
NASA Technical Memorandum 106337

Proteus Three-Dimensional Navier-Stokes

Computer Code-Version !.0

Volume 1-Analysis Description

Charles E. Towne, John R. Schwab, and Trong T. Bui

Lewis Research Center

Cleveland, Ohio

-!

October 1993

N/ A

COMPUTER CODEr VERSION

I= ANALYSIS OESCRIPTION

- 65 p

(NASA-TM-IO633T) PROTEUS

THREE-DIMENSIONAL NAVIER-STOKES
1.0. VOLUME

(NASA)

=. "

_194-16527

unclas

G3/34 0191568

a=? ??_= - ::: -:± : z_± _:

C ON-I'ENTS

3PRINCIPAL NOTATION
SYMBOLS ... 3
SUBSCRIPTS _ ... 5

5SUPERSCRIPTS ..

7SU.'MMARY ...

91.0 E_'TRODUCTION ..

2.0 GOVERNING EQUATION'S ... 11
2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES 11
2.2 EQUATION OF STATE .. 13
2.3 GENERALIZED GRID TRANSFORMATION 13
2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES 16
2.5 METRIC INVARIANTS .. 18

3.0 TIME DIFFERENCING 23

4.0 LINEARIZATION PROCEDURE ... 25
4.1 INVISCID TERMS .. 2 ... 25
4.2 VISCOUS TERMS ... 26

4.2.1 Non-Cross Derivatives .. 27
4.2.2 Cross Derivatives .. 29

4.3 EQUATION OF STATE .. 30
4.4 LINEARIZED GOVERNING EQUATION 31

5.0 SPACE DIFFERENCING ... 33

6.0 BOUNDARY CONDITIONS .. 35
6.1 NO CHANGE FROM INITIAL CONDITIONS, Ag = 0 35
6.2 SPECIFIED FUNCTION, g =f ... 35
6.3 SPECIFIED COORDINATE DIRECTION GRADIENT,_Og]O$ =f 36
6.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vg. n =f 37
6.5 LINEAR EXTRAPOLATION ... 38

7.0 SOLUTION PROCEDURE .. 41
7.1 ADI ALGORITHM .. 41
7.2 MATRIX INVERSION PROCEDURE 44

7.2.1 Non-Periodic Boundary Conditions 44
7.2.2 Spatially Periodic Boundary Conditions 45

7.3 UPDATING BOUNDARY VALUES • 48

8.0 ARTIFICIAL VISCOSITY ... 51
8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY 51
8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY 52

9.0 TURBL'LENCE MODEL ... 55
9.1 BALDWIN-LOMAX MODEL .. 55

9.1.1 Outer Region ... 55
9.1.2 Inner Region ... 57
9.1.3 Turbulent Values of 2 and k .. 57

Proteus 3-D Analysis Description Contents 1

9.2 CHIEN k-e TURBULENCE MODEL
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

...................................... 8

k-e Equations .. 58
Linearization of the k-_ Equations 61
LU Factorization Algorithm for the k-_ Equations 63
LU Sweeping Procedure for the k-e Equations 64
Updating Boundary Values for k-e Equations 64
Turbulent Values of 2 and k .. 64

APPENDIX A - EXPANSION OF VISCOUS TERMS 65

REFERENCES .. 69

2 Contents Proteus 3-D Analysis Description

PRINCIPALNOTATION

SYMBOLS

Unless specified otherwise, all variables are nondimensional.

Definition

a

A,B,C

A', B', C'

cp, c,

E,F,G

^ ^ (_E,F,

Er

Ev, Fv, Gv
^ ^ ^

Ev, Fv, Gv

^ ^ ^

Evl, Fvl, Gvx

l_v2, _'v2, (_v2

F,G,H

6,/i

hr

i,j,k

J

k

k

k_, k,

L

Nl, l%, N3

P

Pr,

Pr_, Pr,

qx, qy, q_

Speed of sound.

Coefficient submatrices in block tridiagonal system of equations.

Coefficient submatrices for boundary conditions.

Specific heats at constant pressure and volume.

Inviscid flux vectors in the Cartesian coordinate form of the governing equations.

Inviscid flux vectors in the computational coordinate form of the governing
equations.

Total energy per unit volume.

Viscous flux vectors in the Cartesian coordinate form of the governing equations.

Viscous flux vectors in the computational coordinate form of the governing
equations.

Non-cross derivative viscous flux vectors in the computational coordinate form of
the governing equations.

Cross derivative viscous flux vectors in the computational coordinate form of the

governing equations.

Flux vectors in the Cartesian coordinate form c" the k-_ turbulence model
equations.

Flux vectors in the computational coordinate form of the k-e turbulence model
equations.

Stagnation cnthalpy per unit mass.

Grid indices in the _, _/, and { directions.

Jacobian matrix of the generalized grid transformation.

Effective thermal conductivity coefficient.

Turbulent kinetic energy.

laminar and turbulent thermal conductivity coefficient.

Dimensional reference len_h.

Number of governing equations being solved.

Number of grid points in the _, _/, and _ directions.

Static pressure.

Reference Prandtl number.

Laminar and turbulent Prandtl number.

Heat fluxes in the Cartesian x, y, and z directions.

Proteus 3-D Analysis Description Principal Notation 3

ymbol .

Q

R

Rer

S

S'

S,T

^

t

T

U_ Y, W

W

x, y, 2

Y

6

A,V

_), ,_4), etc.

0h 02, 03

K2_ K4

,t

_tl, 2t

/.L

/.l_, /.it

V

p

Definition

Vector of dependent variables in the Cartesian coordinate form of the governing
equations.

Vector of dependent variables in the computational coordinate form of the gov-
erning equations.

Gas constant.

Reference Reynolds number.

Source term subvector in block tridiagonal system of equations.

Source term subvector for boundary conditions.

Non-derivative terms in the Cartesian coordinate form of the k-e turbulence model

equations.

Non-derivative terms in the computational coordinate form of the k-_ turbulence
model equations.

Physical time.

Static temperature.

Velocities in the Cartesian x, y, and z directions.

Vector of dependent variables in the Cartesian coordinate form of the k-_ turbu-
lence model equations..

Vector of dependent variables in the computational coordinate form of the k-e
turbulence model equations.

Cartesian coordinates.

Ratio of specific heats, cplc,.

Difference operator.

First-order forward and backward difference operators.

Turbulent dissipation rate.

Second- and fourth-order explicit artificial viscosity coefficients in constant coeffi-
cient model.

Implicit artificial viscosity coefficient.

Second- and fourth-order artificial viscosity coefficients in nonlinear coefficient
model.

Parameters determining type of time differencing used.

Constants in nonlinear coefficient artificial viscosity model.

Effective second coefficient of viscosity.

Laminar and turbulent second coefficient of viscosity.

Effective viscosity coefficient.

Laminar and turbulent viscosity coefficient.

Laminar kinematic viscosity.

Computational coordinate directions.

Static density.

Pressure gradient scaling parameter in nonlinear coefficient artificial viscosity
model.

4 Principal Notation , Proteus 3-D Analysis Description

Symbol

"l"

T_,x_ Txy_ etc.

Definition

Computational time.

Elements of shear stress tensor.

Spectral radius in nonlinear coefficient artificial viscosity model.

SUBSCR_TS

Subscript

i,j,k

l

x, y, g

_,n,¢

T

Definition

Denotes grid location in _, n, and ¢ directions.

Denotes dimensional reference condition.

Denotes differentiation with respect to physical time.

Denotes differentiation with respect to Cartesian coordinate directions.

Denotes differentiation with respect to computational coordinate directions.

Denotes differentiation with respect to computational time.

SUPERSCRIPTS

Superscript

n

1

Definition

Denotes time level.

Denotes solution after first and second ADI sweep.

Proteus 3-D Analysis Description Principal Notation 5

PAGE_ ,:T,:: :-r::: ,,, " u,..._._,_'.....

PROTEUS THREE-DI31ENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION 1.0

• Volume 1 - Analysis Description

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

SU_IMARY

A computer code called Proteus has been developed to solve the three-dimensional, Reynolds-averaged,
unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this ef-
fort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.
Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy viscosity model.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and impficit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple Cartesian or
cylindrical grids may be generated internally by the program. More complex geometries require an ex-
ternaUy generated computational coordinate system.

The documentation is divided into three volumes. Volume 1, the curren: volume, is the Analysis De-

scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User's Guide, and contains information needed to run the program. It describes the program's
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer's Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989.

PRECEDING PAGE B!.ANK NOT FILMED

Proteus 3-D Analysis Description Summary 7

!.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-proprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending to do anything more than run standard test cases with it. The user's
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus three-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kemi_an and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, input
variables, output variables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into generalized nonorthogonal body-fitted coordinates. They are sol', d by marching in time using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The thin-layer or Euler equations may be solved as
subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of
constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre- and post-shock
oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing
of the convective terms in high Reynolds number flow. Several time step options are available for conver-
gence acceleration, including a locally variable time step and global time step cycling. Simple grids may be
generated internally by the program; more complex geometries require external grid generation, such as that
developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in Proteus. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User's Guide, and contains information needed to run the program. It describes the program's

general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the

PRF'_Ii_G PAGI[BLA/_K i.0 Introduction 9
Proteus 3-D Analysis Description f_O)" F_L.MED

program, and several test cases. Volume 3 is the Programmer's Reference, and contains detailed informa-
tion useful when modifeLug the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

A two-dimensional/axisymmetric version of Proteus code also exists, and was originally released in late
1989 (Towne, Schwab, Benson, and Suresh, 1990).

The authors would like to acknowledge the significant contributions made by their co-workers. Tom
Benson provided part of the original impetus for the development of Proteus, and did the original coding
of the block tri-diagonal inversion routines. Simon Chert did the original coding of the BaldwLu-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal grid
transformation. Frank Molls has created a separate diagonalized version of the code. Ambady Suresh did
the original coding for the second-order time differencing and for the nonlinear coefficient artificial viscosity
model. These people, along with Dick Cavicchi, Julie Conley, Jason Solbeck, and Pat Zeman, have also
ram many debugging and verification cases.

,- _-iU

10 1.0 Introduction Proteus 3-D Analysis Description

2.0 GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS IN" CARTESIAN COORDINATES

The basic governing equations are the three-dimensional compressible Navier-Stokes equations. These

equations may be found in several standard references (e.g., Hughes and Gaylord, 1964; Schlichting, 1968;

White, 1974; Anderson, Tannehill, and Pletcher, 1984.) In Cartesian coordinates, the three-dimensional

equations can be written in strong conservation law form using vector notation as

3Q __ 0E 0F 0G aEv 0Fv aGv
ot ox +-_j+ o--7-=T+-TU + o----7-

(2.1)

where

Q=Ep pu pv pw Er] r (2.2a)

E_

pig

p_ +v
puv

puw

(Er+ p),_

(2.2b)

F_

puv

pv2 +p

(Er+P)v

(2.2c)

pw

pray

G = pvw

pw 2 +p

L(ET + P) w

(2.2d)

0

TXX

T.r.2

Urx.x + VZxy + wzx. z -- Prr
q_

(2.2e)

Proteus 3-D Analysis Description 2.0 Governing Equations 1 i

0

Txy

ryz

u'rxy + V_yy + wry z --
I

prr qy

(2.2f)

1
Gv=-_e r

0

TX2

"C22

Urxz + v'rye + wTzz- __
1

pr r q2

(2.2g)

Equation (2.1) thus represents, in order, the continuity, x-momentum, y-momentum, z-momentum, and
energy equations, with dependent variables p, pu, pv, pw, and Er.

The shear stresses and heat fluxes are given by

rxx = 2ta _ + 2 Ox _ +

"r-Y-V= 2"u-_-y +2 _+3y 3z]

.[Ou &)

rxy= # +

0w

*y, _(& + Ow

(2.3)

k OT
qx=- Ox

-k OT
q_=

In these equations, t represents time; x, y, and z represent the Cartesian coordinate directions; u, v, and
w are the velocities in the x, y, and z directions; p, p, and T are the static density, pressure, and temperature;
Er is the total energy per unit volume; and #, 2, and k are the coefficient of viscosity, second coefficient of
viscosity, and coefficient of thermal conductivity.

All of the above equations have been nondimensionalized using appropriate normalizing conditions.
Lengths have been nondimensionalized by L,, velocities by u,, density by #,, temperature by T,, viscosity

12 2.0 Governing Equations Proteus 3-D Analysis Description

by g,, thermalconductivityby k,, pressure and total energy by p,u2,, and time by L/u,. The reference
Reynolds and Prandtl numbers are thus defined as Re, = p,u,L/v, and Pr, = _,M/k,T,. _

Turbulence is modeled using the Boussinesq approach (Schlichting, 1968). The equations presented in
this section are thus used for both laminar and turbulent flow. For turbulent flow they represent the
Reynolds time-averaged form of the Navier-Stokes equations, with density fluctuations negiected. They
may also be interpreted as the Favre or mass-weighted time-averaged form of the equations. With Favre
time averaging, however, the velocities and thermal variables represent mass-averaged quantities defined by

=-_/-_, etc., where the overbar represents a conventional Reynolds time-averaged quantity. Details on
Reynolds and Favre time-averaging procedures may be found in Cebeci and Smith (1974), and in Anderson,
Tannehill, and Pletcher (1984). In either case, g, 2, and k represent effective coefficients. For example, in
turbulent flow/_ = _ + _,, where _ and/_, are the laminar and turbulent viscosity coefficients, and #, comes
from some appropriate turbulence model. The models currently available in the Proteus code are the al-
gebraic eddy viscosity model of Baldwin and Lomax (1978) and the two-equation model of Chien (1982),
implemented as described in Section 9.0.

2.2 EQUATION OF STATE

In addition to the equations presented above, an equation of state is required to relate pressure to the
dependent variables. Any appropriate equation, or even table, could be used. The equation currently built
into the Proteus code is the equation of state for thermally perfect gases, p = pRT, where R is the gas con-
stant. For calorically perfect gases, this can be rewritten as

p=(y_ 1)[ET--lp(u 2 + v: + w2)] (2.4)

where y is the ratio of specific heats, cp]c,. Here the gas constant and specific heats have been
nondimensionalized by u2,/T,.

