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Abstract

A new technology was developed in this study which provides a successful numerical simulation of
the whole process of flow transition in 3-D boundary layers, including linear growth, secondary insta-
bility, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations
require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference
scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening
multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow
boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new
fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow
breaks down. The computational results are in good agreement with linear stability theory, secondary
instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around
2 CRAY-YMP CPU hours for 10 T-S periods. '

1 Introduction

The transition process from laminar to turbulent flow in a wall-bounded shear flow is still a challenging
and unsolved problem. Natural transition is a multi-stage process (Narasimha, 1990) involving 2-D linear
evolution, 3-D secondary instability, breakdown, and transition (Figure 1).

The linear stability equation was established by Orr (1907a, b) and Sommerfeld (1908), was solved by
Tollmien (1931) and Schlichting (1932), and was experimentally confirmed by Schubauer and Skramstad
(1948). The secondary instability was observed by Klebanoff, Tidstrom & Sargent (1962) for K-type
fundamental transition, and was observed by Kachanov, Kozlov and Levchenko (1978) for subharmonic
transition. The theoretical work was accomplished by Herbert (1983a & 1983b). There is really very
little work, either theoretical or experimental, about the breakdown and transition zones which are the
major parts of transition process.



The numerical study of transition is still quite limited due to the lack of computational resources.
First, most numerical studies are temporal (Orszag & Kells, 1980; Wray & Hussaini, 1984; Kleiser &
Laurien, 1985; Zang & Hussaini, 1986; Zang, Krist, Erlebader, & Hussaini, 1987). They can provide
better resolution but lack physically realistic representation (Joslin et al. 1992).

Second, although there have been some spatial studies (Fasel, 1976; Fasel & Bestek, 1986; Fasel &
Konzelmann, 1990; Spalart, 1989; Danabasoglu, Biringen, & Streett, 1991), the spatial direct numerical
simulation (DNS) is still in its early age (Kleiser & Zang, 1991). Most of these can predict only the early
stages of transition (pre-onset simulation) or fully developed turbulent flow without a transition process
and require high CPU cost which is in the range of 100-1000 CRAY-YMP CPU hours.

In contrast, the current study has two advantages. First, it was successful in spatial DNS for the
whole process of transition including linear evolution, secondary instability, breakdown, and transition to
turbulence. Second, the current approach is more efficient. The spatial DNS was carried out on a rather
coarse grid (16 x 34 x 34 for each T-S wavelength) at an acceptable CPU cost which is in the range of 2
- 10 CRAY-YMP hours. '
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Figure 1. Idealized sketch of transition process on a flat plate.



2 Governing Equation In General Coordinates

Let

= z(&; 7y C)s
y = y(fa 7, C),
z = z(fs 7, C):

the 3-D time-dependent incompressible Navier-Stokes equations can then be written as

U= -}-(uﬁz + véy + wéz), (1)
V= %(unz + vy + W), ' (2)
W= ';(“Cz +v{y + w(z), (3)
and
Ou 0Uu OVu OWu 0 d 0 1 _
-_t + J( aE + 31’ + ac )+ (Ezb—e + %3_17 + (252)P - E;Alu = 0, (4)

v OUv OVv OWw 8 o 17} 1
'55+J( 3¢ + an + ac )+(£"5£+q”3_17+c”3—C)P_—1§;A1v = 0, (5)

dw Uw oVw OWw a8 _}_

8 0 i}
Tt G vy tag ) T g gyt g T A = 0 ©
ou 8v oW
Ztomta = ° M

where u, v, w are velocity components, U, V, W are contravariant velocity components, P is pressure, Re is
the Reynolds number based on the free stream velocity Ue, the viscosity parameter v and some reference
length, for example, 55 which is the displacement thickness of boundary layer at inflow,

_ Usof3
- v

Re

k]

and A, is the physical Laplacian operator transferred to the computational (£,7,() space:

M = @@+ R QG+ )y + 2oy ) g
1 = x v z 52 N vy T anz z v z acz z 7z vy i3/ aean
2 2
+ 2(£=Cz +€ng +£z(z)aélac‘ + 2(’73C= + nyCy + nzCz)-£5E + (fzz + Eyy +Eu)ai£
8 d
+  (Mzz + gy + "zz)% + (Cz= + Cyy +sz)‘3_<- (8)

. Here, we have 7 equations for 7 unknowns, u,v,w, P,U,V, and W.

The perturbation equations are obtained by decomposing the total flow into steady base flow and a
perturbation. Using subscript 0 denote the base flow variables, and let

6(3, Y, z’t) A 170(2, Yy Z)ﬂ: 17(2,11, Z,t),
f;.(z9 Y, z’t) - V0(33 Y, z)+ V(zs Y, Z,t),
P(z,y,z, t) « Po(z,y,2) + P(z,y, z,t), (9



where ¥ = (u,v,w), V = (U,V,W), and noting the base flow itself also satisfies the Navier-Stokes
equations, we obtain the governing system for the perturbations:

Bu | Olu(U +Uo) +wl] , Slu(V + Vo) +uoV]

R T &
Bu(W + ??) +uW), | (fza% 4 ”’a% + (,a%)p - hw = 0, (10)
g,t, L 3 [v(U+gg)+voU] ;v +;f;)+voV]+
a[v(W+'(;‘?)+”°m)+(£y 5t o ; +G aC) ~2Aw = 0, (1)
%_ N gg) +woU] | Ow(V +;:;)+on]+
a[w(W+g?)+w°W])+(£z 5%+ "5 o +Czag) -t = 0, 12
?9_’; + g_‘; + %V = 0, (13)

Combined with (1)-(3), this system also has 7 equations and 7 unknowns for the perturbations.

We perform the solving process as follows:
1. Perform the surface and grid generation processes to obtain the required Jacobian coefficients.

