum equation.
Static pressure p at time level n.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w at time level n.

Static Qensity p, and velocities «, v, and w from previous ADI
sweep.

Parameters 8,, 8,, and 8; determining type of time differencing for
the z-momentum equation.

Metric coefficients &,, &, &, and &,

Metric coefficients {,, {;, {,, and {..

Proteus 3-D Programmer’s Reference

Output

A, B, C Coefficient submatrices A, B, and C at interior points (row NZM
only).
S Source term subvector S at interior points (element NZM only).

Description

Subroutine COEFZ computes the coefficients and source term for the z-momentum equation.
Equations (7.5a-c) in Volume 1 represent, in vector form, the five governing difference equations for the
three ADI sweeps. The elements of the inviscid flux vectors I:Z, f-‘, and G are given in Section 2.0 of Volume
1, and the elements of the viscous flux vectors]AEVI, tyz, etc., are given in Appendix A of Volume 1. The

Jacobian coefficient matrices 6]@3]66, 6f§yl/66, etc., are given in Section 4.0 of Volume 1. Using all of these
equations, the differenced form of the z-momentum equation may be wrtten for the three ADI sweeps
as?2

Sweep 1 (& direction)

A A X GIAT 5f§4 A/\: 5?:4 A/\:
(Pw)i + (1+02)2A§ 66 Qi+l— _g Qi—l
i+1 i—1

6,At) Ax n n.As non Ax
—.(1+el)2(A—§)2 [(ﬁ—1+ﬁ)"g,~"_]AQ,-_1—(ﬁ_1 + 2+ 641078 8Q + (it fix) gl._HAQH_l]:
2

AT JA) A A n AT A A I\V n
- T+o; (8:E4 + 6,F, + 8,Gy)" + Tio, [86(Ey)a + 6,(Fy)a + 6(G1,)a]
(1+865Ar A A A n 0347 A A A n—1
oo [0Enat &)+ 5G] = g [G:Eva + ,(Fia+ 6c(Gy) il
2 An—1
13, AW
Sweep 2 (n direction)
N n Jal n
xx BIAT 5F4 A s 6F4 A xx
Alpw); + AQ_—| —= 41
(1+ 0,)2A1 28 i 20 T+
Q =1 Q J+1
91A‘t nn A xw n onaA** nn N oxx
e (o1 + VG AQ 1 = o1 + 2+ e) G A (Ut 40 g+ 18Q) 1] =
(1+05)2(An) _
A(pw)’

2 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.

Proteus 3-D Progmmﬁer’s Reference 40 Proteus Subprograms: COEFZ 181

Sweep 3 (£ direction)

n n
A GIAT 6G4 /\n 6G4 /\n
C Trepat | \ 7o S b
k-1 k+1
6,Ar | n_n Ap non.An " n A .
- (1 + 8,)2(A)? [+)8 18Q -1 = Ukem1 + i+ fis '8 AQ + (et St 22 +18Q% 4 1]"
2)48s :
Apw)

In the above equations, the subscripts , j, and k represent grid point indices in the £, n, and { directions.
For notational convenience, terms without an explicitly written i, j, or k subscript are understood to be at
i,j, or k. On the left hand side, fis the coefficient of /8¢ (or 8/8y or 8/8(, depending on the sweep) in the

6I:ZV1/6(A) (or Of'yl /66 or 56;»,/66) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
following 8/d¢ (or 3/0n or 0/8) in the 6f§y1/6Q (or aFy,/66 or 6éy,/66) Jacobian coefficient matrix.

The vector of dependent variables is
A] T
Q=-lp pu pv pw Eq]

The appropriate elements of the inviscid flux vectors are given by

A 1
o= Lowwls+ pywi, + (ow* + P)E; + pWe]

A 1 -
4=77 [ouwny + pywy, + (,ow2 + P, + pwn,]

A 1
A= Lowwly + pvWl), + (oW + P), + pwi,]

The appropriate elements of the non-cross derivative viscous flux vectors are

2 1 1
(EVI)A = —J_ Re [2#52“’5 + }'éz(éxug + fyvg + fzwg) + “Ex(fzug + Exwg) + ﬂ‘fy(ézvg + fng)]
14
4 1 1
Fr)a=7T %, [Z#rﬁwn + Ay + 1Y, + W) + g, + W) + o (nzv, + mywy)]
r
A 1 1
Gr)a=T R, [2#C§W§ + 20 (Cxu + Eyvp + Lowp) + (Lo + xwy) + w8y (v + &wo]
T

And the appropriate elements of the cross derivative viscous flux vectors are

1
Re,

[zpzz(nzw',, + & wp) + AL (nxi, + nyvy + mwy + Exti + 8y + Ewy)

<=

(f‘:Vz):L =

+ F‘éx(’lzuq + nxwy, + fz"g + Cxwg) + A“fy('?zvq +nw, + szg + Cng)]

A 1 1
Fy)a= T Re [Zynz(ézwg +{wp) + An(Exuty + v + Ewy + L + Ly + LWy
r

+ F'lx(fzuﬁ + éxwg + Czu§ + CXWC) + ,"ny(fzvg + éng + sz(+ Cng)]

182 4.0 Proteus Subprograms: COEFZ Proteus 3-D Programmer’s Reference

A _i 1
(GV 4= J Rer

[2,lc2(,,zw,, + Ewy) + ALt + My + MW, + Exly + EVr + Ewy)

+ l‘zx('lzur, + nxwr, + ézuf + fxwf) + y'cy(nzvn + "ywn + fzvg + éwa)]

The elements of the Jacobian coefficient matrix JE/0Q for the inviscid terms in the z-momentum
equation are

ok, [o : op op By 2
20 _[ﬁﬁrwfl Woxt B G Mot gy G At gt Gy 52]

where fi = ué, + v, + wé..
The elements of the Jacobian coefficient matrix 6Ey,/8Q for the viscous terms are

V/\ A ~
0Ey)s %Ey, i a<1)a a(_l_)a O(L)O
- XZ yz 2z
5 Re o) 2E \ P 2\ 7 E\ 7P

where
oEy
) g (5 (P (3)
Axz = (e +)-)gxgz
Xyz = (u+ l)fyfz

4]

o, =put >+ p:yz +(Qu+ gz

The Jacobian coefficient matrices 9F4/3Q and (Fy,)s/0Q have the same form as E4/aQ and &(Ev,)e/8Q,
but with ¢ replaced by #. Similarly, the Jacobian coefficient matrices 8G4/8Q and 3(Gv,)./0Q have the same
form as JE,/8Q and 9(Ey,)./0Q, but with ¢ replaced by £.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of é so using the second element in 61'\34/66, we
get for the inviscid term

. 01(AT); j & o -
A(IV,INZM,NRU) = — W [(fo)i— 1kt (pu) 52) L k]
it~1,7,

B(IV,LNZM,NRU) =0
6,(A1); /& ap
C(IV,LNZM,NRU) = W (fo)H_ L.j, k + ('5(7&)— fz> .
i+1,j,k
For the viscous terms on the left hand side, we use the second element in 6(fivl)4/86, which is
L2 ()
Re, 2 9& \ P

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: COEFZ 183

Thus f= a.,/Re, and g = 1/p. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(IV,NZM,NRU) = A(IV,NZM,NRU) —

8,(A%); ;
(1+ 0,)2(A8)*Re,

(o) — 1.k T (@xij, k](71—)

i—1,jk

Similar equations may be written for the B and C coefficient submatrices.

In COEFZ, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second and third ADI sweeps have exactly the same form as for the first sweep, but with ¢ replaced
by # and ¢, respectively. By defining DEL, METX, METY, METZ, and METT as the gnid spacing and
metric coefficients in the sweep direction, the same coding can be used for all three sweeps.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as thos¢ used for the implicit terms, and are presented in Section 5.0
of Volume 1. This is followed b‘y the coding for the source term for the second and third sweeps, which
consists only of A(pw)" or A(pw) .

Remarks

1.

2.

184

This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in one of the non-sweep (i.e., “vectorized”) directions, and the second subscript is the index in the
sweep direction. For the first sweep the order is thus (I12,11), for the second sweep the order is (11,12},
and for the third sweep the order is (I11,13). For sections of the code that apply to all three sweeps (i.e.,
the implicit terms), the first two subscripts are written as (IV,I). For sections of the code that apply
only to the first sweep, the first two subscripts are written as (I12,I1). For sections that apply to the
second and third sweeps, they are written as (I1,]). The third subscript on A, B, C, and § corresponds
to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for
which A, B, or C is a coefficient. .

The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

The thin-layer . ption is implemented by skipping the calculation of the coefficients and source =rms
for the viscous terms containing derivatives in the specified direction.

4.0 Proteus Subprograms: COEFZ Proteus 3-D Programmer’s Reference

Subroutine CONV

Called by Calls Purpose
MAIN ISAMAX Test computed flow field for convergence.
Input
CHGMAX Maximum change in absolute value of the dependent variables
from time level n— 1 to n (or over the previous NITAVG — 1
time steps if ICTEST = 2), AQax-
DUMMY A three-dimensional scratch array.
* EPS Convergence level to be reached, .
* GAMR Reference ratio of specific heats, ..

* [AVIE, IAV4E

* ICTEST
* IHSTAG
IT
NEQ
* NITAVG
* NOUT

NR, NRU, NRV, NRW, NET
NTOTP

* NI, N2, N3
RESAVG
RESL2
RESMAX

RGAS
RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

Output
CHGAVG

CHGMAX

ICONV

Proteus 3-D Programmer’s Reference

Flags for second- and fourth-order explicit implicit artificial
viscosity.

Flag for convergence critena to be used.

Flag for constant stagnation enthalpy option.

Current time step number 7.

Number of coupled equations being solved, N.,.

Number of time steps in moving average convergence test.
Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and E7.

Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., N1P x N2P x N3P).

Number of grid points Ny, Nz, and N, in the £, », and ¢ directions.
The average absolute value of the residual at time level 7, Ra,.
The L, norm of the residual at time level 7, Ry,

The maximum absolute value of the residual at time level n,
Rmaz-

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n+ 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Maximum change in absolute value of the dependent variables,
averaged over the last NITAVG time steps, AQoy-

Maximum change in absolute value of the dependent varables
from time level n to n+ 1 (or over the previous NITAVG time
steps if ICTEST = 2), AQnex-

Convergence flag; 1 if converged, 0 if not.

4.0 Proteus Subprograms: CONV 185

Description

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1)
the absolute value of the maximum change in the dependent vanables over the previous time step; (2) the
absolute value of the maximum change in the dependent variables, averaged over the last NITAVG tume
steps; (3) the L, norm of the residual for each equation; (4) the average residual for each equation; or (5)
the maximum residual for each equation. These parameters are defined in Section 4.1.6 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTEST
and EPS. Each dependent variable or equation is checked separately, and convergence is declared when the
specified level is reached for all of the variables or equations. The same criteria is used for each one, but
different levels may be specified.

Subroutine CONYV first computes AQn.x, the absolute value of the maximum change in each dependent
variable over all the grd points for the most recent time step. These values are stored in
CHGMAX(IVAR,1), where IVAR varies from 1 to NEQ, the number of dependent variables. If
ICTEST = 2 (the so-called “moving average” convergence test)) CHGMAX(IVAR,2) contains the maxi-
mum change for the previous time step, etc.

Then, depending on the value of ICTEST, the chosen convergence criteria is compared with the level
to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

Remarks

1. For ICTEST = 1 or 2,_the change in Er is divided by R/(y,— 1) + 1/2. This is equivalent to dividing
the dimensional value Er by .
_ Pri T,

2

P rir

Er= - —_—
T y,—l+ 2

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. For ICTEST = 1 or 2, the convergence test is based on (or includes) the change in dependent variables
from time level nto n+ 1. For ICTEST = 3, 4, or 5, convergence is based on the residual at time level
n, not n+ 1. This is because the residuals at time level 7+ 1 are not computed until the marching step
from n+ 1 to ;+ + 2 1s taken.

3. For cases run with artificial viscosity, the residuals are computed and printed both with and without the
artificial viscosity terms. This may provide some estimate of the overall error in the solution mtroduced
by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms
included. '

4. The Cray search routine ISAMAX is used in computing the absolute value of the maximum change in
dependent variables.

5. The scratch atray DUMMY, from the common block DUMMY], is used to store the values of the
change in dependent variables for use by ISAMAX.

6. A warning message is generated if an illegal convergence criteria is specified. ICTEST is reset to 3
(convergence based on the L, norm of the residual), and the calculation will continue.

186 4.0 Proteus Subprograms: CONV Proteus 3-D Programmer’s Reference

Subroutine CUBIC (IDIR,T,G,NOLD,TINT,GINT}

Called by Calls Purpose
PAK Interpolation using Ferguson’s parametric cubic.
Input

G A three-dimensional array containing
NOLD1 x NOLD2 x NOLD?3 values of the function g(f) to be
interpolated.

IDIR Direction flag; 1 if first subscript in G varies, 2 if second subscript
varies, 3 if third subscript varies.

I, 12, 13 Grid indices i, j, and k, in the £, n, and { directions.

NOLD Number of values in direction IDIR in array G (i.e., NOLDI,
NOLD2, or NOLD3))

* NI, N2, N3 Number of grid points N,, N,, and N, in the £, », and { directions.

T " A one-dimensional array containing NOLD values of the inde-
pendent variable ¢.

TINT A one-dimensional array containing N1, N2, or N3 (depending
on IDIR) values of the independent variable ¢ =, at which in-
terpolated values g, = g(t;) are desired.

Output

GINT A one-dimensional array containing N1, N2, or N3 (depending

on IDIR) interpolated values gi.. = g(ln)-
Description

Subroutine CUBIC performs interpolation using Ferguson’s parametric cubic polynomial (Faux and
Pratt, 1979). Given the function g(¢) and a value t,, CUBIC computes g = g(linc)-

The function g(¢) is specified by the Fortran arrays G and T. For a general value ¢, let

t—1,
ir= L=t

where t, < t < t,. (IL.e., ¢ and t, are the two elements of the array T that bracket ¢.)

Between ¢, and #,, assume g can be described by a cubic polynomial in £, as follows:

Differentiating,

g=a +ale+ agt? + aptf

. S VS VY
g = zf_a2 a3ty + daglf

Noting that =0 at t=1,, and 1 at { = ¢, we get

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: CUBIC 187

=9
Sy =&
=g tatazta
ga =&+ 2a3+ 3q
Solving for a; through as,
Q=8
Q=g
a3 =3(8;— &) — 28, — &4
ay=2g,—8)+ & +8u

Plugging these into the cubic polynomial for fand rearranging,
g =81 - 37 +27) + 80347 — 2)
+ 8 (=27 + 1) + g4 (— 4+ 87)
This is the form of the equation used to compute g
Remarks *

1. At interior points in the array g, the derivatives g, and g4 are computed using a second-order central
difference formula. At the end points, second-order one-sided difference formulas are used.

2. The Fortran varable TINT is actually a one-dimensional array containing N,, N,, or N5 input values
of t... Similarly, GINT is a one-dimensional array containing N, N, or N; output values of g

3. The Fortran array G that specifies the input values of g(?) is actually a three-dimensional array. Within
CUBIC, however, only one of the subscripts varies. The input flag IDIR specifies which one.

188 4.0 Proteus Subprograms: CUBIC Proteus 3-D Programmer’s Reference

Subroutine EQSTAT (ICALL)

Called by Calls Purpose
BVUP Use equation of state to compute pressure, temperature, and their de-
EXEC rivatives with respect to the dependent variables.
INITC
MAIN"
Input
CP, CV Specific heats ¢, and c,.

HSTAG
IBASE, ISTEP
ICALL

IHSTAG

NPTS

N1, N2, N3

RGAS

RHO, U, V, W, ET

Output

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRY,
DTDRW, DTDET '

Stagnation enthalpy Ar used with constant stagnation enthalpy
option. '

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

0 to get p and T, 1 to get derivatives of p and 7 with respect to -
dependent variables.

Flag for constant stagnation enthalpy option.

Number of grid points in the sweep direction, N. A
Number of grid points N, Nz, and N, in the &, , and ¢ directions.
Gas constant R.

Static density p, velocities », v, and w, and total energy Er.

Derivatives dp/dp, 0p|d(pu), 8p/d(pv), dp|d(pw), and Op/OEr.

v Derivatives 8T /dp, 0T|3(pu), 8T|3(pv), 8T/3(pw), and ¢ [3ET.

ET Total energy (const'émt stagnation enthalpy option only.)
INEG Flag for non-positive pressure and/or temperature; 0 if positive, 1
if non-positive.
P, T Static pressure p and temperature T.
Description

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It
actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program, .
with the input parameter ICALL = 0, to compute the static pressure p and temperature 7 from the initial
or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used
it also computes a value for the total energy Er. And second, it is called from subroutines BVUP and
EXEC, with ICALL = 1, to compute the denvatives of p and T with respect to the dependent variables.? .

The equation of state currently built into Proteus is for a perfect gas. The formulas used to compute
p, T, and their derivatives with respect to the dependent variables are presented in Section 4.3 of Volume
1.

23 These are needed for linearization of the governing equations. See Section 4.1 of Volume 1 for details.

Proteus 3-D Programmer’s Reference 40 Proteus Subprograms: EQSTAT 189

Remarks

1. When used to compute p and T (ICALL = 0), this subroutine is called from outside any loops in the
&, n, or { directions. When used to compute 8p/dp, etc., (ICALL = 1), it is called for each ADI sweep
from inside a loop in the non-sweep direction.

2. When computing 3p/dp, etc., this subroutine uses one-dimensional addressing of three-dimensional .
arrays, as described in Section 2.3.

i

190 4.0 Proteus Subprograms: EQSTAT Proteus 3-D Programmer’s Reference

Subroutine EXEC

Called by

Calls

Purpose

MAIN

ADI

Manage solution of governing equations.

AVISC!
AVISC2
BCELIM
BCGEN
BVUP
COEFC
COEFEI
COEFE2
COEFX
COEFY
COEFZ
EQSTAT
PERIOD
RESID
UPDATE

Input

DXI, DETA, DZETA
ETAX, ETAY, ETAZ, ETAT
IAV2E, IAV4E, 1AV2I

IBCELM
ICHECK
THSTAG
IT
ITBEG

ITHIN
KBCPER

NEQP
NMAXP

NPT1, NPT2, NPT3

N1, N2, N3
NIP, N2P

XIX, XIY, XIZ, XIT

Proteus 3-D Programmer’s Reference

Computational grid spacing A&, Axn, and A{.
Metric coefficients #., 7,, #., and »,.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and/or 7
directions; 0 if elimination is not necessary, 1 if it is.

Convergence checking interval.

Flag for constant stagnation enthalpy option.
Current time step number 7. ’
The time level n at the beginning of a run.
Flags for thin-layer option.

Flags for spatially periodic boundary conditions in the £, », and {
directions; 0 for non-periodic, 1 for periodic.

