
(HASA-Case-GSC-13556-}) ROTARY
_NCODING DEVICE Patent Application

(NASA) 26

N94-I5943

Unc i :_s

s

G3/61 0190830

GSC 13,556-iNASA CASE NO.

PRINT FIG.

/

NOTICE

The invention disclosed in this document resulted from research in

aeronautical and space activities performed under programs of the

National Aeronautics and Space Administration. The invention is

owned by NASA and is, therefore, available for licensing in

accordance with the NASA Patent Licensing Regulation (14 Code of

Federal Regulations 1245.2).

To encourage commercial utilization of NASA-owned inventions, it

is NASA policy to grant licenses to commercial concerns. Although

NASA encourages nonexclusive licensing to promote competition and

achieve the widest possible utilization, NASA will consider the

granting of a limited exclusive license, pursuant to the NASA

Patent Licensing Regulations, when such a license will provide the

necessary incentive to the licensee to achieve early practical

application of the invention

Address inquiries and all applications for license for this

invention to NASA Patent Counsel Goddard Space Flight Center Code 204

Greenbelt, MD 20771

Approved NASA forms for application for nonexclusive or exclusive

license are available from the above address.

Serial No.:

Filing DaLe:
08/022,219

2/25/93
GSFI_



AWARDSDIGEST

Rotary Encoding Device
GSC 13,556-1

The basic design for a new Rotary Encoding Device is shown in

FIG I. This device, which will encode the angular displacement of

a rotating shaft 8 about its axis of rotation, has a polygonal

mirror 6 mounted to shaft 8 and a light source 12 emitting a light

beam 4, directed towards facets 2,. The facets 2, of the polygonal

mirror 6 each reflect the light beam 4 z such that a light spot is

created on a linear array detector 16. An analog-to-digital

converter 18 is connected to the linear array detector 16 for

reading the position of the spot on the linear array detector 16.

A microprocessor 20 with memory is connected to the analog-to-

digital converter 18 to hold and manipulate the data provided by

the analog-to-digital converter 18 on the position of the spot and

to compute the position of the shaft 8 based upon the data from the

analog-to-digital converter 18.

Novelty is believed to reside in the utilization of a

polygonal mirror 6 to reflect a beam and produce a spot on the

detector 16 from which angular information of shaft 8 can be

obtained.
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TITLE OF THE INVENTION

Rotary Encoding Device

Origin of the Invention

The invention described herein was made by an employee of the United States

Government, and may be manufactured and used by or for the Government for

governmental purposes without the payment of any royalties thereon or therefor.

Technical Field

This invention relates generally to rotary encoding devices and more particularly to

an absolute rotary encoding device with high angular sensitivity.

10 Cross Reference to Related Applications

This invention is related to an invention shown and described in U.S. Patent Application

S/N 07/971,035, entitled "Rotary Encoding Device", filed in the name of Douglas B. Leviton

on 11/03/92. The above is assigned to the assignee of the present invention.
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Background Art

Many scientific, industrial, military weapons systems, and aerospace applications require

precise and accurate knowledge of the angular orientation of a shaft or other rotating object.

Typically, this knowledge is provided by a rotary shaft angle encoder. Encoders of the

highest practical precision are relative or incremental in nature, i.e. they resolve very small

angular changes and can keep track of accumulated change relative to some reference angle.

In these encoders the angular information generally is lost if this reference angle becomes

corrupted, e.g., through power interruption or upset by electromagnetic interference. There

are also absolute encoders which provide angle information which is independent of any

reference angle (except of course its own calibration, traceable to some standards

maintenance organization such as NIST -- formerly NBS) . The absolute nature of these

encoders is generally accompanied by only low to moderate angular sensitivity. Those which

have the highest sensitivity are exorbitantly expensive ($30,000 to $100,000). Further, some

of these encoders often achieve additional sensitivity by means of gear trains which are

subject to hysteresis which limit accuracy and make the angular determination indirect.