2. Solve system (1) - (7) to obtain the base flow solution. For a flat plate, we use the Blasius similarity
solution for the base flow. ‘

3. Solve system (1) - (3) and (10) — (13) to obtain the perturbation solution based on the above base
flow.

3 Boundary Conditions
Benney-Lin type disturbances are imposed at the inflow boundary in this study:

u(O, Y, 2 t) = EzdReal{Gbuue"‘i“"}
€aay Real{d sy P>~}
€ad—Real{pyad— (-Pz-vt)}

e2aReal{gyrge’ %~}
esay Real{fozay e~ +82-01)}
€sd-Real{$u3s-e *(-a—-ﬁz-w*)}

e3d+Rea.l {¢w3d+ e‘( okt +ﬁz—wt) }

+ +

Az
v(_—z—s vz t)

+ +

Az
’w("_2—ayaz3t)

+ e3q-Real{py3d-€ e —Bz-wt)y
(14)

where w is the real frequency of the disturbance, § is a real constant that represents the spanwise
wavenumber, and a = ap + iay is the streamwise complex wavenumber obtained from linear stability
theory. ¢y, ¢, and @,, are eigenfunctions for the Orr-Sommerfeld equation.



A no slip boundary condition is applied at the solid wall. According to the linear stability theory, the
disturbances vanish at infinity, so we obtain the boundary conditions at far field given by ,

u(z,y — 00,2,t) =0,

v(z,y — 0,2,t) =0,

w(z,y — 00,2,t) = 0. (15)
Also, no pressure condition is needed at the inflow, solid wall, or far field since a staggered grid is used.

4 Owutflow Boundary Treatment

Outflow boundary conditions have been the focus of study for the spatial simulation of flow transition
by many researchers. For simplicity, we only describe the idea for a 2-D flat plate. The technique for the
3-D problem is the same.

§=0 ' € = Loriginal €= Leotal

—t
——r’ O
—_—

original computational domain . buffer domain
Loriginal  original outflow boundary Lousper

L
total buffered outflow boundary

Figure 2. Extended computational domain.

Taking the advantage of the staggered grid, we can obtain a fairly effective approach. First, a buffer
domain technique developed by Streett & Macaraeg (1989) is applied to our problem. Thus, a buffer
domain is appended to the end of the original outflow boundary to smear all possible reflections from
the buffered outflow boundary (see Figure 2). The problem is, in general, that the conventional buffer
domain is too long (usually four to eight T-S wavelengths), which greatly increases computation cost. Our
goal is to maintain the accuracy in the original computational domain, and to eliminate all the possible
reflection waves in a very short buffer domain. To realize the above goal, the governing equations in the
buffer domain should be parabolicized to allow only strictly outgoing waves. Thus, a first buffer function
b(¢) is introduced here and applied to the streamwise viscous terms:

32 2 2y 2y

R G A A A G (16)
b(¢) is a monotonically decreasing function that changes from 1 to 0 so that the upstream effects of the
streamwise viscous terms will gradually disappear in the buffer domain. The essential feature here is that
all damping mode disturbances at the buffered outflow boundary become zero. To understand this, we
rewrite the first equation of (16) as

U U
46 5g = 5 - (17)
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Since b(¢) — 0 at the buffered outflow boundary, and accordingly Vé(é_) — 00, then, we can also consider

that the buffered outflow boundary is compressed from { = co by the function 1/b(£). Now clearly, if the
disturbances are stable (damping modes), they will vanish at £ = co. To treat unstable (growing) modes,
we need a second buffer function bg.(£) that reduces the Reynolds number in the buffer domain gradually
to less than the critical (or subcritical) Reynolds number and makes all the perturbation modes become
damping

1 bre(§)
Re " Re (18)
Thus, the new modified governing equations in the computational ({,7) plane become:
§£+_1_3(UU+2U0U)+i(UoV+U%+UV)
it oy, 9 on Ya
bre aU 18 ,U a,Uu aP
—Re - s () wy (T )) twer = O, 19
(b e+ 5 5 ) ) e (19)
8V, 8(UoV +UVa+TV) | 2%V +VV)
T 5% B
bre , . OV | 187V v, 8P _
—E(b'yﬂw*'-y;w‘*yn%g;)*'% = 0, (20)
au  av
—_—t—_— = 0. 21

The buffer functions are chosen as follows:

h( L grar—
b(¢) = t::n‘h&I::,;,fi Lért'yinal <€ < Liotal »
1 0 < ¢ < Lorigina »
(e_Lort'linal)z . <E<

0 < 5 < Lor:'gt'ncl-

It is clear that the first function decreases from one to zero very rapidly as one moves from the original
outflow boundary to the buffered outflow boundary. The second function increasing from 1 to ¢ + 1 is
a quadratic function that is continuously differentiable at the original outflow boundary. Note that the
total effect of these buffer functions is that, toward the buffered outflow boundary:

e the momentum equations become increasingly convection dominated in the {—direction, while the
equations generally become parabolic; and

e the momentum equations become highly diffusion dominated in the n—direction.

This treatment makes the outgoing waves propagate forward without reflection in the {~—direction, and
any oscillation in the 7—direction will be effectively smeared in the buffer domain.
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Figure 3. Buffered outflow boundary points.

Finally, we need to specify the buffered outflow boundary conditions under these modified governing
equations. The parabolic character of the above equations requires only two boundary conditions. As
mentioned before, we have the disturbances tending to zero at the buffered outflow boundary (which is
actually located at £ = o0), so one condition is

P=0. (23)

This is a very important condition since the elliptic character of pressure has not been modified in our
new governing equation. Any improper condition for P may cause trouble. For the second condition, we
use the traditional extrapolation method for V, i.e.,

2
%TZ = 0. (24)

Though this condition may not be so accurate, accuracy of solutions in the buffer domain is not so
important, and the main concern is that there must be no reflection wave traveling back to the original
computational domain.