Dimensioning parameter specifying maximum number of coupled
equations allowed. :

A dimensioning parameter equal to the maximum of N1P, N2P,
and N3P.

Ni, N,, and N; for non-periodic boundary conditions, ¥, + 1,
>+ 1, and N5+ 1 for spatially periodic boundary conditions in
¢, n, and {.

Number of grid points Ny, N, and N, in the £, », and { directions.

Parameters specifying the dimension sizes in the ¢ and n di-
rections.

Metric coefficients &, ¢,, ., and &..

4.0 Proteus Subprograms: EXEC 191

ZETAX, ZETAY, ZETAZ,
ZETAT

Output

DEL
IBASE, ISTEP

ISWEEP

v

I, 12,13

METX, METY, METZ, METT

NPTS
NV
RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

Description

Metric coefficients {,, ,, {,, and {..

Computational grid spacing in sweep direction.

- Base index and multiplication factor used in computing one-

dimensional index for three-dimensional array.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Grid indices {, j, and k, in the £, n, and { directions.

Denvatives of sweep direction computational coordinate with re-
spect to X, y, z, and ¢.

Number of grid points in the sweep direction, N.
Number of grid points in the “vectorized” direction, N,.

Static density p, velocities u, v, and w, and total energy Er at time
level n+ 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static temperature 7T at time level n.

Subroutine EXEC manages the solution of the governing equations. It is called by the MAIN program
during each marching step from time level n to n+ 1. The steps involved in EXEC are described below.

Preliminary Steps

1. If this is the first time step, temporarily set the thin-layer flags to zero.

2. Initialize the coefficient submatrices A, B, and C, and the source term subvector S, to zero.

3. If spatially periodic boundary conditions are being used in any direction, call PERIOD to add the ap-

propriate extra line(s) of data.

First ADI sweep, & direction

4. Set various sweep-dependent parameters, as follows:

isweep
istep
del

nv

1

1

A¢

]Vz or 1‘Vz + 1

5. Begn loop in non-sweep ({) direction over interior points (k =13=2to NPT3 - 1).

6. Set

npts

192 4.0 Proteus Subprograms: EXEC

= Nor N +1

Proteus 3-D Programmer’s Reference

ol

10.

1L
12.

13.

14.

15.

16.
17.

18.

19.

20.
2L
22.
23.

24.

Set metrics in sweep (&) direction at all grid points as follows:

metx(i2,11) = (&) .«
mety(i2,i1) = (&) s
metz(i2,il) = (&)«
mett(i2,il) = (&)

Begin loop in non-sweep (») direction over interior points (j = [2=2t0 NPT2-1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current
n-{ line at all £ grid points.

Call the COEF routines to compute the coefficients and source terms for the governing
equations along the current »-{ line at all interior ¢ grid points.

End of loop in non-sweep (») direction.

For non-spatially periodic boundary conditions in the & direction, begin loop in non-sweep (x) di-
rection over interior points (j =12=2to NPT2 - 1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current
»-{ line at all ¢ grid points.

Call BCGEN to compute the coefficients and source terms for the boundary condition
equations at the end points (i = I1 = 1 and N\) of the current n-{ line.

If three-point boundary conditions were used at either bouhdary, call BCELIM to eliminate
the resulting off-diagonal coefficient submatrices.

End of loop in non-sweep (1) direction.

Evefy ICHECK time steps, call RESID to compute residuals at time level n without the arntificial
viscosity terms, and to update the convergence history file.

If artificial viscosity is being used, call AVISC1 or AVISC2 to add the appropriate terms to the
coefficient submatrices and/or the source term subvectors at all interior grid points.

Every ICHECK time steps, if artificial viscosity is being used, call RESID to compute residuals at
time le. 31 n with the artificial viscosity terms, and to update the convergence history file.

If spatially periodic boundary conditions are being used in the ¢ direction, reset NPTS = N,

Call ADI to solve the system of difference equations.

Begin loop in non-sweep () direction over interior points {j = 12=2to NPT2-1).
Call UPDATE to compute the primitive flow variables, Q°*, from the newly computed con-
servation varables in delta form, AQ‘, along the current -{ line at all £ grid points.

End of loop in non-sweep () direction.

25. End of loop in non-sweep ({) direction.

Second ADI sweep, n direction

26. Set various sweep-dependent paraxnetérs, as follows:

isweep = 2

istep = nlp

del = An

nv = Nyor N+ 1

27. Begin loop in non-sweep ({) direction over interior points (k=13 = 210 NPT3-1).

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: EXEC 193

28.

29.

30.
3L

32.

33.
34.

3s.

36.

37.

38.
39.

40.
41.
42.
43.

44,

Set
npts = N,orN,+1

Set metrics in sweep () direction at all grid points as follows:
metx(il,i2) = ()i .
mety(il,i2) = ()i .4

metz(11,12) = (n)i
mett(il,12) = (9,4

Begin loop in non-sweep (&) direction over interior points (i=I1 = 2to NPT1 - 1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current
&-{ line at all grid points.

Call the COEF routines to compute the coefficients and source terms for the governing
equations along the current ¢-{ line at all interior » grid points.

End of loop in non-sweep (&) direction.

For non-spatially periodic boundary conditions in the n direction, begin loop in non-sweep (£) di-
rection over interior points (i =11 =2 to NPT1 —1).

Call EQSTAT to get the derivatives of p and T with respect to p, py, etc., along the current
¢-¢ line at all grid points. ‘

Call BCGEN to compute the coefficients and source terms for the boundary condition
equations at the end points (j = 12 =1 and N) of the current ¢-{ line.

If three-point boundary conditions were used at either boundary, call BCELIM to eliminate
the resulting off-diagonal coefficient submatnces.

End of loop in non-sweep (&) direction.

If implicit artificial viscosity is being used, call AVISC] to add the appropriate terms to the coeffi-
cient submatrices at all interior grid points. .

If spatially periodic boundary conditions are being used in the » direction, reset NPTS = N,.

Call ADI to solve the system of difference equations.

Begin loop in non-sweep (¢) direction over interior points (i=I11=2to NPT1 - 1).
Call UPDATE to compute the primitive flow variables, Q*%, frozﬁ the newly computed con-
servation varables in delta form, AQ"*, along the current &-¢ line at all grid points.

End of loop in non-sweep (£) direction.

45. End of loop in non-sweep () direction.

Third ADI sweep, { direction

46. Set various sweep-dependent parameters, as follows:

isweep = 3

istep = nlp¥*n2p
del = Al

nv = NoorN;+1

47. Begin loop in non-sweep (») direction over interor points (j=I12=2to NPT2—1).

48.

Set

npts = MorMN+1

194 4.0 Proteus Subprograms: EXEC Proteus 3-D Programmer’s Reference

c-5

49.

50.
51.

52.

53.
54.

55.

56.

57.

58.
59.

60.
61.
62.
63.

64.

Set metrics in sweep ({) direction at all grid points as follows:

metx(il,13) = ({). .«
mety(il,13) = ({,)i .«
metz(11,i3) = (L))«
mett(il,i3) = (L)

Begin loop in non-sweep (&) direction over interior points (i=I1=2to NPT1 - 1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current
&-n line at all { grid points.

Call the COEF routines to compute the coefficients and source terms for the governing
equations along the current &-x line at all interior { grid points.

End of loop in non-sweep (&) direction.

For non-spatially periodic boundary conditions in the { direction, begin loop in non-sweep (&) di-
rection over interior points (i =I1 =2 to NPT1 - 1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the cument
&-n line at all ¢ grid points.

Call BCGEN to compute the coefficients and source terms for the boundary condition
equations at the end points (k=13 = 1 and N3) of the current {-x line.

If three-point boundary conditions were used at either boundary, call BCELIM to eliminate
the resulting off-diagonal coefficient submatrices.

End of loop in non-sweep (&) direction.

If implicit artificial viscosity is being used, call AVISCI1 to add the appropriate terms to the coeffi-
cient submatrices at all interior grid points.

If spatially periodic boundary conditions are being used in the { direction, reset NPTS = Nj.

Call ADI to solve the system of difference equations.

Begin loop in non-sweep (&) direction over interior points (i =11 =2 to NPT1 - I).
Call UPDATE to compute the pnmmve flow varables, Q*+!, from the newly computed con-
ser- ation variables in delta form, AQ", along the current ¢-x line at all { grid points.

End of loop in non-sweep (&) direction.

65. End of loop in non-sweep (n) direction.

Finishing Steps

66. If this is the first time step, reset the thin-layer flags back to their input value.
67. Call BVUP to update the ¢ and n boundary values, if necessary.
68. For all grid points, shift RHO and RHOL so that RHO = p"*! and RHOL = p~. Similarly, shift the

Fortran vanables for &, v, w, and Er. Finally, set TL = 7.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: EXEC 195

Subroutine EXECT

Called by | calls Purpose)
TURBCH "PERIOD Manage solution of the k-¢ equations.
SWDOWN
SWUP
UPDTKE
Input
* CMUR Constant C,, in formula for C,.
* CTHREE Constant G in formula for C,.
E Turbulent dissipation rate ¢ at time level 2.
KBCPER Flags for spatially periodic boundary conditions in the ¢ and %
directions; 0 for non-periodic, 1 for periodic.
KE Turbulent kinetic energy k at time level n.
MUT Turbulent viscosity u. at time level 7.
NPT, NPT2, NPT3 N, N,, and N; for non-periodic boundary conditions, N; + 1,
N;+ 1, and N; + 1 for spatially periodic boundary conditions in
&, m,and L.
RHO Static density p at time level n.
YPLUSD Nondimensional distance y* from the nearest solid wall.
Output
EL Turbulent dissipation rate ¢ at time level n.
KEL Turbulent kinetic energy k at time level 7.
MUT, MUTL Turbulent viscosity u, at time levels 7+ 1 and 7.
Description

Subroutine EXECT manages the solution of the k-¢ equations. It is called by subroutine TURBCH,

NTKE times per mean flow iteration. The steps involved in EXECT are described below.

1.

If spatially periodic boundary conditions are being used in any direction, call PERIOD to add the ap-
propriate extra line(s) of data.

Call SWUP to compute the coefficients and source terms for k-¢ equations for the upward LU sweep,
and to perform the sweep itself.

Call SWDOWN to compute the coefficients and source terms for k-¢ equations for the downward LU
sweep, and to perform the sweep itself.

For all grid points, set KEL = 4" and EL = ¢
Call UPDTKE to compute the primitive flow variables £7+! and ¢**! from A\i”', the newly computed
conservation variables in delta form.

Compute the turbulent viscosity at each grid point, storing u7*! and p7 in MUT and MUTL, respec-
tively.

196 4.0 Proteus Subprograms: EXECT Proteus 3-D Programmer’s Reference

Subroutine FILTER

Called by Calls Purpose
BLK4 BLKOLUT Rearrange rows of the boundary condition coefficient submatrices and
BLKS5 ISAMAX the source term subvector to eliminate any zeroes on the diagonal.
ISRCHEQ
Input
A B C Coefficient submatrices A, B, and C before rearrangement.
+ IDEBUG Debug flags. '
* JPRTIA, IPRT2A, IPRT3A Indices for printout in the &, #, and { directions.
ISWEEP Current ADI sweep number.
IT Current time step number 7.
v Index in the "vectorized” direction, i.
NEQ Number of coupled equations being solved, N,
NMAXP A dimensioning parameter equal to the maximum of N1P, N2P,
and N3P.
* NOUT Unit number for standard output.
NPRTI1, NPRT2, NPRT3 Total number of indices for printout in the £, n, and { directions.
NPTS Number of grid points in the sweep direction, N.
S Source term subvector S before rearrangement.
Output
ABC Coefficient submatrices A, B, and C after rearrangeme..t.
S Source term subvector S after rearrangement.
Description

Subroutine FILTER rearranges rows of the coefficient block submatrices and the source term subvector,
at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diag-
onal of the submatrix B. These zero values may occur when mean flow boundary conditions are specified
using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the
boundary conditions. '

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere
in the flow field, the perfect gas equation of state yields:

Proteus 3-D Programmer’s Reference

Er=pc,T
p=@—DEr
ap op ap op
P 0w | e W)
dp
o !

4.0 Proteus Subprograms: FILTER 197

% e’
. ' oT __oT __aT _,
dpw)y Opv) (pw)
or __1
3E; _ &P

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure p = f, no-slip
x-, y-, and z-velocity u=v=w = 0, and specified temperature T = £, then the linearization of the boundary
conditions leads to the following B coefficient submatrix for that boundary:

0 0 0 0 Jy-1

0 Jlp 0 0 0
B= 0 0 Jp O 0

0 0 0 Jlp 0

—JEfdepr 0 0 0 Jige

The zero on the diagonal will lead to a divide-by-zero error in subroutine BLKS, even though this is not a
singular matrix.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element B, searches
column 1 for the largest element in absolute value (in this case — JEr/c,p?), and adds that row to the row
with the zero on the diagonal. Of course, the corresponding rows of A, C, and S must also be added to-
gether. The new B submatrix would be:

—JEfdcp® 0 0 0 Jy—D+Jlep
: 0 Jp O 0 0
B= 0 0 Jp O 0
o , 0 0 Jp 0
—JEfcp” 0 0 0 Jlewp

Remarks

1. If a column with a zero on the diagonal has no other elements greater than 10-19, then it is assumed that
the matrix B is singular, which means the specified boundary conditions are not independent of one
another. An error message is printed and the calculation is stopped.

2. It’s probably sufficient to only call this subroutine for the first time step. After the first step, the chances
of u, v, and w all being exactly zero at the same interior grid point are slim. Nevertheless, in the current
version of Proteus, FILTER is called at every time step.

3. The Cray search routine ISAMAX is used in finding the largest element in any column corresponding
1o a zero on the matrix diagonal. The Cray search routine ISRCHEQ is used in determining the grnd
locations for debug printout.

4. This subroutine generates the output for the IDEBUG(4) option. '

198 4.0 Proteus Subprograms: FILTER - Proteus 3-D Programmer’s Reference

Subroutine FTEMP

Called by Calls Purpose
INITC Compute auxiliary variables that are functions of temperature.
MAIN .
Input
CCP1, CCP2, CCP3, CCP4 Constants in formula for specific heat.
CK1, CK2 Constants in formula for laminar thermal conductivity coefficient.
CcMU1, CMU2 - Constants in formula for laminar viscosity coefficient.
* GAMR Reference ratio of specific heats, ..
1IGAM Flag for constant or varable ¢, ¢, and y; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.
* JLAMV " Flag for computation of laminar viscosity and thermal
conductivity. A
* NOUT - ~ Unit number for standard output.
* NI, N2, N3 Number of grid points N, N;, and N, in the &, 7, and ¢ directions.
RGAS Gas constant R.
T Static temperature 7.
* TR, UR, MUR, KTR Reference temperature 7,, velocity #, viscosity u,, and thermal
conductivity k,.
Qutput
CP, CV Specific heats ¢, and ¢,.
MU, LA, KT Laminar coefficient of viscosity p;, laminar second coefficient of
viscosity 4, and laminar coefficient of thermal conductivity k..
Description

Subroutine FTEMP computes the auxiliary variables p,, 4, &, ¢;, and ¢,. For the laminar viscosities p,
and A, and the laminar thermal conductivity &, there are two options currently available.

If the input parameter ILAMYV = 0 (the default), FTEMP sets the nondimensional values as:

=1
k=1

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at their reference
values. These reference values may be specified by the user, or computed from the reference temperature.
The laminar second coefficient of viscosity 4, is set equal to — 2u,/3.

If ILAMV = 1, », and k; are computed as functions of temperature using Sutherland’s formula (White,
1974). The formula for the laminar viscosity coefficient y, is

Proteus 3-D Programmer’s Reference , 4.0 Proteus Subprograms: FTEMP 199

where the overbar indicates a dimensional value, and g/ is the laminar viscosity coefficient at T = T, given
by

7312
uh = C#1 S
T+ C#2

Depending on the namelist input values of MUR and RER, p; may or may not be equal to u,. These

formulas are valid for air for temperatures from 300 to 3420 °R (167 to 1900 K). The value of the constants

C, and C,, depend on whether reference values are being specified by the user in English units

(IUNITS = 0) or SI units (IUNITS = I). The values are presented in Table 4-1. The laminar second co-

efficient of viscosity 4, is set equal to — 2u,/3. The formula for the laminar thermal conductivity coefficient .
k[1s n

o . — 372
k[_ kr Tr + Ck2 L !
T,

where the overbar indicates a dimensional value, and k! is the laminar thermal conductivity coefficient at
T = T,, given by
7312

r

6T G,

Depending on the namelist input values of KTR and PRLR, k! may or may not be equal to k,. These
formulas are valid for air for temperatures from 300 to 1800 °R (167 to 1000 K). The value of the constants
C. and Ci, depend on whether reference values are being specified by the user in English units
(IUNITS = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1.

There are also two options available for the specific heat coefficients ¢, and ¢,. If the flag IGAM =1, a
value of the specific heat ratio y has been specified by the user. In this case ¢, and ¢, are treated as constants,
and computed from

__R
y—1
G=6+R

&

If IGAM = 0, the user did not specify a value of y. In this case, the specific heat coefficient ¢, is computed
as a function of temperature from the empirical formula of Hesse and Mumford (1964), and ¢, is computed
from that value assuming a thermally perfect gas. The ratio y = ¢,/¢, will then vary with temperature. The
equations for ¢, and ¢, are: '

= T(Tr F—1/2 T F2
CP = CPT‘?— = u—’? (Ccpl - cpzT— - CCP3T + CCP4T)
6G=¢—R

This formula is valid for air for temperatures from 540 to 9000 °R (300 to 5000 K). The values of the
constants C,,1 through C,, are presented in Table 4-1.

200 4.0 Proteus Subprograms: FTEMP Proteus 3-D Programmer’s Reference

TABLE 4-1. - EMPIRICAL CONSTANTS FOR g, k, AND ¢

S ENGLISH N
CONSTANT CNITS. SI UNITS

Cy 73035 % 10-7 | 1.4582x 10
Ca 198.6 1103

Ca 7.4907 x 10-3 | 1.8641 x 10-3
Ca 350.0 194.4

C.p 8.53 x 103 1.4264 x 10°
C. 3.12x 104 3.8888 x 103
C. 2065% 106 | 1.9184x 10°
Con 7.83 x 108 4.0413 x 107

Remarks

1. The formulas used with the ILAMV = 1 option are for air. For other fluids, different formulas should
be used to compute y, A, and k. These could easily be programmed as additional ILAMYV options.
Or, if the flow being computed is such that u, and k, may be considered constant, simply set
ILAMV = 0 and read in the appropriate values for u, and k. Note, however, that the ILAMV =0
option still sets 4, = — 2u,/3.

2. The formula used to compute ¢,, when a value of y is not specified by the user, is for air. For other
gases, a different formula should be programmed. Or, if ¢, and ¢, may be considered constant, a value
of y should be read in.

