- By

@

1

Proteus Three-Dimensional Navier-Stokes
Computer Code—Version 1.0

Volume 1-Analysis Description

Charles E. Towne, John R. Schwab, and Trong T. Bui
Lewis Research Center

Cleveland, Ohio
= (NASA-TM-106337) PROTEUS N94-1652T
October 1993 THREE-DIMENSIONAL NAVIER-STOKES
COMPUTER CODE, VERSION 1.0. VOLUME
. 1: ANALYSIS DESCRIPTION (NASA) unclas
- == e .- 65 P

& G3/34 0191568

PRINCIPAL NOTATION . ..vvirinrinrinnnnenns. e s e .3
SYMBOLS ..o 3
SUBSC RIPTS .ottt e e e e e e e e e e e e e e e e e e 5
SUPERSCRIPTS ... i it i i e I 5

SUNIMARY it ittt ittt et e eeouannnseanonsassesseessoassasenensnsnsnsasssosans 7

1.0 INTRODUCTION . v vttt ettt e e e e et e e e et e e e e 9

20 GOVERNING EQUATIONS ..ottt ittt ientivaneranaaonsnssssssssssnsnnns 11
2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES 11
22 EQUATION OF STATEttt ittt es 13
2.3 GENERALIZED GRID TRANSFORMATION i e e 13
2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES - 16
2.5 METRIC INVARIANT S oot it e et ettt e ey 18

3.0 TIME DIFFERENCING e [P 23

4.0 LINEARIZATION PROCEDURE it vvitrenennaroentoesennsnnsssnseossnsans 25
4.1 INVISCID TERMS ..ttt ittt i e et ettt ettt 25
4.2 VISCOUS TERMS .ottt it et e et e et e e e ettt e e 26

4.2.1 Non-Cross Demvatives v ittt ittt it e ettt e et e 27
4.2.2 Cross DemVatiVes . . v v o it ittt it teece ettt e e 29
43 EQUATION OF STATEttt e aee s 30
44 LINEARIZED GOVERNING EQUATION e es 31

50 SPACEDIFFERENCING ..ttt i irineesaenneasnssesenasnsasnansnsnsnssnsas 33

6.0 BOUNDARY CONDITIONS . ittt it ittt enerscnnneeasaansineensonannsensnsns 35
6.1 NO CHANGE FROM INITIAL CONDITIONS, Ag=0 35
6.2 SPECIFIED FUNCTION, 2=/ ..ttt aee e anees 35
6.3 SPECIFIED COORDINATE DIRECTION GRADIENT, dgfé¢ =f 36
6.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vg=n=f 37
6.5 LINEAR EXTRAPOLATION i e e e es 38

7.0 SOLUTION PROCEDURE ...ttt ittt ttrtenmreananeonssosanenrsssnsnsneasnnsas 41
7.1 ADI ALGORITHM ..ottt e e et ettt e e e e 41
7.2 MATRIX INVERSION PROCEDUREttt iniee e 44

7.2.1 Non-Periodic Boundary Conditions i 44
7.2.2 Spatially Periodic Boundary Conditionso it 45
7.3 UPDATING BOUNDARY VALUES S 48

8.0 ARTIFICIAL VISCOSITYcciiiiinnnnnn Y 51
8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY 51
82 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY it 52

90 TURBULENCE MODEL ...ttt ittt rienststarasnnsscncnnssnensssnssnsans 55
9.1 BALDWIN-LOMAX MODEL ittt ittt e et i aan s 55

9.1.1 Outer Regionot iv ittt it e e e 55
9.12 Inner REgION oottt it e e 57
9.1.3 Turbulent Valuesof Aand & ittt ittt ettt ieannn s 57

CONTENTS

Proteus 3-D Analysis Description Contents 1

9.2 CHIEN k-e TURBULENCE MODEL e 58

9.2.1 ke EQUations i 58

9.2.2 Linearization of the k-¢ Equations it 61

9.2.3 LU Factorization Algorithm for the k- Equations 63

9.2.4 LU Sweeping Procedure for the k-¢ Equations, 64

9.2.5 Updating Boundary Values for k-¢ Equations 64

926 Turbulent Valuesof Aand &k i 64
"APPENDIX A - EXPANSION OF VISCOUSTERMS ittt inie s 63
REFERENCES ..t iiiiiiitiinnensrrsaressnnnnanosasesssanssacsannnenonnnns ... 69

2 Contents Proteus 3D Analysis Description

SYMBOLS

PRINCIPAL NOTATION

Unless specified otherwise, all variables are nondimensional.

Symbol

A, B C
A’, B’, C’
Gy G

E, F, G
EF G
Er

EV: FV: GV
ﬁVy ﬁ‘V: (A;V

k;, k;

L

N.,

Ny Noy Ny
P

Pr.

Pr, Pr.

9xs by 4

Proteus 3-D Analysis Description

Definition

Speed of sound.

Coefficient submatrices in block tridiagonal sYsiem of equations.

Coefficient submatrices for boundary conditions.

Specific heats at constant pressure and volume.

Inviscid flux vectors in the Cartesian coordinate form of the governing equations.

Inviscid flux vectors in the computational coordinate form of the governing
equations.

Total energy per unit volume.
Viscous flux vectors in the Cartesian coordinate form of the governing equations.

Viscous flux vectors in the computational coordinate form of the goveming
equations.

Non-cross derivative viscous flux vectors in the cornputatlonal coordinate form of
the governing equations.

Cross derivative viscous flux vectors in the computational coordinate form of the
governing equations.

Flux vectors in the Cartesian coordinate form c¢” the k-¢ turbulence model
equations.

Flux vectors in the computational coordinate form of the k-¢ turbulence model
equations.

Stagnation enthalpy per unit mass.

Grid indices in the &, », and { directions.

Jacobian matrix of the generalized grid transformation.
Effective thermal conductivity coefficient.

Turbulent kinetic energy.

Laminar and turbulent thermal conductivity coefficient.
Dimensional reference length.

Number of governing equations being solved.

Number of grid points in the &, », and { directions.
Static pressure.

Reference Prandtl number.

Laminar and turbulent Prandtl number.

Heat fluxes in the Cartesian x, y, and z directions.

Principal Notation 3

@, @

%4

P, &P, etc.

61) 62) 03

K2, Xa

)'1) /1!

Hiy He

&n €

4 Principal Notation

Definition

Vector of dependent variables in the Cartesian coordinate form of the governing
equations.

Vector of dependent variables in the computational coordinate form of the gov-
erning equations.

" Gas constant.

Reference Reynolds number.
Source term subvector in block tridiagonal system of equations.
Source term subvector for boundary conditions.

Non-denvative terms in the Cartesian coordinate form of the k-¢ turbulence model
equations.

Non-dertvative terms in the computational coordinate form of the k-¢ turbulence
model equations.

Physical time.
Static temperature.
Velocities in the Cartesian X, y, and z directions.

Vector of dependent variables in the Cartesian coordinate form of the &-¢ turbu-
lence model equations.

Vector of dependent variables in the computational coordinate form of the k-¢
turbulence model equations.

Cartesian coordinates.

Ratio of specific heats, ¢,/c,.

Difference operator.

First-order forward and backward difference operators.
Turbulent dissipation rate.

Second- and fourth-order explicit artificial viscosity coefficients in constant coeffi-
cient model.

Implicit artificial viscosity coefficient.

Second- and fourth-order artificial viscosity coefficients in nonlinear coefficient
model.

Parameters determining type of time differencing used.

Constants in nonlinear coefficient artificial viscosity model.

Effective second coefficient of viscosity.

Laminar and turbulent second coefficient of viscosity.

Effective viscosity coefficient.

Laminar and turbulent viscosity coefficient.

Laminar kinematic viscosity.

Computational coordinate directions.

Static density.

Pressure gradient scaling parameter in nonlinear coefficient artificial viscosity

. model.

- Proteus 3-D Analysis Description

Symbol

T

Tex, Tzy, CIC.

¥

SUBSCRIPTS
Subscript

ij, k
r
t
X, y, Z

& g

SUPERSCRIPTS

Superscript

L
b

Proteus 3-D Analysis Description

Definition

Computational time.
Elements of shear stress tensor.

Spectral radius in nonlinear coefficient artificial viscosity model.

Definition

Denotes grid location in &, x, and { directions.

Denotes dimensional reference condition.

Denotes differentiation with respect to physical time.

Denotes differentiation with respect to Cartesian coordinate directions.

Denotes differentiation with respect to computational coordinate directions.

Denotes differentiation with respect to computational time.

Definition

Denotes time level.
Denotes solution after first and second ADI sweep.

Principal Notation

5

PROTEUS THREE-DIMENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION 1.0

* Volume 1 - Analysis Description

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the three-dimensional, Reynolds-averaged,
unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this ef--
fort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.
Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
" eddy viscosity model.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple Cartesian or
cylindrical grids may be generated internally by the program. More complex geometries require an ex-
ternally generated computational coordinate system.

The documentation is divided into three volumes. Volume I, the curren: volume, 1s the Analysis De-
scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User’s Guide, and contains information needed to run the program. It describes the program’s
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer’s Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran vanables stored
in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989.

PRECEDING PAGE BLANK NOT FILMED

Proteus 3-D Analysis Description Summary 7

Ty
LY RUANK

" PAGE

1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-proprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend 1t to new ge-
ometries and flow regimes takes precedence. p

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending to do anything more than run standard test cases with it. The user’s
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus three-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modulanty, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kernighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, input
variables, output variables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into generalized nonorthogonal body-fitted coordinates. They are sol: d by marching in time using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple grids may be
generated internally by the program; more complex geometries require external grid generation, such as that
developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User’s Guide, and contains information needed to run the program. It describes the program’s
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the

PRECED;ivg |
P
Proteus 3-D Analysis Description AGE BLANK NOT FELMED 1.0 Introduction 9

program, and several test cases. Volume 3 is the Programmer’s Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989 (Towne, Schwab, Benson, and Suresh, 1990).

The authors would like to acknowledge the significant contributions made by their co-workers. Tom
Benson provided part of the original impetus for the development of Proteus, and did the onginal coding
of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal gnid
transformation. Frank Molls has created a separate diagonalized version of the code. Ambady Suresh did
the original coding for the second-order time differencing and for the nonlinear coefficient artificial viscosity
model. These people, along with Dick Cavicchi, Julie Conley, Jason Solbeck, and Pat Zeman, have also
run many debugging and verification cases.

10 1.0 Introduction , - Proteus 3-D Analysis Description

2.0 GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The basic governing equations are the three-dimensional compressible Navier-Stokes equations. These
equations may be found in several standard references (e.g., Hughes and Gaylord, 1964; Schlichting, 1968;
White, 1974; Anderson, Tannehill, and Pletcher, 1984.) In Cartesian coordinates, the three-dimensional
equations can be written in strong conservation law form using vector notation as

P 9E, OF, G
2 oE, oF, o6 _ Oy Fy 3Gy

ar | ax | dy = 8z ax + dy 3z @D

where

Q=[p pu pv pw Efl" (2.22)

pu
pu’ +p
E=| ow (2.2b)
puw
| (E7+P)u]

pv

pouv

F=| p*+p (2.2¢)
W

| (Er+p)v]

W

puw

G=| pw (2.2d)
pw? +p

| (Er+p)w

E,=— . (2.2¢)

Proteus 3-D Analysis Description 2.0 Governing Equations 11

UTyy + vy + Wy, —

1
| Pr, %

0

Txz

GV= -l Tyz

TZZ

1
Ut + v1yz+wrzz-~——Pr q
'r -l

(2.26)

(22g)

Equation (2.1) thus represents, in order, the continuity, x-momentum, y-momentum, z-momentum, and

energy equations, with dependent variables p, puy, pv, pw, and Er.

The shear stresses and heat fluxes are given by

rn=2p—g-§-+z(ﬁ’-‘—+ﬂ+ w)

ax " ay @ oz
- 2y%+1(%+%+%‘:—>
B (B 2)
(24 2)
(Gt o
ryz—u(% ‘;—‘;’)
y—_k%
=—kSL

(2.3)

In these equations, ¢ represents time; X, y, and z represent the Cartesian coordinate directions; u, v, and
w are the velocities in the x, y, and z directions; p, p, and T are the static density, pressure, and temperature;
Eris the total energy per unit volume; and g, 4, and k are the coefficient of viscosity, second coefficient of

viscosity, and coefficient of thermal conductivity.

All of the above equations have been nondimensionalized using appropriate normalizing conditions.
Lengths have been nondimensionalized by L., velocities by u, density by p,, temperature by 7,, viscosity

12 2.0 Governing Equations

Proteus 3-D Analysis Description

by u,, thermal conductivity by k., pressure and total emergy by p.#, and time by L.ju. The reference
Reynolds and Prandtl numbers are thus defined as Re, = p.u. L.y, and Pr, = pad|k T,

Turbulence is modeled using the Boussinesq approach (Schlichting, 1968). The equations presented in
this section are thus used for both laminar and turbulent flow. For turbulent flow they represent the
Reynolds time-averaged form of the Navier-Stokes equations, with density fluctuations neglected. They
may also be interpreted as the Favre or mass-weighted time-averaged form of the equations. With Favre
time averaging, however, the velocities and thermal variables represent mass-averaged quantities defined by
% = pu/p, etc., where the overbar represents a conventional Reynolds time-averaged quantity. Details on
Reynolds and Favre time-averaging procedures may be found in Cebeci and Smith (1974), and in Anderson,
Tannehill, and Pletcher (1984). In either case, u, 4, and k represent effective coefficients. For example, in
turbulent flow u = g, + ., where p; and g, are the laminar and turbulent viscosity coefficients, and u, comes
from some approprate turbulence model. The models currently available in the Proteus code are the al-
gebraic eddy viscosity model of Baldwin and Lomax (1978) and the two-equation model of Chien (1982),
implemented as described in Section 9.0. - ' '

2.2 EQUATION OF STATE

In addition to the equations presented above, an equation of state is required to relate pressure to the
dependent variables. Any appropriate equation, or even table, could be used. The equation currently built
into the Proteus code is the equation of state for thermally perfect gases, p = pRT, where R is the gas con-
stant. For calorically perfect gases, this can be rewritten as

1 2, .2 2
p=(—- 1)[E7~—~7p(u +vi+w)] _ (2.4)
where y is the ratio of specific heats, ¢,/c,. Here the gas constant and specific heats have been
nondimensionalized by 12/T,. :
If the flow is such that we can assume a perfect gas with constant stagnation enthalpy, the energy
equation may be eliminated. This assumption is reasonable, for example, in inviscid regions, and in

adiabatic wall boundary layers if the Prandt] number is near 1 (Briley and McDonald, 1977). The stag-
nation enthalpy is defined as .] '

hr=c¢ T+ % (u2 +v2 4 wz) (2.5)
Here the stagnation enthalpy is nondimensionalized by «?. The temperature is thus
T=-L [hr— L2+ wz)] (2.6)
S P

and the equation of state becomes

y—1 1
p=—7 pl:hT——z—(u2+v2+w2)] 2.7

This equation of state does not require the total energy Er, and the energy equation need not be solved.
The total energy may be computed from

Er=phr—p (2.8)

2.3 GENERALIZED GRID TRANSFORMATION

Because the governing equations in the previous section are written in Cartesian coordinates, they are
not well suited for general geometric configurations. For most applications a body-fitted coordinate system

1 Note that this Prandd number does not have a physically meaningful value, but is merely defined by a combination
of the normalizing conditions for ¢,, u, and k that appear when the equations are nondimensionalized.