Referring to Figure 3, condition (23) is imPosed directly on P by defining
Pc =0. (25)

This is an implicit condition. With it, the discrete continuity equation associated with Pg¢ is then used
to define U at the buffered boundary:

Vi - Vi
w=%-lE£M. (26)

Condition (24) is imposed by determining V' at ghost points just outside the boundary:
Vi = 2Vo — Vw. (27)

Note that the above treatment is only suitable for the perturbation equations.



5 Simplification

In this study, we still use rectangular but stretched grids obtained by a special but relatively simple'

mapping (Figure 4):

z =¢,
y= y(f]),
z={(.
This yields
J =1y,
E:: = Cz =1,

£y=€z=nz=1h=Cz=Cy=O,
" For our numerical simulation, we choose the transformation function

Ymaz 07
Nmaz0 + ymaz(ﬂmaz - ’7),

y(n) =

(28)

(29)

(30)

where Ymaz is the height of the computational domain in the physical coordinates y, fmqz is the height
of the computational domain in the computational coordinate 5, and ¢ is a constant which can be used

to adjust the concentration of grid points. This yields an inverse map

Umazy(a' + ymaz)
ymaz(a' + y)

n(y) =

We can then obtain

Thnazl¥mazC (U + ymaz)
[ﬂmaza' + yma::("]maz - 17)]2’
_ 277ma=0'(0' + ymcz)

Ymaz(0 + y)? )

Yn

Ty =

Figure 4. y-direction stretched grid.
Under the above mapping, the governing equations can be simplified:

du O[u(U + Uo) + uoU] + Au(V + Vo) + uoV] + OuW +uW], 8P 1

a0 T 5% a7 e T mAr <=0
v 3[v(U + Uo) + voU] | 3[v(V + Vo) + voV] . [vW + voW] P _
7 Tl % + o e )t Tt = O

(31)

(32)

(33)

(34)

(35)



dw + ")y(a[w(U + Uo) + woU] + Aw(V + Vo) + woV) + S[wW +weW], 6P 1

£l % an st TR =% (9
%*%‘L% =0, (37

U = -{;, (38)

W= 2, )

Vo= »  (40)

where u, v, w, P, U, V, W are all fluctuating parts of the corresponding variables, and uo, vo, wo, Uo, Vo, Wo represent

the base flow (Blasius solution for the flat plate). The transferred Laplacian operator in the computational space
is simplified as

3 , 8 8 a '

b= gatataE t e, ()

6 Discretization

We use a uniform staggered grid for our problem in the computational (£,7,¢) space (Figure 5). Letting ¢
denote a generic function, the second-order backward Euler difference in time direction can be written as

% N 3¢n+1 — 44" + ¢n-1

ot 2A1 ! (42)
and the fourth-order central difference in space can be written as
86 .\ _ —lE +208) +89(¢ + AE) — BH(E - A) + (€ — 248)
2@ S , (43)
08 o —HE+208) + 164(6 + 2A8) = 309(€) + 166(¢ — A) — $(¢ 200 (19)
8¢3 12A¢3 !
g_? (€ + Lag ~ HEF280 1716+ 4AA£f) — 276(6) + (€ — A8) (45)
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Figure 5. Staggered grid structure in the computational (£, 7, () space.

In the computational (¢, 7, {) space, the grids are uniform. Suppose u, v, w and U, V, W are defined in
terms of a staggered grid in the computational space (see Figure 5). Here, the values of P are associated with its
cell centers, u and U with centers of the cell surfaces parallel to the (7, () plane, v and V with centers of the cell
surfaces parallel to the (¢,() plane, and w and W with centers of the cell surfaces parallel to the (¢,7) plane.

Second-order backward Euler differences are used in the time direction, and fourth-order central differences are
used in space. We can write the discretized governing equations symbolically as follows (Figure 6):

Appugg + Apug + Awuw + Awwuww + Avvuny + Avuy  +
Asus + Assuss + Appupr + Apup + Apup + ApuBs —

Acuc + Dww Pww + DwPw + DePg — DcPc = S, (46)
Berveg + Bgve + Bwvw + Bwwvww + ByNvNN + Byvy  +
Bsvs + Bssvss + Brrvrp + Brvr + Bpvp + Beaves —

Beove + EssPss + EsPs + EnPy — EcPc = S, (47
Cerwge + Cewe + Cwuw + Cwwwww + CnNwny +Cnun  +
Csws + Csswss + Crrwrr + Crwp + Cpwp + Cpwe —

Cowc + FepPpp + FpPp + FpPr— FcPe = S, (48)
DUggUgg + DUgUg + DUy Uw — DUcUc + DVNNVNn +
+DVxVn + DVsVs — DVeVe + DWrpWer +

DWpWpe + DWgWg — DWcWe = Sy. (49)

As an illustration of the notation we use, relevant symbols for the discrete {-momentum equation are depicted
in Figure 4. The coefficients and source term for the interior points of the discrete {~momentum equation (46)
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associated with uc are given as follows:

AgE
Ag
Aw
Aww
ANN
AN
As
Ass
Afpp
Ap
Ap
ApB
Ac
Dg
Dw

Dww

- 12RiA£2 + 1?25("315 +2Uos5);
ﬁ\_&—’ - %&—?(UE +2Uo4),
?»R:—As’ + %’Z—?(Uw +2Uo,, ),
- 12R:A£3 - fgyAcé(UWW + 2Uopw )s
g,%f;,s - ﬁ"g,";(Vn + Vo) + 522%%7,
S + S22V, + Vo) ~ o
_121::2172 - 1?;,("" +Vou) + ToRear
- 1212:AC2 + 1?A°'C(Wff + Wo,, )
'312_34@ - %"—A”—E(W, + Wo,),
5174&(_’ + %—"A”—E(Wb + Wau),

1

¢ (Wbb + WO))))

T12ReAl® T 12AC

3
=+

TR AT

1
24A¢’

5 1 ac

+ 2 1y
An? T A

27

De

1
24A¢’

—4uB + 437!
2At

= 24ag’

(—‘uONNVnn + 8uon Ve — BuosV, + uossVes

+nye 12A7

, —uorrWys + Buop Wy — 8uos W) + ‘“OBBWbb)
T .

