• Introduction
• Radiometric Calibration
• Geometric Calibration
• Phase Calibration
• Polarimetric Calibration
Introduction

Basic SAR measurement parameters are:

- Radar backscattering
- Target position
- Target speed
- Polarisation

SAR calibration facilitates *quantitative* measurements needed to derive geophysical parameters of the area under observation from basic SAR measurements (e.g. soil moisture, biomass, ocean wave energy, ocean currents, ice type, ice flow,.....)
Radiometric Calibration

Radiometric calibration is relating the SAR output in terms of digital number to σ^0.

- Design for stability
- Sensor calibration
 - pre-flight characterisation
 - internal calibration
 - external calibration
- Data calibration
Characterisation parameters for ERS-1

- Transmitter Parameters
 - Frequency
 - Pulse power
 - Pulse duration
 - Chirp bandwidth
- Antenna Parameters
 - Relative azimuth pattern
 - Absolute elevation pattern
- Receiver Parameters
 - Sensitivity
 - Bandwidth
 - Power transfer function
- Calibration Parameters
 - Internal calibration stability
Instantaneous Amplitude

Corresponding to Peak RF Power

Time

Instantaneous Frequency

Center Frequency 5300MHz

linear Up-Chirp

B = 15.5 MHz

37.12 µs

Time

Amplitude of Spectrum

B = 15.5 MHz

5300MHz Center Frequency
EXAMPLE OF 2-BIT CODE

EXAMPLE OF 5-BIT CODE
Internal Calibration

The objective of internal calibration is monitoring system parameter changes with time, such as

- Output power
- Receiver gain
- Linear distortion (amplitude & phase)
- Non-linear distortion (amplitude & phase)
- Noise level
- Level of spurious signals

Internal calibration methods include

- Calibration using transmit pulse sample (ERS-1 method)
- Reference signals: noise, cw
- Transmit power measurements
ERS-1

CALIBRATION PULSE POWER SEQUENCE

COMMISSIONING PHASE (from 7-SEP-1991 to 6-DEC-1991)

CAL.PULSE POWER
Total Range = ± 0.1 dB

ESA
ESRIN / ERS-1 PRODUCT CONTROL SERVICE
External Calibration

The objective of external calibration is to measure and monitor system components outside the internal calibration loop.

External calibration uses made-made or natural targets.

External calibration can be used to determine the radar image calibration factor either in combination or without reference to internal calibration.

AMI Transponder Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wind Mode</th>
<th>Image/Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar Cross Section</td>
<td>$87.5,dBm^2$</td>
<td>$65.0,dBm^2$</td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>$+0, -5,dB$</td>
<td>$+0, -5,dB$</td>
</tr>
<tr>
<td>Calibration Accuracy</td>
<td>$\pm.5,dB$</td>
<td>$\pm.5,dB$</td>
</tr>
<tr>
<td>Cross-calibration Accuracy</td>
<td>$\pm.2,dB$</td>
<td>$\pm.2,dB$</td>
</tr>
<tr>
<td>Stability (Over 3 Years)</td>
<td>$\pm.1,dB$</td>
<td>$\pm.1,dB$</td>
</tr>
</tbody>
</table>
ERS-1 SAR CAL. TRANSPOUNDER #3

GAIN v TEMPERATURE

GAIN

TEMP

18 Jan 1991

19 Jan 1991
ERS-1 Transponder Antennas
Gain Values for 12 Antennas

Average Gain = 27.81 dB
Standard Deviation = 0.06 dB
Transponder Error Model
Sidelobe structure in H-plane pattern (plane of offset).

Pointing evaluation E-plane, based on LMS curve fit.

E and H plane patterns, co and cross-polarisation.
Figure 2. Radar Cross Section Calibration
Transponder Calibration Accuracy

<table>
<thead>
<tr>
<th></th>
<th>SAR full range</th>
<th>SCATT full range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Antenna Gain Error</td>
<td>0.028</td>
<td>0.032 dB</td>
</tr>
<tr>
<td>Pointing Error</td>
<td>0.53</td>
<td>0.56 deg</td>
</tr>
<tr>
<td>B Electronic Gain Error</td>
<td>0.05</td>
<td>0.056 dB</td>
</tr>
<tr>
<td>C Antenna Coupling Error</td>
<td>0.002</td>
<td>- dB</td>
</tr>
<tr>
<td>Transponder Stability A+B+C</td>
<td>0.08</td>
<td>0.088 dB</td>
</tr>
</tbody>
</table>

D Transponder Stability

\[1 \sigma = \frac{(A+B+C)}{3} \]

\[1 \sigma = 0.027 \text{ dB} \]

E Clutter & Noise against \(\sigma^0 = 0 \) background

\[0.0495 \text{ dB} \]

F Coherent Multipath

\[0.0207 \text{ dB} \]

G Incoherent Multipath

\[0.0410 \text{ dB} \]

H Atmospheric Loss Uncertainty

\[0.07 \text{ dB} \]

Combined Error

\[\sqrt{D^2 + E^2 + F^2 + G^2 + H^2} \]

\[0.1 \text{ dB} \]

