NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effects of levitated dust on astronomical observations from the lunar surfaceIt is believed that a substantial population of levitated dust is present in the terminator region of the moon. Stray light scattered by this dust layer may contaminate astronomical observations made from the lunar surface using infrared, visible, and ultraviolet light. The evidence for dust levitation stems from: Surveyor vidicon images of horizon glow; anomalous brightness in photographs of the solar corona taken by Apollo astronauts while the spacecraft was just inside the moon's shadow; and observations by Apollo astronauts of streamers just prior to lunar orbital sunrise or just after lunar orbital sunset. It has been proposed that the differential charging of the lunar surface in the terminator region due to photoemission and the consequent strong local electric fields comprise the mechanism responsible for this levitation. Although quantitative data on the levitated lunar dust distribution are meager, it is possible to estimate column densities and sizes. In this paper we summarize the estimates of particulate sizes and number densities of previous authors, and construct a nominal terminator dust distribution, as a function of particulate radius and altitude above the lunar surface. Using the model we estimate the brightness of scattered sunshine for three wavelength bands. For the results in the visible wavelengths, we compare the estimated brightness with the known brightness of selected astronomical objects and discuss the implications for lunar-based astronomy.
Document ID
19940011960
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Murphy, D. L.
(Lockheed Aircraft Corp. Palo Alto, CA, United States)
Vondrak, R. R.
(Lockheed Aircraft Corp. Palo Alto, CA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
Subject Category
Astronomy
Accession Number
94N16433
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available