Mathematical Modeling for Diffractive Optics

David Dobson
School of Mathematics
University of Minnesota
Minneapolis, MN

J. Allen Cox
Honeywell Systems & Research Center
Bloomington, MN

Abstract

We consider a "diffractive optic" to be a biperiodic surface separating two half-spaces, each having constant constitutive parameters; within a unit cell of the periodic surface and across the transition zone between the two half-spaces, the constitutive parameters can be a continuous, complex-valued function. Mathematical models for diffractive optics have been developed, and implemented as numerical codes, both for the "direct" problem and for the "inverse" problem. In problems of the "direct" class, the diffractive optic is specified, and the full set of Maxwell's equations is cast in a variational form and solved numerically by a finite element approach. This approach is well-posed in the sense that existence and uniqueness of the solution can be proved and specific convergence conditions can be derived. An example of a metallic grating at a Wood anomaly is presented as a case where other approaches are known to have convergence problems. In problems of the "inverse" class, some information about the diffracted field (e.g., the far-field intensity) is given, and the problem is to find the periodic structure in some optimal sense. Two approaches are described: phase reconstruction in the far-field approximation; and relaxed optimal design based on the Helmholtz equation. Practical examples are discussed for each approach to the inverse problem, including array generators in the far-field case and antireflective structures for the relaxed optimal design.
Mathematical Modeling for Diffractive Optics

David Dobson
Institute for Mathematics and Its Applications
University of Minnesota
Minneapolis, MN

J. Allen Cox
Honeywell Systems & Research Center
Bloomington, MN

Outline

Need
Statement of Problem
Overview of Approaches
Examples
Mathematical Modeling for Diffractive Optics

Classes of Problems

- The Direct Problem

 Given the incident field and grating structure
 Predict the behavior of the outgoing fields
 Solve Maxwell's equations rigorously

- The Inverse Problem

 Given the incident field and the desired output field
 Calculate the optimum structure
 Model a scalar wave equation with simplifications
Definition of the Direct Problem

Time Harmonic, Source-free Maxwell's Eqs

\[\nabla \times E - i\omega H = 0 \]

\[\nabla \times H + i\omega \varepsilon E = 0 \]

\[\varepsilon \in L_{\infty}(\Omega_0) \quad \varepsilon = \varepsilon_1 \text{ in } \Omega_1 \quad \varepsilon = \varepsilon_2 \text{ in } \Omega_2 \]

Find

Quasiperiodic Solutions with Bounded Outgoing Waves

Systems and Research Center
Survey of Approaches to the Direct Problem

<table>
<thead>
<tr>
<th>Approach</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Integral Method</td>
<td>Discretized grating profile</td>
</tr>
<tr>
<td>2. Differential Method (coupled waves)</td>
<td>PDE embedded in infinite set of coupled linear eqs</td>
</tr>
<tr>
<td>3. Coupled Modes</td>
<td>Numerical implementation</td>
</tr>
<tr>
<td>4. Variational Method</td>
<td>- truncate set of linear eqs</td>
</tr>
<tr>
<td>5. Riemann-Hilbert Problem</td>
<td>- solve $Ax = b$</td>
</tr>
<tr>
<td>6. Analytic Continuation</td>
<td>Smooth grating profile</td>
</tr>
<tr>
<td></td>
<td>Infinite Taylor series for Rayleigh coef. (recursion)</td>
</tr>
<tr>
<td></td>
<td>Padé approximant sum of series</td>
</tr>
</tbody>
</table>
Mathematical Modeling for Diffractive Optics

Honeywell / IMA Program

The Direct Problem

1. Integral Method (Maxcoll)
 Dobson & Friedman
 Singly periodic grating
 Simple profile(graph)

2. Variational Method (Maxfelm)
 Dobson
 Biperiodic grating
 General profile

3. Analytic Continuation (TBD)
 Bruno & Reitich
 Biperiodic grating
 Simple profile(function)

The Inverse Problem

1. Phase Reconstruction (Phaseopt)
 Dobson
 Scalar field / Fraunhofer approx
 Nonperiodic structures
 Nonlinear least squares method

2. Relaxed Optimization (Profopt)
 Dobson
 Scalar field / Helmholtz eq
 Singly periodic grating
 Complex profile

Systems and Research Center
Mathematical Modeling for Diffractive Optics

Examples

The Direct Problem

1. Reflective Polarization Beamsplitter
2. LIGA Grating
3. Mixed Index Biperiodic Grating

The Inverse Problem

1. Phase Reconstruction - Hypercube Beamsplitter
2. Relaxed Optimization - Angle Optimized Motheye Structure
Reflective Polarization Beamsplitter

Maximize reflectivity

TE polarization (-1 order)

TM polarization (0 order)

\[\lambda = 0.78 \, \mu m \]

\[\theta = 45^\circ \]
Variational Method vs Coupled Waves Method

- Variational Method
 - * - TE
 - + - TM

- Coupled Waves
 - o - TE
 - x - TM

Efficiency (%)
Variational Method (Maxfelm) Example
LIGA Grating

\[\lambda = 10.6 \, \mu m \]
TM polarization

Systems and Research Center
Variational Method (Maxfelm) Example

Mixed Index Biperiodic Grating

$\lambda = 0.55 \ \mu m \ (E \parallel x_2)$

$\theta = 30^\circ$

$\Lambda = 0.5 \ \mu m$

Systems and Research Center
Fig. 2. Cross-section of the amplitude $|H|$, taken through the metal region in the (z_2, z_3) plane.

Fig. 3. Cross-section of the amplitude $|H|$, taken through the non-absorptive region in the (x_1, x_3) plane.
FIG. 4. Cross-section of the amplitude $|H|$, taken through the metal region in the (x_1, x_2) plane.

FIG. 5. Cross-section of the amplitude $|H|$, taken below the metal region in the (x_1, x_2) plane.
Relaxed Optimization (Profopt) Example

Optimized Moth Eye Grating

\[\theta = \pm 70^\circ \]

\[\lambda = 1.0 \, \mu m \]

Find structure of zero order grating to minimize reflectivity over range of incident angles

\[n = 1.6 \]

\[\Lambda = 0.5 \, \mu m \]
Relaxed Optimization (Profopt) Example

Systems and Research Center
Mathematical Modeling for Diffractive Optics

Summary

The Direct Problem

Variational Approach with Finite Elements Method
- exhibits good convergence, numerical stability
- treats complicated biperiodic structures
- can be computationally intensive

Analytic Continuation Approach
- elegant solution
- limited domain of convergence and biperiodic structures
- computationally very fast

The Inverse Problem

Phase Reconstruction - comparable to other approaches

Relaxed Optimization - potential to identify new structures