3. An error message is generated and execution is stopped if an illegal value is specified for ILAMV.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: FTEMP 201

Subroutine GATHER (N,VOUT,VIN, INDEX)

Called by Calls Purpose
BLOUT Create a vector containing specified elements of an input vector.
Input
N Number of elements in the input vectors VIN and INDEX. -
VIN Input vector.
INDEX Vector of indices specifying which elements of VIN are to be
stored in VOUT.
Output
vouT Output vector containing elements of VIN specified by INDEX.
Description

Subroutine GATHER gathers a set of specified elements from an input vector and returns them in an
output vector. The operation of GATHER is equivalent to the following Fortran code:

Remarks

do 10 i = 1,n
vout(i) = vin(index(i))
continue

1. GATHER is a Cray Linear Algebra routine (Cray Research, Inc., 1989b).

202 4.0 Proteus Subprograms: GATHER

Proteus 3-D Programmer’s Reference

Subroutine GEOM

Called by Calls Purpose
MAIN METS Manage computation of grid and metric parameters.
PAK
Input
* [PACK Flags for grid packing option.
* NGEOM Flag for type of computational coordinates.
* NGRID Unit number for input mesh file.
* NOUT Unit number for standard output.
* NI, N2, N3 Number of gnd points N, N;, and Nj, in the £, , and { directions.
N1P, N2P, N3P Parameters specifying the dimension sizes in the &, n, and { di-
rections.
* RMIN, RMAX Minimum and maximum r-coordinates for cylindrical grid.
* THMIN, THMAX Minimum and maximum 8-coordinates for cylindrical grid.
* XMIN, XMAX Minimum and maximum x-coordinates for Cartesian or cylindri-
cal grid.
* YMIN, YMAX Minimum and maximum y-coordinates for Cartesian grid.
* ZMIN, ZMAX Minimum and maximum z-coordinates for Cartesian grid.
Output
DXI, DE1 A, DZETA , Computational grid spacing A¢, An, and VAC .
X, Y. Z Cartesian coordinates x, y, and z.
Description’

Subroutine GEOM manages the computation of the grid and metric parameters. There are currently
three coordinate system options built into Proteus, as follows:

NGEOM Computational Coordinates

1 Cartesian (x-y-2)

2 Cylindrcal (r-6-x)
10 Read from separate file.

Subroutine GEOM first computes the grid spacing in computational space in the £, », and { directions
as Af = 1)(N1 — 1), Ay = 1/(N,— 1), and Al = 1/(¥; = 1). Note that grid points in computational space are
always evenly distributed along the (£-1-{) coordinate lines.

Cartesian (x-y-z) Coordinates (NGEOM = 1)

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian (x-y-z) coordinates are
related to the computational (&-4-{) coordinates by

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: GEOM 203

X = Xpyin + Xmax — Xmin)S

Y = Ymin t Umax = Ymin?

2= Zin + (Zmax = Zmin)S
If grid packing is used, subroutine PAK is called to redistribute these points according to the packing pa-
rameters specified by the user, and to interpolate to get the new physical Cartesian (x-y-z) coordinates in

the computational mesh. Subroutine METS is then called to numerically compute the grid transformation
metrics and Jacobian.

Cylindrical (r-6-x) Coordinates (NGEOM = 2)

For the cylindrical coordinate option, an evenly spaced set of physical cylindrical (r-6-x) coordinates are
related to the computational (£-n-{) coordinates by

0 =08t (O max — O min)é
7= Tpin + (Ymax — TminM

X = Xppin + (Xmax — Xpmin)S

The Cartesian (x-y-z) coordinates are simply given by

X=x
y=rsinf
z=rcosf

As in the NGEOM = 1 option, if grid packing is used, subroutine PAK is called to redistribute these points
according to the packing parameters specified by the user, and to interpolate to get the new physical
Cartesian (x-y-z) coordinates in the computational mesh. Subroutine METS is then called to numerically
compute the grid transformation metrics and Jacobian.

Coordinates Read From Separate File (NGEOM = 10) -

The third option for specifying the computational coordinate system is to read it from a separate file,
as described in Section 3.2 of Volume 2. The computational (£-7-{) coordinate system is determined by a
set of Ngi X Ng X Mg points whose physical Cartesian (x-y-2) coordinates are specified. Here Nai, No, and
N are the number of points in the &, #, and { directions used to specify the computational coordinate
system. Note that they do not have to be equal to N, Nz, and Nj, the number of points in the computa-
tional mesh used for the finite-difference method.* Note also that the points do not have to be equally
distributed in physical space along the &, n, and { coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute N, x N, x N5 computational mesh
points in physical space according to the packing parameters SQ specified by the user, and to interpolate
among the Ng; x Noz x Ng points in the input computational coordinate system to get the new physical
Cartesian coordinates of the points in the computational mesh.

If grid packing is not being used, but Na, Nez, and Ng; are not equal to Ny, Nz, and N3 respectively, then
subroutine PAK is still called. In this case, however, PAK distributes the Ny x N; x N3 computational mesh
points evenly in physical space and then interpolates among the N1 X N2 X No3 points in the input com-
putational coordinate system to get the new physical Cartesian coordinates of the points in the computa-
tional mesh.

In either case, subroutine METS is then called to nﬁmerically compute the grid transformation metrics
and Jacobian.

% The distinction between the computational coordinate system and the computational mesh is described in Section
2.2 of Volume 2.

204 4.0 Proteus Subprograms: GEOM Proteus 3-D Programmer’s Reference

Remarks

1. An error message is generated and execution is stopped if an illegal coordinate system option is speci-
fied.

2. With the NGEOM = 10 option, an error message is generated and execution is stopped if Na, Ne,
and/or Ng are greater than the dimensioning parameters N1P, N2P, and/or N3P.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: GEOM 205

Subroutine INIT

Called by Calls Purpose
INITC | Get user-defiped initial flow field.
Input
* JCVARS Flag specifying which variables are bemg supplied as initial con-
ditions by subroutine INIT.
NIN Unit number for namelist input.
* NOUT Unit number for standard output.
* NI, N2, N3 Number of gnd points N, N, and Nj, in the &, », and { directions.
Output
P, T, UV, W Initial flow field values of static pressure p, static temperature 7,

and velocities u, v, and w.

Description

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored
to the problem being solved, and supplied by the user. Details on the variables to be supplied by INIT are
presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with Proteus that specifies uniform flow with constant properties
everywhere in the flow field. The above list of input and output Fortran variables are for the default version
of INIT. The default version assumes ICVARS = 2 (the default value), and reads values of p, w, v, W,
and T, from namelist IC. The defaults for these parameters are 1.0, 0.0, 0.0, 0.0, and 1.0, respectively, re-
sulting in an initial flow field withp=p,, u=v=w=0,and T = T,.

Remarks

1. If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS
is reset to 2.

2. Subroutine INIT is a convenient place to specify point-by-point boundary condition types and values.
It’s often easter to do this using Fortran coding rather than entering each value into the namelst input
file.

206 4.0 Proteus Subprograms: INIT Proteus 3-D Programmer’s Reference

Subroutine INITC
Called by Calls Purpose
MAIN EQSTAT Set up consistent initial conditions based on data from INIT.
FTEMP
INIT
KEINIT
REST
TURBBL
YPLUSN
Input
* CMUR Constant C,, in formula for C,.
CP Specific heat ¢,.
* CTHREE Constant C; in formula for C,.
EP1 Minimum allowable numerical value.
* GAMR Reference ratio of specific heats, y..

GC Proportionality factor g. in Newton’s second law.

* HSTAG Stagnation enthalpy Ar used with constant stagnation enthalpy
option. .

* JCVARS Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT. ,

* JHSTAG Flag for constant stagnation enthalpy option.

* IREST Flag for reading/writing restart file.

ITBEG The time level 7z at the beginning of a run.

* JTURB Flag for turbulent flow option.

* KBCI], KBC2, KBC3 Boundary types for the £, n, and { directions.

LWSET Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

MU, LA, KT Laminar coefficient of viscosity p,, laminar second coefficient of
viscosity 4, and laminar coefficient of thermal conductivity k,.

* NI, N2, N3 Number of grid points Ny, N;, and Nj, in the &, %, and { directions.

PR Reference pressure p..

PRR Reference Prandtl number Pr..

* PRT Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

RGAS Gas constant R.

* RHOR, UR Reference density p, and velocity ..

INITIAL FLOW FIELD

Proteus 3-D Programmer’s Reference

From the user-suppled or default version of subroutine INIT.
The combination of variables supplied by INIT is specified by
ICVARS. See Section 5.0 of Volume 2 for details.

4.0 Proteus Subprograms: INITC 207

Output
LWALL], LWALL?2, LWALL3 Flags specifying wall locations for &, #, and { boundaries, if not

set in input.

MU, LA KT Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity &.

MUT, MUTL Turbulent viscosity u, at time levels n and n— 1.

RHO, U, V, W, ET Initial flow field values of static density p, velocities u, v, and w,
and total energy Er at time level 7.

RHOL, UL, VL, WL, ETL Initial flow field values of static density p, velocities u, v, and w,

: and total energy Er at time level n— 1.
TL Static temperature T at time level n— 1.
Description

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by sub-
routine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial
flow field. Otherwise, the data supplied by INIT are used to obtain the density p, the velocities w, v, and
w, and the temperature 7.3 It then calls FTEMP to compute the laminar viscosity coefficients y, and 1, the
laminar thermal conductivity coefficient k, and the specific heat coefficients ¢, and ¢,.. EQSTAT is called
next to compute the pressure p and to recompute the temperature 7. For turbulent flow, the appropriate
subroutines are called to compute the effective viscosity and thermal conductivity coefficients using the
turbulence model specified by the user. And finally, for non-restart cases, the values of the dependent var-
iables at time level n — 1 are set equal to the values at level 1.

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The
calculation of p, u, v, w, and T is described below for the different values of ICVARS. In all of the equations
below, the specific heats are defined by

R
=1

C'y =
Gp=R+g¢
where y, is either specified by the user or computed from the reference temperature 7.

ICVARS = [

With this option, the density p, the momentum components pu, pv, and pw, and if IHSTAG =0 the
total energy Er, are supplied by INIT. Thus, the velocity components are simply

_pu
“="p
pv
V="

pw
W="p

If the energy equation is being solved (THSTAG = 0), the temperature is computed from

% The calculation of T at this point may be approximate. See Remark 1.

% See Remark 1.

208 4.0 Proteus Subprograms: INITC Proteus 3-D Programmer’s Reference

oA [E 12 2001
T—cvl:p 2(u+v+w):|

If the energy equation is being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the
temperature is computed from

A L2 2.2
T“‘cp[hT 2(u +v +w)]

ICVARS = 2

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

1 1
T=—C—p—[h7~—-7(u2+v2+w2):|

The density is then given by
=P
P=TRT

and the total energy is
Er= p[ch + % (u2 +v2 4 w2)]

ICVARS = 3

With this option, the density p and the velocities », v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

A L2202
T—cp[hT 2(u +vi+w)

The total energy is then

Er= PI:C"T+ —;—(u2 +v2 4 w2)

ICVARS = 4

With this option, the pressure p. and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the density p is also supplied by INIT. If it is being eliminated
by assuming constant stagnation enthalpy (IHSTAG = 1), this option is the same as the ICVARS =2 op-
tion. If the enérgy equation is being solved, then, the temperature is

P

T=-%

The total energy is then

Er= p[ch+ % @+ + w2)]

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: INITC 209

ICVARS = 5

With this option, the static pressure coefficient ¢, and the velocities «, v, and w are supplied by INIT.
If the energy equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. Ifitis
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

1 1l .2, .2 2
T=_Cp I:hT—E-(u +v +w)]
The pressure coefficient is defined by

c = (ﬁ—pr)gc
= ——
Pt 12

The nondimensionalized pressure p = pg./p.? is thus

Pr8e

2
Priy

<
=2
or, since p, = p,R T,/g. and the nondimensionalized gas constant R = RT.J.2,
C
=2
p=—+ R

The density is then

__P_
P=RT

and the total energy is
E7~=- p[ch-%- —;—- (u2 +v2 + wz)]

ICVARS = 6

With this option, the pressure p, Mach number M, and flow angles «, and «, are supplied by INIT. If
the energy equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

—1 -1
T=TT(1+ - Mz)
where Tr = Ar/c,. The density is

P
P="RT

The flow angles are defined byr a, = tan~}(v/u) and a, = tan~(w/u). The Mach number is defined by

uz—%-vz-ibw2 i
M= ——r—
(¥RT)

Solving for u,

210 4.0 Proteus Subprograms: INITC Proteus 3-D Programmer’s Reference

12
l: o :l
U= AM 2 2
1+ (vi)” + (wfw)

where (v/u)? = tan%, and (w/u)? = tan’x,. The remaining velocities are simply

v=utana,

w=utan o,

The total energy is

Er= p[ch+ % (u2 +v 4+ wz)]

Remarks

L.

If T is not supplied by INIT, it must be computed from the equation of state. The equation of state
contains a specific heat coefficient (either ¢, or ¢,, depending on whether the stagnation enthalpy is as-
sumed constant or not.) The first time 7 is computed in INITC, a constant value of specific heat 15
used, consistent with the reference temperature 7. If the user specified constant specific heat (ie., a
value for y, was read in), this is not a problem. However, if the temperature-dependent specific heat
option is being used (i.e., a value for y, was not read in), the equation of state and the empirical equation
for specific heat are coupled. For this reason 7 is recomputed in EQSTAT after the specific heats are
computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and
EQSTAT. This is not currently done in Proteus, however.

For options in which the pressure p is specified (ICVARS =2, 4, and 6), the value supplied by INIT
1s redefined as follows:

Pr8e
2
Priy

pP=pP

This is necessary because input and output values of p are nondimensionalized by the reference pressure
p.=p.RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
7n= pa?. “ee Section 3.1.1 of Volume 2 for a discussion of the distinction between referen - and nor-
malizing conditions.

With the ICVARS = 6 option, the initial velocity « will be limited to non-negative values.

If non-positive pressures or temperatures were computed in EQSTAT, the Fortran variable INEG will
be positive. An error message will be printed, including a table showing the location of the non-positive
values. The calculation will stop in INITC.

An error message is generated and execution is stopped if an illegal value is specified for ICVARS.

An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: INITC 211

Subroutine INPUT

Called by Calls Purpose
MAIN ISAMAX Read and print input, perform various initializations.
Input
NIN 7 trﬁt number for namelist input.
NTP Dimensioning parameter specifying the maximum number of en-
tries in the table of time-dependent boundary condition values.
NTSEQP Dimensioning parameter specifying the maximum number of time

NI1P, N2P, N3P

Output

CKMIN
GAMR
HSTAG, HSTAGR

IGAM

* IPRTIA, IPRT2A, IPRT3A
ITDBC

LWALLI, LWALL2, LWALL?3
LWSET

MACHR
MUR, KTR

NEQ

NPRTI1, NPRT2, NPRT3
PR

PRLR

RER, PRR

RGAS

UR

step sequences for the time step sequencing option.

Parameters specifying the dimension sizes in the £, », and { di-
rections.

Constant (Ckies)m in the Klebanoff intermittency factor.
Reference ratio of specific heats, y,. ’

Dimensionless and dimensional stagnation enthalpy Ar for the
constant stagnation enthalpy option.

Flag for constant or variable ¢, ¢, and y; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

Indices for printout in the &, n, and { directions.

Flag for time-dependent boundary conditions; 0 if all boundary
conditions are steady, 1 if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundary con-
ditions are used.

Flags specifying wall locations for &, », and { boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters. -

Reference Mach number M,.

Reference viscosity coefficient g, and thermal conductivity coeffi-
cient k..

Number of coupled equations being solved, N.,.

Total number of indices for printout in the &, », and ¢ directions.

- Reference pressure p,.

Reference laminar Prandtl number Pr,.
Reference Reynolds number Re, and Prandtl number Pr..
Gas constant R.

Reference velocity u,.

212 4.0 Proteus Subprograms: INPUT Proteus 3-D Programmer’s Reference

Description

Subroutine INPUT performs various input and initialization functions. It first reads the title and
namelist input from the standard input file. Namelist RSTRT is read first, followed by namelist I0. If
TUNITS = 1, indicating reference conditions will be specified in SI units, various default values and con-
stants are redefined 1o be consistent with SI units. The remaining namelists are then read. :

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if
necessary, to be consistent with each other. The number of equations being solved is then determined based
on the values of IHSTAG. A flag is set if time-dependent boundary conditions are being used. The
LWSET flags, which specify how wall locations are to be determined for the turbulence model, are defined
based on the default and input values of the LWALL and IWALL parameters. If the user did not specify
a value for (Ckus)mm it is set to the default value, which depends on the turbulence model being used.

Next, if frequency of printout in the &, », and { directions is being set by the input arrays IPRTI,
IPRT?, and IPRT3, the corresponding grid indices are stored in arrays IPRTIA, IPRT2A, and IPRT3A.
The total number of printout locations in each direction is also determmined.

A header is then written to the standard output file, followed by the input namelists. Note that, for
variables not specified by the user in the input namelists, the values in this printout will be the default val-
ues.

Various checks are made for inconsistent or invalid input, and appropriate efror or warning messages
are written. These are described in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and
normalizing conditions are then written to the standard output file, with the appropriate units. See Section
1.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

Remarks

1. The Cray search routine ISAMAX is used in the input consistency check to determine whether any
implicit artificial viscosity coefficients are non-zero.)

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: INPUT = 213

Function ISAMAX (N,V,INC)
Called by Calls Purpose
BLOUT Find the first index corresponding to the largest absolute value of the
CONV elements of a Fortran vector.
FILTER
INPUT
RESID
TIMSTP
Input
N Number of elements to process in the vector (ie.,
N = vector length if INC =1, N = (vector length)/2 if INC =2,
etc.). :
\% 7 Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1. '
Output
ISAMAX First index corresponding to the largest absolute value of the ele-

ments of V that were searched.

Description

Function ISAMAX finds the first index corresponding to the largest absolute value of the elements of
a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,

imax = isamax(np,v,1)}
sets IMAX eqhal to the index I corresponding to the maximum value of V(I) for I =1 to NP.
A starting location can be specified, as in
imax = 6 + isamax(np-4,v(5),1)
which sets IMAX equal to the index I corresponding to the maximum value of V(I) for I =5 to NP.
Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-

sioned NDIM1 by NDIM2 by NDIM3, then

imax = isamax(ndiml¥ndim2%*ndim3,a,1)

sets IMAX equal to the one-dimensional index corresponding to the maximum value of A(I,J,K) for all I,
J, and K. The maximum value of A can then be referenced as A(IMAX,1,1).