Proteus 3-D Analysis Description 2.0 Governing Equations 13

is desired. This greatly simplifies the application of boundary conditions and the bookkeeping in the nu-
merical method used to solve the equations. The following generalized grid transformation, which can be
orthogonal or nonorthogonal, is therefore used to transform the govemning equations from physical

(x, ¥, z, t) coordinates to computational (¢, », {, 7) coordinates.

= :(x)yr Z!V t)

n=n(x.5,20 29)
C = C(x:y’ 2, t)

T=1

In Proteus, the spatial computational domain is a cube, with £, n, and { each running from 0 to 1. Using
the chain rule for partial differentiation, the derivatives in the Cartesian form of the governing equations can

be replaced using the following expressions.

0 _; 0, 8
ox x5 Tx gy, +Cxac
o _, 0. 8 ., 0
y ~ 93 Ty +yac
(2.10)
i=§_a_+ a+c
3z 2 9F "Mz, zac
0 g 0,200
or “tigr Y, +'§‘ac

In the above equations, and in those to follow subscripts x, P2 and z, or &, n, and {, denote pama.l differ-
entiation in that coordinate direction. The only task remaining, then, is to develop expressions for the
metric coefficients &,, s, etc. In differential form we can write

de = Edx + &,dy + &,dz+ Lt
dn = nydx + nydy + n,dz + ydt
dl ={dx +{ydy + {dz+ {dt
dr=dt

In matrix form this becomes
dé §X fy 62 ét dx

dC Cx gy Cz Ct dZ
dr 0 0 0 1}dt

Similarly,
dx X X, X X d¢
dy| _|¥s Yq Yg Pefldn S
dz Zg Zr, Zg Z, dC
dt 0 0 0 1}ds
Therefore,

14 2.0 Governing Equations Proteus 3-D Analysis Description

Sx &y b S| (X Xy X %
Nx Ny Mz M _ Ye Yy Yo Ia
& & & G z %, Z %
0 0 0 1 0 0 0 1

After taking the inverse,

&G L4 IuPy = ViZq XgPq = XqZ XV %Py Fia
nx My Mz Mp|_ | Wz Ve %r— Xz Xy =Xy Fa
G &y Lo G| Dt vemr Xem T XgEg XPn— Xy Fu

0 0 0 1 0 0 0 11/

where

Fi4=x,(0;z, ~ ,20) + y(x,2; — X¢2,) + 2.(xy, — X,0)
Fq = x,(0,2; — yg2,) + (X2, ~ X, 25) + 2 (X Yy — XgPy)

and J is the Jacobian of the transformation,

_demy | Y
3 i =Mx My Nz
(xy.2) Lot L
J= Gl —) + Elnx — n) + Eny — L) (2.11)

This can be evaluated from the known physical (x, y,) coordinates by noting J = 1//-! and

T T
TR I IR
Z EoE
T =x,(y g—-yz)+x(yz§—yz)+x(yz—yz) (2.12)
¢ Cn nve &< LV n“s

The metnc coefficients themselves are
$x = J(Vy,zg = ¥YcZ,)
&y = Jxpzg — %, 7;)
&= IO = X0y
Nx =0z — ¥e2)
ny = J(xgz; — X;2g)
1, = J(xppe — XeVp) _ (2.13)
Cx= Iz, — ¥o2e)

Proteus 3-D Analysis Description 2.0 Governing Equations 15

y =Jxy2 = %7
(= J(xgy,, - xr,Vg)
E=—x =1ty — 2,
N = — X Nx — P My — 2M;
L= —xLe—y Ly~ 2L,

Unless the physical coordinates (x, y, z) are defined analytically as functions of the computational coordi-
nates (&, n, {), the metric coefficients must be computed numerically. The method used to do this is im-
portant, and is discussed in Section 2.5.

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES

Applying the generalized grid transformation of the previous section to equation (2.1) yields
Q.+ Qi +Qu+ Qi + Eglx + Egne + Efly + Fedy + oy + F L, + G&, + G, + GL,
~Eydi—Eym—Ey L -Fy b —Fyn, —Fy iy~ Gyl —Gyn,~ Gy, =0 (2.14)
This equation is in chain-rule, or weakly conservative form. That is, the conservation flow vanables are
used, but the metrics appear as coefficients of the derivatives instead of inside the derivatives. Following

Vinokur (1974), the strong conservation law form can be recovered by first dividing by the Jacobian then

adding and subtracting like terms. For example, the
E{Ex

E;ly _ E¢, _E £x
J J J
4
Doing this for all the terms, and rearranging, results in
(_Q_) +[Ef, +FE + GE, + QF,] +[En,+F’1,+an+Qr1,] [EC,+FC’+G§Z+Q§r]

termn becomes

¢

J J
{

[EV§x+FV§ +Gpé,] [Ev’lx+Fv’7y+GV’1z] [V§x+FVCy+ Gy¢,]

n 4

() (1)) (5) fre-mi($)2 () (5)
(), () e () e

n

The last four terms, in braces, are called the metric invariant terms. By using the expressions for the metric
coefficients, given by equations (2.13), one can show that the metric invariants are identically zero. This is
not necessarily true when derivatives are approximated by finite differences, however. This point is explored
further in Section 2.5. With the metric invariant terms eliminated, no metrics or flow variables appear as
coefficients, and the strong conservation law form of the governing equations has been recovered.

Equation (2.15) can be rewntten as

A A A A A
aQ . 9E aF a(; oEy 0F, 0Gy
x TaE T Ta T ot T am T & (@18

where

16 2.0 Governing Equations Proteus 3-D Analysis Description

5o

Q=
E= —}(E§X+F£y+662+ Q<)
F= %(Eﬂx+Fny+Gﬂz+Qﬂt)
A
G= T(ECX+FC},+G€Z+ Q)
By= By &+ Fréy+Gré)
F =T1]_(EVVIX+FVVIy+GV’12)
G,=L

= 7 (EVCx"' FVCy"' GVCZ)

Using equations (2.2a) through (2.2g) these can be expanded as

>

=%[p pu pv pw EFT (2.17a)

putx + pvé, + pwié; + p¢;
(pll +p)x + Puvéy + puwé, + pud,
pwvé, + (pV’ + p)e, + pvwé, + pvE, (2.17b)
puwly + pvwl, + (oW + P)E, + pwE,
L(ET+ P+ (Er+ppe, + (Er+ pwé, + Er ¢,

br>
]
-

puny + pvny, + pwn, + pn;
(o + e+ puwmy, + puwn, + pun,
puvn + (pV2 + Py, + pvwn, + pvn, (2.17¢)
puwny + pvwny, + (oW + P, + pwr,
| (Er+ Puume+ (Ep+ pyvny + (Er + pwnz + Ern,

>
I
|-

pUlx+ Pva +pwl, + oy
(pt + P)x + Py + puwl, + pil;
Pl + (pV + Y, + pvwl, + p¥e, (2.17d)
puwly + pvwl, + (pw* + P), + pwi,
(Er+)y + (Ex+ ppe, + (Er+ pWe, + ETd,

Q>
1l
<=

0
R Lo Txxfx‘*"’xy‘fy""’xzéz
Ey= TR Toplx + Typly + 728z (2.17¢)
’ Tolx + Tyzfy + 1224,
Bx¢x + By, + B2E;

Proteus 3-D Analysis Description 2.0 Governing Equations 17

0
R L Ty + Txyly + 1,051,
Fy= T Re. | ™x + 11y 1M, (2.176)
4
TeMx T Ty My + T2 M
Bxnx + ﬁy']y + ﬁz”z
0
A 11 Tedx + Txycy + 1k
GV=7 Re, Txny+TyyCy+TyzCz (2.17g)
Tehx+ Tyzcy + 1,4,
Bxlx+ Bycy + B4,
where
1
szufxx'*'wxy'*'mxz——}?qx
1
ﬂy = UTyy, + V‘l’yy"'l‘ WTy, = P—rr' %
. 1
B,= ufxz+VTyz+WTzz—P_rqz
r

In the viscous terms, the shear stresses and heat fluxes are defined exactly as in equations (2.3), except
the derivatives in the Cartesian coordinate directions must be evaluated using the chain rule. For example,

Ou Ou

ax— { €x+_’1x+ Cx

74

Note that F ahd G have exactly the same form as f:, but with £ replaced by n and £, respectively. Similarly,
»v and Gy have exactly the same form as Ey, but with ¢ replaced by # and {, respectively.

2.5 METRIC INVARIANTS

The governing differential equation in computational coordinates, equation (2.16), can be rewntten as
(Q) +[Ef +F{, + GE, + QL] +[En, + Fn, + Gn, + Qn,] +[EL, +F(, + G{, + Q(, :l
¢ ¢

T J J 7

n

[EV§X+FV§_V+GV§:] [EV’?1+FV"y+GVﬂz] [EVcX+FVC’+GV§z :]
- J B J B J
H n 4

When this equation is applied to uniform flow, E, F, G, etc., are all constant, resulting in
1o +(—1-)Q+(E—E) +(F-F) >\ t6-6, -ﬁ-’—
J =T J /. v VAT v J

¢ 4

+(E—EV>(1;—) +(F- F,,)(”TY) 4G GV)(ng_) +Q(%)
+(E—EV)(£JX—) +(F—FV)(C7y> +(G—- GV)(CT) +Q(%>

¢ ¢

18 2.0 Governing Equations Proteus 3-D Analysis Description

Collecting terms,

el (4) () (%)

+(G~—Gy) (—EJL) +(%) +(C—j) =0 (2.18)
: n :

For Q, to be zero, which it should be for uniform flow, the terms in brackets must vanish. These terms
are the metric invariants discussed briefly in Section 2.4. By using the expressions for the metric coefficients
given by equations (2.13), one can show that in differential form these metric invariants are indeed iden-
tically zero. When finite differences are used to approximate derivatives, however, this is not necessarly
true. In two dimensions, when the centered difference formula of equation (5.1) is used to approximate
derivatives, the metric invarants do turn out to be identically zero. But in three dimensions, when the
metric coefficients are computed numerically using equations (2.13), the metric invariants are not identically

Z€10.

To show this, let M, denote the second metric invariant term (the second bracketed term in equation

(2.18).) Then, using equations (2.13) for the metric coefficients and applying difference operators,
Without loss of generality we can let A = Ay = A{ = 1/2. Then, using central differences,

My =6l = Y- %41~ Zk—1) — Ok s 1~ Pk~ 10G 11— 3-1)]
+ 0, [0k 41 =Yk @1 = Z-) — Orp1 = Vic)p 1~ Z—1)]
+0L0ir1—Yic)G 1= 2)~ 01 = Y- D)E 1~ 22)]

The subscripts i, j, and k represent grid point indices in the &, %, and { directions. For notational conven-
ience, terms without an explicitly written i, j, or k subscript are understood to be at i, j, or k. Expanding,

My=6,L0; 12k i1 = Y- 1Zk+1— Vi 1%-1 Y% = OhrrZiar = Yio1G o1~ YerrZi-1 1z - 0]
+6, L0k 1Z 1= Fh1Zie1 = Ve 1Zio1 HPu—1Zi- D~ Vic1Zer1 —YicaZen ~Yie1Zk-1+Yi 1% D]

+ 6 L0121 = YiciZe1 = YieriZia P Vi) = G Zic 1 Y Zia Y B Y- 1%
Performing the final difference operation,

My= 0 Zior = Yo 1%k 1= Y 1%k P - Do — O rZert =Y rZa 1~ ViaaZo1 H Y aZ-1dia
—Ure1Zi 1= Ph—1Z a1 = Yk-1Z o1 P15 i T Ok Zier ~YkaZ ~ Yot oo
F Ok 1Zis1 = Yi1Zie1 = YesrZict FYuo1Zic o1 — Ok rZio 1 = Yoo 1Zicr = Yee1Zio1 Hem1%i- 1)1
—Wir1Zka1=Yio1Zke1 = Vi 1Z-1 HYic B F Oi1Zes 1 — Yo iZr —YinZe-1 HYioZ- 1)1
F Vi 1Zr1=Yic G = YisGa i Deer— Win G — Vi1~ Vi H Yoz e
— O rZie 1= Yo Ziar ~ Y tfia F Y Zi o et F OB — Yo iEs 1 YiaZioa Y %o e

Finally, collecting terms,

Proteus 3-D Analysis Description 2.0 Governing Equations

19

My~y v js1 6%, jk+1~ G+ 1, jk—1"Zj+1k+1 T % j414k—1)
trisnjad = Ze e T a1t G ke 1 G 1 k=)
+.'.

For M, to be identically zero, the terms in parentheses in the above equation would have to vanish
identically. This is clearly not the case for a general three-dimensional coordinate system.

