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COMPUTATION OF THE FLUID AND OPTICAL FIELDS ABOUT
SOFIA AND THE COUPLING OF FLUIDS, DYNAMICS, AND
CONTROL LAWS ON PARALLEL COMPUTERS

Christopher A. Atwood

The June 1992 to May 1993 grant NCC-2-677 provided for the
continued demonstration of Computational Fluid Dynamics (CFD) as
applied to the  Stratospheric Observatory for Infrared Astronomy
(SOFIA). While earlier grant years allowed validation of CFD through
comparison against experiments, this year a new design proposal was
evaluated. The new configuration would place the cavity aft of the
wing, as opposed to the earlier baseline which was located
immediately aft of the cockpit. This aft cavity placement allows for
simplified structural and aircraft modification requirements, thus
lowering the program cost of this national astronomy resource.

The configuration, described in Appendices C and D, was
computed at 41,000 foot cruise altitude conditions. The aft-ramp
cavity treatment demonstrated similar broadband acoustic quieting
behavior as seen in the earlier baseline designs. However, although
the shear layer reattaches along the aft ramp, the low-momentum
flow separates behind the cavity. This separation is of considerable
concern due to its proximity to the tail control surfaces. The 747SP
horizontal and vertical stabilizer geometry, only recently received
from Boeing, were included in a preliminary computation. If
separation about the full geometry is found to be significant, then a
sizeable part of the time and expense of a wind tunnel test and
model would have been saved.

In addition to studying the effect of configuration changes on
the flow, the effect on optical clarity was also investigated, as
documented in Appendix D. The computed flow about two U.S. Army
Airborne Optical Adjunct (AOA) configurations provided validation,
the resultant methodology was then applied to the aft cavity SOFIA
design. Tentative comparison of forward and aft cavity placement
shows some degradation of clarity in the near-infrared for the aft
location.

The past year has seen the continuing design of SOFIA, and CFD
has begun to provide information, such as telescope loadings and
flow separation regions, which are difficult and expensive to



experimental means. The generality of the developed methodology
has attracted industry interest for applications ranging from the
stealthy internal carriage of stores to the design of airborne laser
platforms.

Numerical evaluation of the fluid and optical fields will provide
a means, in addition to experimental results, to evaluate
configurations in a timely and cost effective way. The results of this
work will provide a framework for industrial design of
configurations which experience related flow phenomena.

In addition, this grant period saw the commencement of an
investigation into the coupling of fluids, rigid-body dynamics, and
active controls. Appendix E summarizes the demonstration of the
coupled system for a two-dimensional application. The simulation
was performed on a vector supercomputer, the Numerical
Aerodynamic Simulator (NAS) Cray Y-MP, and was validated against
linearized dynamics wusing analytic sensitivity coefficients. The
fourth-order system for pitch attitude control used proportional and
rate gyro feedback, and included a canard servo model. The gains
were determined using conventional pole placement techniques, and
were held fixed during the course of the nonlinear coupled
simulations.

The coupling of an active control system with nonlinear fluid
and body dynamics will allow simulation of aircraft in critical
regimes of the flight envelope. This computational prototyping offers
reduced development costs while enhancing safety for the next
generation of high performance aircraft.



APPENDIX A



Abstract

Numerical simulation of two classes of unsteady flows are obtained via the Navier-
Stokes equations: a blast-wave/target interaction problem class and a transonic cavity
flow problem class. The method developed for the viscous blast-wave/target interac-
tion problem assumes a laminar, perfect gas implemented in a structured finite-volume
framework. The approximately factored implicit scheme uses Newton subiterations to
obtain the spatially and temporally second-order accurate time history of the interac-
tion of blast-waves with stationary targets. The inviscid flux is evaluated using either
of two upwind techniques, while the full viscous terms are computed by central differ-
encing. Comparisons of unsteady numerical, analytical, and experimental results are
made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and
a shock-tube blockage study. The results show accurate wave speed resolution and
nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous
effects were increasingly significant at large post-interaction times.

While the blast-wave/target interaction problem benefits from high-resolution
methods applied to the Euler terms, the transonic cavity flow problem requires the
use of an efficient scheme implemented in a geometrically flexible overset mesh envi-
ronment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a
diagonal form are applied to the cavity flow class of problems. Comparisons between
numerical and experimental results are made in two-dimensions for free shear layers
and both rectangular and quieted cavities, and in three-dimensions for Stratospheric
Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of
the rectangular and three-dimensional cavity flows compare well with experiment in

terms of frequency, magnitude, and quieting trends. However, there is a more rapid
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decrease in computed acoustic energy with frequency than observed experimentally
owing to numerical dissipation. In addition, optical phase distortion due to the time-
varying density field is modelled using geometrical constructs. The computed optical
distortion trends compare with the experimentally inferred result, but underpredicts

the fluctuating phase difference magnitude.
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Nomenclature

A B C inviscid flux Jacobians

c speed of sound

Cpy Co specific heats at constant pressure and volume

Cp coefficient of pressure, 222= ]
1\2]7

<G, > fluctuating coefficient of pressure, [Ai vy (f:) ]

e total energy per unit volume

E F G flux vectors

f frequency

F flux tensor of second order

h enthalpy per unit mass

i,j,k Cartesian unit vectors

J coordinate transformation Jacobian

k coeflicient of thermal conductivity or wave number, ZAI

K ratio of convection by freestream speed

L characteristic length

m stage number

m mass flow rate

M Mach number or viscous flux Jacobian

n index of refraction

n surface normal

OPD, OPL optical path difference, length

p instantaneous static pressure

Pr Prandtl number
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PSD power spectral density, dB
velocity magnitude or dynamic pressure
heat transfer vector

vector of dependent variables

‘!‘O,QQ

velocity ratio, &
uz

position vector in physical space

m"!

specific gas constant
Re Reynolds number
s outward-directed surface normal

5z,8y,8; Cartesian components of surface normal

St Strouhal number, u_ljf?{
SPL sound power level, dB
¢ time

t tangential

T absolute temperature

T-',T  matrices of left and right eigenvectors or of the transformation
u, v, w Cartesian velocity components or parametric surface coordinates

U,V,W  contravariant velocity components

1% cell volume
T,Y,2 Cartesian physical space coordinates
A angstrom, 10719 m
a angle of attack
Ji] compression parameter, or the Gladstone-Dale constant, (n — 1)s7p
v ratio of specific heats
€ internal energy per unit mass
¢ bulk coefficient of viscosity
0 angle subtending the ray and surface normal or momentum thickness
K ratio of coefficient of thermal conductivity
to the specific heat at constant volume
A eigenvalue, second coeflicient of viscosity, or wavelength

diagonal matrix of eigenvalues, );

viii



T dynamic or first coefficient of viscosity
v Courant-Friedrichs-Lewy number
&,n,( curvilinear space coordinates

P density

o spreading rate parameter

T computational temporal coordinate
Tij viscous stress tensor

o flux influence parameter

r—) mean quantity

< > root mean square quantity

( Y  fluctuating quantity, f = f + f'

(

~) dimensional quantity
Superscripts
7 wave family
m subiteration level
n time level
Subscripts

BL Baldwin-Lomax
1,7,k £,n,( direction indices

1 incident

n normal

NS Navier-Stokes
r refracted

STP standard temperature and pressure

T total quantity

TL Thin-Layer

r,y,z partial with respect to Cartesian coordinate
£,1m,( partial with respect to curvilinear coordinate

00 freestream quantity
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Chapter 1
Introduction

Performance envelopes of vehicles and structures which interact with the atmosphere
are often limited by unsteady aerodynamic effects. Specific examples which are ad-
dressed here range from the blast-wave/target interaction problem, where peak over-
pressures are many times quiescent conditions, to the seeing problem, where densitv
fluctuations contribute to image degradation. Only recently have advances in com-
puting power and numerical algorithms provided the potential, complementary to
experimental studies, for the timely design of effective configurations. However, the
use of unsteady computations in the design phase is presently at an immature stage
of development. The objective of this effort is to demonstrate computational tech-
nologies as applied to current topics of interest in the unsteady, compressible perfect
gas regime. It is hoped that, through comparison to accepted experimental data,
computational methods can make significant contributions to the design of systems
which interact with unsteady flows.

In these studies, two solution methods to the Navier-Stokes equations are pre-
sented and applied to several test cases. The cases pertain to the blast-wave/target
interaction or the transonic cavity flow problem classes. The method used to model
the strongly unsteady blast-wave flows concentrates on resolution of the complex
physics through the use of characteristic-based schemes. In contrast, for the tran-
sonic cavity flow problem, the combination of complex geometries and large problem

size requires the use of an efficient integration scheme. Comparison of the numerical
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and experimental results will provide a reference base of unsteady numerical results

for use in configuration design.

1.1.1 Blast-Wave Problem

The study of the effects of blast-wave impingement upon vehicles and structures is
of practical consideration in the determination of their survivability. The experimen-
tal study of the blast-wave/target interaction problem requires the use of expensive
above ground tests or facilities such as the U.S. Army Large Blast/Thermal Simulator

(LB/TS) facility depicted in Fig. 1. Moreover, experiments can suffer from limited

Retaining
Wali

&
e
g

Rarefaction
Wave Eliminator

Figure 1. Proposed Large Blast/Thermal Simulator facility [1]

phase durations, and deduction of the physics of the flowfield is difficult because
of practicalities in data acquisition methods. Visualization of the propagating wave-
fronts allows separation of pressure peaks due to wave reflection from shock tube walls
from the pressure history. These pressure spikes can then, for example, be removed
from structural frequency excitation analyses. Therefore, the information obtained
via numerical simulation can be used for design from dynamic similitude conditions,
and to augment data obtained in the test facilities.

The simulation of the blast-wave problem has been studied in varying degrees
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of physical complexity, from self-similar Euler to two-dimensional viscous flows. The
simulation of the blast-wave problem using the Euler equations was studied by Kutler.
Sakell, and Aiello 2] in 1975, where the intersection of a planar shock with a wedge
in supersonic flight was modelled using the MacCormack scheme [3]. The self-similar
nature of these types of flow with respect to time was used to obtain two- and later
three-dimensional cone solutions [4]. In addition, Kutler and Shankar 5] used a shock-
fitting procedure for the regular diffraction of a planar shock by a wedge, which is
also self-similar. Although good results can be obtained using discontinuity fitting
methods, coding complexities have generally hindered their application for complex
situations.

A general solution of the truly time-dependent inviscid interaction problem was
modelled by Champney, Chaussee, and Kutler [6] in 1982. Shock diffraction over sev-
eral simple two- and three-dimensional geometries were presented using the
MacCormack and Beam-Warming schemes [7]. Mark and Kutler [8] performed a
two-dimensional simulation of a shock passing over a simplified profile of a truck.
However, inaccuracies due to discontinuity smearing and oscillations led to the de-
velopment and application of explicit and implicit high-resolution schemes in the
mid-1980’s. Several two-dimensional problems using these high-resolution methods
were presented by Yee [9] and Hisley and Molvik {10]. Recently, Léhner [11] has ob-
tained solutions for complex geometries via an adaptive unstructured approach. The
geometric flexibility of an unstructured grid method offers great potential, however
the use of stretched tetrahedral grids required for efficient computation of viscous
flows is a current topic of research.

The solution of the Navier-Stokes equations in the high Reynolds number regime
requires the use of fine grids to resolve thin viscous layers. The concomitant stiff-
ness arising from the difference in length scales suggests the use of implicit schemes.
Bennett, Abbett, and Wolf [12] applied a Beam-Warmingscheme [7] with the Baldwin-
Lomax [13] turbulence model to the problems of a developing boundary-layer behind
a moving shock and shock diffraction over a cylinder. Molvik [14] used implicit
high-resolution methods to obtain two-dimensional solutions for the unsteady devel-

opment of a boundary-layer, the cylinder diffraction problem, and intersection of a
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planar shock with a missile in supersonic flight.

The purpose of this effort is to address the general three-dimensional, viscous
blast-wave problem. The techniques developed here utilize total variation diminishing
(TVD) upwind and upwind-biased schemes to resolve the discontinuous flow features
without the oscillations prevalent in the more conventional central difference methods.
Wave speeds are resolved adequately at large Courant numbers through the use of

time conservative differencing and Newton subiterations.

1.1.2 Cavity Flow Effort

The Stratospheric Observatory For Infrared Astronomy (SOFIA) will be a three meter
class Cassegrain telescope which utilizes a Boeing 747SP as an observation platform.
An artist’s concept of the observatory, which is a follow-on to the Kuiper Airborne

Observatory, is shown in Fig. 2. This airborne system, currently being studied by the

Figure 2: Artist's concept of the SOFIA configuration

United States’ NASA and Germany’s DARA, offers capabilities which augment land
and space-based options in several ways. First, the mission flexibility of a long-range
mobile platform lends astronomers freedom to investigate transient astronomical phe-
nomena on a global basis. Second, atmospheric attenuation of some wavelengths
of interest provide motivation for a platform which operates above the tropopause.
Third, the cost of maintaining and upgrading observation technologies is lower than

would be incurred with an orbiting configuration.
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Nevertheless, the use of an aircraft-based observatory presents some challenges.
The limited bandwidth of solid materials in the infrared frequency ranges of inter-
est preclude their use as windows. The temperature of the window material would
also contribute to background radiation levels. Therefore, the telescope cavity must
remain open to the freestream. Empirical evidence has shown that violent shear
layer oscillations with concomitantly dangerous levels of acoustic loading occur for
untreated, or rectangularly shaped, open cavity configurations [15, 16]. Hence, there
is a need to develop cavity flow control treatments to suppress the flow unsteadiness,
both to reduce the risk of injury to the crew and to obtain high-quality seeing. To-
wards these objectives, both experimental and computational fluid dynamics (EFD
and CFD) analyses will be used in the design cycle. The purpose of this work is
to develop and apply numerical tools for use in the design of the next generation
airborne observatory.

The driven cavity problem has been a subject of much research, both experimental
[15-29] and numerical [30-40], owing to its wide practical applicability. The buffeting
and sound production of bomb bays, slotted wind-tunnel walls, transition-delaying
airfoil cavities, and deflected control surfaces are examples of the range of problems.
The effort here is focused upon the transonic regime, and previous efforts in these
flow speeds are reviewed by Komerath, Ajuha, and Chambers [41] and Rockwell and
Naudascher {42]. Some of the research which is pertinent to the transonic aero-window
problem is highlighted below.

In 1955, Karamcheti [17] studied subsonic and low supersonic flow over rectangular
cavities, in which the inverse relationship between cavity length, L, and dominant res-
onant frequency, as well the acoustic intensity and radiation directivity was reported.
In the same year, Roshko [18] documented skin friction and pressure distribution along
the cavity walls. The three-dimensional low subsonic study of Maull and East [20]
showed that spanwise cells can modestly perturb C, distributions from the idealized
infinitely wide cavity. Rossiter [15], in 1964, related cavity resonance to the edge-tone
phenomenon, and deduced a model applicable to the transonic regime of concern here.
In this study, Rossiter also demonstrated that a cavity leading edge spoiler drasti-

cally reduced acoustic levels. The work of Heller and Bliss [24] demonstrated that
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the cavity feedback mechanism can also be suppressed by geometry modifications at
the shear layer impingement region. These wind tunnel tests have provided valuable
insight into the governing flow mechanisms, but dynamic similitude was typically not
achieved. The dangerous behavior of cavity flows generally precludes the use of flight
tests to verify scaling laws. Numerical simulation offers the potential for safely scaling
sub-scale tests to flight conditions.

Toward this objective, numerical efforts of the type which can model the viscous
flowfield about a geometrically complicated structure was begun in 1979 by Hankey
and Shang [30]. Using MacCormack’s scheme, the dominant resonant mode of a rect-
angular cavity was accurately predicted. Om [37] used the same scheme to compute
flow about quieted two-dimensional cavities. In 1987, Suhs [34] used a block im-
plicit scheme to obtain the viscous flow about a parallelepiped cutout. The overset
mesh method which was the precursor to that used herein was utilized. Dougherty
et al. [39] have recently completed a detailed study of two-dimensional cavities using
a high resolution scheme. They computed distinct spectral peaks which have been
observed experimentally.

The present effort builds on past numerical studies by validating the ability to
predict free shear layers, and both untreated and treated two- and three-dimensional
cavity configurations with an efficient scheme in an overset mesh framework. Compar-
ison of computed flowfields to experimental and analytical results allows assessment
of cavity load prediction capabilities. Prediction of the acoustic intensity levels and
frequencies are of primary interest for safety reasons. However, estimation of optical

distortion is required to determine mission effectiveness.

1.1.3 Aero-Optics Work

The study of the effect of a fluid field upon an optical field, dubbed aero-optics, has
been extensive over the past four decades. Applications include imaging of re-entry
vehicles or, as in this study, of astronomical bodies through the atmosphere. Many
experimental and theoretical approaches to the optical distortion problem have been
investigated, those of which are pertinent to this transonic aero-window problem are

summarized here. The experimental efforts can be grouped into two categories: direct
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measurement methods and techniques based on aerodynamically inferred quantities.
Results obtained via the latter method are more prevalent because of practical diffi-
culties in direct measurement techniques [43]. In fact, only aerodynamically inferred
distortion levels will used for validation in the present work.

Although early experimental and theoretical efforts assumed incoherent statistical
turbulence [44, 45, 46], recent studies have begun to examine the effect of shear layer
structures on electromagnetic field distortion. Using a passive scalar field from a
direct numerical simulation, Truman and Lee [47] found an optimum viewing angle
normal to the hairpin vortices in the homogeneous sheared fluid region. They also
found analysis via non-refracting geometric optics to be equivalent to the parabolized
Helmholtz representation of light. Although this class of studies provides excellent
insight into the effects of small-scale structure on the electromagnetic field, it is clear
that the expense of such methods precludes their near-term use for the problems
under consideration here.

The study of large scale structures in shear layers has been an active topic of
research since they were observed by Brown and Roshko in 1974 [48]. Only recently
has the effect of these structures on the optical field been studied. In 1990, Chew and
Christiansen [49, 50] experimentally observed the effect of shear layer structures on
beam propagation. Tsai and Christiansen [51] used an Euler simulation to determine
the optical characteristics of a perturbed free shear layer. The use of a growing
sinusoidal phase plate to represent the effect of vortical structures on an optical field
was hypothesized. Wissler and Roshko [52] recently performed an experimental study
of the motion of a thin light beam caused by passage through a shear layer. They
postulated that spanwise steering asymptotes to a higher level than the streamwise
component.

The numerical modelling of the optical effect of a cavity-spanning shear layer was
presented by Cassady et al. [33] in 1987. They found their two-dimensional solution
to result in poor prediction of optical distortion. Farris and Clark {54, 55] used time-
mean quantities and empirical evidence to ascertain the fluctuating density levels

required for optical analysis.
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The present effort attempts to determine what portion of the optical path distor-
tion can be resolved using cell sizes required to obtain an accurate flowfield solution.
Computed optical distortion levels are compared to flight and wind tunnel measure-
ments for two- and three-dimensional quieted cavities, respectively. The following
chapters address the methods used to predict the unsteady flows, the modelling of

turbulence, and the optical distortion.



Chapter 2

Numerical Method

2.1 The Governing Equations

The Navier-Stokes equations may be expressed in integral conservation law form,

coupled with the continuity and energy equations as

d (1 1 [ =

— = — ¢ F-ds= 1

i (p [, 0av) + 5 f Frds =0 2
where body forces have been neglected and the cell volumes are time invariant. Here
V is the volume of an arbitrary fluid packet, F = Ensi+ Fnsj + Gnsk is the flux

tensor of second order, and ds is an outward directed normal of a differential surface

area. The vectors may be written in Cartesian coordinates as

Q = [p, pu, pv, pw, €]’

pu
pul +p+ Tor
Eng = PUV + Tpy

pUW + Tz,

| (e+p)u+ Toztt + Toyv + Trow + G2 |
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pr
LU + Ty
Frys = pr? +p+ Ty

prW + Ty,

| (e+p)v+ Tu+ v + 1w + 4y |

pw
pwU + T,,
PWY + T,y
pw? +p+ ..
L (e+p)w+Tou+ T+ T, w+q, |

where each flux can be partitioned into inviscid and viscous portions. The density,
pressure, and velocity components are respectively given by p,p,u,v, and w. The

viscous stresses are composed of the terms:

= (220,20
= or dr 0y 0:
Tyy = _2/1@_/\(@+@+3_w)
v Jy Jdr OJy 0z
Tez = —2;1@2—/\(@+@+-a—w-)
= 0z oz  dy 02

ou Ov
Tey = Tyz = —U (a_y + %)
Tez = Tep = —l4 (?ﬁ + 212)
Tz T 62’ a‘r

ov Ow
o= m=ou(g )

The total energy per unit volume, e, is related to the internal energy per unit mass,
€, by e = pe + pg?/2. The perfect gas equation of state, p = pRT, completes the
system. In addition, for thermally and calorically perfect gases, the internal energy
per unit mass and the enthalpy per unit mass can be expressed solely as functions of
temperature:

de = ¢, dT, dh = c,dT
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Finally, for a calorically perfect gas the specific heats are constant, leaving € = ¢, T +
const., and h = ¢,T + const., where the additive constants may be set to zero. The

ratio of specific heats and specific gas constant are
forair, R=1cp,—c,

and the thermodynamic variables are related using

(e+p) 4 P, 2 2 2
hr = -t - '
T P , € 7_1+2( + v +1L)

where hr is the total enthalpy per unit mass.
Fourier’s law for heat transfer by conduction is assumed; hence, the heat transfer

can be expressed as

q = —kVD =- (q,i + (ij + sz)
= —K &i + O, + zk
- oz ay‘l 0z

where k = k/c, = yu/Pr. The Prandtl number for air, which is a function only of
the gas, relates the diffusion of momentum to the diffusion of heat, and is fixed at
Pr =0.72.

The relationship between the first (u), second (A), and bulk ({) viscosity coeffi-
cients is { = %u + A. The bulk viscosity coefficient is set to zero in accordance with
Stokes’ hypothesis, resulting in A = —%u. This hypothesis is invoked here based on
the assumption that the relative effects of the shearing stress is much larger than those
caused by the dilational stress effects, not on the theory for monatomic gases [56].
By using the kinetic theory of gases, the physical phenomena of thermal conductivity
and viscosity can be expressed in terms of the thermodynamic states. Viscosity is

related to the thermodynamic state using Sutherland’s formula:

_OTi
H_T+Cz

where C) and C; are specific to the gas in question.
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2.2 Turbulence Model

Current limitations in computing power relegate most engineering computations to
the use of grids which are too coarse to resolve all of the pertinent scales of motion.
Reynolds averaging of the Navier-Stokes equations decomposes the flow into slowly
and rapidly varying components [57]. The slowly varying component is resolved from
the spatial and time integration step sizes, while the rapidly fluctuating component
is modelled. Although the blast-wave computations did not model turbulence, the
turbulence model used in the cavity flow problems is outlined here for completeness.

The effective or eddy viscosity due to additional turbulent mixing can be related
to mean stresses using the Boussinesq approximation. The total effective viscosity is
then given by piotat = Lmotecular + Hturbulent = £ + ;. The Reynolds stress resulting

from the Boussinesq assumption is
o (%, 9%\ _2, ( om
PUit; = M dz; Oz, 3%\ M Ozy

where () denotes a time mean. The eddy viscosity is given by u, oc pfv where the

length and velocity scales are given by £ and v. Alternatively, the expression for the

eddy viscosity given by Prandtl is p; o pf?|w|, where the magnitude of vorticity is

ol = | (2L _ 00\ (ov 9w\ (0w _u)®
“I=\\5y ~ 5z 9: Oy dzr 0z

The local density is specified by Morkovin’s hypothesis, which states that compress-

ibility does not affect the scales of the turbulent motion.

The algebraic turbulence model of Baldwin and Lomax [13], as modified and
implemented by Buning [58], is described below. This description is included to clearly
show how the modified model constant used in the computed cavity shear layers is
determined. The description assumes flow in the (z,y) plane with the freestream

aligned with the r coordinate.

