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SUMMARY

The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial
capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid
level measurement errors were found to occur due to the changes in the fluids dielectric constants which
develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level
measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured
fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated
based on the reported calibration errors of the temperature and pressure measurement systems.
Experimental liquid nitrogen (LN,) and liquid hydrogen (LH,) level measurements were obtained using
the calibrated capacitance probe equations and also by the dielectric constant correction factor method.
The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid
level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected
liquid levels agreed within 0.5% of the temperature profile estimated liquid level. The uncorrected
dielectric constant capacitance liquid level measurements deviated from the temperature profile level by
more than 5%. This paper identifies the magnitude of liquid level measurement error that can occur for
LN, and LH, fluids due to temperature and pressure effects on the dielectric constants over the tank
storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using
dielectric constant correction factors based on fluid temperature and pressure measurements is derived.
The improved accuracy by use of the correction factors is experimentally verified by comparing liquid
levels derived from fluid temperature profiles.

INTRODUCTION

The Cryogenic Fluids Systems Branch of the Space Propulsion Technology Division located at NASA
Lewis Research Center is involved in conducting research in the areas of storage, acquisition and transfer
of cryogenic fluids. Precise determination of liquid level during tank fill and boil off tests is often required
to determine the mass of fluid within a container and the rate of liquid level change as a function of time
and heat input.

The measurement of liquid level generally utilizes the difference in physical properties between the
vapor and liquid fluids!. Differences in gaseous and liquid fluid properties such as thermal conductivity
(thermal level sensors), fluid density (hydraulic head pressure transducers), and dielectric constants
(capacitance probes) are commonly used for liquid level determination for cryogenic liquids.



Capacitance probes are used at NASA Lewis Research Center to measure the levels of liquid nitrogen
(LN,) and liquid hydrogen (LH,) in the various testing tanksZ. The probes can operate at the required
cryogenic temperatures, have no moving parts, and are specified to have reasonable inaccuracy (+1%) of
span over a wide operating temperature range. The capacitance probe principle of operation is based on
the change in capacitance that occurs as liquid displaces the vapor in the annulus of the probe.

Liquid level point sensors are installed on a rake which is attached to the capacitance probe and
facilitate the probe calibration. The point sensors are carefully positioned on the rake at the desired
distances and are used to indicate when the fluid is at the desired zero and 100% levels. The capacitance
probe is calibrated by filling the tank liquid level to the desired zero level and adjusting the probes signal
conditioner for a 4 mA output. The liquid level is raised to the desired 100% fill level and the signal
conditioner is set for a 20 mA output. The current output of the capacitance probe signal conditioner will
then output a current level proportional to the liquid level over the calibrated range. The inaccuracy of
the liquid level measurement is dependant on the signal conditioner error, data acquisition error, and the
error in setting the initial zero and full scale levels. The largest and most important errors will occur if
the fluids temperatures and pressures change from their values that existed when the probe was initially
calibrated.

Theoretical analysis of the change in dielectric constants and probe capacitance due to temperature and
pressure changes that could occur over the operational range of cryogenic tanks showed that significant
liquid level measurement errors would occur. Correcting for the dielectric constant change by monitoring
the temperature and pressure of the fluid would minimize the error in the level measurement. Uncertainty
in the dielectric corrected capacitance liquid level measurement will still exist due to the uncertainty in
the temperature and pressure measurements. The magnitude of the level measurement uncertainty for
LH, and LN, fluids was investigated using the specified inaccuracy ratings of the temperature and
pressure measurement systems. Actual liquid level measurement results were obtained using uncorrected
and dielectric constant corrected capacitance probe data. The indicated liquid levels were compared with
temperature/liquid level profiles obtained from a rake of silicon diode temperature sensors which were
spaced approximately 0.3 inches apart. The liquid level location was estimated to be between the
temperature sensor locations which indicated temperatures below and above the theoretical saturation
temperature of the fluid. The capacitance probe dielectric constant corrected liquid level results correlated
with the temperature profile results and confirmed the importance of temperature and pressure
corrections for accurate liquid level measurements.

NOMENCLATURE

a = inner tube radius of coaxial capacitance probe (11/32 inch).
b = outer tube radius of coaxial capacitance probe (1/2 inch).
B, = bias error limit of capacitance measurement circuitry.

B_, = bias error limit of relative permittivity of liquid.