There are fixes that have been developed to ensure that the finite difference equations do satisfy uniform
flow, including the use of averaging formulas for the metric coefficients or simply subtracting the error from
the equations (Pulliam and Steger, 1978). These methods are somewhat inelegant, however, and can be
expensive to use. A cleaner and completely rigorous method is to rewrite the formulas defining the metric
coefficients, equations (2.13), in conservation form (Thomas and Lombard, 1979). Using &, as an example,

$x =IOz, — 32
= T2~ B2y
I Proteus, therefore, the metric coefficients are actually computed using the following equations.
£ = 0,2 — 072),]
&, = JL(x2), — (x,2)]
&= T, — (),]
e = I — 0]
ny = JL(xg2); — (42)¢]
12 =JLx) — (xg)] (2.19)
Le= T2}y ~ 0]
&y = JL(x,2) — (x5, |
Lo =TT (xpp)y — ()]
$r=—XCx = Pely ~ %8,
M= —XMNx = IMy ~ 2Nz

{i=—xLx—yLy— 28,

To verify that computing the metrics in this way does lead to metric invariants that are identically zero,
we now reevaluate M,, the second bracketed term of equation (2.18). Applying difference operators,

M, = 8,[6¢ (0,2) — 8, ;2] + 8,[6} 07;2) — 67 (D)) + 6,165, 0e2) — &7 (1, 2)]

Note that a distinction is made, for now, between the difference operators outside the brackets, &, 6,, and
&;, and the difference operators inside the brackets, %, J;, and &} . The operators outside the brackets
represent derivatives of the metric coefficients in M,. These terms originated as part of the flux terms in
equation (2.16). The operators &;, &,, and &, are therefore the same as the operators used to représent de-
rivatives in the governing differential equation. Now, note that the finite difference approximation of M;

will vanish identically if, for example, _
8,08, 1,21 = 6,08} (,2)]

This will be true if 6; = &, 6, = 5,, and 6; = &;. This can be verified by expanding 6,(5; /) and 6,(é; f)
using the centered difference formula of equation (5-1), and comparing. When the metric coefficients are

20 2.0 Governing Equations Proteus 3-D Analysis Description

computed using equations (2.19), therefore, the derivatives of the parenthetical terms must be approximated
using the same difference operators as those used to represent derivatives in equation (2.16). It does not
matter how the x;, x,, etc., inside the parentheses are computed.

This procedure for computing the metrics ensures that the last three metric invariant terms in equation
(2.18) are identically zero when differenced. The first metric invariant term must be handled somewhat
differently. Setting it equal to zero gives

(5 (), (5),

T
This is a statement of the geometric conservation law described by Thomas and Lombard (1979). For gnds
that do not change with time, this equation is, of course, automatically satisfied when differenced. However,
for time-dependent grids it is not. In that case, the grid transformation Jacobian J should be found by
solving equation (2.20) at the new time level, using the same differencing scheme as in the governing flow
equations, and not computed algebraically from equation (2.12). The current version of Proteus does not
solve this equation, and thus strictly applies only to time-independent grids.

Proteus 3-D Analysis Description . 2.0 Governing Equations 21

BARE L INTEHTIONALLY BLANK

3.0 TIME DIFFERENCING

The governing equations are solved by marching in time from some known set of initial conditions using
a finite difference technique. The time differencing scheme currently used in Proteus is the generalized
scheme of Beam and Warming (1978). The time derivative term in equation (2.16) is written as

Al An AN An An—1
0 Ay _ 0 o8 1 o, 6 ad
or ~— Ar 1+6, ot 1+6, 0 1+68, Ar

+ 0[(91 - % - 92>A1, (AT)Z]

or,

A, 08T AQY Ar Q7 B8 Ax_ 1
n_ % T 2 n—1 1 2 3
M =g T et Taa AT O (9, : 92)(/31) , (A7) 3.1y

where Aé” = (A)"*‘ - 6" The superscripts 7 and 7+ 1 denote the known and unknown time levels, re-
spectively. ‘ :

The parameters 8, and 8, determine the type of time differencing scheme used. Some of the methods
available with the above formula are given in the following table.

0, 8, Method Truncation Error
0 0 Euler explicit O(Ar)?

0 —1/2 | Leapfrog explicit O(A=)

1 0 Euler implicit O(Ary
1/2 0 Trapezoidal implicit (AT

1 1/2 3-point backward implicit O(Ay

Note that even though the generalized time differencing formula includes explicit methods, the Proteus code
assumes an implicit method is being used. Note also that the truncation error listed in the table is the error

in the expression for A(A}". The overall numerical method used in modelling the differential equations re-
quires AQ"/Ar, so the order of the overall method is this truncation error divided by Az.

Solving equation (2.16) for 66/61 and substituting the result into equation (3.1) for 6(A6")/6-r and
0Q/ 97 yields

A 0.ac [aAE™ oaFY) o(aG” pn S &
AY = — 8T (AE)) [OBG)) A oE" OF | oG
T+6, \ ot an X T+8,\ 0Z ' an | &
8,ac [AES) aAF) 8(AGY A (OE)S OFS Gy
*Tre\ " T T &)TT+e\ e TTam &
6, L An-1] 2 3
+ 13, 80 +0[(0, —7—92)(&) , (AD) 3.2)

PRECEDING PAGE BLANK NCT FILMED
Proteus 3-D Analysis Description 3.0 Time Differencing 23

PAGE

INTENTICNALLY BLANK

4.0 LINEARIZATION PROCEDURE

4.1 INVISCID TERMS

Equation (3.2) is nonlinear, since, for example, AE* = E*+! — E* and the unknown E**! is a nonlinear
function of the dependent variables and of the metric coefficients resulting from the generalized grid trans-
formation. The equations must therefore be linearized to be solved by the finite difference procedure used
in Proteus. This is done by expanding each nonlinear expression in a Taylor series in time about the known
time level n. Letting G represent any nonlinear expression, '

n+1 n oG g 2
G" T =6"+ (5) At + 047 (4.1

where

3G _2G % , oG pw G V) 3G ew) oG OEr
ot Op 01t O(puw) O dpv). 0Ot dpw) Ot 0Er o1

Note that for linearization purposes only the metric scale coefficients have been assumed to be locally inde-
pendent of time. Note also that for this linearization procedure to be second order accurate, dG/0r (and
therefore 8p/dt, d(pu)/dr, etc.) need only be first order accurate. Using forward differences, then, so that

3 \"_ "t "
(?) =T Toed
Ap"
At

+ O(A7)

etc., equation (4.1) becomes

n n - n
Gn+1=Gn+<aG)Apn+(oG >A(pu)n+(9G_ '\ A(pv)"

O 3(pw) a(pv)
oG " n G " n 2
+(Bow)) Alpw)" + (E) AEL" + O(AT) 4.2)

As an example the d(puv{,)/0¢ term from the x-momentum equation (part of the second element of
8E/8¢&) will be used. The nonlinear part of this term is (puvy'+!. Rewriting this in terms of the dependent

vanables,
n+1
' = [(e]

Using equation (4.2), this is linearized as
()" 1 = (o) =)" (p" T = ")+ V(0w = (o] + &[0 T - ()] + O
which can be rewritten as
Alpw)" = — (w)"Aap" + V' A(pu)" + u"A(p¥)" + O(AT)

‘ D
6 PAGE BLANK NCT FH.HE
Proteus 3-D Analysis Description PRECEDING PASE [0 Lincarization 25

This linearization procedure, when applied to the entire AE" term in the vector equation (3.2), can be
written as

AE" = (ok) AQ" + O(Az)? | (4.3)
5Q

where (6ﬁ/66)” is a Jacobian coefficient matrix (not to be confused with the Jacobian J of the generalized
grid transformation.) Similar equations can be written for AF" and AG.

Each term in each element of ﬁ, f:', and é, given by equations (2.17b) through (2.17d), is linearized using
the above procedure to generate the elements of the Jacobian coefficient matrices 6f2/66, 6?‘/66, and
6&/66. (Note that 6f3/66 = Jéfi/aQ.) When this is done 6é/66 can be written as

¢ & ¢, I 0
E‘gx_ufl §r+fl+u§x+m‘§x u§y+m§x u§z+ a(pw) gx aET §x
F 3 3 3 3 3
ol I Bl ETATETaays ht a(ppw) o o
ap) ap ap ap
E7) ,—wh wi, + £ # wiy + 6(0\2 g SN+ Wl + 5 (pw) oE; ¢s
7}) I?)
_fl(fz—%) B+ h sy Sy 45 et h 5y §,+fl<1+a—é’;-)

@.4)
where fi = ué, + v¢, + w¢, and f; = (Er + p)/p. The Jacobian matrices 6?/66 and 66/66 have the same
form as 6‘3/66, but with & replaced by # and ¢, respectively.

The linearized pressure terms have deliberately been left in terms of 9p/dp, dp/d(pu), etc. The ex-

pressions to be used for these derivatives depend on the equation of state. Those currently built into the
Proteus code, for a perfect gas, are presented in Section 4.3.

4.2 VISCOUS TERMS

The nonlinear viscous terms in equation (3.2), involving AE}, AF}, and AG}, must also be linearized.

To do this, the elements of lAZy, f"y, and év, given in equations (2.17¢) through (2.17g), must first be re-
written in terms of the dependent variables, and with derivatives in the Cartesian directions transformed to
derivatives in the computational directions using the chain rule. When the resulting expressions are sub-
stituted into equation (3.2), mixed second derivatives appear as well as second derivatives in a single coor-
dinate direction. The mixed, or cross, derivative terms would lead to considerable complications in the
implicit numerical solution algorithm if they were linearized using the procedure presented in Section 4.1.

The two types of second derivatives are thus treated differently, and Ey, Fy, and Gy are written as

E,, EVl + 1’5,,z
F,,_ F,,1 + F,,2 @.5)
Gy= GV) + GVZ

26 4.0 Linearization ' Proteus 3-D Analysis Description

where Ey,, Fy;, and Gy, only contain derivatives in the &, n, and { directions, respectively, and Ev,, Fy,, and

Gy, contain derivatives in the remaining directions. The fully expanded expressions for Ey,, Ev,, etc., are
fairly long, and therefore are presented in Appendix A.

4.2.1 Non-Cross Derivatives

Examination of the elements of fiy, in equations (A.2a) through (A.2d), and (A.2f), shows that every
term has the form fg;, where g is a function of the dependent variables, and fis a function of u, 4, k, and/or
the metric coefficients. Expanding in a Taylor series about time level » gives

a n
(f20)" ' = (fzo)" +[(afff) } At + O(A7)?

For linearization purposes only, we will assume fis locally independent of time. We can thus write

. n
"' =" + /" 25 —?] At + O(A)?
where
Og %% O 0¥
ot Op 0t O(puw) o1
Therefore

n n, 0| 0% %8
() "' = (/2" +f E‘['@TAP'*' 3(on)

A(pu) +] + O(A7)?

As with the inviscid terms, the linearization procedure for the entire AE,," viscous term in equation (3.2)
can be wrntten as

n
An aﬁVl An 2
AE}, = vy AQ" + O(47) (4.6)

Similar equations may be written for AfT';',l and Aé’;‘q. The Jacobian coefficient matrix afiyllaé-is

Proteus 3-D Analysis Description 4.0 Linearization 27

==

>

oEy,

eQ
ok,

21

where

>

2Q
3y,
éQ
3Ey,

31

>

41

>

>

="
o>

51

28 4.0 Linearization

()
e (3)
=10

8Q
54

= Qe+ DES + pé)+ pg}

ayy = né +(2u+ DE’ + ug

0= ué + pét + (2 + DES

ag =+ &,

ayy = (1 + 1)Ex¢;

ay, = (1 + 2)&y¢;

g = k(& + &7+ &)

<@

<

o

I -1 i
08¢ \ 9Er

(4.7)

Proteus 3-D Analysis Description

o Iy 4l o (2 o (W
o) - e \e) T\ T) e 7

51

A
6EV] __ 8Eyl + % (aT
py % 2z \ 36
52 21
A A
A == /\} +aOT-<a)
aQ 3Q ¢ (pv)
53 31
ty\ (), ol (oT)
N/, Q/, %A

Like the pressure terms discussed earlier, the form of the temperature terms will depend on the equation
of state being used. Those cumrently built into the Proteus code, for a perfect gas, are presented in Section
4.3.

Note that in equation (4.6) the derivatives appearing in the Jacobian coefficient matnx alf:y, /66 are also
to be applied to the AQ" appearing outside the parentheses. For example, the element in the second row
and second column of 8E;,/0Q, which corresponds to the A(pu) term in the x-momentum equation, is
a0(1/p)Jd¢. For this term, the notation used in equation (4.6) means

A n
5EV A n
2) 8@ =a 2 (5) AGu”
2Q

22
_ . a0 (Auy
XX a& pn

The Jacobian coefficient matrices for the remaining non-cross derivative viscous terms, 61A:‘Vl/6('\) and
3Gy,/2Q, have the same form as JE,/0Q, but with ¢ replaced by » and {, respectively.

4.2.2 Cross Derivatives

As stated earlier, linearizing the cross derivative viscous terms in the same way as the remaining terms
is very complicated within the framework of the implicit numerical solution algorithm used in Proteus.
They are therefore simply lagged (i.e., evaluated at the known time level # and treated as source terms.)
As noted by Beam and Warming (1978), this does not lead to a formal accuracy loss since

AE}, = B} + 0(ar)
AF}, = AF; ! + O(ac)? 4.8)

AG}, = AGY ' + O(av)?

Proteus 3-D Analysis Description 4.0 Linearization 29

4.3 EQUATION OF STATE

The expressions to be used for dp/dp, dT/dp, etc., which arise from the linearization procedure, depend
on the equation of state. The equation currently built into Proteus is for perfect gases, and can be written
as

p=(y — 1)[57.* % p(i® +v* + w2)] (4.9)
or, in terms of temperature, as
E
T=_C1y_[_pl_%(u2+v2+w2):| (4.10)
With this equation of state, then, the appropriate derivatives are
5 -1
%= T (v W) @.11a)
4
L=y D (4.11b)
op
—a'(—';;)-= —()I - I)V) (4.11C)
ap : :
oy =~ 0= v (4.11d)
5}
5_§r =y—1 (4.11¢)
OT __ 1| Er_1pi 2,2 (4.122)
0 G 2P :
or _ u
dpwy . GP (4.120)
or _ v
R (4.12c)
oT)\
owy =~ 5 (4.12d)
oT | : ,
‘a—E'; = P (4. 128)

If constant stagnation enthalpy is assumed, as discussed in Section 2.2, the appropriate equation of state
is

-1 e -
p=yy p[hr—%(u2+v2+w2)] (4.13)

and the temperature becomes

1 1
T== [hr— > W +v: + wz)] (4.14)

With these equations, the derivatives of p and T with respect to the dependent variables are

30 4.0 Linearization Proteus 3-D Analysis Description

3 -1
P _7 [hr+ %(u2 v 4 w2)] (4.15a)

3 7

a(a,fu) __ ;1 y (4.15b)

af:’v) __ ;1 . (4.15¢)

8(‘?;) __7 ;1 w (4.15d)
%=cﬁ+p(“2+"2+w2) (4.16a)
a,(@pY;) = ___C;up_ ' (4.16b)
oy~ 109

ang) =% @169

4.4 LINEARIZED GOVERNING EQUATION

The linearized form of equation (3.2) can now be written as

9 A B A n A n N n
A

syt) 2 (—‘”E)Aé" .l (61;)A6n 2 (af)AQn

Z aQ Q. 2Q
B A n A n A n
_or) o | (B o e (Tt (2| (220) aor | Y-
1+62 aé A ar’ JaY \': A
oQ 0Q oQ

n A Al A
__Ar _a_f::_+_ai+ 5& + At aEVl + aFVI + aGVl
d¢& o oL

n-—1

A A A A A N
(1+93)AT(6EVZ aFy, 6GV2) e (aE,,2 oF,, ac,,z)

1+6; G YT T) T\ e &
[¢] Ap 1 '
+ 1+292 AQ l*"[(al ’7—92)(/3?)2, (03 — 8,)(A7)°, (Af)3] (4.17)

There are a couple of things that should be mentioned about this equation. First, this equation is in
so-called “delta” form. We will actually be solving this equation for AQ” and recovering Q! from

6“‘ = Aé" + é" And second, in the coefficients of the cross derivative viscous terms the time differencing
parameter 8, has been replaced by #;. For second order time differencing (i.e., if 6, = 8, + 1/2), 65 should
be set equal to 8,. For first order time differencing, however, 65 can be set equal to zero without losing
accuracy.