2__0

Statement of the Invention

It is therefore an object of the present invention to provide an encoding device

having high absolute accuracy and angular sensitivity.

Another object of the present invention is to provide an encoding device that is compact
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and reliable.

A further object of the present invention is to provide an encoding device with

continuous angular coverage for an unlimited number of turns and which can also keep

track of the total angular displacement when there have been numerous turns (assuming no

power interruption).

A still further object of the present invention is to provide an encoding device useable

at moderately high speed (high conversion bandwidth) and which lends itself to tachometric

applications.

Another object of the present invention is to provide an encoding device with

redundancy attainable through additional read channels.

A further object of the present invention is to provide an encoding device that is

comparatively affordable to manufacture.

A still further object of the present invention is to provide an encoding device with

possible use as a secondary angular calibration standard.

Another object of the present invention is to provide an encoding device that will

provide vibration/jitter information available from computation of perturbed spot shapes.

These and other objects are achieved by providing an encoding device for position

encoding of a rotating shaft in which a polygonal mirror having a number of facets is

mounted to the shaft and a light beam is directed towards the facets. The facets of the

polygonal mirror reflect the light beam such that a light spot is created on a linear array
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detector. An analog-to-digital converter is connected to the linear array detector for reading

the position of the spot on the linear array detector. A microprocessor with memory is

connected to the analog-to-digital converter to hold and manipulate the data provided by

the analog-to-digital convener on the position of the spot and to compute the position of

the shaft based upon the data from the analog-to-digital converter.

1o
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Brief Description of the Drawings

Figure 1 is a schematic block diagram of an encoding device according to the present

inventive concepts.

Figure 2 is a detail view of the geometry in the encoding device shown in fig. 1.

Figure 3 is a detail view of a photodiode array used with this encoder.

Figure 4 is a view of a sample encoder design.

Figure 5 is a graph showing mean error in determining spot location.

Figure 6 is a graph showing standard deviation in determining spot location.

Detailed Description of the Invention

My inventive encoding device is a combination of several recent innovations in optical

and electro-optic technologies. These components and their important characteristics are

listed below. To see how the components are implemented in the device, refer to the

functional block diagram (figure 1) and the discussion that follows under Principles of

4
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Operation for the Encoding Device.

Light source 12 can be an LED, a filament lamp (with or without a filter) with gradient

index (GRIN) lens collimator 3, a diode laser, or a compact HeNe gas laser or solid state

laser (e.g., laser diode-pumped, frequency-doubled Nd:YAG or Nd:YLF) which emits beam

4_ and can be delivered by a small diameter fiber optic cable. Light source 12 is thus

compact, reliable, and affordable and is directed in the form of a small diameter beam 4_

with low divergence at polygonal mirror 6, available with very small facet angle errors

(subarcsecond) and excellent optical flatness on facets 20 - 2N. 1. Attached to polygonal

mirror 6 is a 4 to 6 bit binary or Gray code encoder 10 (for facet 2 i identification) which is

simple, reliable, established and well-understood technology.

Position sensitive detector 16 can be a CCD array detector having a linear array of a

large number of diodes (256-8000) with very small pixels (7-35 #m) providing high

speed/photometrically linear and uniform response to light beam 4 R provided by source 12,

and has high electronic throughput and is reliable. Connected to detector 16 is 8 to 12" bit

analog-to-digital converter 18 to read out the linear array of diodes in detector 16. A

floating point microprocessor 20 with double precision math processing capability and

memory to hold and manipulate array detector 16 data is used and will compute shaft 8

angle absolutely based on information from facet identifying encoder 10, and positions of

light spots on linear array detector 16. Microprocessor 20 is currently available in many

forms with high speed and reliability and more than adequate computing capacity. Digital

5
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also be sued to compute the spot location.
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Principles of Operation of Encoding Device

The operation of the device relies on the simple reflection law of Snell which states that

the angle of reflection of light ray from a specular surface is equal and opposite to the angle

of incidence of the ray with the surface or _ = - a, an expression which is true for any

wavelength of light

To begin the description of the device's operation, for conceptual reasons only, we

assume two simple things: first, that light beams can be thought of as geometric rays; and

second, that the first time we see the situation in figures 1 and 2, shaft 8 angle O is such that

the incident light beam is just intersecting the upper right end of the facet depicted. We will

begin by considering counterclockwise shaft 8 motion (positive sense for o). Thus, the

incident beam 4_ from the light source 12 in figure 1 will seem to creep down the facet

under consideration, changing its angle of incidence on the facet, as shaft 8 rotates.

