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AWARDS ABSTRACT

The invention related to an optical implementation of neural associa-

tive memory systems, based on nonlinear, dynamical terminal attractors with

adaptive threshold values for dynamic iteration of unipolar, binary neuron

states •

An object of the invention is to provide a Terminal-Attractor Based

Neural Associative Memory (TABAM) system which, unlike the prior-art

terminal attractor system of M. Zak, "Terminal Attractors in Neural

Networks," Vol. 2, pp. 259-274, NPO-17832 (1989), is not defined by a

continuous differential equation and therefore can be readily implemented

optically with an inner-product neural associative memory of H.K. Liu,

"Optical Inner Product Neural Associative Memory," NPO-18491, (1991).

This objective is achieved in an optical neural network shown in FIG.

10, where a set of N-tuple neuron-state vectors V={u m, m=l,2,...M_ are
stored as terminal attractors I i, in which the iterative neural dynamics

are given by

N

/

xl : riog(xj)+Zi
j'1

where Tij is the ith row and jth column element of a weight matrix, and

g(xi) xs a sigmoidal threshold function, where

m

11 = _ a m [g(x i) -U_] I/3 exp [-_ [g(x i) -u_] 2} .

N

am = _-i u_g(xj)

is a parameter that is the inner product between one of the stored vectors

and a computed vector of a preceding iteration that is a similarity between

one of the stored vectors and the computed vectors, _ is a constant _m,

and g(xj) is a sigmoidal function of tanh axj, where lima..g(x j) is a binary

component.
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Yet another object of this invention is to provide a unipolar inner-

product TABAM (UIT) and a crosstalk reduced inner-product TABAM (CRIT).

The UIT is implemented in accordance with the above equation wherein

threshold computed values are employed and wherein an ith component of a

state vector x i at time t+l is given by

M

xi(t+1) = _ uT _mCt)+_i,
m-I

where the terminal attractor is given by

M

±i = ¢ 1/'8''¢ ,

6_(t) = exp -9 [g¢xi¢t))-uT] 2 ,
"n

N

(_m(t) = _=i D_g(xj(t) ) ,

g(xj(t)) = II (l+exp(-a[xj(t)-@(t)])),

is a nonlinear sigmoidal function. The constant a in the sigmoidal

function is an activation function which determines a slope of the nonlin-

ear sigmoidal function and 8(t) is a threshold value given by

M

/11-1

Thus, the UIT provides a thresholding means for implementation of

unipolar TABAM. For the CRIT, the model is given by

M

xiCt+_)=_ a'¢t)_¢ t)[¢i+8"(t))_7+g(x_(t))_'(t)]
m'l

a

This equation indicates that the crosstalk between the nonorthogonal stored

vectors is exponentially weighed and reduced by the exponential term 6m(t).

The property of the basin of terminal attractors is controlled by the value

of _ in 6m(t). Using this CRIT model, the retrieved state vector is highly
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likely to be placed in a correct basin. The threshold can be set in a

manner similar to that used for the UIT as follows:

M

FIG. 1 is a plot of _ = uk to show phase flow in the neighborhood of

regular and terminal attractors. FIGs. 2a and 2b are respective plots of

relaxation time, ti, versus initial value of u - u i for regular and

terminal attractors. FIG. 3 is a diagram for the architecture of a

terminal-attractor based neural network using a photodetector array PDA,

a sigmoidal function g(x i) and a connectivity mask T_._j FIGs. 4(a) and

4(b) illustrate diagrammatically the architecture for two optoelectronic

neural networks employing electronically addressable and programmable

spatial light modulators (SLM) panels for TABAM implementation with one-

dimensional input. FIG. 5 is a schematic diagram of an optoelectronic

implementation of a TABAMwith two-dimensional input neuron-state vectors.
FIG. 6 illustrates diagrammatically the inner-product operation using two

transmissive liquid-crystal SLMs. FIG. 7 illustrates a dynamic logistic

(sigmoidal) function with a sharp transition at x i = 8 (adaptive thresh-

old). FIG. 8 illustrates in a graph how the adaptive threshold, 0, can be
set to achieve the maximum noise immunity in the system, and FIG. 9

illustrates an experimental set-up used to demonstrate the feasibility of

the optical XOR operation in the system of FIG. 10.

The novelty of the invention resides in the provision of the terminal

attractor I i. That is basic to the UIT and the CRIT because the terminal

attractor, I i used in each iteration. Consequently, basic to this
invention is a TABAM which, unlike that of Zak, supra, can be implemented

optically to provide a neural dynamic system having finite relaxation

times, no spurious states, and virtually infinite stability for use in

real-time, high-density associative memory applications.
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UNIPOLAR TERMINAL-ATTRACTOR BASED NEURAL

ASSOCIATIVE MEMORY WITH ADAPTIVE THRESHOLD

ORIGIN OF INVENTION

The invention described herein was made in the

performance of work under a NASA contract, and is

subject to the provisions of Public Law 96-517 (35 USC

202) in which the contractor has elected not to retain

title.

i0

TECHNICAL FIELD

The invention relates to a neural associative

memory system based on nonlinear, dynamical terminal

attractors with adaptive threshold values for dynamic

iteration of unipolar, binary neuron states.

BACKGROUND ART

One of the major applications of neural networks

is in the area of associative memory. The avalanche

15 of intensive research interests in neural networks was

initiated by the work of J.J. Hopfield, "Neural Net-

works and Physical Systems with Emergent Collective

Computational Abilities," Proc. Nat. Acad. Sci, USA,

Vol. 79 p. 2254-2258 (1982), U.S. Patent No. 4,660,166

20 in which the associative memory is modeled with a

neural synaptic interconnection matrix and encompasses

an interesting computation scheme using recursive,

nonlinear thresholding. Further investigation report-

ed by R.J. McEliece, E.C. Posner, E.R. Rodemich, S.S.

25 Venkatesch, "The Capacity of the Hopfield Associative

Memory," IEEE Transactions on Information Theory, Vol.

T-33, pp. 461-482 (1987); and B.L. Montgomery and

B.V.K. Vajaya Kumar, "Evaluation of the use of Hop-

field Neural Network Model as a Nearest Neighbor
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Algorithm," Appl. Opt. Vol. 25, pp. 3759-3766 (1986)

reveals that the storage capacity of the Hopfield

Model is quite limited due to the number of spurious

states and oscillations.

5 In order to alleviate the spurious states prob-

lems in the Hopfield model, the concept of terminal

attractors was introduced by M. Zak, "Terminal Attrac-

tors for Addressable Memory in Neural Networks," Phys.

Lett. Vol. A-133, pp. 18-22 (1988). However, the

10 theory of the terminal-attractor based associative

neural network model proposed by Zak determines that

a new synapse matrix totally different from the

Hopfield matrix is needed. This new matrix, which is

very complex and time-consuming to compute, was proven

15 to eliminate spurious states, increase the speed of

convergence and control the basin of attraction. Zak

(1988), supra, and M. Zak, "Terminal Attractors in

Neural Networks," Neural Networks, Vol. 2, pp. 259-274

(1989)

20 Zak's derivation shows that the Hopfield matrix

only works if all the stored states in the network are

orthogonal. However, since the synapses have changed

from those determined by Hebb's law, Zak's model is

different from the Hopfield model, except for the

25 dynamical iteration of the recall process. The

improvement of the storage capacity of the Hopfield

model by the terminal attractor cannot be determined

based on Zak's model.