If the flow is such that we can assume a perfect _ with constant stagnation enthalpy, the energy
equation may be eliminated. This assumption is reasonable, for example, in inviscid regions, and in
adiabatic wall boundary layers if the Prandtl number is near 1 (Briley and McDonald, 1977). The stag-
nation enthalpy is defined as

1 (u 2 + v2hr= cpT +- T + w2) (2.5)

Here the stagnation enthalpy is nondimensionalized by uL The temperature is thus

T -- _LcpI. -2-1 v2 w2)]_l (2.6)[h r. - (u 2 + +

and the equation of state becomes

1 (u2 +v2 w2)] (2.7)p = -L-_ p [hr -- --_ +

This equation of state does not require the total energy Er, and the energy equation need not be solved.
The total energy may be computed from

Er= phr-- p (2.8)

2.3 GENERALIZED GRID TRANSFORMATION

Because the governing equations in the previous section are written in Cartesian coordinates, they are
not well suited for general geometric configurations. For most applications a body-fitted coordinate system

1 Note that this Prandtl number does not have a physically meaningful value, but is merely defined by a combination
of the normalizing conditions for cp,/_, and k that appear when the equations are nondimensionalized.

Proteus 3-D Analysis Description 2.0 Governing Equations 13

is desired. This greatly simplifies the application of boundary conditions and the bookkeeping in the nu-
merical method used to solve the equations. The following generalized grid transformation, which can be

orthogonal or nonorthogonal, is therefore used to transform the governing equations from physical

(x,y, z, t) coordinates to computational (_, 7, _, z) coordinates.

= _(x, y, z, t)

= _(x, y, z, t)

= _(x,y, z, 0
T=t

(2.9)

In Proteus, the spatial computational domain is a cube, with _, '1, and _ each running from 0 to 1. Using
the chain rule for partial differentiation, the derivatives in the Cartesian form of the governing equations can
be replaced using the following expressions.

O = _x4+ 0 0ax "_-_--_+ ¢x-b2-

° =_y-S-(+ -_n+

zoo+ O

- 44,-O =_t "t-r/t -t- t 0¢ q'--Ot

a
o.c

(2.1o)

In the above equations, and in those to follow, subscripts x, y, and z, or _, _I, and _, denote partial differ-
entiation in that coordinate direction. The only task remaining, then, is to develop expressions for the

metric coefficients G, qx, etc. In differential form we can write

d{ = _xdx + _ydy + _zdz + _At

d,1= ,7_dx+ ,lydy+ ,Tzdz+ TAt

de = G& + Cy@+ Cdz + CAt
dz = dt

In matrix form this becomes

Similarly,

¢/[[dz[

Therefore,

+ = Y',

d,, LO o o _JLdq

14 2.0 Governing Equations Proteus 3-D Analysis Description

G _y G '_t x¢ x,7 x; x_

r/x r/y r/z = Y_ Y'7 Y(Y_

0 0 0 0

After taking the inverse,

fix fly _Iz fit = j y;z_ - y_z; x_z_ - x¢z¢ x¢y_ - x¢y¢ F2a [

'Yo 'Zo _1t [yCz'7- ynz_O x'7_ - xCZno x¢y_- x'rV¢o Fs4[l/Jj

where

F14 = x.(y¢z.r -ynzg) 4-y.(xnz ¢ - xgz.r)+ z.(xgy n - xny_)

F24 = xz(y¢z¢ - y_z¢) + y.(xgz_ - x_zg) + zz(x_y¢ - xgy0

F34 = x.(y,z¢ - y_%) + y.(x_z, - %z 0 + z.(x_y¢ - x¢y,)

and J is the Jacobian of the transformation,

O(_,n, 0 [,/_G ny_Yn_GIJ= O(xy.z) (x _y G

This can be evaluated from the known physical (x, y, z) coordinates by noting J = 1/J- _and

O(xce.z) Ix¢ x. x;0(_..1.0 = y_ y_ y_
z¢ z_ z¢

f--l

y-- _ = x,(y_z_ - y;z_) + %(y;z¢ - yczd + xdycz _ - Y.h)

¢.= S(x;z.- x..O

G = J(x_y; - x;y,)

nx = J(y¢z_ - y;z0

qz = J(x¢y_ - x_y¢)

G = yO,_z_- Y,dO

The metric coefficients themselves are

(2.11)

(2.12)

(2.13)

Proteus 3-D Analysis Description 2.0 Governing Equations 15

(y = J(x, Tz_ - x_z,1)

(z = J(x_y,7 - xrty¢)

_ = - x¢_:, - y,¢y - z¢_z

qt = - x._x -Y.c_y - z-.rlz

_t = - x,¢:, -y,¢y- z,¢z

Unless the physical coordinates (x, y, z) are defined analytically as functions of the computational coordi-
nates (_, r/, (), the metric coefficients must be computed numerically. The method used to do this is im-
portant, and is discussed in Section 2.5.

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES

• Applying the generalized grid transformation of the previous section to equation (2.1) yields

Q¢ + Q¢_t + Q,Tr/t+ Q_fft + E¢_x + E,7_x + E£_x + F_y + F,Tr/y+ F_y + G_ z + Gnr/z+ G;_ z

- Ev_ x - Evnx - Ev_ x - Fv_y - Fvrty - Fv_y - Gv¢_ z - Gvn z - Gv_ z = 0 (2.14)

This equation is in chain-rule, or weakly conservative form. That is, the conservation flow variables are
used, but the metrics appear as coefficients of the derivatives instead of inside the derivatives. Following
Vinokur (1974), the strong conservation law form can be recovered by first dividing by the Jacobian then
adding and subtracting like terms. For example, the

E,_.
term becomes

Doing this for all the terms, and rearranging, results in

(Q)"7 +[E_x+F_JJ+G_z+Q_t]j +[Er/x+Fr/y+GITz+Qr/'] +[F-_x+F_-v+G'z+Q_t]j J

The last four terms, in braces, are called the metric invariant terms. By using the expressions for the metric
coefficients, given by equations (2.13), one can show that the metric invariants are identically zero. This is
not necessarily true when derivatives are approximated by finite differences, however. This point is explored
further in Section 2.5. With the metric invariant terms eliminated, no metrics or flow variables appear as
coefficients, and the strong conservation law form of the governing equations has been recovered.

Equation (2.15) can be rewritten as

A A A A A A A

OQ OE OF OG OEv OFv OGv

a, (2.16)

where

16 2.0 Governing Equations Proteus 3-D Analysis Description

Q

_Z- 1 (E_x -t-F_y + G_z + Q_/)-7

- 7 (Eqx + F_/y+ Gr/z + Q_/t)

^ 1
G = 7 (E_x + V(y + G(z + Q(t)

^ 1
Ev='-f (Eu_x + Fv_y + Gv_z)

^ 1
Fv = 7 (EV _/x+ Fv _y + Gv %)

^ I
Gv= -f (Ev_x + Fv_y + Gv_z)

Using equations (2.2a) through (2.2g) these can be expanded as

6=j[p pu pv pw Er3 r

pu_ x -I- pV_y + pw_ z + P_t

1 pUV_x+ (;v 2 +p)_y + pvw_ z + ;vet

(Er+ p)u_x + (Er+ P)V_y + (Er+ p)w_z + ET_t

(2.17a)

(2.17b)

^ 1
F=-j-

^ I
G=-)-

purl x + pVrly + pwrl z + prl t

(P u2 + P)'tx + puny + puw'¢l z -t- purlt

puvrl x + (pv 2 + p)rly + pvwrl z + pv'qt

pUW_x Jr pvW_ly + (pW 2 -t- p)rl z + pw_lt

(Er+ p)Unx + (Er+ P)Vny + (Er+ p)Wnz + ETnt

,u + pVCy+ pwC_+ p_t
(P u2 + P)_x + pUV_y + pgW_z + pU_ t

puv_ x + (pV2 + P)_y + pv'w_ z + pv_ t

puw_ + p_y + (pw2 + pK_ + p_
(E r + p)u_ x + (E r + p)v_y + (E r + p)wG + Er _t

(2.17c)

(2.17d)

^ 1 1
Ev- j Re r

0

-c_ x + zxy_y + TxAz
(2.17e)

Proteus 3-D Analysis Description 2.0 Governing Equations 17

^ 1 1
Fv= j Re r

0

Zx.x_tx+ Txytty+ Txz%

%,y,I,,+ "%,Iy + Tyz'b

"rxzrlx + "cy?ly+ Tzz_z

(2.170

" 1 1
Gv- j Re r

0

"%G+ "%_y+ "gAz (2.17g)

where

fix = U'r.x,x -t'- l_r.xy + W'rxz -- --

1
fly = UX.x.y + V-ryy + w-cy z pr r qy

I
f z = Urxz + Wryz+ Wrzz pr r qz

1

pr r qx

In the viscous terms, the shear stresses and heat fluxes are defined exactly as in equations (2.3), except
the derivatives in the Cartesian coordinate directions must be evaluated using the chain rule. For example,

Ou Ou Ou Ou
=-b2- _ +-N-__ +-_- _

Note that _"and G have exactly the same form as 1_,but with _ replaced by n and _, respectively. Similarly,

l.v and Gv have exactly the same form as l_v, but with _ replaced by r/and _, respectively.

2.5 METRIC INWARIAN_rS

The governing differential equation in computational coordinates, equation (2.16), can be rewritten as

(-_-'-) +[E_x+F_y+G_z+Q_e]j +[Eq*+Fq'+GrG+Qrtt]j +[ECz'+F_y+G_z+Q_e]j

[Ev_x+Fv_,+Gv_.] [Ev37.+Fvrl.v+Gvrlz] [Ev',,+Fv_,+Gv'z] = 0-- j -- l -- j

When this equation is applied to uniform flow, E, F, G, etc., are all constant, resulting in

-f Q_ + \-)-/Q + (E- Ev) + (F-Fv) +(G-Gv) +Q

G

¢ ¢+ - + Q(--)--)¢ = 0+(E-Ev)(---_-) +(F-Fv)(---_-) (G GV)(--_-)¢

18 2.0 Governing Equations Proteus 3-D Analysis Description

Collecting terms,

+t>)++(E-Ev) 7 ¢ ,7

+ (F-FO 7 +

7 + 7 --o
g

(2.18)

For Q, to be zero, which it should be for uniform flow, the terms in brackets must vanish. These terms
are the metric invariants discussed briefly in Section 2.4. By using the expressions for the metric coefficients
given by equations (2.13), one can show that in differential form these metric invariants are indeed iden-
tically zero. When finite differences are used to approximate derivatives, however, this is not necessarily
true. In two dknensions, when the centered difference formula of equation (5.1) is used to approximate
derivatives, the metric invariants do turn out to be identically zero. But in three dimensions, when the
metric coefficients are computed numerically using equations (2.13), the metric invariants are not identically
zero.

To show this, let M2 denote the second metric invariant term (the second bracketed term in equation
(2.18).) Then, using equations (2.13) for the metric coefficients and applying difference operators,

M2 = a¢(,S,rva_z- a;y a,Tz) + ,5,r(aCyaCz- ,SCyaCz)+ a_(acya,Tz- a,rvacz)

Without loss of generality we can let A_ = At/= A(= 1/2. Then, using central differences,

M2 = 6¢[(Yy + l -Yj- l)(zk +] -- z/e- 1) -- (Y/e+ I --Yk-a)(9+ 1 -- 9- 1)]

+ 6n[(Yk+ l --Yk- I)(zi+ I -- zi- 1) -- (Yi+ 1 --Yi- 1)(zk + 1 -- z/c- 1)]

+ a_[(Yi+ 1-Y,- 0(9+ _- 9-1) - (;j+ _-Yj- 1)(zi+ 1- zi- 1)3

The subscripts i, j, and k represent grid point indices in the _, _, and _ directions. For notational conven-
ience, terms without an explicitly written i, j, or k subscript are understood to be at i, j, or k. Expanding,

Mz _- 6¢[(yj + _zk + _ - yj- _zk + l - yj _ _zk- _ + yj- _z*- _) - (y* + _zj + _ - yk- _zj + _ - yk + _zj- _ + yk- _zj- _)]

Jr"6_E(,Fk + izi + 1 -- Yk - 1"7/+1 --Yk+ IZi - 1 "t- Yk - IZi - 1) -- (Yi+ 17"k+ 1 -- Yi - lZk + I -- Yi a- 1gk - 1 q- Yi - lZk - 1)]

+ e¢[_Y_+lzj+ x-Y_- izj+, -Y_+ _z___+y__ _z__,) - (vj+_z_+,-y__ ,z,.., -yj+ _z,.__+yy_ _z__03

Performing the fmal difference operation,

M_= _ys+_z_+, - y___z_+_- y_. _z__, + y__ ,z__ ,)_+, - _ + ,z_+_- y___z_+, - y_÷_z__, + yj_ _z__,)__,

--(Y_+Izj. I--Y_-IZj+I -Y_.IZj-I +Y_-lZj-l)i+l + (Y_ + lzj + I--Y_- izj+ 1 --Y,_ + IZj- 1 + Y_- IZ./- 1)i- 1

+ (Fk + _zi + _ - yk- _zi + _ - yk + _zi- t + yk- _zi- _).i + _ - (Fk + _z` + _ - yk- _zi + _ - yk + _zi- t + yk- _z_- _).i- _

- (yi + _z_ + _ - yi- _z_ + _ - yi + _z_- t + yi- _z_- _)J + _ + (yi + _z_ + _ - yi- tz_ + _ - yi + _z_ - _ + yi- _z_- _)J- _

-_-(yi+_2j+_-yi-_7.j+_-yi+_2j-_ + yi-_zj-_)k+_-(yi+_Zj+_-yi-_7.j._-yi+_zj-_ q-yi-_-_)k-_

- (yj_ _z_+_- yj- _z_÷_- yj +_z_-_+ y_- _z_-_ + _+ (_ _ _zi+_- y_-1z_+_- y_+_z_-_+ y_- _z_-_k- _

Finally, collecting terms,

Proteus 3-D Analysis Description 2.0 Governing Equations 19

?v[2 _" Yi + l,j+ l_(Zi + 1,j,k + I -- Zi + 1,j,k- 1 -zi,j+ l,k+ 1 + Zi, j + l,k- 1)

+ Yi + _,)- l_(- zi + 1,j,k + I + zi + _,j,k- I + zi,j- l,k + _-- zi,j- l,k- 1)

For ,k/a to be identically zero, the terms in parentheses in the above equation would have to vanish
identically. This is clearly not the case for a general three-dimensional coordinate system.

There are fixes that have been developed to ensure that the finite difference equations do satisfy uniform
flow, including the use of averaging formulas for the metric coefficients or simply subtracting the error from
the equations (PuUiam and Steger, 1978). These methods are somewhat inelegant, however, and can be
expensive to use. A cleaner and completely rigorous method is to rex,rite the formulas defining the metric
coefficients, equations (2.13), in conservation form (Thomas and Lombard, 1979). Using _, as an example,

= d[_&z)_- (&z)_]

In Proteus, therefore, the metric coefficients are actually computed using the following equations.

,_= JlTO,,zk - (&z).]