The basic, observable phenomenon in this system will be the movement of a spot of light

on linear array detector 16 where beam 4 R reflected from the illuminated facet 21 intersects

the line segment in space which is linear array 16. At any instant in time, shaft 8 angle

information is in fact held by the exact location of this spot on linear array 16, i.e. the

intersection of the reflected ray 4 R with the line segment.
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To see why this is so, consider the following. As shaft 8 (and polygonal mirror 6) rotates

through an angle AO, the angle of incidence a of light beam 4 i with respect to facet 2i

normal for a given facet 2 i changes by Aa, exactly =AO, which causes the angle of the

reflected ray 4 R to deviate by exactly -AB. The reflected light spot thus moves along fixed

linear array 16. It does so in a way governed by the fact that reflected ray 4 R obeys Snell's

law at all times. The location of the light spot on array 16 identifies a unique angular

orientation of illuminated facet 2 i. As long as it is known which facet 2 i is illuminated, the

angle of shaft 8 is completely determined throughout its range of rotation.

The behavior just described continues until the next facet 2_ comes around, at which

point the behavior repeats itself. The desired behavior is called "modulo 2_ / N," where "N"

is the number of facets 2_ on polygonal mirror 6 and 2rr / N is called the "sector angle" in

radians. The absolute shaft 8 angle is obtained by knowing the angular offset for

illuminated facet 2 i and adding the uniquely defined angular component governed by Snell's

law and manifested in the locations of light spots on linear array 16. The angular offset is

simply facet 2 i number times the sector angle, where facets 2 are numbered 0 through N-1.

The angular component depending on Snell's law is computed from knowledge of only the

device geometry which is assumed to be invariant. These geometric aspects are polygon

dimensions, linear array placement, and offset distance from shaft 8 center where incident

beam 4_ strikes the polygon, defined as Xofr.

To complete the description of the overall system, the location information of the light

7
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spot on array detector 16 is read from array 16 by conventional means through analog-to-

digital convener 18 under the control of microprocessor 20 into microprocessor memory 20.

Once the information is in memory 20, it is processed or otherwise manipulated to

determine shaft 8 angle through the implementation of appropriate algorithms and stored

calibration data. This process can be carried out continuously many, many times per second.

1o

lj

Considerations for Device Accuracy, Resolution, and Sensitivity

Accuracy, resolution, and sensitivity are the next important aspects of the encoding

device to address. These aspects are influenced by a number of things (though not

necessarily the same things). Resolution and sensitivity will be used interchangeably and

are related to the degree to which a change in shaft 8 angle AO can be sensed. For this

device, these are weak functions of shaft 8 angle and depend entirely on geometry and the

ability to resolve the exact location of the light spot on array 16 at the system level.

Refer to figure 2 for details on the geometry's nomenclature. First, I will describe the

polygonal mirror 6 itself. Its two chief attributes are the number of facets 2_, "N", previously

described, and what I will call the facet 2_ radius, "r", which is the perpendicular distance

from the center of polygonal mirror 6 to the center of any facet 2 i. The previously described

sector angle will be called ¢,. The facet length will be called ! and is computed as:

8
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I = r
2 tan (_/2)

Referring now to Figure 3, I turn next to detector array 16 whose pixel dimension "p"

along the array is typically in the range from 7 to 25 _m. The array length "a" is then simply

the number of elements "e" times "p". This is most conveniently expressed in mm. The

beam 4 R diameter "b" will also be described in mm. Beams 4_ and 4 Rwill either be Gaussian

in profile as from a laser or formed from a spatial filter/collimator arrangement and will

likely be diffraction-limited. In either case, I will assume that beam 4 R will be of Gaussian

type, where "b" will refer to the diameter of beam 4 R at its 1/e power points. The details

of the spatial distribution of beam 4 irradiance are not important as long as the distribution

is invariant for each order as it traverses array detector 16.