More recently, for the purpose of comparing the

30 Hopfield model, both including and excluding a termi-

nal attractor, a terminal-attractor based associative

memory (TABAM) model has been proposed which incorpo-

rates binary neurons into the synaptic matrix deter-
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mined by Hebb's law in the same way as the Hopfield

model. That work has been disclosed in a paper by

H.K. Liu, J. Barhen and N.H. Farhat, "Optical Imple-

mentation of Terminal Attractor Based Associative

5 Memory," Appl. Opt., Vol. 31, pp. 4631-4644, August

i0, 1992, which by this reference is incorporated

herein and made a part hereof. Among the several

techniques proposed for optical implementation of the

terminal attractor, the most important includes the

I0 application of the inner-product approach first

proposed by S.Y. Kung and H.K. Liu, "An Optical Inner-

Product Array Processor for Associative Retrieval,"

Proc. SPIE, Vol. 613, pp. 214-219 (1986) and later

fully implemented by H.K. Liu, U.S. Patent Application

15 Serial No. 07/880,210 titled "Optical Inner-Product

Neural Associative Memory," which by this reference is

incorporated herein and made a part hereof. Also

included among the several techniques proposed for

optical implementation of the terminal attractor is

20 the exclusive-or (XOR) operation of the liquid crystal

television spatial light modulator (LCTV SLM) de-

scribed by H.K. Liu and T.H. Chao, "Liquid Crystal

Television Spatial Light Modulators," Appl. Opt., Vol.

28, pp. 4772-4780 (1989).

25 The complexity of the optical implementation of

a TABAM is discussed in the 1992 paper by Liu, Barhen

and Farhat. In general, optical implementation of

subtraction increases the complexity of a TABAM

system. Consequently, a unipolar neuron model, which

30 has only 1 and 0 as binary states, instead of i, 0 and

-i would be more suitable for implementation of a

TABAM, but that would require optical implementation
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without subtraction or negative numbers normally

encountered in a TABAM.

5

i0

15

2O

STATEMENT OF THE INVENTION

An object of this invention is to provide a TABAM

system which, unlike the complex terminal attractor

system of Zak, supra, is not defined by a continuous

differential equation and therefore can be readily

implemented optically.

A further object is to realize such a TABAM by an

optical implementation of an inner-product neural

associative memory.

Yet another object of this invention is to

provide a unipolar inner-product TABAM (UIT) and a

crosstalk reduced inner-product TABAM (CRIT). The UIT

provides a thresholding means for implementation of a

unipolar TABAM. The CRIT provides a means for trans-

forming the input state vector into the correct basin

of the stored vector; then it uses the terminal at-

tractor to accelerate the convergence. In both the

UIT and CRIT, a dynamical logistic function is provid-

ed for adaptive thresholding the output of each

dynamical iteration of the recall process.

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plot of _ = uk to show phase flow in

the neighborhood of regular and terminal attractors.

FIGs. 2a and 2b are respective plots of relax-

ation time, ti, versus initial value of u = ui for

regular and terminal attractors.

FIG. 3 is a diagram for the architecture of a

terminal-attractor based neural network using a
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photodetector array PDA, a sigmoidal function g(xl)

and a connectivity mask Tij.

FIGs. 4(a) and 4(b) illustrate diagrammatically

the architecture for two optoelectronic neural net-

5 works employing electronically addressable and pro-

grammable spatial light modulators (SLM) panels for

TABAM implementation with one-dimensional input.

FIG. 5 is a schematic diagram of an optoelec-

tronic implementation of a TABAMwith two-dimensional

10 input neuron-state vectors.

FIG. 6 illustrates diagrammatically the inner-

product operation using two transmissive liquid-

crystal SLMs.

FIG. 7 illustrates a dynamic logistic (sigmoidal)

15 function with a sharp transition at xl = 8 (adaptive

threshold).

FIG. 8 illustrates in a graph how the adaptive

threshold, e, can be set to achieve the maximum noise

immunity in the system of FIG. I0.

20 FIG. 9 illustrates an experimental set-up used to

demonstrate the feasibility of the optical XOR opera-

tion in the system of FIG. 10.

FIG. 10 illustrates an optical inner-product

neural network system with thresholding in accordance

25 with the present invention.

30

DETAILED DESCRIPTION OF THE INVENTION

In the neural network associative memory model

introduced by Hopfield, supra, the number of vectors

that can be stored are limited. The capacity estima-

tor by McEliece, supra, was based on the assumption

that m of the randomly chosen n-tuple binary bipolar

vectors are used for storage. When the network is
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15

20

25

30

probed by one of the possible n-tuple vectors which

are less than a Hamming distance n/2 away from the

fundamental memory, the maximum asymptotic value of m

can be no more than n/(4 log n) as n approaches

infinity.

The limitation of the capacity of the Hopfield

model is partially due to the existence of spurious

states. The spurious states arise in several forms.

Most commonly seen spurious states are those stable

states that are not originally stored. In terms of

phase space terminology, these are false attractors

trapped in the local minima in the energy landscape.

Another problem is that there are states that are

supposed to converge to certain stored states, but

instead converge to other stored states that are more

distant. Further, Montgomery and Kumar (1986), supra,

pointed out the existence of oscillating states that

also affect storage capacity. However, by letting the

diagonal terms be naturally determined in the inter-

connection matrix instead of setting them to zero, the

oscillating states mostly disappear. In addition, the

model is found to be convenient for optical implemen-

tation. J.S. Bayley and M.A. Fiddy, "On the use of

the Hopfield model for optical pattern recognition,"

Opt. Commun., Vol. 64, pp. 105-110, (1987); G.R.

Gindi, A.F. Gmitro and K. Parthasarathy, "Hopfield

model associative memory with nonzero-diagonal terms

in memory matrix," Appl. Opt., Vol. 27, pp. 129-134

(1988); and H.K. Liu, T.H. Chao, J. Barhen and G.

Bittner, "Inner-product optical neural processing and

supervised learning," First Annual Conference of the

International Neural Network Society (INNS), Boston,

Mass., September 6-10, 1988.
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To increase the storage capacity of the neural

network, one must reduce or eliminate the spurious

states. A new type of attractor called a terminal

attractor, which represents singular solutions of a

neural dynamic system, was introduced by Zak (1988,

1989), supra, for the elimination of spurious states

in the associative memory. These terminal attractors

are characterized by having finite relaxation times,

no spurious states, and infinite stability. They

provide a means for real-time high-density associative

memory applications and potential solutions for

learning and global optimization problems.

The Zak terminal-attractor model assumed continu-

ous variable representation of neural states in the

neural dynamic equations. Also, sigmoidal thresh-

olding functions were assumed. These assumptions

present difficulties for optical implementations. To

implement the terminal-attractor model, modifications

to the basic Zak model are necessary.

The purpose of the following is to describe

briefly the basic idea of terminal attractors, to

modify these attractors for binary neural state

representations for associative memory, and then to

disclose relevant optical implementations.

25

30

I. Theoretical Discussions

In the following theoretical discussions, the

basic characteristics of the terminal attractor is

first briefly presented, and then it is shown how to

apply the attractor to nonlinear neural dynamic

systems.
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A. Terminal Attractors vis-a-vis Regular Attractors _

The concept of terminal attractors described by

Zak (1988, 1989), supra, used a differential equation,

d = uk, (1)

It follows that

d_
ku k-l, (2)

du

which is plotted in FIG. 1 with k as a parameter.

If k > i, dd/du=O as u_0, and u=O is called a

In contrast, if k = 1/3, 1/5,...regular attractor.

i/(2n+l), then

d_
m-_OO

du
as u-'O,

10

Therefore u=O is called a terminal attractor, which is

used to describe rapid convergence to an attractor

point.

The relaxation time for a solution with the

initial condition u0 is

fu u-O k)to = (du/u
0

-- __U 1-k ] u'0

(l-k) "0
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Uo1-k [u 1-k] (3)
(l-k) - lim

From Equation (3), it is seen that to-_ as u_O for

k>l and

UJ l-k)

to = (l-k)

for k=i/3, i/5,..., i/2n+l) or simply for k<l in

5 general.

In FIGs. 2a and 2b, the relaxation time ti is

plotted versus the initial values of u=u i for both the

regular and the terminal attractors, respectively. It

is clear that the relaxation time approaches infinity

10 for the regular attractors, meaning that u never

intersects the solution u=0. In contract, for the

terminal attractors, u(t=O)=u i decays to u=0 at

t=ti,u(t=O)=u 2 decays to 0 at t=t 2, and so on, all in

finite times. This decay distinguishes the terminal

15 attractors from the regular attractors. However, the

Lipschitz condition for Equation (i) is violated for

k<l, as is seen from Equation (3).