Cy= J[(x,z).- (xnzk]

G = J[(x4')¢ - (x¢y).]

n_ = J[%z)_- %z k]

nz = J[(xgy)_ -- (x_y)g] (2.19)

G = J[(&z).- _vnz)_]

Cy= sI(x.z)_- %0.3

{z = "lT-(xCY)n- (x_v)_]

To verify that computing the metrics in this way does lead to metric invariants that are identically zero,
we now reevaluate 342, the second bracketed term of equation (2.18). Applying difference operators,

M 2 "_ 6_[6'_ (ynz) - 6'7 (v_z)] + 6,7[6'_ O'_z) - 6"_(y_z)] + 6_[6'n (y_z) - 6'¢ (y,Tz)]

Note that a distinction is made, for now, between the difference operators outside the brackets, 6 o 6,, and

6o and the difference operators inside the brackets, 6_, 6_, and 6[. The operators outside the brackets
represent derivatives of the metric coefficients in 342. These terms originated as part of the flux terms in
equation (2.16). The operators 6¢, 6,, and 6¢ are therefore the same as the operators used to represent de-
rivatives in the governing differential equation. Now, note that the finite difference approximation of 342
will vanish identically if, for example,

This will be true ff 6_ = J_, 6', = 6,, and 6_ = 6¢. This can be verified by expanding 6¢(.6¢f) and 6_(6_f)
using the centered difference formula of equation (5-1), and comparing. When the metric coefficients are

20 2.0 Governing Equations Proteus 3-D Analysis Description

computedusingequations(2.19),therefore,thederivativesof theparentheticaltermsmustbeapproximated
usingthesamedifferenceoperatorsasthoseusedto representderivativesin equation(2.16). It doesnot
matterhowthex_, x,, etc., inside the parentheses are computed.

This procedure for computing the metrics ensures that the last three metric invariant terms in equation
(2.18) are identically zero when differenced. The first metric invariant term must be handled somewhat
differently. Setting it equal to zero gi/ces

() 7 _-0 (2.20)

This is a statement of the geometric conservation law described by Thomas and Lombard (1979). For grids
that do not change with time, this equation is, of course, automatically satisfied when differenced. However,
for time-dependent grids it is not. In that case, the grid transformation Jacobian J should be found by
solving equation (2.20) at the new time level, using the same differencing scheme as in the governing flow
equations, and not computed algebraically from equation (2.12). The current version of Proteus does not
solve this equation, and thus strictly applies only to time-independent grids.

Proteus 3-D Analysis Description 2.0 Governing Equations 21

3.0 TIME DIFFERENCING

The governing equations are solved by marching in time from some known set of initial conditionsusing
a t'mite difference technique. The time differencing scheme currently used in Proteus is the generalized
scheme of Beam and Warming (1978). The time derivative term in equation (2.16) is written as

0z --_ A---_= 1+0 2 OT + 1+0 2 dz + I+0 2 AT

or,

/k

)] (31,01A_ 0(AQ '_) Ar 0Q '_ 02 AQ"-1+O 01--_-02 (A_)2,(A_) 3
A6n= 1+02 O_ + 1+02 OT t- 1+0-'-"_

where A@ = (_ +1_ t_. The superscripts n and n + 1 denote the known and unknown time levels, re-
spectively.

The parameters 0_ and 02 determine the type of time differencing scheme used. Some of the methods
available with the above formula are given in the following table.

01

0
0
1

1/2
1

0 2

0

-- 112
0
0

1/2

Method

Euler explicit
Leapfrog explicit
Euler implicit
Trapezoidal implicit
3-point backward implicit

Truncation Error

O(A_)_
O(AT)3
O(A_
'(A_)3
O(Az)3

Note that even though the generalized time differencing formula includes explicit methods, the Proteus code
assumes an implicit method is being used. Note also that the truncation error listed in the table is the error

in the expression for A@. The overall numerical method used in modelling the differential equations re-

quires A(_/A-r, so the order of the overall method is this truncation error divided by A'r.

Solving equation (2.16) for OQ/Oz and substituting the result into equation (3.1) for O(AQ:)/Oz and
^

OQ"lO'ryields

OIAZ
AQn = 1 + 02

0lA'r
+

1+0 2

aF n . aG
a(aE") O(A_) O(A_") A_ + _ + --_--JO_ +- On + c9_ 1 + 02

(a(AE:) O(AFv') O(AGvn) A, OEv arv OGv
a¢ + a7 + a_ + a---7-+_ _ a_

++
02

1 +0 2
(3.2)

Proteus 3-D Analysis Description

PRECE, DIN6 PAGE BLANK NOT FILMED

3.0 Time Differencing 23

PA_F__ INTF.t,rFiONAI.LYBLANK

4.0 LINEARIZATION PROCEDURE

4.1 INVISCID TERMS

^ ^ ^ ^

Equation (3.2) is nonlinear, since, for example, AE" = E"+ _ -E" and the unknown E"+ l is a nonlinear
function of the dependent variables and of the metric coefficients resulting from the generalized grid trans-
formation. The equations must therefore be linearized to be solved by the finite difference procedure used
in Prote_. This is done by expanding each nonlinear expression in a Taylor series in time about the known
time level n. Letting G represent any nonlinear expression,

(3(7 _nAr + O(AT)2 (4.1)
Gn + l = Gn + \ c?r]

where

OG OG Op OG O(pu) OG O(pv) OG O(pw) OG OEr
Or - Op Or _- O(pu) Or _- O(pv). & _ O(pw) Or FOE r Or

Note that for linearization purposes only the metric scale coefficients have been assumed to be locally inde-
pendent of time. Note also that for this linearization procedure to be second order accurate, OG]Or (and
therefore Op]Or, O(pu)/Or, etc.) need only be first order accurate. Using forward differences, then, so that

(c3p)n pn+l--p n- ar + o(a,)

Ap n

- ar + O(ar)

etc., equation (4.1) becomes

Gn + _ = Gn + _ aPn + O(pu) O(pv)

(4.2)

As an example the 3(puvG)/O_ term from the x-momentum equation (part of the second element of

dElOS) will be used. The nonlinear part of this term is (puv)"+ i. Rewriting this in terms of the dependent
variables,

(ptge)n+l=[(PU)(PV)]n+lp

Using equation (4.2), this is linearized as

(p_). + 1= (pu_)"- (_)_(p" + _- p") + v_[(pu)"+ 1- (pu)"] + u"[(ov)"+ _- (pv)"] + o(a,) 2

which can be rewritten as

A(puv) n = - (uv)nAp n + vnA(pu) n + unA(pv) n + o(ar) 2

Proteus 3-D Analysis Description
pR£_6 PAGE I3LANK NO'[F}LHED

4.0 Linearization 25

^

This linearization procedure, when applied to the entire AE " term in the vector equation (3.2), can be
written as

n

k OQ
(4.3)

where (OElaQ) _ is a Jacobian coefficient matrix (not to be confused with the Jacobian J of the generalized

grid transformation.) Similar equations can be written for AD and A_,_.

^ ^ ^

Each term in each element of E, F, and G, given by equations (2.17b) through (2.17d), is linearized using
^ ^ ^ ^

the above procedure to generate the elements of the Jacobian coefficient matrices OE/OQ, OFIOQ, and

O_;IOQ. (Note that Of_lOQ = JaEIOQ.) When this is done Of_lOQ can be written as

of
.--7-=
0Q

_, _ _y _ o

ap L,- ap Op_,A _, + A + uL + o-g-_-__x _'_y+ ,,_, + o_b__)_,' ap

Op Op _y Op v_,+ Op _, Op-_p Cy-vf, v_ + 3---_-_ _t+fl+v_,+-_-_¢, _ OEr _,
Opt 3p Op Op

o, ()-fl -- _ f2_ +.It At, +A ap Op Opc3(pu) O{pv) J'2_, + fl O(,ow) - '_, + ft 1 + -_r

(4.4)

where/, : u_ + % + w_, and/i : (E_-+ p)/p. The Jacobianmatricesd'/O_) and 06/0_) havethe s__,-_e
^ ^

form as OE/OQ, but with _ replaced by _ and _, respectively.

The linearized pressure terms have deliberately been left in terms of Op/Op, Op/O(pu), etc. The ex-
pressions to be used for these derivatives depend on the equation of state. Those currently built into the
Proteus code, for a perfect gas, are presented in Section 4.3.

4.2 VISCOUS TERMS

^/_ ^rl ^rl •

The nonlinear viscous ie_s in equation (3.2), involving AF.v, AFv, and AGv, must also be linearized.
^ ^ ^

To do this, the elements of Ev, Fv, and Gv, given in equations (2.17e) through (2.17g), must first be re-
written in terms of the dependent variables, and with derivatives in the Cartesian directions transformed to
derivatives in the computational directions using the chain rule. When the resulting expressions are sub-
stituted into equation (3.2), mixed second derivatives appear as well as second derivatives in a sinNe coor-
dinate direction. The mixed, or cross, derivative terms would lead to considerable complications in the

implicit numerical solution algorithm if they were linearized using the procedure presented in Section 4.1.
^ ^ ^

The two types of second derivatives are thus treated differently, and Ev, Fv, and Gv are written as

A A- A

Ev = Ev_ + Ev 2
A A A

F v = Fvt + Fv 2
A A A

G V= Gv_ + Gv2

(4.5)

26 4.0 Linearization Proteus 3-D Analysis Description

^ ^

where i_v_, F'v,, arid C;v, only contain derivatives in the _, rt, and _ directions, respectively, and Ev2, Fv2, and
^ ^

Gv2 contain derivatives in the remaining directions. The fully expanded expressions for Ev_, Ev2, etc., are

fairly long, and therefore are presented in Appendix A.

4.2.1 Non-Cross Derivatives

Examination of the elements of l_v_ in equations (A.2a) through (A.2d), and (A.2f), shows that ever3"

term has the formfg_, where g is a function of the dependent variables, andfis a function of tz,), k, and/or

the metric coefficients. Expanding in a Taylor series about time level n gives

[o(fg_) 1"(fgO" + ' = (fgO" + o-_ as + o(a,) 2

For linearization purposes only, we will assume fis locally independent of time. We can thus write

•(fgOn + l = (fg_)n + fn __¢ A'r + O(Az) 2

where

ag Og ap og a(eu)
--__.. -.,I-

O, Op O-r O(pu) O-c
,,,_ °..

Therefore

(fg_)n+l =(fg¢)n+fn___ I Og Og inAp + _ AO,u)+ ... + o(a_)2

^

As with the inviscid terms, the linearization procedure for the entire AEvx" viscous term in equation (3.2)

can be written as

(4.6)

^_m An A ^

Similar equations may be written for AFva and AGvt. The Jacobian coefficient matrix OEvtlOQ is

Proteus 3-D Analysis Description 4.0 Linearization 27

A

OEva
A

OQ

1

Rer

0 0 0 0 0

0

eQ

0

_Q

0

eQ

(AOEvt

06

--)21

--t31

-)
41

--t51

0 1 0

0 1 O

%z O_

OEv_ OEv_

OQ s2 53

o(_)
0_,,-e(l)

0

OQ
54

0

0

0

(4.7)

- where

ax.x= (2U + 2)¢x 2 + U_y2 + _¢z 2

%y = UL, 2 + (2U + ,_)¢y2 + U_z2

_'zz= UCx2 + U_y2 + (2U + a)_2 2

28 4.0 Linearization Proteus 3-D Analysis Description

0 l

_Q
51

0 uw 0

21

O(pu))

-- =- o_))
53 OQ '/3_

()O(pw)
54 4I

Like the pressure terms discussed earlier, the form of the temperature terms will depend on the equation
of state being used. Those currently built into the Proteus code, for a perfect gas, are presented in Section
4.3.

^ ^

Note that in equation (4.6) the derivatives appearing in the Jacobian coefficient matrix 3EvJOQ are also

to be applied to the h(_ appearing outside the parentheses. For example, the element in the second row

and second column of OF.vtlOQ, which corresponds to the A(pu) term in the x-momentum equation, is
axxO(1/p)]O_. For this term, the notation used in equation (4.6) means

((÷)0 An 0 n
- AQ2 = c_x.xn --_ A(pulJ) n

aQ
22

= exx n "_ p'_

^ ^

The Jacobian coefficient matrices for the remaining non-cross derivative viscous terms, OFv_/OQ and
^ ^ ^ ^

OGvJOQ, have the same form as OEvJOQ, but with _ replaced by ,/and _, respectively.

4.2.2 Cross Derivatives

As stated earlier, linearizing the cross derivative viscous terms in the same way as the remaining terms
is very complicated within the framework of the implicit numerical solution algorithm used in Proteus.
They are therefore simply lagged (i.e., evaluated at the known time level n and treated as source terms.)
As noted by Beam and Warming (1978), this does not lead to a formal accuracy loss since

AEv 2 + O(AT) 2

A A

a_,=_-' +o(_,)_
A An n-I

AGv2 = AGv 2 + O(Ar) _-

(4.8)

Proteus 3-D Analysis Description 4.0 Linearization 29

4.3 EQUATION OF STATE

The expressions to be used for Op/c3p, aT/Op, etc., which arise from the linearization procedure, depend
on the equation of state. The equation currently built into Proteus is for perfect gases, and can be written
as

F
1 #(u 2 +v 2 w2)l (4.9)p = (y - 1)LEr- --f +

or, in terms of temperature, as

1 I ET 1 v2 w2)l (4.10)T = _ p 2 (u2 + +

With this equation of state, then, the appropriate derivatives are

dp y -- 1 v:o7 = 2 (:+

op
O(pu) = - (_ - 1)u

ap
= -- (y - l)v

o(pO

ap
= -- (y - l)w

O(pw)

Op
OEr = y - 1

O-T--T= 1 I ET 1 + v2 + 1Op c_ p2 p (u2 w2)

OT u

O(pu) c.p

OT v

a(pv) c_p

OT w

O(pw) c_p

OT I

dE T cvP

(4.1 la)

(4.1 l b)

(4.11c)

(4.1 l d)

(4.1 le)

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

If constant stagnation enthalpy is assumed, as discussed in Section 2.2, the appropriate equation of state
is

_ 1 (u 2+v 2 w2)]p = -_--- p [hr --f + (4.13)

and the temperature becomes

1 1 (u 2+v 2+w2)]T = -_p [h r- -_ (4.14)

With these equations, the derivatives ofp and T with respect to the dependent variables are

30 4.0 Linearization Proteus 3-D Analysis Description

0_,=,-1[v2]dp --Y- hr+ (u2 + +w2)

Op 7-1
--_ m_ u

a(p_) y

0/9 7-I

o(pv) r

0]9 7-1

0(pw)

OT 1 v2
07 = %p (u2+ + w5

3T u

0(pu) cpp

OT v

O(pv) cpp

OT w

O(pw) cpp

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.16a)

(4.16b)

(4.16c)

(4.16d)

4.4 LINEARIZED GOVERNING EQUATION

The linearized form of equation (3.2) can now be written as

4- -- O2A6n-, [(1)] (4.17)1 + 05 + O 01 -- -_- -- 02 (A'r) 2, (03 -- 01)(Az) 2, (A'r) 3

There are a couple of things that should be mentioned about this equation. First, this equation is in

so-called "delta" form. We will actually be solving this equation for A@ and recovering 1_" t from

I_ + t= A_ + (_. And second, in the coefficients of the cross derivative viscous terms the time differencing

parameter 01 has been replaced by 03. For second order time differencing (i.e., if 01 = 02 + 112), 03 should
be set equal to 01. For first order time differencing, however, 03 can be set equal to zero without losing

accuracy.