One dimension at a time can also be searched. For example,
imax = isamax(ndiml,a(1,5,1),1)
sets IMAX equal to the index I corresponding to the maximum value of A(I,5,1) for I varying from 1 to
NDIMI. Similarly, by specifying a skip increment,

214 4.0 Proteus Subprograms: ISAMAX Proteus 3-D Programmer’s Reference

jmax = isamax(ndim2,a(5,3,1),ndiml)

sets JMAX equal to the index J corresponding to the maximum value of A(5,J,1) for J varying from 1 to
NDIM2. _

Remarks

1. ISAMAX is a Cray search routine (Cray Research, Inc., 1989b).

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: ISAMAX 215

Function ISAMIN (N,V,INC)

Called by | Calls Purpose
BLOUT Find the first index corresponding to the smallest absolute value of the
OUTPUT elements of a Fortran vector.
TIMSTP
Input
N Number of elements to process in the vector (ie.,
N = vector length if INC = 1, N = (vector length)/2 if INC=2,
etc.).
v Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
Qutput
ISAMIN First index 'corresponding to the smallest absolute value of the el-

ements of V that were searched.

Description

Function ISAMIN finds the first index corresponding to the smallest absolute value of the elements of
a vector. It is used in exactly the same way as ISAMAX.

Remarks

1. ISAMIN is a Cray search routine (Cray Research, Inc., 1989b).

216 4.0 Proteus Subprbgrams: ISAMIN Proteus 3-D Programmer’s Reference

Function ISRCHEQ (N,V,INC,VALUE)

Called by Calls Purpose
BCGEN Find the first index in a vector whose element is equal to a specified
FILTER value.
Input
N ' Number of elements to process in the vector (i.e,
N = vector length if INC = 1, N = (vector length)/2 if INC =2,
etc.).
\" Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1
VALUE Value to be searched for in the vector V.
Output
ISRCHEQ First index, of the elements of V that were searched, whose ele-

ment is equal to the value V. If the value V is not found, the re-
turned value will be N + 1.

Description

Function ISRCHEQ finds the first index in a vector whose element is equal to a specified value. For
a one-dimensional vector, the use of ISRCHEQ is straightforward. For example,

ival = isrcheq(np,v,1,val)

searches V(I), for I=1 to NP, for the value VAL, and sets IVAL equal to the first index I for which
V(I) = VAL. ¢ the value VAL is not found, IVAL will be equal to NP + 1.

A starting location can be specified, as in

ival = 4 + isrcheq(np-4,v(5),1,val)
which searches V(I), for I = 5 to NP, for the value VAL.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2 by NDIM3, then

ival = isrcheq(ndiml*ndim2¥%ndim3,a,l,val)

searches A(I,J,K), for all I, J, and K, for the value VAL, and sets IVAL equal to the corresponding one-
dimensional index. The desired indices in A can then be recovered from

mod(ival-1l,ndiml) + 1
mod{ival-1,ndiml*¥ndim2)/ndiml + 1
(ival-1)/(ndiml*¥ndim2) + 1

1
J
k

One dimension at a time can also be searched. For example,

ival = isrcheq(ndiml,a(1,5,1),1,val)

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: ISRCHEQ 217

searches A(1,5,1), for I =1 to NDIMI, for the value VAL. "Similarly, by specifying a skip increment,

jval = isrcheq(ndim2,3(5,3,1),ndiml,val)

searches A(5,J,1), forJ=1to NDiMZ, for the value VAL.
Remarks

1 ISRCHEQ is a Cray search routine (Cray Research, Inc., 1989b).

218 4.0 Proteus Subprograms: ISRCHEQ Proteus 3-D Programmer’s Reference

[}

Function ISRCHFGT (N,V,INC,VALUE)

Called by Calls Purpose
BLIN ' Find the first index in an array whose element is greater than a specified |
BLOUT value. '
Input
N Number of elements to process in the vector (ie.,

VALUE

Output
ISRCHFGT

Description
Function ISRCHFGT finds the first

N = vector length if INC = 1, N = (vector length)/2 if INC =2,
etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC=1.

Value to be searched for in the vector V.

First index, of the elements of V that were searched, whose ele-
ment is greater than the value V. If the value V is not found, the
retumed value will be N + 1. ‘

index in a vector whose element is greater than a specified value.

It is used in exactly the same way as ISRCHEQ.

Remarks

1. ISRCHFGT is a Cray search routine (Cray Research, Inc., 1989b).

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: ISRCHFGT 219

Function ISRCHFLT (N,V,INC,VALUE)

Called by Calls Purpose
BLOUT Find the first index in an array whose element is less than a specified
value.
Input
N Number of elements to process in the vector (ie.,
N = vector length if INC =1, N = (vector length)/2 if INC =2,
etc.).
A\ Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
VALUE Value to be searched for in the vector V.
Output
ISRCHFLT First index, of the elements of V that were searched, whose ele-
ment is less than the value V. If the value V is not found, the re-
turned value will be N + 1.
Description

Function ISRCHFLT finds the first index in a vector whose element is less than a specified value. It
is used in exactly the same way as ISRCHEQ.

Remarks

1. ISRCHFLT is a Cray search routine (Cray Research, Inc., 1989b).

220 4.0 Proteus Subprograms: ISRCHFLT

Proteus 3-D Programmer’s Reference

Subroutine KEINIT

Called by Calls Purpose
INITC PRODCT Get user-defined initial conditions for & and «.
TURBBL .
YPLUSN
Input
* CMUR Constant C,, in formula for C,.
* CTHREE Constant C; in formula for C,.
* NI, N2, N3 Number of grid points Ny, N,, and N, in the £, n, and { directions.
* RER Reference Reynolds number Re,.
RHO Static density p at time level n.
Output
E,EL Turbulent dissipation rate ¢ at time levels nand n— 1.
KE, KEL Turbulent kinetic energy k at time levels nand n— 1.
MUTL Turbulent viscosity u, at time level n— 1.
Description

Proteus 3-D Programmer’s Reference

Subroutine KEINIT supplies the user-defined initial values of the turbulent kinetic energy & and the
turbulent dissipation rate ¢. In general, this subroutine will be tailored to the problem being solved, and
supplied by user. Details on the vaniables to be supplied by KEINIT are presented in Section 5.1 of Volume
2. : .

A default veusion of KEINIT is supplied with Proteus that computes the initial values of & a..d ¢ using
the assumption of local equilibrium (dissipation equals production.) The above list of input and output
Fortran variables are for the default version of KEINIT.

The steps involved in the default version of KEINIT are described below.

Initialize k and ¢ to zero.

Call TURBBL to compute turbulent viscosity values and to locate solid walls in the computational

domain.

Call YPLUSN to compute p* and the minimum distance to the nearest solid wall.
Call PRODCT to compute the production rate of turbulent kinetic energy.

Compute k and ¢ using

Cu= Cu,(l - ecsy")

Py
Re,p

e

Cﬂp

4.0 Proteus Subprograms: KEINIT 221

6. Set the values of k, ¢, and p, at time level 7 — 1 equal to their values at time level n.
Remarks

1. The scratch aray DUMMY, from the common block DUMMY]I, is used to store the values of the
distance to the nearest wall. The array is filled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURBI, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.

222 4.0 Proteus Subprograms: KEINIT Proteus 3-D Programmer’s Reference

Program MAIN
Called by Calls Purpose
BCSET Manage overall solution.
CONV
EQSTAT
EXEC
FTEMP
GEOM
INITC
INPUT
OUTPUT
oUTW
PLOT
PRTHST
REST .
TBC
TIMSTP
TREMAIN
TURBBL
TURBCH
Input
None.
Qutput
IT Current time step number 7.
ITEND Final time step number. _
ITSEQ Current time step sequence number.
TAU Current time value .
Description

The MAIN program is used to manage the overall solution. The steps involved are described below.

Preliminary Steps

W -

!

Call INPUT to read and print the input, and perform various initialization procedures.

Unless this is a restart case, call GEOM to get the computational coordinates and metric data.
Call INITC to get the initial flow field.
Call BCSET to set various boundary condition parameters and ﬂags and to prnt the input boundary

condition types and values.

Initialize the plot file,”” and, if requested by the user, vmte the initial or restart flow field into the plot

file.

If requested by the user, print the initial or restart flow field.

77 The initialization procedure depends on the type of plot file being written. See the description of subroutine PLOT.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: MAIN 223

7. Compute NTSUM, the maximum total number of marching steps to be taken, and ITEND, the cor-
responding final index on the time marching loop. Set the initial values of ITSEQ, the time step se-
quence number, and ITSWCH, the time index for switching to the next sequence, both to zero.

Time marching loop

8. Begin the time marching loop. The loop index IT corresponds to the known time level n. Each iter-
ation of the loop thus corresponds to a step from time level nto n+ 1. :

9. If at the end of a time step sequence, update ITSEQ, the time step sequence number, and
ITSWCH, the time index for switching to the next sequence.

10. For the first time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new
time step At. For every time step update the time value 7.

1L If time-dependent boundary conditions are being used, call TBC to set the boundary condition
values.

12. Call EXEC to solve the equations.

13. Call EQSTAT to compute the pressure p and temperature 7 from the equation of state. If either
is non-positive, indicating a non-physical solution, skip forward to step 17.

14. Call FTEMP to compute the laminar viscosities g, and 4;, the laminar thermal conductivity &;, and
the specific heats ¢, and ¢.

15. For turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal

conductivity coefficients using the turbulence model specified by the user.
16. Every ICHECK time levels, call CONV to check for convergence.
17. Call TREMAIN to find out how much CPU time remains.

i8. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, or if the job is near the CPU time limit, print the flow field at time level
n+ 1.

19. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-

atures were computed, or if the job is near the CPU time limit, write the flow field at time level
n+ 1 into the plot file.

20. If non-posi:ive pressures or temperatures were computed, write an error message showing t..e lo-
cation of the non-positive values and skip forward to step 25, ending the calculation.

21 If the calculation is converged, print a message and skip forward to step 24, ending the calculation.
22. If the job is near the CPU time limit, print a2 message and skip forward to step 24, ending the cal-
culation.

23. End of time marching loop. Print a message indicating the calculation did not converge.

Final Steps

24. If requested by the user, call REST to write the restart file.

25. If first-order time differencing and steady boundary conditions were used, call PRTHST to print the
convergence history. :

Remarks

1. The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG = 1, and thus
the initial starting flow field is at time level 1. For a restart case ITBEG = n, where n is the time level
stored in the restart file, and thus the starting flow field is the previously computed flow field at time
level n. '

2. The ending index for the time marching loop is ITEND = ITBEG + NTSUM — 1, where NTSUM is
the total number of time steps to be taken. For a non-restart case, then, the time marches from level

224 4.0 Proteus Subprograms: MAIN Proteus 3-D Programmer’s Reference

1 to level 14+ NTSUM. For a restart case, the time marches from level ITBEG to level
ITBEG + NTSUM.

3. The logic involving NTSUM, ITSEQ, and ITSWCH is used to implement the time step sequencing
option. This allows one CFL number or time increment to be used for a specified number of steps,
followed by another CFL number or time increment for another specified number of steps, etc.? If this
option is not used, NTSUM is simply equal to NTIME(1) and ITSEQ 1s always 1.

4. An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

5. Although the calculation will stop if p or T < 0, as noted above in step 19, the standard output and plot

file will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT
input parameters in namelist I0. The restart file will not be written.

2 See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: MAIN 225

Subroutine METS

Called by Calls Purpose
GEOM OUTPUT Compute metrics of nonorthogonal grid transformation.
REST .
Input
DX], DETA, DZETA Computational grid spacing A¢, An, and A{.
* IDEBUG Debug flags.
* IVOUT Flags specifying variables to be printed.
* NOUT , Unit number for standard output.
* N1, N2, N3 Number of grid points N;, N,, and N, in the &, », and { directions.
X, Y, Z Cartesian coordinates x, y, and z.
Output
ETAX, ETAY, ETAZ, ETAT Metric coefficients 7., #,, 7., and 3.
IVOUT Flags specifying variables to be printed (temporarily redefined for
debug output of metrics.)
J1 Inverse Jacobian of the nonorthogonal grid transformation, J-1.
XIX, XIY, X1Z, XIT Metric coefficients ¢&,, &,, &, and &,
ZETAX, ZETAY, ZETAZ, Metric coefficients {,, {,, {., and ..
ZETAT
Description

Subroutine METS computes the metric coefficients and the Jacobian for the generalized nonorthogonal
coordinate transformation. The metric coefficients are defined in terms of the known (x-y-z) coordinates
of the computational mesh as:

¢x=Jy2); — 2]
&y = JU(x;2),, — (x,2)].
&= Jl(xp) — (xp),]
nx =2y — B2]
ny = Jl(xz2); — (X;2)¢]
1z =J(x)s — xgp)]
L= L5, ~ (2)s]
Ly = Jl(x,2); — (x:2),,]
(= Jxg)y — (Xpp)e]

&=—x¢x _yf‘fy —2z,¢;

226 4.0 Proteus Subprograms: METS Proteus 3-D Programmer’s Reference

N ==X Mx = VMy = ZM2
Ct == x‘rcx —yrcy - ZTCZ

where J is the Jacobian of the transformation, given by
1 _
J= =il Dxz0n2g = Ye2y) + Xy 052 = P52 + X 0p2g = 7)) l

The derivatives of x, y, and z with respect to the computational coordinates are computed numerically
using the same difference formulas as used for the governing equations. At interior points the centered
difference formula presented in Section 5.0 of Volume 1 is used. At boundaries three-point one-sided dif-
ferencing is used. For &-derivatives at the { =0 and =1 boundanes,

i»\/ —3fw+4fwi1_fwj;2
g =% AL |

where w represents the &-index at the boundary (ie., either 1 or N;). Where a + sign appears, the + sign
is used at the & = 0 boundary, and the — sign is used at the £ = 1 boundary. An analogous formula is used
for n-derivatives at the y =0 and n =1 boundaries, and for {-derivatives at the { =0 and { = 1 boundaries.

Remarks

1. Several local three-dimensional Fortran arrays (XXI, XETA, etc.), are used in METS to store the de-
rivatives X;, X,, etc. These arrays are equivalenced to flow varnables from common block FLOWI,
which, at the point METS is called, have not yet been assigned values. These flow vanables are set
equal to zero at the end of METS. :

2. Since the current version of Proteus is limited to meshes that do not vary with time, the denvatives x,,
¥.» and z, are set equal to zero.

3. This subroutine generates the output for the IDEBUG(7) option. -

4. An error message is generated and execution is stopped if the gnd transformation Jacobian J changes
sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid
lines. The error message is followed by a printout of the Cartesian coordinates, the Jacobian, and the
metric coefficients.

~ Proteus 3-D Programmer’s Reference 40 Proteus Subprograms: METS 227

Subroutine OUTPUT (LEVEL)

XIX, X1Y, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

228 4.0 Proteus Subprograms: OUTPUT

Called by Calls Purpose

MAIN ISAA\/‘II.\T Manage printing of output.

METS PRTOUT

VORTEX
Input
CP,CV Specific heats ¢, and ¢,
DTAU Time step Ar.
DUMMY A three-dimensional scratch array.
DXI, DETA, DZETA Computational grid spacing A¢, An, and A{.
E, KE Turbulent dissipation rate ¢ and kinetic energy .
ETAX, ETAY, ETAZ, ETAT Metric coefficients ., n,, ., and #..
GAMR Reference ratio of specific heats, y..
GC Proportionality factor g. in Newton’s second law.
IVOUT Flags specifying variables to be printed.
JI Inverse Jacobian of the nonorthogonal grid transformation, /-
LEVEL Time level to be printed.
LWALLI, LWALL2, LWALL3 Flags specifying wall locations for £, #, and { boundaries.
MACHR Reference Mach number M,.
MU, LA, KT Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity .

MUT Turbulent viscosity coefficient u..
NOUT Unit number for standard output.
N1, N2, N3 Number of grid points Ny, N;, and N, in the £, 4, and { directions.
P, T Static pressure p and temperature 7.
PR Reference pressure p,.
PRR Reference Prandtl number Pr..
PRT Turbulent Prandtl number Pr..
RGAS Gas constant R.
RHO,U,V, W ET Static density p, velocities &, v, and w, and total energy Er.
RHOR, TR, UR Reference density p., temperature 7,, and velocity .
TAU Time value .
XY, Z Cartesian coordinates x, y, and z.

Metric coefficients &, &,, &, and &,

Metric coefficients {,, {,, {., and {..

Proteus 3-D Programmer’s Reference

Qutput

ATITLE A 20-character title for variable being printed.
DUMMY A three-dimensional array containing the variable to be printed.
Description

Subroutine OUTPUT manages the printing of the standard output. The variables available for printing

are listed and defined in Table 3-3 of Volume 2. The user-specified array IVOUT controls which variables
are printed.)

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block

DUMMY]. The title printed with the variable is stored in the character array ATITLE. Subroutine
PRTOUT is then called to execute the actual write statements.

Remarks

1.

A wamning message is printed if a non-existent output variable is requested. The printout will continue
with the next requested output variable.

For output options 30, 31, 34, and 35, involving the pressure p, the value stored internally in the
Proteus code is redefined as follows: C

2
P
P=Ppg.

This is necessary because input and output values of p are nondimensionalized by the reference pressure
p, = p,RT, while internal to the code itself p is nondimensionalized by the normalizing pressure
P = p.. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions. ;

The definitions of k; and k. (IVOUT =92 and 102) assume a constant turbulent Prandtl number is
being specified in namelist TURB. If the input value of PRT < 0, indicating the use of a variable tur-
bulent Prandt] number, the printed values of k; and k. will be incorrect.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: OUTPUT 229

Subroutine OUTW (LEVEL)

Called by Calls Purpose

MAIN Compute and print parameters at boundaries.
Input
CP Specific heat c,.

DXI, DETA, DZETA

ETAX, ETAY, ETAZ

GC

IPRTIA, IPRT2A, IPRT3A
IWOUTI, IWOUT2, IWOUT3

LEVEL

MU, KT

NOUT

NPRTI, NPRT2, NPRT3
N1, N2, N3

P, T

PR

PRR

RER

RHOR, UR

UV, w

XY Z

XIX, XIY, XIZ

ZETAX, ZETAY, ZETAZ

Computational grid spacing A¢, An, and A{.
Metric coefficients #., n,, and #..

Proportionality factor g. in Newton’s second law.
Indices for printout in the £, 5, and { directions.

Flags specifying for which boundaries parameters are to be
printed.

Time level being printed.

Effective coefficients of viscosity u, and thermal conductivity k.
Unit number for standard output.

Total number of indices for printout in the &, 4, and { directions.
Number of grid points Nl, N,, and N, in the &, #, and { directions.
Static pressure p and temperature 7.

Reference pressure p,.

Reference Prandtl number Pr,.

Reference Reynolds number Re,.

Reference density p,, and velocity .

Velocities u, v, and w.

Cartesian coordinates x, y, and z.

Metric coefficients ¢,, ¢,, and £,.

Metric coefficients ¢,, {,, and ..

Output

None.

Description

Subroutine OUTW computes and prints various parameters along the computational boundaries. The
variables available for printing are listed and defined in Table 3-3 of Volume 2. The user-specified arrays
IWOUTI!, IWOUT?2, and IWOUT3 specify at which boundaries parameters are printed, and whether
normal derivatives are to be computed using two-point or three-point one-sided differencing.