Treatment of Wall Bounded Flows

In Prandtl’s mixing length hypothesis the turbulent eddy size is limited by the prox-

imity to the wall, giving ¢ = ky, where the von Kiarman constant ¥ = 0.4. The
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addition of Van Driest wall damping results in
(=ky (1 - e'w/’”)

where At =26, y* = @, and the wall shear stress is 7, = (,ug—;) .
The Baldwin-Lomax two-layer model uses the Prandtl-Van Driest model for the
inner layer, and is given by

He =

{ pllw| Y < Yerossover Prandtl-Van Driest

PCpK Fuake FKieb Y > Ycrossover OUter TEgion

where y is the distance from the wall, Y. o0ss0ver 1 the location of the first intersection

of inner and outer values of y,, the Clauser constant is K = 0.0168, C., = 1.6, and

. ymarFmar
Foke = min ul,
kayma:r Frar

where C,r = 1.0. The quantities F,,,, and its location ymq, are found from
F(y) = ylo| (1 - e7¥"/4")

where the exponential term is dropped in wakes. The search for the F,,,, term ends
when F(y) drops below a specified percent of the first peak away from the wall, or at

overset mesh boundaries. The Klebanoff intermittency function is specified according

Criny\°|
FKch(y) = [1 + 5.5 (M) :l

to

ymdl‘

where Cgp = 0.3. The total velocity difference is given by

ugis = /(v +v?) - (u?+0?)

and the latter term is taken as zero at the wall.

Treatment of Free Shear Flows

The eddy viscosity in the shear layer was computed as outlined by Buning [58].

Development of the free shear layer model begins by using F(y) = y|w|, as suggested
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by Baldwin and Lomax [13] for wake regions. This results in

2
ymaxudif
Cok—0—
Fmar

2
u .
= ka (__(L) lemaz

lemaz

Fwake =

o< 2|

where specification of Cy is discussed below and the velocity difference is modified

to be half the total velocity difference between the streams in the specified shear layer

Udif = V (U2 + v2)ma: -y (U2 + vz)l“‘l'm"

Finally, the Klebanoff intermittency function is modified to

region

-1

Crkiesly — y|u|m.,|)6]

Frin(y) = [1 + 5.9 ( ”

where the shear layer width is given by y, = uy /|| maz- The free shear layer model
is now given by

2
Ug;
M = pKCC”karu;ld—f (2)

after dropping the intermittency function for the analysis below.

The magnitude of the eddy viscosity in the free shear layer model can be altered
by specification of Cy. The remainder of this section shows how C,, is chosen based
on empirical and analytic information.

Gortler’s shear layer solution is given by

_U1+U2[

Uz — u) _i t o -9y
- 2 1+ erf(n)})erf(n)-ﬁfoe dU,TI— T

Uy + Uy

where u; and u, are the velocities of the slow and fast streams and n is the similarity
coordinate (See Fig. 19). The spreading parameter ¢ is inversely related to the
spreading rate, db/dx, where b is a measure of the shear layer width. The value of

the spreading parameter when the velocity of one of the streams is zero is 0g-
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Gortler’s solution can be used to determine the maximum vorticity magnitude in
a free shear layer as follows:
du
dy
o
Aue™"
/7

o
|wimaz = :rﬁAu

0udn
on Oy

| =

,AU = (U2 - ul)

Now, using Prandtl’s mixing length assumption and scaling laws for jet bound-

aries, eddy viscosity can also be expressed as

He X pl2lw|

= KypbAu (3)

where Ko = 727.
[o]

Setting Egs. 2 and 3 equal results in

Cuk = (00K Copy/7)™"!

and only oy remains to be specified. Estimates of oy from empirical evidence is quite
variable, ranging from 9.0 to 13.5 primarily dependent upon whether the upstream
boundary layer is turbulent or laminar [48, 59, 60]. For this series of cavity flow
efforts 0y was set to 11.0, which appears to be the result from the highest quality
experiments, resulting in a value of Cy, = 1.91. Previous numerical investigations
appear to indicate that capture of resonance is not strongly dependent upon the
turbulence model in the cavity [30, 34, 36].

2.3 Transformation to Curvilinear Coordinates

In order to adequately resolve the solid boundary/fluid interaction, it is common to
transform the governing equations into curvilinear coordinates which can be body-

conformal. Specifically, the body is constrained to lie at a constant £, 7, or { level.
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For a stationary grid, this transformation can be expressed as

7=t §=¢&z,y,2), n=n(r,y,2), (=((z,y,2)

Application of the chain rule of differentiation yields

0 a 5}
- =&z z' + T
oz~ o ag T T o
with similar expressions for the partials with respect to y and 2. The inverse trans-

formation gives

0 a + 0
€ = Tar T¥egy T ¥5;
Again, expressions can be found for the 7 and ¢ partials in a like manner. Represented

in matrix form:

81 o 2

r_é; 61- Nz Cz aé

d o)

ay | T | &% W G an

9 a9

e \_szECz.J_ac_
T

- —6—' - - - 6 -
o€ Te Ye % oz
9 | _ 9
on | — | Tn Yn dy

0
a% LI ¥% “J ] Bz .
-1

Combining the use of T = (T!)~! and finite volume metrics, such as those described
by Vinokur [61], leads to a scheme which is freestream-preserving because of the
telescoping property. Hence, if the surface normals to a constant £, 7, or ¢ plane are

defined respectively as

Si+l = Srapilt s+t sz,i+%k

= %(r7 —14) X (rg — r3)
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SJ-+% = sr.j+%l+5y,j+2l-]+sz.j+%k
1
= 5(1‘7 —ry) X (r3 — T¢)
Skl = Sres+id + Syk+1d + 3;.k+§k
1
= 5(1‘6 —rg) X (rs —r7)

where the index convention is shown in Fig. 3.

Figure 3: Hexahedral cell and stencil

The metrics can then be formed as

1
& = Iz —Uczn) = 3552itd

& = J(zczg—19%) = %sy,ﬂ-%

& = J(zgye —zcyn) = %sz,ﬂ—%

ne = J(yeze — ez = %sz,j+l

ny = J(Teze—zcze) = %sy‘”%

n: = J(zcye — zeyc) = %S,J+%
1

G = J(Uezg = Un2e) = P2k}
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Cy = J(.T,’.Zf -_ IEZ,;) = gsy,kﬁ-%
1
G = J(xfyn - I'ny) = T}s:,k%—%

These metrics represent the projections of the cell face normal into (r,y,z) space.
The faces of the hexahedron exactly enclose the discrete control volume, l.e., no gaps
are permitted at the edges.

Finally, the Jacobian of the coordinate transformation is equivalent to the inverse

of the volume, as related by

1_ dzw2)

J = 8
= Te(Yn2c = Yc2n) — ToYezc — Ycze) + Tc(Yezn — Yn2e)

1
= V = g(si_% + SJ'_% + Sk—%) . (!‘7 - r]_)

Utilizing these metrics in the application of the chain rule to Eq. (1) and subse-

quent simplification yields
' ’ ’ o
Qr+E+F,+G; =0
where

Q = Qv
ns = (Ewns& + Fns&, +Gns€)V
= [Enss: + Fnssy + Guss.)i
Fys = (Ensn: + Fnsny + Gasn,)V
= [Enss: + Fnssy + Gnss.];
vs = (EnsC + FnsG +Gns(,)V
= [Enss: + Fnssy + Gnss:le

Separating the inviscid and viscous portions of the flux vectors, then in the ¢ direction
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E\s¢ = E'+ E;, where
pU
pulU + &.p
E'=V| poU +&,p
pwlU +&:p
| (e+p)U

Here the contravariant velocity component in € is U = u; + v, + w€;, without metric

normalization. The viscous flux can be represented as

0
Tez€z + Tyely + Te2€
E,=V Try€e + Tyyy + Toys
Te:&e + T2y + 7226
| (ueh + veh + wel) + (26 + 96y + ¢:€:) |

where the viscous stress terms are evaluated by again invoking the chain rule, and

the flux in the 1 and ( directions are found similarly. The results presented herein
are implemented using either the thin-layer or the full viscous term treatment.

The widespread use of the thin-layer approximation, first implemented by
Steger [62], can be justified from either physical or algorithmic arguments. Physi-
cally, the neglect of all diffusion processes parallel to the body is similar to that used
in boundary-layer theory, albeit not as restrictive. Hence, when the viscous effects
are confined to thin regions along a constant &, 7, or { plane, this assumption is valid.
Regarding the algorithmic argument, the banded matrix structure used in multidi-
mensional algorithms which sequentially solve a set of unidirectional problems can
include only these thin-layer terms implicitly. This thin-layer flux in the 7 direction,
assumed to be the body normal coordinate, is expressed as:

' 0
myu, + myty + Mswy,
My, + MUy + MWy
msu, + Mgty + M3aWy,
mytu, + molv, + maWw, + me(iv, + tu,) + ms(dw, + Wu,)

+mg(Tw, + Tv,) + Keg (02 + 173 +n?)
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where the (7) denotes an arithmetic mean value and

4 %
my = u(—nﬁ+n§+n§), my = =,

3 3
4 H

my = U (773 + 3773 + 773) y My = 577:'7;:
4 7

m3 = U (773 + 773 + §n3) » M = 37

These viscous flux terms may be found for the remaining spatial coordinates as well.
The results presented here are implemented using either the thin-layer or the full

viscous term treatment, as required by the the flow physirs.

Nondimensionalization

'The governing equations may be nondimensionalized by the choice of a length scale,

denoted by L, and reference values of p, u, and p such as

ﬁrcf = Poos ﬁrcf = \/ﬁco/ﬁooa ﬁfef = Poo

The nondimensionalized variables follow:

p=i5/ﬁrefa pzﬁ/ﬁn/’ ezé/(ﬁfefﬂgej)
u=ﬁ/ﬁ,ef, ’U='Ij/ﬂ,.ef, w=u~1/ﬂ,ei

t=£ﬁrcf/z/v T=P/P, u=ﬁ/ﬁref

The Reynolds number resulting from this procedure is Re = .. ff,ﬂrc t/fires, Where

the (7) denotes a dimensional quantity, and ( ) denotes the freestream conditions.

2.4 Upwind Schemes

The numerical scheme will be described using first-order terms, following which the
higher-order extensions will be outlined. The scheme expressed for a cell which has

a mean flux value on each of the six sides is

0 j+i e+l £ & cd
E/‘;de + _é_% _/,;_%( itk i—%,j,k) Cdn
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k+§ l+% , ,
+ ./k_% _[1_ (Fiu+§.k'Fx;,—§.k)dde

H-% Itz ’ '
+ /._% /;_ (Giu\kﬂ- - G:’,j,k—%)dndf =0

W

In fully discrete form, after dropping the primes for convenience, the governing equa-

tions can be written as

AT
n+l _ ~n n+1 — n+l
ik T Cije F Viir {(Ei+-},j.k EZysw)
+1 n+1
+ Fr - F
( t,j+%,k 14—%,1:)
n+1 n+1 _
+ (Gig‘,k+§ Gij,k—%)} -

where n denotes the time level in this implicit representation, and A¢, Ay, and Al
are set to unity for convenience.

These flux terms may be evaluated using a technique which may be broadly classed
as either central or upwind. The latter technique is chosen for this study for the de-
sirable numerical properties, such as diagonal dominance of the flux Jacobian, and for
the physical dependence on zones of influence which are inherent in upwind schemes.

Upwind schemes bias the derivative evaluations required to determine the flux
across fluid cells according to the sign of the characteristic speeds. In this manner
these methods bring the physics of the hyperbolic system, the unsteady Euler equa-
tions, into the numerical solution process. To facilitate the implementation of these
upwind schemes, the eigensystem is determined. The similarity transformation which
diagonalizes the unsteady, inviscid, gas-dynamic equations, shown by Warming, et
al. [63], is outlined as follows

g—g = TAT™!

where the rows of T7-! are the eigenvectors and
A=A*"+A" = digg [5’,0’,0,0+c,0—c] IIs]i

using normalized contravariant velocity components. The eigenvalues can be split
according to, among other splittings, their signs:
At (A

At =
2
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Q]
[R%)

where A i1s an element of A.

Two upwind schemes are implemented here to compare the results which may
be obtained with either of the techniques. The initial portion of this discussion will
be presented unidimensionally for simplicity; the multidimensional extension will be

outlined towards the end of this section.

2.4.1 Flux Vector Splitting

The shock-capturing scheme developed by Steger and Warming [64] revisited the
classical characteristic procedures. They found that the Euler equations possessed the
property of homogeneity of degree one for the equation of state used here, meaning
E(aQ) = aE(Q). For a vector with this property £ = AQ, where A is the flux
Jacobian given by 0E/0Q. Consequently, the flux vector can be split into two parts,
each physically corresponding to the right and left moving waves. This technique
resulted in the flux being represented as a combination of the subspaces associated

with the positive and negative eigenvalues, expressed as

E = TAY+ATIQ = (A*+A7)Q
= Et+E-

where T and T~ are the right and left eigenvectors of the flux Jacobian matrix A,

respectively. The flux across a cell face can be determined by

E, = E:1+E;%

= ALQi+ AL Qi

Because the Jacobian at i 4+ % is dependent on two states, this solution method now
diverges from the original Steger-Warming flux vector splitting. The treatment of
this Jacobian is shown in a following section. Linearization in time can be performed
in one dimension as follows, extension to the multidimensions is straightforward and

is omitted for brevity. At the n + 1 time level,

Eff = (AT)Qr +(AT) ey

= (A )|+%6Q? + ( ),+’ 6Qn+1 +%
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where the implicit change in the dependent vanables is given by 6Q" = Q"*! — Q™.
Note that the Jacobian matrices are frozen at time level n. The remaining flux. El"_tl.
may be obtained similarly. 2
To assess the effect on stability of this type of linearization, a procedure developed
by Barth [65] is applied to this method. Using the semidiscrete form 8Q;/dt = —R,,
then
1

R = A (Ei+% - Ea-a})

Using frozen Jacobian matrices, the method can be linearized as follows:

I (R . |
[ +(6Q>]6Q=—R (4)

where for the first-order subset the Jacobian is a block tridiagonal matrix. The blocks

along the i** row are

OR; 1 +

Qi1 Az (—A"i)

OR; 1 -
50 = ar (M-

OR; 1
- ()
0Qin Az \ 2
This scheme is inherently conservative in space because of the telescoping property of
the finite-volume formulation; analysis of this scheme reveals that it is also conserva-

tive in time, possibly allowing the use of large Courant numbers [65]. A demonstration

of this analysis proceeds by writing the scheme as
o +An] 6Q — _AnQn

hence
Qn+l + AtAnQn+l Qn (5)

In order for the scheme to be conservative in time over a periodic domain, the global
average of a solution must remain constant for all time, i.e., ¥/_, Q% = ©/_, Q" =
I_, Q™! Hence, when Eq. (5) is summed across the domain, the result is that

the columns of A™ must sum to zero. For example, summation across a three-point
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domain yields

" n n n+1
B, ¢ . 1"
(@i + Q2+ Qo™ +At[1, 1, 1] | A} B; Cj Q: =[Q1+ Q2+ Qy"
Ay Bj Qs

where the elements of the middle column of A" are C] = Az/9s B, = A;ﬂ — A3,

A3 = —A},, which sum to zero.

2.4.2 Flux Difference Splitting

Flux difference splitting methods are based on the Riemann problem, solved exactly
by Godunov in 1959 [66]. The Riemann problem is composed of m + 1 piecewise
constant states separated by m wave families. The waves include shocks, contact
surfaces, and rarefaction fans. For each of the Riemann problem cells, the transition
of the dependent variables is a function of a parameter family. The solution can be
found once these transition states are known. Approximate Riemann solvers simplify
the numerics of the problem by eliminating the iterative process required to find the

intermediate states.

t
Expansion wave Contact surface
u-c u
Compression wave
u+c

- X

Figure 4: Riemann problem schematic

Figure 4 shows a schematic of the Riemann problem with the piecewise constant

states separated by the appropriate wave families. The flux through the cell face is

1 -
E‘.+% = m[E;‘*‘E.*.I_(AE;:_%—AE'*_%)}
1
= 3% (Ei+ Eiyy — AlE|.‘+§-)
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(]
O

where |E| = |4|Q = (A% — A7)Q = [T(AT — A7)T71Q. The flux differences associ-

ated with the + and — traveling waves are

AEL, = (TATT ™ 3(Qin - Q)
AE;% = (TAT™Y, %(Q:+l - Q)
Again utilizing the semidiscrete form 8Q,/dt = —R,, then
1
R; = oA: [(EH-I -Ei_y)- (AIE|;'+’5 + A|E|¢—§)]

This method can be linearized using a procedure similar to that described previously

in Eq. (4). The blocks of the ** row are expressed as

orR, 1 BA[EL-_;_

3 = (e
on (26l 2L
0Q; 2Azx 0Q; 0Q;

OR; _ 1 aA’EIH-%

ol CER o)

Substitution of the flux difference splitting expression yields

OA|E|; ;1

et = g M@0
6A|-4|i+%
= |Aliy + —5"Q—'_+1—'(Qi+l - Qi)

These true Jacobians are expensive to compute, and the simplification to approximate

Jacobians is made as

—-—— =4l
aQt+1 ?
Utilizing these approximate Jacobians, the linearization proceeds as
E'n++ll — QA (En+1 +E:1+-}-11 _ AIE‘n-H
1 n
= oxz [(AT + A1 )8Qi + (A = AL )6Qun | + ET,

where E"tl = E™ 4+ A"6Q and Q! = Q™ + (8Q/0t)"At. The fluxes through the
remaining faces are determined similarly. This scheme can also be shown to obey the

criterion for conservation in time.
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2.4.3 Roe Averaging

In order to determine the Jacobian at the cell face i + %, some function, A =
A(Qr, Qr), must be assumed, where the subscripts indicate left and right states. The
location of this flux evaluation is one of the differences between finite-difference and
finite-volume schemes. The evaluation used here is attributable to Roe [67], which
provides an approximate solution to the Riemann problem. This Jacobian is cre-
ated through the use of a parameter vector composed of a geometric-like mean of the
states. The more obvious arithmetic Jacobian forms, such as A4 = (AL +Ag)or A =
A( %(QL + Qr)), are not conservative forms. Conservative Jacobian forms satisfy

A(QL, Qr)(QL — Qr) = EL — Epg. Stated explicitly, the Roe averaging operation is

P = /PLPr
g = HLVPLT UiR\/PR

' VPL + \/Pr

pruip + pluif + wig) + ppuig
PL+2p+ pr

B prihr)L + p((hr)L + (hr)R) + pr(h7)R

T = -

pPL+2p+ pp

where a () denotes a Roe averaged quantity, and the latter forms are presented as

inexpensive alternative expressions. Substitution of (i) for L and (i+1) for R allows
the evaluation of the Jacobian at the intermediary cell face. For the flux vector
splitting case described earlier, MacCormack [57] has found this average helps to
alleviate excessive numerical dissipation in regions dominated by viscous effects. Roe

averaged values are utilized throughout the development presented here.

2.4.4 Higher-Order Extensions

Spatially first-order methods frequently provide inadequate resolution of the flowfield.
However, the methods discussed above can be extended to higher-order spatial accu-
racy by modification of the right hand side. In order to assist in the preservation of
well-behaved solutions near the discontinuities admitted by the strong conservation
law form of the Euler equations, a total variation diminishing technique is imple-

mented. If the total variation of a solution is defined as TV (u) = 2 oo Uit — uyl,



CHAPTER 2. NUMERICAL METHOD 27

then a solution which follows TV (u"*1) < TV(u") is TVD. The TVD constraint can
be shown to result in diagonal dominance, allowing the use of relaxation schemes.
In this manner the scheme may be extended to higher space accuracy throughout
the smoothly varying regions of the field, reducing the accuracy in localities of high-
gradient and extrema in order to obtain sharp and oscillation-free resolution. These
methods are rigorously applicable only to scalar nonlinear equations or a system of
linear equations in one spatial dimension. Application of these schemes to multi-
dimensional systems of nonlinear equations are generally not TVD. Moreover, it is
not clear that the higher-order accuracy of the unidimensional problem is retained in
multidimensional cases. However, the results which can be obtained demonstrate the
usefulness of the technique.

Of the several methods which fall into the TVD domain [9], the technique im-
plemented here is one attributable to Chakravarthy and Osher [68], the development
of which follows for completeness. In this formulation, the higher-order flux can be
expressed as a sum of a first-order flux, denoted Ei+%, and a flux correction term. The
flux correction terms are determined by first computing the flux differences across the
m wave families mentioned previously. Subsequent limiting of these flux differences
and summation across the wave families results in the higher-order flux. This flux is

expressed as

9 S|
2

where (7) and (~) indicate a quantity that has been limited, j is the index denoting

+ U:@Fiﬁy4

i

the wave family, and ¢ is the index assigned to a cell center. Using the notation of I/
for the rows of the left eigenvector matrix, T-!, and r’ for the columns of the right

eigenvector matrix, T, then the measure of the change in the dependent variables is

CY‘:+ = % (Qit1 — Qi)

%
The measure of the change in the flux is defined as

0l =N = (Nt + N7)od
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the eigenvalues being split as shown previously. The limited counterparts of these

values are obtained as:

., ; = minmod :a;%,ﬁo;i
5;% = minmod _a;%,ﬁa;%.
6:;% = minmod ia;%,ﬁo?_%]
c:ij_% = minmod iaj’_%,ﬂa;%:

This limiter returns the argument of smaller magnitude when the signs are equal, and
returns zero when the arguments are of opposite sign. This procedure effectively adds
dissipation locally in regions of high flux gradient and at inflection points. In this
manner, monotonicity is preserved by preventing the creation of new extrema while
preserving the global accuracy of the solution. While formal accuracy estimates are
difficult to ascertain because of the nonlinear application of limiting to different wave
families, numerical experiments have demonstrated that the global accuracy of the
underlying scheme is preserved [69].

The compression parameter, 3, is restricted according to 1 < 8 < 3=2 and the

l-¢
limiting operator is given as

minmod(z,y) = sign(z) (max {0, min ||z],y sign(z)]})

The compression parameter reduces the amount of dissipation added, the range being
bounded by accuracy and TVD constraints. Finally, the limited flux difference values

are expressed as

dE:+§ = 0}’.,.%7'.'4»%
=j- ~j—
dEH_% = 0’.~+%7‘l~+%
~‘+ ~.+
dEiry = Ty
=+ =i+

2 2 2

This asymmetric limiter is designed to modify the fluxes only in the rapidly varying

portions of the flow, where nonphysical oscillations are likely to occur. Since these
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high-gradient regions are confined to thin regions, the dominant solution domain is
differenced in accordance with the underlying scheme. Variances in the value of the
compression parameter allow the fluxes to be limited for different gradient levels. This
implies that use of B, Will cause the limiting action to be taken only in the high-
gradient regions, and lower values of 3 will result in limiting for commensurately lower
flux gradients. The variety of schemes which can be obtained using this technique

are shown in Table 1.

¢ | Unlimited Scheme | Bmar | 2" order TE
—1 | Fully upwind 2 AT frrs
—3 | Nameless 2 AL for,
0 | Fromm’s 3 (AT frre
3 | 3" Order 4 0

5 |Low TE2™ Order | 5 | —(Az)?f,.,
1 | Central oo | —3#Az)for,

Table 1: Summary of schemes

Here TE = (3 — ¢)(Az)? f;z./4 defines the leading term of the truncation error
for the unlimited form of the schemes. Local metrics have been used in the above
method to maintain reasonable computational efficiency, a satisfactory approximation

for grids which do not contain rapid variations.

2.4.5 Viscous Terms

The viscous terms are treated through central differencing about the cell faces. The
explicit terms are conventionally differenced after chain-rule expansion, inclusive of
the cross terms if these diffusion processes are significant for the problem at hand. The

left hand side does not include these cross terms, and the resultant viscous Jacobian,
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employing V' = [p, u, v, w, e]T as the primitive variable vector, is

[0 0 0 0 0
0 $:8,/3 uszs,/3 0
oV Mg H Sy/ U /
M=—| =-10 my my usys./3 0
MirL
0 mo, ™34 Mgy 0
| 0 ms;  msy Msq  Mss |

4 ,
mag = p(=s2 + 52 +s),m33=,u(s + =52 + 5?)