Proteus 3-D Analysis Description 4.0 Linearization 31

p_GE _

5.0 SPACE DIFFERENCING

To solve equation (4.17) an evenly spaced grid is defined in the computational (_, _, _) coordinate sys-
tem. Spatial derivatives are then approximated by finite difference formulas. First derivatives in the _ di-
rection are approximated using the following second-order central difference formula.

(___) f_+_,:,k-f_- l,:,k
af

"" 6_fi,j,k = 2A_
i,j, k

(5.1)

The subscripts i, j, and k represent grid point indices in the ¢, n, and _ directions. The computational grid

spacing A_ is constant, and equal to 1/(N_ - 1), where N, is the number of grid points in the _ direction.
Similar formulas are used for fu'st derivatives in the _ and _ directions.

The non-cross derivative viscous terms in the _ direction in equation (4.17) all have the form

where Q represents one of the elements of {_. Using central differences this is approximated by

1O_ (gAQ) _- 6_[f r_(gAQ)]i,j, k
"J i,j, k

1
= A---_-{f/+ l[2'j'kr_(gAO)i+ l/2,j,k- fii- ll2,y, kr_(gAQ)i - l/2,j,k)

I k[(gAQ)i+ 1,j,1_- (gAQ)i,./,._]
= (a_)----T(f_+_/2,.i,

- fi-I12,j,l<[(gAQ)i,;,k- (gAQ)i-z,y,k]}

= i ((f/,y,k+ f/+ Iy k)[(gAQ)i+ I,:,/_- (gAQ)i,j,k]
2(A_) 2 ' ,

- (d,:,k+ _- _,:,k)[(_aQ)_,zk- (_aQ)___,:,k]}

= I ((fi- L:,k+ fi,y,k)(gAQ)i- 1,j,k
2(A,)2

--(A- i,:,k + 2_,:,k+ ft-i,:,k)(gAQ)z,:,k

+ (fi, y, k + fi + 1,j, k)(gAQ)i + l,j, k} (5.2)

Similar formulas are used for second derivatives in the _tand £ directions.

Cross derivative viscous terms in the ¢-_ direction are evaluated using the following central difference
formula.

Proteus 3-D Analysis Description

PREC6DI'NG PAGE BLANK NOT FKMED
5.0 Space Differencing 33

0
--(f_n) _-6_(f6'Tg)i'J'k

i,j, k

= _ [f/+ 1,y,k(6,;g)i+ 1,:,k - fii- 1,y,k(_ g)i- 1,y,_]2A_
1

- 4A_A,7 If/+ _d, k(gi+ 1,i+ _,._ -g_+ 1,j- l,k)

- fi- 1,:,k(gi- 1,;+ 1,k -gi- 1,7- l,k)] (5.3)

Similar formulas are used for the remaining cross derivatives. Note that this formula is only needed for the
source terms, since the viscous cross derivative terms are lagged one time level.

When first derivatives are needed normal to a computational boundary, such as for Neumarm boundary
conditions, either first- or second-order one-sideddifferencing is used. The first-order formula at the _ = 0
boundary is

(Of)_l_(f2"j'k--fl'J'k)_1,j.k-- A_ (5.4)

and at the _ = 1 boundary,

_- _¢ (f:,',,z k- Iv,- _..:.k) (5.5)
k

The second-order formula at the _ = 0 boundary is

(0:'_0_ / "" 2A_l
"1,],u. (--3fl'J'k+ 4f2'J'k--f3,j,k)

(5.6)

and at the _ = 1 boundary,

(-_)Nl,j '

~ ---L (fNl_ 2,],k-- 4fNl _ l,j, k + 3fNM, ,'-- 2&_
k

(5.7)

Similar formulas are used at the computational boundaries in the *7and _ direction.

34 5.0 Space Differencing Proteus 3-D Analysis Description

6.0 BOU_'DARYCONDITIONS

Choosing boundary conditions is perhaps the most important step in solving a flow problem with
Proteus. Since the equations being solved at interior points are the same for every problem, the boundary
conditions are what determines the final flow field for steady flows.

With the difference formulas presented in Section 5.0, N,q boundary conditions are required at each
computational boundary, where N,q is the number of equations being solved. Note, however, that this is
a numerical requirement, not a mathematical one. For example, for one-dimensional Euler flow N,q = 3.
However, characteristic theory shows that, mathematically, only two conditions may be specified at a sub-
sonic inflow boundary, and only one at a subsonic outflow boundary (PuUiam, 1986a). Some sort of ex-
trapolation is typically used for the additional numerical boundary conditions.

A variety of boundary conditions are built into the Proteus code, including: (1) specified values and/or
gradients of Cartesian velocities u, v, and w, normal velocity V,, coordinate direction velocities V¢, V,, and
V:, pressure p, temperature T, and density p; (2) specified values of total pressure pr, total temperature Tr,
and flow an_es; (3) linear extrapolation; and (4) spatial periodicity. Another useful boundary condition is
a "no change from initial condition" option for u, v, w, p, T, p, pr, and/or Tr. Provision is also made for
user-written boundary conditions. The boundary conditions may be steady, unsteady, or time-periodic.
The exact combination of boundary conditions to be used will depend on the problem being run.

The boundary conditions in Proteus are treated implicitly. They may be viewed simply as addkional
equations to be solved by the ADI solution algorithm. And, in general, they involve nonlinear functions
of the dependent variables. They must therefore be linearized using the procedure described in Section 4.0.
The following sections describe this linearization for the general types of boundary conditions currently built
into Proteus.

6.1 NO CHANGE FROM INTrIAL CONDITIONS, Ag = 0

This boundary condition simply sets the boundary value of the function - equal to its initial condition
value. It can be written as

Agn = gn + 1 _ gn = 0 (6.1)

In general, g can be a nonlinear combination of the dependent variables (_. Linearizing g using the proce-
dure described in Section 4.0, we get

p/

(6.2)

Ne#ecting the O(Az) 2 lineafization error, the linearized form of equation (6.1) can thus be written as

(6.3)

6.2 SPECIFIED FL.rNCTION, g =f

A specified function at a boundary can be-wri_en simply as

gn + z =f (6.4)

Proteus 3-D Analysis Description 6.0 Boundary Conditions 35

whereg is the function being specified and f is the value being specified. Note that f can vary along the
boundary, and can be time-dependent. Using equation (6.2) and neglecting the linearization error, the
linearized boundary condition becomes

(6.5)

6.3 SPECIFIED COORDINATE DIRECTION GRADIEN'r, de/0_f =f

A specified gradient of a function in a coordinate direction can be written as

(6.6)

where g is the function whose gradient is being specified, f is the specified value, and _bis the coordinate
direction _, _, or _. Note that fcan vary along the boundary, and can be time-dependent.

The linearized form of g is given by equation (6.2). The linearized form of equation (6.6) can thus be
written as

(6.7)

Replacing differential operators with difference operators and neglecting the linearization error, the
linearized boundary condition can be written as

I(dQ
(6.8)

.. here 5, represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either first-order two-point or second-order three-point differencing.

Note that this boundary condition is a specified value of the derivative with respect to the computational
coordinate, not with respect to the physical distance in the direction of the computational coordinate.
Following Kom and K0m (1968), and using the properties of the generalized coordinate transformation, it
can be shown that for the _ direction the two derivatives are related by

ag I 0g

where

a_ = _ [(_fl_ - ,_Ay)2 + (,TAx- ,TA_)2 + (,TAy- _yG)2]

Similarly, for the _/direction,

ag I dg

where

36 6.0 Boundary Conditions Proteus 3-D Analysis Description

And, for the _ direction,

0g 1 og

where

6¢¢= _ [(¢:z - _:y)_ + (¢z,7_- _nz)2 + (_,Ty- _:A 2]

If the value f= 0, of course, the two derivatives are equivalent.

6.4 SPECIFIED NORMAL DIRECTION GRADIENT_ Vg. _ =f

A specified gradient of a function normal to the boundary can be written as

Vgn + 1 n =f (6.9)

where g is the function whose gradient is being specified, fis the specified value, and _ represents the unit
vector normal to the boundary. Note that fcan vary along the boundary, and can be time-dependent.

For illustrative purposes, assume we are specifying agradient normal to a constant _ boundary. Then

- I 7+ l _,7
n- IV_l----_'-

where

m=_:+_2+_2

Equation (6.9) can then be written as

1 n+l_ n+ n+m (g_ _x+gy l_,+g_ l_A=f (6.10)

Using the chain rule to expand _* _, _ +a, and _ +_,

gn+ , _.g_+ l_x + g_+'_lx + g_+ lCx
n+l n+! n+ n+

gy = g_ _Y + g'l l_lY + g_ l _y

Substituting into equation (6.10) and rearranging,

g_ + _(_x2 + _y2 + _2) + g_ + _(_x_lx+ _y_ty+ _:z) + g_ + _(_Ax + _y_y + _z_z) = mf

Solving for g_ ÷a,

(() _1Og'_ +1 f 1 Og n+l
34] -- m m 2 (_xrlx q- _yrly + _zavlz) _ m 2 (_x_x q- _y_y + _z_z) "_ (6. I 1)

Now, in order to incorporate this equation into the ADI solution procedure used in Proteus, the Og]&l and
Og/O_ terms in equation (6.11) are lagged one level, and evaluated at time level n instead of n + 1. Strictly
speaking, this introduces an O(Ar) error into the solution. In practice, however, the actual error wiU depend

Proteus 3-D Analysis Description 6.0 Boundary Conditions 37

on thedegreeof nonorthogonalityof thecoordinatesneartheboundary.For orthogonalcoordinatesno
erroris introduced.

Usingequation(6.2),andintroducingdifferenceoperatorsandneglectingthelinearizationerror,wecan
nowwritethelinearizedboundaryconditionas

f
m 1 1 (_x_x + _y_y + _z_z)b_g n -- 6_,gnm2 (_xnX+ ¢yny+ ¢2'Iz)a,3n - ---Tin

(6.12a)

where 6_ represents the one-sided difference operator to be used at the boundary. Options are available in
Proteus to use either ftrst-order two-point or second-order three-point differencing.

Note that the unit vector _ in equation (6.9) is in the direction of increasing _. Therefore, a positive
value for fin equation (6.12a) indicates a flux in the direction of increasing _. Thus, a positive f at _ = 0
implies a flux into the computational domain, and a positive fat _ = 1 implies a flux out of the computa-
tional domain.

Specifying a gradient normal to a constant _ or _ boundary is done in an exactly analogous manner.
The resulting equation for an _ boundary is

6n A n = fm
oo / 3

2 (rlx_x + flyby + rlz_z)cJ_ gn -- (rlx_x + I'lY(Y + nz_z)6_gn -- 6ngn
m

(6.12b)

where

m = 4r/x 2 + r/y 2 + Y/z2

For a _ boundary the equation is

6¢ A6n f 1 n _!- m m 2 (_x_x+_y_y+_z_z)6_g m 2 (_x_ix+_y_b,+_z)6,fln-6¢g n (6.12c)

where

m = 4_x 2 + _y2 + _z2

A positive value for fin equation (6.12b) indicates a flux in the direction of increasing n- Thus, a positive
fat 17= 13implies a flux into the computational domain, and a positive fat n = 1 implies a flux out of the
computational domain.

6.5 LINEAR EXTRAPOLATION

Linear extrapolation from the two adjacent interior points is also available as a boundary condition.
At the _ = 0 boundary, where i = 1, this can be written as

g_ +1 _ 2g_+ll + gL+2' = 0 (6.13)

Note that this is equivalent to setting (02g/c9_2)_+a= 0. Using equation (6.2), we can write the linearized
boundary condition as

7AQ n- 2 AQi+I + AQi+ 2 --_ + 2gn+l--gi+ 2

\ aQ _ i OQ// i+I \ '/ i+2
(6.14)

38 6.0 Boundary Conditions Proteus 3-D Analysis Description

Analogous extrapolation boundary conditions can easily be written for the remaining boundaries.

Proteus 3-D Analysis Description 6.0 Boundary Conditions 39

r, t ^_

7.0 SOLLTION PROCEDURE

7.1 ADI ALGORrrHM

The governing equations, presented in linearized matrix form as equation (4.17), are solved by an alter-

nating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Briley and
McDonald (1977), and by Beam and Warming (1978). Although the split equations can be developed in

more than one way, in this discussion the approximate factorization approach is used.

Letting LHS(4.17) represent the left hand side of equation (4.17), we can write

f F o / a_ arv, a a_ GOIA_ _ AQ n

LHS(4.:)= I+T-g_: -gf o_ aQ

where ! represents the identity matrix. Note that in this equation, using the 0]04 term as an example, the

notation used is meant to imply

")1AQ = 0_
aQ a6 \ ao ao

The term in braces in equation (7.1) can be factored to give

LHS(4.17)= I +

I+

The last two terms represent the splitting error. Note that, since A_ = O(Az), these terms can be ne#ected

without affecting the overall, time accuracy of the algorithm, even when second order time differencing is

used.

pREC£OING PAGE BI.ANK hOT FIL_ED

Proteus 3-D Analysis Description 7.0 Solution Procedure 41

Equation (4.17) can thus be rewritten in spatially factored form, and, ne_ecting the temporal truncation

and splitting error terms, becomes

O1Az 0 OF OFvl 01A¢ 0 OG 0 lOIA_ O O_ OEvl 1+ I + -

I+1+o2 o; oo o6 1+o2 o,7 o6 o6 1+o2 0¢ o6 oQ

(0E" OF^ 0G^ _n /'k, / O_V, 0_,V 1 0aVl , n "t" (1 + 03)A"I" (0El"=, "1"-_ +0 lz2_" 0Gv2 _n+) +Tm + + -) ,+o, k o, o, /1 +0 2

^ ^ A tl--I

03zX_ (aEv_ OFv2 aGv2 "_ Oa A_"-'

1+o_ \ o_ +--_-_ +-'T-) +TTT#-- (7.3)

Equation (7.3) can be split into the following three-sweep sequence.