€l
B_. = bias error limit of relative permittivity of vapor.

BgL = bias error limit of liquid level height.

By = bias error limit of temperature measurement.

Bp = bias error limit of pressure measurement.

C = capacitance

cal = subscript denoting a calibration condition.

F = faradﬁ unit of measure of capacitance equal to one coulomb per volt.
pF = 10°!2 farads.

G; = gain factor.



GH, = gaseous hydrogen.
GN, = gaseous nitrogen.
H, = height of liquid in capacitance probe (inch).
H, = total height of liquid and vapor in capacitance probe (inch).
= height of vapor in capacitance probe (inch).
K = 2x¢_/In(b/a) = 3.77 pF /inch.
LH, = liquid hydrogen.
LN, = liquid nitrogen.
P = pressure (psia).
P, = saturation pressure (psia).
T = temperature (rankine, R).
T, = saturation temperature (R).
Z; = Zero correction factor.
€] = dielectric constant or relative permittivity of liquid.
¢, = Permittivity of free space ( 2.249*10°1 farads/inch).
€, = dielectric constant or relative permittivity of vapor.
U = uncertainty, example UH; = uncertainty in liquid height.
0H,/0C = change in liquid height with respect to change in capacitance.
OH,/¢;, = change in liquid height with respect to liquid relative permittivity.
0H,/dey; = change in liquid height with respect to vapor relative permittivity change.

BACKGROUND

CAPACITANCE PROBE PRINCIPLE OF OPERATION: The liquid level is determined from the
change in capacitance of a coaxial capacitor probe as the dielectric in the probes annulus changes from a
vapor to a liquid. Equation (1a) describes the capacitance to liquid - vapor relationship of a coaxial
capacitor with a flat horizontal liquid - vapor interface®.

_ g P,y CTEE)y 1
Coar = B 0) Hrca In(b/a) (1)
L T ; 1b
K = In(hia) 3.77pFlinch (1b)
C.=KH_fe-e), +KHge,, (1c)

Equation (1c), obtained by substituting equation (1b) and the relationship Hy = (Hr - H;) into
equation (1a), shows that the capacitance change is linearly proportional to the liquid level height. The
proportionality constant is dependant on the difference in dielectric constants or relative permittivities
between the liquid and vapor fluids. The zero (liquid level) value of equation (1c) is proportional to the
product of the vapors relative permittivity and the total probe length.

Solving equation (1c) for liquid level height yields equation (2).
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Calibration of the capacitance probe consists of ensuring that the tank liquid level is completely below
the probe or at the desired probe zero level. The capacitance probe signal conditioner is adjusted for a
zero level output of 4 mA. The tank is next filled to the desired 100% liquid level and the signal
conditioner is adjusted for a 100% span output of 20 mA. Liquid level point sensors are mounted along
side the capacitance probe at the desired levels to facilitate the calibration operation.

ANALYSIS

VARIABLE DETERMINISTIC ERRORS: During the course of an experiment the fluid temperature
and pressure will often vary from the initial calibration conditions. The fluid densities and relative
permittivities will change from their calibration values and liquid level measurement errors will occur in
addition to the bias and random errors that exist. This type of error that changes in a non-random
manner during the coarse of an experiment was described by Moffat as a “variable but deterministic”
error-.

The mathematical relationship between the liquid height indicated by the capacitance probes
calibration equation and the actual liquid level height was investigated. Equation (3) represents the
capacitance of the probe that occurs at conditions different from calibration and is denoted by the
subscript “a” for actual. Substituting the right side of equation (3) for C_, in calibration equation (2)
results in the capacitance to liquid height interpolation equation (4a). The actual liquid height is acquired
by rearranging (4a) to yield (4b). The difference between the calibration equation output liquid height
and the actual correct liquid height is the variable deterministic error.