Finally, I turn to the angular relationships of the device geometry (see Figure 2). We

begin by considering shaft 8 angle o to be zero when facet number 20 is horizontal and

facing the bottom of figure 2 as shown. Again, the angle of incidence a of beam 4_ on a

facet 2 i is relative to that facet's surface normal and depends on two things: one, the

quantity we referred to earlier as Xorf which is a fractional quantity normalized to the facet

radius describing the offset distance from shaft 8 center where beam 4 i strikes the polygon;

and two, o itself. The two other angles in this geometry, along with Xorr, uniquely describe

the placement of the linear, photodiode array 16 with respect to the polygon. One angle

is called the "center O," Be, defined as the angle between the facet normal and the

9
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perpendicular bisector of array 16 when incident beam 4 i strikes the center of any facet 2_.

This defines a direction along which array 16 can be adjusted closer to or farther from

polygonal mirror 6. The other angle is called the "beta halfrange,"/_ _/2, which describes the

angle subtended by one-half of array 16 length as seen from the center of facet 2 i when

incident beam 4 i strikes the center of a facet 2 i. This angular subtense places array 16 at

a unique position on the line described by/3 c.

!_0

2o

Resolution and Sensitivity

From figure 2, it is reasonably clear that the following things will place an upper bound

on the angular resolution of the encoding device. These are: the beta half-range _ _/2, the

number of array elements "e", the pixel size "p", and to a less obvious degree beam 4 R

diameter "b". Other things which will affect sensitivity of the encoder in such a way as to

enhance it but which are not evident from figure 2 are: the ability to accurately compute the

centroid location of the spot from digitally converted array data, multiple sampling

(averaging) of light spot location data, and processing for redundant/additional channels

with added computational constraints.

The least obvious but perhaps most important factor is the photometric accuracy with

which the light spot can be digitally converted by the system. The photometric accuracy can

be increased (but not without limit) by multiple sampling but at the expense of system

bandwidth. This will be addressed later under analysis of anticipated performance.

10
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sensitive encoding devices. As such, vibration is outside of the scope of this disclosure.
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Accuracy

As with any device, there are a characteristic set of things which will affect system

accuracy. However, fortunately, in this case, most of these can be taken care of in a device

calibration program -- a worthwhile endeavor for any system seeking state-of-the-art

performance. The other light in which to view the question of accuracy is "what might

happen to change the calibration?"

The things that affect accuracy which can be calibrated out at the system level are:

thermal/mechanical changes, distortions due to assembly, facet 2_ flatness, knowledge of

dimensions, and knowledge of facet angle errors.

The choice of light source 12 is almost arbitrary as long as its spectral output is within

the spectral response range of the selected detector 16. A moderate to narrow spectral

bandpass may be desirable so that chromatic aberration in the collimating optics (if any) will

be of no consequence.

2__O

Most if not all of the previously mentioned aspects can be minimized by appropriate

component specifications to a degree which might obviate calibration altogether. Such

specifications might include suitable optical flatness on facets 2 i, materials with suitable

11



GSC 13,556-1

LEVITON

_5

IO

13

2_O

stiffness and low coefficient of thermal expansion, etc. Mounting distortion can not be

calibrated out unless calibration is performed after mounting which may not always be

feasible. According to experts in the rotational encoder industry, currently the ultimate

limitation of an encoder will be its bearings and shaft 8 coupling. Again, these mechanical

aspects of encoder design are not within the scope of this disclosure. Here, we are

concerned only with the aspects of encoders from which angular information is derived.