12A¢

(50)

Here, superscripts n and n — 1 are used to indicate values at previous time steps, and superscript n + 1, which
indicates the current time step, is dropped for convenience. Lower case subscripts denote the approximate values
of the v and w at points where the associated values of v with capital subscript are located (Figure 6). Other
symbols used in the above formulas are as follows:

o = m T=n

11

(51)
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Figure 6. Neighbor points for {-momentum equation
(U are at the same points as u and are not shown here).

All function values that are required at other than the canonical locations are obtained by fourth-order inter-
polations in the computational space. For example (see Figure 7),

V. = (9(Ve+Vn+Vyw +Vw) — (Vsww + Vanww + Vs + VNnE))/32, (52)
} t
| |
VNNww VNv;r Vn VNNE
|
Ve
T
Veww Vw Ve Vs
4 i

Figure 7. Neighbor points for fourth-order approximation for V..

The coefficients for the 7— and (— momentum equations are defined in an analogous way, and the discrete
continuity equation is developed simply by applying the fourth-order central differences to each term.

7 Approximate Line-Box Relaxation (ALB)

7.1 2-D uniform grids

The basic approximate box relaxation (AB) approach is to relax by boxes instead of points. With a 2-D uniform
grid (Figure 8) as an example, we first describe the basic idea behind AB.

12



Uc - € ug + €3

l Ve — 61
Figure 8. Approximate box relaxation.

The generic form of the equations associated with a box for the 2-D uniform grids can be written as

ASugp + AGuw + AGun + ASus — ASuc + PWA—ch
ABupp + Af uc + Afuns + Afusp — Afup + PCA—;,PB
BSvg + B$vw + Bfon + BSvs — BSve + Ps;yPa
BngE + B%‘uNW + Bﬁ‘UNN + Blsv‘vc _ Bng + Pc;yPN
uE;z‘uc + ‘vNA—yvc

Here, the superscripts represent the point at which the discretization is centered

Ue & U — €,
ug ¢ ug-+e€3
ve ~ vc-—b,
v — vN+63
Pe «— Pc+ AP,

= Suc»
= Sus
= Sey
= Sow

= 0.

(53)
(54)
(55)
(56)
(57)

. We proceed in the box-by-box
process with a few global point Gauss-Seidel relaxation sweeps on the momentum equations, changing v and v
and holding P fixed. This means that the four momentum equations (53)-(56) in the box phase are approximately
satisfied. Now, proceeding by boxes in some order, we perform distributed relaxation of the form:

(58)

where the corrections are chosen to satisfy the discrete continuity equation and four discrete momentum equations
associated with the box. Note that the old values of u,v, and P approximately satisfy the associated momentum
equations, so we obtain the following system for the corrections, €1, €3, é1, 62, and AP:

AP -
40 ' 40 - =
( 362 Cel) Az 0’

AP

(Ageg + Aﬁ,el) -z =0,
(B§8 + BE&) - T =0,
(BE62+ B &) - %% =0,

€ ::2 + & Z—y& = Sm,

where

Uug — Uc N —VC
S = — .
m ( Azt Ay )

13
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(59a) and (59b) yield

€ _ - Ag - Ag
€2 -7 Ag - A-pBV’
(59¢) and (59d) yield
ﬁ=ﬁEBg—B§, _
3 BS - BY
and together we have
BC
a_. Bt F &y
=7= yT
1 A+ R Az

Therefore, (59¢) can be written as

B _
Az Ay = Smy ' (60)
or
71+ 1)6  (1+3)4
Az T Af, = Sm. (61)
The correction are thus given by
f = - Sm
PToReen G4
Az Ay
s
& = 731_
&g = -7,
& = %‘ (62)

and
AP = (A€, + ASes) - Az.
To simplify this scheme, note that for the case At << 1, we have

For most cases, we have

Ag ~ Ag!

AE >> AE,
BY >> B§,

< W R

AE > AE,
BY > B,

so a, 3 and v can be approximated in general by

It is these approximations and update formulas in (62) that we use in AB.

o ~

ﬁ~

T o~

X

Bg ~ Bg!
AS >> AE,
BE >> BY,
1,
1,
Ay
v

AS > A%,
B¢ > BY,

BE Ay
AS Az

14



7.2 General coordinates

For general coordinates, the discrete momentum equations can still be written in the same generic form as that
for Cartesian coordinates, but the continuity equation is changed to

Ug~-Uc Vn-—-Ve
=0.
At + An (63)

The physical velocities u and v have the following relations with the contravariant velocities U and V:

U = au+tby,
V = cu+dv. )

This leads to the discrete continuity equation written as

apug +be¥E — acuc — beic + exiin +dnvy —colic —deve _ 0

A¢ An '

where the superscript ~ represents a point that is not located at a canonical position and therefore requires
interpolation. Assuming that :

(beABE —boA¥c) < (apAug —acAuc), (64)
(CNAﬁN - 6cAﬁc) < (dNA”N - dC'AvC); (65)

then the correspond correction equation can be approximated by

apez +acer | dnbs +dod
Aé An

=Sm.

Note that the defining relations for €;, €3, 61, and &, can be expressed in the same form as for Cartesian coordinates:

“_q
€2
5
3‘2' - ﬁ:
a_
61 e 7,
and
Sm

(66)

6

T (SRtach + (X +dc)’
Af A
where ag,ac, dn,dc correspond to the mapping coefficients between u,v and U, V.