C, =K H,(e-€), +KHg, (3)
( I v)a w em[) .
H H _— 4
feal = (et‘ev)oal ‘(ee) (ta)
~ (€-€).u _ (e —em,) 4b
o = B teed, ~ M e, )

CALIBRATION EQUATION CORRECTION FACTORS: The liquid height can be expressed as a
ratio (R,) of total probe length by dividing both sides of (4b) by the total probe height (H,) as shown in
equation (5). The ratio of liquid height indicated by the calibration equation to total probe length is
designated R,
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Equation (5) reveals the necessary correction factors required to convert the indicated liquid level height

into the actual liquid level. The ratio (¢ - €,) /(€] - €), represents the gain factor and is denoted Gy

This factor represents the amount by which the calibration equation result must be attenuated or

amplified. The ratio (e, - €,.,1)/(€; - €,), represents the zero shift factor and represents the length (ratio

times full scale height) that the probe output would be in error at an actual zero level. The zero factor

~will be denoted as Z;. The corrected liquid level would be determined from the indicated liquid level by
equation (6). ~

H, = (R, G, - Z)H, ' (6)

THEORETICAL VARIABLE ERROR RANGE FOR LH, AND LN, TEST TANKS: Tables 1a
and 1b list the saturation state relative permittivity values for LH, and LN, fluids at 5 psia, 14.7 psia,
and 40 psia. This pressure range represents the operational range of the ground based cryogen testing
tanks. The relative permittivity values were acquired from thermodynamic fluid property tables®®. The
liquid level errors that could occur over the tank operational ranges were estimated by substituting the
permittivity values of the fluids for the tank operating limits of temperature and pressure along with
assumed values of actual liquid height ratios (R,) into equation (5) and solving for R ;. R, represents
the theoretical liquid height ratio that would be indicated by the capacitance liquid level measurement
system previously calibrated at 14.7 psia saturated conditions. Tables 2a and 2b list the ratio results for
the fluids. Figure 1 is a graph of the LH, and LN, level measurement variable errors for the theoretical
capacitance probe calibrated at 14.7 psia when operated at 5 psia or 40 psia saturation conditions. The
indicated errors are due to the relative permittivity changes and do not include the bias and random
errors of measurement that would also exist.

The analysis show that significant liquid level measurement errors would occur due to changes in the
liquid and gaseous relative permittivities. Correcting for the relative permittivity changes by monitoring
the temperature and pressure of the fluid should minimize the error in the level measurement.
Uncertainty in the permittivity corrected capacitance liquid level measurement will still exist due to the
uncertainty in the temperature, pressure, and capacitance measurement systems. The uncertainty of the
relative permittivity corrected liquid level measurement system was investigated based on the existing
temperature, pressure, and capacitance liquid level measurement systems.

CAPACITANCE LIQUID LEVEL MEASUREMENT UNCERTAINTY ANALYSIS: The partial
derivative sensitivity coefficients of the relative permittivity corrected liquid level height (H,,) were
computed with respect to the variables of equation (4b). The sensitivity coefficients were used along with
the individual component bias error limit (B,) to compute the Toot-sum-square (RSS) measurement
uncertainty according to equation (7)7. Random error components were considered insignificant and were
not included is this study. ' ' ' -
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RELATIVE PERMITTIVITY BIAS ERROR LIMIT ESTIMATES: The bias error limit of the vapor
(Be,) and liquid (Be)) relative permittivity values were estimated using equations (8a) and (8b).

The sensitivity coefficients were estimated by preparing graphs in which the reported values of
dielectric constants were plotted as functions of temperature for constant pressure conditions and as
functions of pressure at constant temperature conditions. Linear regression analysis of the data was
performed and first order equations were found which mathematically described the functions. The partial
derivatives or sensitivity coefficients of the equations were determined over the operating range of the
cryogenic tank for both LH, and LN, fluids. The third uncertainty term in equations 8a and 8b accounts

for the bias error limit of the dlelectnc constants listed in the thermodynamic fluid property tables®®

oe
Be, = \| (B + (o ®ig} + Ble, DY (8)

+ (Ble,~1) (8b)

Be (ae"B >+ (
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INFLUENCE OF TEMPERATURE AND PRESSURE ON ¢33, AND ¢;y,: Figures 2 and 3 are graphs
of the constant temperature LH, (36 R) and LN, (135 R) relative permittivity values as functions of
pressure. The linear equations describing the functions are listed on the figures. The liquid relative
permittivity values increased slightly with pressure. The small slopes (sensitivity coefficients) indicate the
near incompressibility of the liquids.

Graphs of 51:0) and €y, relative permittivities as functions of temperature for fixed pressures of 14.696
psia and 40 psia are shown in figures 4 and 5. The values tended to be inversely proportional to
temperature.

