RADAR RESPONSE OF VEGETATION:
AN OVERVIEW

Fawwaz T. Ulaby and M. Craig Dobson
The University of Michigan

- Vegetation Classes
- Soil Scattering: (1) Backscatter
 (2) Forward Scattering
- Radar Response
 - Vegetation Biomass
 - Vegetation Structure
- Temporal Variations: (1) Short Term (hours to days)
 (2) Long Term (Seasonal)
- Effect of Rain
- Emergence of a User Community
- Concluding Remarks
<table>
<thead>
<tr>
<th>Growth Form</th>
<th>Herbaceous</th>
<th>Woody</th>
<th>Trees</th>
<th>Columnar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade-like</td>
<td>Broadleaf</td>
<td>Shrubs</td>
<td>Excurrent</td>
<td>Decurrent</td>
</tr>
<tr>
<td>(i.e., grass, corn)</td>
<td>(i.e., soybeans)</td>
<td>(i.e., alder)</td>
<td>(i.e., pine and spruce)</td>
<td>(i.e., oak and maple)</td>
</tr>
<tr>
<td>Structural Characteristics</td>
<td>none</td>
<td>none</td>
<td>conical layered dielectric</td>
<td>cylindrical, forked layered dielectric</td>
</tr>
<tr>
<td>Trunks</td>
<td>some non-woody stalks or stems</td>
<td>some non-woody stems</td>
<td>branch size and orientation varies with height, large branches, planophile, many small stems, erectophile branches tend to be long and thin</td>
<td>many forked with few horizontal elements branches tend to be short and thick</td>
</tr>
<tr>
<td>Branches</td>
<td>blade-like erectophile</td>
<td>broad leaves</td>
<td>blade-like or broadleaves</td>
<td>needies</td>
</tr>
<tr>
<td>Foliage</td>
<td>low to moderate σ^0 dominated by surface scattering</td>
<td>moderate σ^0, $\sigma^0(f, \omega, \theta)$ dependent upon trunks & branches uniform $\Delta \phi$</td>
<td>very high like-polarized σ^0, moderate σ^pp, dominated by ground-trunk and few large branches $\sigma^\text{pp} \geq \sigma^\text{VV}$, $\sigma^\text{HH} / \sigma^\text{VV} = f$ (branch biomass) broad distributions of $\Delta \phi$</td>
<td>high σ^0 dominated by large branches, $\sigma^\text{HH} \geq \sigma^\text{VV}$</td>
</tr>
<tr>
<td>General Scattering Properties</td>
<td>$f < 5$ GHz: $\sigma^\text{VV} \geq \sigma^\text{HH} \gg \sigma^\text{HV}$ zero mean $\Delta \phi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f > 5$ GHz: moderate to high σ^0 dominated by vegetation $\sigma^\text{VV} \geq \sigma^\text{HH} \geq \sigma^\text{HV}$ stem orientation and leaf size very important</td>
<td>high σ^0 dominated by branches and stems</td>
<td>mod. to very high σ^0 can vary seasonally with foliage and stem properties</td>
<td>high σ^0 determined by crown</td>
<td></td>
</tr>
</tbody>
</table>
- Direct Ground Backscatter
- Vegetation-Ground Bistatic Scattering
 - Trunks
 - Leaves (needles)
 - Branches
- Direct Crown Backscatter
SOIL BACKSCATTERING

A. Theoretical Models

- Small Perturbation Model
- Physical Optics Model
- Geometric Optics Model
- Phase Perturbation Method
- Full Wave Model
- Integral Equation Model

Models agree with experimental observations only under certain conditions. Overall, models not useful.

B. Michigan Empirical Model

- Frequency Range: 1-10 GHz
- Angular Range: 20° - 70°
- Roughness range: s = 0.32 cm to s = 4.0 cm
 (expected validity for any s >0.3 cm)
- Moisture range: 0.05 g/cm³ to 0.31 g/cm³

Moisture Sampling Depth

L-Band (1.25 GHz): Average Moisture of Top 10 cm layer
C-Band (5.3 GHz): Average Moisture of Top 3 cm layer
X-Band (9.5 GHz): Average Moisture of Top 1 cm layer

\[\text{Sampling Depth} = \frac{\lambda}{3} \]
Model Verification For A smooth Surface ($s=0.4$ cm)

1.5 GHz

$s = 0.4$ cm
$m_v = 0.29$

- σ_w^o, Model
- σ_{lh}^o, Model
- σ_{lm}^o, Model
- σ_{wl}^o, Measured
- σ_{lw}^o, Measured
- σ_{wm}^o, Measured

4.75 GHz

9.5 GHz
MOD-3

correl. coeff. = 0.98

1990 meas.

