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Introduction

_o In his seminal 1948 paper "The Mathematical Theory of Communica-

tion", Claude E. Shannon derived the "channel coding theorem"

._ which gave an explicit upper bound, called the channel capac-

ity, on the rate at which "information" could be transmitted

- reliably on a given communication channel.

• Shannon's result was an existence theorem and did not give spe-

cific codes to achieve the bound. Some skeptics have claimed

- that the dramatic performance improvements predicted by Shan-

non are not achievable in practice.
w

• The advances made in the area of coded modulation in the past

m

capacity. Here we consider this possibility in the light of current
research results.

w

decade have made communications engineers optimistic about

the possibility of achieving or at least coming close to channel



Channel Capacity

_, With respect to coding and coded modulation, the most relevant

of Shannon's results is the "noisy channel coding theorem for

- continuous channels with average power limitations."

:i This theorem states that for any transmission rate R less than

or equal to the channel capacity, C, there exists a coding scheme

that achieves an arbitrarily small probability of error!

, Conversely, if R is greater than C, no coding scheme can achieve

- reliable communication, regardless of complexity.

Shannon then shows that the capacity, C, of a continuous addi-

w

tive white Gaussian noise

and assuming Nyquist signaling is given by

(AWGN) channel with bandwidth B

C= B log2 (l + _o) bits/sec, (1)

where E_ is the average signal energy in each signaling interval

T and N0/2 is the two sided noise power spectral density.

This bound represents the absolute best performance possible

- for a communication system on the AWGN channel.



Restatement of the Capacity Bound

i Shannon's capacity bound can be put in a form more useful for

the present discussion by introducing the parameter rl, called

"- spectral efficiency, to represent the average number of informa-

tion bits transmitted per signaling interval.
J

-, From Shannon's bound, it follows that

0 <__R <_ C bits/sec,

- and hence

0 < _7<_ C/B bits�signal.

, Substituting the relation

E_/No = _TEb/No,

where Eb is the average energy per information bit, into equation

(1) and performing some minor manipulations yields

27 - i
Eb/No >_ , (2)

which relates the spectral efficiency, rl, to the

: ratio (SNR), Eb/No.

signal-to-noise

-_ The bound of equation (2) manifests the fundamental tradeoff

between spectral efficiency and SNR. That is, increased spectral

efficiency can be reliably achieved only with a corresponding

increase in SNR.
_mw



Interpretation of the Capacity Curve
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-. Shannon's bound gives the minimum signal-to-noise ratio (SNR)

_ required to achieve a specific bandwidth efficiency with an at-

- bitrarily small probability of error.

-. Example: With r/= 2 information bits per channel signal, there

exists a coding scheme that operates reliably with an SNR of

- 1.76dB.
= :

-• Conversely, any coding scheme sending W = 2 information bits

per signal with an SNR less than 1.76dB will be unreliable, regard-

- less of complez'ity.
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Interpretation of the Capacity Curve
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• Alternatively, Shannon's bound gives the maximum achievable

spectral efficiency for a specific signal-to-noise ratio (SNR).

• Example: With an SNR of Eb/No = 1.76db, there exists a coding

scheme cabable of transmitting reliably with a spectral efficiency

of _ = 2 bits per signal.

• Conversely, any coding scheme operating with an SNR of Eb/No =

1-.76dB and attempting to transmit more than _ = 2 bits per signal

will be unrealiable regardless of complexity.
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NASA (2,1,6) Convolutional Code

• Historically,

below capacity.

• Example: The NASA standard rate (2,1,6) convolutional code

with QPSK modulation achieves a spectral efficiency of r/= 1

_ bit/signal and requires a signal-to-noise ratio (SNR) of Eb/No =

4.15 dB to achieve error free (10 -5 bit error rate) communication.

J

• An ideal system operating with the same Eb/No - 4.15413 can

achieve error free communication with a spectral efficiency as

high as rl = C = 3.235 bits per signal.

OR

An ideal system operating with the same spectral efficiency of

= 1 bit per signal would require an SNR of only Eb/No = 0.0

dB.



A New Optimal (2,1,14) Convolutional Code
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• A computer search has found the optimum distance spectrum

(ODS) (2,1,14) convolutional code.

• This code has optimum minimum free Hamming distance, d/,.e_ =

18, and the smallest number of nearest neighbors, Ny,._e = 26, of

any constraint length 15 code.