INFLUENCE OF TEMPERATURE AND PRESSURE ON ¢ g, AND ¢ y,: Figures 6 and 7 show
graphs of the constant temperature € 5, and €y, constants as a function of pressure for the listed
temperatures. The (€ 3, -1) and (e y, - 1) constants as a function of (1/Temp) for fixed pressures of
5.0 psia, 14.696 psia and 40 psia are shown in figures #8 and #9. The temperature range evaluated
covers the possible temperature gradient found in the cryogenic test tanks.

Table 3 is a summary listing of the linear regression analysis results for the various operating
conditions. The maximum derivative values (sensitivity factors) for the range of pressure and temperature
evaluated are indicated.



The liquid relative permittivities were far more sensitive to temperature change than pressure change as
indicated by the variable temperature slopes values being 100 times greater than the variable pressure
results.

The vapor relative permittivity values increased linearly with pressure and inversely with temperature.
The H, vapor temperature and pressure sensitivity factors were of similar magnitude so both would have
about equal influence on their error contributions. The GN, vapor relative permittivity was more
sensitive to pressure change (factor of 4) than temperature change.

MAXIMUM RELATIVE PERMITTIVITY BIAS ERROR LIMITS: The inaccuracy in the silicon
diode temperature and 350 ohm strain gage pressure measurement systems used on the experiment
cryogenic tank were reported to be +0.9 R and + 0.2 psia and were assumed to be bias errors. The
product of the temperature and pressure errors and the maximum relative permittivity sensitivity factors
were used in (8a) and (8b) to determine the RSS bias error limits Be) and Be, of the liquid and vapor
relative permittivities for H, (9a) & (10a) and N, (9b) & (10b). The uncertainty in the NIST table values
of (¢ - 1) were assumed to be accurate within 10.1%. The worse case values of (¢ - 1) used were 4.5%10™
and 2.4*10 for LN, and LH,, 6*10° and 1*10"® were used for GN, and GH,.

Be, = J(—Z%BT)’ + (%B,)z + (Ble 1 (8a)
Bey = J(21x10%0.9) + ((3.2x1070.2)2 + (24xI07%? = 1.9x107 (9a)
Be,, = {(1.5x1050.9) + (8.6x10°)02) + (4.5x107%? = 1.4x107° (9b)
Be, - J(%’L;B,)Z . (%f;" P+ (Ble,~1)Y (8b)
Be,, = V((2.4x107%09)? + ((2.6x1040.2)* + (1.0x107%) = 2.2x107* (10a)
B’.sv,,2 = J((3.6x10750.97 + ((1.5x10740.2)? + (6.0x107%)* = 4.4x10°° (10b)

CAPACITANCE PROBE AND DATA ACQUISITION BIAS ERROR ESTIMATES: The
manufacturer listed inaccuracy of the calibrated capacitance probe signal conditioning system was 1% of
span. This error translates directly into an error of 0.2 inches for a 20 inch fluid level span. This error
component was denoted as Byy . The data acquisition system used to record the capacitance probe
output had a listed inaccuracy rating of 0.05% of range which was considered insignificant.



BIAS ERROR ESTIMATE OF THE 100% LIQUID FILL LEVEL HEIGHT (H,): During the
capacitance probe calibration, the liquid level of the tank would be raised to the desired 100% fill level.
This height was determined by the position and response of a silicon diode temperature sensor. The
estimated error in the position of the sensor was assumed to be 40.15 inch. This bias error was identified
as By,.

LIQUID LEVEL MEASUREMENT UNCERTAINTY ANALYSIS SENSITIVITY COEFFICIENTS:
The partial derivative of the relative permittivity corrected liquid level measurement with respect to the
variables of equation (4b) are listed as equations (11) through (16). These equations are required to
determine the influence of the variables bias error limits on the overall liquid level measurement
inaccuracy.

oH, -H/(e,-e)+H(e,"€,)

11

oey, (ela—e\»)z
H,_ B, a2

de, (e,-e,)
3H, H(e,e)-Hfe,e) H, | a3)

0€, (6,760’ (a0 '

oH,  -H,H, (14

aew (eh—ew)
H,_€e (15)

OH, (e,-¢,)
Oy e (16)

oH, (e,-e,)