Proteus 3-D Analysis Description 4.0 Linearization 31

PAGE ———— INTENTIONALLY BLANK

5.0 SPACE DIFFERENCING

To solve equation (4.17) an evenly spaced grid is defined in the computational (£, 7, {) coordinate sys-
tem. Spatial derivatives are then approximated by finite difference formulas. First derivatives in the ¢ di-
rection are approximated using the following second-order central difference formula.

of _ﬁ+1,j,k‘ﬁ—1,j,k '
(’a?) kT TR | -1
L

The subscripts i, j, and k represent grid point indices in the &, n, and { directions. The computational grid
spacing A¢ is constant, and equal to 1/(N, — 1), where N, is the number of gnid points in the ¢ direction.
Similar formulas are used for first derivatives in the » and { directions.

The non-cross derivative viscous terms in the ¢ direction in equation (4.17) all have the form '
0 d
52 [5 (gAQ)]

where Q represents one of the elements of é Using central differences this is approximated by

ac'??[Eaf(gAQ)].. ~ 6, f6,(880)]; ;1

i,j, k

1
=af (w112, 10688 1 12,5,k — Fi= 1727, 10 @BDi — 12,5, 1)

= (715)7 {fiv172,, kL@ 41 5,1 — ©BD); j 1]
—fio1j2,j,kLEAD); j, ke — @AD)i— 1, 1]}
- _2(A1_§)2_ {(fijiet fivr,j LEAD) 41,5, 10— (880Q); 5, i)
—(fijet ficr 0(EAD 1 — GAD): — 1,5, 1}
=TA1§-)-2-{(fi_x,j,k+ £ DEAD:_ 11k
—isn e Uogrt fio,, 080D 5k
+(foj et i1, 0@AD) 1, 1 (5.2)

Similar formulas are used for second derivatives in the » and { directions.

Cross derivative viscous terms in the &-y direction are evaluated using the following central difference
formula. .

PRECEDING PAGE BLANK NOT FILMED
Proteus 3-D Analysis Description 5.0 Space Differencing 33

a (.98
7{('57) | = 08,(/6,8)ijk
ij k

1
='2'E[fz:+l,j,k(5r,g)i+ Lk fie1, k(6p 8- 1,7 4]

1
=m[ﬁ+ Lkt 41,k &+ 1,710

—fic1 G &io -1, 0]

(3-3)

Similar formulas are used for the remaining cross derivatives. Note that this formula is only needed for the

source terms, since the viscous cross derivative terms are lagged one time level.

When first derivatives are needed normal to a computational boundary, such as for Neumann boundary
conditions, either first- or second-order one-sided differencing is used. The first-order formula at the £ =0

boundary is :
of 1
(f) = E(fz,j,k—fl,j,k)
1,/ k

and at the ¢ = 1 boundary,

of 1

<6_§) ~ A—i(le,j,k—le—l,j,k)
NI K

The second-order formula at the & = 0 boundary is

: |
() = ghp(-3ns+ahiaFud
Lik

and at the ¢ = | boundary,

of 1
<¥) = ax U= 20— -1t 3,0
Nu.J k

Similar formulas are used at the computational boundaries in the » and ¢ direction.

(5.4)

(5.5)

(5.6)

&)

‘34 5.0 Space Differencing | h Proteus 3-D Analysis Description

6.0 BOUNDARY CONDITIONS

Choosing boundary conditions is perhaps the most important step in solving a flow problem with
Proteus. Since the equations being solved at interior points are the same for every problem, the boundary
conditions are what determines the final flow field for steady flows.

With the difference formulas presented in Section 5.0, N., boundary conditions are required at each
computational boundary, where N,, is the number of equations being solved. Note, however, that this is
a numerical requirement, not a mathematical one. For example, for one-dimensional Euler flow N,, = 3.
However, characteristic theory shows that, mathematically, only two conditions may be specified at a sub-
sonic inflow boundary, and only one at a subsonic outflow boundary (Pulliam, 1986a). Some sort of ex-
trapolation is typically used for the additional numerical boundary conditions.

A variety of boundary conditions are built into the Proteus code, including: (1) specified values and/or
gradients of Cartesian velocities %, v, and w, normal velocity V,, coordinate direction velocities V, V,, and
V;, pressure p, temperature T, and density p; (2) specified values of total pressure pr, total temperature Tr,
and flow angles; (3) linear extrapolation; and (4) spatial periodicity. Another useful boundary condition is
a “no change from initial condition” option for u, v, w, p, T, p, pr, and/or Tr. Provision is also made for
user-written boundary conditions. The boundary conditions may be steady, unsteady, or time-periodic.
The exact combination of boundary conditions to be used will depend on the problem being run.

The boundary conditions in Proteus are treated implicitly. They may be viewed simply as additional
equations to be solved by the ADI solution algorithm. And, in general, they involve nonlinear functions
of the dependent variables. They must therefore be hinearized using the procedure described in Section 4.0.
The following sections describe this linearization for the general types of boundary conditions currently built
into Proteus.)

6.1 NO CHANGE FROM INITIAL CONDITIONS, Ag=0

" This boundary condition simply sets the boundary value of the function - equal to its initial condition
value. It can be written as .

Ag'=g"t'-g"=0 (6.1)

In general, g can be a nonlinear combination of the dependent variables (A) Linearizing g using the proce-
dure described in Section 4.0, we get

n _
)
gt =g"+ (—f—) AQ" + O(Ar)? (6.2)
Q
Neglecting the O(At)? linearization error, the linearized form of equation (6.1) can thus be written as
a n
g A
()) 2= (63)
oQ
6.2 SPECIFIED FUNCTION. g=f
A specified function at a boundary can be written simply as
£ =r (64)

Proteus 3-D Analysis Description 6.0 Boundary Conditions 35

where g is the function being specified and f'is the value being specified. Note that f can vary along the
boundary, and can be time-dependent. Using equation (6.2) and neglecting the linearization error, the
linearized boundary condition becomes

0 " A
(2) AQ" =f-¢" (6.5)
oQ

6.3 SPECIFIED COORDINATE DIRECTION GRADIENT, dg/d¢ =f

A specified gradient of a function in a coordinate direction can be written as

ag n+1 :
(%) = ©o

where g is the function whose gradient is being specified, f is the specified value, and ¢ is the coordinate
direction &, u, or {. Note that f can vary along the boundary, and can be time-dependent.

The linearized form of g is given by equation (6.2). The hnearized form of equation (6.6) can thus be
written as :

2\ a \ anl|_ 2
<a¢)+a¢ (aé)AQ — f+ O(A7) (6.7)

Replacing differential operators with difference operators and neglecting the linearization error, the
linearized boundary condition can be written as

g " An n ’
5 8) aQ" |=f-6 (6.8)
¢ < 2Q) ol

..here &, represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either first-order two-point or second-order three-point differencing.

Note that this boundary condition is a specified value of the derivative with respect to the computational
coordinate, not with respect to the physical distance in the direction of the computational coordinate.
Following Korn and Korn (1968), and using the properties of the generalized coordinate transformation, it
can be shown that for the & direction the two derivatives are related by

2 __1 %
where

Gy =~ [= naky)* + (rck = mak) + (=]

Similarly, for the » direction,

22 __1
2

5y /G'm

4
on

where

36 6.0 Boundary Conditions Protéds 3-D Analysis Description

G = (6 = G + (= 80"+ (8ily = 400]

And, for the ¢ direction,

b __ 1
0s; G

5(! l(§ 112 5)2 ' (éz”x 6!”2)2 (ﬁx’ 5 llx)zl

If the value f= 0, of course, the two derivatives are equivalent.

6.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vg.n =f

A specified gradient of a function normal to the boundary can be written as
ve"tlan=f (6.9)

where g is the function whose gradient is being specified, fis the specified value, and n represents the unit
vector normal to the boundary. Note that fcan vary along the boundary, and can be time-dependent.

For illustrative purposes, assume we are specifying a gradient normal to a constant ¢ boundary. Then
v¢
V&l

m=rJEE+EF+ 8]

Il

: 1 = 1 ;
+om sy T ez

1

1
=7£x

n =

where

Equation (6.9) can then be written as
l .
7n—(g£+lfx+g;+]§y+g;+lfz)=f . (6.10)

Using the chain rule to expand gz*!, g7*!, and g2+,

1 1 1
gt =gt g T iner gl T s

1 1 1
gt =gttt el
gtl=gtle gt et

Substituting into equation (6.10) and rearranging,

A+ e+ T Canet Gy) &L T L G+ EL) =S

Solving for g7+,
P n+1 3 n+1 3 n+1
(£) -F-rearene m)(—a%) g Edet by + o F) 6w

m

Now, in order to incorporate this equation into the ADI solution procedure used in Proteus, the dg/dn and
dg/d¢ terms in equation (6.11) are lagged one level, and evaluated at time level n instead of n+ 1. Strictly
speaking, this introduces an O(Ar) error into the solution. In practice, however, the actual error will depend

Proteus 3-D Analysis Description 6.0 Boundary Conditions 37

on the degree of nonorthogonality of the coordinates near the boundary. For orthogonﬂ coordinates no
error is introduced.

Using equation (6.2), and introducing difference operators and neglecting the linearization error, we can
now write the linearized boundary condition as

ag \ A n ,,
5{ (aé) AQ =7fn'._—#(fxnx+€y’7y+ éz'lz)é,,g ——’;—2(§x§x+5ycy-+ éz:z)éggn“égg (6.12a)

where &, represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either first-order two-point or second-order three-point differencing.

Note that the unit vector 7 in equation (6.9) is in the direction of increasing £. Therefore, a positive
value for fin equation (6.12a) indicates a flux in the direction of increasing §. Thus, a positive fat § =0
implies a flux into the computational domain, and a positive f at ¢ = 1 implies a flux out of the computa-
tional domain.

Specifying a gradient normal to a constant # or { boundary is done in an exactly analogous manner.
The resulting equation for an n boundary is

g\ A) -
5, (aé) AQ" | = 7{,— - 7:7 (nxéx +my&, +n8,)0:,8 — Lz Lz + myly +nL)08" — 6,8" (6.12b)
m

where

/2 2 2
m=/Nx +7Iy +7;

For a { boundary the equation is

0 i An n n n
5 (£) AQ =%—;‘2—(cxéx+cyfy+czfz)é¢g —#(anx+cyny+62nz)5,’g — 58" (6.120)

m=Jt2+ 0+

A positive value for fin equation (6.12b) indicates a flux in the direction of increasing . Thus, a positive
fat n =0 implies a flux into the computational domain, and a positive f at # = | implies a flux out of the
computational domain.

6.5 LINEAR EXTRAPOLATION

Linear extrapolation from the two adjacent interior points is also available as a boundary condition.
At the & = 0 boundary, where i = 1, this can be written as

gl =2l gl =0 (6.13)

Note that this is equivalent to setting (32g/0¢%);., = 0. Using equation (6.2), we can write the linearized
boundary condition as : .

n n P n
a JAY a A a A
(f) AQ?—2< f) AQ?+1+<_§—> AQ?+2=—8?+28?+IV_31‘"+2 (6.14)
oQ i oQ i+1 oQ i+2

38 6.0 Boundary Conditions Proteus 3-D Analysis Description

Analogous extrapolation boundary conditions can easily be written for the remaining boundaries.

Proteus 3-D Analysis Description 6.0 Boundary Conditions 39

pAGE.__ INTENTIONALLY BLANK

7.0 SOLUTION PROCEDURE

7.1 ADI ALGORITHM

The governing equations, presented in linearized matrix form as equation (4.17), are solved by an alter-
nating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Briley and
McDonald (1977), and by Beam and Warming (1978). Although the split equations can be developed in
more than one way, in this discussion the approximate factorization approach is used.

Letting LHS(4.17) represent the left hand side of equation (4.17), we can write

0.5 n O, s~ oF s~ 3G .
LHS(4.17) = 1+_‘_L 2. 61;: -1 +2 .._af_.. :’1 +-2 _‘3%_—:’1 AQ" (.
T+ %\ aq ag) M\ 2@ a0) %\ @ aQ

where I represents the identity matrix. Note that in this equation, using the §/9¢ term as an example, the
notation used is meant to imply '

s 2E . A, 3,
2 E) fab=F Ead-—1a0
t\ e aQ P\ 2Q 2Q
The term in braces in equation (7.1) can be factored to give
' ok, \ | A oF "
LHS(@.17)=| 1+ f‘Ag o 1+#g—_:_ if___:’l\)
+6; X\ 50 3Q th M\ e @)
B n & T o[n A « A
L8 o (06 2w Aén_(814) o[ok _%n Yo o %n
| T+0; X\ 26 2% 1+06, B\ 50 26)\ 26 54
ook _En Yo o6 %n)\ of of %vi)of a6 %O)| 4
X\ a0 20 %N\ Q@ aQ m\ 20 8q JE\ o aQ
3 A & A ~ A - "
_(6,4) o2k _%n o of _Mn\af a6 %], 72
1+0, 2\ 20 20 /M \ 26 o6 JE\ 6 o0 |

The last two terms represent the splitting error. Note that, since AQ* = O(A1), these terms can be neglected
without affecting the overall time accuracy of the algorithm, even when second order time differencing is
used.

