AIAA-93-3017

Unsteady Fluid and Optical Simulation of Transonic Aero-Windows

Christopher A. Atwood
MCAT Institute
NASA Ames Research Center
Moffett Field, CA 94035-1000

AIAA 24th Fluid Dynamics, Plasmadynamics, and Lasers Conference
July 6-9, 1993/Orlando, Florida
Unsteady Fluid and Optical Simulation of Transonic Aero-Windows

Christopher A. Atwood,∗
MCAT Institute, NASA Ames Research Center, Moffett Field, California 94035-1000

Abstract

The time-varying fluid and optical fields of several cavity configurations have been computed on over-set mesh systems using the Reynolds-averaged Navier-Stokes equations and geometric optics. Comparisons between numerical results and Airborne Optical Adjunct (AOA) flight data are made in two-dimensions for a quieted cavity geometry with two lip-blowing rates. In three-dimensions, two proposed aero-window locations for the Stratospheric Observatory For Infrared Astronomy (SOFIA) are discussed. The simulations indicate that convection of large shear layer structures across the aperture cause the blur circle diameter to be three times the diffraction-limited diameter in the near-infrared band.

Nomenclature

c speed of sound
dB decibel, $20 \log_{10} \langle N/m^2 \rangle$
f frequency
h enthalpy
I intensity
k wave number, 2π/λ
K ratio of convection by freestream speed
L characteristic length
m mass flow rate
M Mach number
MTF modulation transfer function
n index of refraction
OPD optical path difference
p instantaneous static pressure
q velocity magnitude or dynamic pressure
Re Reynolds number
St Strouhal number, $f_0 / (U_1 + U_2)$
SR Strehl ratio, $J_0 = \exp(-\Phi^2)$
t time

Introduction

The study of light propagating through an unsteady fluid field has important applications ranging from laser weaponry to astronomy platforms. Airborne housing of these systems provides mobility, maintenance, and performance advantages which, in combination, can be superior to land or space-based alternatives. However, prediction of the fluid and optical behavior of these airborne systems remains a difficult problem.

This report describes the progress of a computational approach for use in the design of transonic aero-windows. The prediction methodology has been driven by the design of the Stratospheric Observatory For Infrared Astronomy (SOFIA), the successor to the Kuiper Airborne Observatory (KAO), which will offer ten times the resolution of the KAO. Figure 1 depicts the SOFIA, which will have a 2.5 meter Cassegrain telescope mounted in a cavity of a Boeing 747SP. In order to numerically assess the safety and performance of this platform, extensive evaluation of the computational methods by comparison against experiment is

*Research Scientist, MCAT Institute. Member AIAA.
Copyright ©1993 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.S. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.
experimentally observed the effect of shear layer structures on the optical field. Tsal and Christiansen hypothesized that the effect of the vortical structures on optical field distortion can be resolved using cell sizes required to obtain an accurate flowfield solution. Towards this end, computed optical distortion levels are compared to flight or wind tunnel measurements for two- and three-dimensional quieted cavities.

Previous reports have described the method development for two-dimensional free shear layers, a backward-facing step, and a rectangular cavity. Comparison of the computed cavity case with Rossiter's data showed agreement in the dominant resonant peaks to within 5 dB. The computed and experimentally observed pressure loading trends were similar along the cavity walls. In three-dimensions, rectangular and treated quiet cavity solutions were computed and compared to experiment. Sound pressure levels along the cavity bulkheads for both the resonating and quieted geometries were found to be in agreement. However, although the power spectra of the experiment and computation were similar at low frequencies, numerical dissipation caused a rapid decrease in energy content at high frequencies.

Although the optical model has been described previously, this paper documents the extension of the model and provides new validation information. The following sections address the method used to predict the unsteady flows and the resultant optical distortion. Analysis of the aperture fluid and optical fields for AOA and SOFIA configurations are presented. For the two-dimensional AOA geometry, time-varying density fields and optical path lengths are shown. Short and long exposure far-field diffraction patterns are computed for a three-dimensional aft cavity SOFIA concept.