3 v
4, — of 2 2
My =p(s2 + s + 532) , Mss = K(sZ + sy +s7)
Msa = UMap + UMz + WMoy
Ms3 = UM3e + vM3az + WMy
Ms4 = UM4o + UMNy3 + WTNyy

The viscous flux through a cell wall at j + % is of the form Alj+%(Nj+1Qj+1 - N;Q;)

where
p 0 0 0 0]
90 1 —-u 1 0 0 0
N=="T=2 —
V-5 v 0 1 0 0
—w 0 0 1 O
| —e+ 3+l +w?) —u ~v —w 1]

Now, using three-dimensional indices (¢, j, k), expansion of the block structure gives

At
- { A.-ldk}éQ‘ 1k

{ la-— vA{,J--‘-kNm lk]}éQiJ—l,k
_ { o k__}aQ.d'k 1

.+§J,k T Piclgk
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+ -
+C+ o C‘]L__
1
+§(A[,'J'+;.‘k + AI,"J‘ %k) l]k]}éQ!)k

At
t { 1% C:JH—’ }6Q“1k+1

At 1

At _
{ v AL Jk}6Qi+1J.k = AQi ik

where only the thin-layer terms in 7 are shown here.

2.4.6 Factorization

The extension of the techniques given above is accomplished through dimensional
splitting. The method used here is that of Yanenko [70], where the factors are chosen

in the £, 7, and (¢ directions. Expressing the three-dimensional equations in compact

notation as A A
T T
I+ —A+— —
( +A§ +A B ACC)(SQ AQ
then the factorization procedure yields
AT AT
I+ ZEAN + F2B)T + 320060 = 5Q

This system can be solved sequentially through the use of intermediary steps without
loss of time accuracy. Although alternating direction implicit schemes of this type
offer advantages of vectorization, the system is solved as a sequence of unidimensional
problems, hence limiting the size of the time step due to stability restrictions {71].
The use of this technique here is justified by the requirement of adequate time history
flow resolution, thus imposing an additional constraint on the maximum time step.
Application of a line Gauss-Seidel method to the starting shock tunnel test case,
discussed in Section 5.1.2, confirmed this hypothesis. This relaxation method offered

a slightly increased stability range, but not enough to offset the additional expense
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caused by short vector lengths for the shock tunnel problem. Additionally, since for
the factored scheme the flux exchange occurs at the same time level, the technique is
conservative, even when convergence at the subiteration level is not attained for each
time step.

The expense of both the upwind algorithms is relatively high: 86us per cell per
iteration using a single processor on the Ames Research Center CCF Cray Y-MP /832.
These vectorized codes have computation rates of approximately 140 MFLOPS. In
addition, the memory requirement is 40 words per cell. Decreased processor times
may be achieved by many methods. For example, freezing the flux Jacobians for
several subiterations will offer a processing time reduction of 15% per subiteration,
albeit at the expense of memory. It is clear that the expense of these upwind methods

is warranted only for problem classes in which the improved resolution is critical.

2.4.7 Newton Iterative Technique

Reduction of the linearization and factorization errors is achieved by a Newton iter-
ative method of the type described by Rai and Chakravarthy [74] and Rogers and
Kwak [75], albeit with the addition of allowance for a varying step size [14). Assuming
that the initial guess lies within the radius of convergence, the right hand side is con-
verged to an arbitrary accuracy while holding time fixed. Since the right hand side
includes the higher-order difference representations of the Navier-Stokes equations,
linearization and factorization errors are eliminated at convergence. The method is
discussed below where m is the Newton iteration index and n is the conventional
index denoting time level. Discretizing Q, + E, = 0 gives

L(Qn+l,m+l - Qn+1,m) _ A_l": [Qn+1,m+l _ Qn,m-H _ (Qn+1,m - Qn)]

AT
n+1,m 1 n+1l,m n
~ Qt-H. +1 _ AT(Q +1m _ Q )

where the solution is converged at time level n, hence Q"™ *! = Q". Defining 6Q’ =

Qn+1.m+1 - Qn+1,m, then

I&QI — ATQIH-l,m-H _ (Qn+l,m _ Qn)
- __ATE:+1,m+1 _ (Qn+l,m _ Qn)



CHAPTER 2. NUMERICAL METHOD 33

Linearization at iteration level m + 1 gives

6E n+l,m
n+lm+1 _ n+l,m z
E? = prttm g <%> 8Q
where the flux Jacobian has been frozen at iteration m. Substitution yields

16Q' = —ATER*T™ — Ara—iA"“""&Q' — (™1™ - Qn)

Rearranging results in

A
I + _TAn+l,m 6QI - _(Qn+1,m _ Qn + ATE:+1,m)
Ar
which reverts to the standard noniterative form [é + iA"] 86Q' = —E?, when no

subiterations are taken, as can be seen by substitution of n for n + 1, m.
The temporally second-order accurate representation is found by extension of the
above procedure. Using a three-point backward time stencil derived from a standard

Taylor series approach,
Qi =CoQ™ + C1Q" + CrQ™!

where

-0 o
Cy = . C =
0 (1-0)An+an' '~ (1-o0)An+ An
-1

(1-0)An+ A7

Cy =

and 0 = (1 + An/AT)% The elapsed time between the n — 1 and n time levels is

given by A7, and between n and n + 1 is A7,. Rewriting at iteration level m + 1,
ColQ+1mH1 = QrHim) = QI - (GQ™I™ + C1Q" + Q™)

Finally,

1 +1 ] [ n+1,m Cl n C2 n—1
— AnHLm| s — ) =1 =2 -
[I+C0 —A Q (Q +COQ +COQ )

L
Co

n+lm
E?

which reduces to [;’A’r + ﬁA"] 6Q' = 5(Q"—Q""1)— E? for the case of no iterations

with fixed time step size. The formulation given above allows the use of a time step
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size which is a function of time, but is fixed at each step for the entire domain. The use
of a variable time step size allows the solution to progress using a constant Courant
number, possibly preventing inadvertent divergences. Higher-order accuracy in time
may be obtained by extension of the above technique, albeit with additional memory
requirements.

The assertion that this technique reduces the factorization and linearization errors
is substantiated as follows. The right hand side of the method contains the discretized
governing equations in their pure form, that is, without the numerical approximations
utilized to attain rapid convergence. The left hand side allows the use of large time
steps by relieving the Courant-Friedrichs-Lewy stability constraint. Deferring the
question of uniqueness, if a set of dependent variables is found such that the right
hand side is satisfied, then this field is a solution to the discretized equations regardless

of the approximations made to arrive at that set.

2.5 Diagonal Scheme

Resolution of the transient wave-field of the blast-wave/target interaction problem
class benefits from the use of upwind methods. In contrast, for the SOFIA effort a
combination of the low transonic regime, the complex geometry, and the large prob-
lem size required an efficient integration scheme. The algorithms used for the SOFIA
effort, coded by Buning and Chan [58], are implemented within the Chimera over-
set grid framework [72]. The solutions were obtained using a diagonal scheme [73],
using spatially varying time steps for steady state computations, and fixed step size
for unsteady flow simulations. The code utilizes the conventional dependent variable
vector, Q = [p, pu, pv, pw, €]7, and pseudo-finite-volume metrics. Euler implicit time
marching and second-order central spatial differencing were used for the computa-
tions presented here. Computations were performed on the Numerical Aerodynamic
Simulator (NAS) Cray Y-MP/832 using SSD, at an expense of 14us per point per

iteration.
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2.6 Geometry Treatment

Geometric modelling and grid generation is a significant portion of the effort spent
in obtaining the flowfield about any reasonably complex geometry. A structured
approach is utilized for this study, with the body-conformal internal grids generated
using the elliptic techniques of Thompson, et al. [76], Thomas and Middlecoff [77], and
Steger and Sorenson [78]. The external flow domain was discretized via algebraic and
hyperbolic means, the topology was chosen to allow the use of these grid generation
methods. The grids used in this investigation were generated using codes written
by Steinbrenner, Chawner, and Fouts [79], Chan and Steger [80], and Atwood and
Vogel [81]. A discussion of the treatment of the surface, the grid topology, and the

grid strategy is given below.

Surface Modelling

The geometry used for the SOFIA configurations utilized clipped wings to emulate
the geometry used in a specially designed experiment [16]. The use of clipped wings
in the wind tunnel test allowed a cavity of more realistic size to be studied. The
fuselage, wing, fairing, nacelles, and telescope geometry were obtained from CAD
databases. Positioning errors in the database were corrected using blueprints.

The process of generating the more complicated grids, e.g., the quiet SOFIA
configuration with telescope (configuration 100), warrants additional comment. Ex-
tensive wind tunnel testing [16] resulted in a hand-formed ramp and aperture, shown
in Fig. 5a. This geometry was subsequently laser digitized [82], resulting in a data set
of the form shown in Fig. 5b. These data, accurate to approximately 0.2 mm (0.6%
of cavity length), were then converted into a form suitable for the surface grid using
a standard CAD package (83].

Surface definition via bicubic surfaces in regions of high curvature can cause local
oscillatory behavior [79, 81]. Along overlapping surfaces this property is manifested as
C?, or jump discontinuities at zone boundaries. The problem is ameliorated through
bilinear projection from one zone boundary to another [84]. The distance of projection

is typically five orders of magnitude less than a characteristic geometry length.
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Figure 5: Geometry acquisition: (a) model, (b) laser digitized configuration, and (c) grids
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Topology

The overset grid topology scheme was chosen for its geometric flexibility and its ability
to allow refinement of individual zones. The use of a different grid for each component
of the geometry simplifies changes that will occur as the design matures. In fact, the
geometries with cavities were built upon the clean configuration grids, providing a
savings of many man-hours. The topology was chosen to allow rapid evaluation of
new configurations and permit simple specification of turbulent wall and shear layer

regions.

Grids

The SOFIA configuration y* values for the first grid point away from the wall were
generally about 4.0, the farfield boundary was placed at 20 fuselage diameters, and
the outflow 10 diameters downstream. Damping of acoustic waves at the farfield
boundary was achieved by the use of large cells which were unable to support the
high frequency waves.

The clean SOFIA 747 configuration, without a cavity, was modelled using four
grids for the half-body: one each for the fuselage, wing, wing tip, and nacelle. The grid
point count was approximately 4 x 10%. The fuselage grid was refined in anticipation
of the cavity to provide similarly sized cells in interpolation regions.

The untreated aperture geometry, configuration 25 of the wind-tunnel test, was
gridded by reflecting the four grid zones described above and adding two for the
cavity. The term untreated refers to the lack of geometry modifications which can
eliminate cavity resonance. The fuselage zonal boundaries were shifted meridionally
to move interpolation away from the cavity region. The two additional grid zones
consisted of an outer cavity grid surrounding the cavity region and an inner cavity
grid which included the cavity walls and the shear layer region. The outer zone was
utilized to isolate the cavity unsteadiness from the global solution. The total grid
point count for this case was about 1.2 x 108 distributed in 10 zones.

The treated aperture geometry, configuration 100 of the wind-tunnel test, was

modelled by the addition of seven grid zones to the clean case: one each for isolation,
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aperture wall, shear layer, cavity wall, telescope tub, secondary mirror, and an inner

ramp grid. The total grid point count for this case was about 1.8 x 10°% in 15 zones.



Chapter 3
Boundary Conditions

The flow solver block implicit boundary conditions are implemented in a manner con-
sistent with the flux split linearization described earlier. The inviscid and viscous im-
permeable wall conditions are prescribed similarly to those given by MacCormack [85].
Although the following procedures are presented for a cell face which lies along a con-
stant 7 plane, the procedure may be generalized for application to any cell boundary.
Finally, the characteristic inflow and outflow boundaries are discussed.

The inviscid, impermeable wall boundary condition is described for a pair of cells

between which the surface lies, depicted in Fig. 6. In the following discussion, the cell

Figure 6: Flux computation at a cell face or wall

39
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above the wall will be denoted by subscript 2, the cell below the wall by subsecript 1.

At the centroid of cell 2 the velocity is expressed as

—

5 = usi + vo] + wok

and at the cell wall the surface normal is

N 1 . )
Swatt = T (8z0+ 8, + 5.K)|wau

IIsll

= (gzi + 3yj + gzk)lwall

where ||s|| is the vector magnitude. Hence, the velocity component normal to the wall

is

=i

n2 = ||Vn2||§wau

= (uS; + v8, + w5, )(5,1 + 8&j + 5.K)wan
Since, V =V, + V.., then the tangential velocity component is

Vo = V=V,
= [u— 5, (uS, + v§, + ws,)]i
+{v — 5,(us,; + vs, + ws.)]j

+[w — §.(u5; + v5, + w3, )|kl

The flow tangency condition is satisfied by f/‘u = 17,2 and 17,11 = - “,.2. Total energy
and density are found from reflection as even functions through the relation R6Q, =
ER6Q,, where E = diag[l,1,-1,1,1] and the rotation matrix is found from an

eigenvalue problem, the eigenvectors being the rows of

[ 1 0 0 0
0 —(5,+5.) &, 5; 0
R=1]0 3, 5, s, 0
0 5, 5. —(5:+5,) 0

0 0 0 0 1

-
Il
™
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A Riemann problem can then be solved at the wall to determine the flux from F._; =
2
B~ Q4+ B*(Q,. This amounts to the wall being represented as a contact discontinuity

by constraining the contravariant velocity to vanish. Implicitly, this results in

6Q1 = R ER|uanbQs (6)
where ) ]
1 0 0 0 0
0 1-252 -25,5, -2535. O
R'ER=|0 -255 1-252 -255. O
0 -255, -25.5, 1-252 0
0 0 0 0 1

L J.-3
1=z

The block tridiagonal system may be written as

B, C} 6Q1 AQ
Ay, By G 6Q2 | = | AQ2

Now the change in flux across an arbitrary cell wall boundary is given by AE . =
A*8Q; + A=8Q,, or the sum of the changes in the flux contribution from the positive

and negative moving waves. Substitution of Eq. (6) yields
AEya = (AYR'ER + A7)6Q;

and it can be seen that dependence upon 6Q; has been eliminated. Hence, the block

tridiagonal system may be represented with embedded boundary conditions as

B" Cj 6Q2 AQ:
A; By Cj 6Qs | = | AQs

where B” is the appropriately modified Jacobian.
The viscous impermeable wall imposes additional constraints on the specification
of the wall flux. Again utilizing a primitive variable vector V' = o, u, v, w, €]T, then

oV

Vi = diag(l, ty, ty, ty, t)6Va = v,

)%
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for a wall face at % In this form the togglest,,t,,t,, and t are set at 1 or —1 for a slip
or a no-slip condition, or adiabatic or isothermal wall, respectively. This may be seen
by simply rearranging expressions of the form uyq. = (u1 + ug) OF Uyan = Uy = Ua.
Having already specified the impermeable wall conditions earlier, only the viscous

terms at the wall are of present concern. Looking at the terms of the form

At
AQ, = —( MN6Q) + MN26Qo + --+)

then substitution of the wall relations above leaves a term

_ At 3V1 6V2 a 2
AQ, = V] [ MBV26Q26Q2 BQ —6Qa + - ]

At v\ v
= 5 [M(I av2) 505+ ]

which is subsequently embedded into the block structure. The dependent variables
within cell 1 are specified according to boundary-layer theory, holding the pressure
gradient zero normal to the wall. The remaining variables follow from fluid and
thermodynamic relations.

The inflow and outflow boundaries are specified according to characteristic theory
for generality. Linearization of 77!Q,+AT~!Q, = 0 for the forward differenced inflow

condition yields
At~ =, At -~ n
(1 - SAIT16Qi = = AT(@h - QD)

where the modified eigensystem matrices are computed as

A= diag[0,0,0,0,(1 - t:n)(T = )] Ilsl

dpr/0Q ]
dTr/0Q
T"' = v/8Q
dw/dQ

| (1= tin)ls + tin0u/0Q |

Here t,, is zero or unity for subsonic or supersonic inflow. The specified variables are

chosen such that a unique set of flow quantities are given at the entrance.
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The outflow condition is specified in a like manner; however, there are now at least
four characteristics linking the domain with the boundary. Backward differencing
about 7 + 1 and specification of static pressure at the exit results in the modified
matrices

A= diag [(?,(3', U0+ c,tou,(ﬁ =) |Isl

r -

4

[ (1 = tou)0p/0Q + tourls |
In the above development, the eigensystem is evaluated at the boundary face in
question, maintaining consistency with the interior treatment.

The strongly unsteady blast-wave problems investigated here revealed that the
use of block implicit boundary conditions resulted in significantly enhanced conver-
gence. This beneficial effect is caused by the faster signal propagation arising from
the incorporation of the boundary conditions within the linear system. However, for
the cavity flows explicit boundary condition implementations were used for coding
simplicity. Comparison of the computed results with experiment show satisfactory
resolution of the moderate unsteadiness present in transonic cavity flows.

Several of the cavity cases used characteristic boundary conditions holding mass
flow, total enthalpy, and flow angle constant. Subsonic inflow conditions, for example,
are related to the interior of the flow by the u — ¢ characteristic:

dp ou dp Ju
e i G (81‘ - pCBx)

which may be rewritten as

pe — peug + c(puy + up) = —(u—c)[p: — pcu.] + c(pu),

where the mass flow is fixed for these computations, giving (pu), = 0. Discretization
and rearrangement yields
—(u— )4t

dp = _g—z—-i-c—zf_erz ~ p1 = pe(uy — )]
P
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n+l
Pi

n+1
u

n+1
Tl

Pl +dp
m

n+1

1
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2 YR

Implementation of the boundary conditions, unless otherwise noted, are as follows:

viscous impermeable wall conditions are no-slip, zero normal pressure gradient, and

adiabatic; information transfer across overset mesh boundaries is implemented using

non-conservative trilinear interpolation of Q. Treatment of the farfield boundaries is

case dependent and is noted in the results section.



Chapter 4
Geometrical Aero-Optics

The objective of the numerical simulation of the flow about the SOFIA airborne ob-
servatory is to design a safe configuration which will have the least detrimental effects
upon the optics. Towards this goal, the following transonic cavity flow problems were
divided into three sections. First, the unsteady interaction of the external flow with
the cavity requires time-dependent solutions to the Reynolds-averaged Navier-Stokes
equations. Second, the shear layer growth rate is strongly dependent on turbulence
effects which must be modelled due to the grid coarseness. The final portion of the
problem is the application of the optical model to the unsteady density field in the
shear layer to determine seeing quality.

The variation of the speed of light through gases is primarily a function of the
density field. This fact has been extensively used to benefit the study of fluid physics,
as exemplified by use of schlieren, shadowgraph, and interferometry techniques. How-
ever, the objective of the present effort is to quantify the wavefront distortion of a
beam of light propagating through the shear layer. This distortion is computed using
the history of the density variations within the shear layer to predict fluctuations in
the optical path length via geometric optics. This will in turn allow prediction of the
telescope resolution limits due to seeing and thus contribute to the telescope design
specifications.

The geometric optics model developed here assumes that the impact of the fluid

density on the optical field may be computed by casting light rays through a field

45
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Figure 7: Geometric optics: (a) partitioning of hexahedrons into tetrahedrons, and (b)
intersection and refraction procedure

discretized into tetrahedrons. Diffraction effects, which become important when the
wavelength approaches the scale size, are neglected. The simplifications afforded by
the use of planar facets and piecewise continuous media are utilized by tesselating,
or partitioning, each hexahedron of the flowfield into five tetrahedra as shown in
Fig. 7. It should be noted that other tesselations were found to be more robust for
thin warped cells [86], however for the shear layer grids used here the five tetrahedra
decomposition is well-behaved.

Application of the geometric optics code to two preliminary test cases was under-
taken to determine sensitivity of the optics code to the above non-unique tesselation.
The parallel emergence of the rays after propagation through a plate and a prism of
index of refraction n = 2.4 suggests that the results are relatively insensitive to the
method of tesselation.

The problem can now be divided into three steps: 1) propagation of the ray, 2)
intersection of the ray with a facet, and 3) refraction. Solution for the point contained

in both the facet, p, and the ray, q;, expressed parametrically as
qi(t) =d +et; pu,w) =a+bu+cw

results in the intersection in parametric coordinates, which is found from the dot

product of the normal with the ray and the surface:
(bxc)-p=(bxc)-q;

(bxc)-a—(bxc)-d
(bxc)-e

t =
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_(cxe)-d—(cxe)-a
4= (cxe) b
_(bxe)-d—(bxe)-a
= (bxe)-c

where the vector coefficients are found from boundary conditions:

a = p(0,0)

b = p(1,0) - p(0,0)
= p(0,1) - p(0,0)

d = qi0)

e = qi(1)-qi0)

Specification of the light ray origin and a direction initializes the problem. Following
the search for the initial hexahedral cell in which the ray originates, the tetrahedron
within this hexahedron must be computed. First, the shortest intersection distance
of the ray with the 16 planes which compose the hexahedron is computed. Then
the dot product of the ray with the fourth vertex of the closest plane determines the
origin tetrahedron. Subsequent intersection and refraction processes are a marching

procedure. The optical path length (OPL) is found from

OPL = /n(s)ds ~ Y njAs;
J

where n(s) is the index of refraction as a function of position along the ray, s. The
variation of the OPL over the aperture gives a measure of the wavefront error caused
by the shear layer.

The refraction process is determined according to Snell’s law as shown in Fig. 7,
where the planar interface, p(u, w), separating the media and the incident light ray,
qi(t) [87, 81] are depicted. Generalization to three-dimensions is accomplished by
rotation to the osculating plane, which includes the surface normal and both the
incident and refracted rays. In this osculating plane, a rotated local coordinate system
is defined:

q = |qi,|0 + |01n|E
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where
|Qin] = |qi] cosb; and |q;,| = |qi|sin¥;
~ Q; —ncosé;
t= ———
sin 8,
Application of Snell's law n;siné;, = nysinf, where n = 1 + ﬁ;:’r—P results in an

expression for the refracted ray:
q- = nicosf, + tsiné,

The local index of refraction, nj, is found by arithmetically averaging the densities
at the four vertices of the tetrahedron, where only one vertex changes as the ray
propagates to a neighbor tetrahedron. The Gladstone-Dale constant, 3, is a function
of the media and of the wavelength. Using air as the media and a wavelength of
A= Ap = 58934, then 8 = 2.92 x 10~%. The Cauchy formula can also be used:

B = [2875.66 + 13.412/(A x 107%) + 0.3777/(A* x 1071%)] x 1077

The values of 3 used in the present computations were chosen to match those used in
the reduction of the experimental data. The wavelengths of interest for SOFIA range
from the near infrared, 1um, to the microwave, 1 mm, where optical distortion can
be seen to be more severe for shorter wavelengths.

Finally, to obtain a measure of the loss in irradiance due to the fluctuating density
field, the OPL for vacuum conditions is subtracted from the OPL through the gas
to yield the optical path difference (OPD). The value of < OPD' > is computed
using a sequence of OPD’s at a fixed station. Using the root-mean-square wavefront
distortion < OPD’ >, the phase distortion (®) is found from & = 2£2. The Strehl
ratio, given by

I o?

.—.:e_

I
is a measure of the peak intensity to which a beam can be focused. The computational
expense of the procedure outlined above is currently 250us/hexahedron/ray on a
single processor of the Numerical Aerodynamic Simulator Cray 2.
In these studies, the effect of fluids upon the optical field is determined through

prismatic modelling of the density field. Integration of the equations of motion
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through a trilinearly varying density field could also be implemented. The use of a
six-tetrahedron decomposition would eliminate the present requirement of a checker-
board cell arrangement to prevent gaps between hexahedrons. The modelling of the
wave-like nature of light could also be implemented via the parabolized Helmholtz

equation if diffraction effects were deemed significant [88].



Chapter 5

Results and Discussion

5.1 Blast-Wave Results

The methods introduced in the previous sections are applied to test cases which
demonstrate the capabilities of the algorithm. The viscous term treatment in a low
Mach number regime is shown by the Couette flow problems, which are compared
to Similarity solutions and previously obtained numerical results. Demonstration of
the inviscid term treatment is shown by capturing of transient discontinuities for a
shock tunnel start-up problem. The three-dimensional results are compared with an

experimental study of a hemicylinder mounted in a shock tube.