20

25

B. Terminal Attractors for Associative Memory

As just noted above, one of the fundamental

problems of the Hopfield associative memory model is

the existence of spurious states or the trapping of

neural states in local energy minima of the phase

space. For this reason, statistical mechanical

models, such as simulated annealing, have been pro-

posed to permit uphill jumps in the phase space so

that the state of the network can be pumped out of the
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i0

local minima in order that it eventually reach the

global minimum. In spite of the fact that this is a

slow procedure, it is useful for applications in
solving optimization problems. Therefore, the follow-

ing discussion is confined to the use of terminal

attractors to solving associative memory neural
networks.

Let X=[xm,m=l,...M] denote a set of M linearly

independent vectors in RN; then assume that the neural

network for the memorization of X is governed by the

following nonlinear dynamic equation:

N M

iti + aix i = T;jg -  T(xi- xf)k
j-I m-i

m x 2]x exp[-_i( i - x_) , (4)

15

20

25

where ai,Gi m, and _i m are positive constants and

k=(2n+l) -I where nzl. For simplicity and without

losing generality, assume that n=l and k=i/3 for the

terminal attractor. The term Tij is the ith row and

jth column element of the weight (synapse) matrix, and

gi is a threshold function. A sigmoidal function is

usually chosen for gi to satisfy the differentiability

requirements for the continuous variables.

According to the work of Zak (1989), supra, the

addition of the terminal attractor term in Equation

(4) has to be based on the following conditions in

nonlinear neural dynamics: (a) the Lipschitz condi-

tion at a fixed point is violated and (b) the Hop-

field-type memory synaptic interconnection matrix is

generally no longer valid unless the stored states are

all mutually orthogonal. However, in the present
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invention, the Hopfield matrix is kept the same as

that shown in Equation (4) for the following reasons.

The exact reason for evoking the terminal attractor is

to see whether the new term can improve the storage

5 and retrieval capability of the neural system as

compared with the system without the new term. If the

memory matrix term in the model is changed, a highly

sophisticated computation of the matrix itself must be

made which, according to the theory derived by Zak, is

i0 just as complicated as the computation of the whole

model. Hence, not only can optics hardly be made

feasible for the implementation of the new model

because nonlinear differential equations are involved,

but also the impact of the terminal-attractor term on

15 the Hopfield model cannot be determined because the

new system is no longer related to a Hopfield neural

network.

For optical implementation, there is already a

large amount of research available that is based on

20 the Hopfield model. The simple addition of the

terminal-attractor term, as shown in Equation (4),

represents a modification of the Hopfield model and

the effort can therefore be focused on this part only.

Nevertheless, the reason of expediency alone is

25 insufficient because the basic theory is against such

a simpler approach. To see whether the model of

Equation (4) is justified, a computer simulation on

the terminal-attractor based associative memory

(TABAM) model was made with unipolar binary-neuron

30 states and an adaptive threshold as described below.

The computer-simulation results show that at least

with a small number of neurons and with an almost

equal number of stored states, perfect convergence to
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i0

the correct stored states is achieved based on an

exhaustive search with all possible input states and

all combinations of possible stored states. In the

computer simulation, the value of n=l (and therefore

k=i/3) was used for the terminal-attractor term.

Because of the choice of a larger n, for different k

values, the computation would be more complicated and

the optical implementation more difficult. However,

a larger number of neurons could be selected with

mainframe computers for the simulation. The present

simulation with n=l offers sufficient reason to

proceed with an optical implementation of the TABAM.

15

20

25

C. Binary-Data Representation for the TABAM

i. Basic Assumptions

In the hardware implementation of neural networks

for associative memory, the input pattern and output

pattern are usually represented in binary form. In

the Hopfield model, bipolar binary representation is

usually assumed, and so the stored vectors are given

in binary form. However, in Equation (4) it has been

assumed that the stored vectors have continuous values

and that gj(xj) also has continuous values, so modifi-

cations are required before this equation can be used

for associative memory implementation. A modified

model is given below.

Assume that a set of binary N-tuple vectors

V={um,m=l,2,...,M} are stored as terminal attractors

in the neural net. The neural dynamics are described

by

N M

÷ aix : - a [g xl)- i/3
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x exp{-_7[g(x i) - uT]}. (5)

Also assume the sigmoidal function:

g(xj) = tanh axj; (6)

5

lima_®g(xj) is then a binary component.

2. Stability

The proof of stability of the binary-data-repre-

sented TABAM requires a linear approximation of

Equation (5). The linearization is accomplished by a

first-order approximation of a Taylor-series expan-

sion:

N

_i + alxl "Tiiu7 + _ TiJ lim g(xj)
j,i a_-

+ lim aTij (xl-x _) -a7

a_u cosh2axi

x exp {-_7[lim g(x i) -u_] a }



F93173 14

× o:]"'}

x exp [-_T'(ui-uimm'._2].(xi_xf) . (7)

M

m I/m

x lim a _2_T,
a-- cosh2ax/m

Note that at xi=xi m and at g(xi)-_ui m as a_m,

xi = (_)xi+ finite terms

Hence the system is infinitely stable at Xi=Xi m.

i0

D. Assumptions for the Optical Implementation of the

Terminal-Attractor Based Associative Memory

The above proof of stability for the binary-

number-represented terminal-attractor based neural

dynamic system is essential before hardware implemen-

tation is considered. Further assumptions will be

required for the optical implementation of the TABAM.

These assumptions are related to the determina-

tion of the values of _j, am, _m, and the threshold

used in the function g() in Equations (5) and (6).
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First we discuss Tij. The simplest assumption is

that Tij may follow Hebb's rule used in the Hopfield

model:

M

= DiU j •
m-1

When this term was used in the Hopfield model, spuri-

5 ous states were found. For the sake of comparing the

effects of the reduction of spurious states in the

TABAM on the same basis, the same assumption should be

kept. Other learning rules may be used with the TABAM

for Tij , such as the one suggested by F.J. Pineda,

I0 "Generalization of back-propagation to recurrent

neural networks," Phys. Rev. Lett., Vol. 59, pp. 2229-

2232 (1987). However these Tij's will require exten-

sive computations by digital computer as well as a

decision on whether the spurious states exist in these

15 models when the terminal attractors are not invoked.

Therefore, the following discussion leaves the options

of the selections of Tij open for any future implemen-

tation schemes.

The purpose of _ and the exponential term in the

20 terminal attractor is to provide a Gaussian distribu-

tion peaked at g(x i) = uT. When g(x i) moves away from

ui, the exponential function decays to zero. This

term maximizes the influence of the terminal attractor

m
for g(x i) that approaches u i. However, it also adds

25 complication and difficulty to optical implementa-

tions.
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If _ = 0, the exponential term becomes i. This

is equivalent to stating that g(x i) = V_ for all m.

This is obviously impossible unless there is only one

stored state, i.e., M = I. Therefore, _>0.

One way of determining the parameter a T is given

as follows. In the Hopfield model, the activation-

potential component x i in the iteration is given by:

N

N M

j-i m-1

One may rearrange the terms and obtain an inner-

product formalism of this model by letting

m N

g(xj)
m-1 J-I

M

,. (lo)
= _ _mUi

m-1

i0 where
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N

a =

5

which is the inner product between one of the stored

vectors and the computed vector. The parameter is a

measure of the degree of similarity between the

computed vector and one of the stored vectors.

To emphasize the impact of the terminal attractor

represented by a stored vector that is most similar to

the computed vector during iteration, it is suggested

that the parameter a_ be chosen as

m

gi = gm, i = I,...,N. (11)

10

With this choice, the stability of the dynamic

system is not affected because the term leading to

infinity at g(x i) = u_ is not changed. With this

selection of parameters and without loss of generality

by letting _i = l at steady state (;_i= 0), Equation

(5) may then be written as

N M

'X i =

X exp{-_7[g(xi) -u7] 2}

N

= _-1 Tljg(xj) +11 (12)
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m

I i = _ am[g(xi ) -DT] I/3 exp{-pT[g(xi)-v712} .
m-i

Equation (12) is generic in the sense that Tij is not

specified.