Approach

Solution of the aircraft and cavity flowfields were computed using models for the fluid field, the effect of turbulence, and the optical distortion. A diagonal scheme was used for the solution of the Reynolds-Averaged Navier-Stokes equations, implemented in an overset grid framework. Euler implicit time integration and second-order spatial differencing was used, with viscous impermeable wall conditions specified as no-slip, zero normal pressure gradient, and adiabatic. Information transfer across overset mesh boundaries was implemented using trilinear interpolation of the dependent variable vector, $Q = [\rho, \rho u, \rho v, \rho w, e]^T$. Algebraic turbulence models were used, implemented with a variable F_{max} cutoff for wall-bounded flows and
a shear layer model for the cavity aperture region. The flow solver cost was 13μS\$/cell/iteration on a single head of the Numerical Aerodynamic Simulator (NAS) Cray Y/MP-832.

Generally, a significant effort in grid generation is required before flow and optical analysis can begin. However, recent advances in algebraic and hyperbolic methods have enabled rapid discretization of complex geometries. Hyperbolic grid generation, which provides spacing and orthogonality control, was used for the wall-bounded regions, while algebraic grids were used in shear flow regions including plumes and wakes. This choice of topology allows simple specification of turbulent regions and also permits the recycling of meshes, useful for configuration changes such as cavity positioning.

The optical computations documented here use a refracting-ray method, reported on earlier, which is limited to studying the effects of the resolved large-scale structures. The method tessellates a structured grid into tetrahedra and uses piecewise mean indices of refraction for each of the tetrahedra. Indices of refraction were computed using $n = 1 + \frac{n - 1}{\rho \delta}$, where the Gladstone-Dale constant, δ, can be found using the Cauchy formula.

Assessment of the optical performance of an aero-window begins by specification of the ray initialization plane. Integration of the optical path length through the aero-window is then performed along the rays at specified time increments in both the streamwise, x, and crossflow, y, aperture directions. The resultant $OPD(t,x,y)$ can be used in a complex aperture function of the form $P = A e^{i\phi(t,x,y)}$. Assuming no loss in transmittance, then the wave amplitude A is unity in the aperture and zero elsewhere, while the phase of the wave is computed from $OPD(t,x,y) = \frac{\delta x}{2\pi}$. The autocorrelation of the complex aperture function, $P \ast P$, gives the far field diffraction pattern, computed using a two-dimensional Fourier transform. Time averaging successive short-period diffraction patterns gives a long exposure result. Integration of the intensity of this resultant long or short exposure diffraction pattern gives the area for a specified encircled energy level. From this area the equivalent blur-circle diameter due to the resolved fluid scales can be found. Inclusion of the effects of small-scale turbulence could be incorporated into the computation of long exposure blur circles by multiplication of the above modulation transfer function (MTF) with a turbulence MTF.

Results and Discussion

Aero-optical simulations of the U.S. Army Airborne Optical Adjunct (AOA) and the SOFIA configurations are discussed below. Information pertaining to the computation and analysis of the unsteady flowfields, including grid resolution and turbulence modeling, is given elsewhere.

2-D AOA Cavities

Data available from flight tests of the AOA, shown in Fig. 2, provides valuable validation information for the present simulations. These two-dimensional numerical simulations were used to determine if optical quieting methods, particularly aft ramp treatment and lip-blowing, could be accurately simulated. The flow about the geometry, depicted in Fig. 3, was computed in conjunction with two lip-blowing rates for the forward aperture only. The 100% lip-blowing rate case corresponded to a $\dot{m} = 0.42(\rho u)_\infty$. For the discussion below, computed high and low lip-blowing rates refer to 100% and 1% of this mass flow rate.

![Fig. 2: U.S. Army Airborne Optical Adjunct](image)

![Fig. 3: AOA case: instantaneous Mach contours](image)
which may be due to blockage in the cavity of the aircraft that was not computationally represented. The discrepancy at the upper aft portion of the shear layer appears to be due to blockage in the computational model.

Comparisons of pressure spectra at the aft ramp for the low lip-blowing rate are shown in Fig. 5. The computed spectra can be seen to be quantitatively and even qualitatively different from flight data. The computed result lies more than 15 dB below the data, and a peak in the low lip-blowing rate spectra is clearly computed, but is not seen in the flight data. The high lip-blowing rate spectra were similar to that shown in Fig. 5, albeit without the spectral peak at 340 Hz.