1991 meas.

Measured ks

Estimated ks

rms height

soil moisture

Measured m_v

Estimated m_v

correl. coeff. = 0.97

1990 meas.

1991 meas.

156
Inversion Algorithm

If radar measures σ_{vv}^0, σ_{hh}^0, and σ_{hv}^0 at a given frequency and angle, both s and m_v can be determined from the ratios:

\[
p = \frac{\sigma_{hh}^0}{\sigma_{vv}^0}
\]
\[
q = \frac{\sigma_{hv}^0}{\sigma_{vv}^0}
\]

Note: $p(dB) = 10 \log \left(\frac{\sigma_{hh}^0}{\sigma_{vv}^0} \right) = \sigma_{hh}^0(dB) - \sigma_{vv}^0(dB)$

$q(dB) = \sigma_{hv}^0(dB) - \sigma_{vv}^0(dB)$.
ERS-1 SAR Response

\(\theta = 23^\circ \)

vv Polarization

![Graph showing backscattering coefficient vs. moisture content](image-url)
Coherent Reflectivity

Reflection Coefficient Γ (dB)

Incidence Angle θ (degrees)

$\epsilon=3+j0$ $ks<0.2$
Reduction of Reflectivity by Surface Roughness at L-band

Incidence Angle θ (degrees)
RADAR RESPONSE TO VEGETATION

• OBJECTIVES
 • To Discriminate/Classify Vegetation Classes
 • To Estimate Biomass
 • To Estimate LAI
 • To Estimate Soil Moisture
 • To Monitor Changes (deforestation, growth, stress, etc.)
 • Other

• VEGETATION CANOPY
 • Structure: (1) Macro (tree or plant scale): Tree height, density, ground cover
 (2) Micro (wavelength scale): Leaves, branches
 • Dielectric Properties
 • Ground Cover (soil, debris, undergrowth, etc.)

• TOOLS
 • Wavelength
 • Polarizations
 • Phase Statistics
 • Incidence Angle
 • Time

• APPROACH
 • Theory
 • Observations
 • Lab
 • Field
 • Air SAR
 • Satellite
DIURNAL VARIATION IN σ^0

Humid Temperate Forest Loblolly Pines at Duke Forest

While ε^* of trunks are found to vary by 30%,

σ^0 varies by only ≈ 1 dB

Calibration accuracy is 1 dB
Calibrated AIRSAR Response at L-Band to Standing Forest Biomass

\[y = -13.43 + 4.6x - 0.76x^2 \quad R^2 = 0.90 \]
HH polarization

\[y = -22.22 + 7.24x - 1.48x^2 \quad R^2 = 0.97 \]
HV polarization

\[y = -14.48 + 4.17x - 0.70x^2 \quad R^2 = 0.92 \]
VV polarization

- Loblolly pine (Duke Forest, USA)
- Maritime pine (Landes, France)
- Non-forested
Backscatter From Loblolly and Maritime Pines
Aboveground Biomass (tonnes/ha)

Duke Forest
Michigan Forests
Landes
L-band, HV-polarization

Backscatter Coefficient (dB)

Aboveground Biomass (tonnes/ha)

- Lobolly pine
- Maritime pine
- Red pine
- Jack pine
- Bigtooth aspen
- Red maple swamp
- White cedar swamp
- Non-forested
- Grass (dry soil)
- Grass (wet soil)
- Clear-cut

Grass (dry soil)
6. L-BAND SAR OBSERVATIONS IN ALASKA

\[\sigma^0 \text{ (dB) observed} \]

\[\sigma^0 \text{ (dB) MIMICS} \]