In the following discussion, further approxima-

tions are made and a simpler model that is more viable

for optical implementations is derived. Assume that

the Hebbian rule as shown in Equation (8) is used for

Ti9. Then based on Equations (i0) and (ii), Equation

(12) may be written as

M M

x':  °Eg(xl)- 71i/3
m-1 m-1

x exp {-PT[g(x,)-u_]2} (13)

10

_ will now be considered. In the same spirit of

determining a_, it is assumed that the exponential

term in Equation (13) may be set in a collective

manner'.

N

exp {-_ [g(xi) -u_] 2} -exp {__m_ [g(xi) -u_] 2},

15

_ = Om = a constant

In addition, if it is assumed that unipolar binary

numbers are used for the neuron-state vectors, the

factor of 1/3 in the exponential term of Equation (13)
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may be dropped without changing the value of the

equation.

Equation (13) may then be written as

xi:_ emuT+_ emexp P" [g(x_) -uT] 2 x [uT-g(x i)] . (14)
m-i m-i -

In terms of vector representation, Equation (14) may

be written as

M

x' = _ [v'.g(x) ]
M-I

× (Vm+{exp[-_mlVm-g(X) 12]} [Vm-g(X)]), (15)

10

15

20

where X" is the updated neuron activation-potential

vector and g(X) is a thresholded vector where the

function g is applied to every term of X in taking the

threshold.

Equation (15) involves the inner product of Vm

and g(X) and the subtraction between Vm and g(X), but

it is only valid for unipolar binary representation of

the vectors. This will be noted again in the discus-

sion below of a unipolar TABAM with adaptive threshold

and perfect convergence.

The convergence of the iteration not only depends

on the data representation, the number and the content

of the stored vectors, the initial input, the synap-

ses, and the parameters am and _m, but also critically

depends on the thresholding value in the function g.

In binary-state representations, it is most convenient
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to use the sigmoidal function as the thresholding

function, but it can be shown that convergence depends

on the threshold. Unfortunately, it is quite diffi-

cult to determine the threshold value based on rigor-

ous analytical results. Therefore, with the assis-

tance of computer simulation, the empirical method

will be used for the selection of the threshold.

II. Optical Implementation of the Terminal-Attractor-

Based Associative Memory [TABAM]

i0 Two types of optical architectures for the

implementation of the TABAM will now be discussed.

One type is based on the multiplication of a one-

dimensional input vector with a two-dimensional

matrix; the other uses two-dimensional input vectors.

15 The architectures described are based on state-of-the-

art optics and electronics hardware described by, for

example, N.H. Farhat, "Optoelectronic analogs of self-

programming neural nets," Appl. Opt., Vol. 26, pp.

5093-5103 (1987)]

20 A. Optical TABAM with One-Dimensional Input Neuron-

State Vectors

If the input vectors are in one-dimensional form,

a reasonable approach to hardware verification of the

TABAM is shown in FIG. 3. Theoretically, the termi-

25 hal-attractor term Ii of Equation (12) may be repre-

sented by the light-emitting diode array LEA2, and the

one-dimensional input vector ui is applied by the

light-emitting diode array LEA1 represented by a row

of dots, one dot for each diode. The indices i and j

30 run from i to N. These LEA's may be replaced by

acousto-optic cells with coherent illumination. The

. output is precisely as given by Equation (12).
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Two embodiments of an alternative implementation

of the TABAM are shown in FIGs. 4a and 4b. In FIG.

4a, two light (charge) integrating photodetectors PD +

and PD- are connected to a differential amplifier DA

5 to provide the output X' i. Both spatial light modula-

tors SLMI and SLM2 are liquid crystal TV (LCTV) panels

electronically addressable and programmable with SLM2

displaying ternary connectivity mask Tij. It should be

noted that SLMI is shown with a first vector stored

10 on the top two rows and subsequent vectors stored on

succeeding pairs of rows, and that of the top row in

each pair of rows is focused onto the photodetector

PD + and the bottom row onto the photodetector PD-. The

reasons for this will become apparent from the de-

15 scription of operation below.

In FIG. 4b implementation is the same except a

self-scanning charge-coupled device array CCD is used

w

with odd-even photosite outputs for the output X i .

!

The advantage of this CCD for the output X I will be

20 evident from the description of operation below.

Thus, in FIGs. 4a and 4b, two electronically ad-

dressed spatial light modulators (SLMs) designated

SLM1 and SLM2 are used to represent the state vector

u(j,j = 1,2...N) and the connectivity matrix rij,(i,j

25 = 1,2...N) respectively, with N being the number of

neurons in the network. One column on the SLM2 is

used for the input of li, which is calculated by a

computer. Assume that both SLMs can be refreshed at

a video rate from at least one computer controller CC

30 with video memory. The two SLMs are identical and are

deployed in tandem (proximity coupled) by aligning

them so that pixels are in perfect registration. By
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30

using collimated spatially incoherent light for the

illumination, multiplication of the transmittance

patterns stored in the two SLMs is achieved. A

coherent fiber-optic faceplate can also be used to

proximity couple the two SLMs to minimize crosstalk

between pixels if this process proves to be problemat-

ic.

The state-of-the-art commercial SLMs, such as the

liquid-crystal TV (LCTV) spatial light modulator, are

available with approximately 200 x 200 pixels and an

achievable contrast of at least 30:1 on a rectangular

grid format. This availability permits the construc-

tion of neural network modules with an order of 100

neurons in these architectures. Larger neural net-

works can be formed by clustering several such mod-

ules. Clustering is expected to lead to some sacri-

fice in overall speed, but this may be an acceptable

price to pay for the advantage of being able to form

flexible neural networks of a few hundred to a thou-

sand neurons with available SLM technology.

In addition to the LCTV SLMs mentioned above,

other SLMs are also commercially available. A promis-

ing candidate for the electronically addressable SLM

in these architectures is the Semetex 256 x 256 pixel

magneto-optic SLM (MOSLM). A minimum contrast ratio

of 10000:1 has been reported for the MOSLM. Another

device that has recently become available is the

ferroelectric liquid-crystal SLM, which has 128 x 128

pixels, 100-Hz driving speed, and a contrast ratio

greater than I00:i. However, all of these devices

except the LCTV SLM are basically binary or trinary in

nature. If multiple values of the interconnection-

matrix component are to be represented, quantization
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would be needed. In that case, more pixels would be
required to represent one analog value, and the total

number of neurons that can be processed would be
reduced. The main drawback of the LCTV SLM is its

5 limited dynamic range and contrast ratio. However,

the combination of thin-film transistor technology
with special waveforms for driving pixels in the LCTV

SLMs has resulted in improved contrast and dynamic

range levels that are more suitable for realizing the
i0 Tij matrix in these architectures.

In the hardware operation, two LCTV SLMs (or

MOSLMs) or ferroelectric liquid-crystal SLMs can be

used in the first embodiment of FIG. 4a to realize a

neural network of approximately 60 neurons. The state

15 vectors are displayed on SLM1 in such a way that each

element of the unipolar binary-state vector uj, j =

1,2...N where N = 60 is assigned to four adjacent

pixels in two adjacent rows of SLMI. The vector uj is

displayed by using the two top rows to obtain the

20 activation potential of the first neuron in the

network. If the LCTV is used, its large composite

pixel size has the advantage of making alignment easy,

thus minimizing diffraction by pixels. Therefore,

crosstalk is reduced between pixels in the event that

25 proximity coupling of SLM1 to SLM2 is chosen in the

implementation. (Otherwise, an imaging lens can be

used for the multiplication.)