It has been noted from experimental evidence that the frequency of large structures in shear layers is independent of axial station and occurs at Strouhal number of $St = \frac{f \theta}{U_1 + U_2} = 0.024 \pm 0.003$, where θ is the local shear layer momentum thickness and f denotes frequency. This phenomena is corroborated by the reduction of other researchers' data whose results range from about $St = 0.02$ to 0.03 for incompressible shear layers.

Momentum thickness can be estimated using Göttler's solution, giving $\theta = 0.036 \frac{1}{\sqrt{\rho}} x$ for $\sigma_0 = 11.0$, which compares favorably to the empirically determined correlation of $\theta = 0.034 \frac{1}{\sqrt{\rho}} x$. Using this relationship along with a compressibility correction, the computed peak in the AOA solution at 340 Hz corresponds to a Strouhal number of 0.032. For comparison, peaks were found in SOFIA experiments and computations at approximately $St = 0.028$.

Based upon these experimental observations, it is hypothesized that large scale shear layer structures are being resolved. However, the lack of empirical support from the flight data pressure spectra is at odds with this conclusion. The comparison is further clouded by the reasonable comparison in $< \rho' >$ for the low lip-blowing rate shown in Fig. 6 and the presence of the organized structures shown in Fig. 7.

Fig. 4: AOA case: instantaneous Mach number contours and mean profiles at (a) low and (b) high lip-blowing rate

Fig. 5: AOA case: power spectra, low lip-blowing rate

Fig. 6: AOA case: $< \rho' >$ profiles with (a) low and (b) high lip-blowing
Three-dimensional effects are a possible explanation for the discrepancy between computation and flight. Rockwell31 noted that for sufficiently large Reynolds numbers three-dimensionality reduces coherence in the shear layer. This implies that an error in the assumption of planar flow for the small flow oscillations considered in these quieted cavity configurations. The evolution of streamwise-oriented vorticity interacting with the primary vortices would act to spread peaks in the reattachment ramp pressure spectra. As a final note, Fig. 5 also depicts data, the ordinate scaled by $(q_{x})_{flight}/(q_{x})_{tunnel}$ and the abscissa by $(c_{x}/L)_{flight}/(c_{x}/L)_{tunnel}$, obtained from an AOA wind tunnel test.32 The wind tunnel data shows that a small peak exists where expected according to the above analysis.

Using the computed unsteady density field, aero-optical effects can be determined. Figure 6 compares the computed and experimental profiles of the root mean square of the density fluctuations. Levels of $< \rho' \rho'>$ were computed over a time segment of about 90 ms in increments of 0.44 ms. Using the elapsed time for a particle to convect across the aperture at the mean shear layer speed as a characteristic time, then the optical computation was taken for about nine T_e. In Fig. 6, γ is the rake angle from horizontal, with the axis of rotation offset from the cupola centerline. Determination of the systematic error band on the experimental result is discussed below. The low lip-blowing rate result underpredicts the magnitude of the peak in $< \rho' \rho'>$, however the peak location is in fair agreement. The computed results for the high lip-blowing rate compare poorly to experiment, possibly due to inadequate grid resolution and/or the increased flow complexity of the merging shear layers. This type of active control is presently not a design option for the SOFIA, therefore further effort toward improvement of the high lip-blowing case was not warranted.

Further investigation of the low-blowing rate case revealed the presence of large convecting structures associated with the shear layer. Figure 7 shows a contour plot of ρ', depicting the growth and propagation of these shear layer structures. Also depicted in Fig. 7 is a schematic of the optical model, with the initial and final stations of the optical path integration given by r_0 and r_f. The large structures, associated with a 0.03 c_{x} vertical velocity component, are the primary contributors of the computed density fluctuations of the shear layer. The speed of the waves, as determined from Fig. 8, is 0.56 c_{x}, below the value of 0.66 c_{x} inferred by Rossiter15 for rectangular cutouts, yet above the 0.51 c_{x} determined analytically by Roscoe and Hankey.33

In 1990, Chew and Christiansen8 and Tsai and Christiansen6 deduced that a free shear layer model of a sinusoidal phase delay growing in x would produce results similar to those observed in both computation and experiment. Figure 8 displays behavior of a similar nature for the aero-window problem of concern here.