7.3 Approximate line-box relaxation (ALB) for 3-D problems

AB usually works well for 2-D problems, but frequently fails to provide fast convergence for 3-D problems. The
basic idea of ALB is to satisfy the continuity equation for all boxes lying on one line simultaneously. Figure 9 gives
the distribution of corrections in the (¢, ) plane for the ALB. This kind of relaxation is very useful when the grids
are anisotropic. Assuming for simplicity that & = 8 = 1, then according to Figure 9, ALB solving the discrete
system (46)—(49) can be described as follows:

e Freezing P, U, V, W, v, and w, perform line Gauss-Seidel relaxation on (46) over the entire computational
domain to obtain a new u.

e Freesing P, U, V, W, u, and w, perform line Gauss-Seidel relaxation on (47) over the entire computational
domain to obtain a new ».

e Freezing P, U, V, W, u, and v, perform line Gauss-Seidel relaxation on (48) over the entire computational
domain to obtain a new w.

e Use transformation (38)-(40) to obtain new U, V, W.
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o Forall j = 2,3,-

--,n; — 1 at once: change U,__ P UTERIT £

associated continuity equations, then update P;;x so that ¢

e new
transferred u, v, w satisfy the three momentum equations.
Vin;-3:=0
l
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3

Figure 9. Distribution of corrections in the (¢,7) plane.

__ ,,,W,Jk 1 and qu+§ to satisfy the
vV, W and P as well as the associated

Since all of the u, v, w have been previously relaxed, and the U, V, W are updated, we assume that equations
(46)—(48) hold exactly. Let ¢, 6, o and AP represent the corrections for U, V, W and P, respectively. Thus, for
cube ijk (see Figure 9), the correction equations corresponding to (46)—(49) are

-3k
:;.'.1 k(a .+1)

(Cljk

l+‘

ij+3

iik+3 -m-g"' s,k-z”v

-1
(A,+l ]kﬂy"u ir +A:—-§ Jkn? 1 ,l)ej

ij—-35 k
B} k61— )~ B

uk—l

iik+ 3

ifh— 1 )aj

i—1 Jk
-Di53? AP; =

§i41) — DV JF,

‘IJ——

i=2,8,-

ijk

J__ kAP =

-F"" AP =

ijk

(DUX k+DU?J"=, J.k)e,-+(DW"" , + DWHYE o
+DVIE (6 -

k-3

(i -8) =

-y -1,

Sm.‘,‘n. [

(67)
(68)

(69)

(70)

where the superscripts represent the point at which the discretization is centered. This system has 4(n; — 2)
equations for 4(n; — 2) variables. Unfortunately, coupling between the correction variables makes the problem
somewhat complicated. To develop a simpler approximate system, define

€;
J
Wgj; = 5—"
J
o
J
Wei = F.
7



Then, equation (70) can be written in terms of the unknowns §; only:

Gk sk , ik ijk ik ik krs
[(DU? wt DU.-i% J.k)(d;j +(DVY 1 + DVijJ—g k) + (DW‘.; 41 + DwH %)w,,]é,

it+3 ij+ k ijk—
ik ijk —
_DV;J.’_% WOi-1— DV.",-’+§ i1 = Smy (71)
Let
_ ik ik ' ik ik
e = (DU;':_% it DUK; jh)“’zJ + (D‘/:';'J+§ k +DV£§'J-§ %)
ik ™
HOWI, s + DW_ s, (72)
i5k
b = DV, , (73)
G = -DVP4,, o
j=23,---,m;— L.
Then we obtain the tridiagonal system
a3 b 1717 6 7 [ Smias ]
Cz Qs bs 63 Sm i3k
= . (75)
Cnj-2 Qn;—3 bn,'—z 61‘,'-2 S'ﬂ inj~3k
| cﬂ,‘-l a"n,'—l _ | 6“,'—1 i L Sm inj-1bh

Thus, §;, j = 2,3,---,n; — 1 can be determined very efficiently. The other velocity corrections are given by

6§ = wijbj,
oj = wsbj,

7j=23,-,n; -1

The U,V, and W are then updated on all cells in the i,k 7—line as follows:

Uipz jx — Uipi e te,
Uiciix — Ui ji—6
Wikss — Wijaea +05
Wijk-3 — Wik} — ;s (76)
i=23,---,n; -1,
Vij-ix — Vs +6i-1-65, (17)
j=8,4,-,m — 1
P is then updated via
Pijx « Pijp + AF;, (78)

j=12,3,--,m; — L.

8 Semi-Coarsening Multigrid

For the large-scale algebraic system of the 3-D flows that must be solved at each time step, the usual relaxation
methods by themselves are much too slow. To obtain optimal efficiency, we use a multigrid scheme based on AB
and ALB described in the previous section. For simplicity of discussion, we consider only the two-grid case.

We use a full approximation scheme(FAS) to accommodate nonlinearities. A two-level FAS algorithm for an
equation of the form

I = f* (79)
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may be described loosely as follows:

i) relax on L*¢"* = f*,
i) solve L3¢ = L IRgh + I (5" — LM¢"),
iii) replace ¢* — ¢* + Ib,(¢** — It*¢").

The notation we have introduced includes the difference operators L* and L?*, the restriction operators I?* (for
the approximation) and 3% (for the residual), and the interpolation operator I3*.

A full-coarsening strategy is generally ineffective for problems that favor special coordinate directions (e.g.,
anisotropic problems). To overcome this limitation, we consider now a special combination of semi-coarsening and
line-box relaxation. The basic idea is to use line-box relaxation in one direction (say the y—di:ection) and coarsening
only in the other two directions (z- and z-directions). A two-level staggered grid projected in the (z, y)-plane and
(2, z)-plane is given in Figure 10.

The full weighting restriction is still used here for transferring the residual from fine to coarse grids. The stencils
can be expressed as follows:

1 1 1
CSCRIENE g],
11
BE) |1 f]
11
R |4 g]
] "1 o1 '
B | f] (80)

These stencils can be explained geometrically as shown in Figures 11-12.
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Figure 10. Two-level staggered grid structure for z — z direction semi-coarsening:
(a) fine grid projection on (z,y) plane, (b) coarse grid projection on (z,y) plane,
(c) fine and coarse grid projection on (z, z) plane.
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Figure 11. Full-weighting restriction for (a) z-momentum
equation, (b) z-momentum equation.

i

Figure 12. Full-weighting restriction for y-momentum and continuity equations.