5.1.1 Couette Flow

The Couette flow problem is used to compare the present methods against the method
of Beam and Warming [7] and the similarity solution as given by Schlichting [89]. The
results for the two upwind methods fall virtually on top of each other, and n indicates
the time step. The solutions shown in Fig. 8 were obtained using quiescent initial
conditions and viscous boundary conditions with no-slip adiabatic walls. Both of
these cases were implemented in the thin-layer form at a Reynolds number of 6.4,
based on the distance between the plates, equal to 10~% feet. During the course of

these solutions, slightly more than an order of magnitude drop in |6p|ma: per two

50
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subiterations was observed in the (3 x 10) cell domain. The Courant number used
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Figure 8: Couette flow case: (a) impulsively started and (b) oscillating plate

for the oscillating plate calculation was approximately 10, indicating the viability of
these types of unsteady computations at Courant numbers greater than unity. The
Courant number was computed using CFL = &t'maz[|(T,V,W)| + d|||s|| over each
cell in the domain. Identical results were obtained using both the two- and three-
dimensional implementations in all directional permutations. Results reveal slightly
steeper gradients than that of the conventionally differenced scheme or the analytic
solution, a possible consequence of the handling of the boundary conditions or the
viscous term treatment. In addition, this case was found to be insensitive to the
choice of the higher-order flux correction terms, possibly because of the dominance

of diffusive effects.

5.1.2 Shock Tunnel Start-up Problem

The third test case evaluated the inviscid term treatment through the simulation of
the transient starting process of a planar shock tunnel. The (300 x 60) cell domain
is shown in Fig. 9. The solution of the Euler equations is presented in Fig. 10 as

a comparison of experimental and numerical shadowgraph images, the former due
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Figure 9: Shock tunnel case: 300 x 60 cell grid

to Amann [90]. The computed shadowgraph function is proportional to VZp and
thus acts as an amplifier of the density gradient across contacts and shocks, for in-
stance. This solution was obtained using Roe flux difference splitting with ¢ = 1/3,
the upwind biased flux evaluation. The Steger-Warming flux evaluation with Roe
averaging was found to be moderately less stable, but no significant differences in the
results were found for this case. The maximum compression parameter was used, and
the entropy-fix parameter used in Harten’s formulation [9] was set to 0.15. Discon-
certingly nonphysical solutions were produced for smaller entropy-fix levels, possibly
associated with an entropy-violating condition. The problem was initialized with a
moving shock propagating to the right at a Mach number of 2.97, while the boundary
conditions were specified as impermeable inviscid along the walls and fixed for the
inlet and exit. For the maximum Courant number of four used here, four subiter-
ations were chosen per time step based on a subjective judgment of discontinuity
sharpness. The |6p|mqr Was observed to drop approximately an order of magnitude
over the course of these four subiterations.

Physically, this nozzle starting process generates a high enthalpy reservoir of more

than 50 times the initial pressure, while the density increases by 11 times the initial



CHAPTER 5. RESULTS AND DISCUSSION

Experiment, Amann (Ref. 90) Euler

(a) Primary shock reflected into reservoir

(b) Swallowed primary shock

(c) Rearward facing shock being swept downstream
(d) Reflected shock system

(e) Mach line generated from c? discontinuity

Figure 10: Shock tunnel case: shadowgraph comparison for a Mach 3 planar shock
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state. This reservoir provides the energy necessary to generate high Mach flows
downstream of the diverging nozzle region for short durations. The ensuing reflections
of the shock with the nozzle wall reveals the complexities of the shock-shock and
shock-contact interaction. In particular, it can be seen that the development of the
rearward facing shock, which is directed upstream while being swept downstream,
is resolved. At later times, the finer scale fluid motion between the primary and
rearward facing shocks is, for the most part, lost because of grid coarseness and
attendant numerical dissipation. However, increasingly fine structures are captured

as the grid is refined.

5.1.3 Shock Tube Blockage Study

The viability of the technique in three-dimensions is shown by the final test case.
These results are intended to replicate the conditions in an experimental study of
a blast-wave encounter with a hemicylinder target in a shock tube by Kingery and
Bulmash [91]. The experimental test configuration and pressure transducer locations
are shown in Fig. 11. In order to estimate the costs and benefits of inviscid versus
viscous simulations, the flow about this geometry was computed using both the Euler
and Navier-Stokes equations. However, the expense of these three-dimensional simu-
lations permitted the use of only one of the inviscid flux evaluation methods; the Roe
flux difference splitting was chosen.

The simulation was initialized as a translating planar shock before diffraction over
the cylinder began. Initial conditions were specified as:

M, = 1.518, Re[m = £32°2 = 23.3 x 10°/m

Too = 288.17 K, po = 101.3 x 103 N/m?
Boundary conditions are specified for the viscous, single zone computation as shown in
Fig. 12. In the shock-tube direction, the £-direction, extrapolation is used. This non-
physical extrapolation is adequate for the duration of the early interaction. However,
solutions at larger times are suspect, where times after the shocks have propagated
through the boundaries are defined as large. Additionally, the use of an advancing

front boundary is enabled because of a priori knowledge of the grid structure and the
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Mounting Plate

Figure 11: Hemicylinder case: experimental configuration and pressure transducer loca-
tions
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Figure 12: Hemicylinder case: central region of the 78 x 50 x 25 cell (a) inviscid and (b)
viscous grids

primary shock speed. This simple time-dependent boundary reduces the computation
time by using the fact that nothing occurs ahead of the blast-wave. In the n-direction,
the lower boundary defines the surface geometry of the hemicylinder, and hence is
specified as a no-slip isothermal wall. The top of the domain in the n-direction, corre-
sponding to the inner radius of the shock tube, is specified as an inviscid wall, based
on the assumption that the viscous effects on this surface have negligible influence on
the results. Finally, the {-direction boundaries are treated using the viscous condition
along the floor of the tube. Symmetry conditions are used along the plane running
along the longitudinal axis of the cylinder and normal to the floor. To simulate ex-
perimental conditions, the wall temperature was set equal to the temperature of the
quiescent flow prior to primary shock arrival. The viscous grid has normal spacing
of approximately 10~° meters at the viscous walls. The Euler compu- tion used the
inviscid boundary conditions previously discussed where appropriate. For this Euler
grid, since the areas of the faces corresponding to the geometric axis singularity are

zero then F -s is also zero. Compensation for the round-off error inherent in the grid
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was implemented by eliminating those face areas which fell below a specified toler-
ance. The grids and boundary conditions for these cases are partly shown in Figs. 12
and 13.
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Figure 13: Hemicylinder case: symmetry plane of the central part of the viscous grid

The inviscid computation used ¢ = 1/3, 3 = 4, Harten's entropy fix parameter of
10~%, Roe flux difference splitting, one subiteration per second-order accurate time
step, and a Courant number of 15. The solution was obtained in 1500 time steps
without any change of parameters.

The viscous computation used the same flux evaluation as above with the addition
of the second-order accurate full viscous terms. Because of the viscous spacing, the
Courant number utilized was 104, allowing the solution to be obtained in 6800 time
steps with no subiterations. In contrast to the inviscid simulation, the advancing
front boundary condition was utilized in this case.

Results, given in Figs. 14 through 17, show that the primary shock is captured
over two to three cells, the large physical thickness obtained is an artifact of the
coarse grid used. Adaptive gridding methods would help maintain sharp shocks, but
the anticipated expense of these methods precluded their use here. Figures 14 and 15
show comparisons of the numerical and experimental pressure histories. It is seen that
the peak overpressure is underpredicted by 10%, possibly owing to the coarseness of

the grid which in turn thickens the shock. These computed surface pressures were
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extracted from the domain through the use of a Newton search in three-space for
the cell in which the given (x,y,z) probe coordinate fell [92]. Subsequent trilinear
interpolation over the cell, where the uniform parametric coordinates (u,v,w) are
determined from the positions of the vertices of the hexahedral cell, allows the pressure
to be computed. Inherent in this first-order approximation lies the assumption that
over a discrete cell the variation of pressure is linear in space.

Figures 16 and 17 show portions of the viscous simulation at selected times. Phys-
ically, the interaction process begins with the normal impact of the incident shock
with the front face of the hemicylinder. At this time, peak overpressures of six times,
and densities of four times that of the quiescent state are generated along this for-
ward face. As the shock diffracts over the sharp corner of the target, a separation
bubble forms, which eventually envelops a large portion of the circumferential face of
the body. This vortical motion is depicted in Fig. 17 by instantaneous streamlines.
A supersonic pocket is generated as the air negotiates the sharp corner as it rushes
from the stagnation region left in the wake of the upstream propagating reflected
shock. The next significant event occurs as the shock diffracts over the rearward face,
shedding a strong vortex sheet while an expansion wave propagates away in a pattern
which grows with time. The diffracted shock then impacts the floor of the shock tube,
reflecting it upwards, while the shock which diffracted over the circumferential face
reflects inwards from the outer walls of the tube. A simplified sketch of the interac-
tion process is shown in Fig. 18. The subsequent diffractions and reflections result in
the interaction of shocks, expansion fans, vortices, and developing boundary layers.
From experimental evidence, this gross unsteadiness does not dissipate for more than
15 milliseconds after the interaction event begins. However, the primary shock passes
from the test section 5 milliseconds after the initial target interaction; therefore, the
computation is stopped at that time.

The effects of the viscous terms are seen by comparing the pressure histories in
Figs. 14 and 15. While the pressures along the upstream face are largely unchanged,
the circumferential and downstream faces are significantly affected by viscosity. The
large separation along these faces causes low pressure regions due to this vortical

motion. This phenomenon is more accurately captured in the viscous simulation, as
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Figure 16: Viscous hemicylinder case: symmetry plane pressure [atm.] and Mach contours
at (a) t=1.1ms, (b) t=1.7ms, and (c) t=6.2ms
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Figure 17: Viscous hemicylinder case: instantaneous streamlines at (a) t=1.1ms, (b)
t=1.7ms, and (c) t=6.2ms



CHAPTER 5. RESULTS AND DISCUSSION 63

t~1.1ms t-14ms

e

Cw

t-19ms ‘

Figure 18: Hemicylinder case: schematic of shock interaction

may be seen by inspection of the pressure histories at probe 11. Differences between
the experimental and the present results may be due to poor capturing of the vortex
strength owing to grid coarseness. However, the higher-order behavior of the method
used here attempts to reduce the need for finely spaced meshes. In addition, the
occurrence of deformation of the shroud wall is thought to be a possible event during
the experiment, and could adversely affect the comparison between experiment and
computation [93].

A limited cost /benefit study of the Euler versus Navier-Stokes equations was also
performed for the hemicylinder case. For approximately 5.5 ms of flow history on a
(78 x 50 x 25) cell grid, the Euler computation consumed 7.6 processor hours, while
the viscous simulation required 18.2 hours. From these results, the somewhat more
accurate solution given by the Navier-Stokes simulation may be worthwhile. This
is particularly true if the flowfield behavior after the direct interaction the primary

shock with the target is important.
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5.2 Cavity Flow Results

Validation of the diagonalized code was accomplished by evaluation of two- and three-
dimensional cases related to the transonic aero-window problem. Numerical results
for free shear layer and rectangular two-dimensional cavity flows were compared with
analytic and experimental data to evaluate the capability of capturing the fundamen-
tal physics. Analysis of the SOFIA configuration simulations, including evaluation of

optical distortion is also presented.

5.2.1 Free Shear Layer

A series of numerical experiments was performed using a two-dimensional shear layer
as the test case. Sensitivities of mean and time-varying quantities to changes in time
step size, fourth-order dissipation levels, and grid refinement were determined. Addi-
tionally, partial validation of the algebraic turbulent shear layer model was determined
through comparison with similarity solutions and experimental data.

The computational domain for this case includes a two inch long splitter plate
embedded in a channel, with initial conditions specified as a discontinuous step at
the channel centerline. Shown to scale in Fig. 19, the channel extends 30 inches
downstream of the splitter plate trailing edge, and five inches above and below the
plate. Inviscid walls were specified for three inches upstream of the viscous splitter
plate and for the channel walls. The inflow and outflow conditions were implemented
using one-dimensional characteristic relations holding mass flow, total enthalpy, and
flow angle fixed at the inlets, and fixing pressure at the exit plane. The boundary
layers on the splitter plate and the shear layer were turbulent. Reynolds number
based on the mean velocity of the streams and the length of the splitter plate was
6.7 x 10°,

The results for three grid refinement levels are shown in Fig. 19 along with
Gortler’s similarity solution. The velocity profiles are taken 10 inches downstream of
the trailing edge of the plate. The solution can be seen to become grid independent
when the grid becomes finer than approximately 20 points across the layer. The Mach

number ratio for this case was 0.2/0.8 and o = 20.7. Eddy viscosity was observed to
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Figure 19: Shear layer case: (a) velocity profiles of differing grid resolution compared to
similarity and (b) variation of spread rate with velocity parameter

grow linearly in accordance with the Clauser formulation.

Numerical experiments to determine the dependence of < p’ > on the level of
fourth-order dissipation showed that a change in fourth-order smoothing from 0.01
to 0.05 caused a change of less than 1% in sound pressure level.

The velocity ratio across the SOFIA cavity shear layer will vary with streamwise
location. Hence, comparison of the variation of spread rate with velocity ratio is
shown in Fig. 19b. Three velocity ratios are shown for low Mach numbers with about
20 points maintained across the layer for all cases. Although the computed spreading
rates are within the bounds of the experimental data [59], the data point at r = :
falls below the trend because of the limited entrainment afforded by the inviscid side

wall treatment.

5.2.2 Two-Dimensional Rectangular Cavity

The objective of this two-dimensional cavity case was to demonstrate the prediction

of self-induced cavity resonance. Validation data are provided by comparison against
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Rossiter’s experiment [15]. Sensitivity of the solution to topology, second-order dis-
sipation, and turbulence model effects were determined.
The cavity geometry and grid topology are shown in Fig. 20, where the grid has

been coarsened for clarity. The test conditions were set as:

Mo =0.9, Rep =1.47 x 106, L =8 in.

Poo = 0.40 kg/m>, p, = 2.9 x 10* N/m?
The ratio of cavity length by depth (L/D) was 2 for this model. The inflow boundary
was placed 7.5 L upstream of the cavity leading edge, the outflow boundary 4.5
L downstream of the cavity trailing edge. The inflow and outflow conditions were

specified as for the free shear layer cases, and an inviscid wall was placed 5 L above

the cavity.
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Figure 20: 2-d cavity: topology and grids

Figure 21 depicts instantaneous Mach number and pressure contours obtained
during the computation in which the time step size was At = 1.97us. Inspection
of the contours across zonal boundaries indicates that the interpolation process is
well-behaved for this unsteady flow. The Mach number contours show an instant
of the time-nscillatory shear layer behavior which is prevalent for these rectangu-

lar geometries. The pressure contours verify the feedback mechanism postulated by
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Figure 21: 2-d cavity: instantaneous Mach number and pressure [kPa] contours
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Rossiter [13], and shown graphically in Fig. 22. Bricfly, the cycle begins with the
propagation of a wave from the aft wall of the cavity to the forward face. Wave
reflection from the forward wall causes the shear layer to bow outwards, shedding
vorticity. The deflected shear layer convects downstream and induces another cycle.

The origin of this physical model can be linked to the edge-tone phenomena, where
a thin planar jet interacts with a wedge. The frequencies at which this feedback is
reinforced is determined by ambient temperature and Mach number and was first
quantified by Rossiter. Derivation of this model begins with the assumption that the
frequency of the vortex shedding is equal to the cavity acoustic field, f = Ki= = £,

A N
The vortical and acoustic field relationships are linked by

myA, = L+ 9,0, + Kugt'

L =mg), + crt’

from which ( )
U (M — 7
f=—77— (

L+

where the phase lag factor, v = 5, = 0.25, and the normalized convection velocity

=]
~—

of the perturbations, K = 0.66, are empirically determined constants dependent on
the geometry and ambient conditions. The integer stage number is given by m =
mq + m,. Use of the a Mach number scaled by the cavity speed of sound, determined
by the recovery temperature, offers improved correlation with experiment. The model
described here is idealized: the shear layer perturbations may be manifested as a
sinuous motion as opposed to discrete roller vortices depicted in Fig. 22.

The pressure histories along the cavity walls are depicted in Fig. 23 along with
the comparison of Rossiter’s data to present results in power spectral density (PSD)
form. The comparison against experiment shows agreement in frequency at the peak
magnitudes. Magnitudes are higher for the present case by about 2 dB, however
for this experiment and other numerical work this has been observed as an effect of
cavity width. In these studies [15, 30], the sound level was found to be inversely
related to L/W; the cavity for Rossiter’s cxperimental work was of L/W = 2. Also

shown in Fig. 23 are the first four stages, m;, predicted by Eq. 7 using both his
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Figure 22: Rossiter's feedback model

vortex convection ratio of K = 0.66 and a K’ = 0.56 inferred from the treated cavity
computation discussed below. The PSD for this case was computed using 8192 time
samples, no zero-padding, and a square window.

Variation of the second-order dissipation, €;, from 0.5 to 0.3 caused no discern-
able change in the pressure histories. Additionally, in order to test a hypothesis of
a limited domain of unsteadiness, an isolation zone was implemented as shown in
Fig. 20. The flow outside the zones of interest was frozen, resulting in a decrease
of the cavity sound pressure levels by 2%. A final comparison between experimental
data and numerical results is provided in Fig. 24, where the variation of the mean
and oscillatory pressures along the cavity walls is shown. The < C, > is computed

following Rossiter’'s reduction of experimental pressure histories

[a<c,>?, = E{(bf—(ﬁ)i - (q:ﬁX} € =0.155

where P and R indicate peak and background pressure levels. The computational
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Figure 24: 2-d cavity: variation of mean and oscillatory pressures

results were reduced from assuming p |z = P and pe|p = p. Use of Reynolds averaging,

specifically -f—g = fg, gives a result consistent with the experimental reduction
1 i o 2 _ 1 ﬁ/: Pi—D :
\ N ¢ Yoo AN ; Goo
1 & (p2-p
C AW 2 ( ¢ )

Given the difference in spatial dimensions and turbulence modelling uncertainties,

, —
<Cp> =

the trends shown in Fig. 24 appear reasonable for a flow of this complexity.

Finally, to give a qualitative comparison of numerical and experimental [17] re-
sults, schlieren images are shown in Fig. 25. Despite Reynolds and Mach number
mismatches and grid coarseness away from the cavity, the observed and computed

acoustic radiation patterns are similar.
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5.2.3 Two-Dimensional Treated Cavity

The effect of cavity geometry, particularly modification of the shear layer attachment
region, is known to possess potential quieting capabilities [42]. The Army Airborne
Optical Adjunct (AOA), shown in Fig. 26, flight tested several passive and active qui-
eting methods [94]. The purpose of the present numerical simulations is to determine
if optical quieting methods, particularly aft ramp treatment and lip-blowing, could
be accurately simulated. Tangential lip-blowing at the upstream edge of the aperture
may provide quieting by replenishing the mass entrained by the shear layer from the
cavity. The quieting provided by aft ramp treatment at the shear layer impingement
region is discussed below.

The grid cell size was specified at 0.83" in the streamwise direction, chosen so
that frequencies up to approximately 400 Hz would be resolved without significant
numerical dissipation effects. A time step of 44us was fixed so that CFL =~ 1 in
the streamwise direction within the shear layer. The numerical test conditions were
matched to flight data:

My =0.77, Re; = 5.00 x 106, L =47 :n.
Poo = 0.262 kg/m3, py = 1.63 x 10* N/m?
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Figure 26: U.S. Army Airborne Optical Adjunct [94]

The initial conditions used the assumption of isentropic recovery to obtain the cav-
ity temperature while maintaining constant pressure across the aperture. Boundary
conditions were of the one-dimensional characteristic form: constant mass flow, total
temperature, and flow angle inflow; constant pressure outflow; and an inviscid wall
6.4L from the cavity. A characteristic inflow condition was also used for the lip-
blowing boundary, the flow rate computed using flight data and assuming isentropic
compression of the ram air utilized in the aircraft. The 100% lip-blowing rate case
corresponded to a m = 0.42(pu)s. For the discussion below, computed high and
low lip-blowing rates refer to 100% and 1% of this mass flow rate. The coarsened
near-field grids are shown in Fig. 27.

Comparison of flight data with this planar numerical study is justified by the flight
test effort toward establishing two-dimensional flow across the apertures of the AOA.
Use of flow cones and a shear layer rake verified, for the most part, the success of this
effort. Although the cupola which allows for the cavities is of hemicylindrical form, the
center of rotation is through the center of the cavity volume. Rather than simulate an
axisymmetric cavity with an erroneous radius of curvature, the cavity was modelled
with no spanwise variation in the flow. However, there is a dimensional effect in that

the mass removed from the cavity by the shear layer entrainment process can only
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Figure 27: 2-d treated cavity: near field grids

be replenished at the impingement region. This is in contrast to the mass addition
mechanism present in three-dimensions, which also includes mass replenishment via
spanwise structures such as streamwise vortices.

The mechanism by which an aft ramp reduces the cavity feedback was explained
by Heller and Bliss [24]. Assuming two-dimensional incompressible flow, the region

immediately surrounding the stagnation point can be treated using a streamfunction

approach:
1,2
v = axy+-2-by
u = ‘2_‘_{’_ = ar+b
v o= o _ a
- dr y

and the resultant field is shown in Fig. 28.
Physically, this result can be explained from a force balance normal to a streamline
approaching the stagnation point. About the stagnation point, the velocity gradient

across the impinging shear layer creates a pressure gradient. However, there is a
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Figure 28: Streamfunction near a stagnation region

counteracting pressure gradient, pg®/r, due to the differing radii of curvature above
and below the dividing streamline.

For a rectangular cavity, the extreme of normal impingement of the shear layer
onto the aft bulkhead causes further deflection into the cavity. Mass ingestion into
the cavity causes increased pressure, deflecting the shear layer outwards. With the
shear region now outwardly deflected, mass expulsion from the cavity reduces the
cavity pressure, inducing another cycle. Therefore, between the extremes of a normal
or tangential impingement of the shear layer, a balance of forces may be found. Use
of a ramp instead of a convex surface at the reattachment region prevents shear layer
perturbations from inducing instabilities of the type seen in rectangular cutouts. The
length of the ramp must be large enough to accommodate the magnitude of the
transverse shear layer excursions expected during operation.

It is hypothesized that the use of a modestly concave surface at the impingement
point may provide increased quieting. Improved stability may be provided by the

following reasoning. As the shear layer is perturbed downwards, the streamlines below
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the impingement point will have a smaller radius of curvature while the streamlines
above the shear layer will be less curved. The resultant pressure gradient will drive
the shear layer upwards. Conversely, as the shear layer deflects upwards the steeper
tangent angle creates a smaller radius of curvature above, forcing the shear layer
downwards towards the nominal stagnation point location.

Computed and flight mean Mach number profiles are compared in Fig. 29 for
two lip-blowing rates. The quantity ¢ indicates the angle from the cupola crest at
which the data was measured. Figure 29 also shows Mach number contours for the
two lip-blowing rates above each set of profiles. The Mach number contours are
instantaneous while the profiles were averaged over 2000 time steps. The difference
between experiment and computational results on the lower edge of the shear layer
(r < —2") may be due to blockage in the cavity of the aircraft. This blockage was not
computationally represented due to the lack of a complete geometry description. The
difference at the upper aft portion of the shear layer (r > 2") appears to be due to
blockage in the computational model. Overall, the maximum vorticity as a function
of x-station is in agreement for both cases.

Comparisons of power spectra at the aft ramp are shown in Figs. 30 and 31. The
computed spectra can be seen to be quantitatively and even qualitatively different
from flight data. The computed result lies more than 15 dB below the data, and
a peak in the low lip-blowing rate spectra is clearly computed, but is not seen in
the flight data. The power spectra were computed using 4096 points and a square
window. Figure 32 shows mean and fluctuating quantities along the cavity walls, with
the available data allowing comparison only along the aft ramp. The computed trend
in < C, > is in agreement with measured data, but a large discrepancy in magnitude
is evident. The large spanwise variation in measured < C,, > indicates the existence
of three-dimensional effects or experimental errors.