Comparisons of integrated aero-optical quantities, shown in Fig. 9, reveal slight overprediction for the low lip-blowing case and, given the $< \rho' \rho'>$ profiles, expected underprediction for the high lip-blowing rate case. Also shown in Fig. 9 are the $< OPD'>$ for two additional integration paths, shown to demonstrate that most of the optical distortion is caused by the shear layer.

The result for the integration path which extends from $r_0 = -8''$ to $r_f = 12''$ displays an increment in $< OPD'>$ of about $(7 \times 10^{-4})''$ from the $7''$ path length case which passes through the shear-layer alone. The path initialized above the shear layer, from $r_0 = 4''$ to $r_f = 12''$, shows a small $< OPD'>$ indicating
that $< \rho' >$ above the shear layer is small. Finally, the time mean optical path difference, OPD, can be seen to contribute curvature to the wavefronts as the light propagates through the shear layer. The optical clarity of the shear layer was determined using a $\beta = 2.584 \times 10^{-4}$, matching the value which was used to reduce the experimental data.

The analytic result for the $< \text{OPD'} >$, which goes like x, is found from

$$
\Phi = \frac{2 \pi < \text{OPD'} >}{\lambda} = \frac{2k^2}{a} \int_{L_{50n,m}}^{L_{50n,m}} \left(\frac{\partial n}{\partial y} \right) dy
$$

Derivation of the model, which utilizes time-mean quantities to determine $< \text{OPD'} >$, is given by Bogdanoff. This analytic result assumes an index-matched shear layer with a sinusoidal n profile, $n(y) = n_{\max} \sin \left(\frac{2\pi y}{2L_{50n,m}} \right)$. The constants, $k^2 = 0.0091$ and $L_{50n,m} \approx 1.31\delta_c = 1.31(0.18r[m])$, are empirical relations. The virtual origin of the shear layer is placed at $x = 0''$ to obtain this analytic result. As shown in Fig. 9, the analytic gradient in $< \text{OPD'} >$ is in good agreement with flight data.

Reduction of Experimental Data

The reduction of the data obtained from experiment is noted here to delineate the approximations used and estimate systematic error bounds in the optical path distortion levels. Values of ρ' are computed from assumptions of quasi-steady flow:

$$
\Phi = c_p T \left(1 + \frac{\gamma - 1}{2} M^2 \right)
$$

Differentiation with respect to t gives

$$
RT' = \frac{\rho p'}{\rho^2} + uu' \frac{\gamma - 1}{\gamma}
$$

Using $(\rho u)' = \rho u' + \rho u$ then

$$
T' \frac{\rho'}{\rho} = \frac{1}{(\gamma - 1)M^2 + 1} \left(\frac{\rho u'}{\rho u} \right)^{-1}
$$

Mean Mach number and density profiles are determined from isentropic relations, while $\left(\frac{\rho u'}{\rho u} \right)^{1/2}$ is proportional to the voltage fluctuation, $E_{i/q}$, obtained from hot film probes. The optical path disturbance is then found from

$$
(\text{OPD'})^2 = 2 \left(\frac{\beta}{\rho_{STP}} \right)^2 \int_0^L < \rho' >^2 t, dr
$$

where $\frac{L}{T}$ is the turbulent eddy size relative to the shear layer width, determined from cross correlation data to be typically about 15%.

The few available independent measurements indicate that pressure fluctuations of about 2% of freestream static pressure occur in the shear layer spanning the aperture of a quieted cavity geometry. In fact, Hahn reported pressure fluctuations of 8% from shear layer rake measurements, however these include the dynamic pressure component normal to the orifice as well. Pressure fluctuation levels can also be inferred from sound pressure levels in the cavity, observed to be at least 130 dB for the AOA case. Shear layer total temperature fluctuations of about 1% have also been reported for this Mach regime. The present low lip-blowing computation found a $< \rho' > \approx 1\%$ and
a $< T'_r > \approx 0.8\%$ in the shear layer. The assumption of $< p'_r >, < T'_r > \approx 0$ in a shear layer is therefore questionable, and is used to estimate systematic experimental error bounds.