• The performance of this code is 1.65 dB better than the (2,1,6)

code, but is still 2.5dB away from capacity.
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Optimal (2,1,14) Convolutional Code
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_ • The new optimal (2,1,14) convolutional code requires a signal-

to-noise ratio (SNR) of Eb/No = 2.5 dB to achieve error free (10 -5

_ bit error rate) communication.

• An ideal system operating with the same Eb/No = 2.5dB can

achieve error free communication with a spectral efficiency as

high as _ = C = 2.4 bits per signal.

OR

An ideal system operating with the same spectral efficiency of

r/= 1 bit per signal would require an SNR of only Eb/No = 0.0

dB.
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Practical Bounds

m

• In real communication systems, there are many practical consid-

erations that take precedence over Shannon's bound in design

decisions.

• For example, satellite communication systems that use nonlin-

ear travelling wave tube amplifiers (TWTA's) require constant

envelope signaling such as M-ary phase shift keying (MPSK).

• Thus, even if Shannon's results firmly stated that capacity at

_ a spectral efficiency of r/ = 3 bits per signal can be achieved

with a (4,3,8) convolutional code using 16 QAM, it would not

_ be feasible to do so on the TWTA satellite link.

• It therefore seems reasonable to ask what is the minimum SNR

required to achieve reliable communication, given a particular

modulation scheme and a spectral efficiency, r/.

m
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A Signal Specific Bound

- • For the discrete input, continuous output, memoryless AWGN

channel with M-ary one dimensional amplitude modulation (AM)
L

- or two dimensional (PSK, QAM) modulation and equiprobable

signaling, the capacity bound becomes

= E log 2 exp
rf log2 (M) _I i=o j=o -No '

(3)

• Here

{aJ,j=O, 1,...M-1} (4)

is an M-ary modulations set, aJ is a channel signal, n is a Gaus-

sian distributed noise random variable with mean 0 and variance

No�2, and E is the expectation operator.

For a specified signaling method and spectral efficiency, this

bound can be used to compute the minimum SNR required to

achieve reliable communication.



Interpretation of the Signal Specific Bound
3.0

8PSK

QPSK

BPSK

°°2.0 -_.0 0.0 _.0 2.0 3.0 4.0 5.0
- Eb/No(clB)

- • To send q = 1.5 information bits per signaling interval, an ideal

system using QPSK modulation requires a minimum SNR of Eb/No

1.64dB. This is 0.76 dB more than an ideal system without any

modulation constraints.

• To send q = 1.5 information bits per signaling interval, an ideal

system using 8PSK modulation requires a minimum SNR of Eb/No

1.22dB. This is 0.34 dB more than an ideal system without any

modulation constraints.
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Notes About the Graph

All results are with soft decision decoders.

1 NASA Codes: denoted by ×

Galileo: This is the concatenated code used on the Galileo probe.

(4,1,14) BPSK The is the (4,1,14) convolutional code developed by JPL.

Voyager: This is the concatenated code used on the Voyager probe.

(2,1,6) BPSK: This is the NASA standard (2,1,6) convolutional code with BPSK modu-

lation.

(2,1,6) QPSK: This is the NASA standard (2,1,6) convolutional code with QPSK modu-

lation.

i

w

2 Pietrobon-Costello Codes: denoted by 0

(6,5,4) 2x8PSK: This is a rate 5/6, 16 state, trellis code using 2x8PSK modulation with

Viterbi decoding. It has a spectral efficiency of _7= 2.5 bits/signal and is 45* rotation-

ally invariant. A Viterbi decoder for this code has been built by Steven Pietrobon and

tested at New Mexico State.

(9,8,6) 4x8PSK: This is a rate 8/9, 64 state, trellis code using 4xSPSK modulation with

Viterbi decoding. It has a spectral efficiency of rI = 2.0 bits/signal and is 45 ° rotation-

ally invariant.

(11,10,6) 4x8PSK: This is a rate 10/11, 64 state, trellis code using 4xSPSK modulation

with Viterbi decoding. It has a spectral efficiency of rI = 2.5 bits/signal and is 45*

rotationally invariant.

(7,6,6) 2xl6PSK: This is a rate 6/7, 64 state, trellis code using 2xl6PSK modulation

with Viterbi decoding. It has a spectral efficiency of rI = 3.0 bits/signal and is 45*

rotationally invariant.