Sweep 1 (¢ direction)

(7.4a)

Sweep 2 (1,/direction)

A6*" 0lA'r O AQ'" 01A'r O --' AQ'" =AQ" (7.4b)

+ 1+02 Oq OQ f j I+02 &t

Sweep 3 ({ direction)

01Az 0 OGv._ AQ'*
0,A_" O AQn 1 +02 0_ X AQ n = (7.4c)

A6n+ 1+0 2 0_ \ OQ 0Q

In the above equations, 0* and i_** represent intermediate solutions to the governing equations3 It should

be noted that in Proteus, physical (i.e, n + 1 level) boundary conditions are used during the ftrst two ADI

^ A ^ ^ ^ ^

2 The notation here is somewhat inconsistent. The quantity AQ"=Q_+'-Q _, but AQ'=Q'-Q", not
^

6 "+' - 6"" Similarly, AQ °" = Q'" - I_, not Q_+I_ Q**-

42 7.0 Solution Procedure Proteus 3-D Analysis Description

sweeps. This introduces an O(A-r) error in OQ]Oz on the boundary for unsteady flows, but no error for
steady flows. This point is discussed in detail by Briley and McDonald (1980).

Applying the spatial differencing formulas of Section 5.0 results in

Sweep I (¢ direction)

A,

AQi +
01A'r

(1 + 02)A_

^. ^. 0_2 ^*
AQi + 1

-_ AQi_I+(2_-I) AQi+(1-_) a¢_ i+iOQ Is-1 _ OQ i

_ n PI -- A¢_*_ o,/,,
(I + o2)(_) 2

m AT A A

I +02

(1 + 03)At ^ ^ 03AT ^ "
+ 1 + 02 (6{Ev2 + _'TFv2+ 6_av2)n 1 + 02 (6¢Ev2 + 6rtFv2 + 6(Gv2)n-I

02 Alan-1 (7.5a)+1-i-TE-

Sweep 2 (r/ direction)

^** 0,Ar 0_" ^** 0______FA(_;* + (l- c0\ 0Q A{_;; l
-a _ AQy_,+(2_-I) OQ,jA% + (1+02):,_ a_ _

/"/ /7 A**
11 Pl ?'/ Pl A A**0,AT [(fy_,+fy)gy_,A{_;'__,--(fy_,+2fy+fy+,)gyAQy +(fy+fy+,)gy+, Qy+,]=

(I + o2)(a_)2
(7.519)A*

AQ

Sweep 3 (_ direction)

^n 0|A_ ^n An ^n
-- c_ AQk_ _ + (2a - 1) AQ_ + (1 - _) AQk+ 1

AQk+ (l+02)A_ OQ//_1 \ 0Q -k \ 0Q ///_+

rt _ n_Ag_,rt rt ?l ^ n

_ O_6T [(A-_+A)"g_,-_zXQ_ _-(A l+2A+A+_)gk"_+(A+A+_)gk+_ 6Q_
(1+ 02)(A_)2

^ .. (7.5c)
AQ

The subscripts i, j, and k represent grid point indices in the _, _/, and _ directions. For notational conven-
ience, terms without an expficitly wxitten i,j, or k subscript are understood to be at i,j, or k. In the viscous
terms on the left hand side, fis the coefficient Of OlO_ (or O/o_l or OlO_, depending on the sweep) in the

^ ^ ^ ^ ^ ^

OEvJOQ (or OFvJOQ or OGv:/OQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses
^ ^ ^ ^ ^ ^

following OlO_ (or OlO_t or OtO() in the OEv_IOQ (or OFv_/OQ or OGvJOQ) Jacobian coefficient matrix.
Equations (7.5a) through (7.5e) represent the three-sweep alternating direction implicit (ADI) algorithm
used to advance the solution from time level n to n + 1.

+_]=

Proteus 3-D Analysis Description 7.0 Solution Procedure 43

7.2 MATRIX INa,'ERSION PROCEDURE

7.2.1 Non-Periodic Boundary Conditions

The complete set of algebraic equations for the first ADI sweep with non-periodic boundary conditions
can be written in the following block matrix form)

r

B] C_ A]

A2 _ C2

A3 B3 C3

AN_ -2 BN,-2 CN_-2

AN_ 1 B_vt-1 CN_-l

C'U_ A'NI B'Nl

A,

AQ1
A,

AQ2
A,

AQ3

AQNi,--1

AQN I

s_

$2

$3

SN_-

SN_ -

S'
NI

(7.6)

These equations result from the application of equation (7.5a) for i = 2 to Nt - I, with boundary conditions

added at i = 1 and i = N,. The parameter A0* is the N,v-element vector containing the unknown dependent
variables; A, B, and C are the N,q x N,q coefficient submatrices at i - I, i, and i + 1, respectively; and S is
the N,q-element subvector containing the expficit source terms. Also, A', B', and C' are the coefficient
submatrices and S' the source term subvector for the boundary conditions. A variety of boundary condi-
tions may be used. They are described briefly in Section 6.0, and in greater detail in Volumes 2 and 3.

Note that the equations at the boundaries may contain coefficients at the boundary point and the two
adjacent interior points. This occurs, for example, when extrapolation or second order gradient boundary
conditions are specified. As written, therefore, the coefficient matrix in equation (7.6) is not block
tridiagonal. However, A] can be eliminated by multiplying the second row of the matrix by A] C_ _ and
subtracting from the first row. C',v_ can be eliminated in a similar manner. Doing this, we define

B_= B] - A] C2 _A2

C! = C] - A] C2IB 2 (7.7)

sl = s] - A] G-_s2

and

AN,= A%,- C'U,AZ_,L1Bu,_,

BN, = B'N l -- C'N, AN1 l- ICN, - I (7.8)

sN,= - A;; ,sN, ,

3 Although this discussion is written for the first ADI sweep, an exactly analogous procedure is followed for the
second and third sweeps.

44 7.0 Solution Procedure Proteus 3-D Analysis Description

The set of algebraic equations solved during the first ADI sweep can now be written as

B l C_

A 2]32 C2

A3 B3 C3

AN, -2 BN_-2 CN_-2

AN_-_ BN_-1 CN_-l

AN 1 BN_

A,

AQI
AI¢

AQ2
A,

AQ3

A.

AQN l

S 1

S2

$3

SN_ -2

SN_ -1

SN_

(7.9)

Since the coefficient matrix is .now block tridiagonal, the equations can be solved using the block matrix

version of the Thomas algorithm (e.g., see Anderson, Tannehill, and Pletcher, 1984). The procedure can
be summarized as follows:

1. Def'me DI = BI.

^

2. Compute E1 = Dr 1C_ and AQ[= Dr 1S1.

, For i = 2 to N1, compute

Di = Bi - AiEi- 1

E i = DT 1Ci

A r . A

AQi = D7 l(Si AiAQ_- 1)

(Actually, E, is only needed for i = 2 to NI - 1).

^ ^

4. Then, set AQ# I= AQ% I.

^ ^ ^

5. Finally, for i = NI - 1 to 1, compute AQ, = AQ_ - E,AQ_ + 1-

A t ^

In the Proteus code, in step 2 E1 and AQ_ are actually obtained by solving DtEt= C_ and D1AQ_ = 51
A t

using LU decomposition of D. A similar procedure is used to compute El and AQ_ in step 3.

7.2.2 Spatially Periodic Boundary Conditions

In computational coordinates a spatially periodic boundary condition in the _ direction may be repres-
ented as shown in Figure 7.1.4

4 As in Section 7.2.1, this discussion is written for the first ADI sweep, but an exactly analogous procedure is followed
for spatially periodic boundary conditions in the second and third sweeps.

Proteus 3-D Analysis Description 7.0 Solution Procedure 45

r/

Nz-lC

[] 0 o

[] 0 []

2C)

j=l C)
"/.-1

o 0 []

z

Figure 7.1 - Spatially periodic boundary condition.

The grid points along the i = 1 and i = N_ lines are "similar" in the geometric sense, and have the same

flow solution. Therefore, for a spatially periodic boundary condition in the _ direction, Q_ = (_z_.

To implement this boundary condition, an additional set of points is added at i = Nt + 1, setting

Qz¢_., = (_2. This allows us to use central differencing in the _ direction at i = _¢1, computing the coeffi-
cients in the same way as at the interior points.

46 7.0 Solution Procedure Proteus 3-D Analysis Description

The resulting set of algebraic equations will consist of N, - 1 equations (for i = 2 to N,), with N_ + 1
unknowns. The block coefficient matrix thus has Nt - 1 rows and N, + 1 columns, as follows:

A2 B2 C2

A3 B3 C3

A4 134 C4

AN I - 2 BN_-2 CNt-2

AN_-1 BN_-I CNt-

Aml BN1

A,

AQl
A.

AQ2
A.

AQ3
A.

AQ4

AQN, _
,.=

AQN, - 1
k

C_q AQ2v_

,]
%

s4 i

I S_%_ 2

S,,v_- 1

S_vl I
J

(7.10)

These equations result from the application of equation (7.5a) for i = 2 to N_. As in the previous section,

parameter A(_* is the N,q-element vector containing the unknown dependent variables; A, B, and Care the
N,q x N,q coefficient submatrices at i - 1, i, and i + 1, respectively; and S is the N,,-element subvector con-
raining the explicit source terms.

^ ^ ^ ^ :

Since QI = Qul and Q2 = Qt¢_+ i, equation (7.10) can be rewritten with NI - 1 unknowns as:

13-2 C2

A 3 B3 C3

A 4]34 C4

CN l

II

•_ /Ill
S2

S3

SN_ -2

SAq- I

S_vl

(7.11)

An efficient algorithm to solve this system can be derived that is similar to the Thomas algorithm for
block tridiagonal systems. The procedure can be summarized as follows:

1. Define D2 = B2 and 172= Cb' I.

^

2. Compute E2 = D[1C2, G2 = D_ IA2, and AQ_ = D[1S2.

Proteus 3-D Analysis Description 7.0 Solution Procedure 47

. For i = 3 to N, - I, compute

Di = Bi - AiEi- 1

E i = D T 1C i

Fi = - Fi- I Ei- l

G i = - DT I AiGi_ 1

A A

AQ[= D 7 I(Si- AiAQ[_ 1)

. Compute

D-IGNI l- N1_I(CNI_I--ANt_IGNI_2)

FN_ - I = A,% - F_,_ 2E/v_ _ 2

Nl--I

DN! = BNI -- Z FiGi
i--2

A t A

AQN =DN11 SN-- FiAQ_
i=2

^ A s

5. Then, set AQ& = AQ _'l-

^ ^ t ^

• 6. Compute AQ_vt - 1 = AQ Nl - l -- G2_L- 1AQur

^ ^ t ^ A

7. Finally, for i = N, - 2 to 2, compute AQ, = AQ, - E,AQ,+ _ - G,AQNr

^ t

In the Proteus code, in step 2 Ea, G2, and AQ2 are actually obtained by solving D2E2 = C2,
^

D2G2 = A2, and D2AQ_ -- 52 using LU decomposition of D. A similar procedure is used to compute E.
A t ^

G. and AQ, in step 3, and GNI- 1 and AQ% a in step 4.

7.3 UPDATING BOUNDARY VALUES

With the ADI algorithm described in Section 7.1, if gradient or extrapolation boundary conditions are
used for the first or second sweep, the boundary values from the first two sweeps must be updated after the
third sweep. This point is easiest to illustrate by looking at a figure.

In Figure 7.2, a 4 x 4 x 4 grid is shown in computational space for a three-dimensional problem. This
example assumes that no spatially periodic boundary conditions are being used. The circles represent grid

^

points at which the intermediate values Q* are computed during the first ADI sweep. These include the
boundary points at _ = 0 and _ = 1. The squares represent grid points at which the intermediate values

(_** are computed during the second ADI sweep, including the boundary points at n = 0 and n = I. The

trian#es represent grid points at which the final values _ + 1 are computed during the third ADI sweep,
including the boundary points at _ = 0 and (= 1. If gradient or extrapolation boundary conditions are used
during the first and/or second sweep, so that the boundary values depend on the interior values, then the
intermediate values at the _ and/or _/boundaries must be updated after the third sweep to be consistent
with the final values at the interior points.

To do this, after the last sweep the difference equations are rewritten and solved at the _ and ,7 bound-

aries. At the ¢ = 0 boundary,

48 7.0 Solution Procedure Proteus 3-D Analysis Description

O O

0 Sweep 1
[] Sweep 2

Sweep 3

Figure 7.2 - Updating boundary values.

n A/2 /2 A/2 /2 A/2 /2

B] AQ]+C_ AQ 2+A] AQ3----S] (7.12)

The subscripts refer to the value of i, the index in the _ direction. This equation is applied for j = 2 to
N2 - 1 in the r/direction, and for k = 2 to 3/3 - 1 in the _ direction. For notational convenience, however,

the subscripts j and k have been omitted.

All the terms in equation (7.12) are known except A(_. Solving,

A?I • /2)__ 1] , 11 A_ /2 AT/AQ_=(B_ _(S_ --C_ AQ 2-A_ AQ 3) (7.13)

At the _ = 1 boundary,

C' '_zXA" , /2 "/2 ., /2AA/2 , '_
N_ '_NI-2+AN_ AQN_-1+'-'N_ _',_N,=SN_ (7.14)

r, n

A'_u_'_= _"N'R--"_--jbe' " _ r' /2^A. _ '_./20,v̂"',ON 1 _N 1 _*'_N 1-2 A,, l A--:, 1- 1) (7.15)

An analogous procedure is followed to update values at the q = 0 and _/= I boundaries.

Finally, note from Figure 7.2 that new values are not computed at the comers or edges of the compu-
tational domain during the solution algorithm. To make the edge values consistent with the rest of the flow
field, in Proteus they are defined using the computed values at adjacent points. For example, at each (lo-

cation along a _-_t edge (i.e., one of the four lines of intersection between the _ and q boundary planes), the
density p and total energy Er are arbitrarily defined by linearly extrapolating from the two adjacent points
in the _ and _/ coordinate directions, and averaging the two results. The edge values of the velocities are

updated by doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity
whose absolute value is lower is used. This was done to maintain no-slip conditions at duct inlets and exits.

The values at comers, where all three boundary planes intersect, are determined in an exactly analogous
manner.

Proteus 3-D Analysis Description 7.0 Solution Procedure 49

Updating boundary values from the ftrst two sweeps is complicated somewhat when spatially periodic
boundary conditions are used. Details are presented in the description of subroutine BVUP in Volume 3.

50 7.0 Solution Procedure Proteus 3-D Analysis Description

8.0 ARTIFICIAL VISCOSITY

With the numerical algorithm of Section 7.0, high frequency nonlinear instabilities can appear as the
solution develops. For example, in high Reynolds number flows oscillations can result from the odd-even
decoupling inherent in the use of second order central differencing for the inviscid terms. In addition,

physical phenomena such as shock waves can cause instabilities when they are captured by the finite dif-
ference algorithm. Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress
these high frequency instabilities. Two artificial viscosity models are currently available in the Proteus

computer code - a constant, coefficient model used by Steger (1978), and the nonlinear coefficient model
of Jameson, Schmidt, and Turkel (1981). The implementation of these models in generalized
nonorthogonal coordinates is described by Pulliam (1986b).