The determination of the error in $< p'_r >$ due to background noise levels begins by assuming the passage of a compression wave parallel to the static pressure port in the wake rake. Normal reflection of the wave would impart a larger deviation p'_r as computed by Eq. 1. Utilizing Göttler's free shear layer solution to provide $u(r)$, assuming a cavity temperature recovery factor of unity, and holding mean static pressure constant through the layer, then $p(r)$ is defined. The sensitivities of $\frac{\partial p'_r}{\partial p'_r}$ and $\frac{\partial p'_r}{\partial T'_r}$ are $\pm \frac{1}{\gamma - 1} M^2$ and $\pm \frac{1}{\gamma - 1} M^2 / 2$, respectively. Using a compression or rarefaction wave of strength $< p'_r >$ through the shear layer, then local values of p'_r due to wave passage are defined. This value of p'_r provides the error bound about the value obtained from Eq. 1, which assumes negligible $< p'_r >$ and $< T'_r >$. Taking shear layer pressure fluctuation levels corresponding to 135 dB and a velocity ratio $r = 0.1$, then the systematic error in the density fluctuations is 0.13% at the shear layer center. Figure 6 shows the resultant systematic error bars in $< p'_r >$.

From Eq. 2 the value of $< p'_r >$ is linearly proportional to $< \text{OPD}' >$. The error in $< \text{OPD}' >$ can be found by using a conservative within-system error of 0.05% in $\frac{\partial p'_r}{\partial p'_r}$ gleaned from Fig. 6, plus the systematic error from the above analysis. The resultant error bar plotted in Fig. 9.

Forward Cavity SOFIA

Wind tunnel tests, completed in 1990, allowed validation of cavity acoustic response and optical characteristics. The cavity environment results are summarized in Fig. 10 for both resonant and quieted configurations.\(^1\)\(^3\) Aerodynamic measurements in the shear layer were used to infer optical quantities for the quieted cavity, configuration 100.

Following computation of the unsteady flow, the optics code was applied to the computed density field obtained for configuration 100 from $t = 0$ to 7.8 ms. Ten rays were propagated through 110 instantaneous density fields in time intervals of $\Delta t = 70.6 \mu$s. The optical measurement was taken for about five T_c, again using the elapsed time for a shear layer structure to convect across the aperture as the characteristic time. The forward cavity SOFIA results presented here are for a computational plane at approximately the cross flow center of the aperture, which will provide only a streamwise variation in optical properties. The numerical results are presented compared to previous analysis\(^3\)\(^4\) and experiment\(^*\)\(^6\) in which shear layer aerodynamic measurements were used to infer distortion.

Comparison of experimental and numerical density fluctuations are shown in Fig. 11, where $< p'_r >$ can be seen to be severely underpredicted. Although peaks in the density fluctuations were computed, the highly-ordered shear layer structures similar to those found in the AOA study were not observed. Differences may be attributable to grid coarseness or within-system measurement errors.

![Fig. 10: Forward cavity SOFIA cases: Comparison of sound pressure levels](image)

![Fig. 11: Configuration 100: density fluctuation at cross-flow center of aperture](image)

The optical wavefront distortion through the configuration 100 aero-window is summarized in Fig. 12. Figure 12a shows that the distortion model applied through the shear layer alone underpredicts the data determined analytically and experimentally. However, the computed trend is generally consistent with the data. At the streamwise center of the aperture, the aerodynamically inferred $< \text{OPD}' >$ at two additional
spanwise locations are shown. These points provide an estimate of the crossflow variation in experimental distortion levels.

Figure 12: Configuration 100: comparison of wavefront distortion

Figure 12b depicts computed $<OPD'>$ for ray propagation originating below the secondary mirror, $r_0 = -3.7''$, and above the shear layer, $r_0 = 2.3''$. Comparison of the computed results show an increment in $<OPD'>$ below the secondary mirror. This distortion increment appears to be caused by a jet of re-entrant fluid originating from the shear layer impinging on the aft ramp. Finally, Fig. 12c shows that curvature is imparted to the mean optical field. The dip in the fluctuating and mean OPD levels at $x = 42''$ is caused by the presence of the secondary mirror, in which the index of refraction, n, was fixed at unity.