I Transponder Calibration Accuracy

\[0.2 \text{ dB} \]
Representative SAR Calibration Budgets

SAR Radiometric Accuracy

<table>
<thead>
<tr>
<th></th>
<th>1 σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Absolute Calibration Error</td>
<td>a 0.14 dB</td>
</tr>
<tr>
<td>B Cross Swath Calibration Error</td>
<td>b 0.08 dB</td>
</tr>
<tr>
<td>C Radiometric Stability Drift</td>
<td>b 0.25 dB</td>
</tr>
<tr>
<td>D Radiometric Stability Drift</td>
<td>c 0.25 dB</td>
</tr>
<tr>
<td>E Across Swath Characterisation Error</td>
<td>c 0.1 dB</td>
</tr>
<tr>
<td>F Across Dynamic Range Characterisation</td>
<td>c 0.1 dB</td>
</tr>
<tr>
<td>G Atmospheric Loss Uncertainty</td>
<td>c 0.07 dB</td>
</tr>
<tr>
<td>Nominal Calibration Accuracy</td>
<td>0.3 dB</td>
</tr>
<tr>
<td>Total Radiometric Error =</td>
<td>0.6 dB</td>
</tr>
</tbody>
</table>

\[\sqrt{A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2} \]

(a) Dominated by transponder calibration
(b) Single sample error reduced by in-flight monitoring
(c) Random error per observation

Absolute Calibration Error

<table>
<thead>
<tr>
<th></th>
<th>Number of Samples</th>
<th>Single Sample Error (1 σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Transponder Calibration Accuracy</td>
<td>3</td>
<td>0.2 dB</td>
</tr>
<tr>
<td>I Antenna Gain Characterisation</td>
<td>3</td>
<td>0.1 dB</td>
</tr>
<tr>
<td>J Single Transponder Observation Error</td>
<td>3</td>
<td>0.07 dB</td>
</tr>
<tr>
<td>K Atmospheric Loss Uncertainty</td>
<td>3</td>
<td>0.07 dB</td>
</tr>
<tr>
<td>Combined Error =</td>
<td>0.14 dB</td>
<td></td>
</tr>
</tbody>
</table>

\[\sqrt{H^2/3 + I^2/3 + J^2/3 + K^2/3} \]
Figure 7: Transponder Sites Flevoland, Commissioning Phase Coverage
theoretical RCS of the calibrators

* 3 ESA Transponders

- JPL Corner Reflector
- FEL-TNO Corner Reflector

RCS [dB]

incidence angle θ [degree]

325
ERS-1
TRANSPONDER & CORNER REFLECTORS ABSOLUTE R.C.S.
COMMISSIONING PHASE (from 25-OCT-1991 to 6-DEC-1991)

ESA TRANSPONDER #2
Nominal R.C.S. Value: 57.65 dBm2

JPL CORNER REFLECTORS
Nominal R.C.S. Value: 46.7 dBm2

FEL/TNO CORNER REFLECTORS
Nominal R.C.S. Value: 40.6 dBm2

SAME CALIBRATION CONSTANT USED
Reference: 13-OCT-1991 Transponder #2

ESRIN / ERS-1 PRODUCT CONTROL SERVICE
ERS-1
SAR CALIBRATION HISTORY

COMMISSIONING PHASE & ICE PHASE (from 7-SEP-1991 to 11-MAR-1992)

R.C.S. VARIATION
(w.r.t. nominal values)

St.Dev. = 0.41 dB
Total Range = ± 0.75 dB

SAME CALIBRATION CONSTANT USED
Reference: 13-OCT-1991 Transponder #2

ESRIN / ERS-1 PRODUCT CONTROL SERVICE
Calibration of other areas

The application of the calibration factor to other areas requires knowledge of geometry (range & antenna angle) and stability over time.

High resolution information about the antenna diagram can be obtained from imagery of extended uniform targets such as the tropical forest or ice shelves.

No absolute information is required for these 'targets of opportunity'. Stability over time and a smooth dependence of σ^0 on incidence angle is necessary.
Data calibration

Data calibration include the following steps

- Correct raw data for a number of system parameters
 - Linear distortion (amplitude & phase)
 - Non-linear distortion
 - Detector imperfections (DC-biases, amplitude & phase imbalance)
 - time variations as measured by internal calibration
 - noise bias
- Application of calibration factor to the entire image, taking into account geometry and antenna angle.
Geometric calibration

Geometric calibration can be achieved following the same principles as for radiometric calibration.

- Design for stability
- Characterise SAR system in terms of delay, phase error and frequency offset
- Calibrate using point target with accurately known position

Geometric image calibration is carried out in the data calibration stage by correction for known system biases and applying geometry information (platform position & attitude and terrain models).
Phase calibration

During the formation of an intensity image the phase information in the radar data is lost. For applications in interferometry and polarimetry complex images are formed which provide two data points per pixel, amplitude & phase or real & imaginary parts of the complex signal.

Careful and elaborate phase characterisation of both the SAR sensor and the SAR processor are required. Time stability is critical for the above applications.
Polarimetric calibration

Polarimetric calibration can be treated essentially as a multi-channel extension of the methods discussed above. Polarimetric SAR differ from single channel SAR in the following ways.

- There are two orthogonal transmit channels to consider and four receive channels.
- Radiometric calibration can be separated into absolute calibration and relative between channel calibration
- Geometric calibration can be separated into absolute calibration and relative between channel calibration
- Phase calibration between channels is essential
- Crosstalk has to be taken into account