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In terms of its mechanical parameters (such as mass, mean radius, and mean density)

Venus is very similar to the Earth. But the tectonic regimes of Venus and Earth are quite
different. Unlike the Earth, where the effects of mantle convection are manifest on the

surface in mid-oceanic ridges (spreading zones) and trenches (subduction zones), a global
system of ridges rifts and subduction zones is not observed on Venus. There is no evidence

of Earth-like plate tectonics and Venus may be a one-plate (or no-plate) planet. Magellan
radar data confirm this point of view. One possible consequence of this conclusion is that
Venus's convection is confined beneath a thick, buoyant lithosphere. In thermal models of
Venus [1] a thick Venusian crust overlies a convecting mantle. The style of convection in
Venus is an open issue (e.g. two layer or whole mantle convection. But two layer convection
provides high temperature at the crust-mantle boundary. Additionally, the geochemical data
show that the upper mantle of Venus is apparently depleted [1].

This could explain why convection is only partly revealed in the long-wave part of the
gravitational field. It is reasonable to suppose that at least the long-wavelength part of
gravitational field of Venus, for spherical harmonics greater than two (which correlate with
corresponding harmonics of the relief), is due to crustal thickness variations [2] or possibly
also to variations of crustal density (for example, hot mantle plumes, intruding into the base
of the crust).

The new topography and gravitational field data for Venus expressed in spherical
harmonics of degree and order up to 50 allow us to analyze the crust-mantle boundary relief
and stress state of the Venusian lithosphere. In these models, we consider models in which

convection is confined beneath a thick, bouyant lithosphere. We divide the convection
regime into an upper mantle and lower mantle component. The lateral scales are smaller

than on the Earth. In these models, relative to Earth, convection is reflected in higher order
terms of the gravitational field. On Venus geoid height and topography are highly

correlated, although the topography appears to be largely compensated. We hypothesize
that Venus topography for those wavelengths that correlate well with the geoid is partly
compensated at the crust-mantle boundary, while for the others compensation may be
distributed over the whole mantle. In turn the strong sensitivity of the stresses to parameters
of the models of the external layers of Venus together with geological mapping allow us to
begin investigations of the tectonics and geodynamics of the planet. For stress calculations
we use a new technique of space-and time-dependent Green's response functions using
Venus models with theologically stratified lithosphere and mantle and a ductile lower crust.
In the basic model of Venus the mean crust is 50-70 km thick, the density contrast across
the crust-mantle boundary is in the range from 0.3 to 0.4 g/cm-3. The thickness of a weak
mantle zone may be from 350 to 1000 kin. Strong sensitivity of calculated stress to various
parameters of the layered model of Venus together with geological mapping and analysis
of surface tectonic patterns allow us to investigate the tectonics and geodynamics of the
planet. The results are presented in the form of maps of compression-extension and
maximum shear stresses in the lithosphere and maps of crust-mantle boundary relief, which
can be presented as a function of time.

The technique of using Green's response functions for the distribution of stresses and
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deformation in one-plate planets with elastic mantles including a low viscosity zone was
developed earlier [1,2]. In our present Venus model the rheology of the interior layers is

more complicated but possibly more realistic. The main features of the rheology are: 1) In
the mantle, dislocation climb is the dominant process, although diffusion creep is also

included; 2) the rheology of the lithosphere includes a so-called unstable beta-creep and

stable gamma-creep. The basic, parametrically simple model of Venus, is constructed using

a new geochemical model of Dreibus and Wanke [3], the mean crustal thickness is varied

from 50 to 70 km, and the density contrast across the crust-mantle boundary is in the range

0.3 to 0.6 g/cm-3.
It is instructive to calculate the time-history of stresses and deformation in the

interior during the formation of major topographic features, Beta Regio, Ishtar Terra,

Aphrodite Terra and others. First we model the rheology then find a corresponding
transformation of our equations to Laplace transform space. Thus we will have in Laplace
space the equivalent elastic problem, which can be solved. The next step is to find the
inverse transformation of these solutions back to the time domain. This step is the most

difficult. The theology of the lithosphere and mantle is modeled by a generalized Bingham-
Maxwell Body Law, including the brittle-elastic-ductile transition in the crust.

To perform the calculations we need to know the effective viscosity variations with

depth and with time, as well as gravity and topography at high resolution.
With this approach it is possible to simultaneously satisfy the observed topography

and gravity with spherical harmonic models using reasonable strength and viscosity

parameters for the Venusian crust and mantle. We have modeled the region of Western
Aphrodite and the Niobe plains to get reasonable depths of compensation. These results are
based on Magellan topography and Pioneer Venus gravity fit to spherical harmonic models

of order and degree 50. Continuing work uses the higher resolution Magellan data as they
become available, both as local spherical harmonic models and the highest resolution line-

of-sight gravity data. Crust mantle boundary relief is calculated for Western Aphrodite -
Niobe relative to a mean crustal thickness of 50 kin. The calculations include the

consequences of simple crust models and more complicated models with a weak, ductile
lower crust, a strong upper mantle and a weak lower mantle layer. We use a mean crustal
thickness of 50 kin, of which the upper 20 km is elastic. The mantle between 50 km and 200
km is strong, and the mantle at depths between 200 km and 481 km is weak and acts like

an asthenosphere. The calculated crust-mantle boundary relief is similar for simple models
and the more realistic layered models, but the stress distributions are markedly different.

This can be explained by the role of lithospheric bending in the more complicated model.
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