The parameters printed are the Cartesian coordinates x, p, and z, the static pressure p, the skin friction
coefficient ¢, the shear stress 7,, the static temperature T, the heat transfer coefficient 4, the heat flux 4.,
and the Stanton number St. Note that some of these are meaningful only if the boundary is a solid wall.

The skin friction coefficient is defined as

230 4.0 Proteus Subprograms: OUTW Proteus 3-D Programmer’s Reference

where the overbar denotes a dimensional quantity. In this equation dV:/dn represents the normal derivative
of the tangential velocity, with the normal vector n directed into the flow field.

For a ¢ boundary, the tangential velocity is
V=Vt

where V, and V; are the velocities in the 5 and ¢ directions. From the descriptions of subroutines BCV2
and BCV3,

XU+ yy+ zZ,w

/.2 2 2
xn+y,7+z,1

_ xgu+ y§v+zgw
¢ 2.2, 2
xc+yC+Zg

Using the equations in Section 6.4 of Volume 1, 8V,/dn for a ¢{ boundary is thus computed as

ov, +1
on —m a:

Vo=

;+ iy + gz) + (éx’bc + fy’?y + et 5:: (fxcx + ‘fycy + ézcz)]

where
=J&+8+8
The + sign is used at the ¢ = 0 boundary, and the — sign is used at the & = 1 boundary.
For an » bcundary, the tangential velocity is

Vi=JVi+ W}

From the description of subroutine BCV1,

X +yev+ zw

8 2. 2. 2
x§+y§+z§

Thus, for an » boundary,

v,
on

H+

1 oV, B th 2 2 2 oV, ;

7| 7 ixbx eyl + (rx + 1y +12) + 5 (i + 78y + k)
where

m=v&+ﬁ+ﬁ

For an » boundary, the tangential velocity is

Vi=\Vi+V}

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: OUTW 231

Thus, for a { boundary,

on f

where
=JG+O+1

The shear stress 7, 1s defined as

v,
W= H n
7, 1s thus nondimensionalized by w.u/L,.
The heat flux g, is defined as
T
~k on

ov, 11 oV, oV, . oV, .2 2 2
=t (Cxéx + 5yéy +E8)+ > on Cxmtx + Cymy +Com) + Tc- (cx + Cy + Cz)

where 97T/6n represents the normal derivative of the temperature. For a ¢ boundary,

or 4 L [g—g B+ 2+ + 2L (mx + &y + Em) + 55 L (6dx+ Ly + 5%:)]

on - m
where

=JE+&+¢

For an » boundary,

ﬁ§=i%{g m@+wg+m@+a(m+ +m)%%m§+m9%${]

where
2 2 2
=nxtn,+n;

And for a { boundary,

aT
on

where

=JE++8
g. is thus nondimensionalized by k. T,/L..

The heat transfer coefficient 4 is defined as

. = iTil— [%(Cxéx"':ygy_*'c;gz)—l' (C_x"x'*';yrly

oT
T—1 T-1

This is the nondimensional form of the equation

232 4.0 Proteus Subprograms: OUTW

ac ot CZ)]

Proteus 3-D Programmer’s Reference

A is thus nondimensionalized by &./L,.

The Stanton number St 1s defined as

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: OUTW

233

Subroutine PAK (IDIR,NOLD1,NOLD2,NOLD3)

Called by Calls Purpose
GEOM CUBIC Manage packing and/or interpolation of gnd points.
ROBTS :
Input
IDIR Direction flag; 1 if grid points are being redistributed in the & di- ‘
rection, 2 if in the # direction, 3 if in the { direction.
* IPACK Flags for gnd packing option.
NOLDI, NOLD2, NOLD3 Number of grid points in the £, n, and { directions in the original
grid. _
* NOUT Unit number for standard output.
* NI, N2, N3 Number of grid points Ny, N,, and Ns, in the &, », and { directions.
*+ 8Q An amray specifying the location and amount of packing.
XY, Z Cartesian coordinates x, y, and z in the old gnd.
Output
X, Y, Z Cartesian coordinates x, y, and z in the new gnd.
Description

Subroutine PAK manages the redistribution of the user-specified points in the computational coordinate

system. It is called whenever grid packing is used. It is also called when interpolation is necessary because
the computational coordinates are specified by reading them from a separate file (the NGEOM = 10 option
in subroutine GECM), and the number of points in the file is different from the number of points ‘o be
used in the calculation. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clanty, this discussion assumes

IDIR =1 (i.e., we are redistributing points in the ¢ direction.) An exactly analogous procedure is used for
IDIR =2 and 3.

1.

Set NNEW and NOLD equal to the index limits in the ¢ direction for the new and old grids. Also set
NOPPI and NOPP2 equal to the index limits in the » and { directions for the old gnd.

Get (ay),, the normalized physical arc length along a coordinate line in the £ direction, from the begin-
ning of the line to each grid point in the new grid. The normalizing distance is the total arc length of
the line, and thus these arc lengths apply to any coordinate line in the ¢ direction. If the points are not

being packed in the ¢ direction, but only interpolated, then

(a)___i;l__
PIT NNEW — 1

for i=1to NNEW. In the new grid, the points will thus be evenly distnbuted in physical space along
each coordinate line in the £ direction. If the grid points are being packed in the ¢ direction, subroutine
ROBTS is called to compute (ap), from the packing parameters specified by the user.

Begin double loop from IOPP1 = 1 to NOPP] and from IOPP2 = 1 to NOPP2. This double loop thus
runs over the points in the » and { directions in the old grid. We will be redistributing points in the ¢
direction for each » and { value in the old gnd.

234 4.0 Proteus Subprograms: PAK Proteus 3-D Programmer’s Reference

6.

Get (ag»), the normalized physical arc length along a coordinate line in the ¢ direction, from the
beginning of the line to each grid point in the old grid. These values are found by first computing
the non-nommalized arc lengths, as follows:

(ayp); =0

2 2
(ayp)i=(ayp)i—1 + N@i,j,k =X 5,0 YO k= Yio1,j 0
for i=2to NOLDI. These values are normalized by setting

(ayp)

(ayp)i=5———"
* (ayp)noLD1

for i=1 to NOLDI1. To eliminate any problems with roundoff error, (avr)voLp: is explicitly set
equal to 1.

Given x and ay; for the old grid, and ap for the new gnid, call CUBIC to interpolate for x in the
new grid. Similarly interpolate for y and z.

Redefine the Fortran variables X, Y, and Z as the x, y, and z coordinates in the new gnd.

7. End of double loop over the points in the » and { directions in the old gnd.

1

Remarks

In the Fortran code, the comments sometimes refer to the “packing” direction. This terminology ac-
tually means the direction in which grid points are being redistributed, even if they are not being packed
but only interpolated. Similarly, references to the “packed” and “unpacked” grid actually mean the new
and old grids.

2. An error message is generated and execution is stopped if an invalid grid packing option is requested.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: PAK 235

Subroutine PERIOD

Called by Calls Purpose
EXEC Define extra line of data for use in computing coefficients for spatially
EXECT periodic boundary conditions.
Input
CpP,CV Specific heats ¢, and ¢, at time level .
E,EL Turbulent dissipation rate = at time levels nand n— 1.
ETAX, ETAY, ETAZ, ETAT Metric coefficients s, 7, 12, and 7.
5 Inverse Jacobian of the nonorthogonal grid transformation, /= '.
KBCPER Flags for spatially periodic boundary conditions in the &, #, and {

directions; 0 for non-periodic, 1 for periodic.

KE, KEL Turbulent kinetic energy k at time levels nand n— 1.

MU, LA, KT Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k.

MUT, MUTL Turbulent viscosity . at time levels n and n— 1.

NPTI1, NPT2, NPT3

Ni, N2, N3
P, T
RHO,U,V, W, ET

RHOL, UL, V', WL, ETL

TL
XIX, XY, XIZ, XIT

ZETAX, ZETAY, ZETAZ,
ZETAT

Qutput

N1, Ns, and N; for non-periodic boundary conditions, or Ny + 1,
N, + 1, and N; + 1 for spatially periodic boundary conditions, in
¢, n, and {, respectively.

Number of grid points Ny, N, and N, in the £, , and { directions.
Static pressure p and temperature T at time level 7.

Static density p, velocities &, v, and w, and total energy Er at time
level n. .

Static density p, velocities %, v, and w, and total energy E- from
previous ADI sweep.)

Static temperature T from previous ADI sweep.
Metric coefficients &,, &,, &, and ..

Metric coefficients ¢, &, {;, and ..

All of the flow and metric-related input parameters listed above, at i = N, + 1 for periodic boundary
conditions in the ¢ direction, at j= N, + 1 for periodic boundary conditions in the direction, and at

k = N3 + 1 for peniodic boundary conditions in the ¢ direction.

Description

Subroutine PERIOD adds, in effect, an additional set of points at i= N, + 1 for periodic boundary
conditions in the ¢ direction, at j= N+ | for periodic boundary conditions in the n direction, and at
k= N, + 1 for periodic boundary conditions in the { direction. This allows us to use central differencing
in the periodic direction, at i= Ny, j = N, andjor k= N, computing the coefficient submatrices and source
term subvector in the same way as at the interior points.?

2 See Section 7.2.2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.

236 4.0 Proteus Subprograms: PERIOD Proteus 3-D Programmer’s Reference

For periodic boundary conditions in the ¢ direction, the extra points are added by setting
o1 k=hjk
where j=1to N, and k=1 to N, and f represents one of the flow variables or metrics. Similarly, extra

points are added at (i, N; + 1, k) for periodic boundary conditions in the » direction, and at (i, j, N3 + 1) for
periodic boundary conditions in the { direction.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: PERIOD 237

Subroutine PLOT (LEVEL) -

Called by Calls Purpose , B
MAIN Write files for post-processing by CONTOUR or PLOT3D plotting
programs.
Input
CP,CV Specific heats ¢, and ¢,.

ETAX, ETAY, ETAZ
GAMR

Metric coefficients »,, 7,, and 7..

Reference ratio of specific heats, y..

GC Proportionality factor g. in Newton’s second law.

IPLOT Flag specifying type of plot file to be written.

LEVEL Time level to be written into the file (0 for initialization,)

LR, UR, RHOR, TR Reference length L,, velocity u, density p,, and temperature 7.
MACHR Reference Mach number M,.

NOUT Unit number for standard output.

NPLOT Unit number for writing CONTOUR file, or PLOT3D Q file.
NPLOTX Unit number for writing PLOT3D XYZ file.

N1, N2, N3 Number of grid points N,, N2, and Ns, in the &, %, and { directions.
P, T Static pressure p and temperature 7.

PR Reference pressure p..

RER Reference Reynolds number Re,.

RG Dimensional gas constant R.

RGAS Dimensionless gas constant R.

RHO,U,V,W,ET Static density p, velocities ¥, v, and w, and total energy Er.
TAU Current time value .

TITLE Case title.

XY, Z Cartesian coordinates x, y, and z.

XIX, XIY, XIZ Metric coefficients &,, &,, and &..

ZETAX, ZETAY, ZETAZ Metric coefficients ¢, {,, and ..

Qutput

None.

Description

Subroutine PLOT writes 2 file or files, commonly called plot files, for post-processing by the CON-
TOUR or PLOT3D plotting programs. The type of files written is controlled by the user-spectfied pa-
rameter IPLOT. The format and contents of the different types of plot files are described in detail in Section
4.2 of Volume 2. They are therefore described only briefly here.

238 4.0 Proteus Subprograms: PLOT Proteus 3-D Programmer’s Reference

CONTOUR Plot File ({PLOT = 1)

If IPLOT = 1, a CONTOUR plot file is written with the title and reference conditions included at each
time level. The value of 7 is written into the header for each time level, but 7, the time itself, is not written
into the file. No initialization step is necessary.

PLOT3D WHOLE Plot Files (IPLOT = 2)

If IPLOT = 2, XYZ and Q files are written in PLOT3D/WHOLE format. The XYZ file is written only
during the initialization step. The Q file is written at each time level requested by the user. The Q file will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
711, is written into the header for each set of data in the Q file.

PLOT3D/PLANES Plot Files (IPLOT = 3)

If IPLOT = 3, XYZ and Q files are written in PLOT3D;PLANES format. The XYZ file is written only
during the initialization step. The Q file is written at each time level requested by the user. The Q file will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
11,4 1S written into the header for each set of data in the Q file.

Remarks

1. In defining the pressure to be written into the CONTOUR plot file, the value stored internally in the
Proteus code is redefined as follows:

2
_ P rHr
pP=p Pr&c

This is necessary because input and output values of p are nondimensionalized by the reference pressure
p.= p,RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
Pn= pai2. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

2. The current version of PLOT3D does not work for multiple time levels, although future versions might.
Thus the IPLOT =2 and 3 options, while containing multiple time levels, cannot easily be used to
create plo*< showing the time development of the flow.

3. Note that the time 1,1, written into the Q file header with the IPLOT = 2 and 3 options is the time
at the point ¢ =» ={ = 0. If the input variable IDTAU = 5 or 6, = will vary in space and therefore
Tij k F TLLL

4. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound a = (y.RT,)'”2,
and that energy is nondimensionalized by p,a. In Proteus these variables are nondimensionalized by
% and pu2. That is why the reference Mach number M, appears in the definitions of the Q variables
written into the plot file. :

6. An error message is generated and execution is stopped if an illegal plot file option is requested.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: PLOT 239

Subroutine PRODCT

Called by Calls ' Purpose
KEINIT Compute production term for the k-¢ turbulence model.
TURBCH C
Input _
DXI, DETA, DZETA Computational grid spacing A¢, An, and A(.
ETAX, ETAY, ETAZ Metric coefficients 7., 1,, and #..
KE Turbulent kinetic energy k at time level n.
__MUT Turbulent viscosity g, at time level n.
* N1, N2, N3 Number of grid points Ny, Nz, and Ns, in the £, n,and { directions.
* RER Reference Reynolds number Re,.
RHO, U,V, W Density p, and velocities u, v, and w at time level n.
XIX, X1Y, X1Z Metric coefficients &,, &, and ..
ZETAX, ZETAY, ZETAZ Metric coefficients {,, {,, and (.
Output
VORT Production rate of turbulent kinetic energy.
Description

Subroutine PRODCT computes the turbulent kinetic energy production rate using

Hy

Pi= Re,

2
Pl—jpkpz

where

2
ou , Ou [Qv , v 3w Ow
+(6y+62+6x+6z+6x+6y>

OQu v ow

Py= ax Oy oz

To evaluate the spatial derivatives, the centered difference formulas presented in Section 5.0 of Volume 1
are used at interior points, and second-order one-sided difference formulas are used at boundary points.

Remarks
1. To save stofage space, this subroutine uses the Fortran variable VORT to store the turbulent kinetic

energy production rate. Care must be taken when this subroutine is used together with subroutine
VORTEX.

240 4.0 Proteus Subprograms: PRODCT Proteus 3-D Programmer’s Reference

Subroutine PRTHST

Called by Calls Purpose
MAIN Print convergence history.
Input
* ICHECK Convergence checking interval.
* IREST Flag for reading/writing restart file.
IT Last computed time step number 7.
ITBEG The time level n at the beginning of a run.

NC, NXM, NYM, NZM, NEN

NEQ
NHIST
NHMAX

NOUT

Output

None.

Description

Array indices associated with the continuity, x-rnomentum,
y-momentum, z-momentum, and energy equations.

Number of coupled equations being solved, N,,.
Unit number for convergence history file.

Maximum number of time levels allowed in the printout of the
convergence history file (not counting the first two, which are al-
ways printed.)

Unit number for standard output.

Subroutine PRTHST prints the convergence history as part of the standard output. The information

is obtained frc 1 the unformatted convergence history file written in subroutine RESID. The : arameters
printed are described in Section 4.1.6 of Volume 2, and the unformatted convergence history file is described
in Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at
an interval that limits the printout to NHMAX time levels. As described in Section 4.1.6 of Volume 2,
however, they are always printed at the first two time levels.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: PRTHST 241

Subroutine PRTOUT (ATITLE,LEVEL,AVAR)

Célled by Calls Purpose
OUTPUT Print output.
Input
ATITLE l ‘ A 20-character title for variable being printed.
AVAR A three-dimensional array containing the variable to be printed.
DTAU Time step Ar.
* IDTAU Flag for time step selection method.
*+ JPRTIA, IPRT2A, IPRT3A Indices for printout in the &, n, and { directions.
LEVEL Time level to be printed.
* LR,UR Reference length L, and velocity #.
~* XNOouT Unit number for standard output.
NPRTI1, NPRT2, NPRT3 Total number of indices for printout in the &, », and { directions.
TAU Current time value . '
QOutput
None.

Description

Subroutine PRTOUT performs the actual printing of the standard output file. It prints the varnable
AVAR, with the title ATITLE. The output is printed in blocks, with each block corresponding to a { lo-
cation. Within each ¢ block, the output is printed in columns running in the » direction. The rows run in
the & direction. If .4e results at every grid point are printed, there will be a total of N blocks, each >lock
with N, columns, and each column with N; rows. Within each ¢ block, the columns are grouped in super-
rows of up to 10 columns each.

The steps involved are as follows:

Set the total number of blocks, columns, and rows per super-row.

2. Redefine AVAR, the input array containing the variable to be printed, including only the elements re-
quested.

3. Determine the number of super-rows. If NCOL is not exactly divisible by 10, the last super-row in each
block will have less than 10 columns.

4. Begin loop over the number of ¢ blocks.
5. Print the title for the variable, and the { index. If the time step is constant in space, the dimensional
time ¢ and time step A¢ are printed with the title.

6. Begin loop over the number of super-rows.

7. Set NC1 and NC2 equal to the number of the first and last column in this super-row. (l.e, for
the first super-row NC1 and NC2 will be 1 and 10, for the second they will be 11 and 20, etc.
For the last super-row, NC2 will be NCOL.)
Print the heading for the super-row, labeling each column with the proper ¢ index.

9. Print the super-row itself, labeling each row with the proper index.

242 4.0 Proteus Subprograms: PRTOUT Proteus 3-D Programmer’s Reference

10. End of loop over the number of super-rows.

11. End of loop over the number of { blocks.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: PRTOUT 243

Subroutine RESID (IAVR)

Called by Calls Purpose
EXEC ISAMAX Compute residuals and write convergence history file.
SASUM _
SNRM2
Input
CHGAVG Maximum change in absolute value of the dependent vanables,
averaged over the last NITAVG time steps, AQu;.
CHGMAX Maximum change in absolute value of the dependent vanables
over previous time step (or NITAVG -1 time steps if
ICTEST = 2), AQupex- -
DTAU Time step Ax. :
DUMMY A three-dimensional scratch array.
* EPS Convergence level to be reached, «. ,
IAVR Flag specifying whether residual is computed without or with the

* JAV2E, IAV4E

* JCHECK

* ICTEST

* 1IDTAU

* [HSTAG
T
ITBEG
13

* LR, UR
LRMAX
NEQ

* NHIST

* NITAVG

NPT1, NPT2, NPT3

* NI, N2, N3
N1P, N2P

RESAVG

RESL2

244 4.0 Proteus Subprograms: RESID

artificial viscosity terms; 1 for without, 2 for with.