For the restriction of variables, bilinear interpolation is used. Its stencils are

) [z]

wo - [} 1]

B 14},

e |11 (1)

For semi-coarsening, the coarse to fine transfer operators are based on linear interpolation:

h(aw) - [ ] for Au} or [ ] for Aul,

P A
o=t
1001
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- 2 8]
IZh(Av) : E 135 )
18

L 16 |
[ g 1
2 (aw) 3 -]1] for Aw? or [ § 3 ] for Auwj,
(4 4 8 s
Y [ 8 8 ]
Bapr)y - |8 ¥ |. (82)

The meaning of the above stencils is shown in Figures 13-15.
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z
Figure 13. Bilinear interpolation for Au.
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Figure 14. Bilinear interpolation for Aw.
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Figure 15. Bilinear interpolation for Av and AP,
(AP and Av are not located in the same (z, z) plane ).
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9 Fine-Coarse-Fine Grid Mapping

The spatial DNS usually meets difficulties after the flow goes into the breakdown stage when the shear layer
is developed and the vortex breaks down to small scale vortices. The numerical simulation will thus have & huge
energy burst, and the disturbance velocity will be amplified by tens or hundreds of times somewhere inside the
flow field . The code then blows up. Apparently, it is not the physical case, but is largely caused by that the
grid we used is not fine enough to resolve the small eddies which play the role to generate dissipations. To keep
the numerical simulation going, we developed a fine-coarse-fine grid mapping technique. To explain this technique,
let us see what happens for a 1-D problem. We do the fine to coarse grid restriction and the coarse to fine grid
interpolation at each time step:

u = I,f"u?”

h
up* = Dhuc

Here, I?* is a linear restriction and I}, is a linear interpolation.

sin(2nx/2L) sin(2rx/4L) sin(2nx/L)

K < 1 modes K =1 modes
Figure 16. Fine-coarse-fine mapping.

Define L as a section which has five grid points on the fine grid, and (assume u4 = 0)

_ foL |u}“"’|dz
=TI
Jo 1ugdlde
as the amplification factor.

Assume we have different frequency modes, e.g.,

1

27 1
sm(KTL—z), K=1’§’ g

Wl

(K > 1is not visible on this grid), we can approximately get a by numerical integration for different modes.

[sin(K22L) + Lsin(K 2 L)%
[sin(K 2z L) +sin(K 3 L)sin(K323E) + lsin(K2£L))Z

L4
2sin(Kx) + sin(2K x)
sin(£2) +sin(K«) +sin(3Kx) + L sin(2K )’
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when K =1, =0, when K - 0, ¢ — 1.
1.57
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0.0
0.0 0.5 1. 1.5

Figure 17. Amplification factor for different modes.

Figure 17 clearly shows that this kind of grid mapping, fine to coarse restriction and coarse to fine interpolation,
significantly damps the highest frequency (K = 1), but has only a little effect on other modes (K < 1), and has
almost no effect on low frequency modes (K — 0).

The computational resources are still quite limited for DNS even if we use today’s largest supercomputer. For
certain grids, the highest frequency which can be well simulated is K = 1. This highest mode may generate higher
frequencies which can not be simulated by current grids and may cause the computation to fail. This fine-coarse-fine
grid mapping damps the X = 1 mode and protects other frequency modes. Of course, we do not want to eliminate
the X = 1 mode, but to restrict its energy growth. The actual procedure of this technique is

1 Ue = Izh f ,
2. u';“? =(1- ﬁ)u}” + ﬁI;‘hu,_-.

Here, we choose
B =7 (v?+v*+w?),

which is proportional to the perturbation emergy. Therefore, there is very little damping to K = 1 when the
perturbation is very small. In this way, we successfully keep the code running to simulate the whole process of
transition: linear evolution, secondary instability, breakdown, and transition. Note that the large eddies play a
much more important role in flow transition than do small eddies which correspond to high frequency modes.
We have to sacrifice these small eddies due to the lack of computer resources. But, the physics of trapsition and

turbulence are still simulated quite well due to the accurate representation of lower frequency modes corresponding
to large eddies.

10 Computational Results
10.1 Comparison with linear stability theory (LST)

To verify the accuracy of our approach, we compare our results with the linear theory by assuming a parallel
steady base flow and imposing a small disturbance at inflow. The base flow is now uo(z, y) = uo(zo, ), vo(z,y) =0,
where ug(zo, y) is the Blasius similarity solution at inflow. Since it is easy for finite difference schemes to simulate
the damping (stable) modes, we just test the growing (unstable) modes.

Let Rel = 900, Fr = 86 (w = 0.0774), and 8 = 0 (2-D case). The Orr-Sommerfeld solution provides an
eigenvalue

a = agr +ia; = 0.2229 — 10.00451,

and the associated eigenfunctions ¢%, ¥, %, and ¢} which are dependent only on y (Figure 18).
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Figure 18. Streamwise and wall-normal velocity eigenfunctions of
an unstable mode (Re§ = 900) in 2-D flat plate flow.

In LST, the disturbances are assumed to be traveling waves. In the 2-D case, this yields

u = e~ V¥ ($Rcos(apz — wrt) — Pysin(arz — wrt)),
v = ee” U1 (pRcos(arz — wrt) — PYsin(arz — wrt)). (83)

The inflow boundary velocities can then be obtained by setting z = 2o for z and z = zo — —2— for v (zo is the
z—coordinate at inflow). We assume that ¢ is small. Figure 18 shows the complex eigenfunctions for both u and v
components (¢%, ¢}, ok, and ¢3) in the physical (z, y)— plane, which are normalized by setting maz{¢% v}=1.

A moderate computational domain is selected. In this case, the plate length (measured from the inflow location
z = Zg) is set to eleven Tollmien-Schlichting (T-S) wavelengths, while the buffer domain is an additional single
wavelength, making the length of the total computational domain twelve T-S wavelengths. Here we choose ymas =

75 and use a total computational grid with 362 x 50 grid points. The grid is highly anisotropic near the solid wall
(Az > Ay).