8.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The

standard explicit smoothing uses fourth order differences, and damps the high frequency nonlinear insta-
bilities. Second order explicit smoothing, while not used by Steger or Pulliam, is also available in Proteus.

It provides more smoothing than the fourth order smoothing but introduces a larger error, and is therefore
not used as often. The implicit smoothing is second order and is intended to extend the linear stability

bound of the fourth order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms

to the right hand side of equation (7.5a) (i.e., the source term for the first ADI sweep.)

j (V¢AcQ + V,rAnQ + V_A_Q)

e(_)Az
j [(V_A_)2Q + (VnA,7)2Q + (V_A_)2Q] (8.1)

where _> and _> are the second- and fourth-order explicit artificial viscosity coefficients. The symbols V
and A are backward and forward first difference operators. Thus,

V_Qi = Qi- Qi- 1

A_Qi = Qi+ 1 - Qi

V_A{Qi = Qi + 1 - 2Qi + Qi- 1

(V{A{)2Qi = Qi + 2 - 4Qi + 1 + 6Qi - 4Qi _ I + Qi - 2

Equivalent formulas are used for differences in the _/and (directions.

A few details should be noted at this point. First, the sign in front of the artificial viscosity term being

added to equation (7.5a) depends on the sign of the "i" term in the difference formula. For damping, that

term must be negative when added to the right hand side of the equations (i.e., explicit artificial viscosity),
and positive when added to the left hand side (i.e., implicit artificial viscosity.) See Anderson, Tannehill,
and Pletcher (1984) for details. Second, the terms being added are differences only, and not finite difference

approximations to derivatives. They are therefore not divided by A_, etc. Third, the variables being dif-

ferenced are Q, not (_. As noted by Pulliam (1986b), scaling the artificial viscosity terms by l/J makes them
consistent with the form of the remaining terms in the equations. Fourth, the terms are also scaled by Az.

This makes the steady state solution independent of the time step size (Pulliam, 1986b). And finally, note
that the fourth-order difference formula cannot be used at grid points adjacent to boundaries. At these

points, therefore, the appropriate fourth-order term in expression (8.1) is replaced by a second order term.
Thus, for points adjacent to the _ = 0 and _ = 1 boundaries, - _:)Az[(V_A_)2Q]/J is replaced by

Proteus 3-D Analysis Description 8.0 Artificial Viscosity 51

+ ---7-- VCACQ (8.2)

A similar expression is used at points adjacent to the _/and _ boundaries.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the

equations specified.

SlAW A.
j [V_A¢(JAQ)] to equation (7.5a)

SlAT ^ **
j [VnAr(JA Q)] to equation (7.5"o) (8.3)

elAX A
j [VcA¢(JaQ")] to equation (7.5c)

Note that the addition of the artificial viscosity terms, in effect, changes the original governing partial
differential equations. At steady state, the difference equations with the artificial viscosity terms added ac-
tually correspond to the following differential equations. 5

A A A A A A . A A ,) A 7

dE F OF OG OEv OFv OGv _) V 2 02(JQ) + (A_/)2 02(JQ) + (A¢)2 0 (:Q)

0¢ 0_+ 0-z-= 0--z-+_ +_ +-7-l ta¢_.0: 0n2 0¢2 J
j (A_) 4 04(JQ) t-(A_) 4 0 (JQ____)+ (A¢) 4 O (JQ______)

c9_4 On4 O(_

^

The implicit terms do not appear, since they difference AQ, and in the steady form of the equations

A(_ = 0. The artificial viscosity terms do not represent anything physical. The coefficients should therefore
be as small as possible, but still large enough to damp any instabilities. Although optimum values will vary
r_om problem to problem, recommended levels are s_> = O(1) and ez = 2s_> (PulJ:,m, 1986b). The recom-
mended level for e_), when used, is s_) = O(1).

8.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by

Pulliam (1986b), but in the current notation, the following terms are added to the right hand side of
equation (7.5a).

{I('>+V'7 -7 y+l

{I(' 1 }+V¢ -7-)k+l + (_-)k (_2)A,Q - e_)A¢VcA¢Q)k (8.4,

s These equations represent the use of the constant coefficient artificial viscosity model presented in this section. The
nonlinear coefficient model to be presented in Section 8.2 is more complicated, but the same principle applies.

52 8.0 Artificial Viscosity Proteus 3-D Analysis Description

The difference operation AcVCAcQ is given by

A_V_A{Qi = Qi + 2 - 3Qi + 1 + 3Qi - Qi- 1

In the expression (8.4), 4' is defined as

4`= 4`x+ 4`y+ 4`z (8.5)

where 4`_, 4'y and _b,are spectral radii defined by4

Igl + a-,f_x 2 + _y2 + _z2

IVI + a_fnx 2 + ny2 + nz2

4'Y = An

IWI + a_ 2+ £y2+ _z2

(8.6)

Here U, V, and W are the contravariant velocities without metric normalization, defined by

U= _t + _xU"}" _yv + _z w

V= _lt + rlxU + rlyV+ flew

W = _t + _xu + _yV+ _zw

(8.7)

and a = _, the speed of sound.

The parameters er2)and _<4)are the second- and fourth-order artificial viscosity coefficients. Instead of
being specified directly by the user, as they are in the constant coefficient model, in the nonlinear coefficient
model they are a function of the pressure field. For the coefficients of the _ direction differences,

(_2))i = _:2A.r max(ai+ 1, O'i' O'i--1)
(8.8a)

(e_4))i= max[0, _:4Az --(_2))i] (8.8b)

where

I Pi+l-2pi+Pi_l_ri= pi + t + 2pi + pi , 1
(8.9)

Similar formulas are used for the coefficients of the _/and _ direction differences.

The parameter cr is a pressure gradient scaling parameter that increases the amount of second order
smoothing relative to fourth order smoothing near shock waves. The logic used to compute _(4)switches
off the fourth order smoothing when the second order smoothing term is large.

The parameters K2 and K4are user-specified constants. Like the coefficients in the constant coefficient
model, the optimum values will be problem-dependent, and are best chosen through experience. Cases have
been run with values of _:2ranging from from 0.01 for flows without shocks to 0.1 for flows with shocks,
and _<4ranging from 0.0002 for flows computed with spatially constant second-order time differencing to

It should be noted that the grid increments A_, A_7, and A[in these definitions do not appear in the corresponding
formulas presented by Pulliam (1986b). This is because the grids used by PuUiam are constructed such that

A{ = An = A_= 1, while in Proteus A_ = 1](Nl -- 1), An = l/(N2 - 1), and A[= 1/(N3 - I). The definitions used
here for _, Oy,and _, result in an artificial viscosity level equivalent to that described by PuUiam.

Proteus 3-D Analysis Description 8.0 Artificial Viscosity 53

0.005 for flows computed with spatially varying first-order time differencing.
_:2= 0.25 and _:4= 0.01 as typical values for an Euler analysis.

Pulliam (1986b) gives

Like the constant coefficient artificial viscosity model, the nonlinear coefficient model requires special
formulas near boundaries. To apply (8.4) at i = 2, ef_ is needed at i = 1. It is defined as

(e_2))l = _c2A-rmax(a 2, al)

With the above definition, applying (8.4).at i = 2 and i = N_ - 1 requires a at i = 1 and i = N_. They are
defined as

I -p4 + 4p3- 5p2+ 2p_ I_r t p4 + 4p3+ 5_ + 2pl

-_p_,_ 3.+_.4p,v___,=2_- Sp_,.2 _+ 2pN, [
fin 1 - 3 "1- 4PN l -- 2 q- 5PN t -- 1 '1- 2*DN t I

And, finally, applying (8.4) at i = 2 and i = N_- 1 requires AcV_A_Q at i = 1 and i = Nt- 1.
numerous formulas that could be used. The ones currently in the Proteus code are

AcV_A_Q1 = - Q5 + 5Q4 - 9Q3 + 7Q2 - 2Qi

A_VcAcQN t - 1 = QN_ -4 - 5QN, -3 + 9QN t -2 - 7QN_- I + 2QN_

There are

54 8.0 Artificial Viscosity Proteus 3-D Analysis Description

9.0 TURBULENCEMODEL

As noted briefly in Section 2.0, for turbulent flow the Reynolds stress and turbulent heat flux terms are
modeled using the Boussinesq approach. An effective viscosity is thus defined as # = #t + #t, where tzt is
the laminar, or molecular, viscosity coefficient, and #t is the turbulent viscosity coefficient. Similarly, an
effective second coefficient of viscosity is defined as 2 = 2_+ _!,, and an effective thermal conductivity coef-
ficient is defined as k = k_+ k,.

The turbulent coefficients must be computed using a turbulence model appropriate for the flow being
computed. In Proteus, turbulence is modeled using either a generalized version of the Baldwin and Lomax
(1978) algebraic eddy viscosity model, or the Chien (1982) low Reynolds number k-, model.

9.1 BALDWlN-LOMAX MODEL

For wall-bounded flows, (i.e., boundary layers), the Baldwin-Lomax turbulence model is a two-layer
model, with

Izt)inner for Yn < Yb
#t = ((tZt)outer for yn > Yb

(9.1)

where y_ is the normal distance from the wall, and Ybis the smallest value ofy_ at which the values of #, from
the inner and outer region formulas are equal. For free turbulent flows (i.e., mixing layers, jets, and wakes),
I_,= (#,)o_,,. In the inner region, in addition to the Baldwin-Lomax model, an alternate expression first
presented by Spalding (1961), and later by Kleinstein (1967), is also available.

9.1.1 Outer Region

The outer region turbulent viscosity is computed from

(#t)outer = KCcpp FKlebFwakeRer (9.2)

where K is the Clauser constant, taken as 0.0168, C_, is a constant taken as 1.6, and p is the static density.

The parameter F,,,,, is computed from

_ YmaxFrnax

Fwake = } c V_ Ymax
t

for wall-bounded flows

for free turbulent flows
(9.3)

where C,_ is a constant taken as 0.25, and

where V is the total velocity vector.

The parameter F,.ox in equation (9.3) is the maximum value of

Proteus 3-D Analysis Description 9.0 Turbulence Model 55

for wall-bounded flows

for free turbulent flows
(9.4)

and y,_o_ is the value ofy, corresponding to Fm,x.

In a simple boundary layer analysis, with only one solid surface, the procedure for computing F(y_) and
Fm°x is relatively straightfo_'ard. In a general Navier-Stokes analysis, in which any part of any boundary
may be a solid surface, the problem is more complicated.

In Proteus, each grid point is labeled as either a wall-bounded point or a wake point. Wall-bounded
points are those for which at least one of the three grid lines through the point intersects a solid wail. All
other grid points are wake points.

For each wall-bounded point P.,#, the grid line intersecting the nearest wall is determined. F(yo) is then

computed along that line, with y, equal to the distance to the wall nearest the point Pw.u. F_,_ is defmed
as the maximum value of F along the line, and y=.x is the value of y_ corresponding to F,_,_. It has been
found that for wall-bounded flows the function F(y_) can have multiple peaks. In 3-D Proteus, the peak
nearest the wall is used.

For each wake point P,,k,, the grid line intersecting the nearest boundary is determined. Next, the values

or and onthat line are found. Two values of F(y,) are then computed- one with y, equal

to the distance from the point P,,k, to the location of [VI =_,' and one with y, equal to the distance to the

location of] V[_,. Two values of F,_** and y,,_ are determined, for the two F(y,) arrays. As in the wall-
bounded case, ym,*,_ is the value ofy, corresponding to F_,Z. The smaller y,,,_ and the corresponding Fmo_ are
the values finally used for computing F,,k,.

In equation (9.4), [ill is the magnitude of the total vorticity, defined as

I()'(t'!'"Ou Ow Ov Ou
fil = 0w Ov + + (9.5)

-_y Oz Oz Ox Ox Oy

The parameter A ÷ is the Van Driest damping constant, taken as 26.0. The coordinate y÷ is defined as

x/ZwpwRer
Y+= Pwu'yn Rer-- Yn (9.6)

12w law

where u, = x/z./p,Re, is the friction velocity, z is the shear stress, and the subscript w indicates a wall value.

In Proteus, _, is set equal to la, lal.

The function F_c_,0in equation (9.2) is the Klebanoff intermittency factor. For wake points, FK_,, = I.
For wall-bounded points,

Ymax (9.7)

This factor accounts for the experimentally observed fact that, as the free stream is approached, the fraction
of time the flow is turbulent decreases. In equation (9.7), B and C_z,_ are constants taken as 5.5 and 0.3,

respectively. (Cx_,b)m,, is a constant normally equal to 0.0. However, when using the Baldwin-Lomax model
to generate initial turbulent viscosity values for the Chien k-_ model (discussed in Section 9.2), (Cxj,,),_ is
set equal to 0.1. This yields a small positive value for _, in the free stream, and has been found to minimize

starting problems with the k-, model.

56 9.0 Turbulence Model Proteus 3-D Analysis Description

9.1.2 Inner Region

The inner region turbulent viscosity in the Baldwin-Lomax model is

(,),..e,--pz2lf lRer (9.8)

where l is the mixing len_h, normally given by

l = lcYn(1-- e - y÷ IA ÷) (9.9)

and _: is the Von Karman constant, taken as 0.4.

A modified form of equation (9.9), proposed by Launder and Priddin (1973), may also be used. This
formula is most useful for'flows with steep negative gradients of shear stress normal to the wall, such as
accelerated flows or flows with suction. Their modified formula for l is

l= _yn(l - e - y+(z+)"/A +) (9.10)

where

and n is a constant taken as 1.7.

The inner region turbulent viscosity may also be computed using an alternate expression first presented
by Spalding (1961), and later by Kleinstein (1967). In this model,

. -xBr s<u+ 1] (9.11)
t_t)inne r = Iat_ce L - 1 - _u + - --_ @u+) 2J

where

U + =

u_ _/z_lPwRer

i ,-h i

Again, in Proteus, ,. is set equal to/_. lal-

9.1.3 Turbulent Values of). and k

The turbulent second coefficient of viscosity is simply defined as

2
21 = - y/_t

(9.12)

The turbulent thermal conductMty coefficient is defined using Reynolds analogy as

cp/_t

kt _ Prt pr r (9.13)

where cp is the specific heat at constant pressure, and Pr, is the turbulent Prandtl number. In Proteus, the
turbulent Prandtl number may be treated as constant, or as a variable using the following formula (Wassel

and Catton, 1973):

Proteus 3-D Analysis Description 9.0 Turbulence Model 57

1-exp(Cpr4)cm mlm
(9.14)

Prt= CprlPrt (Cpr2)I -- exp pr t #t[lZl

Here Cp,_, C_,,2, Cp,3, and Cp,4 axe constants taken as 0.21, 5.25, 0.20, and 5.0, respectively, and Prz = cp#dkt
is the laminar Prandtl number.