- White Spruce -- Thawed
- White Spruce -- Frozen
- Black Spruce -- Thawed
- Black Spruce -- Frozen
- Balsam Poplar -- Thawed
- Balsam Poplar -- Frozen
- Alder -- Thawed
- Alder -- Frozen
Pellston $\Delta \sigma^0$, July 8 – July 10, HH-polarization

GRASS ASPEN PINES

P band

L band

C band
June 14, 1983
Winter Wheat
10.2 GHz

\[\sigma_{\text{can}}^0 \]

Leaf Surface Water
VW Polarization
\(\theta = 50^\circ \)
ERS-1 RESULTS

- Class Statistics
- Observation *versus* Theory (MIMICS)
- Biomass Response (Deciduous and Coniferous)
- Seasonal Variation (LAI)
 - Deciduous
 - Coniferous
ERS-1 Class Statistics for 3x3 Pixel Averages

Normalized Frequency

-30 -25 -20 -15 -10 -5 0
\(\sigma^0 (\text{dB}) \)

Cover Type

Inland Lakes Concrete Prairie Hay fields Red Pine Jack pine Northern Hardwoods Lowland Conifers
Comparison of SAR Observations with MIMICS Simulations
C-band, VV-polarization

Observed Backscatter Coefficient (dB)

Simulated Backscatter Coefficient (dB)
ERS-1 Backscatter Modeled by MIMICS for Northern Michigan Forests in August 1991

Dominant Mechanisms in Radar Backscattering by Forests

<table>
<thead>
<tr>
<th>Dominant Specie</th>
<th>Percent of Total Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crown</td>
</tr>
<tr>
<td>Red maple</td>
<td>95.5</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>96.4</td>
</tr>
<tr>
<td>Jack pine</td>
<td>100</td>
</tr>
<tr>
<td>Red Pine</td>
<td>41.3</td>
</tr>
<tr>
<td>grass</td>
<td>0.03</td>
</tr>
</tbody>
</table>
ERS-1

Dependence Upon Above Ground Forest Biomass

\[y = -21.82 + 4.79 \log(x) \quad R^2 = 0.62 \]

- Backscatter Coefficient (dB)
- Dry Biomass (tonnes/ha)

- Red pine
- Jack pine
- Spruce bog
- Bigtooth aspen
- Red maple
- Red oak
ERS-1

Backscatter vs. LAI for Deciduous Forests

Backscatter Coefficient (dB)

Leaf Area Index (m^2/m^2)
ERS-1

Backscatter vs. LAI for Closed-Canopy Conifer Forests

\[y = -19.248 + 9.9315 \times \log(x) \quad R^2 = 0.708 \]
CONCLUSIONS & RECOMMENDATIONS

I. SURFACE SCATTERING

1. Retrieval of Soil Moisture and Surface Roughness
 - L-Band Quad-Pol for bare soil
 - P-Band Quad-Pol: extends to agricultural crops

2. Effects of Organic Debris
 - Extinction depends on size / λ
 At P and L-Bands, only trunks and large branches are significant

II. VEGETATION SCATTERING

1. In general σ° = f (biomass, structure)

2. Extinction by crown layer increases with frequency

3. Scattering by foliage and small branches:
 - negligible at P and L Bands
 - dominates at C and X Bands

4. Scattering by trunks and large branches:
 - dominates at P and L Bands
CONCLUSIONS & RECOMMENDATIONS

- Even P-Band is insensitive to high biomass forests (Pacific NW ≅ 500 tons/ha)

6. Innundation under Forest Cover

 L-Band HH

7. Effects of Intercepted Precipitation

 - negligible at P Band
 - ≅ 1 dB increase or decrease at L-Band
 - ≅ 2 dB increase at C-Band

8. Freezing of Vegetation Leads to

 Significant changes in σ^0 at all Bands

9. Deforestation Readily Detectable at

 P and L-Band

10. LAI Foliar Biomass Estimation

 C-Band Quad or X-Band

11. Multi-Date Observations: Very Powerful Tool

 - Requires good Relative Calibration (Stability) $\equiv \pm 1$ dB
 - Requires good Absolute Calibration $\equiv \pm 1$ dB

The University of Michigan