PRECEDING PAGE BLANK NUT FILMED

Proteus 3-D Analysis Description 7.0 Solution Procedure 41

Equation (4.17) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation
and splitting error terms, becomes

. n n n
68t o5 [2E %En 8.8t 5 [of Fy 8.8: 5 [a6 9w ~n
1+ L2 1+ 2 (£t I+ 2) |ad-

46 %\ 20 o6 40 01\ 26 00 40 X\ 20 20

n A A A n A A A n
_ A A ~ . OEy,, OF, 3G, 1+0JaAr [9Ey, OFp Gy
At (as+ar+ac)+A. ((I W 1 +(YA R 2

T+6, \ ¥ T & 1+6, \ o o o 1+, oz an oC
A A A n-1
;A7 OEy, oFy, 3Gy, 8, Ano1
'1+92< % Yt TTa +t17e, 2¢ @3

Equation (7.3) can be split into the following three-sweep sequence.

Sweep 1 (& direction)

n

n A
6,Ar 5 oF 6‘ _ 6;At7 5 OEy, A(/,\)* _
1+6, 8¢ A 1+8, 8¢ 56_

oQ

A A AR A A A

_ A (B OF L G , A FEy, |, Iy Gy
T+6,\ 0 "oy T & T+6, \ 98 T T &

A x
AQ +

n

n n—1

. A A A N A I
(1+85)Ac (oEy,, oFy, aGV,) e <aEV2 oFy, acV2>

1+6, % T tTTa | T1+6,\ 9 TTam &

P An—1
—_c 7.4a
+ 16, AQ ()

Sweep 2 (n direction)

n
x% 9 A £ =z B A aF N xx Nx
i | ()b |5 | (55) 07 |0 0w
2 oQ 2 aQ
Sweep 3 ({ direction)
n " n
A
n 6,47 3 oG An 84t 5 aGVl An | LA™
AQ" + T+0, o (aé) AQ 1506, o 66 AQ =AQ (7.4c)

In the above equations, Q° and Q** represent intermediate solutions to the governing equations.? It should
be noted that in Proteus, physical (i.e, n+ 1 level) boundary conditions are used during the first two ADI

A A A A A A
2 The notation here is somewhat inconsistent. The quantity AQ = Q*!—-Q~ but AQ"=Q" — Q*, not

Or+1— Q". Similarly, AQ™ = Q™" = Q% not Qn+1 — Q"

42 7.0 Solution Procedure Proteus 3-D Analysis Description

sweeps. This introduces an O(Ar) error in 6Q/d on the boundary for unsteady flows, but no error for
steady flows. This point is discussed in detail by Briley and McDonald (1980).

Applying the spatial differencing formulas of Section 5.0 results in

Sweep 1 (# direction)

n n n
A ox eA r x 4 Ax T A%
89} +rear | —° E) AQ +@e-n| E)ag+a-of E) aQ,,
(1+02)8¢ Q). 2Q)

i i+1
6,Az nn AN n_n,A* . n_n A*
[+ G- 18Q_ — (i + 2+ i)& AQ + (it i 1) 8418Qu 4 =
(1+8)(A%) :
A A A A A A A A ’
- +’02 (8;E+ 6,F + 5,G)" + T +’02 (6;Ey, + 8,Fy, +6,Gy,)"
(1+93)AT A A A a\p 93A1’ A A A \n—1
—Tre (8:Ey, + 6,Fy, +6,Gy)" — e, (8:Ey, + 6,Fy, + 6,Gy,)
6, An—1 . (7.52)
*T3g, 29

Sweep 2 (» direction)

>
>
>

)A6;‘+(1-a)(j) AQ

J J+1

n
Aé*t BIAT F;) A/\:u 2] 0
J +(1+92)A;: a 3 Qj—l"'(“‘) 5
j=1

0 AT nn A xx nn N xx non A xx
—m[(ﬁ_ﬁﬁ)gququ-(J’}q+2fj+f}+1) g'aQ) + (f+ 408 18Q 4] =
2

AQ

o>
>
o>

(7.5b)

Sweep 3 ({ direction)

n . n n
A 0,A a& A G A G O
AQZ+W "“<_/\) AQZ—I'*‘Q““D(6?) AQZ'*'(I_“)(6?) AQ:Wl
2 /), Q /, Q /i

elA‘t' A ’ ’ A A
———T[(ﬁc—l + L8 AQG_ — Sy + 2+ S)ERAQE + e+ i s)8k +18Q0 + =
(I+6,)(A%)
A(AQ" (7.5¢)
The subscripts i, j, and k represent grid point indices in the ¢, #, and { directions. For notational conven-
ience, terms without an explicitly written 7, j, or k subscript are understood to be at , j, or k. In the viscous
terms on the left hand side, fis the coefficient of 8/8¢ (or 8/dn or 8/8(, depending on the sweep) in the

6]%,,,/6(’\2 (or 5f“y,/06 or 8f;y,/66) Jacobian coefficient matrix. Similarly, g is the term in the parentheses

following 8/3% (or 8/én or 8/3¢) in the dEjQ (or 6Fy,/0Q or 8Gy,j@Q) Jacobian coefficient matrix,
Equations (7.5a) through (7.5c) represent the three-sweep alternating direction implicit (ADI) algorithm
used to advance the solution from time level nto n+ 1.

Proteus 3-D Analysis Description 7.0 Solution Procedure 43

7.2 MATRIX DNVERSION PROCEDURE

7.2.1 Non-Periodic Boundarv Conditions

" The complete set of algebraic equations for the first ADI sweep with non-periodic boundary conditions
can be written in the following block matrix form.?

N %
B € A A?x 1
Ay B G AQ, S,
Nx
A; By G AQ, S;
. . = . (76)
- N ‘. -
Ay -2 By-2 Cy A?N,—z Sy, -2
Ay, -1 By—1 Gy Asz, -1 Sy, -1
Cn, AN, B, AQy, N,

These equations result from the application of equation (7.5a) for i = 2to N, — 1, with boundary conditions

added at i= 1 and i = N;. The parameter AQ" is the N,.-element vector containing the unknown dependent
variables; A, B, and C are the N,, x N,, coefficient submatrices at i — 1, i, and i + 1, respectively; and S is
the N,-clement subvector containing the explicit source terms. Also, A’, B’, and C’ are the coefficient
submatrices and S' the source term subvector for the boundary conditions. A variety of boundary condi-
tions may be used. They are described briefly in Section 6.0, and in greater detail in Volumes 2 and 3.

Note that the equations at the boundaries may contain coefficients at the bonndary point and the two
adjacent interior points. This occurs, for example, when extrapolation or second order gradient boundary
conditions are specified. As written, therefore, the coefficient matrix in equation (7.6) is not block

tridiagonal. However, A] can be eliminated by multiplying the second row of the matrix by Aj C5! and
subtracting from the first row. C'y, can be eliminated in a similar manner. Doing this, we define

B, =B — A, C;'A,
C,=C; —A C7' (7.7)
S, =8 —A 7!
and
Ay =AYy - Cy, AE,‘- 1By, -1

By =By — Cy Ay Cy (7.8)

’) -1
Sy, =S —Cy Ay 1Sy, -1

3 Although this discussion is written for the first ADI sweep, an exactly analogous procedure is followed for the
second and third sweeps.

44 7.0 Solution Procedure Proteus 3-D Analysis Description

The set of algebraic equations solved during the first ADI sweep can now be wntten as

A%
B, C AQ, S
Ax
A B G A?z S,
A; By G AQ; S;
L] L = - (79)
- A‘. -
Ay,—2 By-2 Cy—» A?N, 2| |Sw -2
Ay—1 By 1 Cy AQ/,y, —1| |Swm -1
i 1 |

Since the coefficient matrix is now block tridiagonal, the equations can be solved using the block matrix
version of the Thomas algorithm (e.g., see Anderson, Tannehill, and Pletcher, 1984). The procedure can
be summarized as follows:

1. Define D, = B,.

2. Compute E, = D;!C, and AQ =Di’S,.

3. Fori=2to N, compute
D;=B;—AE;_,

Ei=Di—lCi

A _ . n
AQ; =D; (S;~ AAQ;_)
(Actually, E; is only needed for i=2to N, — 1.

4. Then, set AQy, = AQ'y,.
5. Finally, for i= N, — 1 to 1, compute A(AQ.» = Aé,’- - E,-A(A)H,.

In the Proteus code, in step 2 E, and Aéi are actually obtained by solving D,E, = C, and DIAQ{ =8
using LU decomposition of D. A similar procedure is used to compute E; and AQ; in step 3.

7.2.2 Spatially Periodic Boundary Conditions

In computational coordinates a spatially periodic boundary condition in the ¢ direction may be repres-
ented as shown in Figure 7.14

4 Asin Section 7.2.1, this discussion is written for the first ADI sweep, but an exactly analogous procedure is followed
for spatially periodic boundary conditions in the second and third sweeps.

Proteus 3-D Analysis Description 7.0 Solution Procedure 45

)
Ny @ o o o
No-1Q o -0 o
20 o 0 o
j=1 60— = S B
i=1 2 N\ YA N1 €

Figure 7.1 - Spatially periodic boundary condition.

The grid points along the i =1 and i = N, lines are “similar” in the geometric sense, and have the same
flow solution. Therefore, for a spatially periodic boundary condition in the ¢ direction, Q, = (A)N,.

To implement this boundary condition, an additional set of points is added at i= N, + 1, setting

QM +1=Q,. This allows us to use central differencing in the ¢ direction at i = .|, computing the coeffi-
cients in the same way as at the interior points.

46 7.0 Solution Procedure Proteus 3-D Analysis Description

The resulting set of algebraic equations will consist of Ny — 1 equations (for i=2 to Ny, with NV, + 1
unknowns. The block coefficient matrix thus has N, — 1 rows and N, + 1 columns, as follows:

A x
] 1 aQ; _ -
A x
Ay By G : AQ, S,
A]
A; By G : A?z S;
A, B, C, AQ, Ss
» . = L (710)
L R *' L
Ay—2 By-a Cy o A?Nl—2 Sy, -2
Ay -1 By-1 Cy— AQI/‘\G -1 Sy, -1
N g
B) AQNl +1 - N

These equations result from the application of equation (7.5a) for i=2to Ni. Asin the previous section,

parameter AQ” is the N,,-element vector containing the unknown dependent variables; A, B, and C are the
N., x N., coefficient submatrices at i — 1, i, and i + 1, respectively; and S is the N,,-element subvector con-
taining the explicit source terms. '

Since (:)_1 = éN, and (A)z = (A)N, +1, equation (7.10) can be rewritten with N, — 1 unknowns as:

A%
B, G A, aQ, S,
A x
A3 By G AQ; S3
A x
A4 B4 C4 AQ4 S4
. A (7.11)
L) A *- -
Ay —2 By -2 Cy > _ A?N, —2| |Sw -2
Ay—1 By 1 Gy AQ/X', -1 Sy, -1
Cy, Ay, By, AQy, Sx,
L . L -

An efficient algorithm to solve this system can be derived that is similar to the Thomas algorithm for
block tridiagonal systems. The procedure can be summarized as follows:

1. Define D;=B; and F; = Cy,.

2. Compute E; = D51Cy, G, =D5'A,, and AQ} = D;'S,.

Proteus 3-D Analysis Description 7.0 Solution Procedure 47

3. Fori=3to N, — 1, compute

D;=B,—AE;_,
E,=D;'C
F=-F_\E_,
G;=-D;j 'AG,_,

A A
AQ; =D; (§;,—AAQ;_)

4. ‘Compute
Gy —1= DXIK— Cx, -1 — Ax, - 16y, - 2)
Fy_1=Ay—Fy Ex_»

N -1
DNl =By, — Z FG;
i=2

N -1

A — 1 N,

AQy, =DF![sy, —). FaQ;
i=2

5. Then, set Aéyl = Aé’y‘.
‘6. Compute AQy, 1 =AQ%, -1 — Gu,- ,AéNl.
7. Finally, for i= N, — 2 to 2, compute Aé,— = A(A){- — E,—A(A),-H - G,-AéN,.

In the Proteus code, in step 2 E,;, Gz, and Aé; are actually obtained by solving D,E,=C,,
,G; = A;, and D,AQ: =S, using LU decomposition of D. A similar procedure is used to compute E,,
G, and AQ! in step 3, and Gy, -, and AQy, in step 4. '

7.3 _UPDATING BOUNDARY VALUES

With the ADI algorithm described in Section 7.1, if gradient or extrapolation boundary conditions are
used for the first or second sweep, the boundary values from the first two sweeps must be updated after the
third sweep. This point is easiest to illustrate by looking at a figure.

In Figure 7.2, a 4 x 4 x 4 grid is shown in computational space for a three-dimensional problem. This
example assumes that no spatially periodic boundary conditions are being used. The circles represent grid

points at which the intermediate values Q" are computed during the first ADI sweep. These include the
boundary points at ¢ =0 and ¢ = 1. The squares represent grid points at which the intermediate values
Q™" are computed during the second ADI sweep, including the boundary points at y =0 and y = 1. The

triangles represent grid points at which the final values Q"+! are computed during the third ADI sweep,
including the boundary points at { = 0 and { = 1. If gradient or extrapolation boundary conditions are used
during the first and/or second sweep, so that the boundary values depend on the interior values, then the
intermediate values at the & and/or # boundaries must be updated after the third sweep to be consistent
with the final values at the interior points.

To do this, after the last sweep the difference equations are rewritten and solved at the £ and » bound-
aries. At the ¢ =0 boundary,

48 7.0 Solution Procedure _ Proteus 3-D Analysis Description

| WA, N

O O
- W SRR
A om’
0 _ L.~ - -
A oo’ O Sweep 1
P O Sweep2
o o | _-‘<8-8- B Sweep3
n/\ O e -
”~
>§
¢
Figure 7.2 - Updating boundary values.
B, "AQ} + C; "AQL + A} "AQ =S, " (7.12)

The subscripts refer to the value of i, the index in the ¢ direction. This equation is applied for j=2 to
N, — 1 in the » direction, and for k=2 to N; — 1 in the { direction. For notational convenience, however,
the subscripts j and & have been omitted.

All the terms in equation (7.12) are known except Aé’f. Solving,

AQ} = B, ™ (S} " - C; "AQ] — A "AQY) (7.13)
At the ¢ = 1 boundary,
o "AQT A%y "AQ" B, "AQ% =S\ " 7.14
v, AQy, _2+ Ay, "AQy, _, + By "AQy =Sy, (7.14)
A T N , a s A
AQY, =By, (S," — Cy,"AQy, 5 — A, "AQY _)) (7.15)

An analogous procedure is followed to update values at the = 0 and # = 1 boundaries.