9.2 CHIEN k-z TURBULENCE MODEL

9.2.1 k-e Equations

The low Reynolds number k-s formulation of K. Y. Chien (1982) was chosen because of its reasonable

approximation of the near wall region and because of its numerical stability. Here k and s are the turbulent
"kinetic energy and the turbulent dissipation rate, respectively: In addition, the Chien k-s turbulence model

was frequently used in past Navier-Stokes computations with good results (Nichols, 1990, 1991; Patel, Rodi,

and Scheuerer, 1985; Sahu, 1984.) The set of k-_ equations are lagged in time and solved separately from

the Navier-Stokes equations to allow for code modularity in turbulence modeling. In Cartesian coordinates,

the three-dimensional equations for the Chien k-e model can be written using vector notation as

0W __ OF 0G + oH
Ot -O-_-x+ Oy Oz =S+T (9.15)

where

pk] (9.16a)W= ps

I Ok
F= 1 Os

O--y-

(9.16b)

(9.16c)

1 Ok]

H = [pws 1 O_ I

(9.16d)

S_

C PkT- Re::
(9.16e)

7 It should be noted that in the Chien model, t is actually the isotropic portion of the turbulent dissipation rate.
Throughout this manual, however, it is referred to as simply the turbulent dissipation rate.

58 9.0 Turbulence Model Proteus 3-D Analysis Description

T_

2 _k

Rer y2n

- y+[2
2 tze

Rer y_

(9.160

and

/2-t

t_k = # + a--_-
(9.17a)

/A t

/.tr ----/z + a--Z

C1 = 1.35

C2,(1 -_-e2 -- R_t/36"_)C2

ak-- 1.0

% = 1.3

6"2= 1.8

pk 2

Rt-- Izr

(9.17b)

(9.17c)

(9.17d)

(9.17e)

(9.170

(9.17g)

(9.17h)

#t 2 pkP2Pk=--_e, P1- T

.e_= L\ Ox +(T +(

+ (Ou Ou Ov

Ow) 2] 2 { Ou + Ov + c3w'_ 2

+.____ o_v)2Ox +-_y

(9.18a)

(9.18b)

Ou Ov Ow (9.18c)
P2=W +-_y + o--7

The turbulent viscosity is given by

k2 (9.19a)
l_t = C1_p

Cu = Cu,(1 - e - c3y+) (9.19b)

Cu, = 0.09 (9.19c)

C3 = 0.0115 (9.19d)

Note that the vectors W, F, G, H, and S are used in most standard k-_ formulations (with different
constants), and the vector T is unique to the low Reynolds number formulation of Chien. The parameter
y, is the minimum distance to the nearest sofid surface, and y+ is computed from y,. The production of
turbulent kinetic energy Pk includes the full Boussinesq approximation for compressible flows. All of the

Proteus 3-D Analysis Description 9.0 Turbulence Model 59

above equations have been nondimensionalized using appropriate normalizing conditions.
Nondimensionalization of mean flow properties is discussed in Section 2.1. The turbulent kinetic energy
k and the turbulent dissipation rate r have been nondimensionalized by u_ and p,_/#,, respectively.

Following the procedure of Section 2.3, the following generalized grid transformation is used to trans-
form the k-e equations from physical (x, y, z, t) coordinates to computational (¢, _/,(, r) coordinates.

= _(x,y, z)

n = ,fix, y, z)

= ¢(x,y, z)
-t.= I

(9.20)

Applying the generalized grid transformation to equation (9.15) yields

W_ + F_¢ x + Fnn x + Fg_x + G¢_y + G,rr/y + G_¢y + H_ z + H,Tnz + H¢_ z = S + T (9.21)

Although the above equations can not be put into exact strong conservation law form, the procedure
used to do so for the mean flow equations, described in Section 2.4, is nonetheless applied to equation
(9.21). The result is

A A

O'r +-'_- Or/ +--_-=S+T (9.22)

where

^ 1 I
FM j Re r

^ 1
FD= j

(9.23a)

(9.23b)

(9.23c)

(9.23d)

(9.23e)

^ 1
GM-- j

A A A A

G = G c - G D - G M

^ 1 Fr/_,,._ + r/¢_k+ r/,pwk]
Gc = -f [r/xpue + rlyPV_.+ r/zpWe. J

2

^ I 1 [t"k(r/2x+ r/y:2+ rlz)k,7]

1 [_,_(Gn.+ G'_y+ ¢...1_-"_(r/J- + r/Ay+ r/X.)_;]

A A A A

tt = It c - Itn - It g

(9.230

(9.23g)

(9.23h)

(9.23i)

(9.23j)

60 9.0 Turbulence Model Proteus 3-D Analysis Description

_iC 1 [_xP uk + _ypvk + _zpwk]
= "J [¢xPU_, + _ypVe "b CzpW_ J (9.23k)

F 2 2
¢_)k¢

-1
^ 1 1 [tzk((x +_y + |

=-- 2_1_2HD J Rer [tz,(:x CY+ _z2)_;j (9.231)

+ Ce_y+ Cg_)k_- _k(ng.+_yCy+.g_)k.]
HM _̂ J1 Re,l [g_(_x_x + Cy_y+ _z_z)s_ g_(_x + '/yCy+ _z_z)% J (9.23m)

1 2
S=-f _

C_Pk _ - Re_C2p

2 _ k

Re r 2
^ 1 Yn

T = 7 2 Ile-y+12

R er y2n

(9.23n)

(9.230)

Note that in equation (9.23n), the term Pk involves derivatives with respect to the Cartesian coordinate
directions (see equations (9.18a-c.) These are evaluated using the chain rule.

9.2.2 Linearization of the k-z Equations

Solving equation (9.22) for 0%V/0z and substituting the result into the time differencing scheme of Beam

and Wanning (1978), given by equation (3.1), for O(A'VCOIO'rand O'er"]Or yields

^ ,', ^ ^ ,., ^ ^ ^ ^ ,_ n

+ Ar (0Fc aFt) @Fa4 aGc aGD aGM 0H c @H_ aH M ^_+0_ _--g(-+--_+ _ _, +-TU+ _ _ _--_+-g(-+s++)

Equation (9.24) is then linearized using the procedure described in Section 4.0. Let

^ ^ ^ ^ ^ ^

OF c 0F a OG c _G D OH c OHDA=""7-, B=-"'7-, C= , D- , E=""7-, F=_,^
ow ow ow o_v Ow ow

o'_ (9.25)M-- /9S N = ""7-
O_V ' OW

be the Jacobian coefficient matrices, where

A = [_xU + _yV+ _zW 0]0 Gu + _yV+ Gw
(9.26)

B_

1 - 2 2 ¢2,/ J "_

1
0

JRe r
0]2(J)

(9.27)

Proteus 3-D Analysis Description 9.0 Turbulence Model 61

"_lxu + _lyv + qzW 0]C
0 _lxU + _lyV+ _lzw J

(9.28)

[j_e r 2 2 2 J

t_k(_x + _y + nz)(7)
D=

0
I

JRe r

0

2 2(J)u_(n_+ ,Ty+ ,0 7-
(9.29)

E= [_xU + (yV + (zw 0]0 Gu + _yv+ Gw
(9.30)

1 2 2 2 J

F= -)-_er tak(_x + _Y + :Z)(--P)_

1

0 JRer
0],.2+.2(J)

(9.31)

_2 G gee]

2CI, k Pk - C 2 tit
i_t '_

Pk 2

CI Cu "_t + RerC2 "-_ - 2RerC2

(9.32)

21a
2

PYn Re r

0 012l_ - y+ i2
2 e

PYn Re r

(9.33)

The linearized form of equation (9.24) can now be written as

n

aw'+y_; 0-7 - N + _ -_ N

^ ^ ^ _--I

1 + 0 2 O_ + Oq + c_

1+0 2 _k a'_ +W + a_ Or/ +

+

^ ^

aG D OG M

+ O,l

^ ^ ^ n

OH c OH,3 OHM) 02 " Ia¢ _ -N- + -N - + _ ÷ _ + V-_2_ _w_-

0.34)

62 9.0 Turbulence Model Proteus 3-D Analysis Description

9.2.3 LU Factorization Algorithm for the k-_ Equations

The LU factorization scheme used to solve the k-_ equations is essentially the same as that described

by Hoffmann (1989). Letting RHS(9.34) represent the right hand side of equation (9.34), we can write

{ 1}01Az 0

I _ 1 + 02 (A - B) + _ (C - D) + (E - F) - (M + N) AXVn = RHS(9.34) (9.35)

where I represents the identity matrix.

The Jacobian matrices A, C, and E can each be sprit into two submatrices, such that each submatrix is

associated with the positive and negative eigenvalues of the corresponding Jacobian matrix. Equation (9.35)
can thus be rewritten as

0tAz r- o + _(E ++E-)I+5-TGL-_-(A +n->+ 0-%(c+ +c-)+
3B OD OF

tl

(9.36)

Using first-order upwind differencing for the Jacobian matrices A, C, and E, and central differencing for
B, D, F, and on the right hand side, equation (9.36) becomes

01a, E,5_A++ _A- + GC+ + 6_C- +,_-E+ + 6_C]I -t- 1-"-_-_2

OiAz
n

OiA'r

[(6¢B) + + (6¢B)- + (6roD) + + (6roD)- + (6¢F) + + (6¢F)- + (M + N)] _ A'_ _1+ o_ I + o2 [6_(av_>+ 6,(_¢_>+ 6¢(afiM>]"-
A

_ ^ ^ A A . ^ A ^ .", A ^ A

+ _ (-- 6_F C + 6_V D + 6IF M -- 6,1G C + 6,_G D + 6rag M -- _{H c -t- _5¢H/) + 6gH M + S + T) n (9.37)

Note that the central differencing operators for B, D, and F have been split into forward and backward

differencing parts. Neglecting the temporal truncation and splitting errors, equation (9.37) can be approxi-

mately factored as

{0,4, }", + _ [rb_ ++ Gc + + 6_e÷- (6_8>-- (_,D)-- (6_-] •

01Az, + _ ['6_A- + 6;C- + 6_'e- -- (61B) + -- (6roD) + - (6;F) + -- (M

AT A A ^ ^ ^ ^ ^ ^ ^ ^

+ _ (- 6_v_+ 6_F_+ 6_v_,- _,G_+ _,Go+ 6,G,_- e_,_ + _,,o + e_,,_,+ s + _)"

02 ^

+ 5-T-G Aw_-_

This equation can then be split into the following two-sweep sequence.

]}°^ ^ ^ ^]t - 6_(AFM)+6_(AGM) + 6;(AHM) _-
+ N) AW n = RHS(9.34)

(9.ss)

Sweep 1 (upward)

t?1O,A_ [6__A + + 6_C+ + 6._E + _ (6_B)- - (anD)- - (6_F)-] A_V* = RHS(9.34) (9.39a)I+ I +0-----_

Sweep 2 (downward)

OIA, r [6+A-+6+C-+6-_E-_(6_B)+_(6nD)+_(6gF)+] A_'n=A_ r_14 1+0_
(9.39b)

Proteus 3-D Analysis Description 9.0 Turbulence Model 63

9.2.4 LU Sweeping Procedure for the k-t Equations

Non-Periodic Boundary Conditions

In the solution algorithm, the upward sweep is done first, then the downward sweep. When applied at
an interior point in the computational domain, equations (9.39a) and (9.39b) each have just one unknown.
These equations are therefore solved point-by-point.

The upward sweep starts at the lower left front comer of the computational domain, point (2, 2, 2), and
marches along planes of constant i +j + k to the upper fight back comer, point (N_ - 1, P,h - 1, N3 - I).

^

Equation (9.39a) is solved for the intermediate unknowll AW* at each point (i,j, k) using known informa- "
tion at points (i - l,j, k), (i,j- 1, k), and (i,j, k - 1). This is possible because the left hand side of the
equation contains only backward differencing operators.

The downward sweep is in the opposite direction, from point (Nt - 1, N2 - 1, N3 - 1) to point (2, 2,
^

2), again along planes of constant i +j + k. Equation (9.39b) is solved for the fmal unknown AW* at each
point (i,j, k) using known information at points (i + 1,j, k), (i,j + 1, k), and (i,j, k + I). This is possible
because the left hand side of the equation contains only forward differencing operators.

Spatially Periodic Boundary Conditions

A spatially periodic boundary condition in the _ direction may be represented as shown in Figure 7.1.
^ A

Following Section 7.2.2, an additional set of grid points is added at i = N_ + I, setting %VN1+ l _ W2. This
allows us to use central differencing in the _ direction at i = N1. The upward sweep therefore goes from
point (2, 2, 2) to point (N_, N2- 1, N3- 1), and the downward sweep goes from point (N,, N2- I,
N3- 1) to point (2, 2, 2). An analogous procedure is used for the periodic boundary conditions in the n
and/or _ directions.

9.2.5 Updating Boundary. Values for k-t Equations

For easy modification and easy accommodation of complicated boundary conditions for k and s, non-
periodic boundary conditions are treated explicitly in the solver. After the k and s values at the interior
points are advanced in time, the values at the boundaries are simply computed from the new interior values
using the specified boundary conditions.

Spatially periodic boundary conditions in any sweep direction are treated implicitly, as described in the
previous section. For a periodic boundary condition in the ¢ direction, the k and s values at i = 1 are easily

^ r,

updated by setting W_ = W_vt. An analogous procedure is used for periodic boundary conditions in the ,7
and _ directions.

9.2.6 Turbulent Values of). and k

The turbulent second coefficient of viscosity 2, and the turbulent thermal conductivity coefficient k, axe
defined as described previously in Section 9.1.3.

64 9.0 Turbulence Model Proteus 3-D Analysis Description

APPENDIX A - EXPANSION OF _,ISCOUS TERMS

In Section 4.2, the viscous terms in the governing equations are linearized. To do this, the elements of

l_v, Fr, and Gv, given in equations (2.17e) throuoja (2.17g) must first be rewritten in terms of the dependent
variables, and with derivatives in the Cartesian directions transformed to derivatives in the computational

^ ^ ^

directions using the chain rule. The non-cross derivative terms, involving Ev,, Fvl, and Gvl, are then
^ ^ ^

linearized using Taylor series expansion. The cross derivative terms, involving Ev2, Fv2, and Gv2, are simply
lagged one time step. This Appendix presents the fully expanded viscous terms required in the linearization
procedure.