There are a few things which can affect the size of the diffracted spots on array 16 which

in turn can be calibrated out. These are the size of source 12, the optical properties of any

collimating optics 3, and facet 2_ flatness.

Analysis of Anticipated Performance

Because source 12 and detector array 16 are f'Lxed with respect to each other, and

polygonal mirror rotates with respect to these, the position of the reflected spot on array 16

is related to the difference between the incident and diffracted angles, i.e. to B-a which is

just 213. There is thus a constant geometric angular amplification of two inherent in the

system. The actual function for shaft 8 angle versus spot location would be linear except

for the cos(_-_c) obliquity factor that exists because of differences in light path length from

a facet 2_ to the different parts of linear array detector 16 and also the modulation of that

path length with the change of incident spot location on facets 2 i themselves as polygonal

mirror 6 rotates.

12
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For this device, design parameters are not critical and are generally selected to optimize

packaging and compactness. What I currently believe to be a good set of baseline encoder

parameters is reflected in an encoder design of 42% radial offset of incident beam 4 i from

polygonal mirror 6 axis, 32 facets 2 i, facet 2 i surfaces free of rulings (00 lines), and B 1/2 =

11.7" (nominally 12" ). Figure 4 illustrates the design in the context of the display of a

visualization program. This design has been used to study system angular sensitivity. The

linear array in this design is an Eastman Kodak device with 8000 pixels which are 9 _ m x

9/_m in size.

Resolution will be defined as the geometric, angular increment corresponding to the

minimum resolvable displacement of a light spot on linear pixel array 16. It turns out that

its upper limit is established by the angular subtense of a pixel as seen by the point on a

facet 2 i where source beam 4 i is incident, i.e. by 2"B 1/2/e. Obviously, resolution is enhanced

by having as many pixels of the least size possible in linear array 16. For the design under

consideration, the geometric angular plate scale on array 16 is about 11 "arc/pixel.

Due to the ability to compute the centroid of the light distribution of a spot on pixel

array 16, resolution can be extended well below the single pixel level! A simulation has

been performed to study CCD array 16 subsystem's capabilities in this regard. The

simulation accounts for the following effects: beam 4 shape and size and irregularities

therein, pixel-to-pixel photoresponse variation, system conversion noise, and repetitious

sampling. In the simulation, a photoresponse for each array 16 pixel is chosen randomly

13
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within selectable prescribed limits. A target location for a perfect Gaussian profile is

randomly chosen to fall somewhere on array 16. Then, a Gaussian whose half-width is

selectable but whose pixel value at each pixel is randomly perturbed by some noise factor

within selected limits, is computed along with its effective centroid location and error

relative to the foreknown target Gaussian center. If multiple samples have been specified,

the average of that number of samples is considered to be the result. This is repeated one

hundred times for each set of prescribed limits. Mean error, variance, and standard

deviation are then computed for the one hundred samples.

The simulation was parameterized as follows. Three different Gaussian spot sizes

(diameters) were tried: 0.40 mm, 0.80 ram, and 1.6 mm diameters. Four different

combinations of system noise and pixel-to-pixel variations were tried for each spot size.

With one exception, two different numbers of samples -- 1 and 3 -- were tried for each

combination of system noise and pixel-to-pixel variation. The parameterization is tabulated

below.

Table I -- parameters for simulation of spot location determination by CCD array system

for each of the three different spot sizes

System Pixel-to-pixel Samples

Noise (%) Variation (%)

3 2 1

3 2 4

2 1 1

2 1 3

1 1 1

1 1 3

0.5 0.5 1

14
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0.5 0.5 3

The results for mean error and standard deviation in pixels for single sample simulations

are shown in figures 5 and 6 respectively. The results indicate the two obvious things you

would expect: that performance improves for 1) lower system noise and lower pixel-to-pixel

variation and 2) smaller spot sizes. CCD experts at Eastman Kodak indicate that in

practice, pixel-to-pixel variations and system noise can be systematically reduced to less than

0.5% each. This immediately focusses our attention to the left-hand part of the figures.