SLM2 is used to display the connectivity weights_

in the geometry shown. It is assumed that the dynamic

30 range of the SLM is sufficient to accommodate the

spread in weight values, which for the Hopfield-type

of storage ranges between -M and +M where M is the

number of entities. The bipolar values of the connec-
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tivity matrix are encoded by assigning positive values

to one row of SLM2 and negative values to the adjacent

row. The terminal-attractor term Ii is first computed

in accordance with Equation (12) and then applied to

the far-right column of SLM2. Light emerging from

these rows is focused with the aid of appropriate

optics (not shown) onto photodetectors PD + and PD- in

such a way that PD + collects light emerging from the

positive row and PD- collects light emerging from the

negative row of Tij. The photodetectors PD + and PD-

are followed by the differential amplifier DA compris-

ing two charge-integrating amplifiers whose outputs

are subtracted before the difference is sampled and

stored by the computer controller CC through its

analog-to-digital converter port. The outputs can be

subtracted at the instant the writing of the first two

rows of SLM1 and SLM2 is completed or at the end of

writing one complete frame in $LM1 and SLM2. This

subtraction ensures that the quantity sampled by the

computer is the activation potential of the first

neuron:

N

X/i = _. TijUj+I i, i:I. (16)

25

To sample and store the activation potential of all

other neurons in the net, the position of the two rows

of SLM1 on which Uj is displayed is lowered in steps

of two rows during each iteration. For each frame or

display of u9, Tij is also displayed on SLM2 and the

activation potential is measured and stored as previ-

ously described. In this fashion, and as the uj

display is moved from the top two rows to the bottom
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two rows of SLM1, the activation potentials for all N

neurons are sequentially generated, sampled, and

stored by the computer-controller. The time needed to

accumulate the activation-potential vector for these

N neurons equals N times the frame time of the SLMs.

For the LCTV SLM, the time is N x 30 ms or 1.8 s.

Once the activation-potential vector x' is measured,

the computer-controller CC computes the updated state

vector for the neural network:

u_q+1):g{x_ (q)} i:l,2,...N,q:O,l,2,3..., (17)

i0 where g{x_ (q)] designates the sigmoidal function of the

bracketed quantity. The updated state vector is used

next with the same procedure for generating the

activation-potential vector described above to obtain

a new state vector and so on. The above process is

15 repeated until the state vector converged to a stable

state. When this happens, the state vector of the

neural network in phase space or configuration space

is said to have converged to an attractor of the

neural network.

20 Before describing the second embodiment of FIG.

4b, note that the charge-integrating amplifiers in the

first implementation may not be required because of

the long pixel-relaxation time of the SLM, which is

typically of an order of i0 ms but can be as high as

25 i00 ms in some devices. Thus, in this case photode-

tectors PD + and PD" measure the activation potential

directly without the need of a time-integration

device, thereby simplifying the implementation pro-

cess. Addition simplification would be to present
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outputs of PD + and PD- directly to the computer-

controller where each is separately converted from

analog to digital form before the computer-controller

carries out the subtraction.

5 To speed up the operation and convergence time in

the first embodiment, it is possible to modify the

architecture as shown in FIG. 4b. In this embodiment,

a self-scanning CCD is used as a PD array to measure

the activation-potential vector in one video frame

time instead of the N frame times needed for the first

scheme. An N time-speed enhancement is therefore

achieved, which assumes that the CCD PD array can be

read out in one video frame time or less. CCD PD

arrays are available with bandwidths of 20 MHz or

15 more. This availability means that a device with 120

photosites each receiving light focused from the 120

rows of the Tij in SLM2 of the first embodiment can be

read in 6 _s or less, which is considerably shorter

than the 30 ms frame time of the utilized SLMs. The

20 state-update time of this scheme would therefore be

primarily limited by the frame time of the SLMs used,

or 30 Hz for the LCTV SLM. Note that CCD photosensor

arrays with a separate odd-even photosite readout,

such as that of the Recticon CCD arrays, are commer-

25 cially available. This readout feature would facili-

tate subtracting the outputs of positive and negative

photosite pairs to obtain the activation potential of

the neuron.

B. Optical TABAM with Two-Dimensional Input Neuron-

30 State Vectors

On one hand, architectures with one-dimensional

input neuron-state vectors are useful for the process-

ing of signals that are originally presented in one-
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dimensional form, such as radar, sonar, or seismic

wave data. Optical images, on the other hand, are

normally received in two-dimensional form. Although

two-dimensional images can be converted by raster

scanning to one-dimensional signals before processing,

a two-dimensional reconstruction is then required to

restore the image after processing. The processes

must have additional processing time and hardware.

For this reason, two architectures of the TABAM for

processing two-dimensional input neuron-state vectors

are proposed as follows.

N 4 to N 2 Interconnection Architecture

When the input neuron-state vectors are repre-

sented by a two-dimensional form of N2 pixels, the

interconnection matrix requires N 4 pixels. In this

case, Equation (12) is modified as

N N

k-1 i-1

M

a"[g(xi )-ui%],/3
m-I

- exp {p_j [g(xij )-ui_]_}, (18)

2O

where g(xij ) denotes a threshold ith row and jth column

component of a neuron-state vector arranged in a two-

dimensional matrix, and Tijkl represents a component of

the N 4 interconnection matrix.
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Recently a N 4 to N 2 architecture was discovered

and experimentally demonstrated by T. Lu, S. W, X. Xu

and F.T.S. Yu, "Optical implementation of programmable

neural networks," Optical Pattern Recognition, H. Liu,

5 ed., Proc. Soc. Photo-Opt. Instrum. Eng., Vol. 1053,

pp. 30-39 (1989). This architecture can be modified

to implement the TABAM with a two-dimensional input.

As shown diagrammatically in FIG. 5, the weight matrix

is presented in an N x N array with elements

i0 _ikl'_2kl,'''_ik1,_2kl .... T_kl' each of which also

has N x N pixels. The input neuron-state vector is

represented by an SLM with N x N pixels. The inter-

connection between the weight matrices and the input

state is accomplished through the lenslet array Lli ,

15 L12, and so on, where Lll connects Tll kltO the input,

and so on.

The terminal-attractor term lij is computed by a

digital computer and added to the output term detected

by the N x N PD array. The sum is thresholded before

20 it is applied to the input SLM. The system can be

activated with any initial input vector.

If a commercially available video monitor with

1024 x 1024 pixels is used fore the weight matrix, a

maximum of 32 x 32 neurons can be processed. The

25 advantage of the system is the dynamic range and

number of gray levels (256) available in the video

monitor.

30

Inner-Product Architecture

An optical inner-product approach for neural

processing was proposed earlier by S.Y Kung and H.K.

Liu, supra, and fully implemented by H.K. Liu, Patent

Application No. 07,880,210 as noted hereinbefore.
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Before describing the inner-product approach, the

outer-product approach will first be briefly described

for contrast. Assume that an integral number M of N-

tuple binary vectors Vi(i=l,...M ) are stored in a

system where M<<N.

A computation model with iteration, thresholding

and feedback for the associative retrieval of any one

of the stored vectors by an arbitrary input vector was

proposed by J.J. Hopfield (1982), supra. In the

Hopfield model, the vectors are stored in an outer-

product matrix:

M

i-I

15

2O

25

where t denotes the transpose of the vector V i-

In the recall process, an arbitrary input vector

V is assumed, and the following steps are followed:

Step (i): Vector-matrix multiplication:

W V=Z

Step (2): Thresholding by an operator 0:

V*=T 0 [Z]

Step (3): Iteration:

Replace the input vector V in Step (i) by V* and

repeat until convergence is reached. The V* at that

time is the correct output vector

An optical implementation of the outer-product

process was first demonstrated by Psaltis and Farhat,

"Optical Information Based on an Associative Memory

Model of Neural Nets with Thresholding and Feedback,"

Optics. Lett., Vol. I0, page 98, et seq., (1985).
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In contrast to the outer-product approach, the

steps of the inner-product operation are:

Step (i): Compute a vector-vector inner product scalar

a:

_i = _V

where Vi_ is the ith stored vector, i=l,...,M, and V is

the input vector.

Step (2): Weighting:

Step (3): Vector summation:

M

zoZ 
i'l

Step (4): Thresholding by an operator @:

Step (5): Iteration: accomplished by substituting the

threshold Z of Step (3) for the input vector V and

repeat.