The viscous term l_v is given by equation (2.17e), which is repeated here.

^ 1 1
Ev= j Re r

0

zxz_x + Zyz_y+ "_zz_
(A.I)

where

== 2,ux +.(u_. + Vy+ W_)

ey = 2.vy+ x(u. + Vy+ w_)

-rzz = 2lawz + _(ux + vy + Wz)

_ = _,(Uy+ Vx)

•:_ = s,(uz + Wx)

I
fix = UZxx + VZxy + WZxz pr r qx

I
fly = U-:xy+ vzyy + wzy z pr r qy

1
flz = Wrxz + VZyz+ wzzz pr r qz

qx = - kT x

qy=- Ty

qz = - kT z

The chain rule is used to transform derivatives in the Cartesian directions into derivatives in the com-

putational directions, resulting in

•_ = (2_, + 2)(Gu_ + nx% + Gu;) + ;'(_7_ + nyV_ + Cy_) + 2(Gw¢ + nzW_ + Gw_)

Proteus 3-D Analysis Description A. Expansion of Viscous Terms 65

_yy = (2/z +).)(_yV_ + _lyw,+ _yv¢) + 2(_xU¢ + _/xU_+ CxU¢)+ 2(_2w _ + _/zw_+ CzW¢)

._ = (2, + ;.)(Gw¢ + ,_;w,7+ Gw0 + ;.(Gu; + _;u, + Gu¢) +).(_yV¢+ ,7;_, + CyV¢)

Tv = u(_yu¢+ ,Tyu,+ ¢;u¢ + Gv¢ + '7:,7 + Gv0

%_ -- _,(_d¢ + ,7;u,_+ Gu¢ + Gw¢ + _w, 7+ Gw¢)

•y; = _,(Gv¢+ ,7:',_ + Gv¢ + _yw¢+ ,Tyw,_+ CyW¢)

/_ = (2u + ;.)(Guu¢+ ,7_u_ + Guu¢)

+ _(¢yvu¢+ nyV%+ CyVU¢+ Gw¢ + ,7_w,7+ Gw¢)

+ u(Gwu¢ + nzwu, + Gwu¢ + Gww¢ + ,Txww,7+ Gww¢)

+ k(¢xT¢ + ,xT,7 + ¢xT¢)

+ 2(Gvu¢ + nxvu._+ Gvu¢ + Gvw¢ + ._Zw._+ Gvw¢)

+ u(_.uu¢ + ._yUU,+ Cyuu¢+ Gu_¢ + ._.uv._+ Gu_¢)

+ _.(G_¢ + ._ + G_¢ + _¢ + ._y_ + CyWW¢)

+ k(_yT_ + _lyTn + CyT¢)

(2_ + ,_)(Gww¢ + _ww,_ + Gww¢)

+ _(Gw,,¢ + ,_w_,_ + Gw,,¢ + ¢y_¢ + _y_ + ¢_¢)

+ u(Gau¢ + nzu% + Guu¢ + Guw¢ + n_uw,_ + Guw¢)

+ u(Gw¢ + n_w,_+ Gw¢ + _y_¢ + n;_,7 + Cenv¢)

+ k(¢zT¢ + _zTn + ¢zT¢)

The above expressions for the z's and fl's axe next substituted into equation (A.1). The _ derivative
^ ^

terms become elements of Ev,, and the r/and _ derivative terms become elements of Ev2. The resulting five

elements of l_v, (excluding the l/JRe, coefficient) are

A

(Ev, h = o (A.2a)

^ 2

(Ev,)2 = 21_xU¢ +).{x(_xU¢ + _yV¢+ CzW¢)+ #_y(_yu¢ + CxV¢)+ i_¢z(_zU¢ + _xW¢) (A.2b)

(Ev_)3 = 2u{y2v¢+ 2_y(_xu¢ + _yV¢+ _zw¢) +/_x(_yU¢ + _xv¢) + la_z(_zV¢ + _yw¢) (A.2c)

^ 2
(Ev,)4 = 2UCzW¢+ 2_z(_xU¢ + _yV¢+ _zW¢) + iZ_x(_zU¢ + _xw¢) + i_y(_zV ¢ + _yw:) (A.2d)

(Evl)5 = 2_(¢2xuu¢ + 2 .2

+ UCz(_.uu¢ + _....u_;+ CzW¢+ CyWV¢)+ k(¢ 2 + ¢_ + G2)T¢

For lineafization it is convenient to rewrite the last element as

(A.2e)

66 A. Expansion of Viscous Terms Proteus 3-D Analysis Description

,2. 2. + (u + + GG(uw) + fidvw)](2u +)3 + ,ytv +2

['¢2x(v' + w2)¢ + Cy2(U2+ w')_ + Cz2(u2 ÷ v2)_] + k(¢2x+ ¢_ + Cz2)T_+T (A.2f)

The elements of Fvl and Gv_ have exactly the same form as those of Evl, but with _ replaced by r/and if,

respectively.

^

The five elements of Ev2 (again excluding the 1/JRe, coefficient) are

A

(Ev_)l = 0 (A.3a)

A

(E v2)2 = 2_G(,7_u, + Gud + ;.G(n_% + n?,7 + n_w, + Gu; + ¢yv¢+ Gw;)

"4-la_y(rlyUrl"1-rlxVr?-t- _yU¢q- _xV¢)"F I.Z_z(rlz72rl.4_rlxW_lJr-_zZl¢"Jr"_xW;) (A.3b)

A

(Ev2)3 = 2/a_y(rlyv,7 + CyV¢)+)._y(rlxU n + rb,vn + rlzW,r + _xU¢ + _yV¢ + _zW¢)

q- U_x(rlyUrl + _lxVrlq- CyU¢q- CxV¢) Jr l.t_z(rlzVrl q- rlyWrl+ CzV¢4- CyW¢) (A.3c)

21a_z(rlzWn + CzW¢)+ 2_z(rlxUn + rtyv,7+ _zw,7+ (xu¢ + (yv¢ + (zW¢)

+ _,G(,7_u,7 + nx_, + Gu¢ + Gw0 + My(n?, + nyw,7 + Gvc + CyW¢) (A.3d)

2ttE_x(_xUU n + _xUU¢) + _y(rtyW,7 + Cyw¢) + _z(nzWW,7 + ¢zWW¢)]

+ ,_G(,r_u% + nyU_, + n_a,,, 7+ G"¢ + CyU_¢+ G_¢)

+ ,Z_y(nxVU,+ nyw,7 + n?w, 7+ Gvu¢ + Cyw¢ + Gvw¢)

+ ,zG(n_wu n + nywv n + ncww n + Gwu¢ + CyWV¢+ Gww¢)

+ uG(nyVU,_ + n:¢_, + n_wun + n:cwwn + Cyvuc+ Gw¢ + Gwu¢ + Gww¢)

+ I.Z_y(rlyZlblrl+ nxUVrl + nzWVrl + rlyW3qrl+ _yZ.'Zl¢"4-_xZ,_¢ + CzW_¢ + _yWW¢)

+ Mdn_uu n + nxUWn + n_w,_ + rtyvw,_+ CzUU¢+ _xuw¢ a- ('zw¢ + _yVW¢)
(A.3e)

The elements of irv_ have exactly the same form as those of l_v_, but with _ replaced bye/ and _/replaced

by 4. Similarly, the elements of G_,_ have exactly the same form as those of Ev_, but with _ replaced by

and _ replaced by _.

Proteus 3-D Analysis Description A. Expansion of Viscous Terms 67

REFERENCES

Anderson, D. A., Tarmehill, J. C., and Pletcher, R. H. (1984) Computational Fluid Mechanics and Heat
Transfer, Hemisphere Publishing CorPoration, McGraw-Hill Book Company, New York.

Baldwin, B. S., and Lomax, H. (1978) "Thin Layer Approximation and Algebraic Model for Separated
Turbulent Flows," AIAA Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) ,An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations," AIAA Journal, Vol. 16, No.. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977) *Solution of the Multidimensional Compressible Navier-Stokes
Equations by a Generalized Implicit Method," Journal of Computational Physics, Voi. 24, pp. 373-397.

Briley, W. R., and McDonald, H. (1980) "On the Structure and Use of Linearized Block Implicit Schemes,"
Journal of Computational Physics, Vol. 34, No. 1, pp. 54-73.

Cebeci, T., and Smith, A. M. O. (1974) Analysis of Turbulent Boundary Layers, Academic Press, New York.

Chen, S. C., and Schwab, J. R. (1988) "Three-Dimensional Elliptic Grid Generation Technique with Ap-
plication to Turbomachinery Cascades, _ NASA TM 101330.

Chien, K. Y. (1982) "Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number
Turbulence Model," AIAA Journal, Vol. 20, No. 1, pp. 33-38.

Douglas, J., and Gurm, J. E. (1964) "A General Formulation of Alternating Direction Methods. Part I -
Parabolic and Hyperbolic Problems," Numerische Mathematik, Vol. 6, pp. 428-453.

Hoffmann, K. A. (1989) Computational Fluid Dynamics for Engineers, Engineering Educational System,
Austin, Texas.

Hughes, W. F., and Gaylord, E. W. (1964) Basic Equations of Engineering Science, Schaum's Outline Series,
McGraw-Hill Book Company, New York.

Jameson, A., Schmiclt, W., and Turkel, E. (1981) "Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA Paper 81-1259.

Kemighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book
Company, New York.

K1einstein, G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers,"
AIAA Joumal, Vol. 5, No. 8, pp. 1402-1407.

Kom, G. A., and Korn, T. M. (1968) Mathematical Handbook for Scientists and Engineers, McGraw-Hill
Book Company, New York.

Launder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Len_h Near
a Wall," International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Nichols, R. H. (1990) '_Fwo-Equation Model for Compressible Flows," AIAA Paper 90-0494.

Nichols, R. H. (1991) nCalculation of the Flow in a Circular S-Duct Inlet, _ AIAA Paper 91-0174.

F_LI_DNO'i
BLP,I'_K

Proteus3-D AnalysisDescription pr_:<-1_Ol_ir_,.v_._pAG_-
" References 69

PuUiam, T. H. (1986a) "Efficient Solution Methods for the Navier-Stokes Equations," Numerical Tech-
niques for Viscous Flow Calculations in Turbomachinery Bladings, Lecture Series 1986-02, Von Karman
Institute for Fluid Dynamics, Brussels, Belgium,

Patel, V. C., Rocli W., and Scheuerer, G. (1985) "Turbulent Models for Near-Wall and Low Reynolds
Number Flows: A Review," AIAA Journal, Vol. 23, No. 9, pp. 1308-1319.

PuUiam, T. H. (1986a) "Efficient Solution Methods for the Navier-Stokes Equations," Numerical Tech-
niques for Viscous Flow Calculations in Turbomachinery Bladings. Lecture Series 1986-02, Von Karman
Institute for Fluid Dynamics, Brussels, Belgium.

PuUiam, T. H. (1986b) "Artificial Dissipation Models for the Euler Equations," AIAA Journal, Vol. 24,
No. 12, pp. 1931-1940.

PuUiam, T. H., and Steger, J. L. (1978) "On ImpIicit Finite-Difference Simulations of Three Dimensional
Flow," AIAA Paper 78-10.

Sahu, J. (1984) "Navier-Stokes Computational Study of Axisymmetric Transonic Turbulent Flows with a
Two-Equation Model of Turbulence," Ph. D. Thesis, University of Delaware.

Schlichting, H. (1968) Boundary-Layer Theory, McGraw-Hill Book Company, New York.

Spalding, D. B. (1961) "A Sin_e Formula for the Law of the Wall," Journal of Appfied Mechanics, Vol.
28, pp. 455-457.

Steger, J. L. (1978) "Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Ge-
ometries," AIAA Journal, Vol. 16, No. 7, pp. 679-686.

Thomas, P. D., and Lombard, C. K. (1979) "Geometric Conservation Law and Its Application to Flow
Computations on Moving Grids," AIAA Journal, Vol. 17, No. 10, pp. 1030-1037.

Towne, C. E., Schwab, J. R., Benson, T. J., and Suresh, A. (1990) "PROTEUS Two-Dimensional
Navier-Stokes Computer Code - Version 1.0, Volumes 1-3," NASA TM's 102551-3.

Vinokur, M. (1974) "Conservation Equations of Gasdynamics in Curvilinear Coordinate Systems," Journal
f Computational Physics, VoI. 14, pp. 105-125.

Wassel, A. T., and Catton, I. (1973) "Calculation of Turbulent Boundary Layers Over Flat Plates With
Different Phenomenological Theories of Turbulence and Variable Turbulent Prandtl Number," Interna-
tional Journal of Heat and Mass Transfer, Vol. 16, pp. 1547-1563.

White, F. M. (1974) Viscous Fluid Flow. McGraw-Hill Book Company, New York.

70 References Proteus 3-D Analysis Description

Form Approved

REPORT DOCUMENTATION PAGE OM8 No.0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for rerv'.mwin_ instruct;ons, searching existing data sou.r_ces..,

gathering and maintaining the data needed, and completing and reviewing the ,co.llectior] of reformation: Send c_mments r .eger,dmg this burden e..stlmateorany other aspect of this
collection of information, including suggestions for reducing this burden, to Wasmngton Heaoquarters _ervlces. utrectorate rer mTorrnat=on upermJons .ano Heports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington,VA 22202-4302, and to the Office of Management and Budget,Papen_rk ReductionProject (0704-0188), Wash=ngton,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. I_I_POR'I: D'ATE 3. REPORT TYPE AND DATES COVERED

October 1993 Technical Memorandum

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Proteus Three-Dimensional Navier-Stokes Computer Code-Version 1.0

Volume l-Analysis Description

6. AUTHOR(S)

Charles E. Towne, John R. Schwab, and Trong T. Bui

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU- 505-62-52

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8106

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 106337

11. SUPPLEMENTARY NOTES

Responsible person, Charles E. Towne, (216) 433-5851.

12a. DISTRIBU'i'ION/AVAILABILITY STATEMENT

Unclassified -Unlimited

Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A computer code called Proteus 3D has been developed to solve the three-dimensional, Reynolds-averaged,
unsteady compressible Navier-Stokes equatioris in strong conservation law form. The objective in this effort has
been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readabil-

ity, modularity, and documentation have been emphasized. The governing equations are solved in generalized
nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The

boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-
order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity
model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step
options are available for convergence acceleration. The documentation is divided into three volumes. This is the
Analysis Description, and presents the equations and solution procedure. It describes in detail the governing
equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space
differencing formulas, the ADI solution procedure, and the artificial viscosity models.

14. SUBJECTTERMS

Navier-Stokes; Computational fluid dynamics; Viscous flow; Compressible flow

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECUR(T_ CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

72
16. PRICE CODE

A04
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 " ="" Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

2oj8 - 102