It has been noted from experimental evidence [95] that the frequency of large struc-
tures in shear layers is independent of axial station and occurs at Strouhal number
of St = ;‘—11}"—2 = 0.024 £ 0.003, where § is the local shear layer momentum thickness
and f denotes frequency. This phenomena is corroborated by the reduction of other

researchers’ data [48, 49, 51, 96, 97], whose results range from about St = 0.02 to
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0.03 for incompressible shear layers.

Gortler’s solution can be used to obtain § = 0.036%1: for o9 = 11.0, which

compares favourably to the empirically determined correlation [98] of § = 0.034

1—-r

1+r
Using this relationship along with a compressibility correction [99], the computed

peak in the AOA solution at 340 Hz corresponds to a Strouhal number of 0.032. For
comparison, the peak at approximately 1800 Hz in the quieted SOFIA case corre-

X.

sponds to a St = 0.030, as will be shown in section 5.2.7. It is interesting to note
that by using Rossiter’s formula, Eq. 7, the frequencies obtained for m = 4 and 5 are
285 and 360 Hz, respectively. From Fig. 34 it can be observed that m, = 4, implying
that m, = 1.

Based upon these observations, it is hypothesized that large scale shear layer struc-
tures are beginning to be resolved. However, the lack of empirical support from the
flight data pressure power spectra is at odds with this supposition. The comparison
is further clouded by the reasonable comparison in < g’ > for the low lip-blowing rate
shown in Fig. 33. The discrepancy may be caused by three-dimensional effects, angle
of attack sensitivity, or geometry simplifications.

In this author’s opinion, three-dimensional effects are the most plausible expla-
nation for the discrepancy. Rockwell [100] noted that for sufficiently large Reynolds
numbers three-dimensionality reduces coherence in the shear layer. This implies that
assumption of two-dimensionality for small flow oscillations may be suspect. The evo-
lution of streamwise-oriented vorticity interacting with the primary vortices would act
to spread peaks in the reattachment ramp pressure spectra.

As a final note, Fig. 30 also depicts data, the ordinate scaled by Se=lfight apd the

Qm‘tunnel

abcissa by {%’/%)-fﬁ"‘—“, obtained from an AOA wind tunnel test [101]. The data can
be seen to agree more closely with the computed results than with flight data, and a

small peak exists where expected according to the above analysis.

5.2.4 2-D Treated Cavity: Aero-Optical Effects

Computation of aero-optical parameters requires the use of the unsteady density field.
Figure 33 shows the computed and experimental profiles of the root mean square of

the density fluctuations. Levels of < p’ > were computed over a time segment of
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about 90 ms in increments of 0.44 ms. Using the elapsed time for a particle to
convect across the aperture at the mean shear layer speed as a characteristic time,
T = K,f:, then the optical computation was taken for about nine 7,. In Fig. 33,
7 is the rake angle from horizontal, with the axis of rotation offset from the cupola
centerline. Determination of the systematic error band on the experimental result is
discussed below. The low lip-blowing rate result underpredicts the magnitude of the
peak in %Z, however the peak location is in fair agreement. The computed results for
the high lip-blowing rate compare poorly to experiment, possibly due to inadequate
grid resolution or the increased flow complexity of the merging shear layers. This
type of active control is presently not a design option for SOFIA, therefore further

effort toward improvement of the high lip-blowing case was not warranted.
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Figure 33: 2-d treated cavity: % profiles with (a) low and (b) high lip-blowing

Further investigation of the low-blowing rate case revealed the presence of large
convecting structures associated with the shear layer. Figure 34 shows a contour plot
of £, depicting the growth and propagation of these sinuous motions in the shear

Poo

layer. Also depicted in Fig. 34 is a schematic of the optical model, with the initial
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Zonal ‘Interface

Figure 34: 2-d treated cavity, low lip-blowing rate: instantaneous contours of (a) — and
(b) ;& with schematic of optical model

20
Slation, x, inches

Figure 35: 2-d treated cavity: contours of OPD’(x,t)[ in.] along aperture, low lip-blowing
rate
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and final stations of the optical path integration are given by ro and r;. The large
structures, associated with a 0.03u, vertical velocity component, are the primary
contributors of the computed density fluctuations of the shear layer. The speed of
the waves, as determined from Fig. 35, is 0.56u,, below the value of 0.66u,, inferred
by Rossiter for rectangular cutouts, yet above the 0.51u,, determined analytically by
Roscoe and Hankey [102].

Chew and Christiansen [50] and Tsai and Christiansen [51], utilizing results from
computation and experiment, deduced that a free shear layer model of a sinusoidal
phase delay growing in = would produce results similar to those observed. Figure 35
displays behavior of a similar nature for the aero-window problem modelled here.

Comparisons of integrated aero-optical quantities, shown in Fig. 36, reveal slight
overprediction for the low lip-blowing case and, given the < p’ > profiles, expected
underprediction for the high lip-blowing rate case. Also shown in Fig. 36 are the root
mean square of the optical path difference fluctuations for two additional integration
paths. The result for the integration path which extends from ry = —8”" to r; = 12”

displays an increment in < OPD’ > of about (7 x 1077)” from the 7" path length
case which originates at rp = —3"”. The path initialized above the shear layer, from
ro = 4" to r; = 12", shows a small < OPD’ >. Finally, the time averaged optical
path difference, OPD, can be seen to contribute curvature to the wavefronts as the
light propagates through the shear layer. The optical clarity of the shear layer was
determined using a # = 2.584 x 10~4, matching the value which was used to reduce
the experimental data.

The analytic result for the < OPD’ >, which goes like z, is found from [103]

21 <OPD' >\* -, N Lsonm (00’
( \ ) - (¢) = 2k ;LSOn,m‘/(; a_y dy

Derivation of the model, which utilizes time-mean quantities to determine < OPD' >,
is given by Bogdanoff [103]. This analytic result assumes an index-matched shear layer
with a sinusoidal n profile, n(y) = M=jmaz sin (ﬁi’:) The constants, % = 0.0091

and Lsonm =~ 1.316, = 1.31(0.18z[m]), are empirical relations. The virtual origin of

the shear layer is placed at x = 0” for this analysis.
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Reduction of Experimental Data

The reduction of the data obtained from experiment [104] is noted here to delineate
the approximations used and estimate systematic error bounds in the optical path

distortion levels. Values of p’ are computed from assumptions of quasi-steady flow:
-1
hr = ¢,T (1 + 1= 5 MQ)
differentiation with respect to ¢

/ /
_ -1
RT, = PP — PP 2pp + uu"‘V
P Y

using (pu)’ = pu' + p'u then

/ U 1 /

kY VI [(v=Darr+1) £
p pu p

'The experimental observations against which the computed results are compared

assume simultaneously small fluctuations in pressure and total temperature (105, 106],

Pt ) e
ﬁ_<(7—1)H2+1) pu ®

Mean Mach number and density profiles are determined from isentropic relations,

resulting in

while L%L' is proportional to the voltage fluctuation, %, obtained from hot film probes.

The optical path disturbance is then found from [43)

"2 ﬁ 2 L /2
(OPD') =2(pm> /0 <p > ldr (9)

where % is the turbulent eddy size relative to the shear layer width, determined from
cross correlation data to be typically about 15%.

The few available independent measurements [106, 107] indicate that pressure
fluctuations of about 2% of freestream static pressure occur in the shear layer spanning
the aperture of a quieted cavity geometry. In fact, Hahn [94] reported pressure
fluctuations of 8% from shear layer rake measurements, however these include the
dynamic pressure component normal to the orifice as well. Pressure fluctuation levels

can also be inferred from sound pressure levels in the cavity, observed to be at least
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130 dB for the AOA case. Shear layer total temperature fluctuations of about 1%
have also been reported for this Mach regime [107]. The present low lip-blowing
computation found a < p’ >~ 1% and a < Ty >~ 0.8% in the shear layer. The
assumption of < Ty >, < p’ >~ 0 in a shear layer is therefore questionable, and is
used to estimate systematic experimental error bounds.

The determination of the error in < ' > due to background noise levels begins
by assuming the passage of a compression wave parallel to the static pressure port in
the wake rake. Normal reflection of the wave would impart a larger deviation from
< p' > as computed by Eq. 8. Utilizing Gértler’s free shear layer solution to provide
m assuming a cavity temperature recovery factor of unity, and holding mean static
pressure constant through the layer, then p(r) is defined. The sensitivities of 2— to
& and & 7= are :EW and :F%%IL respectively. Using a compressmn or
rarefactlon wave of strength < p' * through the shear layer, then local values of g
due to wave passage are defined. This value of p' provides the error bound about the
value obtained from Eq. 8, which assumes negligible < p' > and < Ty >. Taking
shear layer pressure fluctuation levels corresponding to 135 dB and a velocity ratio
r = 0.1, then the systematic error in the density fluctuations is 0.13% at the shear
layer center. Figure 33 shows the resultant systematic error bars in < o >.

From Eq. 9 the value of < p’ > is linearly proportional to < OPD' >. The error
in < OPD' > can be found by using a conservative within-system error of 0.05% in
S:f— gleaned from Fig. 33, plus the systematic error from the above analysis. The

resultant error bar is plotted in Fig. 36.

5.2.5 Clean Configuration

The SOFIA configurations were initialized using the steady solution about a clean, or
without cavity, geometry. In order to provide a measure of validation, the geometry

and flow conditions were chosen to replicate the wind tunnel tests:

M, = 0.85, Rep = 4.2 x 106, L =126 in.
o = 0.84 kg/m3, po, =7.7x10* N/m? a=25°
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However, subsequent correction of the wind tunnel data has resulted in the Re; =
4.0x 108, about 5% lower than above. The temperature difference from this correction
causes the sound speed in these computations to be approximately 6% higher than
experiment. Numerical results obtained for this 7% scale model are discussed below.

The wind tunnel model without cavity was simulated in order to assess angle
of attack errors owing to wind tunnel wall effects. Figure 37 compares the present
pressure coefficient profiles along the crest, side, and bottom of the model with flight
data [108] and wind tunnel results [16]. Experimental results are shown for both
untripped and tripped cases; the latter case was used for all subsequent wind tunnel
testing. The computations specified turbulent walls at all no-slip boundaries. Al-
though this comparison indicates that the influence of the tunnel wall was small near
the cavity, pressures along the bottom of the model are shifted, possibly due to the
effect of the lower wall. A four-order drop in magnitude of §p|me, Was attained for

this steady case in 2000 steps, using approximately four Cray Y-MP CPU hours.

5.2.6 Configuration 25

The geometry shown in Fig. 38 was the initial cavity configuration tested in the wind
tunnel. This simulation was implemented in order to demonstrate the capture of
self-excited cavity resonance in three dimensions. The flow conditions were the same
as used above, the flowfield was initialized from the steady clean case. The stability-
limited time step used was At = 3.53us. This interval size correspondstoa CFL = 1
in the streamwise direction within the shear layer, and a CFL| e = 500.
Instantaneous Mach number contours in Fig. 39 show the flapping of the shear
layer and interpolation treatment. Sample pressure histories on the cavity walls and
a comparison of the PSD resulting from the wind tunnel and numerical efforts are
shown in Fig. 40. The PSD was obtained using 2048 points, a Hanning window, and
no zero-padding. The predicted frequencies of the dominant tones appear reasonable,
and the computed dominant tone is within 3 dB of experiment. The magnitudes of
the computed higher modes are much lower than observed experimentally.
Estimation of the grid resolution required to maintain a propagating wave of a

specific magnitude can be deduced from the rectangular two-dimensional cavity and
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Figure 38: Configuration 25: wind tunnel and numerical models
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configuration 25 results. First, wavelength can be estimated by assuming the wave to
be harmonic at a given frequency and travelling at the local speed of sound. Next, it
is noted that frequencies around 2 kHz were resolved well in the two-dimensional case,
in which the grid resolution was such that about 40 points supported the wave. From
the configuration 25 results, it is seen that only the 700 Hz peak is well resolved, which
again gives approximately 40 points across the wave for this coarser grid. Although
numerical damping of the higher frequencies can be expected, most of the energy is

contained in the lowest frequency mode, as can be seen in the sound pressure level,
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Figure 41: Comparison of sound pressure levels
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or SPL, comparison of Fig. 41 where

<p > [N/m?
2x 1073

Experimentally observed and computed levels of < p’ > in the time domain were used

SPL [dB] = 20logy,

in Fig. 41. The SPL for the resonating and quieted geometries obtained numerically

are in reasonable agreement with experiment.

5.2.7 Configuration 100

In 1990, an investigation of SOFIA cavity quieting treatments was performed in the
NASA Ames 14’ x 14’ wind tunnel [16]. Of the many geometries tested, configuration
100 resulted in the lowest sound production levels. This simulation was implemented
in order to determine if the same level of quieting could be predicted numerically as
was observed experimentally. As commented on earlier, previous investigations [41] of
cavity noise suppression have shown aft ramp treatments to be effective by allowing a
stable shear layer reattachment site. For the SOFIA experiment, this type of geometry
treatment was found to be quieter than the untreated configuration 25 case by over 30
dB. Figure 41 summarizes that the proper trends were computed. The flow conditions
were again initialized from the clean case, and integrated using a stability-limited time
step size of At = 7.06us. The frequency domain analysis was obtained using 4096
points, a Hanning window, and no zero-padding.

For reference purposes, Fig. 42 shows the position and orientation of the telescope
assembly in the aircraft and the associated coarsened grids. Figure 43 shows the
topology used in the cavity region, where the grids have again been coarsened for
clarity. The choice of topology, driven by grid quality and turbulence modelling
considerations, is similar to those used in the two-dimensional studies.

Quantitative comparisons were made for this passively quieted cavity geometry in
terms of shear layer profiles and pressure spectra in the cavity. Since errors in shear
layer mass entrainment rate would adversely affect the cavity velocity field and hence
the mean telescope loads, an important validation parameter is the shear layer spread
rate. Figure 44 depicts mean experimental and computational shear layer Mach

number profiles. The vertical scale of the profiles is twice that shown in the contour
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Wind tunnel Numerical

Figure 42: Telescope location and grids

plot for clarity. Note that the experimental profiles were obtained using a rake, which
is sensitive only to u, the x-component of velocity. The discrepancy between |u|/c and
|V|/c was found to be approximately 0.05 at the lower tail of the profile. Figure 44
indicates reasonable agreement for growth rates, though the profile shapes become
somewhat different as the shear layer approaches the ramp. This discrepancy may be
in part due to probe position uncertainty and geometry modifications to allow for the
probe mechanism. These modifications included removal of the telescope assembly
and cutting a streamwise slot in the ramp. The difference in spread rates may also
be due to specification of an overly-large value of 0. Time averaging of velocities
was performed over 1000 time steps and the profiles were insensitive to the duration
of the time-segment used.

Some measure of qualitative agreement may be gleaned from the instantaneous
streamlines depicted in Fig. 45, which show a strong cross flow component at the
aft ramp for this aperture elevation angle. Although oil flow visualization was not
performed on the configuration 100 experimental runs, a similar aft molding shown
in Fig. 46 also displays strong cross flow behavior.

Assessment of the oscillating telescope assembly loads requires the accurate res-
olution of the unsteady pressure field in the cavity. Comparison of the computed
and observed spectra at specific locations provides a measure of confidence for the
computed telescope loads. Toward the estimation of loads, Fig. 47 shows the pres-

sure history and resultant PSD on the cavity walls. Although the peak levels are in
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Figure 46: Experimentally [16] observed surface flow pattern

agreement, the computed spectra can again be seen to drop more rapidly with fre-
quency than the experimental results. The pressures on the primary mirror, shown
in Fig. 48, show lower high frequency content with the magnitude of the peak at 1800
Hz not well resolved. Figure 49 shows a low frequency component at the downstream
secondary mirror location which was not found experimentally. The discrepancy 1s
manifested as the difference between the computed and measured SPL seen in Fig. 41

at probe 9.

Scaling to Flight

The above computations were performed at wind tunnel geometric scale in order to
allow close comparison with the SOFIA experiments. An early misunderstanding
resulted in a mismatch of the ambient conditions between the wind tunnel tests and
the computations. Scaling of optical effects as well as the acoustic frequencies and
magnitudes from tunnel and computation to flight are obviously of design interest,

and hence are noted here for completeness and clarity.
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Briefly, the frequency is a function of the cavity length and the recovery temper-
ature, which affects the acoustic speed in the cavity. The magnitude of the acoustic
oscillations scale with dynamic pressure, while the optical distortion is proportional to
density and geometric scale. Model and flight conditions are summarized in Table 2.

Scaling from wind tunnel to flight results in a decrease in frequency by a multiplica-

Magnitude
Quantity | Units | Wind tunnel | Computation | Flight
M, - 0.85 0.85 0.85
Re; - 4 x 106 4.2x10% |2.3x10°
Tw °K 286 322 217
Poo 2 0.77 0.84 0.289
L m 0.32 0.32 4.6

Table 2: Wind tunnel, computed, and flight conditions

tion factor of 16.4, a reduction of the magnitude of pressure oscillations by a factor
of 11 dB, and an increase in optical distortion by 5.4 times. In contrast, scaling from
computation to flight results in a frequency reduction of 17.4 times, a decrease in
fluctuating pressure magnitude of 13 dB, and an increase in optical distortion of 4.9
times. Generally, the levels of uncertainty in measured quantities is greater than the

difference between computed and wind tunnel results.

5.2.8 Configuration 100: Aero-Optical Effects

The optics code was applied to the computed density field obtained for configuration
100 from t = 0 to 7.8 ms in the manner depicted in Fig. 50. Ten rays were prop-
agated through 110 instantaneous density fields in time intervals of At = 70.6us.
Using the elapsed time for a shear layer structure to convect across the aperture as a

Tﬁ"‘* then the optical measurement was taken for about five

characteristic time, T, =
T.. The results presented here are for a computational plane at approximately the

cross flow center of the aperture, partly shown in Fig. 50, which will provide only a
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Figure 50: Configuration 100: instantaneous density field and optical refraction model

streamwise variation in optical properties. The numerical results are presented com-
pared to previous analysis [103] and experiment [16] in which shear layer aerodynamic
measurements were used to infer distortion.

The levels of fluctuating density were severely underpredicted as compared to
experiment, as can be seen in Fig. 51. Although peaks in the density fluctuations
were computed, the highly-ordered shear layer structures similar to those found in
the AOA study were not observed. Differences may be attributable to grid coarseness
or within-system errors in measurements, most likely the former.

The optical wavefront distortion through the configuration 100 aero-window is
summarized in Fig. 52. The uppermost plot of Fig. 52 shows that the distortion model
applied through the shear layer alone underpredicts the data determined analytically
and experimentally. However, the computed trend is generally consistent with the
data. At the streamwise center of the aperture, the < OPD’ > at two additional
spanwise locations are shown. These points provide an estimate of the crossflow
variation in distortion levels.

The center plot of Fig. 52 depicts computed < OPD' > for ray propagation

originating below the secondary mirror, ro = —3.7”, and above the shear layer, ry =
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2.3". Comparison of the computed results show an increment in < OPD’ > below

the secondary mirror. This distortion increment appears to be caused by a jet of
re-entrant fluid originating from the shear layer impingement upon the aft ramp.
Finally, the last plot of Fig. 52 shows that curvature is imparted to the mean optical
field. The dip in the fluctuating and mean OPD levels at z = 42" is caused by the

presence of the secondary mirror, in which the index of refraction, n, was fixed at

unity.
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Chapter 6
Conclusions

The objective of this effort was to develop and assess computational methods as ap-
plied to unsteady perfect gas flows. The developed technology was demonstrated
through application to two classes of problems in which unsteady effects play a dom-

inant role.

6.1.1 Blast-Wave Problem

The application of two upwind schemes to unsteady, multidimensional problems
within a structured finite-volume framework has been demonstrated on the viscous
three-dimensional blast-wave problem. The use of time-conservative differencing and
an approximate Riemann solver coupled with total variation diminishing methods has
resulted in time accurate nonoscillatory flowfield resolution. Newton subiterations are
utilized to reduce the numerical approximations made, such as factorization error and
the inclusion of only the first-order terms in the formation of the inviscid Jacobian.
In addition, analysis and application of two flux evaluation methods produced only
small differences. Finally, for the blast-wave/target interaction problem the effect of
viscosity was increasingly significant at later times.

Further efforts to increase the accuracy and efficiency of these methods may be
directed along the use of nonfactored schemes or implementation on parallel ma-
chines. Geometries of realistic complexity will require a zonal approach, necessarily

conservative because of the strongly unsteady compressible flow regimes considered
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here. Efficient adaptive grid techniques will reduce the memory and time expense.
Synthesis of dynamical, structural, and fluid flow effects may provide the capability
for an interdisciplinary simulation of the physical processes involved in this class of

problems.

6.1.2 Cavity Flow Problem

The work presented here is the initial effort towards development of a cavity flow
design and analysis tool, specifically tailored for use throughout the SOFIA project
life. Thus far, this investigation has demonstrated that self-induced cavity resonance
can be accurately captured for complex geometries modelled using an overset mesh
topology. Shear layer profiles and resonant behavior are consistent with previous
analytic and experimental work. Generally, sound pressure levels agree to within 4%.
Topology treatment has allowed the simple specification of turbulent wall and shear
layer regions as well as providing a means of isolating the unsteady flow region.
Improvements in the energy distribution in frequency may be attained by use of
higher-order spatial approximations or more simply by grid refinement. The use of

higher order turbulence models should also be investigated.

6.1.3 Aero-Optical Effort

Comparison of computed and experimentally observed optical distortion levels showed
similar trends, albeit with a discrepancy in magnitude. Large structures in the shear
layer of the two-dimensional quieted cavity resulted in a 25% overprediction of wave-
front distortion. The three-dimensional results underpredicted phase distortion by
approximately 50% as compared to experiment.

Further investigation is required to determine if improved wavefront distortion
results can be achieved. Quantification of the effects of shear layer flow resolution on
the optical field is certainly warranted. Improvements in the optical modelling could

include an empirical model to account for scattering owing to subgrid turbulent scales.



CHAPTER 6. CONCLUSIONS 107

6.1.4 Future Directions

The development of these types of tools partially fulfills the objective of augmentation
of experimental test programs, possibly eliminating the need to test certain specific
configurations altogether. The use of the unsteady flowfield information appears fea-
sible for analysis of the blast-wave/target interaction and cavity flow problem classes.
However, current limits in computational speed prevent rapid solution throughput.
Thus, the goal of nesting full unsteady Navier-Stokes methods within the design cycle

awaits the advent of computers of increased power.
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SELECTED COMPUTATIONS OF TRANSONIC CAVITY FLOWS

Christopher A. Atwood
MCAT Institute, NASA Ames Research Center
Moffett Field, California 94035-1000

ABSTRACT

An eflicient diagonal scheme implemented in an
overset mesh framework has permitted the analysis of
geometrically complex cavity flows via the Reynolds-
averaged Navier-Stokes equations. Use of rapid hyper-
bolic and algebraic grid methods has allowed sunple
specification of critical turbulent regions with an al-
gebraic turbulence model. Comparisons bhetween nu-
merical and experimental results are made in two-
dimensions for the problems of: a backward-facing step,
a resonating cavity, and two quieted cavity configura-
tions. In three-dimensions, the flow about three carly
concepts of the Stratospheric Observatory For Infrared
Astronomy (SOFIA) are compared to wind-tunnel data,
Shedding frequencies of resolved shear layer structures
are compared against experiment for the quieted cav-
itics. The results demonstrate the progress of compu-
tational assessment of configuration safety and perfor-
mance,

NOMENCLATURE
c speed of sound
Cp coefficient of pressure, %ﬁﬂ
f frequency
K ratio of convection by {reestream speed
{ mixing length
L characteristic length
m stage number
1) mass flow rate
A Mach number
p instantaneous static pressure

PSD power spectral density, 1D

q velocity magnitude or dynamic pressure
Q vector of dependent variables
r velocity ratio,

2
Ite Reynolds number
St Strouhal number,

)+ tig

SPL sound power level, d B
¢ time

u, v, w  Cartesian veloeity componeuts
r.y,z Cartesian physical space coordinates

(v angle of attack

g umomentum thickness

A wavelength

U eddy viscosity

P density

o spreading rate parameter
(—S mean uantity

< > root nican square guantity
{y fluctuating quantity, f = f + f’
Subscripts

a acoustic

T total quantity

v vortical

o] freestream quantity

INTRODUCTION

The effort reported here describes the progress of
a computational approach for use in the design of a
new airborune astronomical observatory. The existing
Kuiper Airborne Observatory (IKAQO) has provided two
decades of unique research capabilities.! Figure 1 de-
picts the proposed successor, SOFIA. which will offer



ten times more resolution than the KAQO. Assessiment
of the safety and performance of this large cavity in a
Bocing 7175P 1s the goal of this continning cffort. To-
wards this objective of providing design information,
extensive evalnation of the nunierical methods by com-
parison against experiment s necessary.