Finally, note from Figure 7.2 that new values are not computed at the corners or edges of the compu-
tational domain during the solution algorithm. To make the edge values consistent with the rest of the flow
field, in Proteus they are defined using the computed values at adjacent points. For example, at each ¢ lo-
cation along a ¢-n edge (i.e., one of the four lines of intersection between the ¢ and # boundary planes), the
density p and total energy Er are arbitrarily defined by linearly extrapolating from the two adjacent points
in the ¢ and #» coordinate directions, and averaging the two results. The edge values of the velocities are
updated by doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity
whose absolute value is lower is used. This was done to maintain no-slip conditions at duct inlets and exits.
The values at corners, where all three boundary planes intersect, are determined in an exactly analogous
manner.

Proteus 3-D Analysis Description 7.0 Solution Procedure 49

Updating boundary values from the first two sweeps is complicated somewhat when spatially periodic
boundary conditions are used. Details are presented in the description of subroutine BVUP in Volume 3.

50 7.0 Solution Procedure 7 Proteus 3-D Analysis Description

8.0 ARTIFICIAL VISCOSITY

With the numerical algorithm of Section 7.0, high frequency nonlinear instabilities can appear as the
solution develops. For example, in high Reynolds number flows oscillations can result from the odd-even
decoupling inherent in the use of second order central differencing for the inviscid terms. In addition,
physical phenomena such as shock waves can cause instabilities when they are captured by the finite dif-
ference algorithm. Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress
these high frequency instabilities. Two artificial viscosity models are currently available in the Proteus
computer code - a constant coefficient model used by Steger (1978), and the nonlinear coefficient model
of Jameson, Schmidt, and Turkel (1981). = The implementation of these models in generalized
nonorthogonal coordinates is described by Pulliam (1986b).

8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The
standard explicit smoothing uses fourth order differences, and damps the high frequency nonlinear insta-
bilities. Second order explicit smoothing, while not used by Steger or Pulliam, is also available in Proteus.
It provides more smoothing than the fourth order smoothing but introduces a larger error, and is therefore
not used as often. The implicit smoothing is second order and is intended to extend the linear stability
bound of the fourth order explicit smoothing. ' . '

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms
to the right hand side of equation (7.5a) (i.e., the source term for the first ADI sweep.)

e(Ez)ATVA VAQ+V,A —&VA2 V A2Q + (V,A,)° 8
7 (V:4;,Q +V,4,Q + V,AQ) 7 [(;g)Q'*(nn)Q'*‘(gg)Q] (8.1)

where ¢@ and @ are the second- and fourth-order explicit artificial viscosity coefficients. The symbols V
and A are backward and forward first difference operators. Thus,

VeQi=Q:—Q; -,
A,Q; = Qi1—Q
Ve Qi=Qi 1 —2Qi + Qi
(V§A§)2Q,~= Qip2—4Q;; +6Q,—4Q,_+Q;_,

Equivalent formulas are used for differences in the » and { directions.

A few details should be noted at this point. First, the sign in front of the artificial viscosity term being
added to equation (7.5a) depends on the sign of the “i” term in the difference formula. For damping, that
term must be negative when added to the right hand side of the equations (i.e., explicit artificial viscosity),
and positive when added to the left hand side (i.c., implicit artificial viscosity.) See Anderson, Tannehill,
and Pletcher (1984) for details. Second, the terms being added are differences only, and not finite difference
approximations to derivatives. They are therefore not divided by A, etc. Third, the variables being dif-

ferenced are Q, not Q. As noted by Pulliam (1986b), scaling the artificial viscosity terms by 1/J makes them
consistent with the form of the remaining terms in the equations. Fourth, the terms are also scaled by Az.
This makes the steady state solution independent of the time step size (Pulliam, 1986b). And finally, note
that the fourth-order difference formula cannot be used at grid points adjacent to boundaries. At these
points, therefore, the approprate fourth-order term in expression (8.1) is replaced by a second order term.
Thus, for points adjacent to the ¢ = 0 and ¢ = 1 boundaries, — ¢PAz[(V,A,)?Q]// is replaced by

Proteus 3-D Analysis Description : 8.0 Artificial Viscosity 51

)
ep At
+ 7 V_;AEQ 8.2)

A similar expression is used at points adjacent to the n and ¢ boundaries.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the
equations specified.

AgJAQ")] to equation (7.52)

£]AT

[V,A,(/AQ")] to equation (7.5b) (8.3)
g AT Ay .
~ L2 [V,A0aQM] to equation (7.5¢)

Note that the addition of the artificial viscosity terms, in effect, changes the original governing partial
differential equations. At steady state, the difference equations with the artificial viscosity terms added ac-
tually correspond to the following differential equations.’

__+___+ - + (M) —S= + (A7)
o

of o6 _oky by o6y B L P00 P00
T 3 “Ter T e e T 28 o’ ac

e J & &
[(g BUD | O e (Q)]
o o’ o

The implicit terms do not appear, since they difference Aé, and in the steady form of the equations

AQ = 0. The artificial viscosity terms do not represent anything physical. The coefficients should therefore
be as small as possible, but still large enough to damp any instabilities. Although optimum values will vary
‘rom problem to problem, recommended levels are ¢ = O(1) and ¢; = 2¢@ (Pull’~m, 1986b). The recom-
mended level for ¢®, when used, is ¢ = O(1).)

8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by
Pulliam (1986b), but in the current notation, the following terms are added to the right hand side of

equation (7.5a).
(v 4 @ @
L i+1 i :
4 4 @ @
+ V’7 (7 + A (S'I AqQ — &y, AanArIQ)j
- J+1 J
4
k+1
5 These equations represent the use of the constant coefficient artificial viscosity model presented in this section. The
nonlinear coefficient model to be presented in Section 8.2 is more complicated, but the same principle applies.

RS

)](J '4,Q — ¢ ACVCACQ),(} (8.4)
k

52 8.0 Artificial Viscosity Proteus 3-D Analysis Description

The difference operation A;V,A,Q is given by
AV AQ=0Q; 15— 3Q 4 +3Q-Qi,y
In the expression (8.4), ¥ is defined as
Y=yt t+y,; (8-5)

where ., ¥, and ¥, are spectral radii defined by*

Ul +aJE2+&2+¢&]
x = Aﬂf
_ VI + ay ’7x2 + '7y2 + ’122 (8.6)
y- An

W +a G+

‘l’z A:

Here U, V, and W are the contravariant velocities without metric normalization, defined by
U=¢+lut+iyv+iw
V=n+nu+ nyv + nw 7 (8.7)
W={+{u+ly+Lw

and a= JyRTi, the speed of sound.

The parameters ¢® and ¢@ are the second- and fourth-order artificial viscosity coefficients. Instead of
being specified directly by the user, as they are in the constant coefficient model, in the nonlinear coefficient
model they are a function of the pressure field. For the coefficients of the ¢ direction differences,

(s(g))i = kyArmax(o; , 1, 64 05 }) (8.8a)
(5(§4))i = max[0, x,A7 ~ (5(52))‘] (8.8b)

where

P12t P
Piv11t 20+ P

(8.9)

G

Similar formulas are used for the coefficients of the and { direction differences.

The parameter o is a pressure gradient scaling parameter that increases the amount of second order
smoothing relative to fourth order smoothing near shock waves. The logic used to compute £ switches
off the fourth order smoothing when the second order smoothing term is large.

The parameters x, and x4 are user-specified constants. Like the coefficients in the constant coefficient
model, the optimum values will be problem-dependent, and are best chosen through experience. Cases have
been run with values of x, ranging from from 0.01 for flows without shocks to 0.1 for flows with shocks,
and x, ranging from 0.0002 for flows computed with spatially constant second-order time differencing to

6§ It should be noted that the grid increments A£, An, and A{ in these definitions do not appear in the corresponding
formulas presented by Pulliam (1986b). This is because the grids used by Pulliam are constructed such that
Af = An = Al =1, while in Proteus A = 1/(Ny — 1), An = 1/(N2 — 1), and Al = 1/(N; — 1). The definitions used
here for ., ¥,, and ¥, result in an artificial viscosity level equivalent to that described by Pulliam.

Proteus 3-D Analysis Description 8.0 Artificial Viscosity 33

0.005 for flows computed with spatially varying first-order time differencing. Pulliam (1986b) gives
k2= 0.25 and x, = 0.01 as typical values for an Euler analysis.

Like the constant coefficient artificial viscosity model, the nonlinear coefficient model requires special
formulas near boundaries. To apply (8.4) at i=2, ¢ is needed at /= 1. It is defined as

() = xy87 max(oy, o)

With the above definition, applying (8.4) at i=2 and i= N, — | requires ¢ at i=1 and i= N,. They are
defined as '

_ | —PatAap3—5p+2p
! Py + 43+ 5p, + 2p
= PN ~31 4PN —2— Py -1+ 2PN,
Py, -3+ 4PN, 2+ 5PN 1 + 2P,

O’Nl—

And, finally, applying (8.4) at i=2 and i= N, — ! requires A,V,A,Q at i=1 and i=N, — 1. There are
numerous formulas that could be used. The ones currently in the Proteus code are

BeVedeQu o1 =Qu—a = Q-3+ 9Qw -2 = 7Qu, -1 +2Q,

54 8.0 Artificial Viscosity Proteus 3-D Analysis Description

9.0 TURBULENCE MODEL

As noted briefly in Section 2.0, for turbulent flow the Reynolds stress and turbulent heat flux terms are
modeled using the Boussinesq approach. An effective viscosity is thus defined as p = g, + u,, where y; is
the laminar, or molecular, viscosity coefficient, and y, is the turbulent viscosity coefficient. Similarly, an
effective second coefficient of viscosity is defined as 4 = 1, + 1,, and an effective thermal conductivity coef-
ficient is defined as k= k, + k..

The turbulent coefficients must be computed using a turbulence model appropriate for the flow being
computed. In Proteus, turbulence is modeled using either a generalized version of the Baldwin and Lomax
(1978) algebraic eddy viscosity model, or the Chien (1982) low Reynolds number k-¢ model.

9.1 BALDWIN-LOMAX MODEL

For wall-bounded flows, (i.e., boundary layers), the Baldwin-Lomax turbulence model is a two-layer
model, with

(EDinner for y, <y
= ©.1)
(l-‘t)outer for In=Ip

where y, is the normal distance from the wall, and y, is the smallest value of y, at which the values of x, from
the inner and outer region formulas are equal. For free turbulent flows (i.e., mixing layers, jets, and wakes),
pe = (L)ourer- In the inner region, in addition to the Baldwin-Lomax model, an alternate expression first
presented by Spalding (1961), and later by Kleinstein (1967}, is also available.

9.1.1 Outer Region

The outer region turbulent viscosity is computed from
(HDouter = KCcpPF KlebFwakeRer (9.2)

where K is the Clauser constant, taken as 0.0168, C,, is a constant taken as 1.6, and p is the static density.

The parameter F,.. is computed from

E YmaxFmax for wall-bounded flows . 53
k — .
mae Cok ng-;mi for free turbulent flows
max

where C,« 1s a constant taken as 0.25, and

Var= V| - |V
4] lma.)l: ! lmin
where ¥ is the total velocity vector.

The parameter F,,, in equation (9.3) is the maximum value of

Proteus 3-D Analysis Description 9.0 Turbulence Model 55

y,,[?zl (l el A+) for wall-bounded flows
Fly,) = - (9.4
72| for free turbulent flows

and pn.. is the value of y, corresponding 10 Frex.

In a simple boundary layer analysis, with only one solid surface, the procedure for computing F{y,) and
F,.. is relatively straightforward. In a general Navier-Stokes analysis, in which any part of any boundary
may be a solid surface, the problem is more complicated. :

In Proteus, each grid point is labeled as either a wall-bounded point or a wake point. Wall-bounded
points are those for which at least one of the three grid lines through the point intersects a solid wall. All
other grid points are wake points.

For each wall-bounded point P, the grid line intersecting the nearest wall is determined. F(y.) is then
computed along that line, with y, equal to the distance to the wall nearest the point P,y Frx 1s defined
as the maximum value of F along the line, and ym. is the value of y, corresponding t0 Frn..- It has been
found that for wall-bounded flows the function F(y,) can have multiple peaks. In 3-D Proteus, the peak

nearest the wall 15 used.

- For each wake point P,.., the grid line intersecting the nearest boundary is determined. Next, the values
of ' V[~and lVl on that line are found. Two values of F(y,) are then computed - one with y, equal
to the distance from the point P,.. to the location of I V| ~, and one with y, equal to the distance to the

location of l I—}I . Two values of Fra and Yme are determined, for the two F(y,) arrays. As in the wall-
bounded case, yme is the value of y, corresponding to Frnox. The smaller yn., and the corresponding Fr.. are
the values finally used for computing Fue.

In equation (9.4), [ﬁ] is the magnitude of the total vorticity, defined as

)) 12
s (ow_ o ou_ ow oy _ ou]
|QI _[(oy 62) t\ oz " ox +(Ox 6y> -3

The parameter 4+ is the Van Driest damping constant, taken as 26.0. The coordinate y* is defined as

y+= Pyl Vn Re. = VTwewRe

Hy T By n

(9.6)

where u, = \/7./p.Re, is the friction velocity, 7 is the shear stress, and the subscript w indicates a wall value.
In Proteus, t, is set equal to y.,IQI .

The function Fx.s in equation (9.2) is the Klebanoff intermittency factor. For wake points, Fius = 1.
For wall-bounded points, :

ymax

-1
Crrep b 6
Fxies = (Criep)min + [1 — (CKIeb)min]l:I +B (‘M)] 9.7

This factor accounts for the experimentally observed fact that, as the free stream is approached, the fraction
of time the flow is turbulent decreases. In equation (9.7), B and Cg., are constants taken as 5.5 and 0.3,
respectively. (Ciie)ma 1S 2 constant normally equal to 0.0. However, when using the Baldwin-Lomax model
to generate initial turbulent viscosity values for the Chien k-¢ model (discussed in Section 9.2), (Cxiet)min 15
set equal to 0.1. This yields a small positive value for u, in the free stream, and has been found to minimize
starting problems with the k- model.