(4,3,6) 16QAM, nonlinear: This is a nonlinear rate 3/4, 16 state, trellis code using

16QAM modulation with Viterbi decoding. It has a spectral efficiency of 7/ = 3.0

bits/signal and is 90 ° rotationally invariant.

Mn

=

3 Wang-Costello Codes: denoted by []

(3,2,17)SPSK: This is a rate

sequential decoding with

rI = 2.0 bits/signal and is

2/3, memory 17, trellis code using 8PSK modulation and

a modified Fano algorithm. It has a spectral efficiency of

180 ° rotationally invariant.

(4,3,16) 16PSK: This a rate

sequential decoding with

r1 = 3.0 bits/signal and is

3/4, memory 16, trellis code using 16PSK modulation and

a modified Fano algorithm. It has a spectral efficiency of

180 ° rotationally invariant.



(4,3,16) 16QAM: This is a rate 3/4, memory 16, trellis code using 16QAM modulation

and sequential decoding with a modified Fano algorithm. It has a spectral efficiency

of 77= 3.0 bits/signal and is 180 ° rotationally invariant.

4 Lin Codes: denoted by

(32,16,8) RM: This is a rate 16/32=0.5, 64 state Reed-Muller code using BPSK modula-

tion and Viterbi decoding.

(64,42,8) RM: This is a rate 42/64=0.656, 1024 state Reed-Muller code using BPSK mod-

ulation and Viterbi decoding.

(17,16,2) 7xSPSK, TBCM: This is rate 16/17, 4 state, block coded modulation scheme

using 7xSPSK modulation with Viterbi decoding. It has a spectral efficiency of 7/=

2.286 bits/signal and is 180 ° rotationally invariant.

(18,16,6) 8x8PSK, TBCM: This is a 2-level trellis code using 8xSPSK modulation. The

first level has 64 states and is decoded with a Vit,'.rbi decoder. The second level has

8 states and is deocded with a Viterbi decoder. It has a spectral efficiency of rt = 2.0

bits/symbol and is 1800 rotationally invariant.

(3069,2799) 16x8PSK, PBCM: This is a 3x3 product block coded modulation scheme.

The horizontal codes are BCH codes and the vertical code is a 3-level block code. It is

decoded using suboptimal multi-stage decoding. It has a spectral efficiency of r/= 2.1

bits/signal and is 45 ° rotationally invariant.

5 Viterbi Pragmatic Code: denoted by •

(3,2,6) 8PSK, Pragmatic: This is a rate 2/3, 64 state, trellis code using 8PSK modulation

and Viterbi decoding. It uses the NASA standard (2,1,6) convolutional code as its basis

and is suboptimal. It can be decoded using essentially the same Viterbi decoding chip
that is used to decode the NASA standard convolutional code.
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Notes About the Graph

All results are with soft decision decoders.

m

1 Uncoded Systems: denoted by x

16QAM: Performance of uncoded 16QAM with a spectral efficiency of rt = 4 bits/symbol

from simulation results.

32QAM: Performance of uncoded 32QAM with a spectral efficiency of rI = 5 bits/symbol

from simulation results.

64QAM: Performance of uncoded 64QAM with a spectral efficiency of rt = 6 bits/symbol

from simulation results.

128QAM: Performance of uncoded 128QAM with a spectral efficiency of 7/= 7 bits/symbol

from simulation results.
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Wei Codes: denoted by 0

4D, 8 state: This is Wei's 8 state code using a 4-dimensional constellation (of any

size). Performance taken from "Coset Codes - Part 1: Introduction and Geometrical

Classification," by G. David Forney. The performance was estimated taking into ac-

count the minimum squared Euclidean distance and the number of nearest neighbors.

Thus, this point shows effective coding gain at a bit-error-rate (BER) of 10 -s.

4D, 16 state: This is Wei's 16 state code using a 4-dimensional constellation (of any

size). Performance taken from "Coset Codes - Part 1: Introduction and Geometrical

Classification," by G. David Forney. The performance was estimated taking into ac-

count the minimum squared Euclidean distance and the number of nearest neighbors.

Thus, this point shows effective coding gain at a bit-error-rate (BER) of 10 -s.

This code with a 2x192QAM constellation is being considered by CCITT for the

V.FAST ultimate modem standard.