This report describes the status of the validation of
the computational methods to date. In order to pro-
vide a somewhat complete overview, hoth previously
reported? and new results are incorporated herein. The
two-dimensional cases discussed here include free shear
layers, 3 a backward-facing step,* a resonating cav-
ity,® and two quieted cavities.® The computed three-
dimensional cases are compared to the wind tunnel data
of Rose and Cooley.” The following sections address the
niethod used to predict the unsteady flows, including
the grid generation and modelling of turbulence.

Fig. 1: An early conceptualization of SOFIA

METHOD

The fluid field was computed via the Navier-Stokes
equations using the diagonal scheme of Pulliam and
Chaussee® implemented in the overset grid framework
of Benek, Buning, and Steger.® The equations were
integrated through Euler implicit time marching and
second-order spatial differencing with viscous wall con-
ditions specified as no-slip, zero normal pressure gra-
dient, and adiabatic. Information transfer across over-
set mesh boundaries was implemented using trilinear
interpolation of the dependent variable vector, Q =
[p.pu.pr.pw,e]”. Computations were performed on
the NAS Cray 2 and Y-MP, the CCF Cray Y-MDP, and a
Silicon Graphics 4D353TG workstation. The flow solver
cost is 13pis/cell/step on a Cray Y-MP.

Turbulence Model

In these computations, the slowly time-varying com-
ponent of the flow is resolved, while rapid fluctuations
arce modelled. The algebraic turbulence model of Bald-

win and Lomax.'® as implemented by Buning ' is de-
seribed below using a flow in the (o, y) plane.

The wall-bounded flows use the original Baldwin-
Lomax model, with the addition of a variable F,.,,
cutoff. The grids are chosen such that a unique wall
distance is readily available.

The cavity aperture spanning shear layer uses an
eddy viscosity developed using F(y) = y|l«]. as sug-
gested by Baldwin and Lomax!® for wake regions. This

results in

2
Ymazllys

Flmxke = C‘u‘k F,nﬂ:
. waig \°
= Cuk (’__> |“"lmax
|UJ|nmr
x (]

where specification of Cx is discussed below and the
velocity difference is modified to be half the total veloc-
ity difference between the streams in the specitied shear
layer region

"’“/ =V (”2 + Iyz)muz -

The free shear layer model is now given by

(u? + v2)

lefnar
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after dropping the Klebanoff intermittency function.
Unmodified model constants k' = 0.0168 and Cep, = 1.0
are used.

The magnitude of the eddy viscosity in the free shear
layer model can be altered with C\y . Estimation of
the proper value of Cp begins by using Gortler's shear
layer solution:

iy + uq Uy — Uy

= 1 :
u 5 + u?+u101f(€)

2 z P
erf(€) = ﬁ/o e g g =22

where u; and uq are the velocities of the slow and fast
streams and £ is the similarity coordinate, as shown in
Fig. 2. The spreading parameter o is inversely related
to the spreading rate, db/dr, where b is a measure of the
shear layer width. The value of the spreading parameter
when the velocity of one of the streams is zero is ay.

Gortler's solution can be used to determine the max-
i vorticity magnitude as follows:
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Now, using Prandt!’s mixing length assumption and
scaling laws for jet boundaries, eddy viscosity can also
be expressed as

e ox plle]
x pfgﬂ
b
= NopbAu (2)

where Ky = 5.
. 0 «
Setting Eqs. 1 and 2 equal results in

ka = (UOI\-C"cp \/;) -1

and only o¢ remains to be specified. Empirical esti-
mates of o range from 9.0 to 13.5% 2. 13 For this series
of cavity flow efforts gy was set to 11.0, resulting in a
value of Cp = 1.91.

Grid Generation

Computation of the loads generated by cavity flows
requires accurate representation of the geometry as well
as the flowfield. Typically, a significant effort in grid
generation is required before flow analysis can hegin.
Since matching zone faces are not required for the over-
set method used here, recent advances in algebraic’?
and hyperbolict* methods can be used. Hyperbolic grid
generation, which gives good spacing and orthogonality
control, was used for the wall-bounded regions, while al-
gebraic grids were used in shear flow regions including
pinmes and wakes. Advantages of this type of grid sys-
tem include straightforward specification of the turbu-
lent regions and allowance for independent refinement
of each zone. This topology also permits the re-use of
meshes for configuration studies.

FREE SHEAR LAYER

Numerical experiments were performed using a two-
dimensional shear layer to determine sensitivities of
mean and time-varying quantities to changes in time
step size, fourth-order dissipation levels, and grid refine-
ment. In addition, the algebraic turbulent shear layer
model was partially validated through comparison with
similarity solutions and experimental data.

The computational domain for this case is shown to
scale in Fig. 2a, where inviscid channel side walls and
characteristic inflow and outflow boundary conditions
were used. The boundary layers on the splitter plate
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Fig. 2: Shear layer case: (a) velocity profiles of differing
grid resolution compared to similarity and (b) variation of
spread rate with velocity parameter

and tlie shear layer were fully turbulent with a Reynolds
number based ou the mean velocity of the streams and
the length of the splitter plate given as 6.7 x 10°.

The results for three grid refinement levels are also
shown in Fig. 2a along with Gortler's similarity soln-
tion, where the velocity profiles were taken more than
a thousand momentum thicknesses downstream of the
trailing edge of the plate. The solution can be seen to
become grid dependent when fewer than than 20 points
span the layer. Eddy viscosity was observed to grow lin-
early in accordance with the Clauser formulation, while
the solution was insensitive to fourth-order dissipation
levels within the range 0.01 to 0.05. The Mach ratio for
this case was 0.2/0.8 with ¢ = 20.7.

Figure 2b compares the variation of spread rate with
velocity ratio, and demonstrates that computed spread-
ing rates are within the bounds of the experimental
data.

BACKWARD-FACING STEP

A qualitative estimate of the errors to be expected
in the three-dimensional flows can be gleaned from the
backward-facing step problem. The computation was
compared to the experimental data of Driver and Sceg-
miller,* with test conditions matched at

Moy = 0.128, Rey = 3.44 x 10!
pres = 110 kg/m® prey = 9.11 x 10 N/m?

Characteristic inflow and outflow boundaries were
used, holding mass flow, total enthalpy, and flow angle
fixed at the inlet while specifying pressure at the outlet.
Both th and p..i were iteratively adjusted to match two
experimental conditions. First the overall pressure rise
from r/H = —4 to r/H = 30 was matched to experi-
went, then m was modified to match the experimental
momentum thickness at r/H = —4. Fiually, viscous



adiabatic walls were specified for both the top and bot-
tom of the channel. The unusual topology shown in
Fig. 3 was used to replicate those required by the more
complex confignrations.
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Fig. 3: Backward-facing step: coarsened near field grids

After dissipation of initial transients, the simulation,
which was performed using a step size of 455, was av-
eraged over 200 steps by increments of 20 steps, Using a
particle convecting with the shear layer from separation
to the reattachment point, then 200 steps corresponds
to three characteristic time increments. The time mean
ficld was sampled in H/10 increments via trilinear in-
terpolation of a valid donor cell to obtain the profiles
sliown in Fig. 4.
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Fig. 4: Backward-facing step: velocity profiles

Agreement in maxuinum vorticity is seen in Fig. 4,
however some discrepancies in profile shape exist. Us-
ing time mean skin-friction levels, the predicted reat-

tachment oceurred at v/l = 6.3 while experimental
data showed reattachment at r /I = 6.0,

TWO-DIMENSIONAL RESONATING CAVITY

In order to establish confidence in the numerical
method, a two-dimensional cavity computation was un-
dertaken to demounstrate and validate® self-induced cav-
ity resonance,

The test conditions, specified to match experiment,
were
Mo = 0.9, Rep = 1.47 x 10°,
Poo = 040 kg/m3, po = 2.9 x 10" N/m?

L =8:n.

and a cavity length by depth, L/ D, of 2. Characteristic
inflow and outflow conditions were specified along with
a step size of At = 1.97ps. Power spectra were com-
puted using 8192 steps following the dissipation of the
initial transients.

Inspection of the computed cavity pressure history,
shown in Fig. 5a, confirms the idealized feedback mech-
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Fig. 5: 2-d cavity: (a) pressure history and (b) power
spectra comparison

anism identified from Rossiter’s experiments. DBriefly,
the cycle begins with the propagation of an acoustic
wave from the aft wall of the cavity to the forward bulk-
head. Wave reflection from the forward wall causes the



shear layer to bow outwards, shedding vorticity, The
deflected shear layer convects downstrean and indnees
another cyvele, This coupling of the acoustic and vor-
tical fields s quantified by Rossiter’s empirical model,
given in Fig. 5b, which gives ouly feedback frequencies.

In the frequeney domain, comparison of Rossiter's
data to present results indicate agreement in frequency
at the peak magnitudes, as shown in Fig. 5b. Mag-
nitndes are higher for the present case by about 2 dB,
which can be explained from dimensionality arguinents.
The solution was also found to be insensitive to second-
order dissipation levels within the range 0.3 to 0.5.
Figure 5b also shows the resonant modes predicted by
Rossiter’s equation, showing that &' = 0.56 gives bet-
ter prediction of the higlier modes. Finally, the vertical
knife edge sclilieren iinages of Fig. 6 show the qualita-
tive agreement between computed and observed'® radi-
ation patterns,

Present

Experiment, Karamchetl

Fig. 6: Comparison of experimental and numerical
schlieren images with knife edge vertical

TWO-DIMENSIONAL TREATED CAVITY

The effect of cavity geometry, particularly modifica-
tion of the shear layer attachment region. is known to
possess potential quieting capabilities.!” The Army Air-
borne Optical Adjunct (AOA), shown in Fig. 7, flight
tested several passive and active quicting methods.® 18
The purpose of the present numerical sitnulations is to
determine if optical quieting methods, particularly aft
ramp treatment and lip-blowing, could be accurately
stiulated.

The grid cell size was specified as 0.83 in. in the
streamwise direction, chosen so that frequencies up to
approximately 400 Hz would be resolved without signifi-
cant nunterical dissipation effects.!® A time step of 445
was fixed so that CFL = 1 in the streamwise direction
within the shear layer. The numerical test conditions
were matched to flight data:

M. =0.77, Reyp = 5.00 x 108
Poo = 0.262 kg/m?, po = 1.63 x 10" N/m?
and L = 47 in. The initial conditions used the assump-

tion of isentropic recovery to obtain the cavity temper-
ature while maintaining constant pressure across the

Fig. 7. U.S. Army Airborne Optical Adjunct

aperture. A characteristic inflow condition was used for
the lip-blowing boundary, the flow rate computed using
flight data and assuming isentropic compression of the
ram air utilized in the aircraft. The 100% lip-blowing
rate case corresponded to a m = 0.42(pu). For the
discussion below, computed high and low lip-blowing
rates refer to 100% and 1% of this mass flow rate. The
coarsened near-field grids are shown in Fig. 8.
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Fig. 8: 2-d treated cavity: near field grids

The mechanism by which an aft ramp reduces the
cavity feedback was explained by Heller and Bliss. 2°
Physically, this result can be explained frow a force bal-
ance normal to a streamline approaching the stagnation
point. About the stagnation point, the velocity gradi-
ent across the impinging shear layer creates a pressure
gradient. However, there is a counteracting pressiure
gradient, pq?/r. due to the differing radii of curvature
above and below the dividing streamline.

For a rectangular cavity, the extreme of normal im-
pingement of the shear layer onto the aft bulkhead

causcs further deflection into the cavity. Mass inges-



tion into the cavity canses increased pressnre, deflect-
ing the shear layver outwards. With the shear region
now outwardly deflected, mass expulsion from the cav-
ity reduces the cavity pressure, inducing another evele,
Therefore, between the extremes of a normal or tan-
gential impingement of the shear layer, a balance of
forces may be found. Use of a ramp instead of a con-
vex surface at the reattachment region prevents shear
layer perturbations from inducing iustabilities of the
type seen in rectangular cutouts. The length of the
ramp must be large enough to accommodate the mag-
nitude of the transverse shear layer excursions expected
during operation.

Computed and flight mean Mach number profiles are
compared in Fig. 9 for two lip-blowing rates. The quan-
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Fig. 9: 2-d treated cavity: instantaneous Mach num-
ber contours and mean profiles at (a) low and (b) high
lip-blowing rate

tity ¢ indicates the angle from the cupola crest at which
the data was measured. Figure 9 also shows Mach num-
ber contours for the two lip-blowing rates above cach
set of profiles. The Mach number contours are instan-
taneous while the profiles were averaged over 2000 time
steps. The difference between experiment and compu-
tational results on the lower edge of the shear layer
{(r < =2") may be due to the computational simplifi-

cation of an empty cavity. The dilference at the npper
alt portion of the shear layer (r > 2% appears to be
dite to blockage in the computational model. Overall.
the maximum vorticity as a function of x-station is in
agreement for both cases.

Cowmparisons of low lip-blowing rate power spectra
at the aft ramp are shown in Fig. 10. The computed

4
Pressure history

or'.'L 1..- : R
. .31 N S - S
4
g 4 Probe Iocastlon Fiight data '
» R.L=5 x 10 e
© 21M " =077 (Hahn)
& Ll ——
- 4] Low llp blowing rate
<] »>2x J
T
2
72 :\,\/V\,W\/\,Vv\/\/\/\/\/\/\/\,\/\/\/\/v\/\/\,\,\,\,\/\
T o
o
o -4

—'1 T T T T

[} 50 100
Time, t, ms
140

Power specirs

4

Scaled wind tunnel dala
{Rubln & Walker)

I
9

L

g 3

Power spectrai density, PSD, dB

]

10! 102 103 104
Frequency, 1, Hz

Fig. 10: 2-d treated cavity, low lip-blowing rate: power
spectra

result generally falls 20 dB below the flight data, and
a peak in the low lip-blowing rate spectra at 340 Hz is
clearly computed, but is not seen in the flight data.
Figure 10 also depicts data, the ordinate scaled by

. L, .
Geeltiizht oy the abeissa by eee/Drighe optained from

Jooltunne (Coo/L)tunnet’
an AOA wind tunael test.?! The data can be seen to
agree more closely with the computed results than with
flight data, and a small peak exists at the computed
frequency peak. The computed high lip-blowing spec-
tra was broadband, but generally underpredicted flight
data.'® Computed power spectra were found using 4096
points and a square window.
Experimental datal3: 2223, 24
quency of large structures in shear layers occurs at
Strouhal numbers of St = L2 = 0.024£0.003, where

uptusg
6 is the local shear layer momentum thickness and f de-

indicates that the fre-



notes frequeney. The compnted Stronhal muber can

be estimated tl\ill" Gortler’s solution, given in Fig. 2a,
to obtain # = 03(3———r for my = 11.0. which is com-
parable to the empirically determined correlation®” of
f = 0.0343=r. Specifying r = 0.2
ship along with a compressibility correction®® the com-
puted peak in the AOA solution at 340 Hz corresponds
to a Strouhal number of 0.032.

Rossiter’s formula, given in Fig.

in tlis relation-

Note that by using
5, the frequency ob-
tained for m = 5 is 360 Hz. From Fig. 11 it can be seen
that four vortical cycles exist (i, = 4), implying that

Me =nm—m, =1,
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Fig. 11: 2-d treated cavity, low lip-blowing rate:
taneous contours of f—

The cause of the spike in the power spectrum was
found from inspection of density fluctuations, which
Fig-
ure 11 shows a contour plot of —&— , depicting the growth
and propagation of the shear Ta)or structures. The
large structures, associated with a 0.03u, vertical ve-
locity component, are the primary coutributors of the
computed density fluctuations of the shear layer. The
speed of the structures is 0.56u,!? below the value of
0.66u~ inferred by Rossiter for rectangular cutouts, yet
above the 0.51u, determined analytically by Roscoe
and Hankey.2®

Based upon these observations, it appears that large

revealed large convecting shear layer structures.

scale shear layer structures are being resolved. How-
ever, the lack of empirical support from the flight data
pressure power spectra is at odds with this conclusion.
Three-dimensional eflects are a possible explanation for
the discrepancy. Rockwell?” noted that for sufficiently
large Reynolds numbers three-dimensionality reduces
coherence in the shear layer. This implies that assump-
tion of two-dimensionality for small flow oscillations
may be suspect. In this two-dimensional computation
the mass removed from the cavity by the shear layer
entrainment process can only be replenished at the im-
pingement region. This is in contrast to the mass ad-
dition mechanism present in three-dimensions, which
also includes mass replenishment via spanwise strue-

tures such as streamwise vortices. The evolution of

streamwise-oriented vorticity interacting with the pri-
mary vortices would act to spread peaks in the reat-
tachment ramp pressure spectra.

THREE-DIMENSIONAL RESONATING CAVITY

An experimental investigation of SOFIA cavity qui-
eting treatments was performed in the NASA Ames
14 x 14" wind tunnel in 1990.7 The geometry shown
in Fig. 12 was the initial cavity configuration tested in
the wind tunnel. This simulation was imiplemented in
order to demonstrate the capture of self-excited cav-
ity resonance in three-dimensions. The simulated flow
conditions were the same as used in the wind tunnel,
with the flowfield initialized from a steady clean case.
A stability-limited time step of At = 3.53s was used,
corresponding to a streamwise CFL =
layer, and a CF L},,q, = 500.

1 in the shear

Fig.
models

12: Configuration 25: wind tunnel and numerical

Sample pressure histories on the cavity walls and a
comparison of the PSD resulting from the wind tunnel
and numerical efforts are shown in Fig. 13. The PSD
was obtained using 2048 points and a Hanning win-
dow to match the treatment of the experimental data.
The predicted frequencies of the dominant tones appear
reasonable, and the computed dominant tone is within
3 dB of experiment. The magnitudes of the computed
higher modes are much lower than observed experimen-
tally.
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Fig. 13: Configuration 25: pressure histories and power
spectra

Estimation of the grid resolution required to main-
tain a propagating wave of a specific magnitude can be
deduced from the rectangular two-dimensional cavity
and configuration 25 results. First, wavelength can be
estimmated by assuming the wave to be harmonic at a
given frequency and travelling at the stagnation speed
of sound. Next, it is noted that frequencies around 2
k7 were resolved well in the two-dimensional case, in
which the grid resolution was such that about 40 points
supported the wave. From the configuration 25 results,
it is seen that only the 700 Hz peak is well resolved,
which again gives approximately 40 points across the
wave for this coarser grid. Although numerical damp-
ing of the higher frequencies can be expected, most of
the energy is contained in the lowest frequency mode,
as can be seen in the sound pressure level, or SPL,
comparison of Fig. 14. Figure 14 also shows a quieted
configuration which is discussed below.

THREE-DIMENSIONAL QUIETED CAVITY

During the wind tunnel experiments, use of a blended
aft ramp resulted in the lowest sound production levels.
This simulation was implemented in order to determine
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if the same level of quicting could be predicted numer-
ically as was observed experimentally. Figure 15 shows
the topology of the blended aft ramp grids used in this
simulation of configuration 100,
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Fig. 15: Configuration 100: cavity region topology

For the SOFIA experiment, this type of geometry
treatment was found to be quieter than the untreated
configuration 25 case by over 30 dB. Figure 14 sum-
marizes that the proper trends were computed. The
flow conditions were again initialized from a clean case,
and integrated using a stability-limited time step size
of At = 7.06ps. The frequency domain analysis was
obtained using 4096 points, a Hanning window, and no
zero-padding.



A qualitative comparison of results can be made from
inspection of the computed instantancous streamlines
depicted in Fig. 14 and the oil flow from a similar
molded geometry, shown in Fig. 16. A strong cross flow
component is evident at the aft ramp for this aperture
elevation angle, and is seen computationally as well.

pos N

Fig. 16: Experimentaily’ observed surface flow pattern

Quantitative comparisons were made for this pas-
stvely quieted cavity geometry in terms of shear layer
profiles and pressure spectra in the cavity. Since errors
in shear layer mass entrainment rate would adversely
affect the cavity velocity field and hence the mean
telescope loads, an important validation parameter is
the shear layer spread rate. Figure 17 depicts mean
experimental and computational shear layer Mach num-
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Fig. 17: Configuration 100: instantaneous Mach number
contours and mean profiles

ber profiles. The vertical scale of the profiles is twice
that shown in the contour plot for clarity. Note that the
experimental profiles were obtained using a rake, which

1s sensitive only to u. the x-component of velocity, Tig-
ure 17 indicates reasonable agreement in profile shiape,
however the computed growth rate is lower than seen
in the data. This discrepancy may be due to geometry
modifications in the experiment or specification of an
overly-large value of ay.

Assessment of the oscillating telescope assembly loads
requires the accurate resoliution of the unsteady pres-
sure field in the cavity. Comparison of the computed
and observed spectra at specific locations provides a
measure of confidence for the computed telescope loads.
Toward the estimation of loads, Fig. 18 shows the pres-
sure history and resultant PSD on the cavity walls, Al-
though the peak levels are in agreement, the computed
spectra can again be scen to drop more rapidly with fre-
quency than the experimental results due to numerical
dissipation. The spectral peak at 1800 Hz corresponds
to a Stroulial number of 0.027, using a velocity ratio of

0.1.
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Fig. 18: Configuration 100: pressure history and power
spectra on cavity wall

THREE-DIMENSIONAL QUIETED AFT CAVITY
Recently a new configuration which places the cavity
aft of the wing, as shown in Figs. 19 and 20, has heen
proposed as a cost-effective configuration. However the
cavity response of this aft telescope installation is of



Fig. 19: Aft telescope configuration: modelled geometry

concern. Limited wind tunnel access lias prevented
titnely resolution of this safety issne through exper-
imental testing, hence this computation will provide
an carly measure of performance. Flight conditions at
41,000 feet and M, = 0.85 were used, resulting in a
Rep = 2.3 x 107. Powered engines were simulated by
specification of characteristic conditions for the inlets
and both fan and core exhaust nozzles. The tail geom-
etry was not available for this simulation.

RESE Sy oy

Fig. 20: Aft telescope configuration: cavity grids

As with the forward cavity computations, a clean air-
craft flowfield was used as an initial condition for the
cavity computation. Figure 21 compares the computed
pressure coefficient profiles along the crest, side, and
bottom of the model with flight data,?® where the cav-

ity location is shown for reference. Computed pressures
are generally in agreement with the data, but the com-
puted gradient aft of the cavity location is more adverse
than seenin the flight data. This is probably due to dis-
crepancies in the empennage geometry and the lack of
tail stabilizers.
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Fig. 21: Clean configuration: pressure coefficient compar-
ison

Figure 22 shows the computed PSD on the aft ramp
as compared to the scaled forward cavity wind tun-
nel data. The spectra was computed using 1024 points
stored at 5A¢ = (.68 ms intervals. The computed and
scaled experimental spectra can be scen to be similar in
shape and magnitude to about 100 Hz, where numerical
dissipation becomes significant. The cavity grid cells,
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Fig. 22: Aft telescope configuration: power spectra

approximately 3 in. on a side, had been sized so that
only low frequencies were well resolved. Use of smaller
cells would capture short wavelength, high frequency
waves which are unable to excite the massive telescope
assembly. A Strouhal number of 0.028 is computed for
the spectral peak seen at 110 Hz.