Aft Cavity SOFIA

Forward placement of the telescope in a favorable pressure gradient region has an advantage in terms of an optically thin boundary layer. However, the fuselage moldline and structural complexities forward of the wing present considerable manufacturing difficulties. An alternative site for the telescope aft of the wing reduces the modification costs and permits the use of a larger usable cavity volume. However, an aft cavity site has potential problems of scattered light emitted from engines and plumes, an optically thick boundary-layer, unknown cavity response, and possibly poor empennage flow behavior at off-design conditions.

Figure 13 depicts the simplified geometry used to address some of these concerns: horizontal and vertical stabilizer geometry was unavailable for this simulation. Details of this flight condition simulation are available elsewhere.

The acoustic response of the aft cavity is compared to scaled data from the forward cavity experiment in Fig. 14. The computed result is taken from a location on the aft ramp, while the experiment is from a location within the cavity. The agreement of spectra is reasonable to about 100 Hz, above which grid coarseness dissipates energy rapidly. Figure 14 shows peaks at 60 and 110 Hz, the latter corresponding to a Strouhal number of 0.028.

During the aft cavity SOFIA computation the entire aperture density field was saved in increments of
Using this density field, propagation of a plane wave through the aperture revealed variations in the wavefront distortion, as shown in Fig. 15. These ordered variations in OPD, indicative of shear layer structures in the aperture, impact the aft ramp at a frequency of 110 Hz, giving a $St = 0.028$. Figure 15 shows maximum distortions of about one wavelength, $\pm \lambda_D$, with a resultant maximum $\langle \text{OPD} \rangle$ of approximately $0.7 \lambda_D$. Computation of the $\text{OPD}(t, x, y)$ was performed for a 64×64 array of rays normal to the aperture and initialized just above the secondary mirror. The optical integration was performed over $8 T_c$.

Using these phase distortion levels, far field diffraction patterns were then computed. Figure 16 depicts the diffraction-limited Airy pattern for reference, and both instantaneous and time-averaged exposures. The instantaneous exposure pattern shows some evidence of speckle, with a large reduction in central peak intensity. This spreading of energy is manifested in the computed Strehl ratio of 0.34.

Finally, Fig. 17 shows that the large scale structures in the shear layer cause the equivalent 80% blur circle to be three times the diameter of the diffraction-limited case. However, as can be seen in Fig. 16, the blurring in the streamwise direction is worse than in the crossflow direction. Note that the because the small scale fluid motion is modelled when using the Reynolds-averaged Navier-Stokes equations, the computed blur circle is much smaller than actually observed.39

Fig. 15: Aft SOFIA case: Sample wavefront distortion history

Fig. 16: Aft SOFIA case: Far field diffraction patterns

Fig. 17: Aft SOFIA case: Diffraction-limited Airy pattern and finite exposure patterns.
Conclusions

Computations of quieted cavity configurations have shown convection of large scale flow structures across the aperture. The shedding frequency of these structures compare reasonably well with experimentally determined shear layer Strouhal numbers. The computed results indicate that three-dimensional effects on the shear layer spanning a quieted cavity can be significant. The differences in two- and three-dimensional results are manifested in the spectra of the pressure loads and in the magnitude of the optical wavefront distortion. Since the primary contributors to the computed OPD were the large scale structures, computations of the Strehl ratio were found to be reasonable. However, because the small scale fluid motion is modelled, the blur circle diameter is significantly underpredicted.

Further improvements to the prediction of optical performance may be found from investigation of shear regions with direct Navier-Stokes methods or use of a turbulence MTF. Finally, although low Reynolds and Mach number number experiments show large structure formation, direct OPD measurements at realistic conditions would be useful for validation of numerical aero-optical studies of this type.

Acknowledgements

This investigation was supported by grant NCC-2-677. Special thanks is due to Dr. E.W. Dunham for insightful comments regarding seeing and optical diffraction.

References

Dunham, E.W., Private communication, NASA/ARC.