The thresholding and iteration operations are

similar to those described in the outer-product

process. Since the process involves basically the

inner-product between the input vector and the M

stored vectors, this process is called an inner-

product model. An optical implementation of the

inner-product model is discussed below as an example

of this invention.

By using Equation (15) it is possible to imple-

ment the TABAM based on the inner-product approach as

shown in FIG. 6, which will be described in detail

following an experimental set-up shown in FIG. i0. In

this case, the weight matrix does not have to be

precalculated because no weight matrix is used. The

lack of the explicit expression of the synapses makes
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this approach different from the conventional concept
of a neuron network. Nevertheless, both analysis and

computer-simulation results show that the inner-

product and outer-product of the Hopfield model are

equivalent if in the latter model the weight matrix is
not thresholded and the diagonal terms are not set to

zero.

One practical advantage of the inner-product

approach is that with the same space-bandwidth product

capacity of SLMs, the inner-product computation allows

processing many more neurons than the outer-product
computation of the Hopfield model where vector-matrix

multiplication is performed. In contrast, some

learning algorithms such as the error backpropagation
for distributed weight correction cannot be applied

because of the nonexistence of a weight matrix.

Attention is now called to the implementation of

the approximated model based on Equation (15). From

an optics point of view, the exponentiation and
subtraction shown in the equation are difficult to

implement. In the optoelectronics approach, these two

operations can best be handled by electronics. For

easier implementation, Equation (15) should be treated
further. It is rewritten as follows:

M

X'=_ [Vm'g(X) ] {l+exp[-_mlV'-g(X) 12] }V m
m-i
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M

- _ Vm.g(X) exp [-_mlVm-g(X) 12]g(X) • (19)
m-1

Equation (19) contains two types of operations,

namely the inner-product operation and the exclusive-

OR operation between Vm and g(X). In addition, for

unipolar positive binary representation, it is shown

that

Ivm - g x l. Iv - a(x)i2

in each of their components.

In an optical implementation based on the use of

the LCTV SLM, i.e., based on the rotation of the

polarization orientation of the input light by the

twisted nematic effect of the liquid-crystal molecules

in the SLM cell, by appropriately orienting the input

and output polarizers, the inner product and the

exclusive-OR between two inputs can be obtained. FIG.

6 depicts the inner-product operation. The first and

second inputs are written on SLM1 and SLM2, respec-

tively. For simplicity, only four cells are shown in

this discussion. A numeral 1 shown on the cell means

that the liquid-crystal molecules will not rotate the

polarization orientation of the light passing through

it. A numeral 0 shown on the cell means that the

liquid-crystal molecules will rotate the polarization

of the light passing through it by 90 ° (in an ideal

case). The arrows in space represent the orientation

of the polarization of light. Under the conditions

shown in the figure, when the polarizer P and analyzer

A are oriented vertically and in parallel, the inner
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product between the first input and the second input
results as shown in Table i.
Table i. Truth Table for an Inner Product Using the

Polarization Effects in a Liquid-Crystal SLM

Input 1 Input 2 Output

i0

1 0 0

0 1 0

1 1 1

0 0 1

15

20

Notice in Table 1 that 0 x 0 = 1 in the unipolar case

is equivalent to -i x -i = 1 in the bipolar case.

Because of this result, the operation is equivalent to

the inner product between the two inputs, which is a

measure of the degree of resemblance of the two

inputs. In contrast, if the analyzer of FIG. 6 is

oriented perpendicular to the polarizer, an exclusive-

OR operation between the two inputs results. This

relationship establishes

linputl_input21=l_(inputl).(input2) ' (20)

25

where the multiplication dot denotes the inner prod-

uct.

Taking advantage of Equation (20), Equation (19)

may be rewritten as

M

X/=_ [Vm'g(x) ] (l+exp{-_m[N-Vm'g(X) ] }) V m
m-1
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M

- _ [Vm'g(X)]exp{-_m[N-V_'g(X)] }g(X)

M

= _ (,'{l+exp [-_m(N-a"(N-a") ] }V"
m-1

M

- _ _mexp [-_m(N-_a) ]g(X) , (21)
m-i

where _m = vm'g(X) and N is the maximum value of

vm'g(X) • Let

_'exp[-p'(N-_m)]=y m, (22)

then

M

x' = [ v -y'g(x) ]. (23)
m-I

i0

15

In considering the optical implementation of Equation

(23) there are two challenging problems. The first is

the realization of the exponential and subtraction

parts in Equation (22). The second is the performance

of the subtraction in Equation (23). Because the

first operation is a scalar-value operation, it is

feasible to simply let a digital computer such as a

personal computer (PC) perform the subtraction.

The subtraction in Equation (23) can be carried

out much faster if it can be done optically in paral-

lel. The condition under which that subtraction can

be performed optically in parallel will now be ex-

plored. By examining Equation (23) it is found that

the result of the computation is normally greater than
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1 and may be less than 0 in some cases, such as when

a specific component of the stored vector is always 0
but the corresponding component of g(X) is not 0. It

will be recalled that by definition _m a ym. In

addition, based on the assumption that only unipolar

binary numbers are used to represent the neurons, the

threshold of the analog value of X' must be taken.

The transformed unipolar positive binary-neuron vector

is then used for the succeeding iterating operations.

If the threshold is set to be at least greater than

_ym, Equation (23) may then be expressed as

M

X' --_ [(a_+Y")v'÷Y'g(x) ] . (24)
m-1

15

2O

25

Thus, with this limitation on the threshold value, the

resultant unipolar positive binary-neuron vector will

be the same when the value of X' in either Equation

(23) or Equation (24) is used in taking the threshold.

However, the addition operation in Equation (24) is

easily realizable in optics, so it is that equation

that is implemented in an inner-product unipolar TABAM

architecture with adaptive thresholding which will be

described below with reference to FIG. 8. It can be

shown that from a theoretical point of view, the

restriction placed on the threshold is reasonable.

Nevertheless, the proper value of the threshold should

be determined empirically by computer simulation and

comparison with an optical experimentation.
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EXAMPLES AND EXTENSIONS OF A TABAM

In the following examples, the TABAM models are

described and the adaptive threshold values of the

TABAM are determined through theoretical derivations

in the following discussion.

As noted hereinbefore, it is difficult to imple-

ment subtraction using optics. To avoid subtraction,

an adaptive thresholding technique is used in the

TABAM examples. Before the adaptive thresholding

techniques are discussed, the TABAM model is briefly

reviewed. One assumes that the ith component of the

state vector x i at time t+l may be written as a

function of t (where t is an integer, a discrete

representation of the time steps) as follows:

M

x i(t+l) = _UT am(t)+li, (25a)
m-1

15 where

6re(t) = exp -_ [g(x i(t) ) - i ,
"s

(26c)

N

am(t) = _-I t)_g(xj (t) ), (25d)

where g(xj(t)) is a logistic (sigmoidal) function
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g(xj(t)) : i/ (l+exp(-a[xj(t)-O(t)])). (25e)

The constant a in the sigmoidal, or nonlinear

activation function decides the slope of the nonlinear

thresholding function and @(t) is the threshold. In

Equation (i), umi denotes the ith component of the mth

stored vector Vm, _ is a constant, and M and N are the

numbers of stored vectors and the number of neurons,

respectively. Based on the property of the unipolar

representation of a binary system, Equation (25a) can

be rewritten as

M

M-I

(26)

since

and

g(x i(t) )-U T = i, O, or -I

[g(x_(t))-uT]I/3= g(xi(t))-uT.

(27a)

(27b)

Unipolar Inner-Product TABAM (UIT) Model

Instead of implementing the subtraction in

Equation (26) optically, an adaptive threshold func-

tion is introduced following the modification of

Equation (26) as follows:

M

m-I

2O

Optical implementation of Equation (28) is referred to

as the UIT.

In Equation (28), a logistic function, as illus-

trated in FIG. 7 with an adaptive threshold 6(t), is
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used to perform the nonlinear transform such that the

output attains quasi-binary states, which are defined

when the constant a in the logistic function becomes

very large but is still finite. The logistic function

5 is continuous and has a large slope around the thresh-

old e(t). This will provide the terminal attractor

with a continuous logistic function in a binary

system. The selection of the constant a depends on

the numerical resolution in the system.