Simulation of the distortion of a planar wavetrain
of light propagating through tlhe cavity aperture!® re-
veals the presence of convecting structures, shown in
Fig. 23. The wavefront distortion, or optical path dif-
ference (OPD), is proportional to the integrated den-
sity normal to the aperture. Using f, = f\i': and Fig. 23,
it can be verified that the St = 0.028 peak is caused by
the resolved shear layer structures. The structures con-
vect with the local downwash velocity field caused by
the wing. A large spanwise variation of the wavefront
distortion can also be seen, with maximum < OPD’ >
values at the crossflow edges of the aperture. Since the
shear layer grid is uniformly distributed in this region,
this spanwise variation may be indicative of increased
vortex colierence at the boundaries of the aperture.

CONCLUSIONS

The development of an aerodynamic configuration
analysis method has been summarized. The topology
used within the overset framework has allowed simple
and fast mesh generation while maintaining high reso-
lution in critical flow regions.

Evaluation of the overset mesh method was per-
formed through comparison against experiment for sev-
eral related flows. Sound pressure levels for resonant
and quieted cavities compared well with experiment.
However, use of a planar flow assumption for a quicted
cavity appears to have caused a computed spectral peak
where flight data indicated broadband behavior. Com-
puted shear layer structures were found to cause the

11

Fig. 23: Aft telescope configuration: wavefront distortion

spectral peak at a Strouhal number of approximately
0.03. In three-dimensions, a similar peak was seen in
both experiment and simulation. Additionally, large
spanwise density variation of the aperture structures
was found.
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Abstract

The time-varying fluid and optical fields of several
cavity configurations have been computed on over-
set mesh systems using the Reynolds-averaged Navier-
Stokes equations and geometric optics. Comparisons
between numerical results and Airborne Optical Ad-
junct (AOA) flight data are made in two-dimensions
for a quieted cavity geometry with two lip-blowing
rates. In three-dimensions, two proposed aero-window
locations for the Stratospheric Observatory For In-
frared Astronomy (SOFIA) are discussed. The sim-
ulations indicate that convection of large shear layer
structures across the aperture cause the blur circle di-
ameter to be three times the diffraction-limited diam-
eter in the near-infrared band.

Nomenclature
c speed of sound
dB decibel, 20 log,, 5%01_/-;"1—21
f frequency
h enthalpy
I intensity
k wave number, %\5
K ratio of convection by freestream speed
L characteristic length
m mass flow rate
M Mach number
MTF modulation transfer function
n index of refraction
OPD optical path difference
P instantaneous static pressure
q velocity magnitude or dynamic pressure
Re Reynolds number
St Strouhal number, u_l%
SR Strehl ratio,ﬁ = exp(—%?)
t time
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under Title 17, U.S. Code. The U.S. Government has a royalty-
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T absolute temperature

T, characteristic time, Tt

u,v,w Cartesian velocity components

z,y.z  Cartesian physical space or
aperture coordinates

A angstrom, 1071% m

a angle of attack

3 Gladstone-Dale constant, (n — 1)s7p

6 momentum thickness

A wavelength

P density

o shear layer spreading rate parameter

<I>_ phase, 2—”%’2

() mean quantity

< > root mean square quantity

() fluctuating quantity, f = 7 + f

Subscripts

STP  standard temperature and pressure

T total quantity

oC freestream quantity

Introduction

The study of light propagating through an unsteady
fluid field has important applications ranging from
laser weaponry to astronomy platforms. Airborne
housing of these systems provides mobility, mainte-
nance, and performance advantages which, in combi-
nation, can be superior to land or space-based alter-
natives. However, prediction of the fluid and optical
behavior of these airborne systems remains a difficult
problem.

This report describes the progress of a computa-
tional approach for use in the design of transonic
aero-windows. The prediction methodology has been
driven by the design of the Stratospheric Observatory
For Infrared Astronomy (SOFIA), the successor to the
Kuiper Airborne Observatory (KAQ). which will offer
ten times the resolution of the KAQ. Figure 1 depicts
the SOFIA, which will have a 2.5 meter Cassegrain
telescope mounted in a cavity of a Boeing 747SP. In
order to numerically assess the safety and performance
of this platform, extensive evaluation of the computa-
tional methods by comparison against experiment is



Fig. 1: Artist's concept of the SOFIA configuration

necessary.

Many studies of the effect of a fluid field upon
an optical field have been conducted over the past
four decades. Many experimental and theoretical ap-
proaches to the optical distortion problem have been
investigated; only those of which are pertinent to this
transonic aero-window problem are summarized here.
The experimental efforts can be grouped into two cat-
egories: direct measurement methods and techniques
based on aerodynamically inferred quantities. Results
obtained via the latter method are more prevalent be-
cause of practical difficulties in direct measurement
techniques.! In fact. only aerodynamically inferred dis-
tortion levels will used for validation of the present
work.

Although early experimental and theoretical efforts
assumed incoherent statistical turbulence.? 3 ¥ recent
studies have begun to examine the effect of shear layer
structures on electromagnetic field distortion. Using
a passive scalar field from a direct numerical simu-
lation, Truman and Lee® found an optimum viewing
angle normal to the hairpin vortices in the homoge-
neous sheared fluid region. They also found analysis
via non-refracting geometric optics to be equivalent to
the parabolized Helmholtz representation of light. Al-
though this class of studies provides excellent insight
into the effects of small-scale structure on the electro-
magnetic field, it is clear that the computational ex-
pense of such methods precludes their near-term use
for the problems under consideration here.

The study of large scale structures in shear layers
has been an active topic of research since they were
observed by Brown and Roshko in 1974.% Only re-
cently has the effect of these structures on the optical
field been studied. In 1990, Chew and Christiansen’ 3
experimentally observed the effect of shear layer struc-
tures on beam propagation. Tsai and Christiansen®
used an Euler simulation to determine the optical char-
acteristics of a perturbed free shear layer. It was hy-
pothesized that the effect of the vortical structures on
the optical field could be modelled by a growing sinu-
soidal phase plate.

The numerical modelling of the optical effect of a
cavity-spanning shear layer was presented by Cassady,
Birch, and Terry!® in 1987. They found their two-

[S%]

dimensional solution to result in poor prediction of
optical distortion. Farris and Clark'' '? used time-
mean quantities and empirical evidence to ascertain
the fluctuating density levels required for optical anal-
VSIS,

The present effort attempts to determine what por-
tion of the optical path distortion can be resolved using
cell sizes required to obtain an accurate flowfield so-
lution. Towards this end. computed optical distortion
levels are compared to flight or wind tunnel measure-
ments for two- and three-dimensional quieted cavities.

Previous reports'® !'* have described the method
development for two-dimensional free shear layers, a
backward-facing step. and a rectangular cavity.!> Com-
parison of the computed cavity case with Rossiter’s
data showed agreement in the dominant resonant
peaks to within 5 dB. The computed and experimen-
tally observed pressure loading trends were similar
along the cavity walls. In three-dimensions, rectangu-
lar and treated quiet cavity solutions were computed
and compared to experiment.!® Sound pressure lev-
els along the cavity bulkheads for both the resonating
and quieted geometries were found to be in agreement.
However, although the power spectra of the experi-
ment and computation were similar at low frequen-
cies, numerical dissipation caused a rapid decrease in
energy content at high frequencies.

Although the optical model has been described pre-
viously,’® this paper documents the extension of the
model and provides new validation information. The
following sections address the method used to predict
the unsteady flows and the resultant optical distortion.
Analysis of the aperture fluid and optical fields for
AOA and SOFIA configurations are presented. For the
two-dimensional AOA geometry, time-varying density
fields and optical path lengths are shown. Short and
long exposure far-field diffraction patterns are com-
puted for a three-dimensional aft cavity SOFIA con-
cept.

Approach

Solution of the aircraft and cavity flowfields were
computed using models for the fluid field, the effect
of turbulence. and the optical distortion. A diagonal
scheme!” was used for the solution of the Reynolds-
Averaged Navier-Stokes equations, implemented in an
overset grid framework.!® Euler implicit time integra-
tion and second-order spatial differencing was used,
with viscous impermeable wall conditions specified as
no-slip, zero normal pressure gradient, and adiabatic.
Information transfer across overset mesh houndaries
was implemented using trilinear interpolation of the
dependent variable vector, Q = [p. pu, pv, puw,e]T. Al-
gebraic turbulence models were used, implemented
with a variable F,,,, cutoff for wall-bounded flows and



a shear layer model for the cavity aperture region % 2°
The flow solver cost was 13ps/cell/iteration on a single
head of the Numerical Aerodynamic Simulator (NAS)
Cray Y/MP-832.

Generally, a significant effort in grid generation
is required before flow and optical analysis can be-
gin. However. recent advances in algebraic?! and
hyperbolic?? methods have enabled rapid discretiza-
tion of complex geometries. Hyperbolic grid genera-
tion, which provides spacing and orthogonality control.
was used for the wall-bounded regions. while algebraic
grids were used in shear flow regions including plumes
and wakes. This choice of topology allows simple spec-
ification of turbulent regions and also permits the recy-
cling of meshes, useful for configuration changes such
as cavity positioning.

The optical computations documented here use a
refracting-ray method, reported on earlier, which is
limited to studying the effects of the resolved large-
scale structures.?> The method tesselates a structured
grid into tetrahedra and uses piecewise mean indices
of refraction for each of the tetrahedra. Indices of re-
fraction were computed using n = 1 + Bp_s%’ where
the Gladstone-Dale constant, 3, can be found using
the Cauchy formula.

Assessment of the optical performance of an aero-
window begins by specification of the ray initialization
plane. Integration of the optical path length through
the aero-window is then performed along the rays at
specified time increments in both the streamwise, z.
and crossflow., y, aperture directions. The resultant
OPD(t.r.y) can be used in a complex aperture func-
tion of the form P = 4 ®"*¥) Assuming no loss in
transmittance, then the wave amplitude A4 is unity in
the aperture and zero elsewhere, while the phase of the
wave is computed from OPD(t,x,y) = ;—:. The au-
tocorrelation of the complex aperture function, P * P,
gives the far field diffraction pattern, computed using
a two-dimensional Fourier transform. Time averag-
ing successive short-period diffraction patterns gives a
long exposure result. Integration of the intensity of
this resultant long or short exposure diffraction pat-
tern gives the area for a specified encircled energy level.
From this area the equivalent blur-circle diameter due
to the resolved fluid scales can be found. Inclusion of
the effects of small-scale turbulence could be incorpo-
rated into the computation of long exposure blur cir-
cles by multiplication of the above modulation transfer
function (MTF) with a turbulence MTF.3 24

Results and Discussion

Aero-optical simulations of the U.S. Army Airborne
Optical Adjunct (AOA) and the SOFIA configurations
are discussed below. Information pertaining to the
computation and analysis of the unsteady flowfields.

including grid resolution and rurbulence modelling. is
given elsewhere 14 28

2-D AQA Cavities

Data available from flight tests of the AOA 2% shown
in Fig. 2. provides valuable validation information for

Fig. 2: US. Army Airborne Optical Adjunct

the present simulations. These two-dimensional nu-
merical simulations were used to determine if optical
quieting methods, particularly aft ramp treatment and
lip-blowing, could be accurately simulated. The flow
about the geometry, depicted in Fig. 3, was computed
in conjunction with two lip-blowing rates for the for-
ward aperture only. The 100% lip-blowing rate case
corresponded to a 1 = 0.42(pu ). For the discussion
below, computed high and low lip-blowing rates refer
to 100% and 1% of this mass flow rate.

Fig. 3: AOA case: instantaneous Mach contours

Computed and flight mean Mach number profiles
are compared in Fig. 4 for two lip-blowing rates, with
instantaneous Mach number contours shown above
each set of profiles. The quantity ¢ indicates the angle
from the cupola crest at which the data was measured.
Overall, the Mach number contours, which were aver-
aged over 2000 time steps. show agreement in the max-
imum vorticity as a function of x-station. However,
differences exist between experimental and computa-
tional results at the low-speed edge of the shear layer,
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Fig. 4: AOA case: instantaneous Mach number contours
and mean profiles at (a) low and (b) high lip-blowing rate

which may be due to blockage in the cavity of the air-
craft that was not computationally represented. The
discrepancy at the upper aft portion of the shear layer
appears to be due to blockage in the computational
model.

Comparisons of pressure spectra at the aft ramp for
the low lip-blowing rate are shown in Fig. 5. The com-
puted spectra can be seen to be quantitatively and
even qualitatively different from flight d:+a. The com-
puted result lies more than 15 dB below -ie data, and
a peak in the low lip-blowing rate spectra is clearly
computed, but is not seen in the flight data. The high
lip-blowing rate spectra were similar to that shown in
Fig. 5. albeit without the spectral peak at 340 Hz.23

It has been noted from experimental evidence?$ that
the frequency of large structures in shear layers is inde-
pendent of axial station and occurs at Strouhal num-
ber of 5t = Lo = 0.024 £ 0.003. where 8 is the
local shear layer momentum thickness and f denotes
frequency. This phenomena is corroborated by the re-
duction of other researchers' data,® 7-9 27. 28 whoge
results range from about St = 0.02 to 0.03 for incom-
pressible shear layers.

Momentum thickness can be estimated using
Gértler's solution, giving 6 = 0.0361Lz for oo = 11.0,
which compares favorably to the empirically deter-
mined correlation®® of 6 = 0.0341=Lx. Using this re-
lationship along with a compressibility correction,3°
the computed peak in the AOA solution at 340 Hz
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Fig. 5: AOA case: power spectra, low lip-blowing rate

corresponds to a Strouhal number of 0.032. For com-
parison, peaks were found in SOFIA experiments and
computations at approximately St = 0.028.

Based upon these experimental observations. it is
hypothesized that large scale shear layer structures are
being resolved. However, the lack of empirical sup-
port from the flight data pressure power spectra is at
odds with this conclusion. The comparison is further
clouded by the reasonable comparisonin < p’ > for the
low lip-blowing rate shown in Fig. 6, and the presence
of the organized structures shown in Fig. 7.
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Three-dimensional effects are a possible explana-
tion for the discrepancy between computation and
flight. Rockwell®! noted that for sufliciently large
Revnolds numbers three-dimensionality reduces colier-
ence in the shear layer. This implies that an error in
the assumption of planar flow for the small flow os-
cillations considered in these quieted cavity configu-
rations. The evolution of streamwise-oriented vortic-
ity interacting with the primary vortices would act to
spread peaks in the reattachment ramp pressure spec-
tra. As a final note, Fig. 5 also depicts data. the ordi-
nate scaled by (qx)flighl/(q‘x)tunnel and the abcissa
by (¢ /L) plight/ (€ / L) tunnei, obtained from an AOA
wind tunnel test.3? The wind tunnel data shows that
a small peak exists where expected according to the
above analysis.
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Fig. 7: AOA case, low lip-blowing rate: instantaneous
contours of (a) £- and (b) -& with schematic of optical
model

Using the computed unsteady density field, aero-
optical effects can be determined. Figure 6 compares
the computed and experimental profiles of the root
mean square of the density fluctuations. Levels of
< p’ > were computed over a time segment of about
90 ms in increments of 0.44 ms. Using the elapsed
time for a particle to convect across the aperture at the
mean shear layer speed as a characteristic time. then
the optical computation was taken for about nine 7.
In Fig. 6. ~ is the rake angle from horizontal, with the
axis of rotation offset from the cupola centerline. De-
termination of the systematic error band on the exper-
imental result is discussed below. The low lip-blowing
rate result underpredicts the magnitude of the peak
in 5’2. however the peak location is in fair agree-
ment. The computed results for the high lip-blowing
rate compare poorly to experiment, possibly due to
inadequate grid resolution and/or the increased flow
complexity of the merging shear layers. This type of
active control is presently not a design option for the
SOFIA. therefore further effort toward improvement
of the high lip-blowing case was not warranted.

Further investigation of the low-blowing rate case
revealed the presence of large convecting structures as-

sociated with the shear layer. Figure 7 shows a contour
plot of 4)— depicting the growth and propagation of
these shear layer structures. Also depicted in Fig. 7 is
a schematic of the optical model, with the initial and
final stations of the optical path integration given by rq
and ry. The large structures. associated with a 0.03u .
vertical velocity component, are the primary contribu-
tors of the computed density fluctuations of the shear
layer. The speed of the waves, as determined from
Fig. 8. is 0.56u.. below the value of 0.66u .. inferred
by Rossiter'® for rectangular cutouts, yet above the
0.531u determined analvtically by Roscoe and Han-
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Fig. 8: AOA case: contours of OPD’(z.t)[ in.] along
aperture, low lip-blowing rate

In 1990. Chew and Christiansen® and Tsai and
Christiansen® deduced that a free shear layer model
of a sinusoidal phase delay growing in r would pro-
duce results similar to those observed in both compu-
tation and experiment. Figure 8 displays behavior of a
similar nature for the aero-window problem of concern
here.

Comparisons of integrated aero-optical quantities,
shown in Fig. 9, reveal slight overprediction for the
low lip-blowing case and, given the < p’ > profiles,
expected underprediction for the high lip-blowing rate
case. Also shown in Fig. 9 are the < OPD’ > for two
additional integration paths, shown to demonstrate
that most of the optical distortion is caused by the
shear layer.

The result for the integration path which extends
from r = —8" to ry = 12” displays an increment in
< OPD' > of about (7 x 1077)” from the 7" path
length case which passes through the shear-layer alone.
The path initialized above the shear layer, from rq =
4" to ry = 12", shows a small < OPD’ > indicating



that < p’ > above the shear layver is small. Finally.
the time mean optical path difference. OPD. can be
seen to contribute curvature to the wavefronts as the
light propagates through the shear layer. The optical
clarity of the shear laver was determined using a J =
2.584 x 107, matching the value which was used to
reduce the experimental data.
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Fig. 9. AOA case: streamwise variation of optical path
difference quantities

The analytic result for the < OPD’ >, which goes
like r. is found from3*

=2 _ (21 <OPD'>\?
R

B3 Lson.m on 2
2k*—L} — ) d
k a LSOn.mA (ay) Y

Derivation of the model, which utilizes time-mean
quantities to determine < OPD' >, is given by
Bogdanoff.>* This analytic result assumes an index-
matched shear layer with a sinusoidal n profile. n(y) =

. 3
P—fmaz sin (2L2”y ) The constants, £ = 0.0091
50n.m a

and Lson.m = 1.316. = 1.31(0.18z[m]), are empirical

relations. The virtual origin of the shear layer is placed
at r = 0" to obtain this analyvtic result. As shown in
Fig. 9. the analytic gradient in < OPD’ > is in good
agreement with flight data.

Reduction of Experimental Data

The reduction of the data obtained from experi-
ment® is noted here to delineate the approximations
used and estimate systematic error bounds in the op-
tical path distortion levels. Values of p’ are computed
from assumptions of quasi-steady flow:

hr = c,T (1 + 72;1.x12)

Differentiation with respect to t gives

/

!
- -1
RTy = 2P0
p vy

Using (pu)’ = pu’ + p'u then

! ! ! /
Tr Py oqpaeley) [(v-1Mm 4] &
T »p pu P

The experimental observations against which the com-
puted results are compared assume simultaneously
small fluctuations in pressure and total tempera-
ture,®® 37 resulting in

-1
() F oo

Mean Mach number and density profiles are deter-

~

I

mined from isentropic relations, while (-%l- is propor-

tional to the voltage fluctuation, I—;E- obtained from
hot film probes. The optical path disturbance is then
found from!

3 \* rt
(0PD')2=2<pSTP)/ <p >%ldr  (2)
(1}

where ‘-If- is the turbulent eddy size relative to the shear
layer width. determined from cross correlation data to
be typically about 15%.

The few available independent measurements3” 3%
indicate that pressure fluctuations of about 2% of
freestream static pressure occur in the shear layer
spanning the aperture of a quieted cavity geometry.
In fact, Hahn?® reported pressure fluctuations of 8%
from shear layer rake measurements, however these in-
clude the dynamic pressure component normal to the
orifice as well. Pressure fluctuation levels can also be
inferred from sound pressure levels in the cavity, ob-
served to be at least 130 dB for the AOA case. Shear
layer total temperature fluctuations of about 1% have
also been reported for this Mach regime.3® The present
low lip-blowing computation found a < p’ >= 1% and



a < T >= 0.87 in the shear layer. The assumption
of < Ty > < p’ >= 0 in a shear laver is therefore
questionable. and is used to estimate svstematic ex-
perimental error hounds.

The determination of the error in < p’ > due to
background noise levels begins by assuming the pas-
sage of a compression wave parallel to the static pres-
sure port in the wake rake. Normal reflection of the
wave would impart a larger deviation {~ 1 < p’ >
as computed by Eq. 1. Utilizing Gértler's free shear
layer solution to provide u(r). assuming a cavity tem-
perature recovery factor of unity, and holding mean
static pressure constant through the layer, then Tr)

is defined. The sensitivities of % to % and ;I are
T

:th_—ﬂl.viﬁ and ;“%_’B%}’;@ respectively. Using
a compression or rarefaction wave of strength < p’ >
through the shear layer, then local values of p’ due to
wave passage are defined. This value of p’ provides
the error bound about the value obtained from Eq. 1,
which assumes negligible < p’ > and < Ty >. Taking
shear layer pressure fluctuation levels corresponding
to 135 dB and a velocity ratio r = 0.1, then the sys-
tematic error in the density fluctuations is 0.13% at
the shear layer center. Figure 6 shows the resultant
systematic error bars in < p’ >.

From Eq. 2 the value of < p’ > is linearly propor-
tional to < OPD’ >. The error in < OPD’ > can be
found by using a conservative within-system error of
0.05% in S;Q gleaned from Fig. 6, plus the systematic
error from the above analysis. The resultant error bar

plotted in Fig. 9.

Forward Cavity SOFIA

Wind tunnel tests, completed in 1990. allowed vali-
dation of cavity acoustic response and optical charac-
teristics. The cavity environment results are summa-
rized in Fig. 10 for both resonant and quieted config-
urations.!3 Aerodynamic measurements in the shear
layer were used to infer optical quantities for the qui-
eted cavity. configuration 100,

Following computation of the unsteady flow, the op-
tics code was applied to the computed density field
obtained for configuration 100 from t = 0 to 7.8 ms.
Ten rays were propagated through 110 instantaneous
density fields in time intervals of At = 70.6us. The op-
tical measurement was taken for about five T, again
using the elapsed time for a shear layer structure to
convect across the aperture as the characteristic time.
The forward cavity SOFIA results presented here are
for a computational plane at approximately the cross
flow center of the aperture, which will provide only a
streamwise variation in optical properties. The numer-
ical results are presented compared to previous anal-
ysis® and experiment!® in which shear layer aerody-
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Fig. 10: Forward cavity SOFIA cases: Comparison of
sound pressure levels

namic measurements were used to infer distortion.

Comparison of experimental and numerical density
fluctuations are shown in Fig. 11, where < p’ > can be
seen to be severely underpredicted. Although peaks
in the density fluctuations were computed, the highly-
ordered shear layer structures similar to those found in
the AOA study were not observed. Differences may be
attributable to grid coarseness or within-system mea-
surements errors.

.47 80.8
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Fig. 11: Configuration 100: density fluctuation at cross-
flow center of aperture

The optical wavefront distortion through the con-
figuration 100 aero-window is summarized in Fig. 12.
Figure 12a shows that the distortion model applied
through the shear layer alone underpredicts the data
determined analytically and experimentally. However,
the computed trend is generally consistent with the
data. At the streamwise center of the aperture. the
aerodynamically inferred < OPD’ > at two additional



spanwise locations are shown. These points provide an
estimate of the crossflow variation in experimental dis-
tortion levels.

3
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7 42 47
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Fig. 12: Configuration 100: comparison of wavefront
distortion

Figure 12b depicts computed < OPD’ > for ray
propagation originating below the secondary mirror,
ro = —3.7". and above the shear layer, r, = 2.3".
Comparison of the computed results show an incre-
ment in < OPD’ > below the secondary mirror. This
distortion increment appears to be caused by a jet of
re-entrant fluid originating from the shear layer im-
pinging on the aft ramp. Finally, Fig. 12c shows that
curvature is imparted to the mean optical field. The
dip in the fluctuating and mean OPD levels at r = 42"
is caused by the presence of the secondary mirror. in
which the index of refraction, n, was fixed at unity.