EXPERIMENTAL TEST PROCEDURES AND MEASUREMENT UNCERTAINTIES

CALIBRATION CONDITIONS AND CAPACITANCE UNCERTAINTY: Capacitance values for a
20 inch coaxial capacitance probe used in cryogenic tank pressurization experiments at NASA Lewis
Research Center were estimated using equation (1) with the measured fluid properties listed in Table 4.
Large temperature gradients existed in the vapor region of the tank (ullage). The effective relative
permittivity of the vapor was estimated using the average vapor temperature and the tank pressure. The
average vapor temperature was obtained by integrating the vapor temperature profile over the height of
the vapor region (ullage) using equation (17). The relative permittivity was acquired using GASPLUSS.
Situations in which significant temperature gradients exist through the liquid would also require a similar
analysis.
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Table 5 and Table 6 are summary tables which list the theoretical magnitude of the various sensitivity
coefficients and their bias error products as a function of capacitance probe indicated liquid level. The
total root sum square (RSS) uncertainty of the individual bias error limits is also listed and represents
the uncertainty in the liquid level measurement after correcting for temperature and pressure effects on
the relative permittivities. Figure 10a and 10b show the magnitude of the liquid level bias error
components expressed as a percentage of full scale reading due to the relative permittivity and
capacitance signal conditioning errors for LH, and LN, fluids. The RSS combination of the individual
errors is also indicated on the figures. The results show that the error components due to the temperature
and pressure estimated relative permittivities is insignificant for LN, and contributes less than 0.1 inch
to the RSS error for LH,.

EXPERIMENTAL VS THEORETICAL LIQUID LEVEL MEASUREMENT ERROR RESULTS:
Experimental data showing the inaccuracies of uncorrected liquid level measurements were obtained from
cryogenic tank pressurization experimentsg. The capacitance probe was originally calibrated at the
conditions listed in Table 4. A rake of silicon diode temperature sensors was attached to the capacitance
probe. The temperature sensors were spaced every 0.3 inches along the length of the capacitance probe.
Figure (11) and figure (12) show the temperature profiles obtained with saturated LN, and LH, fluids.
Test results showed that the temperature indicated by the sensors immersed in liquid would be nearly
constant while the temperatures of the sensors in vapor would increase rapidly with distance from the
liquid-vapor interface. Theoretically the interface exists at the saturation temperature (T,) of the tank
ullage pressure. Temperatures above T, are in the vapor while temperatures below T, are in the liquid.
The liquid level interface was estimated to be located at the average height value of the two temperature
sensors which indicated temperatures above and below the saturation temperature. Since the temperature
sensors were spaced approximately 0.3 inches apart, the uncertainty of this liquid level measurement was
assumed to be 40.15 inches. The capacitance probe liquid level was also recorded and a relative
permittivity corrected level was calculated based on the measured temperatures and pressures.

RESULTS

Table 7 lists the measured experimental conditions for the tests along with the dielectric correction
factors. The liquid levels indicated by the capacitance probe calibration equation, the relative
permittivity corrected equations, and the temperature profile methods are listed in Table 8. The
experimental results showed that the uncorrected capacitance probe liquid level measurements deviated
from the temperature profile derived liquid levels by approximately 5 times the uncertainty band of the
temperature profile liquid level measurement system. Correcting for the relative permittivity of the fluids
based on the measured fluids temperatures and pressures significantly improved the agreement between
the capacitance probe and temperature profile liquid level measurements. The deviation between the
temperature profile indicated levels and the relative permittivity corrected capacitance probe levels were
less than 0.1 inches which is within the uncertainty bands of the measurement and calibration systems.

SUMIV[ARY AND CONCLUSIONS



Significant errors can result in the liquid level measurement of LH, and LN, due to changes in the
fluids relative permittivity from their initial calibration condition values. The liquid level inaccuracy can
be improved by measuring the fluids temperature and pressure and compensating for the dielectric
constant changes. Correction factors for span and zero can be derived which allow the output of the
capacitance probe to be corrected for the permittivity changes.

A liquid level measurement error analysis was performed over the cryogenic fluid tanks operating ranges
of pressure and temperature. First order linear equations were found which described the temperature and
pressure effects on the cryogenic fluids liquid and vapor dielectric constants. The slopes of the equations
were used along with the estimated errors in the pressure and temperature measurements to determine
the overall liquid level measurement uncertainty. The analysis showed that liquid level measurements
theoretically could be made with an uncertainty of less than 1.5% full scale (FS) for LH, and 1.1% FS
for LN, with existing capacitance measurement systems. This error magnitude is based on making
corrections to the capacitance probe calibration equation based on temperature and pressure effects on
the dielectric constants of both the liquid and vapor phases. The analysis was based on temperature
measurement accuracy of +0.9 R and pressure measurement accuracy of +0.2 psia. The primary error
limitation is reduced to the inaccuracy of the capacitance signal conditioning system which was listed as
1% of span.