I0 The adaptive threshold _(t) will be determined

for an ideal case and then generalized for a realistic

case. In the ideal case, all of the stored states are

orthogonal to one another; hence, the system is

crosstalk-free.

15 When there is no crosstalk, the threshold 6(t) is

20

set as

25

8(t) = _m'(t)[_ + _m'(t)], (29)

where am(t) is the inner product between x(t) and the

mth stored vector, V m and

am(t) = 0 for all m _ m'.

Furthermore, the threshold 6 (t) is set according

to the following four possible cases:

_! r m a m"Case I: If Ui =I, and g(xi(t)) " 1 then xi(t+l) (t) (l+2_"'(t)).

m !

Case 2: If U i =0, and g(xi(t)) " 0, then x_i(t+l) " O.

_! (_ "
Case 3: If U i =1, and g(xi(t)) " 0, then xi(t+l) " (t) (l+Sm'(t)).

m ! am"
Case 4: If Ui =0, and g(xi(t)) " I, then xi(t+l) " (t)_"'(t).

In order to cause the states to converge to the

stored states, a threshold should be based on Equation

(29) for maximum noise immunity between cases (3) and
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(4) as shown in FIG. 8. The threshold is set between

the lower value of the desired output (state i) and

the higher value of the desired output (state 0). For

a more practical situation, the stored states are not

orthogonal to one another, so crosstalk often occurs

between similar stored vectors. For the nonorthogonal

case, 0(t) is set to be:

M

m-1

" lO

15

Crosstalk Inner-Product Terminal-Attractor (CRIT)

Model

When the crosstalk corrupts the desired state due

to the weighing process of the inner-product approach,

and because every stored vector contributes the inner

product to the summation in Equation (25) even though

it is quite different from the input vector (as long

as the inner product is not zero), the threshold O(t)

set by Equation (30) cannot provide an appropriate

thresholding mechanism. In order to reduce/eliminate

the crosstalk problem, a new model called CRIT is

presented as an example as follows:

M

xi(t+l)=_ am(t)8.(t)[(l+6.(t) )uT÷g(xi(t) )6m(t)]. (31)
m-i

2O Equation (31) indicates that the crosstalk be-

tween the nonorthogonal stored vectors is exponential-

ly weighed and reduced by the exponential term 6m(t).

The property of the basin of terminal attractors is

controlled by the value of _ in 6m(t), which will be
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i0

15

2O

discussed below in detail. Using the CRIT example,

the retrieved state vector is highly likely to be

placed in a correct basin similar to the effect

resulting from the multiplication between the weight

matrix and the nonlinearly activated input vector in

Zak's model. Then the corresponding terminal attract-

or forces the state vector to converge rapidly to the

bottom of the basin. This example does not need time

for training and is more suitable for optoelectronic

implementation for terminal attractors since the

stored vectors can be used directly. The threshold

can be set in a manner similar to that used in Equa-

tion (30) as follows:

m'l

Basic to the UIT and the CRIT is the terminal

attractor, Ii, used in each iteration. Consequently,

basic to this invention is a TABAM which, unlike that

of Zak, supra, can be implemented optically to provide

a neural dynamic system having finite relaxation

times, no spurious states, and virtually infinite

stability for use in real-time, high-density associa-

tive memory applications.

25

Computer Simulation

In order to test the effectiveness of the exam-

ples of UIT and CRIT using the adaptive threshold, a

computer simulation was used. The XOR logic operation

was used to detect the Hamming distance between the

state vector, x(t), and the stored vectors, Vm. The

input-output relationship of XOR operation is shown in

- Table 2.
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Table 2. Exclusive OR (XOR) Relationship

Input 1 Input 2 Output

1 1 1

0 1 0

1 0 0

0 0 1

i0

15

The Hamming distance between the state vector, x(t),

and the stored vectors can be computed by using XOR as

follows. For a unipolar system,

Because g(xi(t) is very close to 0 or i, and umi is 0

or i, Equation (33) is a reasonable approximation.

The Hamming distance between g(xi(t) and umi is shown

in Table 3.

m

Table 3. Hamming Distance Between g(xi(t)) and ui

20

g(x i(t) ) DT Ig(xi (t) )-UTI

25

1 1 0

0 1 1

1 0 1

0 0 0

Based on Tables 2 and 3, the Hamming distance is

found to be
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N N

N

5

i0

15

=N-urn (t), (34)

where

N

a'( t) --_ g(xi (t) )xoa o7.
i=l

Equation (34) provides a similar measure between

g(x(t)) and Vm and is equivalent to the inner product

of a bipolar system. The exponential term can be

calculated easily after the Hamming distance is

obtained.

G" (t) =G-Is['-"" ¢t)]

based on the definition in Equation (25).

(35)

Simulation Results

Based on the above, two computer simulation

programs were used to test the feasibility of the

models: (I) an exhaustive test program for simulating

every possible stored and input vectors in small-scale

networks of UIT and CRIT, and (2) a Monte Carlo

simulation code for testing randomly generated stored

and input vectors in large-scale networks of CRIT.

In the first program, the number of neurons and

stored states selected is small. The number of stored
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10

15

vectors is two and three for all the possible states

in both three-and four-neuron networks. For small N

and M, all possible combinations of vectors are stored

and retrieval is tested for all possible input vectors

using an IBM PC 386 for the simulation. An associa-

tive recall result is considered accurate when the

Hamming distance between the input vector and the

stored vector to which it converges is the smallest.

The accuracy can be determined in all cases except

those in which the input vector has a Hamming distance

equal to two or more stored vectors. In this case, it

is impossible to decide to which os the stored states

the input should converge; however, because the Ham-

ming distances are equal, the choice is inconsequen-

tial. The simulation results of the UIT (Equation

(28)) and CRIT (Equation (31)) are presented in Table

4.

Table 4. Computer Simulation Results of UIT and CRIT

2O Model N M Convergence

25

30

UIT 3 2 100%

UIT 3 3 100%

UIT 4 2 100%

UIT 4 3 95.7%

CRIT 3 2 100%

CRIT 3 3 100%

CRIT 4 2 100%

CRIT 4 3 100%
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5

I0

15

2O

25

30

The 95.7% convergence accuracy of M=3 and N=4 of the

UIT is due to the crosstalk effect. The inaccuracy is

removed by the CRIT as shown in Table 4. When M and

N are further increased, the computer time for exhaus-

tive testing simulation becomes considerably longer.

Hence, a Monte Carlo simulation is used to test

randomly generated patterns to evaluate the accuracy

of retrieval.

For the second program, a Monte Carlo simulation

code was developed in a SunSPARC 2 workstation to

simulate a CRIT network with a set of randomly gener-

ated stored vectors (al of which are different) and to

test the network with a set of randomly generated

input vectors to measure the accuracy of correct

convergence. As shown in Table 4, only 16 cases are

selected from a significant number of performed tests

to demonstrate the perfect convergence of the CRIT

network. Each row in the table specifies the number

of neurons in the network, the number of stored

vectors in a set, the number of test vectors in a set,

and the number of sets of stored vectors tested.

Using the last row of Table 4 as an example: 64

different sets of stored patterns are used for test-

ing. Each set of stored patterns has 1024 patterns

and is tested by a set of 256 test patterns. Each set

of test patterns is generated randomly and indepen-

dently for each set of stored patterns. Based on the

Monte Carlo simulation results, the CRIT model works

well -- achieving 100% accuracy -- for large-scale

networks even when M=4N.

Based on the results of the computer simulation,

it was seen that even with M=4N, perfectly accurate

convergence could be accomplished by CRIT.
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Experimental Set-up

In discussing the feasibility of optoelectronic

implementation of the models, a typical example with

four neurons and two stored states is described below.