Aft Cavity SOFIA

Forward placement of the telescope in a favorable
pressure gradient region has an advantage in terms of
an optically thin boundary layer. However, the fuse-
lage moldline and structural complexities forward of

the wing present considerable manufacturing difficul-
ties.  An alternative site for the telescope aft of the
wing reduces the modification costs and permits the
use of a larger usable cavity volume. However. an aft
cavity site has potential problems of scattered light
emitted from engines and plumes. an optically thick
boundary-layer. unknown cavity response, and possi-
bly poor empennage flow behavior at off-design condi-
tions.

Figure 13 depicts the simplified geometry used to
address some of these concerns; horizontal and vertical
stabilizer geometry was unavailable for this simulation.
Details of this flight condition simulation are available
elsewhere.

14

Fig. 13: Aft SOFIA case: Surface C}, and plume tem-
perature contours

The acoustic response of the aft cavity is compared
to scaled data from the forward cavity experiment in
Fig. 14. The computed result is taken from a location

130

Scaled Forward Cavity
Experiment

Powar spectral density, PSD, dB

‘ 3
Frequency, f, Mz 10? 10

Fig. 14: Aft SOFIA case: Power spectra comparison

on the aft ramp, while the experiment is from a loca-
tion within the cavity. The agreement of spectra is rea-
sonable to about 100 Hz, above which grid coarseness
dissipates energy rapidly.!* Figure 14 shows peaks at
60 and 110 Hz, the latter corresponding to a Strouhal
number of 0.028.

During the aft cavity SOFIA computation the en-
tire aperture density field was saved in increments of



0.68 ms. every five flow solution steps. Using this den-
sity field. propagation of a plane wave through the
aperture revealed variations in the wavefront distor-
tion. as shown in Fig. 15, These ordered variations
in OPD. indicative of shear layver structures in the
aperture. impact the aft ramp at a frequency of 110
Hz. giving a St = 0.028. Figure 15 shows maximum
distortions of about one wavelength., £Ap. with a re-
sultant maximum < OP D’ > of approximately 0.7Ap.
Computation of the OPD{t.r.y) was performed for a
64 x 64 array of rays normal to the aperture and ini-
tialized just above the secondary mirror. The optical
integration was performed over 8 T..

t=t taty+2.7ms t=t4+5.4ms

: I R wssitfl
ot8.1ms tat+10.8ms 1=t ;+13.5ms

0 ]

Fig. 15: Aft SOFIA case: Sampie wavefront distortion
history

Using these phase distortion levels, far field diffrac-
tion patterns were then computed. Figure 16 depicts
the diffraction-limited Airy pattern for reference, and
both instantaneous and time-averaged exposures. The
instantaneous exposure pattern shows some evidence
of speckle. with a large reduction in central peak in-
tensity. This spreading of energy is manifested in the
computed Strehl ratio of 0.34.

Finally, Fig. 17 shows that the large scale structures
in the shear layer cause the equivalent 80% blur cir-
cle to be three times the diameter of the diffraction-
limited case. However, as can be seen in Fig. 16, the
blurring in the streamwise direction is worse than in
the crossflow direction. Note that the because the
small scale fluid motion is modelled when using the
Reynolds-averaged Navier-Stokes equations, the com-
puted blur circle is much smaller than actually ob-
served.3?

2.5 m aperture -
A=Ap=5893A

instantangéous exposure

28 ms exposure SR=0.34

0 1 2 3
Arcsec

Fig. 16: Aft SOFIA case: Far field diffraction patterns
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28 ms exposure

2.5 m aperture, A = 1 , = 5893 A

0.2 0.3 T 0.4
angle, 6. arcsec

Fig. 17: Aft SOFIA case: Normalized integrated intensity
distributions

Conclusions

Computations of quieted cavity configurations have
shown convection of large scale flow structures across
the aperture. The shedding frequency of these struc-
tures compare reasonably well with experimentally de-
termined shear layer Strouhal numbers. The com-
puted results indicate that three-dimensional effects on
the shear layer spanning a quieted cavity can be signifi-
cant. The differences in two- and three-dimensional re-
sults are manifested in the spectra of the pressure loads
and in the magnitude of the optical wavefront distor-
tion. Since the primary contributors to the computed
OPD' were the large scale structures. computations of
the Strehl ratio were found to be reasonable. However.
because the small scale fluid motion is modelled, the
blur circle diameter is significantly underpredicted.

Further improvements to the prediction of optical
performance may be found from investigation of shear
regions with direct Navier-Stokes methods® or use of a
turbulence MTF .24 Finally, although low Reynolds and
Mach number number experiments show large struc-
ture formation, direct OP D measurements at realistic
conditions would be useful for validation of numerical
aero-optical studies of this type.
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Abstract

Coupling of the Reynolds-averaged Navier-Stokes equations, rigid-body dynamics. and a pitch at-
titude control law is demonstrated in two- and three-dimensions. The application problem was the
separation of a canard-controlled store from an open-flow rectangular cavity bay at a freestream Mach
number of 1.2. The transient flowfield was computed using a diagonal scheme in an overset mesh frame-
work, with the resultant aerodynamic loads used as the forcing functions in the nonlinear dynamics
equations. The proportional and rate gyro sensitivities were computed apriori using pole placement
techniques for the linearized dynamical equations. These fixed gain values were used in the controller
for the nonlinear simulation. Reasonable comparison between the full and linearized equations for a
perturbed two-dimensional missile was found. Also in two-dimensions, a controlled store was found
to possess improved separation characteristics over a canard-fixed store. In three-dimensions. trajec-
tory comparisons with wind-tunnel data for the canard-fixed case will be made. In addition, it will
be determined if a canard-controlled store is an effective means of improving cavity store separation
characteristics.

Nomenclature
Chm coefficient of pitching moment
DOF  degree of freedom
I body inertia
K, proportional gain
K, rate gyro sensitivity
L characteristic length
m body mass or stage number
M Mach number
q dynamic pressure
Q vector of dependent variables

Re Reynolds number
s Laplace operator

*Research Scientist, MCAT Institute. Member AIAA.



i time

T absolute temperature

wov o Cartesian velocity components
xr.y.z  Cartesian physical space

«x angle of attack

6 effector deflection angle

P density

o shear layer spreading rate parameter

T canard servo characteristic time

4 body attitude

w vorticity

( . ) time derivative

Superscripts

n time step

Subscripts

¢ commanded, canard

t tail

20 freestream quantity
Introduction

The design of high-performance aircraft has in the past typically been compartmentalized by dis-
cipline, most commonly structures, fluids, and controls. However, as performance demands escalate.
aircraft systems have become increasingly interrelated.!* 2 Therefore, there is a need to investigate the
optimization of the aircraft in its entirety, not simply by evaluation of its sub-systems.

This type of multidisciplinary analysis is currently accomplished with simplified physical models.
such as panel flow and modal structural codes. However. in critical regions of the flight envelope these
linear methods can fail, leading to the necessity for higher-order models.? * Obviously. this increased
physical fidelity comes with a high computational price, and hence fewer design cycles are permitted
as compared to the linear methods.

Providing a capability for the simulation of the nonlinear interaction of fluids and rigid body motion
will be useful in several ways. First, the simulation could be used to validate the implementation of a
control law derived using conventionally determined sensitivity coefficients. Although one must be wary
of results obtained numerically, simplifications used to compute these force and moment derivatives
will not be present in a Navier-Stokes simulation. Second, the coupled simulations could be used to
develop a control law where nonlinear effects are important, using the computed aerodynamic forces and
moments instead of tabulated empirical relationships.> Hence, computational design and prototyping
of the aircraft control system offers the capability of reducing aircraft design cycle cost and enhancing
safety as well as improving performance.

The effort documented here begins to address the interaction of the disciplines of fluids. rigid
body dynamics, and controls in nonlinear flight regimes. In order to assess the accuracy of these
initial computations, a problem which could be compared against analytic and experimental results
was chosen: the cavity store separation problem. Dix and Dobson's® recent experimental study of
the separation of stores from cavity bays will be used as a basis for comparison. These wind-tunnel
tests determined the trajectory of an uncontrolled missile from a rectangular cavity and will be used
to validate the canard-fixed computation.

Previous computational efforts have shown that the component problems of cavity flows
uncontrolled store separation'® !'! can be solved with reasonable accuracy using overset grid methods.
It should be noted that inviscid solutions to the cavity store separation problem, with bodies in relative
motion, have been obtained on tetrahedral meshes.!? However, although these unstructured methods are

789 and



geometrically powertul. a means of consistently accounting for viscons effects is enrrently licking, Here,
the cowbined problem of viscous cavity flow. rigid body dynamics. and automatic control techniques
ix addressed in a general manner using the overset mesh framework.

The following sections discuss the approach used to solve the coupled system and the results ob-
tained for several two- and three-dimensional cases. Comparisons of numerical results are made against
hnearized or experimental results where available.

Approach

The procedure used to solve these coupled problems is shown schematically in Fig. 1. The process
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Fig. 1: Overall coupled system approach

begins with the generation of the blocked mesh system while holding the relative position of the
geometry in the initial position. After establishing the initial grid connectivity information, the solution
of the flowfield can begin. Obviously, depending on the problem being addressed. this fixed grid solution
may be steady or possess a bounded envelope. When this fixed-geometry flow solution is satisfactory.
the motion of the body commences.

The integrated aerodynamic loads acting on the body are provided to the 6-DOF portion of the
code along with the body state vector. Using this information, the body position and attitude is then
integrated one time step. and kinematic constraints are applied. The controller also uses the body state
to compute new effector settings, which are then applied to all relevant grids. Finally. since the grids



have changed velative positions. the intergrid commmunication is re-established. This process repeids
for each time step nntil the siimnlation is complete. A detailed deseription of the component processes
is given below.

Flow Solver

The finid field was computed via the Reynolds-averaged Navier-Stokes (RANS) equations using the
diagonal scheme of Pulliam and Chaussee!? implemented in the overset grid framework of Benek. Bun-
ing. and Steger.* The equations were integrated through Euler implicit time marching and second-order
spatial differencing with viscous wall conditions specified as no-slip. zero normal pressure gradient., and
adiabatic. Information transfer across overset mesh boundaries was implemented using trilinear inter-
polation of the dependent variable vector, Q = [p, pu, pv, pw. e]T. The flow solver cost is 13sz5/cell/step

on a Cray Y-MP.

Turbulence Model

In these computations, the slowly time-varying component of the flow is resolved, while rapid fluc-
tuations are modelled. The algebraic turbulence model of Baldwin and Lomax,!?
Buning,!'6 is described below using a flow in the (z,y) plane.

The wall-bounded flows use the original Baldwin-Lomax model, with the addition of a variable
Fihar cutoff. The grids are chosen such that a unique wall distance is readily available.

The cavity aperture spanning shear layer uses an eddy viscosity developed using F(y) = y|w|. as
suggested by Baldwin and Lomax!® for wake regions. This results in

as implemented by

yma.rug,'f
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where specification of Cy is discussed below and the velocity difference is modified to be half the total
velocity difference between the streams in the specified shear layer region

ugis =/ (u? + v2)mar - (u?+ v2)1w’m”

The free shear layer model is now given by

ulis
He = PKCCprk'— (1
|w|ma.r
after dropping the Klebanoff intermittency function. Unmodified model constants K = 0.0168 and
Cep = 1.6 are used.
The magnitude of the eddy viscosity in the free shear layer model can be altered with C,.,. Esti-

mation of the proper value of C,« begins by using Gortler’s shear layer solution:

rf(£)

” ) _
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2 U2 + U
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where u; and us are the velocities of the slow and fast streams and £ is the similarity coordinate. The
spreading parameter o is inversely related to the spreading rate. db/dz. where b is a measure of the



shear Tayer widthe The value of the spreading parameter when the velocity of one of the streanis is
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Gortler's solution can be used to determine the maximum vorticity magnitide as follows:

ol du du OE'
W — ===
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Now. using Prandtl's mixing length assumption and scaling laws for jet boundaries. eddy viscosity
can also be expressed as

Ht X P[2|w|
Au
; 2=
x i~
= KppbAu (2)

- —_ I
where Ky = g

Setting Eqs. 1 and 2 equal results in
Cuk = (UOI{Ccp\/;)—1

and only o remains to be specified. Empirical estimates of g range from 9.0 to 13.5.% For this series
of cavity flow efforts og was set to 11.0, resulting in a value of Cyy = 1.91.

Grid Generation and Communication

Computation of the loads generated by cavity flows requires accurate representation of the geomnietry
as well as the flowfield. Typically, a significant effort in grid generation is required before flow analysis
can begin. Since matching zone faces are not required for the overset method used here, recent advances
in algebraic!’ and hyperbolic'® methods can be used. Hyperbolic grid generation. which gives good
spacing and orthogonality control. was used for the wall-bounded regions. while algebraic grids were
used in shear flow regions. Advantages of this type of grid system include straightforward specification
of the turbulent regions and allowance for independent refinement of each zone. This topology also
permits the re-use of meshes for configuration studies.

Exchange of flow information is accomplished using a domain connectivity function. with the donor-
receiver relationship established at each time step using an efficient technique.!® Although the cost of
re-establishing intergrid communication is problem dependent, the computational expense is generally
half of that used by the diagonalized flow solver. The initial location for the hole-cutters was specified
using a graphical interface,?0 after which the movement of the grids and hole cutters were updated
automatically. An example of the overset mesh topology used is shown in Fig. 2, which shows the
configuration at an instant in the separation process.

Kinematics and Rigid Body Dynamics

Although details of the six-DOF dynamical equations can be found elsewhere 2! briefly the rotational
dynamics is described by Euler’s equations of motion which aligns the ryz coordinates with the body
principal axes at the center of gravity. For instance, for a rotation 8 about an axis A. Euler parameters
can be specified as

] 6 nT
€ = [A;sin 3" /\gsing, /\;;sini, cos—2-



Fig. 2: Coarsened grids after release

These Euler parameters, integrated according to the rotational body dynamics, are updated and stored
for each grid.!% 19 Kinematic constraints can be imposed during the ejection process or for restricted-
DOF simulations. In addition, the assumption of rigid-body dynamics eliminates the need to store the
component grids for all time, since the Euler parameters may be used to compute grid attitude from
the initial position.

Rotating effectors were implemented by summing the relative commanded effector and body angular
velocities, w. Integration of w gives the proper effector attitude relative to the initial grid positions.
The hinge line location is updated according to the attitude of the body. Storage of the hinge line and
Euler parameters associated with each grid allows nesting of parent-child bodies to an arbitrary level
without modification to the grid communication and support software.

Pitch Attitude Control Law

The fourth-order system shown in Fig. 3 was used as the system model for both the two- and

u
Oclyrim Canard  Missile
Servo Dynamics
B¢ (:) ) 1|0
K 9 - —— - — T
@c + J_ A s+f 80 S
Commanded Amplifier

Pitch
Rate Gyro

KR"

Fig. 3: 2-D missile: Block diagram

three-dimensional missile cases. In Fig. 3 the plant and servo can be expanded as

] _ ds+e f= 1
5, asl+bs+c’ T
where the servo time constant was taken as 7 = 71—3 s. The plant coefficients were determined from

the governing equation: they are composed of geometric and flow information, as well as the stability
derivatives. The stability derivatives were determined from linearized supersonic airfoil theory in the
two-dimensional cases and from direct computation in three-dimensions. Pole placement techniques
and linearized system time response were used to determine the proportional. K,, and the rate gyro.
K, . sensitivities.



Results and Discussion

The method deseribed above was applied in two-dintensions to a perturbed one degree-of-freedom
case and a three degree-of-freedon cavity store separation proecess. The three-dimensional resules are
L progress.

One Degree-of-Freedom Simulation

In order to provide some measure of validation, a two-dimensional, 1-DOF simulation was imple-
mented at a flight altitide of 45,000 ft. Comparison of the linearized and the coupled nonlinear system
response for a small perturbation allowed assessment of the basic methodology.

Linearized Dynamics

The equation of motion, M, = Iyyé. after neglecting the pitch-damping term, is
My = ¢ {[(C1, Sd)c — (C),Sd)i]0 + (C;, Sdé).}

where the body was pinned at the location of the center of gravity for this analysis.
Expressing the system in a state variable representation, with £ = [6.6. 6, 6c]T, then the open loop
equation can be expressed as

0 1 0 0 0
. 0 0 1 0 0
Ir = 0 _g_ b d T+ 0 u
a a
0 0 0 —f g

where
t=Ax+ Bu; y=Cz; u=Qzxr+ Rr

The closed loop equation is expressed as

¢ = Ar + B[Qz + Rr] = [A + bQ)z + K, br

0 1 0 0

0 0 1 0

A+bQ= 0 _c _Q 4
_E}Ka —g(Ka+§Kr) _gKr _f

Kaob=1[0,0.0.(Ka + K)g]”

The state can be computed using Euler explicit integration
n+1 I n n n+1 n+1
z = At (A+bQ+E)m + Kobr'| iy =Cz

The gain levels. K, = 1.2 and K, = 0.06 s, were computed using conventional root locus methods.
These gains were input into a linearized one degree-of-freedom dynamics routine to verify implementa-
tion of the control law. The result of the linearized analysis is shown in Fig. 4. which shows a slightly
divergent envelope for the canard-fixed case, and damped behavior for the closed-loop system. Note
that a canard deflection limiter was applied to represent stalling of the airfoil.
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Fig. 4: Linearized 2-D missile: body orientation and canard deflection time histories for both uncontrolled
and controlled cases

Nonlinear Coupled Simulation

The control law developed above was also implemented into the code which coupled the RANS
equations with rigid-body dynamics. From Fig. 3, the control law can be expressed as

5, = % [K,,(oc 9 — Kb+ K,GC]

and integrated using Euler explicit integration

= 8 (k) K+ ] )

which can then be subjected to limit constraints. The result of the nonlinear solution shown in Fig. 5
for both canard-fixed and controlled cases. After convergence to a steady-state solution. an accuracy-
limited time step size of 46us was used, with a computational cost of five Cray Y-MP CPU hours.
Grid communication was approximately one-third of the overall CPU time. Figure 5 shows similar
behavior to the linearized cases. again with a modestly growing envelope for the canard-fixed case. and
damped oscillations for the controlled case. This comparison provides a degree of validation of the
implementation of the control law in the coupled code.

2-D Resonating Cavity

In order to establish confidence in the numerical method, a two-dimensional cavity computation
was undertaken to demonstrate and validate self-induced cavity resonance. Details of this and three-
dimensional cavity computations may be found elsewhere.”

The test conditions. specified to match experiment,?? were

My = 0.9, Rep = 1.47 x 105, L =8in.
Poo = 0.40 kg/m3, py =2.9 x 10* N/m?
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s wcavity lengrh by depthe LD, of 20 Chavacteristie inflow and ourfiow conditions were specitiod
along with astep size of At = 19705, Power spectra were computed nsing 8192 steps following 1he
dissipation of the initial transients.

Inspection of the computed cavity pressure history. shown in Fig. 6a. confirms the idealized foeedback
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L
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Fig. 6: 2-d cavity: (a) pressure history and (b) power spectra comparison

mechanism identified from Rossiter's experiments. Briefly, the cycle begins with the propagation of an
acoustic wave from the aft wall of the cavity to the forward bulkhead. Wave reflection from the forward
wall causes the shear layer to bow outwards, shedding vorticity. The deflected shear layer convects
downstream and induces another cycle. This coupling of the acoustic and vortical fields is quantified
by Rossiter's empirical model, given in Fig. 6b, which gives only feedback frequencies.

In the frequency domain, comparison of Rossiter's data to present results indicate agreement in
frequency at the peak magnitudes, as shown in Fig. 6b. Magnitudes are higher for the present case by
about 2 dB. which can be explained from dimensionality arguments. The solution was also found to
be insensitive to second-order dissipation levels within the range 0.3 to 0.5. Figure 6b also shows the
resonant modes predicted by Rossiter’'s equation, showing that K = 0.56 gives better prediction of the
higher modes. Finally. the vertical knife edge schlieren images of Fig. 7 show the qualitative agrecment
between computed and observed?3 radiation patterns.
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Fig. 7: Comparison of experimental and numerical schlieren images with knife edge vertical

2-D Controlled Store Separation

Using the control law developed for the 1-DOF simulation above, albeit with an arbitrarily chosen
. = 5° a 3-DOF simulation of a store separating from a cavity was implemented. The separation
began with the application of an 18000 N ejection force for 0.044 s, with corresponding acceleration
of about 20g, during which the controller was off and no angular velocity was imparted to the store.
The solution was initialized with the store fixed in carriage position. allowing damping of the starting
numerical transients. Following convergence of the cavity acoustic envelope. the same accuracy-limited
time step size of 46us was used. The time step size was chosen such that the streamwise Courant
number was about unity in the shear layer. This restriction is equivalent to allowing an acoustic wave
to propagate only one cell in a single step. Ten grids were used for this 1.3 x 10° point domain. The
result, shown in Figs. 8 and 9, shows that the nose of controlled store remains pointed away from the
parent body, while the canard-fixed store is pointed towards the parent 0.3 s after release. Sinee the
controlled store is commanded to point away from the parent. the separation is faster for the conr: Jlled
case than for the canard-fixed store. Inspection of the normal force history shows a component of abont
50 Hz. corresponding to the second stage of Rossiter's formula.?

3-D Missile Stability Derivatives

In order to determine the proper feedback gains. the stability derivatives of the missile must be
computed. For this 3-DOF simulation this inclides Cma.Crmy, o and Cpp . These parameters were
computed from four cases: using a nominal § = §. = 0. a constant. pitch attitude 8 = 0.04 rad. 6. = 0.
a constant deflection angle § = 0, 6. = 0.04rad, and a constant pitch rate § = 9 rad/s. Canard motion
was permitted by the 1L6 tn. nominal gap between the missile body and canard. This is a similar
arrangement to the actual missile, albeit without the connector pin in the numerical model. The force
and moment history was converged three orders of magnitude, approximately 2000 steps. on this 18
grid solution containing approximately 1.5 million points. Figure 10 shows the geometry used for this
portion of the study, along with coefficient of pressure, C,. contours.

3-D Cavity Store Separation

The geometry, shown in carriage position, can be seen in Fig. 11. The domain contains about 2.2
million points distributed in 25 grids. with the missile grids being re-used from the previous stability
derivative study. An example of the initialization of the cavity store separation problem is shown
in Fig. 12. This store-fixed simulation will be run approximately five characteristic times. until the
artificial starting transients have dissipated. after which ejection will begin. The ejection forces applied
to the store will be such that the velocity at the end of the 8 in. piston stroke was 30 ft/s normal to

11
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Fig. 8: 2-D controlled store separation: instantaneous Mach contours
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Fig. 10: 3-D missile: C, contours
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the cavity with a pitch-down vate of 1 rad/s. These rates are the nominal conditions used divine wind
tunnel testing,

Fig. 11: 3-D store separation: grids for missile in carriage

Conclusions

A pitch attitude control law was implemented in a coupled Navier-Stokes/rigid-body dynamics code.
Comparison of nonlinear with linearized results showed reasonable comparison for the perturbed case
with the controller active or off. Application of the control law to a two-dimensional. three-degree-of-
freedom cavity store separation revealed improved trajectory characteristics. The generalized coding of
aerodynamic effector kinematics in the coupled code will allow rapid implementation of existing control
laws. Sinunation of the coupled nonlinear aircraft trajectory can then be used to computationally
prototype the control system.

Note to the Reviewer

Computation of a three-dimensional canard-fixed store separating from a cavity is in progress and
will be compared to the experimental data of Dix and Dobson.® Comparison of the numerical and
experimental results will provide an additional measure of validation. After completion of the uncon-
trolled case. a simulation of the pitch-controlled case will commence. Determination of the feedback
gains for this three-dimensional simulation will require the computation of the stability derivatives.
which will also be accomplished via the Navier-Stokes equations. Assessment of the uncontrolled and
controlled cases will show if improved cavity store separation characteristics can be achieved via canard
effectors.
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