Since we use a fully-implicit scheme, the time step is restricted mainly by accuracy consideration. For our tests,
we take

2x
= —— = 0.2537.
At 3900 0.253
The convergence rate of the semi-coarsening multigrid method, which we generally found to be about 0.2 per
V(2,2) cycle (relax twice on each grid level before descending and ascending), is much better than the performance
of single-grid relaxation, as shown in Figure 19.
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continuity equation.
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Figure 19. Convergence history at a fixed time for multigrid and single-grid relaxation.

In order to compare the computational results with the linear theory solution, which is accurate for the parallel
wall-bounded base flow with small disturbances, we first assume that the base flow is everywhere given by

U0(£9 ’7) = UO(O; ’7)! VO(G) 77) =0, and €= 10—4!

where, Ug(0, 1) is the Blasius similarity solution in the computational (¢, 7) plane at £ = 0 and that the displacement
thickness of the boundary layer is a constant, &3,. Then Re*(= Reg), @, and w do not change along the streamwise
direction. The streamwise and wall-normal velocity components, u and v, of the disturbance after 13 T-S periods
(t=13T) are compared with the solutions obtained by the linear theory at a vertical position close to the solid wall
(y* = 1.3137 for v and y* = 1.2448 for v) in Figure 20. Excellent agreement in both amplitude and phase between

the computational results of our fourth-order finite difference scheme and the solution obtained by LST is observed

in the physical domain. comparison of streamwise disturbance velocity

DNS+MG

303.95 371.80 439.25 506.91 $74.56

comparison of wall-normal disturbance velocity

DNS+MG

107 v

303.95 371.60 439.25 506.91 574.56

1
i
i b
o
-1.5 ! :
: 842.21
i

physical domain buffer
Figure 20. Comparison of the numerical and theoretical velocity components near the solid wall (y* = 1.3137 for

u and y* = 1.2448 for v). Re* =900, Fr = 86, parallel wall-bounded base flow assumption is used grids: 362 x 50
(11 T-S wavelength physical domain + 1 wavelength buffer domain).
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’]:‘o compare our numerical results with those obtained by LST more precisely, we check the profiles of different
Fourier modes.

The profiles .of the disturbance waves are obtained by using the Fourier transformation. Generally, we can
expand any continuous function in the spectral space. Since

- w

T
k) = — / " iz, y, t)eFtdt 84
2x Jy e ! (84)

where i(z,y,t) is the complex disturbance velocity and (k) are the Fourier coefficients corresponding to the
frequency kw, we can then obtain '

[a(k)] = 2v/a(k)? + b(k)?, k=0,1,2,--" (85)
with

w T

alk) = o / Real{ii(z, y, ) }cos (kwt)dt, (86)
* Je

w [T
b(k) = o= [ Real{i(z, y, t)}sin(kwt)dt. (87)
Only the fundamental wave (k = 1) is obtained in this case. Figure 21 depicts the streamwise and wall-normal

disturbance velocity profiles at z* = 439.2 and 608.4 (z* = z/5;

: ,), and shows the excellent agreement with those
obtained by linear stability theory.

Streamwise disturbance profile of fundamental wave u,

10 10
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© © DNS+MG o0 0 DNS+MG
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> “om
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10~ rms, x’'=439.2 10~ rme, X =608.4

Wall-normal disturbance profile of fundamental wave v,
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Figure 21. Comparison of the numerical and LST velocity profiles at z* = 439.2 and 608.4.

To check the high order accuracy, two different grids (362 x 50 and 182 x 26) are tested. For this kind of
unsteady problem, it is quite difficult to show the grid convergence. We define the relative L, error norm for both
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u and v as

1Bl = o E

A

where u, v denote the numerical solution, and u,, v, denote the LST solution. The results given in Table I show
that the accuracy of our scheme under the above measure is about O(h%5).

grids | |[Eullz | [IBw]l2
182 x 26 | 0.3315 | 0.3243
362 x 50 | 0.0393 | 0.0319

Tabie 1. Relative L3 error norm for u and v after
13 T-S periods (calculated in physical domain).

10.2 Secondary instability and transition

Now we return to the real world. The base flow is now not parallel to the solid wall, but the Blasius similarity
solution. :

The computational domain is restricted to

z € [Zo,z0+1:A0),

¥ € [0,¥maz)s
z € [1,31],
B!’ 18]

where I, is the number of T-S wavelengths in the computational domain, and Ao is the T-S wavelength at inflow
(the T-S wavelength X varies when the base flow is non-parallel).

A Benney-Lin (1960) type disturbance is imposed on the inflow:
{,‘(0, vz, t) — Real{equS(,';)(y)e"‘” + €Sd+¢$Leiwt+iﬁ= + esd_¢g;)—eiwt—iﬁz})

where ¢34(y) and @sas(y) correspond respectively to 2-D and 3-D eignsolutions of the Orr-Sommerfeld equation
and the superscript (k) denotes different velocity components. Following is a typical case we chose:

Rey = 900, Fr=286 (w=0.0774),
8 0.1, Ymas = 50,

1. 7% 0.2229 — 0.004511,

agg = 0.2169—0.00419s,

€4 = 0.03, €84+ =0.01,
I, = 10 with 2 T-S wavelengths for buffer domain
zo = 303.9, =z.,q=593.6.

The grid we used here is 162 x 34 x 34 (including eight wavelengths and a two wavelength buffer domain). The

time step is set to 515 of the 3-D T-S wave period.