5 The experimental set-up is shown in FIG. 9. For sim-

plicity, M was chosen to be two and N>M. Because of

the small number of images stored, a multifocus

hololens was not needed to replicate the input vector

x(t). The LCTVs from an Epson video projector were

i0 used as spatial light modulators SLMI and SLM2. The

input vector x(t) from a frame grabber of a computer

PC was sent to SLMI, which is illuminated by a colli-

mated beam from an Argon ion laser 10 via a spreading

lens 11 and a collimating lens 12. The image is

15 Fourier transformed by lens L1 and filtered by two pin

holes in a filter plate F in order to pass the +I and

-I diffraction orders of grid patterns of the LCTV

SLMI. The +i and -i orders, once they have passed

through the pin holes (filters), are inversely Fourier

20 transformed by lens L2, and the XOR operations are

performed with the two stored vectors in SLM2 from the

computer PC. The signals resulting from XOR opera-

tions are detected by a CCD camera 20 and sent to the

computer PC to calculate the next state vector,

"25 x(t+l). The output x(t+l) is the input as a new state

to SLMI for the dynamical system. This process is

iterated until convergence is reached. The converged

state is displayed on SLMI or on a monitor 30.

30

Experimental Results

A typical example associated with the experiment

is presented below. Assume the input vector is:
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where 1 represented a bright pixel and zero represents

a dark pixel. The two stored images (vectors) are

assumed to be:

and

5 denoted as stored vector No. i and No. 2, respective-

ly. The output images resulting from the XOR opera-

tions between the input and the two stored images are:

and

i0

The output images following the XOR operations appear

as two spots of different intensity on the CCD. The

computer can use an adaptive thresholding technique as
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shown in Equations (4) or (8) to perform the iterative

computation.

The result obtained for the UIT before taking the

threshold is:

and the threshold, 0, of the logistic function is 3.9

(when one sets _=10). After taking the threshold, the

result is the stored vector No. 2, which shows an

accurate retrieval. The result of the subsequent

iteration before thresholding is:

i0 where 0=9. The result after thresholding is again the

stored vector No. 2, indicating accurate convergence.

On the other hand, the result obtained for the

CRIT before thresholding is:

15

After taking the threshold with e=l.l (_=i.0), the

result is the same as that of the UIT. The result

after the next iteration before thresholding is:
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hence converges to the correct state. The above

example offers a feasibility demonstration of using a

computer to perform nonlinear thresholding and feed-

back.

5 The inner-product neural network system shown in

FIG. I0 will now be described to illustrate the

optical implementation of a unipolar terminal-attrac-

tor based on neural associative memory (TABAM)

achieved through proper application of an adaptive

i0 thresholding technique described with reference to

FIGs. 7 and 8 to avoid subtraction in the optics.

The experimental set-up in FIG. 9 used to demon-

strate the feasibility of the optical XOR operation is

shown in the system of FIG. i0 and identified by the

15 same reference characters used there to depict the

inner-product (exclusive-OR) operation. The object of

this example is to demonstrate the feasibility of

. optical implementation of a TABAM illustrated in FIG.

i. For simplicity, M is chosen to be two while N is

20 chosen to be sixteen. Because of the small number of

images stored in a storage transparency S, a multifo-

cus hololens is not needed to replicate the input

vector. A photograph 13 of the input vector is used

with a television camera 14 for entering the initial

25 input vector x(t) through the electronically address-

able spatial light modulator SLMI, e.g., a liquid

crystal television spatial light modulator (LCTV SLM)

while a switch 15 is in the position shown.

The spatial light modulator SLMI is illuminated

30 by a collimated beam from the argon laser i0 via the

spreading lens 11, the collimating lens 12 and a beam-

splitter 16. The image is Fourier transformed by the

lens L1 and filtered by the two pin holes in the
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20

filter plate F to pass the ±I orders of the images

diffracted by the inherent grid patterns of the

spatial light modulator SLMI. The passed ±i orders

are refocused by a subsequent Fourier transform lens

5 L2 and multiplied by two images stored in a transpar-

ency 17 placed at a first multiplication plane. This

completes the inner-product operation of step 1.

In practice, this example would not be feasible

for a large number M of stored vectors. If M>2, a

10 Dammann grating would be used as the means for repli-

cating the input vector x(t) a number of times equal

to M, and in the usual application of the invention

electronically addressable spatial light modulators

would replace the transparency 17 which stored the M

15 vectors at the first multiplication plane and a

similar transparency 18 at a second multiplication

plane needed in the next step.

A fine grain diffuser 19 is used to convert the

inner products ai into scalars (light intensity spots)

which are focused by a Fourier transform lens L3 from

the plane where the diffuser 19 is placed into the

transparency 18 at the second multiplication plane

referred to above. The focused light spots through

the lens L3 represent the scalar quantity am(t) of the

25 inner products between the input vector x(t) and the

stored vectors V_. The function of the diffuser is to

create uniform light distributions that are propor-

tional to the inner-product scalar. The uniformly

distributed scalar light patterns at the second multi-

30 plication plane are thus weighted by the vectors V_

that are stored in the transparency 18 placed at the

second multiplication plane. That completes step 2.
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The weighted vectors uT_m(t) of Equation (25a) are

imaged by a Fourier transform lens L4 onto the CCD

camera 20 the video output of which is transmitted to

an electronically controlled liquid crystal spatial

5 light modulator SLM2. The vectors are there illumi-

nated by coherent light from the laser 10 vis the

lenses ii, 12 and the beamsplitter 17. For the

purpose of improving the contrast of the liquid

crystal spatial light modulator SLM2, the vector

i0 images introduced there are enhanced by lenses 21 and

22 and low-pass filtered by a pin-hole spatial filter

23. However, it should be noted that if a high

contrast liquid crystal spatial light modulator is

used, this spatial filtering process for enhancement

15 can be omitted, in this example, the contrast en-

hanced images are then reflected by separate mirrors

24 and 25 that are oriented so that the images are

superimposed on an output CCD 26 which serves the dual

function of optical summation of the vector images at

20 the input side (step 3) and transmitting the sum at

the output side to a programmed digital computer PC

for performing the operation xi(t+) of Equation (25a)

by performing the calculations of Equations (25b),

(25c) and (25d). In each computation equation

25 g(xj(t)) is a logistic (sigmoidal) function set forth

in Equation (25e), which includes the thresholding

function e(t). This concludes in step 4 a complete

iteration. The next step 5 is to introduce the next

input vector xi(t+l) computed by the computer PC to

30 the input spatial light modulator SLMI via the ?????

15 which, after the first vector x(t) is entered, is

switched to its alternate state to receive each
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i0

subsequent xi(t+l) . Iterations of the five steps con-

tinue until convergence is reached. The output from

the PC is g(xi(t+l)) • It should be noted that this

optical implementation may be generated in accordance

with the Equations (26) through (29) for a unipolar

inner-product TABAM (UIT) model and in accordance with

Equations (30) through (32) for a crosstalk inner-

product terminal attractor (CRIT).

Although particular embodiments of the invention

have been described and illustrated herein, it is

recognized that modifications and variations may

readily occur to those skilled in the art. Conse-

quently, it is intended that the claims be interpreted

to cover such modifications and equivalents.
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UNIPOLAR TERMINAL-ATTRACTOR BASED NEURAL

ASSOCIATIVE MEMORY WITH ADAPTIVE THRESHOLD

ABSTRACT OF THE DISCLOSURE

A unipolar terminal-attractor based neural

5 associative memory (TABAM) system with adaptive

threshold for perfect convergence is presented. By

adaptively setting the threshold values for the

dynamic iteration for the unipolar binary neuron

states with terminal-attractors for the purpose of

10 reducing the spurious states in a Hopfield neural

network for associative memory and using the inner-

product approach, perfect convergence and correct

retrieval is achieved. Simulation is completed with

a small number of stored states (M) and a small number

15 of neurons (N) but a large M/N ratio. An experiment

with optical exclusive-OR logic operation using LCTV

SLMs shows the feasibility of optoelectronic implemen-

tation of the models. A complete inner-product TABAM

is implemented using a PC for calculation of adaptive

20 threshold values to achieve a unipolar TABAM (UIT) in

the case where there is no crosstalk, and a crosstalk

model (CRIT) in the case where crosstalk corrupts the

desired state.
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