Flags for second- and fourth-order explicit artificial viscosity.
Convergence checking interval.

Flag for convergence criteria to be used.

Flag for time step selection method.

Flag for constant stagnation enthalpy option.

Current time step number 7.

The time level n at the beginning of a run.

Gnd index k in the { direction.

Reference length L, and velocity .

Grid indices i, j, and k, in the &, #, and { directions, corresponding
to the location of RESMAX.

Number of coupled equations being solved, N,,.
Unit number for convergence history file.
Number of time steps in moving average convergence test.

N., Nz, and N; for non-periodic boundary conditions, N+ 1,
N;+ 1, and N3 + 1 for spatially periodic boundary conditions in
¢, m,and £

Number of grid points N, Ay, and N, in the £, #, and { directions.

Parameters specifying the dimension sizes in the ¢ and # di-
rections.

The sum of the absolute values of the residual through the { index
13-1.

The sum of the squares of the residual through the { index
I3-1.

Proteus 3-D Programmer’s Reference

RESMAX _ The maximum absolute value of the residual, R, through the {

index I3 — 1.

S Source term subvector S for first ADI sweep. '

TAU Current time value 7.

Output

LRMAX Grid indices i, j, and k, in the ¢, #, and { directions, corresponciing
to the location of RESMAX.

RESAVG The sum of the absolute values of the residual through the { index
I3, or, if I3 = NPT3 - 1, the average absolute value of the resi-
dual, R,.,.

RESL2 The sum of the squares of the residual through the { index I3, or,
if I3=NPT3 — 1, the L, norm of the residual, R,,.

RESMAX The maximum absolute value of the residual, R, through the {
index.I3.

Description

Subroutine RESID computes various measures of the residual, and writes the convergence history file.

For problems without artificial viscosity, the steady-state form of the govemning partial differential
equations can be written as

A A A A A A
ok _oF oG OEy OFy Gy
o8 o & 0¢ on aL
The residual is defined as the number resulting from evaluating the right hand side of the above equation.

For first-order time differencing, this is simply the source term for the first ADI sweep, divided by the time
step Az.3 The residual at a specific grid point and time level is thus :

R} =Skl j &

where S is the source term for the first ADI sweep. Separate residuals are computed for each governing
equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the dif-
ference equations actually correspond to the following differential equations at steady state.*!

A A N a3 A
GE oF oG OEy OFy Gy
3 o o T oz T T

o[. 200 5*JQ 2U0) |
+=| @0y’ O 1 an? 90D | ap ZTY 2
@[A 4 7S 4, A]
3 4 0 (JQ) 4 0(JQ) 4 9°(JQ)
S 7N FURCIACA N G
7|0 et e T

30 See equation (7.5a) in Volume 1. For first-order time differencing, 8, = 63 =0.

31 These equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient
model is more complicated, but the same principle applies.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: RESID 245

For cases run with artificial viscosity, therefore, the residual should include the explicit artificial viscosity
terms. The implicit terms do not appear, since they difference AQ, and in the steady form of the equations

Aé = 0. Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep,
they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the L, norm of the residual,
the average absolute value of the residual, and the maximum absolute value of the residual. In addition,
the (£,1,0) indices corresponding to the location of the maximum residual are saved. The L, norm of the

residual is defined as
12
2
Ry, = (-_>- R,)

In computing the residuals, the summations, maximums, and averages are over all interior grid points, plus
points on spatially periodic boundaries. RESID is called from inside a loop in the ¢ direction. The calcu-
lation of the residual is thus not complete until the last time through this loop, when the { index
[3=NPT3-1.

For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the
artificial viscosity terms have been added to the equations. The residuals are thus computed both with and
without the artificial viscosity terms. This may provide some estimate of the overall error in the solution
introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity
terms included.

In addition to computing the residuals, subroutine RESID writes the convergence hiStory file. The
contents and format of this file are described in detail in Section 4.3 of Volume 2.

Remarks

1. The Cray BLAS routines SNRM2 and SASUM are used in computing the L, norm of the residual and
the average absolute value of the residual, respectively. The Cray search routine ISAMAX is used in
computing the maximurm absolute value of the residual.

2. The scratch array DUMMY, from the common block DUMMY, is used to store the values of the
residual at eacl. grid point.

246 4.0 Proteus Subprograms: RESID Proteus 3-D Programmer’s Reference

Subroutine REST (IOPT)

Called by Calls Purpose
INITC METS Read and/or write restart file.
MAIN

Input When Reading the Restart File

* GAMR

+ HSTAG

*+ IHSTAG
IOPT

+ 1TURB

* NRQIN

*+ NRXIN S
RGAS

Input When Writing the Restart File

E,KE
EL, KEL
I0PT
IT
* ITURB
* MACHR
* NRQOUT
* NRXOUT
* NI, N2, N3
* RER

RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL

XY, Z

QOutput When Reading the Restart File

DXI, DETA, DZETA
E, KE

EL, KEL

Proteus 3-D Programmer’s Reference

Reference ratio of specific heats, y..

Stagnation enthalpy A; used with constant stagnation enthalpy
option.

Flag for constant stagnation enthalpy option.

Flag specifying 1/O operation; 1 to read, 2 to wnte.’

Flag for turbulent flow option. -

Unit number for reading the restart flow field.

Unit number for reading the restart computational mesh. '
Dimensionless gas constant R.

Turbulent dissipation rate ¢ and kinetic energy k at time level
n+ 1. '

Turbulent dissipation rate ¢ and kinetic energy k at time level 7.
Flag specifying I/O operation; 1 to read, 2 to write.

Current time step number 7.

Flag for turbulent flow option.

Reference Mach number M..

Unit number for writing the restart flow field.

Unit number for writing the restart computational mesh.

Number of grid points Ni, N2, and N, in the £, , and { directions.
Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energy Er at time
level n+ 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Cartesian coordinates x, y, and z.

Computational grid spacing A%, An, and AL.

Turbulent dissipation rate ¢ and kinetic energy k at time level
ITBEG.

Turbulent dissipation rate ¢ and kinetic energy k at time level
ITBEG — 1.

. 4.0 Proteus Subprograms: REST 247

ITBEG The time level 7 at the beginning of the new run.

MACHR Reference Mach number M,. ,

N1, N2, N3 Number of grid points Ny, Nz, and Nj, in the ¢, , and ¢ directions.

RER Reference Reynolds number Re..

RHO, U, V, W, ET Static density p, velocities %, v, and w, and total energy Er at time
level ITBEG.

RHOL, UL, VL, WL, ETL Static density p, velocities %, v, and w, and total energy Er at time
level ITBEG — 1.

T, TL Static temperature T at time levels ITBEG and ITBEG — 1.

X,Y,Z Cartesian coordinates x, , and z.

Qutput When Writing the Restart File

None.

Description

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted
files - one containing the computational mesh and one containing the flow field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit
NRXIN. The grid increments A¢, An, and A{ are then set, and subroutine METS is called to compute the
metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time
levels that were computed during the previous run. If only one level is present in the file, however, the re-
sults at level 7 — 1 are set equal to those at level n. If the previous run used the two-equation turbulence
model, the turbulence variables are also read from the file. The beginning time level for the time marching
loop is set equal to the level stored in the restart file. The flow field variables in the restart file are the
conservation variables Q, nondimensionalized as in the plotting program PLOT3D.32 They therefore must
be converted into the primitive variables used in Proteus. The temperature is then computed from the
perfect gas equatic. of state, with ¢, and ¢, defined using the input reference conditions.

When writing the restart files, the file containing the computational mesh is written onto unit
NRXOUT. The prmitive flow varables are then redefined as conservation varables and
nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT. If the current run used
the two-equation turbulence model, the turbulence variables are also written into the file.

Remarks

1. If, in the input namelist RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN,
respectively, the output restart files will overwrite the input restart files.

2. Except for the turbulence variables and the variables at time level n— 1, the restart files have the same
format as the XYZ and Q files created using the IPLOT = 3 option. These restart files can thus also
be used as XYZ and Q files for the PLOT3D plotting program. The turbulence variables and the
variables at time level n — 1 will not be read by PLOT3D.

3. The temperature T is computed using the equation of state, which contains a specific heat coefficient
(either ¢, or c,, depending on whether the stagnation enthalpy is assumed constant or not.) In sub-
routine REST, a constant value of specific heat is used, consistent with the reference temperature T.
If the user specified constant specific heat (i.c., a value for y, was read in), this is not a problem.
However, if the temperature-dependent specific heat option is being used (i.e., a value for y, was not

32 See Sections 4.2.3 and 4.4 of Volume 2.

248 4.0 Proteus Subprograms: REST Proteus 3-D Programmer’s Reference

read in), the equation of state and the empirical equation for specific heat are coupled. For this reason,
in INITC (the routine that calls REST), T is recomputed by calling EQSTAT after the specific heats
have been computed in FTEMP. Ideally, this coupling would be handled by iteration between
FTEMP and EQSTAT. This is not currently done in Proteus, however.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: REST 249

Subroutine ROBTS (NP,A,B XP)

Called by Calls Purpose -
PAK : Pack points along a line using Roberts transformation.
Input
A Parameter « in Roberts transformation formula specifying lo-

cation of packing: 0.0 to pack near XP = 1 only, 1.0 to pack near
XP =0 only, and 0.5 to pack equally at XP =0 and 1.0.

B Parameter § in Roberts transformation formula specifying amount
of packing. A value approaching 1.0 from above gives denser
packing.

NP Number of grid points along the line.

QOutput
XP Coordinates of packed grid points along the line.
Description

Subroutine ROBTS packs points along a line of length one using a transformation due to Roberts
(1971). The basic transformation is given by

(B + 2008 — B + 20
Xp =
a + (1 + %)

where
B+l
ﬁr'_ ﬁ—l
_ xUP—az
ﬁx"r l—a

and x; and xy are the packed and unpacked (ie., evenly spaced) coordinates along the line. The parameter
« determines the packing location. For a = 0, the points will be packed only near xp =1, and for a = 12
the points will be packed equally near xp = 0 and xp = 1. The packing parameter B determines the amount
of packing. It is 2 number greater than 1, but generally 1.1 or below. The closer § is to 1, the tighter the
packing will be.

It may seem logical to set « = 1 to pack points near xp = 0. With the basic transformation, however,
this doesn’t work. In Proteus we get around this problem by replacing « in the above transformation with
., where ¢, =a if e =0o0r 1;2, and a,=0if a=1. fa=0or 1,2, no further action is necessary. If
x = 1, however, we must invert the resulting x, values and re-order the indices. l.e., fori=1to NP, we set

(xppi=1—(xp);

After this operation, the array xp; will run from 1 to 0, packed near 1. To re-order the indices, for i=1to
NP we set

(xp)np—i+1=(XpD)i

After this operation, x, will run from 0 to 1, packed near 0.

250 4.0 Proteus Subprograms: ROBTS . Proteus 3-D Programmer’s Reference

Finally, to ensure round-off error doesn't affect the endpoint values, we set (xp) = 0 and (xp)xp = 1.

Remarks
1. The namelist input variable SQ(IDIR,1), which is used to specify the packihg location in direction

IDIR, is actually equal to 1 — «. Therefore, setting SQ(IDIR,1) = 0 results in packing near the £, 7,
or { = 0 boundary, and SQ(IDIR, 1) = 1 results in packing near the £, », or { = 1 boundary.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: ROBTS 251

Function SASUM (N,V,INC)

Called by Calls Purpose
RESID Compute the sum of the absolute values of the elements of a vector.
Input
N Number of elements in the vector to be summed.
v Vector to be summed.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
Qutput
SASUM Sum of the absolute values of the elements of V.
Description

Function SASUM computes the sum of the absolute values of the elements of a vector. For a one-
dimensional vector, the use of SASUM is straightforward. For example,

np
sasum(np,v,1) = Z V;
i=1
A starting location can be specified, as in
np
sasum(np-4,v(5),1) = Z V;
i=5

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2 by NDIM3, then

ndiml ndim2 ndim3
sasum(ndiml¥ndim2%ndim3,a,1) = Z Z Z A
=1 j=1 k=1
One dimension at a time can also be summed. For example,
ndim!)
sasum(ndiml,a(1,5,2),1) = Z Aiss
i=1
Similarly, by specifying a skip increrent,
ndim2

sasum(ndim2,a(5,1,2),ndiml) = Z As ja
j=1

Remarks

1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).

252 4.0 Proteus Subprograms: SASUM Proteus 3-D Programmer’s Reference

Subroutine SGEFA (A,LDA,N,IPVT,INFO)

Called by Calls Purpose
BCELIM ISAMAX Factor a matrix using Gaussian elimination.
BVUP)
Input
A An array containing the matrix A to be factored, dimensioned as
- A(LDAN).
LDA The leading dimension of the array A.
N The order of the matrix A.
Output
A An upper triangular matrix and the multipliers which were used

to obtain it. The factorization can be wntten as A = LU, where
L is a product of permutation and unit lower tnangular matrices,
and U is upper triangular.

IPVT A vector of length N containing pivot indices.
INFO An error flag: 0 for normal operation, k& if Uy = 0.
Description

Subroutine SGEFA is used in combination with subroutine SGESL to solve the matrix equation
Ax = B. If the Fortran arrays A and B represent A and B, where A is a square N by N matrix and Bis a
matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then
the Fortran sequence

call sgefa (a,lda,n,ipvt,info)
do 10 j = 1,ncol

call sgesl (a,lda,n,ipvt,b(1,3),0)
10 continue

computes A-!B, storing the result in B.
Remarks

1. SGEFA is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979).

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: SGEFA 253

Subroutine SGESL (A,LDA,N,IPVT,B,JOB)

Called by Calls Purpose
BCELIM Solve the matrix equation Ax = B or A™x = B using the factors com-
BVUP puted by SGEFA.
Input
A The two-dimensional output array A from SGEFA containing the
factorization of matrix A.
B The night-hand side vector B.
IPVT The output array IPVT of pivot indices from SGEFA.
JOB Flag specifying type of matrix equation: 0 to solve Ax = B; non-
zero to solve ATx = B.
LDA The leading dimension of the array A.
N The order of the matrix A.
Output
B The solution vector x.
Description

Subroutine SGESL is used in combination with subroutine SGEFA to solve the matrix equation
Ax = B. See the description of subroutine SGEFA for details.

Remarks

1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979).

254 4.0 Proteus Subprograms: SGESL

Proteus 3-D Programmer’s Reference

Function SNRM2 (N,V,INC)

Called by Calls Purpose
RESID Compute the L; norm of a vector.
Input
N The number of elements in the vector V.
\'% ' The vector whose norm is to be computed.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
Output
SNRM2 The L, norm of the vector V.
Description

Function SNRM?2 computes the L, norm of a vector. For a one-dimensional vector, the use of SNRM2
is straightforward. For example, ’

p 172

snrmZ(np,v,rl) = E V,-2

i=1

A starting location can be specified, as in

1/2
np !

snrm2{(np-4,v(5),1) = E V,-2
i=5

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A 1s an array dimen-
sioned NDIM1 by NDIM2 by NDIMS3, then

12
ndimt ndim2 ndim3

snrm2(ndiml¥*ndim2%ndim3,a,1) = E é EA‘?’"”‘

i=1 j=1 k=1

One dimension at a time can also be summed. For example,

1/2
ndim1

snrm2(ndiml ,a(1,5,2),1) = E Aiz,sg

i=1

Similarly, by specifying a skip increment,

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: SNRM2 255

12
ndim?2

snrm2(ndim2,a(5,1,2),ndiml) = ZAQM
j=1

Remarks

1. SNRM2isa Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).

256 4.0 Proteus Subprograms: SNRM2 Proteus 3-D Programmer’s Reference

Subroutine SWDOWN

Called by Calls Purpose

EXECT Compute coefficients and source terms, and solve the k-¢ equations for
the downward LU sweep.

Input

* CMUR

* CONE

* CTHREE

* CTWOR
DTAU
DUMMY

Dw

DXI, DETA, DZETA
E

ETAX, ETAY, ETAZ
JI

KE

MU

MUT

NPTI1, NI'72, NPT3

- * RER
RHO, U,V, W
* SIGE, SIGK
* TFACT
* THKE
VORT
XIX, X1Y, X1Z
YPLUSD

ZETAX, ZETAY, ZETAZ
Output

DwW

Proteus 3-D Programmer’s Reference

Constant C,_ in formula for C,.

Constant C; in the production term of the ¢ equation.
Constant C; in formula for C,.

Constant C,, in formula for C,.

Time step Ar.

Distance to the nearest solid wall.

Dependent variable subvector AW* from upward LU sweep.
Computational grid spacing A¢, An, and AL.

Turbulent dissipation rate ¢ at time level n.

Metric coefficients #,, n,, and »,.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Turbulent kinetic energy k at time level n.

Laminar viscosity y, at tﬁne level n.

Turbulent viscosity u, at time level n.

N, N;, and N; for non-periodic boundary conditios :;, N, + 1,
N+ 1, and N; + 1 for spatially periodic boundary conditions in
&, n,and {.

Reference Reynolds number Re.,.
Static density p, and velocities u, v, and w, at time level n.

Constants o, and o, used in the diffusion term of the ¢ equation
and k equations, respectively.

Factor used in computing the k-¢ time step.

Parameters 8, and 6, determining type of time differencing for the
k-¢ equations. \

Production rate of turbulent kinetic energy.
Metric coefficients ¢&,, §,, and ¢..
Nondimensional distance y* from the nearest solid wall.

Metric coefficients {,, {,, and (..

Dependent variable subvector AW~ from downward LU sweep.

4.0 Proteus Subprograms: SWDOWN 257

LE R

Description

Subroutine SWDOWN performs the downward LU sweep to solve for the final values of the unknown
vector AW in the k-¢ equations. The equation used for the downward sweep is

n
8,A _ _ _ A A
{1 +7 jr N (6547 + 51CT+ 6 E - 6B - 6,0 — (6P — (M + N)]} AW" = AW
The Jacobian coefficient matrices B, D, and F are made up of terms of the form f0g/d¢, fOg/on, and
fog/8¢, respectively. The terms (6:B)*, (6,D), and (6.F)* are the forward difference parts of the central
differences 8,B, 6,D, and &F, respectively. Thus

5§B=é§(fg—§)= a1+ NG 1~ i+)& —8&-1)

2a8)?
(6,B)" = fip1 &1~ 8D
‘ A8

Analogous expressions can be derived for D and F. Expanding the difference terms in the downward sweep
equation, we thus get

0.7 | Aip1— 40 + G~ G + Eiiv—Ex _ [(fz:+1+fi)(gi+l_gi)]8
1+0, A& An AL 2(Af)2

I+

[+fp<gg+21-—&->]’) _ m+1+m(gk;1 —&)) _aran | b adm o aw
2(An) 2(A%) '

where the superscripts B, D, and F denote the terms belonging to the Jacobian coefficient matrices B, D,
and F, respectively.