Actual experimental liquid level results measured by the capacitance probe were compared with the
liquid level height estimated from the tanks fluid temperature profile. The difference between the
calibrated capacitance probe liquid leve]l measurement and the liquid level determined from the
temperature profiles agreed favorably with the theoretical dielectric constant corrected error value based
on the measured temperature and pressure changes from calibration conditions.
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TABLE 1A
SATURATED LH2 DIELECTRIC CONSTANTS AND RELATIONSHIPS
FOR GROUND BASED TESTING OPERATIONAL LIMITS

pSia € €, Gf 2r

5.0 1.24121 1.00154 .54188 -.01043

14,7 1.22978 1.00404 1.0 0.0

40.0 1.2123 1.01024 1.11719 0.030684
TABLE 1B

SATURATED LN2 DIELECTRIC CONSTANTS AND RELATIONSHIPS
FOR GROUND BASED TESTING OPERATIONAL LIMITS

psia o § € G, Z

5.0 1.45263 1.0008 .95049 -.00303

14.7 1.43163 1.00217 1.0 0.0

40.0 1.40405 1.00551 1.07758 0.008381

TABLE 2A
LH, CALIBRATION EQUATION LIQUID LEVEL RATIO ERRORS

R, R, Spsia Error R. 40psia Error
%ES %FS

0 -0.011 -1.10 0.027 2.7

0.1 0.095 -0.50 0.117 1.7

0.2 0.2013 0.13 0.2065 -0.65

0.3 0.3074 0.74 0.296 -0.40

0.4 0.4136 1.36 0.3855 -1.45

0.5 0.5198 1.98 0.4750 -2.50

0.6 0.6260 2.60 0.5645 -3.55

0.7 0.7321 3.21 0.6540 -4.60

0.8 0.8383 3.83 0.7435 -5.65

0.9 0.9445 4.45 0.8331 ' -6.69

1.0 1.0506 5.06 0.9226 -7.74

12



R,

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fixed
Parameter

LH, T = 36R

LN, T = 135R

LH, 40 psia

LN, 40 psia

GH, T = 44 R

GN, T = 140 R

GH, 40 psia

GN, 40 psia

R, 5psia

-.0032
0.1020
0.2072
0.3124
0.4176
0.5229
0.6281
0.7333
0.8385
0.9437
1.0489

Error
%FS
-0.32
-0.20
0.72
1.24
1.76
2.29
2.81
3.33
3.85
4.37
4.89

TABLE 2B

Error
%ES
0.78

0.06

-0.66
-1.38
-2.10
-2.82
-3.54
-4.26
-4.98
-5.70
-6.42

LN, CALIBRATION EQUATION LIQUID LEVEL RATIO ERRORS

Dielectric Constant vs Temp. and Press. Analvsis Results

Variable
Parameter

Pres. (psia)
Pres.(psia)
Temp. (R)
Temp. (R)
Pres. (psia)
Pres. (psia)
Temp. (R)

Temp. (R)

R, 40psia

0.0078

0.1006

0.1934

0.2862

0.3790

0.4718

0.5646

0.6574

0.7502

0.8430

0.9358

TABLE 3

Partial Derivative
Derivative Value
Oem,/dP 3.2*10°/psia
Oépen/OP 8.6*10%/psia
Oeg,/dT -2.1*10%/R
Oepen/ T -1.5%103/R
0€ g/ 0P 2.6*10%/psia
de /0P 1.5*10*/psia
Oe,q./0T -4.5*10"'R/T?
Oepp/dT -8.9%10'R/T?

* Evaluated at worst case T = 43.5 R
** Evaluated at worst case T = 156.5 R
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WorstCase
Value

3.2*10°
8.6*10°°
-2.1*10°
-1.5*10°
2.6*10%
1.5*10*
*.2.4*10°

**.3.6%10°°



TABLE 4
Estimated Capacitance Readings For Calibration Conditions

: Temp Pres. Dielectric Constants C(20 in) C(0 in) Span
Fluid (R) Psia ¢, & pF pF pF
LH, 375 17.4 1.225054 92.369
GH, 194 16.9 1.000783 75.439 16.91
LN, 142 19.1 1.424793 107.429
GN, 175 18.1 1.00209 75.558 31.871
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