56 9.0 Turbulence Model 7 Proteus 3-D Analysis Description

9.1.2 Inner Region

The inner region turbulent viscosity in the Baldwin-Lomax model is

(4immer = p12| Q| Re, 9.8)
where / is the mixing length, normally given by

1= xcp,(1 - e 1) (9.9)
and « is the Von Karman constant, taken as 0.4.

A modified form of equation (9.9), proposed by Launder and Priddin (1973), may also be used. This
formula is most useful for flows with steep negative gradients of shear stress normal to the wall, such as
accelerated flows or flows with suction. Their modified formula for /is

1= pp(1— &Y ETIT) (9.10)
where
+_ T _ “Ia'
T == —
ﬂleI

and 7 is a constant taken as 1.7.

The iﬁner region turbulent viscosity may also be computed using an alternate expression first presented
by Spalding (1961), and later by Kleinstein (1967). In this model,

- + 1
(D inner = Hce KB[exu —l—wut —~) (K“+)2] (9.11)

where

v v
L 17

e VwlpwRe,

Again, in Proteus, 1. 1s set equal to ,u.,]Ql .

9.1.3 Turbulent Values of / and k

The turbulent second coefficient of viscosity is simply defined as
2
A,=—?u, : (9.12)

The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

k=5 Pr: (9.13)

where ¢, is the specific heat at constant pressure, and Pr; is the turbulent Prandt] number. In Proteus, the
turbulent Prandtl number may be treated as constant, or as a variable using the following formula (Wassel
and Catton, 1973): :

Proteus 3-D Analysis Description 9.0 Turbulence Model 57

1 C'Prd
p Cpr3 Helny
.

e CP’] Prx’ - exp(_ CPr2
Pripdm

(9.14)

Here Cr.i, Cpiz, Crss, and Cra are constants taken as 0.21, 5.25, 0.20, and 5.0, respectively, and Pr, = cu/fk;
is the laminar Prandt! number.

9.2 CHIEN &-¢ TURBULENCE MODEL

9.2.1 k-¢ Equations

The low Reynolds number k-¢ formulation of K. Y. Chien (1982) was chosen because of its reasonable
approximation of the near wall region and because of its numerical stability. Here k and ¢ are the turbulent
kinetic energy and the turbulent dissipation rate, respectively.” In addition, the Chien k-¢ turbulence model
was frequently used in past Navier-Stokes computations with good results (Nichols, 1990, 1991; Patel, Rodi,
and Scheuerer, 1985; Sahu, 1984.) The set of k-¢ equations are lagged in time and solved separately from
the Navier-Stokes equations to allow for code modularity in turbulence modeling. In Cartesian coordinates,
the three-dimensional equations for the Chien k-¢ model can be written using vector notation as

oW OF , 8G , 8H _
P +ot 2 +3, =S+T 7 (9.15)
where
k
W= [’;5] (9.16a)
1 ok
puk — Br 3=
R d
F= L (9.16b)
pue Re, HeTax
-PVk — ., Mk 5_;(“
_ Re, dy
G= 4 (9.16¢)
- R r 8 ay -
[ok
pwk — B
R E)
H = r 6: (9.16d)
PWET Re, Mooz
P, — Reps
S= c 2 (9.16¢)

7 It should be noted that in the Chien model, ¢ is actually the isotropic portion of the turbulent dissipation rate.
Throughout this manual, however, it is referred to as simply the turbulent dissipation rate.

58 9.0 Turbulence Model Proteus 3-D Analysis Description

and

_ou v w
Pi=ae t oy 9z
The turbulent viscosity is given by
2
me=Cup ==

Cu= Cﬁr(l —e Cf)
Cﬂ' =0.09

C; =0.0115

(9.16f)

(9.17a)

(9.17v)
(9.17¢c)
(9.17d)

(9.17¢)
(9.17f)
(9.17g)

(9.17h)

(9.18a)

(9.18b)

(9.18¢)

(9.19)

(9.19b)
(9.19)

(9.19d)

Note that the vectors W, F, G, H, and S are used in most standard k-¢ formulations (with different
constants), and the vector T is unique to the low Reynolds number formulation of Chien. The parameter
¥» is the minimum distance to the nearest solid surface, and y* is computed from y,. The production of
turbulent kinetic energy P; includes the full Boussinesq approximation for compressible flows. All of the

Proteus 3-D Analysis Description

9.0 Turbulence Model 59

above equations have been nondimensionalized using appropriate normalizing conditions.
Nondimensionalization of mean flow properties is discussed in Section 2.1. The turbulent kinetic energy
k and the turbulent dissipation rate ¢ have been nondimensionalized by «? and p,u/u,, respectively.

Following the procedure of Section 2.3, the following generalized grid transformation is used to trans-
form the k-¢ equations from physical (x, y, z, ¢) coordinates to computational (£, i, {, 7) coordinates.

&=4(x,2)

’1 = ’T(x’J’: Z) (9‘20)
{=0x,»2)

=1

Applying the generalized gnd transformation to equation (9.15) yields _
W+ Febe + Fone + Fli + Gy, + Gy + Gl + Hel, + Hon, + H L, =S+ T (9.21)
Although the above equations can not be put into exact strong conservation law form, the procedure

used to do so for the mean flow equations, described in Section 2.4, is nonetheless applied to equation
(9.21). The result is

oW _oF 3G , oH _a 4 |
g Ter Tag T ST (9.22)
where
v L [pk
W=7 [pS] (9.23a)
F<F.-F,-F, (9.23b)
o [Gxpuk+ Epvk + Zpwk]
Fe= J [& pue + éypv;; + &pwe (9.23¢)
a1 1 |mEt gt ok
D=J Re 2,2, .2 (9.23d)
r #;(éx + gy + 52)8§
) f‘ _1 1 l-‘k(‘fx’?x + éy”y + ‘sz’]z)k,, - l‘k(fxzx + Eycy + Ezcz)kg 0.23¢)
M7 T Rey | melExnx + ity + Eamdey = mBlx + &8y + S :
G=Gc—Gp—Gy ©(9.23f)
A | [nxprtk + mypvic+ oWk |
GC —J I:"IXPUS + nyPve + n,pwe | (9.23g)
2 2 2 T
A 1 1 | #xlnx+my+ 2k
Co=7 % 2, 2, 2 (9.23h)
& | u(nx + My +mz)e,
&1 1 [Eanxt Eyny+ Eandke — sl mby + nd kg (9.23)
M J Rer Pg(éx'?x + fy'ly + fzrl'z)s,g - #E("XCX + ﬂycy + nzcz)gc .
H=Hc - Hp— Hy (9.23))

60 9.0 Turbulence Model Proteus 3-D Analysis Description

no | [Cxpuk + Lypvk + L pwk]
He= T [Cxpus + Cyst +{,pwe (9.23k)
o= 77 e ik (9.231)
D7 J Re | w2+ Cﬁ + Cﬁ)eg_
ﬁ _ l (Sl + f_yCy + fzz:z)k; - Ilk(ﬂxgx + ’IyCy + 1124'2)k’7 (0.23m)
A 1 Py — Repe
S=7 : 9.23
T |Gy = Re,Cop 5 (9-230)
2 U
A Re, 3 k
T=7 2 pe= Y 12] (9.230)
Re

Note that in equation (9.23n), the term P involves derivatives with respect to the Cartesian coordinate
directions (see equations (9.18a-c.) These are evaluated using the chain rule.

9.2.2 Linearization of the k-z Equations

Solving equation (9.22) for 6“7/ d7 and substituting the result mto the time dxﬁerencmg scheme of Beam
and Warming (1978), given by equation (3.1), for 6(AW")[6-: and 6W"/6-r yields

n

rn B)AT aaFy aafp) aaF) HAGO aAGn | a8Fy) dAHY | dAHp) aAH A
A\V"-ng(-— 55ttt e T tTam X t— T + AS + AT

n

oF. oF, oF, 0G. aG, oG, oH. oH, oH
+A‘Z’(C D M C D+ M_ C D+ M+S+T)

T+6, \ "3t T e Tet " oan T oam " am & T & T &

+ AW 4 o[(e1 -1 92)(131)2, (A1)3:] 5.24)

1+92

Equation (9.24) is then linearized using the procedure described in Section 4.0. Let

=£’\Cy =aF—AD, C=£(i_c, D=E(‘Z—D' E=a—}i<-:-’]-'___..a_}i.D_, M____a§_' N=—QT_ (5.25)
W oW W oW oW oW AW W
be the Jacobian coefficient matrices, where
Eu+év+Ew 0
A={"* Y z 9.26
[0 St g+ £2w] (9-26)
TR Hh g+i(L) 0

B= ¢ (9.27)

0 L @+8+a(L

JRe, Het>x Ty T),

Proteus 3-D Analysis Description 9.0 Turbulence Model 61

c= |ty 0 ‘ (9.28)
0 nxt + Ny +nw

1 J
TRe- uk(ni+n§+n§)(-p—) 0
D= r T) ; (9.29)
0 TRo Pg("x+’7)2:+'1§)(7,‘)
r

n

Cau+ly+{w 0 :
E= TS :
[0 Lo+ L+ Ew (9.30)
A+ + () 0
F= 7 ¢ X p (9.31)
2, ,2
0 TRTer—#g(Cx"'Cy""Cz)(?—)g
k P K Py
ZC/‘TT(- —_ C,u 2 [1_ Re,
M= 5 € (9.32)
C,C, ==+ Re,C, —2Re,C,
- 2u 0
N=| pYiRe (9.33)
u_ -y
0 —— e
PynRer

The linearized form of equation (9.24) can now be written as

n

AW 4+

9,0t [o4aW) aBAW) ACAW) HDAW) | AEAW) 3(FAW)
oF o an on 4 ag

e - + - + - - M(AW) — N(AW)] =

n=1

0,80t [a(AF,) AG,) AAH,)
1+ 6, % T e T &

A A A A A A A A
oF oF oF oG oG oG oH SH ¢H A A 2 LY
At (_ c D M ¢, Lo M ¢ D, M+S+T)+ 2_aw-!

1+6, 7 T T em T am T am o T & T &

[0, ——-92 (At (A't):l | ©.34)

62 9.0 Turbulence Model Proteus 3-D Analysis Description

9.2.3 LU Factorization Algorithm for the k-¢ Equations

The LU factorization scheme used to solve the k-s equations is essentially the same as that described
by Hoffmann (1989). Letting RHS(9.34) represent the right hand side of equation (9.34), we can write

{Hlifg—[-8+ 2 (C- D)+ ZE-P- (M+N>]} A" = RHS(9.34) (9.39)
2

where I represents the identity matnx.

The Jacobian matrices 4, C, and E can each be split into two submatrices, such that each submatrix is
associated with the positive and negative eigenvalues of the corresponding Jacobian matrix. Equation (9.35)
can thus be rewritten as

0,A a + - 0 + - d + - " -
{1+W[5—§(A +4 HW(C +C HE(E +E)—————-———(M+N):|} AW" = RHS(9.34) (9.?6)

Using first-order upwind differencing for the Jacobian matnces 4, C, and E, and central differencing for
B, D, F, and on the right hand side, equation (9.36) becomes

6,A -+ + - — o+ + - — +
{I+1—+9—[64A +EAT+ECT+ 6, CT+GET+GE]

8,A

1l9 (6B + (6:B) + (6,D)" + G, D) + (6P +(6,F) + M+ N)]} AW = 1+0 [64(AFM)+5(AGM)+6((AHM)]
+ (—5rc+a Fp+8Fp—0,Gc+8 GD+6qGM—6(HC+6(HD+5(HM+S+T) (9.37)
+ 1+02 AW +o[(al———ez)(m) (AT)]

Note that the central differencing operators for B, D, and F have been split into forward and backward
differencing parts. Neglecting the temporal truncation and splitting errors, equation (9.37) can be approxi-
mately factored as

{l + ﬁ—Ag (647 +6,C* + 6 E* —(5,B) —(8,D) ~ (5;5-]} .

8,A
{l+ 1+e [6;47+6,C” +6/E” —(6:B) -6, ~ G —(M+ N)]} AW = RHS(9. 34) o [6:(AFM)+5(AGM)+6¢(AHM)]
+ =2 1+0 (- 8Fc+6, FD+<SFM—60C+GGD+<SGM—6;HC+6HD+5HM+S+’1‘) (9.38)

62 L Ga-1
rg, AW

+
This equation can then be split into the following two-sweep sequence.

Sweep 1 (upward)

6,At _ _ _ _ _ _ _ n Ae
{” 11+92 (6747 +6,CT+ 6 E" — (6B ~ (3,D)” ~ (D)]} AW =RHS(9.34) (9.3%)

Sweep 2 (downward)

n
8,At _ A Ae
{I +5 i 7 (654 +67C +6{E - (5B - (6,D)" - (5@1} AW" = AW (9.39b)

Proteus 3-D Analysis Description 9.0 Turbulence Model 63

9.2.4 LU Sweeping Procedure for the k- Equations

Non-Periodic Boundary Conditions

In the solution algorithm, the upward sweep is done first, then the downward sweep. When applied at
an interior point in the computational domain, equations (9.392) and (9.39b) each have just one unknown.
These equations are therefore solved point-by-point.

The upward sweep starts at the lower left front corner of the computational domain, point (2, 2, 2), and
marches along planes of constant i + j + k to the upper right back comer, point (¥, — 1, N;— 1, M3 —).

Equation (9.3%) is solved for the intermediate unknovm AW* at each point (i, /, k) using known informa-
tion at points (i—1,/,k), (i,j— 1,k), and (i,j, k— 1). This is possible because the left hand side of the
equation contains only backward dxffercncmg operators.

The downward sweep is in the opposite direction, from point (M — 1, N, — 1, N3 - 1) to point (2, 2,

2), again a]ong planes of constant i +j + k. Equation (5. 39b) is solved for the final unknown AW* at each
point (i, j, k) using known information at points (i + 1,/, k), (i,/ + 1, k), and (i, j, k + 1). This is possible
because the left hand side of the equation contains only forward dxfferencmg operators.

Spatially Periodic Boundary Conditions

A spatially periodic boundary condition in the £ direction may be represented as shown in Figure 7.1.

Following Section 7.2.2, an additional set of grid points 1s added at i = N, + 1, setting Wy, ., =W,. This
allows us to use central differencing in the ¢ direction at i = »,. The upward sweep therefore goes from
point (2, 2, 2) to point (N, N2— 1, N;— 1), and the downward sweep goes from point (N, N,— 1,
N3 — 1) to point (2, 2, 2). An analogous procedure is used for the periodic boundary conditions in the »
and/or { directions.