This equation ., 'ust be solved for the final unknown vector AW" at (i, j, k). It can be seen that tt - night
hand side of this equation is at the intermediate time level *, and that the coefficients on the left hand side
are at time level n, and thus known. In addition, the conditions in the planes (N1, j, k), (i, N2, k), and
(i,j, Ns) at time level n+ 1 are known, because they are the upper boundaries of the computational domain,
and the boundary conditions are being treated explicitly.

The marching procedure and the addressing scheme used in this subroutine is analogous to those dis-
cussed in the description of subroutine SWUP.

258 4.0 Proteus Subprograms: SWDOWN . Proteus 3-D Programmer’s Reference

Subroutine SWUP

Called by Calls Purpose
EXECT Compute coefficients and source terms, and solve the k-¢ equations for
the upward LU sweep.
Input
* CONE Constant C, in the production term of the ¢ equation.
* CTWOR Constant G, in formula for C;.
DTAU Time step Ar.
DUMMY Distance to the nearest solid wall.
DW Dependent variable subvector AW=-! from previous time step.

DXI, DETA, DZETA |

E,EL

ETAX, ETAY, ETAZ
JI

KE, KEL

MU

MUT, MUTL

NPT, NPT2, NPT3

RER

RHO, U, ., W
RHOL

SIGE, SIGK
TFACT
THKE

VORT
XIX, XIY, XI1Z
YPLUSD

ZETAX, ZETAY, ZETAZ

QOutput

DW

Description 7
Subroutine SWUP performs the upward LU sweep to solve for the intermediate values of the unknown
vector AW" in the k-¢ equations. The equation used for the upward sweep is

Proteus 3-D Programmer’s Reference

Computational grid spacing A&, Ay, and Af.

* Turbulent dissipation rate ¢ at time levels 7 and n— 1.

Metric coefficients #,, #,, and #..

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Turbulent kinetic energy k at time levels nand n— 1.

Laminar viscosity g, at tune level n.

Turbulent viscosity u, at time levels n and 7n— 1.

Ni, N, and N; for non-periodic boundary conditions, N, + 1,
N2+ 1, and N; + 1 for spatially periodic boundary conditions in
¢ n,and £

Reference Reynolds number Re,.

Static density p, and velocities &, v, and w, at time level 1.

Static density p at time level n — 1.)
Constants ¢, and o, used in the diffusion term of the ¢ equation.
Factor used in computing the k-¢ time step.

Parameters 8, and 6, determining type of time differencing for the
k-t equations.

Production rate of turbulent kinetic energy.
Metric coefficients &,, &, and &,.
Nondimensional distance y* from the nearest solid wall.

Metric coefficients {,, {,, and ..

Dependent variable subvector AW* from upward LU sweep.

4.0 Proteus Subprograms: SWUP 259

BIAT - _ _ _ _ _ n Ax
{I—&- PN [654% +6,C" + 6 E" = (6;B)” ~ (6,D)” — (6;P)]} AW = RHS(9.34)

where RHS(9.34) represents the right hand side of equation (9.34) in Volume 1. The Jacobian coefficient
matrices B, D, and F are made up of terms of the form f9g/d¢, f0g/0n, and fOg/d(, respectively. The terms
(8.B), (6,D)-, and (6,F)- are the backward difference parts of the central differences 6.8, 6,D, and 6.F, re-
spectively. Thus

_ g __(ﬂ+1+fi)(gi+1—gi)—(fz'*“fi-l)(gi‘gi—l)

i+fic)&—&—1)

6:B) = —
N (A%

Analogous expressions can be derived for D and F. Expanding the difference terms in the upward sweep
equation, we thus get

6,47 liAi-’.—Ai-‘-—l + Cf- C;F—I + Ef - Ep_, + [(fi‘*‘f;—l)(gi—gi-x)]B

1+86, Aé An AL 2(A§)2

I+

N [+ - g —g -1 n [(ﬂc+ﬁc—1)(gk_gk-‘)]F:| AW" = RHS(9.34)

2(An)* 2(a0)°

where the superscripts B, D, and F denote the terms belonging to the Jacobian coefficient matrices B, D,
and F, respectively.

This equation must be solved for the intermediate unknown vector AW at (i, j, k). It can be seen that
the right hand side of this equation, and the coefficients on the left hand side, are at time level r, and thus
known. In addition, the conditions in the planes (1,, k), (i, 1, k), and (i, /, 1) at time level * are known,
because they are the lower boundaries of the computational domain, and the boundary conditions are heing
treated explicitly. Tnerefore, it is possible to solve this equation by marching point by point from powt (2,
2, 2) to point (N, — 1, N;— 1, N5 —1). The conditions in the planes (M, j, k), (i, N2, k), and (i, j, N;) are
known because they are the upper boundaries of the computational domain.

The marching order is unimportant, as long as the march is from the point (2, 2, 2) to point (N, — 1,
N, — 1, N5 — 1). For example, this could be accomplished using the following pseudo-code:

do 10 il = 2,nl-1
do 10 i2 = 2,n2-1 o
do 10 i3 = 3,n3-1

dw(il,i2,i3) = function of q(il,i2,i3), dw(il-1,i2,i3),
dw(il,i2-1,i3), and dw(il,i2,13-1).
10 continue

where Q represents the flow field properties and DW is the unknown vector. The Fortran indices 11, 12,
and I3 correspond to the grid indices i, j, and %, respectively.

The coding above is correct, but it does not take full advantage of the Cray’s vectorization capability.
Because it contains two nested do loops, only the innermost loop is vectorized. However, if the marching
is done in the direction normal to the diagonal planes of constant i + j + k, then the code can be constructed
with only one nested do loop, taking better advantage of the Cray’s vectorization capabihty. le.,

1,nplane
1,npoint

‘do 10 iplane
do 10 ipoint

260 4.0 Proteus Subprograms: SWUP Proteus 3-D Programmer’s Reference

dw(ipoint,iplane) = function of q(ipoint,iplane) and dw(ipoint,iplane)
10 continue ’ —

where NPLANE is the number of diagonal planes in the 3-D computational domain, and NPOINT is the
number of interior grid points contained within a diagonal plane. Note that NPOINT varies from plane
to plane. It tumns out that the points (I1—1, 12, 13), (I1, 12— 1, I3), and (I1, 12, I3 — 1) are all located in
the plane IPLANE ~ |, and they are known. As the result, the inner loop in the above code can be
vectorized over every point in a diagonal plane.

An addressing scheme is needed to translate the indices (IPOINT, IPLANE) to (11, I2, I3) so that flow
properties at (I1,12,13) can be recalled in the marching process. There are many ways that this can be ac-
complished, and in subroutine SWUP a scheme has been devised to compute the I1, 12, and I3 indices from
the do loop indices IPOINT and IPLANE. This scheme does not require any special machine-specific
routines, and will work for any FORTRAN 77 compiler. Basically, this scheme works as follows:

1. The II index of every point in a diagonal plane is stored in the array ILOC(IPOINT).

2. The diagonal line index of every point in a diagonal plane is computed and stored in the array
LINE(IPOINT).

3. Inside the nested inner loop, the I1, 12, and I3 indices are then computed from the ILOC(IPOINT) and
the LINE(IPOINT) arrays as follows:

il = iloc(ipoint)
i2z = -il + line(ipoint) + 3
i3 = iplane - 11 - i2' + 5

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: SWUP 261

Subroutine TBC

Called by' Calls Purpose
MAIN Set time-dependent boundary condition values.
Input

*

*

GTBCIl, GTBC2, GTBC3

IT

ITBEG

ITEND
JBC1,JBC2, JBC3

JTBCI1, JTBC2, JTBC3
NBC

NEQ
NOUT
NTBC

NTBCA

N1, N2, N3

Qutput

FBC1, FBC2, FBC3

GBCl1, GBC2, GBC3

Description

Time-dependent surface mean flow boundary condition values for
the &, #, and { directions.

Current time step oumber 7.
The time level n at the beginning of a run.
Final time step number.

Surface mean flow boundary condition types for the &, 5, and {
directions.

Flags for type of time dependency for mean flow boundary con-
ditions in the &, n, and { directions.

Dimensioning para:néfer specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, Ne.
Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified. :

Number of grid points Ny, N, and Ns, in the &, 17, and { directions.

Point-by-point mean flow boundary condition values for the ¢,
n, and ¢ directions.

Surface mean flow boundary condition values for the &, #, and {
directions.

Subroutine TBC sets time-dependent mean flow boundary condition values. Two types of time de-

pendency are allowed - general and periodic.

General Time-Dependent Boundary Conditions

Here n is the curre
boundary condition values vs. time

262 4.0 Proteus Subprograms: TBC

General time-depende
boundary condition values vs. time leve

gn+1=g;'+

nt boundary conditions are set using linear interpolation on an input table of
1. Thus, the boundary condition value is

: i
ntl—nm ;41

T e 8
n o —n

nt known time level in the time marching scheme, g and 7, represent the input table of
level, and i is the index in the table for which

Proteus 3-D Programmer’s Reference

n;Sn+_l<n;+1

If n+ 1< n}, then g"*! is set equal to the first value in the table, g!. Similarly, if n + 1> n¥, where N is the
index of the last entry in the table, then g"+! is set equal to the last value in the table, g¥.

In Fortran, g=GBCl, GBC2, or GBC3, g =GTBCIl, GTBC2, or GTBC3, n.= NTBCA, and
N =NTBC.

Time-Periodic Boundary Conditions

Time-periodic boundary conditions (not to be confused with spatially periodic boundary conditions) are
of the form

g =g +glsinfg(n+)+ 4]
where g! through g? are given by the first four elements of GTBCI1, GTBC2, or GTBC3.

Remarks

1. An error message is generated and execution is stopped if an invalid type of unsteadiness is requested
for the boundary values.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: TBC 263

Subroutine TIMSTP

Called by Calls Purpose
MAIN ISAMAX Set computational time step.
ISAMIN
Input
* CFL CFL number in IDTAU =1, 2, 3, 6, 8, and 9 options.

*

264 4.0 Proteus Subprograms: TIMSTP

CFLMIN, CFLMAX

CHGMAX
CHG], CHG2

CP,CV

DT

DTAU
DTF1, DTF2

DTMIN, DTMAX

DXI, DETA, DZETA
EP2

ETAX, ETAY, ETAZ, ETAT
IDTAU

IT

ITSEQ

MU

NDTCYC

NEQ

NOUT

NTOTP

N1, N2, N3
RER

RGAS

RHO,U,V, W

T

XIX, XY, XIZ, XIT

Minimum and maximum CFL numbers allowed in IDTAU =2 -
and 6 options.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG —1 time steps if
ICTEST = 2), AQ e

Minimum and maximum change, in absolute value, that is al-
lowed in any dependent variable before increasing or decreasing
Az in IDTAU = 2, 4, and 6 options. ’

Specific heats ¢, and ¢, at time level n.
Time step Az in IDTAU =3 and 4 options.
Old computational time step Az.

Factors multiplying or dividing Az if solution changes too slowly
or quickly in IDTAU =2, 4, and 6 options.

Minimum and maximum Az allowed in IDTAU = 4 option, or
used in IDTAU = 7 option.

Computational grid spacing A¢, Ay, and AL.

Maximum allowable numerical value.

Metric coefficients »,, 1,, 7., and 7.

Flag for time step selection method.

Current time step number 7.

Current time step sequence number.

Effective coefficient of viscosity u at time level n.
Number of time steps per cycle for IDTAU = 7 option.
Number of coupled equations being solved, N,,.

Unit number for standard output.

Dimensioning parameter specifying the storage required for a full
three-dimensional array (i.e., N1P x N2P x N3P).

Number of grid points Ny, N;, and N, in the &, », and { directions.
Reference Reynolds number Re,.

Gas constant R. ’

Static density p, and velocities &, v, and w, at time level n.

Static temperature T at time level 7.

Metric coefficients ¢&,, &,, &;, and &..

Proteus 3-D Programmer’s Reference

ZETAX, ZETAY, ZETAZ, Metric coefficients {,, {,, {;, and {..

ZETAT

Output
CFL ~ New CFL number in IDTAU = 2 and 6 options.
DTAU New computational time step Ar.

Description

Subroutine TIMSTP computes the time step size Ar. The following sections descnibe the various
methods currently available for setting and/or modifying Az.

IDTAU = 7

This option sets a global (i.e., constant in space) time step At equal to the minimum of the values at
each grid point computed from the input parameter CFL(ITSEQ). ILe,

At = (CFL) min(A
7=){r}’mk(rgz)

where At 1s the inviscid CFL limit, giveh in generalized coordinates as (Shang, 1984).

2
p L4 W x| Mx Sx
A= ’A: +|Anl+‘AC +"[<A5+An+Ac)
‘ -1
2 212
& m & & oo 4
H(Frricrar) H(Frr)
Here U=¢+Eu+éyv+Ew, V=n+npu+ny+nw, W={+Cu+{y+{w are the

contravariant velocities without metric normalization, and a = /yRT is the speed of sound.
IDTAU = 2

For the first time step, this option is identical to the IDTAU =1 option. After the first time step,
however, CFL is modified to keep AQ,..., the maximum change in absolute value of the dependent van-

ables, within user-specified limits. The rules used to increase or decrease CFL may be summarized as fol-
lows:

AQ,..<CHGl = CFL =min[(DTFI1)CFL), CFLMAX]
AQax>CHG2 = CFL =max[CFL/DTF2, CFLMIN]
AQ,,,>0.15 = CFL=CFL/2

The time step At is then set using the same formulas as in the IDTAU = 1 option.
IDTAU = 3 —

This option sets a gk;bal (ie., constant in space) time step At equal to the inpu‘; parameter DT(ITSEQ).
IDTAU = 4

For the first time step, this option is identical to the IDTAU = 3 option. After the first time step,

however, At is modified to keep AQpnax, the maximum change in absolute value of the dependent variables,
within user-specified limits. The rules used to increase or decrease At may be summarized as follows:

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: TIMSTP 265

AQ,<CHGl = Ar=min[(DTF1)Az, DTMAX]
AQ,..>CHG2 = Ar=max[A7/(DTF2), DTMIN]
AQ, >0.15 = Ar=At[2

IDTAU = 35

This option sets a local (i.¢., varying in space) time step Az computed at each grid point from the input-
parameter CFL(ITSEQ). Ie., at each grid point,

Ar = (CFL)Atq
where At is given above in the description of the IDTAU = 1 option.

IDTAU = 6

For the first time step, this option is identical to the IDTAU =5 option. After the first time step,
however, CFL is modified to keep AQpa, the maximum change in absolute value of the dependent varl-
ables, within user-specified limits. The rules used to increase or decrease CFL are the same as in the
IDTAU = 2 option.

IDTAU = 7

This option sets a global (i.e., constant in space) time step At with logarithmic cycling. The formula
used is

NI(Nye—1)
Atpmax) i’

where N =mod(n — 1, N,,;) and 7 is the current known time level. The time step At is thus cycled repeat-
edly between AT, and Atn., every No. time steps. The values of ATpin, ATna, and N, are given by the
input parameters DTMIN, DTMAX, and NDTCYC.

IDTAU = &

This option sets a local (i.¢., varying in space) time step Az computed at each grid point using the pro-
cedure of Knight and Choi (1989). The inviscid CFL limit At is first computed separately for each
computational coordinate direction. Thus, at each grid point,

_ ' - _ _1
U JE+E+ &
Ordy=| | aF | +o—az
~ s
Vv ’1J:+'1y+’12
(ATCﬂ)U= A_P'] +a A?]
B 2 .2, 2 9!
W Cx+€y+§z

Here U= &, + Eu+ v+ Ew, V=n+nu+nyv w, and W = {, + {u+ {,v + {.w are the contravariant
velocities without metric normalization, and a=/yRT is the speed of sound.

A preliminary value of Az is then defined at each grid point using the input parameter CFL(ITSEQ).

266 4.0 Proteus Subprograms: TIMSTP Proteus 3-D Programmer’s Reference

Ary = (CFL) min[(A.p);, (Azeg),, (BTen)]
The final value of Az is then defined at each grid point as
At = max[Ary, (Areg),]

Knight and Choi found that using this definition for Az, rather than simply setting At = Az, resulted in
faster convergence for problems with refined grid regions. This formulation assumes that flow is generally
in the ¢ direction.
IDTAU = 9

This option is similar to the IDTAU = 8 option. The only difference is a viscous correction added to

the definitions of the inviscid CFL limits, similar to that used by Cooper (1987). The inviscid CFL limits
are now defined at each grid point as:

— -1
N +a\/:§+¢§+<§§,+-2 wGrg+g
T = A¢) A Re, P (Af)z
B [2. 2. 2 2, 2. 21!
14 Nxtny +n; 2 u Mxtuy o
Brgy=| |3~ | +a n o >
i n € (An)
-1
2. .2, 2 2, .2, 42
ey | |25 | +a ol 2ok ot
24 AL AL Re, P (AC)z

The rest of the procedure for computing A~ is the same as in the IDTAU = 8 option.
Remarks

I. In AQn., 1sed in the IDTAU=2, 4, and 6 options, the change in Er has been ¢ 'vided by
R/(y-— 1)+ 1/2. This is equivalent to dividing the dimensional value £ by
_PRT, | Pt
LI r— 1 2
This makes the change in total energy the same order of magnitude as the other conservation variables.

2. An error message is generated and execution is stopped if an illegal time step selection option is re-
quested.

3. A warning message is printed with the IDTAU = 2, 4, and 6 options if At or the CFL number is cut
in half because AQ,,., > 0.15.

4. The Cray search routine ISAMAX is used in computing the maximum value of AQpn., for all the
equations.

Proteus 3-D Programmer’s Reference . 4.0 Proteus Subprograms: TIMSTP 267

Subroutine TREMAIN (CPUREM)

Called by Calls

Purpose

MAIN

Get CPU time remaining for the job.

Input

None.

OutEV ut
CPUREM

Description

Amount of CPU time remaining, in seconds.

Subroutine TREMAIN computes the amount of CPU time remaining for the current job, in seconds.

Remarks

1. TREMAIN is a Cray Fortran library routine (Cray Research, Inc., 1989a).

268 4.0 Proteus Subprograms: TREMAIN

Proteus 3-D Programmer’s Reference

Subroutine TURBBL

Called by Calls Purpose
INITC BLIN Manage computation of turbulence parameters using Baldwin-Lomax
KEINIT BLOUT algebraic model.
MAIN
Input
CP Specific heat c,.
EPI Minimum allowable numerical value.
* KBCI, KBC2, KBC3 Boundary types for the £, y, and { directions.

LWSET Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters. '

MU, LA, KT Laminar coefficient of viscosity u,, laminar second coefficient of
viscosity 1,, and laminar coefficient of thermal conductivity ;.

* NI, N2, N3 Number of grid points N), N3, and N, in the &, 5, and ¢ directions.