It takes around 8 CRAY-YMP CPU hours for the code to run 30 T-S periods. Figures 22 and 23 depict the
contours of relative helicity at different times which clearly show the process of K-type fundamental iransition,
A-wave formation, the peak and valley splitting and vortex breakdown. It is found that the breakdown begins
at the second peak when the A-wave is intensified to certain degree and the shear flow is developed. The vortex
breakdown further contaminates the flow field which leads to a tramsition process. The patterns of helicity at
t = 307 is very similar to those ¢ = 7T, which suggests that the whole process of transition has been built up after
i = 7T. It turns out that less than 2 CRAY-YMP hours are needed to simulate the whole process of tramsition for
a 162 x 34 x 34 grid and 7 T-S periods. Figures 24 and 25 give the contour plots of total vorticity magnitude on
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the y = 0.0477 (z,z)-plane and spanwise vorticity on the z = 31.4 (2, y)-plane at different times which clearly
show the process of vortex breakdown and formation of multiple spikes. The appearance of random moving small
vortexes after breakdown provides a clue that the flow no longer keeps its laminar status. These contours also show
a qualitative agreement with the laboratory experiment conducted by Saric et al. (1984).

The z-component of perturbation velocity, u, at different streamwise positions, z = 305,421, and 537, but
with same y-coordinate (y = 0.3667) is shown in Figure 26. Although the disturbance imposed at inflow is a sine
function as shown at z = 305, the perturbation at other points is largely amplified and distorted. The perturbation
velocity no longer keeps its sine function shape, but starts oscillating very fast, showing that high frequency modes
have been induced.

We also averaged u and » on z = 31.4 (z,y)-plane at different streamwise positions, z = 305, 363, 421, 479,
and 537 after the transition process was built up. The time-averaged @ and ¥ are given in Figures 27, 28, 29, and
30. Figures 28 and 29 depict the differences in % profiles between the Blasius similarity solution and computational
results at z = 421 and 537, which qualitatively agree with the experimental results given by Suder, O’Brien, and
Reshotko. Figures 28 and 29 also show that the @-profile in the transition zone is sharper than those of Blasius
solution. The wall stress 7= p‘g—; is then larger than that of laminar flows.

Figure 30 gives the 7-profile. The 7 is always positive in a laminar boundary layer. But, our computational
results show that ¥ varies from positive to negative and then becomes positive again. This is a typical sign that
the flow is experiencing transition. Figure 31 shows that the spectrum of perturbation u becomes wider as the flow
moves downstiream. We also tried another case :

Rey = 1732,
wsg = 0.0909,
wsqg = 0.04545,
B = 0.2418, Ymaz =59,

i

ag 0.2490 — 0.00351,
esq = 0.1103 — 0.006503,

€24 = 0.015, e€sq+ = 0.005,
I. = 10 with 2 T-S wavelengths for buffer domain
Zo = 248.2, z.nq= 437.5.

The grid we used here is still 162 x 34 x 34 (including eight wavelengths and a two wavelength buffer domain).
This was set to correspond to a subharmonic transition, but we still got & k-type fundamental transition when we
chose €34 = 0.03 and €g43+ = 0.01. However, when we changed to €35 = 0.015 and €gg3 = 0.005, a subharmonic
transition was very clearly observed ( see figure 32).

There is really a lack of reliable experimental data for tramsitional flow, which can be used to judge the
computational results. Also, we need finer grids to get better resolution for post-onset flow or turbulent flow. We
have to sacrifice those small eddies now. However, the results apparently provide physically correct simulations for
the whole process of flow transition.
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Figure 22. Front view of the relative helicity obtained on a 162 x 34 x 34 gird at different times.
Re* = 900, Fr = 86,8 = 0.1, €24 = 0.03, €34 = 0.01. Flow direction is from left to right.

28



t=2T

t=4T

Figure 23. Bird view of the relative helicity obtained on a 162 x 34 x 34 gird at different times.
Re* =900, Fr = 86,8 = 0.1, €24 = 0.03, ¢35 = 0.01. Flow direction is from left to right.
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Figure 24 . Contour plots of the total vorticity magnitude obtained on a 162 x 34 x 34
gird at different times on the y§ = 0.1123 (z, z)—plane. Re* = 900, Fr = 86,8 = 0.1,

€24 = 0.03, €3¢ = 0.01. Contour interval is 0.02, flow direction is from left to right.
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Figure 27. Time-averaged 4-profiles at z = 31,z = 304, 362,421,479, and 537.
Reg = 900, Fr = 86,8 = 0.1, €24 = 0.03, €34 = 0.01.
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Figure 28. Comparison between i-profiles and the Blasius profile at z = 421,z = 31.
Rey = 900, Fr = 86,8 = 0.1,€24 = 0.03, €34 = 0.01.
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Figure 29. Comparison between ti-proﬁlc and the Blasius profile at z = 537,z = 31.
Re} = 900, Fr = 86,8 = 0.1, 634 = 0.03, €34 = 0.01.
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Figure 30. Time-averaged -profiles at z = 31,z = 304, 362,421, 479, and 537.
Rej = 900, Fr = 86,8 = 0.1, €24 = 0.03, €32 = 0.01.
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Figure 31. Streamwise distribution of the @-spectrum at y = 0.715,z = 319.3,362.8, 406.2,449.7,
and 478.6 Rey = 900, Fr = 86,8 = 0.1, €24 = 0.03, €34 = 0.01i, and a 114 x 34x 18 grid
(6 T-S wavelengths physical domain +1 wavelength buffer) is used.
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11 Concluding Remarks

o The fully implicit time-marching and fourth-order finite difference scheme on a stretched and staggered grid is
accurate enough to simulate the pre-onset transitional flow with a relatively coarse grid. The computational
results agree with linear stability theory, secondary instability theory and some experiments.

o The simulation with relatively coarse grids still can provide qualitatively correct prediction for tramsitional
fiow. It shows that the large eddies play more important roles in the process of flow transition.

o The spatial DNS with relatively coarse grids meets trouble at the flow breakdown stage since the grid is
not fine enough to resolve the small eddies which play the role to generate dissipations. We then need to
introduce some numerical dissipation. The new fine-coarse-fine grid mapping technique can keep the DNS
code running to simulate the whole process of transition, including the linear growth, secondary instability,
breakdown, and transition.

s To get more accurate DNS simulations, we still need finer grids, especially for post-onset flows.
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