Even for the largest spot size studied, 1.6 mm Gaussian diameter, the mean error and

standard deviation are astoundingly only several millipixel.s !! To be conservative, we shall

choose 0.005 pixels as an achievable number for centroided pixel resolution. This assumes

we can get a spot size under 1.6 mm diameter. Assume we are using a compact HeNe laser

with an exit spot diameter of 0.7 mm and a beam divergence of 1 mrad. The baseline

design has a total path length roughly 0.4 m. This distance combines with the beam

divergence to increase the spot size from 0.7 mm to 0.7 + 400 " 0.001 = 1.1 mm which is

well less than 1.6 mm.

I am now in a position to predict the encoding device's angular sensitivity. One method

for computing the device sensitivity is by equating sensitivity to the centroided pixel

resolution times the geometric angular plate scale divided by the geometric sensitivity

developed above.

15
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An alternate method invokes the use of a visualization program and a simple study of

how many pixels are traversed by the spot as shaft 8 rotates through one unit of angle. For

the design under consideration, this value is roughly 0.2 "arc/pixel. Coupled with the ability

to determine spot location to the 5 millipixel level, an angular sensitivity of 0.005 pixels /

0.2 pixels per 1 "arc change in shaft angle or 0.025 "arc sensitivity is available !!!

This value compares favorably with the capabilities of the state-of-the-art, conventional

optical encoder with 26 bit resolution -- 0.02 "arc. According to NISTs Angular

MeasurementsLaboratory in Gaithersburg, MD, the NIST angle calibration machine is not

currently but will ultimately be good to 0.003 "arc.

While the lower limit on the number "N" of facets 2 i is three, there is no intrinsic upper

limit for "N". However, there are some practical concerns which lead to an optimum choice

for "N". The fewer facets 2 i there are, the fewer facet-to-facet angle errors must be kept

track of. This must be balanced against the desire to assign as little angular range to a

given facet as possible in order to maximize resolution and minimize device size. Finally,

it is convenient to have a number of facets 2 i which is a power of 2 so that facet 2 i

identification can be done with a simple, piggy-backed, binary encoder. Based on my

preliminary studies, it turns out that 32 is a good choice for number of facets 2_.

Adding source/detector channels could provide several advantages. Multiple

16
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independent samples offer improved certainty of angular determination, possible self-

calibration, redundancy in the event of a failure of one channel, and some degree of

immunity to defects in one or more facets or in one particular linear array. The

disadvantages of multiple channels are slight .increases in data storage requirements and

computational/operational complexity, and a slight decrease in system conversion bandwidth.

I talked a little before about vibration. It is entirely possible that the encoding device

could also be used to give information about the vibration environment in which it is used.

This would be done either through time-averaged or even time-resolved computations on

spot shape perturbations measured from linear array 16.

Although it can be highly advantageous to calibrate such a device, it is interesting to

note that the device itself has intrinsic features which will allow it to be used with

substantial accuracy without calibration. Furthermore, it is possible that the device might

find application as either a secondary or perhaps even primary angular calibration standard.

To those skilled in the art, many modifications and variations of the present invention

are possible in light of the above teachings. It is therefore to be understood that the present

invention can be practiced otherwise than as specifically described herein and still will be

within the spirit and scope of the appended claims.

17
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ABSTRACT,..

A device for position encoding of a rotating shaft in which a polygonal mirror having a

number of facets is mounted to the shaft and a light beam is directed towards the facets.

The facets of the polygonal mirror reflect the light beam such that a light spot is created on

a linear array detector. An analog-to-digital converter is connected to the linear array

detector for reading the position of the spot on the linear array detector. A microprocessor

with memory is connected to the analog-to-digital converter to hold and manipulate the data

provided by the analog-to-digital converter on the position of the spot and to compute the

position of the shaft based upon the data from the analog-to-digital converter.
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