PRR Reference Prandtl number Pr..

* PRT Turbulent Prandt] number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

UV, w Velocities u, v, and w.

Output

LWALLI, “"WALL2, LWALL3

MU, LA, KT

Description

Flags specifying wall locations for £, 5, and ¢ bounde <es, if not
set in input.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k.

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of
Baldwin and Lomax (1978). It is called from MAIN at the end of each step from time level nto n + 1, after
the governing flow equations have been solved. The Fortran variables RHO, U, etc., are thus at the 7+ 1
level. The effective viscosity coefficient to be computed will therefore also be at the n+ 1 level. This, of
course, becomes the known 7 level for the next time step.

The steps involved in computing the effective coefficients are as follows:

Initialize the array for storing the turbulent viscosity u, to zero.

2. Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are
user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified

using the KBC parameters.

3. Call BLOUT to compute (i.)our at each interior grid point.
Call BLIN to compute (i)uw at each interior grid point. BLIN then sets ;= min[(t)mers ()outer]-

Proteus 3-D Programmer’s Reference

" 4.0 Proteus Subprograms: TURBBL 269

Define the necessary effective coefficients as follows:

u=p+ py
’1=}'l+)'t
k=kl+kl

where 1, = — 2u,/3, and k, is computed using Reynolds analogy as

[.i,Cp
T Pr,

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using

equation (9.17) of Volume 1.

Remarks

1. In the Fortran equation for the effective thermal conductivity, the factor PRR = Pr, is necessary for

proper nondimensionalization of k..

2770 4.0 Proteus Subprograms: TURBBL

Proteus 3-D Programmer’s Reference

Subroutine TURBCH

Called by Calls Purpose
MAIN EXECT Manage computation of turbulence parameters using the Chien k-¢
PRODCT model.
YPLUSN
Input
CPp Specific heat c,.
EP1 Minimum allowable numerical value.
* KBCI, KBC2, KBC3 Boundary types for the &, », and { directions.

LWSET Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found autormnatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters. ' -

MU, LA, KT Laminar coefficient of viscosity u,, laminar second coefficient of
viscosity 4, and laminar coefficient of thermal conductivity k..

* NTKE ~ Number of k-¢ iterations per mean flow iteration.
* NI, N2, N3 Number of grid points Ny, N, and N3, in the €, y, and { directions.

PRR Reference Prandtl number Pr..

* PRT Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

UV, W Velocities u, v, and w at time level n.

Output

LWALLI], LWALL2, LWALL23

MU, LA, KT

Description

Flags specifying wall locations for ¢, #, and { boundaries, if not
set in input.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity 4.

Subroutine TURBCH manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the low Reynolds number k-¢ two-equation
turbulence model of Chien (1982). The k-¢ equations are uncoupled from the mean flow equations, lagged
in time and solved separately. This allows maximum modularity in turbulence modeling.

For each step from time level n to n+ 1, the mean flow equations are solved first, using a time step
Az. The k-¢ equations are then solved, using NTKE time steps with a time step size of TFACT(A7).

The steps involved in computing the effective coefficients are as follows:

1. Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are
user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified

using the KBC parameters.

2. Call YPLUSN to compute the distance to the nearest solid wall and y*. To save storage, the distance
is returned in the Fortran variable DUMMY.

Proteus 3-D Programmer’s Reference

4.0 Proteus Subprograms: TURBCH 271

Call PRODCT to compute the production rate of turbulent kinetic energy. To save storage space, the
production rate is returned in the Fortran variable VORT.

Call EXECT to advance the k-¢ equations in time using a time step of TFACT(A1).
Repeat steps 2-4 NTKE times.
Define the necessary effective coefficients as follows:

m=pyt oy
).=).[+/lr
k=k1+k(

where 1, = — 2u,/3, and k, is computed using Reynold’s analogy as

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using
equation (9.17) of Volume 1.

Remarks

1. The scratch aray DUMMY, from the common block DUMMY], is used to store the values of the
distance to the nearest wall. The array is filled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURBL, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.

3. For equal mean flow and k-¢ time steps, use TFACT = 1/NTKE.

272 4.0 Proteus Subprograms: TURBCH Proteus 3-D Programmer’s Reference

Subroutine UPDATE

Called by Calls Purpose e
EXEC Update flow variables after each ADI sweep.
Input

IBASE, ISTEP

* IHSTAG
v
JI
NPTS
NR, NRU, NRV, NRW, NET

RHO, U, V, W, ET

S

Output
RHOL, UL, VL, WL, ETL

Description

Base index and multiplication factor used in computing one-
dimensional index for three-dimensional array.

Flag for constant stagnation enthalpy option.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
PW, and ET.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Computed solution subvector, AQ.

Static density p, velocities u, v, and w, and total energy Er at end
of current ADI sweep.

Subroutine UPDATE computes the primitive flow vanables from the dependent variables Aé after each
ADI sweep. For the first sweep the formulas are

Proteus 3-D Programmer’s Reference

* n A x
p =p +JAQ

* 1

(o"u" + JAQ;)

U =—
P
v =L (™ 4+ JA0Y)
; ,
* 1 n n AL
w' =L (o™ + JA0;)
P

Ep=E}L+ JAQ;

4.0 Proteus Subprograms: UPDATE 273

[

where AQ, through Aés are the dependent variables in delta form for the five governing equations.® For the
second ADI sweep, the superscript * should be changed to ** on p, &, v, w, Er, and AQ. For the third ADI
sweep, the superscript * should be changed to n+ 1 on p, 4, v, w, and Er, and to non AQ.

Remarks

1. This subroutine uses one-dimensional addressing of three-dimensional arrays, as described in Section
2.3.

33 These formulas are written for non-constant stagnation enthalpy. If constant stagnation enthalpy is assumed, there
will be only four equations.

274 4.0 Proteus Subprograms: UPDATE Proteus 3-D Programmer’s Reference

Subroutine UPDTKE

Called by Calls Purpose
EXECT Update k and ¢ after each ADI sweep.
Input
Dw Dependent variable subvector AW from downward LU sweep.
DXI, DETA, DZETA Compufational grid spacing A, An, and A{.
E 7 Turbulent dissipation rate ¢ at time level .
* FBCTI, FBCT2, FBCT3 Point-by-point k-¢ boundary condition values for the &, #, and {
directions.
* [BCT], IBCT2, IBCT3 Point-by-point k-¢ boundary condition types for the &, #, and {
directions.
JI Inverse Jacobian of the nonorthogonal grid transformation, J-1.
KBCPER Flags for spatially periodic boundary conditions in the £, #, and {
directions; 0 for non-periodic, 1 for periodic.
KE Turbulent kinetic energy k at time level 7.
NPT, NPT2, NPT3 N, Ny, and N; for non-periodic boundary conditions, N, + 1,
Ny + 1, and N3 + 1 for spatially periodic boundary conditions in
¢, n,and £.
* NI, N2, N3 Number of grid points Ny, N3, and N, in the £, #, and { directions.
RHO Static density p at time level n.
Output
E Turbulent dissipation rate ¢ at time level n+ 1. and ».
KE Turbulent kinetic energy k at time level n+ 1.
Description

Subroutine UPDTKE computes the primitive flow variables k and ¢ from the dependent variables
AW after a complete time step. The formulas are

kﬂ+1= l

A
n+]{(pn+1kn+JAW;l)

Al
gn+1= n1+1 (pn+18n+JAW;)
p .

where AW, and AWZ are the dependent variables in delta form for the k-¢ equations.

Subroutine UPDTKE also explicitly computes the k and ¢ values on the computational boundaries
using the specified boundary conditions, as described below.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: UPDTKE 275

No Change From Initial Conditions, Ak =0 andjor Ae =0

Values for k and ¢ are simply not updated. Therefore, their values on the boundaries remain the same
as their initial or restart values.

Specified values, k = fandjor e = f

Values of k and ¢ are simply set equal to the specified values.
Specified Two-Point Gradient in Coordinate Direction, 3k|8¢ = f andjor 8¢]d¢ = [

Applying 8k/d¢ = f at the ¢ = 0 boundary, and using two-point one-sided differencing, gives
ki jk=kaj 1 —JAE
At the ¢ = 1 boundary,
K, joe=kny— 1,5, +/B¢
Analogous equations can easily be written for the » and { boundaries, and for de/0¢ = f.

Specified Three-Point Gradient in Coordinate Direction, 8k|0$ = f and/or 0/0¢ = [

Applying 0k/d¢ = f at the ¢ = 0 boundary, and using three-point one-sided differencing, gives

(4ky, ; k= k3, 5,k — 2/BY)
kl,j,k= 3

At the ¢ = | boundary,

(kn, 1,5,k = kny = 2,5, 6 + 2/BE)
kn,j, k= 3

Analogous equations can easily be written for the » and { boundaries, and for 8¢/d¢ = f.

Linear Exirapolat. n

Linearly extrapolating from the interior points for k at the { =0 boundary gives
kije=2ky =%,k
At the ¢ = 1 boundary,
kNl,j,k = 2k,v, -1,k "‘Nl — 2,k
Analogous equations can easily be written for the and { boundaries, and for linear extrapolation of &
Remarks

1. The “no change from initial conditions” boundary condition is applied simply by non-execution of the
other boundary conditions.

2. Periodic boundary conditions are updated by setting the values of k and ¢ at the lower boundary equal
to the corresponding values at the upper boundary.

3. When a specified gradient or linear extrapolation boundary condition is used, k and/or ¢ at the bound-
ary is forced to be positive by using the absolute value. This is done to avoid unphysical negative values
that could result from poor initial profiles for k and/or &.

276 4.0 Proteus Subprograms: UPDTKE Proteus 3-D Programmer’s Reference

Subroutine VORTEX

Called by Calls Purpose
BLIN Compute magnitude of total vorticity.
BLOUT
OUTPUT
YPLUSN
Input
DXI, DETA, DZETA Computational grid spacing A&, Ay, and AL.
ETAX, ETAY, ETAZ Metnc coeﬁigients Nx, My, and n;.
* NI, N2, N3 Number of grid points N, ¥, and N;, in the &, , and { directions.
U, V,w Velocities u, v, and w.
XIX, XIY, XIZ Metric coefficients &,, &,, and &,.
ZETAX, ZETAY, ZETAZ Metric coefficients {,, {,, and {,.
Output '
YORT Total vorticity magnitude.
Description »

Subroutine VORTEX computes the magnitude of the total vorticity vector. This is defined as

5 ow v\ (ou owN . (o au\ |
A= (5-2) (-5 (&%)]
Using the clain rule, these can be rewritten in generalized nonorthogonal coordinates as
|| = {L&w; + mywi, + Gywg) = Eve + vy + LT
+ (& + mgty +) — (Exwg + mwy + Low))
+ (G + mavy + L) — (Gytty + mytty + L) T} "
At interior points, the centered difference formula presented in Section 5.0 of Volume 1 is used to nu-

merically compute the derivatives in the above equations. At boundary points, second-order one-sided
difference formulas are used.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: VORTEX 277

Subroutine WHENFLT (N,V,INC,VALUE.INDEX,NVAL)

Called by [Calls Purpose
BLOUT Find all indices in an array whose elements are less than a specified
value.
Input
N Number of elements to process in the vector (ie.,
N = vector length if INC =1, N = (vector length)/2 if INC=2,
etc.).
\' Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
VALUE Value to be searched for in the vector V.
Qutput
INDEX Vector of indices specifying which elements of V are less than
VALUE.
NVAL Number of values in V that are less than VALUE.

Description

Subroutine WHENFLT finds all indices in an array whose elements are less than a specified value.

Remarks

1. WHENEFLT is a Cray search routine (Cray Research, Inc., 1989b).

278 4.0 Proteus Subprograms: WHENFLT

Proteus 3-D Programmer’s Reference

Subroutine YPLUSN

Called by Calls Purpose
INITC VORTEX Compute the distance to the nearest solid wall.
KEINIT
TURBCH
Input
* LWALLI, LWALL2, LWALL3 Flags specifying wall locations for £, », and { boundaries.
MU Effective coefficient of viscosity p.
* NI, N2, N3 Number of grid points Ny, N, and N, in the £, %, and { directions.
* RER Reference Reynolds number Re,.
RHO Static density p at time level n.
XY, Z Cartesian coordinates x, y, and z.
Output
DUMMY Distance to the nearest solid wall.
YPLUSD Nondimensional distance y* from the nearest solid wall.
Description ‘

Subroutine YPLUSN computes the minimum distance to the nearest solid wall and y* for every gnd
point in the computational domain. The steps involved are as followed:
1. Call VORTEX to compute total vorticity magnitude .
2. For every grid point in the computational domain,

3. Compute the distance to each solid wall, and the corresponding wall values of the totai vorticity
magnitude, laminar viscosity, and density.

4. Identify the nearest solid wall and select the corresponding distance to the wall y,, the wall total
vorticity magnitude |Q..|, the wall laminar viscosity pwas, and the wall density puweu-

+_ Re | Qyaul Pwan
Y =n Bvall

5. Compute y* using

Remarks

1. The scratch array DUMMY, from the common block DUMMY], is used to store the distance to the
nearest solid wall.

2. This subroutine will return very large values for YPLUSD and DUMMY if none of the boundaries are
solid walls.

Proteus 3-D Programmer’s Reference 4.0 Proteus Subprograms: YPLUSN 279

~ REFERENCES

Baldwin, B. §., and Lomax, H. (1978) “Thin Layer Approximation and Algebraic Model for Separated
Turbulent Flows,” AIAA Paper 78-257. :

Beam, R. M., and Warming, R. F. (1978) "An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations,” ATAA Journal, Vol. 16, No. 4, pp. 393-402.

Bnley, W. R., and McDonald, H. (1977) “Solution of the Multidimensional Compressible Navier-Stokes
Equations by a Generalized Implicit Method,” Journal of Computational Physics, Vol. 24, pp. 373-397.

Cebeci, T., and Bradshaw, P. (1984) Physical and Computational Aspects of Convective Heat Transfer,
Springer-Verlag, INew York.

Chen, S. C., and Schwab, J. R. (1988) “Three-Dimensional Elliptic Grid Generation Technique with Ap-
plication to Turbomachinery Cascades,” NASA TM 101330.

Chien, K. Y. (1982) “Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number
Turbulence Model,” AIAA Journal, Vol. 20, No. 1, pp. 33-38.

Cooper, G. K. (1987) “The PARC Code: Theory and Usage,” AEDC-TR-87-24.
Cray Research, Inc. (1988) UPDATE Reference Manual, Publication Number SR-0013.

Cray Research, Inc. (1989a) Volume 1: UNICOS Fortran Library Reference Manual, Publication Number
SR-2079.

Cray Research, Inc. (1989b) Volume 3: UNICOS Math and Scientific Library Reference Manual, Publica-
tion Number SR-2081.

Cray Research, Inc. (1990) CF77 Compiling System, Volume 1: Fortran Reference Manual, Publication
Number SR-3071.

Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W. (1979) LINPACK User's Guide SIAM,
Philadelphia.

Faux, I. D,, and Pratt, M. J. (1979) Computational Geometry for Design and Manufacture, Ellis Horwood
Limited, John Wiley & Sons, Chichester, England.

Hesse, W. J., and Mumford, N. V. S. (1964) Jet Propulsion for Aerospace Applications Pitman Publishing
Corporation, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) “Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81-1259.

Kemighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book
Company, New York. v

Kleinstein, G. (1967) “Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers,”
AJAA Joumal, Vol. 5, No. 8, pp. 1402-1407.

Knight, C. J., and Choi, D. (1989) “Development of a Viscous Cascade Code Based on Scalar Implicit
Factonization,” AIAA Journal, Vol. 27, No. 5, pp. 581-594.

Proteus 3-D Programmer’s Reference References 281
PRECEDING PAGE BLANK NCT F¥ Mg

Launder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Length Near
a Wall,” International Joumnal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Pulliam, T. H. (1986b) “Artificial Dissipation Models for the Euler Equations,” AIAA Journal, Vol. 24,
No. 12, pp. 1931-1940. :

Roberts, G. O. (1971) “Computational Meshes for Boundary Layer Problems,” Proceedings of the Second
International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 8,
Springer-Verlag, New York, pp. 171-177.

Shang, J. S. (1984) “Numerical Simulation of Wing-Fuselage Aerodynamic Interaction,” AIAA Joumnal,
Vol. 22, No. 10, pp. 1345-1353.

Spalding, D. B. (1961) “A Single Formula for the Law of the Wall,” Journal of Applied Mechanics, Vol.
28, pp. 455-457.

Steger, J. L. (1978) ”implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Ge-
ometries,” AIAA Joumal, Vol. 16, No. 7, pp. 679-686.

Towne, C. E., Schwab, J R., Benson, T. I, and Suresh, A. (1990) "PROTEUS Two-Dimensional
Navier-Stokes Computer Code - Version 1.0, Volumes 1-3,” NASA TM’s 102551-3.

White, F. M. (1974) Viscous Fluid Flow, McGraw-Hill Book Company, New York.

282 References Proteus 3-D Programmer’s Reference

Pl

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated 1o average 1 hour per res;
gathering and maintaini the data needed, and completing and reviewing the cotiection of infor
collection of information, including suggestions for reducing this burden, to Washington Head:
Davis Highway, Suite 1204, Arlington, A 22202-4302, and to the Office of Management an

quart

ponse, Including the time for reviewing instructions, searching existing data sources,
mation. Send comments regarding this burden estimate or any other aspect of this
ors Services, Directorate for Information Operations and Reports, 1215 Jefferson

d Budget. Paperwork Reduction Project {0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
October 1993

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE .

Volume 3-Programmer's Reference

Proteus Three-Dimensional Navier-Stokes Computer Code—Version 1.0

o

. AUTHOR(S)

Charles E. Towne, John R. Schwab, and Trong T. Bui

5. FUNDING NUMBERS

WU-505-62-52

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8110

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-106341

11. SUPPLEMENTARY NOTES
Responsible person, Charles E. Towne, (216) 433-5851.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

and the details of each subprogram.

A computer code called Proteus 3D has been developed to solve
compressible Navier-Stokes equations in strong conservation law fo
a code for aerospace propulsion applications that is easy 10 use and easy
documentation have been emphasized. The governing equations are solved in generalized nonorthogonal bodyfitted
coordinates, by marching in time using a fully-coupled ADI so
implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbu-
lence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may
also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and
implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The
~ documentation is divided into three volumes. This is the Programmer’s Reference, and contains detailed information

useful when modifying the program. It describes the program structure,

the three-dimensional, Reynolds-averaged, unsteady
mm. The objective in this effort has been to develop
to modify. Code readability, modularity, and

lution procedure. The boundary conditions are treated

the Fortran variables stored in common blocks,

14. SUBJECT TERMS

Navier-Stokes; Computational fluid dynamics; Viscous flow; Compressible flow

15. NUMBER OF PAGES
284

16. PRICE CODE
Al3

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT
Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Sid. Z39-18
298-102