9.2.5 Updating Boundary Values for k-: Equations

For easy modification and easy accommodation of complicated boundary conditions for & and ¢, non-
periodic boundary conditions are treated explicitly in the solver. After the k and ¢ values at the interior
points are advanced in time, the values at the boundaries are simply computed from the new interior values
using the specified boundary conditions.

Spatially periodic boundary conditions in any sweep direction are treated implicitly, as described in the
previous section. For a penodic boundary condition in the ¢ direction, the &k and ¢ values at i = 1 are easily

updated by setting W, = \i’m- An analogous procedure is used for periodic boundary conditions in the n
and { directions.

9.2.6 Turbulent Values of 2 and k

The turbulent second coefficient of viscosity A, and the turbulent thermal conductivity coefficient k, are
defined as described previously in Section 9.1.3.

64 9.0 Turbulence Model Proteus 3-D Analysis Description

APPENDIX A - EXPANSION OF VISCOUS TERMS

In Section 4.2, the viscous terms in the governing equations are linearized. To do this, the elements of

Ey, Fy, and Gy, given in equations (2.17¢) through (2.17g) must first be rewritten in terms of the dependent
variables, and with derivatives in the Cartesian directions transformed to derivatives in the computational

A A A
directions using the chain rule. The non-cross derivative terms, involving Ey,, Fy,, and Gy, are then
A A

linearized using Taylor series expansion. The cross derivative terms, involving Ev,, F,, and Gy,, are simply
lagged one time step. This Appendix presents the fully expanded viscous terms required in the linearization

procedure.

The viscous term Ey is given by equation (2.17¢), which is repeated here.

Tl + Txyfy + 7,¢,
11 Txyéx + Tyy‘:y + Tyzfz (A1)
J Re Telxt+ Tyz‘fy + 7,8,

Bxéx+ By, + B2E;

A
EV=

where
Tex = 20Uy + MUy + v, + W)

Tyy = 20V, + A + 9, + W)
Ty = 2uw, + M + v, + W)
Ty = B(1g, + Vy)

Ty = p{ily + Wy)

Ty = (v, + W)

1
By=uty + VTyy, + Wiy, = _Pr, .

1
ﬂy = U‘L‘xy + VTyy + WTyz - —"“Prr qy

1
ﬁz=mxz+v"y2+w"zz“‘P_rrqz

dx = — kT,
9, =— kT,
q,=—kT,

The chain rule is used to transform derivatives in the Cartesian directions into derivatives in the com-
putational directions, resulting in

Tex = (2u + A&t + my, + L) + Ay + myvy + Evr) + AEwg + W, + Lawy)

Proteus 3-D Analysis Description A. Expansion of Viscous Terms 65

Tyy = (2 + A0y +mpvy + {yvp) + ALxiy +matty + L) + AEwg + mwy +Lwp)
22= (21 + D(Ewe + mpwy + Ewp) + AL + ntty, + Ex) + AV + v, + Eyv)
Ty = MGyl + oy + Lyup + Ly +mv, + L)
Trz = 1(S s + gy + Loty + Sxwy + 1w, + (W)
Tyz = #(S Ve + mvy + {vp + $ywe + myw, + (W)

Br=(2n+))(fxuuf + nxag, + Cxuug)
+ }(fyuv; + nyuv, + Cyuvg + ézuw§ + nauw, + Czuwg)
+ u(€vu; + nyvu + {yvup + E e + v, + L)
+ p(Ewiy + mwi, + {wi + S wwy + noww, + L wwy)
+ k(& Ty +nx T, + 8Ty

= (2u + A(&wvg + myw, +)
+ A& v + nyvu, + Ly + Ewe + nvw, + (W)
+ (8 + s, + Ly + & vy + nm, + ()
+ #(szV§ + nwv, + Czwvg + nyW§ + nyww,, + CyWWC)
+ k(& Ty + 0, T, + §,T)

B:=Qu+ 1)(52WW§ + nWWy, + CZWWC)
+ A wuy + mewiy, + L wir + Ewve + nwy, + Lowvy)
+ #(52‘“‘{ + nuu, + Cng + §xllW§ + nuw, + Cxuwg)
+ u(E g + n vy + L + Ewg + mw, + Lwe)
+ k(& Ty +n, T, + £, Tp)

The above expressions for the s and f’s are next substituted into equation (A). The & derivative
terms become elements of Evl, and the n and { denvative termms become elements of Eyz The resulting five
elements of Ey, (excluding the 1//Re, coefficient) are

(Ep), =0 | (A.22)
(ﬁyl)z = 2}(.52“{ + lfx(fxug + éyV§ + ézWE) + ,ufy(fyU§ + foE) + #52(621"{ + €XW§) ‘ (A.Zb)
(f:V,)3 = 2#53"; +)-Ey(fx”; + fyvg + Ezw‘g’) + P'fx(fyug + éxvg) + #52(52"{ + Eng) 7 (A.2c)

(Ey)a = 2n82wp + ALty + Epvg + Ew) + pEulEtty + Exw) + uEy(E7 + Eywy) (A.2d)

()5 = 2u(ms + Evvy + Ewwy) + 1E (&g + Euvy + Ewy)
+).fy(fxvu§ + Epwvs + Ewy) + A8 (S wup + Ewry + & wwy)
+ .ugx(éyvug + éxwf + ‘fzwug + éxwwg) + #'fy(fyuug + 61’”{ + 5zwvg + éywwg)
+ 8 S ag + Sy + Sy + Eyw) + K(EE + & + EDT, , (A.2¢)

For linearization it 1s convenient to rewrite the last element as

66 A. Expansion of Viscous Terms Proteus 3-D Analysis Description

A 2 y)
(Erps = D 1202, + 807 + w1 + (0 + DLty + ity + & E0m)]

+ % (207 + W)y + 2202 + W) + 800 +)1+ K&+ & + ENT, (A2

The elements of F v, and éy, have exactly the same form as those of ﬁy,, but with & replaced by » and ¢,
respectively.

The five elements of fiyz (again excluding the 1/JRe, coefficient) are

(f;VZ)l =0 (A.3a)

(EV2)2 = Zﬂgx(nxurl + cxug) + ']-fx(r’xur, + "yvy, + 'IZW,, + Cxug + Cyvg + Czwg)
+ p&(nyi, + vy + Lt + L) + wdln g, + nawy + L + Ewp) (A.3b)

Ep) = 2ugy(nyv, + {vp) + A8yt + myv, + W, + Exup + Lyve + Ewp)
+ ud x('lyun + NxVy + ‘:y”g + vag) + #éz(nzvr, + HyWy + 5:"; + Cng) (A.30)

A
(EV2)4 = 2#&2(’72“’7[+ Czwg) + ']“fz(rlxun + v, + W, + cxug + Cyvg + Czwg)
+ P'éx(nzur] + 'wan + Czug + Cxwg) + #fy(nzvn + r’ywy' + szg + Cng) (A3d)

(Ey)s = 26L& 1,04, + Leaag) + &y + L) + &l + Cww)]
+ A x(n s, + nyuv, + nuw, + Cxray + Cuve + { W)
+ A8y (vt + vy n Wy + Lo+ Gy + L)
+ A& {n Wi, + nywv, + nww, + Lwr + Eywve + {wwr)
+ u&xnyyu, + n v, + n Wi, + . owwy + i + e + Cwy + £ xwwp)
+ uy(nyus, + nxiv, + Wy, + nww, + Ly + L vy + {wvp + Lywwy)
+ pé na, + 1w, + 0w, + ny vy + ay + {wy + L + Lvwr)
+ k(& onx + Emy + EmITy + k(G + §8, + ELT; (A.3€)

The elements of f"yz have exactly the same form as those of tvz, but with ¢ replaced by » and » replaced

by ¢. Similarly, the elements of 6V2 have exactly the same form as those of IAZVZ, but with ¢ replaced by ¢
and { replaced by &.

Proteus 3-D Analysis Description : A. Expansion of Viscous Terms 67

crpnayg Y B

INTZ

PAGE

REFERENCES

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. (1984) Computational Fluid Mechanics and Heat
Transfer, Hemisphere Publishing Corporation, McGraw-Hill Book Company, New York.

Baldwin, B. S., and Lomax, H. (197'8) “Thin Layer Approximation and Algebraic Model for Separated
Turbulent Flows,” AIAA Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) “An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations,” AIAA Joumal, Vol. 16, No. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977) “Solution of the Multidimensional Compressible Navier-Stokes
Equations by a Generalized Implicit Method,” Journal of Computational Physics, Vol. 24, pp. 373-397.

Briley, W. R., and McDonald, H. (1980) “On the Structure and Use of Linearized Block Implicit Schemes,”
Journal of Computational Physics, Vol. 34, No. 1, pp. 54-73.

Cebeci, T., and Smith, A. M. O. (1974) Analysis of Turbulent Boundary Layers, Academic Press, New York.

Chen, S. C., and Schwab, J. R. (1988) "Three-Dimensional Elliptic Grid Generation Technique with Ap-
plication to Turbomachinery Cascades,” NASA TM 101330.

Chien, K. Y. (1982) “Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number
Turbulence Model,” AIAA Journal, Vol. 20, No. 1, pp. 33-38.

Douglas, J., and Gunn, J. E. (1964) “A General Formulation of Alternating Direction Methods. Part I -
Parabolic and Hyperbolic Problems,” Numerische Mathematik, Vol. 6, pp. 428-453.

Hoffmann, K. A. (1989) Computational Fluid Dynamics for Engineers, Engineering Educational System,
Austin, Texas.

Hughes, W. F., and Gaylord, E. W. (1964) Basic Equations of Engineering Science, Schaum’s Qutline Series,
McGraw-Hill Book Company, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) “Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81-1259.)

Kemighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book
Company, New York.

Kleinstein, G. (1967) “Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers,”
AIAA Joumal, Vol. 5, No. 8, pp. 1402-1407.

Kom, G. A., and Kom, T. M. (1968) Mathematical Handbook for Scientists and Engineers, McGraw-Hill
Book Company, New York.

Launder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Length Near
a Wall,” International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Nichols, R. H. {1990) "Two-Equation Model for Compressible Flows,” AIAA Paper 50-0494.

Nichols, R. H. (1991) “Calculation of the Flow in a Circular S-Duct Inlet,” AIAA Paper 91-0174.
NOT FILMED

e nK
RiGE BLA References 69

Proteus 3-D Analysis Description PREC‘E‘D‘NG P

Pulliam, T. H. (1986a) "Efficient Solution Methods for the Navier-Stokes Equations,” Numerical Tech-
niques for Viscous Flow Calculations in Turbomachinery Bladings, Lecture Series 1986-02, Von Karman
Institute for Fluid Dynamics, Brussels, Belgium.

Patel, V. C., Rodi W., and Scheuerer, G. (1985) "Turbulent Models for Near-Wall and Low Reynolds
Number Flows: A Review,” AIAA Journal, Vol. 23, No. 9, pp. 1308-1319.

Pulliam, T. H. (1986a) “Efficient Solution Methods for the Navier-Stokes Equations,” Nwmerical Tech-
niques for Viscous Flow Calculations in Turbomachinery Bladings, Lecture Series 1986-02, Von Kan’nan
Institute for Fluid Dynamics, Brussels, Belglum.

Pulliam, T. H. (1986b) “Artificial Dissipation Models for the Euler Equations,” AIAA Journal, Vol. 24,
No. 12, pp. 1931-1940.

Pulliam, T. H., and Steger, J. L. (1978) "On Implicit Finite-Difference Simulations of Three Dimensional
Flow,” AIAA Paper 78-10.

Sahu, J. (1984) "Navier-Stokes Computational Study of Axisymmetric Transonic Turbulent Flows with a
Two-Equation Model of Turbulence,” Ph. D. Thesis, University of Delaware.

Schlichting, H. (1968) Boundary-Laper Theory, McGraw-Hill Book Company, New York.

Spalding, D. B. (1961) “A Single Formula for the Law of the Wall,” Joumnal of Applied Mechanics, Vol.
28, pp. 455-457.

Steger, J. L. (1978) “Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Ge-
ometres,” AIAA Joumal, Vol. 16, No. 7, pp. 679-686.

Thomas, P. D., and Lombard, C. K. (1979) “Geometric Conservation Law and Its Apphcatlon to Flow
Computatxons on Moving Grids,” AIAA Joumal, Vol. 17, No. 10, pp. 1030-1037.

Towne, C. E., Schwab, J. R., Benson, T. J., and Suresh, A. (1990) "PROTEUS Two-Dimensional
Navier-Stokes Computer Code - Version 1.0, Volumes 1-3,” NASA TM’s 102551-3.

Vinokur, M. (1974) “Conservation Equations of Gasdynamics in Curvilinear Coordinate Systems,” Journal
f Computational Physics, Vol. 14, pp. 105-125.

Wassel, A. T., and Catton, I. (1973) “Calculation of Turbulent Boundéty Layers Over Flat Plates With
Different Phenomenological Theories of Turbulence and Variable Turbulent Prandtl Number,” Interna-
tional Joumnal of Heat and Mass Transfer, Vol. 16, pp. 1547-1563.

White, F. M. (1974) Viscous Fluid Flow, McGraw-Hill Book Company, New York.

70 References) . Proteus 3-D Analysis Description

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for rev'rewin% instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding t

is burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for _Information Operations and Reports, 1215 Jefterson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Offico of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
October 1993

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE

Proteus Three-Dimensional Navier-Stokes Computer Code—Version 1.0

Volume 1-Analysis Description

6. AUTHOR(S)

Charles E. Towne, John R. Schwab, and Trong T. Bui

5. FUNDING NUMBERS

WU-505-62-52

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8106

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-106337

11. SUPPLEMENTARY NOTES

Responsible person, Charles E. Towne, (216) 433-5851.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A computer code called Proteus 3D has been developed to solve the three-dimensional, Reynolds-averaged,
unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has
been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readabil-
ity, modularity, and documentation have been emphasized. The governing equations are solved in generalized
nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The
boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-
order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity
model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step
options are available for convergence acceleration. The documentation is divided into three volumes. This is the
Analysis Description, and presents the equations and solution procedure, It describes in detail the governing
equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space
differencing formulas, the ADI solution procedure, and the artificial viscosity models.

14. SUBJECT TERMS

Navier-Stokes; Computational fluid dynamics; Viscous flow; Compressible flow

15. NUMBER OF PAGES

72

16. PRICE CODE
A04

17. SECURITY CLASSIFICATION

18. SECURITY CLASSIFICATION

19. SECURFY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
T —

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prascribed by ANSI Std. Z39-18
298-102

